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Abstract 34 

Background: Habitat types can affect vector and pathogen distribution and transmission 35 

dynamics. We investigated the prevalence and genetic diversity of Plasmodium spp. in two 36 

eastern chimpanzee populations - Kalinzu Forest Reserve, Uganda and Issa valley, Tanzania - 37 

inhabiting different habitat types. As a follow up study, we determined the effect of host sex 38 

and age on infections patterns in Kalinzu Forest Reserve chimpanzees.  39 

Methods: We employed molecular methods to detect Plasmodium DNA from faecal samples 40 

collected from savanna-woodland (Issa valley) and forest (Kalinzu Forest Reserve) 41 

chimpanzee populations. 42 

Results: Based on a Cytochrome -b PCR assay, 32 out of 160 Kalinzu chimpanzee faecal 43 

samples were positive for Plasmodium DNA, whilst no positive sample was detected in 171 44 

Issa valley chimpanzee faecal samples. Sequence analysis revealed that previously known 45 

Laverania species (P. reichenowi, P. billbrayi and P. billcollinsi) are circulating in the 46 

Kalinzu chimpanzees. A significantly higher proportion of young individuals were tested 47 

positive for infections, and switching of Plasmodium spp. was reported in one individual. 48 

Amongst the positive individuals sampled more than once, the success of amplification of 49 

Plasmodium DNA from faeces varied over sampling time.  50 

Conclusion: Our results showed marked differences in the prevalence of malaria parasites 51 

among free ranging chimpanzee populations living in different habitats. In addition, we found 52 

a clear pattern of Plasmodium infections with respect to host age. The results presented in this 53 

study contribute to our understanding of ecological aspects underlying the malaria infections 54 

in the wild. Nevertheless, integrative long term studies on vector abundance, Plasmodium 55 

diversity during different seasons between sites would provide more insight on the 56 

occurrence, distribution and ecology of these pathogens. 57 

 58 
Keywords: Malaria, Pan troglodytes schweinfurthii, Plasmodium spp, Laverania, cyt-b gene. 59 
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Background 60 

Parasite distribution and transmission dynamics are influenced by the ecological 61 

context of the host-parasite interactions and a variety of local environmental parameters [1-3]. 62 

In the case of vector-borne Plasmodium infections, the primary effect of habitat on the 63 

transmission of malaria is by affecting larvae development, abundance and distribution of 64 

competent vectors [4-7]. Numerous studies have demonstrated the relationship between 65 

specific habitats and levels of Plasmodium infections in humans [8-12]. However, research 66 

addressing habitat types as a source of variation in prevalence and diversity of these parasites 67 

in wild apes is lacking. In addition to habitat, host traits such as age, sex and host density may 68 

also have an influence on host parasite infection and transmission of Plasmodium spp. [13-69 

15]. 70 

Chimpanzees (Pan troglodytes), like several other primates, harbour a multitude of 71 

malaria parasites. With the development and refinement of molecular diagnostic techniques 72 

together with non-invasive sampling, at least seven distinct Plasmodium species are known to 73 

infect wild chimpanzees. Four of them, P. reichenowi, P. gaboni, P. billcollinsi and P. 74 

billbrayi belong to the subgenus Laverania and are chimpanzee-host specific [16-22]. The 75 

remaining three species, usually referred to as P. malariae-like, P. ovale-like and P. vivax-76 

like, rarely occur in chimpanzees and they are genetically related to their human counterparts. 77 

Nevertheless, the nomenclature of these rare taxa requires further investigation [19]. Given 78 

the high genetic diversity of Plasmodium species reported from chimpanzees and other 79 

primates including humans [19,20, 23], a better understanding of the infection dynamics and 80 

interactions between parasites, Anopheles mosquitoes, hosts and environmental parameters 81 

that facilitate malaria transmission in apes is required [15,18,24].  82 

In the current study, we investigated the prevalence and genetic diversity of 83 

Plasmodium spp. in two populations of eastern chimpanzees (P. t. schweinfurthii) inhabiting 84 
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two different habitats: (i) savanna woodlands in the Issa valley, Tanzania and (ii) evergreen 85 

moist forest in Kalinzu Forest Reserve (KFR), Uganda. We compared malaria infection 86 

between these two habitats (savanna and moist evergreen forest) because of their variable 87 

environmental parameters that may influence the exposure to malaria parasites with varying 88 

degrees in chimpanzee populations. Because chimpanzees at KFR are habituated, we 89 

additionally addressed the relationship between age, sex and malaria infection patterns in this 90 

population.  91 

Methods 92 

Study sites 93 

Issa valley, Tanzania: The Issa valley is located in western Tanzania (Fig. 1), about 90 km 94 

east of Mahale Mountains National Park, and approximately 70 km from Uvinza, the nearest 95 

legitimate village. Issa valley is characterised as an open area with no formal protective status, 96 

where small scale illegal human activity for hunting and logging takes place [25]. The entire 97 

region is one of the driest and most open chimpanzee habitats, with an altitudinal range of 98 

900-1,800 m above sea level [26]. There is an extended dry season (May-September), with 99 

rains from October-April, peaking in January (unpublished data), averaging 1,095mm/year 100 

(range: 835-1395). Average daily temperature varies from 11-35°C [27]. The habitat is 101 

dominated by savanna (Miombo) woodland, characterized by Brachystegia and Julbernardia 102 

trees, with small riparian forest patches [26]. The population density of Issa chimpanzees is 103 

estimated to be ~0.25 individuals/km2 [25]. Data on the prevalence of Plasmodium vivax in 104 

this population have been reported elsewhere [28]. In addition to chimpanzees, several other 105 

primate species inhabit the study site, including red colobus monkeys (Piliocolobus 106 

tephrosceles), yellow baboons (Papio cynocephalus), blue (Cercopithecus mitis) and red-107 

tailed monkeys (C. ascanius), vervet monkeys (Chlorocebus pygerythrus), bushbabies 108 

(Galago senegalensis, G. moholi) and greater galagos (Otolemur crassicaudatus) [26]. 109 
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KFR, Uganda: Kalinzu is one of the three largest forest blocks in Uganda. The forest reserve 110 

(~137 km2) is located on the eastern ridge of the western Rift valley in western Uganda (Fig. 111 

2), with an altitudinal range of 1,200-1,500 m above sea level [29]. The area is adjacent to 112 

Kashoha-Kitomi Forest Reserve and Maramagambo Forest Reserve on the north and west 113 

sides, agricultural fields to the east and tea plantations to the south [29]. Kalinzu has a 114 

bimodal distribution of rainfall with peaks between September-December and March-May, 115 

and average annual rainfall of 1,584 mm. The average daily temperature varies from 15 to 116 

25°C [30,31]. The vegetation is classified as medium altitude moist evergreen forest, with 117 

common species including Musanga leo and Ficus spp. [32]. The chimpanzee population 118 

density is estimated to be ~1.67 individuals/km2 [33]. In addition to P. t. schweinfurthii, black 119 

and white colobus (Colobus guereza), olive baboons (Papio anubis), red tailed 120 

(Cercopithecus ascanius), blue (C. mitis), and L’hoests monkeys (C. lhoesti) occur in the area 121 

[32].  122 

Sample collection  123 

Issa valley: We collected 171 faecal samples from a single community of chimpanzees 124 

inhabiting the Issa study area between March-May 2012 and June-August 2013. It was not 125 

possible to attribute the faecal samples to specific individuals. We collected most of the faecal 126 

samples underneath fresh nests (~12 hours old) and some from chimpanzee trails. 127 

Approximately 20 g of faecal material was collected in a 50 ml tube, containing 20 ml of 128 

RNAlaterTM (Ambion Inc., Austin, TX). All faecal samples were stored in a freezer at -20°C 129 

on site, and subsequently shipped to the Czech Republic, where they were kept at -20/-80°C 130 

until DNA extraction. 131 

KFR: Between April and July 2014, we collected faecal samples from 41 habituated 132 

chimpanzees (males, n=20; females, n=21). We collected a total of 123 fresh faecal samples, 133 

ranging from 1 to 10 faecal samples per individual. Samples were collected during direct 134 
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observations of chimpanzees. Concurrently, during tracking of chimpanzees 37 faecal 135 

samples were collected from unidentified individuals. Collection and storage protocols were 136 

the same as those at Issa, with the exception that samples were kept at 4°C in a fridge at base 137 

camp prior to shipping to the Czech Republic, where they were kept at -20/-80°C until DNA 138 

extraction.  139 

Molecular methods 140 

We extracted total DNA from 1.5 ml of the faecal - RNAlaterTM suspension using a 141 

QIAamp Stool DNA Mini kit (Qiagen, Valencia, CA) and PSP® Spin Stool DNA Kit (Stratec 142 

Molecular, Germany) according to the manufacturer’s protocol. Bound DNA was eluted in 143 

100 μl elution buffer. To determine the concentration of the extracted DNA, total DNA was 144 

measured by fluorometry, using a Qubit (Invitrogen, Carlsbad, CA). To screen samples for 145 

Plasmodium, a nested PCR was performed on each sample targeting a ~930 bp fragment of 146 

the Plasmodium cytochrome b (cyt-b) gene, as described by Prugnolle et al. [34], with 147 

modification of the second PCR reaction. A pair of short internal primers amplifying 148 

overlapping fragments (516 and 558 bp) was designed, retrieved sequences were contiged to 149 

obtain same region of cyt-b. First round PCRs were performed in a 25 μl reaction, containing 150 

12.5 μl of PCR mix (Qiagen), 2.5μl of solution Q (Qiagen) and 0.2 μl of each primer (DW2 151 

and DW4) in 10 pmol concentration and 4 μl of the DNA sample. Second nested PCR was 152 

performed using two different set of reactions, using Cytb1 (5'-153 

CTCTATTAATTTAGTTAAAGCACA-3') and Cytb2B (5'-154 

GCTCTATCATACCCTAAAGG-3') in the first set, and Cytb2 (5'- 155 

ACAGAATAATCTCTAGCACC-3') and Cytb1A (5'-156 

CAAATGAGTTATTGGGGTGCAACT-3') for the second set. Two µl of first round PCR 157 

product was then used in a second round 25 µl nested PCR reaction, containing 12.5 µl 158 

common Master Mix (Top-Bio, Czech Republic) and 1 µl of each primer in 10 pmol 159 
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concentration. For details of the modified nested PCR conditions see [15]. PCR products were 160 

visualized in 2% agarose gel and stained with Gold-View. Bands of the expected size were 161 

visualized using an UV light source, excised, purified using QIAquick gel extraction kit 162 

(Qiagen, Germany) and sequenced in both directions using internal primers by Macrogen 163 

capillary sequencing services (Macrogen Europe, the Netherlands). 164 

Sequence and phylogenetic analyses 165 

Sequences were edited in Chromas Pro 1.5 software (Technelysium, Ltd) and 166 

alignment was prepared with ClustalW multiple alignment tool implemented in Bioedit 167 

Sequence Alignment Editor v.7.0.9.1 [35]. All suitable retrieved sequences were submitted to 168 

GenBank™ database under the Accession Numbers KT864824-KT864842. 169 

The alignment was checked manually and the resulting sequence were (~758 bp) later 170 

used for phylogenetic analyses. To examine the phylogenetic relationship of the new dataset, 171 

we added sequences from different ape Plasmodium species downloaded from GenBank™ to 172 

the final alignment. For the final analyses, only haplotypes were further included (haplotypes 173 

and redundant sequences are shown in Table 1).  174 

Phylogenetic relationships were inferred using the maximum likelihood (ML) method 175 

under the general time-reversible evolutionary model with gamma distributed substitution 176 

rates (GTR+Γ) in program PhyML 3.0 [36]. Nodal support was assessed by bootstrap using 177 

1000 pseudoreplicates. Additionally, Bayesian methods using the program MrBayes 3.2.2 178 

[37] was also used to reconstruct phylogenetic relationships. Setting for the evolutionary 179 

model was the same as in ML and the search was carried out in two simultaneous runs of one 180 

million generations, sampled each 100 generations, with a burn-in of 25%. 181 

Cloning of mixed infection samples  182 

Two samples were cloned separately with a TOPO® TA cloning kit (Invitrogen, 183 

Carlsbad, CA) according to the manufacturer’s instructions. Plasmids containing inserts were 184 
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isolated from positive Escherichia coli colonies by GenEluteTM plasmid mini prep kit (Sigma-185 

Aldrich, St. Louis, MO). DNA extracts from at least six randomly selected colonies were 186 

sequenced in both directions. 187 

Statistical analyses 188 

We defined prevalence as the number of Plasmodium-positive individuals divided by 189 

the total of individuals tested. Samples collected from unidentified individuals were not 190 

included for the calculation of prevalence, but they were used to investigate the genetic 191 

diversity of the parasites. Of the 41 habituated individuals sampled in KFR, 25 were re-192 

sampled to observe the fluctuation of the infections. In order to examine the possible effect of 193 

sex and age on the occurrence of malaria in KFR chimpanzees, a general linear mixed model 194 

(GLMM) with binomial distribution was fitted. Since we had a limited number of faecal 195 

samples from juveniles and subadults, age classes were pooled and grouped as 196 

juveniles/subadults and adults. We verified age-classes based on previously suggested 197 

categorization [38]. Samples were classified according to sex (fixed factor: male, female) and 198 

class of age (fixed factor: juvenile/subadult, adult). Individual identity was treated as a 199 

random factor. Statistical analyses were performed in R [39]. 200 

Results 201 

In total, we examined 331 chimpanzee faecal samples (Table 2) from the Issa valley. 202 

All faecal samples collected from Issa chimpanzees were negative for Plasmodium DNA. On 203 

the contrary, Plasmodium spp. was detected in 32 out of 160 (both identified and unidentified 204 

individuals) faecal samples collected from KFR chimpanzees. In total, 22 out of 123 samples 205 

collected from identified individuals were positive for Plasmodium DNA; 10 out of 37 206 

samples from unidentified individuals were Plasmodium-positive. The prevalence among 207 

identified individuals was 43.9% (n =18/41). The general linear mixed model showed that sex 208 

had no significant effect on the susceptibility to infection (GLMM: z = -0.027, p = 0.283), 209 
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while age was a significant factor influencing Plasmodium infection. The total prevalence of 210 

Plasmodium spp. was significantly higher among juvenile/subadult individuals than adults 211 

(GLMM: z = 2.308, p = 0.020). Of the re-sampled individuals (n=25), eleven were found 212 

positive at least once. Variation on detection of Plasmodium DNA (negative-to-positive and 213 

vice versa) was common and observed in 18 identified individuals (Table 3). Switching of 214 

Plasmodium spp. was observed in one individual (Table 3).  215 

Alignment and phylogenetic analysis of the obtained cyt-b sequences (both from 216 

identified and unidentified individuals) with reference sequences indicated the presence of 217 

Plasmodium strains that specifically infect only chimpanzees (see Additional files 1). Among 218 

the retrieved sequences, 12 were P. reichenowi, 11 P. billbrayi and seven P. billcollinsi. All 219 

sequences obtained in this study clustered with their homologous sequences retrieved from 220 

GenBankTM and form well-supported clades. Geographical sub-structuring among P. 221 

reichenowi was observed, whereby sequences obtained from P. t. schweinfurthii clustered 222 

separately from other P. reichenowi sequences from P. t. troglodytes and P. t. ellioti. No 223 

samples containing cyt-b of P. gaboni or non-Laverania species (P. vivax-like, P. malariae-224 

like and P. ovale-like) were detected in our dataset. Mixed infections were detected in two 225 

samples. Sequences of two PCR amplicons showed double peaks in the chromatograms, 226 

suggesting mixed infections. These samples were further processed by cloning to identify 227 

Plasmodium to species level. In the first sample (from an unidentified individual), we 228 

obtained 15 sequences with two representative sequence patterns that were in agreement with 229 

BLAST-searches for the cyt-b sequences: 14 sequences were 99-100% similar to P. 230 

reichenowi (acc. number: HM235389), and one sequence was 99% similar to P. billbrayi 231 

(acc. GQ355468). In the second sample (from an identified individual), we obtained 12 232 

sequences with three representative sequences patterns: four sequences were 99% similar to 233 

P. reichenowi (acc. number: HM235389), five sequences were 99-100% to P. billbrayi (acc. 234 
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number: GQ355468), and three sequences were 99% similar to P. billcollinsi (acc. number: 235 

HM235392).  236 

Discussion 237 

A number of studies have described the distribution and genetic diversity of 238 

Plasmodium spp. in African great apes [17,18,22,34,40,41], yet there is substantial lack of 239 

knowledge on the effect of intrinsic and extrinsic factors that govern malaria parasite 240 

transmission and frequencies of infections in free ranging chimpanzees. To our knowledge, 241 

this is the first study to investigate the prevalence and genetic diversity of Plasmodium spp. in 242 

KFR. Our finding from KFR is comparable to previous studies by Liu et al. [18] that were 243 

conducted at multiple field sites, as well as to the study by Kaiser et al. [41] from Budongo 244 

Forest in Uganda. While we did not detect any species of Plasmodium from Issa valley 245 

samples, results from a previous study [28] revealed that four out of three hundred thirteen 246 

chimpanzee samples from this population to be positive for P. vivax-like. Variation in the 247 

prevalence between this study and that of Liu et al. [28] is most likely to be attributable to our 248 

smaller sample set, and, possibly also to differences in sensitivity of detection methods. 249 

Looking at this discrepancy from a different perspective, P. vivax tends to stay dormant in the 250 

liver for many years [42]. Consequently, we can speculate that during our sampling time 251 

shedding of Plasmodium DNA into the intestinal lumen was minimal, leading to failure to 252 

detect P. vivax DNA in faecal samples. 253 

An overall prevalence of Plasmodium spp. in KFR was 43.9%, while all faecal 254 

samples from Issa valley were negative. The remarkable ecological differences between KFR 255 

and Issa valley habitats represent most plausible explanation for observed differences, as they 256 

may impact on the species diversity and abundance of anopheline mosquitoes. However, also 257 

host density may have significant impact on the transmission and maintenance of infections in 258 

a given population [12]. Kalinzu chimpanzees live at a relatively high density (~1.67 259 
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individuals/km2, [33]) compared to Issa chimpanzees (~0.25 individuals/km2, [25]). Then, the 260 

abundance of hosts may act as an additional factor influencing the prevalence of Plasmodium 261 

spp. 262 

Liu et al. [28] screened another but forest-inhabiting eastern chimpanzee population 263 

(Pan t. schweinfurthii) from Gombe National Park, and none of the samples was positive for 264 

P. vivax-like. The absence (or very low prevalence Liu et al. [28]) of Plasmodium infection is 265 

these eastern chimpanzee populations (Issa valley and Gombe National Park) could be also 266 

attributed to the genetic factors related to hosts as observed in human [43] rather than to their 267 

habitat. Unfortunately, it is difficult to reliably compare the results of these two studies due to 268 

the different diagnostic techniques employed (P. vivax species-specific assay in the Gombe 269 

study [28], and Plasmodium genus-specific in the present study). Nevertheless, screening of 270 

near-by forested (Mahale Mountains National Park) and other savanna-dwelling chimpanzees 271 

(e.g. Semliki, Uganda; Fongoli, Senegal), as well as re-screening of the Gombe chimpanzee 272 

population for presence of Laverania species would offer an insight into the factors the 273 

influence the occurrence of Plasmodium spp. in eastern chimpanzees.  274 

Over the past five years, numerous Plasmodium species have been reported to 275 

circulate in free-ranging great apes [19]. Consistent with previous studies [18,22,34,41], 276 

sequence analyses of the cyt-b gene of Plasmodium spp. from Kalinzu chimpanzees revealed 277 

a high diversity of malaria parasites. With the exception of P. gaboni, which was not detected 278 

in our sample set, most of the sequences were identified as P. billbrayi, however, P. 279 

reichenowi and P. billcollinsi were also confirmed. Phylogenetic analysis showed that all 280 

sequences in our study cluster within the clades of subgenus Laverania, no sequence 281 

belonging to non-Laverania (P. vivax-like, P. ovale-like and P. malariae-like) lineage was 282 

identified. Our results agree with recent findings on ape malaria, where Laverania lineages 283 

were the only ones reported from central chimpanzees across multiple field sites in Gabon 284 



13 
 

[22], although, non-Laverania parasites are known to circulate within the same chimpanzee 285 

populations [44].  286 

In our initial phylogenetic analysis, a geographical sub-structuring in P. reichenowi 287 

related to host phylogeography appeared (Fig. 3). A phylogram resulting from the extended 288 

dataset confirmed this sub-structure. All P. reichenowi sequences obtained from P. t. 289 

schweinfurthii formed a separated subclade as previously observed by Liu et al. [18]. This 290 

sub-structuring could be influenced by the geographical barriers or differences in mosquito 291 

vectors responsible for transmission of malaria parasites. Further investigation into ape-292 

malaria from other chimpanzee populations, as well as the inclusion of environmental factors 293 

that may influence Plasmodium species distribution and abundance in wild great apes, will 294 

further contribute to a better understanding of Plasmodium species diversity and dynamics. 295 

Of the two host traits analysed in this study, only age was found to be statistically 296 

significant, with young chimpanzees more likely to be infected with Plasmodium spp. than 297 

older ones. A similar trend was observed in western chimpanzees of Taï, Ivory Coast [14], 298 

western lowland gorillas inhabiting Dzanga-Sangha Protected Areas [15], as well as in 299 

humans [45,46]. The time needed to develop semi- immunity against the malaria parasite may 300 

explain why Plasmodium was encountered more frequently among younger individuals [47]. 301 

Also the failure to find differences in infection levels between the sexes is consistent with 302 

previous results from western lowland gorillas [15] and western chimpanzees [14]. Indeed, 303 

the scarcity of information about the biology and ecology of Laverania lineages and their 304 

interactions with hosts, preclude us from drawing a precise picture of the infection dynamics. 305 

The pattern of infections (negative-to-positive and vice versa) was observed in 18 306 

individuals sampled more than once over the course of the sampling period. It is worth noting 307 

that negative samples observed in this study do not necessary reflect the absence of infections. 308 

Rather, this phenomenon might be explained by fluctuation of parasitaemia level and 309 
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shedding of parasite DNA in faeces, combined with sensitivity of the Plasmodium detection 310 

in faecal samples expected to be lower compared to blood samples [18,48]. These findings 311 

may indicate that detection of Plasmodium DNA in faeces is prone to high risk of false 312 

negativity, hindering adequate assessment of actual prevalence of malaria in free ranging 313 

chimpanzee populations.  314 

Conclusion 315 

The findings of our study contribute to a broader understanding of malaria occurrence among 316 

wild chimpanzees. The differences observed may result from local variation in host exposure 317 

to mosquito vectors, extrinsic factors, differences in chimpanzee density, as well as host 318 

genetic related factors. Future research should focus not only on screening chimpanzees that 319 

live in a variety of habitats, but also identifying potential vectors and vector abundance, in 320 

order to provide insights on the distribution and occurrence of Plasmodium spp. in 321 

chimpanzees. 322 
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 488 
Table 1. List of haplotypes used in phylogenetic analyses 489 

KFR stand for Kalinzu forest reserve 490 

Acronyms under accession number represent chimpanzee and gorilla sub-species 491 

Ptt; Pan troglodytes troglodytes, Pte; Pan troglodytes ellioti, Pts; Pan troglodytes 492 
schweinfurthii 493 

Ggg; Gorilla gorilla gorilla 494 

  495 

Haplotype Isolate Reference 
 

KFR144 KFR 144, KFR177, KFR5A, KFR9A, KFR 21, KFR45,  
HM235389_Pts,  
HM235389_Pts 

This study 
Liu et al., 2010 
Liu et al., 2010 

HM235394 HM235394_Pts Liu et al., 2010 
HM235048 HM235048_Pts Liu et al., 2010 
HM235391 HM235391_Pts, HM235388 _Pts Liu et al., 2010 
HM235029 HM235029_Ptt Liu et al., 2010 
HM235028 HM235028_Ptt Liu et al., 2010 
HM235328 HM235364_Pte, HM235328_Ptt, HM235359_Ptt, HM235299_Ptt Liu et al., 2010 
HM235362 HM235362_Pte, HM235097_Pte, HM235096_Pte, HM235089_Pte Liu et al., 2010 
KFR3A KFR3A This study 
KFR150 KFR150, KFR167,  

HM235402_Pts, HM235401_Pts 
This study 
Liu et al., 2010 

KFR72 KFR72 This study 
HM235341 KFR149 

HM235341_Ptt, HM235339_Ptt, HM235108_Pts, HM235340_Ptt, HM235392_Pts, 
HM235342_Ptt, HM235395_Pts 

This study 
Liu et al., 2010 

HM235351 HM235351_Ptt Liu et al., 2010 
HM235380 HM235380_Ggg   Liu et al., 2010 
HM235367 HM235367_Ggg   Liu et al., 2010 
KC175316 KC175316   Sundararaman et al., 2013 
AY282929 AY282929   Joy et al., 2003 
HM235382  HM23538_Ggg, HM235294 Ggg, HM235304 Ggg Liu et al., 2010 
HM235400  HM235400_Pts, HM235076_Pts, HM235399_Pts Liu et al., 2010 
KFR178 KFR178 This study 

 HM235320  HM235320 Liu et al., 2010 
 HM235052  HM235052 Liu et al., 2010 
 GQ355470  GQ355470_Pts Krief et al., 2010 
 GQ355471  GQ355471_Pts Krief et al., 2010 
 KFR90  KFR90 This study 
 KFR36  KFR36 This study 
 KFR105  KFR105 This study 
 KFR32A  KFR32A, KFR93, KFR188, KFR7A This study 
 FJ895308  FJ895308_Ptt Ollomo et al., 2009 
 JX893151 JX893151_Ptt  Pacheco et al., 2013 
 HM235102 HM235102_Pte Liu et al., 2010 
 HM234997Ptt HM234997_Ptt, HM235315_Ptt, HM235348_Ptt, HM235309_Ptt, HM235280_Ptt 

HM235114_Pte, HM235113_Ptt, HM235112_Ptt, HM235088_Pte, HM235086_Pte 
HM235083_Pte 

 
Liu et al., 2010 

HM235100 HM235100_Pte Liu et al., 2010 
HM235077 HM235077_Ptt Liu et al., 2010 
HM235375 HM235375_Ggg, HM235284_Ggg Liu et al., 2010 
HM235313 HM235313_Ggg Liu et al., 2010 
JQ240419  JQ240419  Miao et al., 2012 
KC175307  KC175307  Sundararaman et al., 2013 
AB489194  AB489194  Hayakawa et l., 2009 
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Table 2. Results of PCR detection of Plasmodium DNA in feces of chimpanzees from Ugalla 496 
and Kalinzu study sites and determination of Plasmodium spp. by subsequent sequencing.  497 

 

 

Field site 

Plasmodium spp. 

 

P. reichenowi P. gaboni P. billcollinsi Mixed infection 

     

Ugalla (n= 171) - - - - 

Kalinzu (n= 160) 12 11 7 2 

  498 
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Table 3. Pattern of Plasmodium spp. infection among identified chimpanzees’ individuals. 499 

 500 

(-) = negative for Plasmodium; 1, juvenile/ sub-adult; 2, adult.  501 

  502 

 
 

Sampling time and Plasmodium spp. identified 
 

Individuals Sex 
 

Age 
Category April May June 

 
July 

Buru M 2 - -  - 
Ross M 1 -/- -/- - - 
Ota M 1 -  P. reichenowi  
Tange M 2 -/- -/- -/- - 
Yawara M 2 

P. billbrayi 
P. billcollinsi/-
/- 

-/P. 
billbrayi/-/- 

 

Ichiro M 2 P. reichenowi/- -/-/- - - 
Goku M 2 - - -/-/-/-/- - 
Black M 1 -/- -/-/P. billbrayi -/-/-/- - 
Gure M 2 -/-/- -/-  P. reichenowi 
Ponta M 2 - /-/-/- P. billcollinsi  
Deo M 2 - -  - 
Pieten M 1 -/P. reichowi, P.  billbrayi,  P 

.billcollinsi  - - 
Kanta M 1 P. billcollinsi P. billcollinsi   
Marute M  - -  - 
Ricky M 1 P. billcollinsi    
JO M 1 

   
P. billbrayi / P.  
billbrayi 

Taike M 1  P.  billbrayi -/-  
Iso M 1  - -  
Prince M 1   -/-/-  
Max M 1 P.  billbrayi    
Pinka F 2 -/- -   
Kakumu F 2 -/-    
Tae’s 
daughter 

F 1 
-    

Nono F 2 - - -  
Haro F 2 - -   
Haruka  F 1 P.reichenowi    
Shoko F 2 -/-  - - 
Tae F 2 -    
Gai F 2 P. billcollinsi -   
Migi F 2  - -  
Ida F 2 -    
Iku  F 1 P.  billbrayi    
Nakko F 2  P. reichenowi   
Kanna  F 2 P.reichenowi    
Minny F 2  -   
Umuoge F 1  -   
Ume F 2  -   
Miki F 1   -  
Rina F 2   -  
Michio F 2   -  
Mami  F 2    P. reichenowi 
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FIGURE 503 

Fig. 1: Ugalla Map  504 
Map of the study site Issa valley, Western Tanzania. 505 
Alex Piel 506 
 507 
Fig. 2: Kalinzu Map  508 
Map of the study site in Kalinzu Forest Reserve, Western Uganda.  509 
Chie Hashimoto 510 
 511 
Fig. 3: Phylogenetic tree of Plasmodium mitochondrial cytochrome b sequences (758bp). 512 
Nodal support from 1000 bootstrap pseudoreplicates under ML and Bayesian methods are 513 
indicated above and below branches, respectively. 514 

  515 
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Additional file 1. Plasmodium partial cytochrome b gene sequences obtained from GenBank 516 

and this study  517 
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