
Yang, L, Cao, J, Cheng, H and Ji, Y

 Multi-User Computation Partitioning for Latency Sensitive Mobile Cloud
Applications

https://researchonline.ljmu.ac.uk/id/eprint/406/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Yang, L, Cao, J, Cheng, H and Ji, Y (2014) Multi-User Computation
Partitioning for Latency Sensitive Mobile Cloud Applications. IEEE
TRANSACTIONS ON COMPUTERS, 64 (8). pp. 2253-2266. ISSN 0018-9340

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366735, IEEE Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, OCTOBER 2013 1

Multi-user Computation Partitioning for
Latency Sensitive Mobile Cloud Applications

Lei Yang, Jiannong Cao, Senior Member, IEEE,

Hui Cheng, Member, IEEE, and Yusheng Ji, Member, IEEE

Abstract—Elastic partitioning of computations between mobile devices and cloud is an important and challenging research

topic for mobile cloud computing. Existing works focus on the single-user computation partitioning, which aims to optimize the

application completion time for one particular single user. These works assume that the cloud always has enough resources

to execute the computations immediately when they are offloaded to the cloud. However, this assumption does not hold for

large scale mobile cloud applications. In these applications, due to the competition for cloud resources among a large number

of users, the offloaded computations may be executed with certain scheduling delay on the cloud. Single user partitioning that

does not take into account the scheduling delay on the cloud may yield significant performance degradation. In this paper, we

study, for the first time, Multi-user Computation Partitioning Problem (MCPP), which considers the partitioning of multiple users’

computations together with the scheduling of offloaded computations on the cloud resources. Instead of pursuing the minimum

application completion time for every single user, we aim to achieve minimum average completion time for all the users, based on

the number of provisioned resources on the cloud. We show that MCPP is different from and more difficult than the classical job

scheduling problems. We design an offline heuristic algorithm, namely SearchAdjust, to solve MCPP. We demonstrate through

benchmarks that SearchAdjust outperforms both the single user partitioning approaches and classical job scheduling approaches

by 10% on average in terms of application delay. Based on SearchAdjust, we also design an online algorithm for MCPP that can

be easily deployed in practical systems. We validate the effectiveness of our online algorithm using real world load traces.

Index Terms—mobile cloud computing; offloading; computation partitioning; job scheduling

✦

1 INTRODUCTION

The proliferation of sensors on smart phones enables
a new type of mobile applications, such as objec-
t/gesture recognition, mobile biometric, health-care
monitoring or diagnosis, mobile augmented reality
and so on. These applications often need continuous
sampling and processing of high rate sensors like
accelerometers, GPS, microphones and cameras. The
compute-intensive classification algorithms of these
applications usually lead to unsatisfactory perfor-
mance on the compute-capability limited mobile de-
vices. To address the problem, computation offloading
has been proposed by researchers in recent years.
The basic idea of computation offloading is to shift
the execution of some tasks from the mobile device
to cloud infrastructures. The powerful processors on
cloud can run the compute-intensive tasks faster.

By using offloading technique, a fundamental prob-
lem is to partition the computations involved in the
application between the mobile device and cloud,

• Lei Yang and Jiannong Cao are with Department of Computing, Hong
Kong Polytechnic University, Hong Kong.
E-mail: csleiyang@comp.polyu.edu.hk, csjcao@comp.polyu.edu.hk

• Hui Cheng is with School of Computing and Mathematical Sciences,
Liverpool John Moores University, UK.
E-mail: h.cheng@ljmu.ac.uk

• Yusheng Ji is with Information Systems Architecture Research Divi-
sion, National Institute of Informatics, Japan.
E-mail: kei@nii.ac.jp

which is named as computation partitioning problem.
Given that the application is composed of a set of
dependent tasks, the computation partitioning prob-
lem is to decide whether each task is executed on
the mobile device or on the cloud, such that the
cost is minimized. The recent work [3]-[11] on the
computation partitioning problem differ in their cost
models. They consider either one of these factors
such as energy consumption of the mobile device,
application delay, and data transmission amount on
the network, or the combination of these factors.

However, these work mainly focus on the parti-
tioning problem under a user independent model,
in which the computations are partitioned for one
single user without regard to the partitioning results
of other users. It is assumed that the cloud always has
enough resources to accommodate without delaying
the offloaded tasks, no matter how many other users
offload the computations on the cloud. However,
from the standpoint of the application provider, the
assumption is not practical due to the following two
reasons. First, the application providers need to bal-
ance the number of resources leased from cloud IaaS
providers and the application performance, in order
to lower their operational cost. Second, due to the
unpredictable number of mobile users in large scale
cloud applications, the application provider can not
guarantee all the times to have enough resources to
host the mobile users’ offloading requests. Therefore,
it is necessary to place the computation partitioning

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366735, IEEE Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, OCTOBER 2013 2

problem on constrained number of cloud resources.
We name this problem as Multi-user Computation
Partitioning Problem (MCPP).

MCPP is much more challenging than the exist-
ing computation partitioning problems. In MCPP, the
users’ partitioning results are dependent with each
other because of their competition for the cloud re-
sources. For example, one user’s decision on whether
to offload the task not only depends on its saved
computational cost and communication overhead, but
also depends on how many other users offload the
tasks onto cloud. The number of users who offload
the tasks onto cloud represents the load on the cloud.
If the load is high, the time spent in waiting for
available cloud resources may sacrifice the benefit of
offloading. An optimal solution for MCPP requires a
unified schedule of all the users’ computations onto
their mobile devices and cloud resources.

In this paper, we study the MCPP for latency
sensitive mobile cloud application. The problem is to
schedule the offloaded computations on a constrained
number of cloud resources as well as to partition the
computations between mobile side and cloud side
for all the users, such that the average application
delay is minimized. The selected performance metric
is average application delay/latency since it is the
most critical one for latency sensitive mobile cloud
applications. Moreover, we study how the applica-
tion performance changes with the provisioned cloud
resources and the load on the system, and thus
construct a Performance-Resource-Load (PRL) model.
The PRL model provides an optimal tradeoff between
the application performance and the cost of cloud re-
sources. We believe the model can help the application
provider to achieve a cost-efficient utilization of the
cloud resources, and hence save their operational cost.
The main contributions of this work are as follows:

• To the best of our knowledge, this work is the first
one to study the Multi-user Computation Parti-
tioning Problem (MCPP), from the standpoint of
application providers. The problem jointly con-
siders the partitioning of computations for each
user and the scheduling of offloaded computa-
tions on the cloud resources. It could help the
application provider to achieve optimal applica-
tion performance when faced with unpredictable
number of users.

• We show that our MCPP is different from and
more difficult than the existing job scheduling
problems, such as Task Scheduling Problem in
Heterogeneous Computing (TSPHC) and Hybrid
Flow Shop (HFS) scheduling problems.

• We systematically solve the offline MCPP by
proposing a set of competitive algorithms.
Through the benchmarks, we show that our pro-
posed algorithm, SearchAdjust, has better per-
formance than the existing list scheduling algo-
rithms by 10 percents in term of application delay.

• We design an online algorithm for MCPP that
can be deployed in practical systems, and demon-
strate its effectiveness using real world load
traces.

2 RELATED WORK

In this section, we briefly present the related work
on computation partitioning problem in mobile cloud
computing. Other related work on job scheduling
problems are discussed in Section 3.4.

The application of cloud services in the mobile
ecosystem enables a newly emerging mobile comput-
ing paradigm, namely Mobile Cloud Computing (MCC).
We have classified three MCC approaches in our
previous work [3]: a) extending the access to cloud
services to mobile devices; b) enabling mobile devices
to work collaboratively as cloud resource providers
[1][2]; c) augmenting the execution of mobile applica-
tions using cloud resources, e.g. by offloading selected
computing tasks required by applications on mobile
devices to the cloud. This will allow the mobile devel-
oper to create applications that far exceed traditional
mobile device’s processing capabilities.

Most of the research work in mobile cloud use
the third MCC approach [3]-[11][19]. They focus
on the computation partitioning problem. In the
work of [10][11], the computations are partitioned
with a local view. The offloading decision for each
task/module is made without the global view of the
other tasks/modules involved in the application. For
each task/module, if the reduced processing cost on
the cloud is larger than the increased cost induced
by data transmission across the network, then it is
offloaded onto the cloud. [10] aims to save the en-
ergy consumption, while [11] aims to maximize the
execution time and throughput.

In the work of [3]-[7][19], the computations are
partitioned with a global view. The offloading de-
cisions for each task/module are dependent with
each other, and are jointly made with the profiling
information about all the tasks/modules included in
the application. [4] demonstrates that the approach of
offloading with global view outperforms the approach
with local view. The computation partitioning prob-
lem in this category is modeled as an optimization
problem. They differ in the application model or
the corresponding optimization objective. In [4][5],
the application/program are modeled as a method
graph/tree, where each vertex represents a method
and is weighted with its computational and energy
cost, and each edge represents method calling and
is weighted with the size of data to be transferred
remotely. The optimization problem is solved using
Integer Linear Programming. [6][7] focus on the ap-
plications which are composed of a set of services,
and aim to optimize one of factors such as latency,
data transmission amount, and energy consumption,

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366735, IEEE Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, OCTOBER 2013 3

or optimize a customized combination of the factors
above. [3] focuses on the partitioning of data stream
application, and uses a dataflow graph to model the
application. The genetic algorithm is used to maxi-
mize the throughput of the application.

We note that computation partitioning problem in
all the work of [3]-[11][19] is solved from the stand-
point of one single end user, with the assumption of
unlimited resources at the cloud side. Few existing
work has examined how to partition the computations
when the number of users scales up, from the stand-
point of application provider, with an aim to save
the operational cost while maximizing the application
performances experienced by end users. In this paper,
we will study the multi-user computation partitioning
problem with the consideration of the cloud resource
constraint.

3 SYSTEM MODEL AND PROBLEM FORMU-
LATION

3.1 Application model

We target for the Latency Sensitive Mobile Cloud Ap-
plications, which requires low latency for good user
experiences. The applications often take sensory data
as input, perform a sequence of operations onto the
data, and then output the results. Mobile augmented
reality is considered as one typical application. The
application uses the camera and/or other sensors
to perceive the user’s environment/scene, and then
augment the original scene with relevant information.
The perception is done frequently which is driven by
the user’s input. The core part of augmented reality
applications is the image based object recognition.
Fig.1 shows the operations involved in the whole
process of image based object recognition. Note that
the SIFT algorithm is used to extract the features [12].

In our work, the applications are modeled as a
sequence of processing modules (shown as vertex in
Fig.1). The module represents a kind of operation onto
the data. The directed edges represent the dependency
between the modules. It means that a module can
not start to run until its precedent module completes.
Each module is allowed to run either locally on the
mobile device or remotely on the cloud. Also the
input data of the application is supposed to be from
the sensors of the mobile device, and the output
data should be delivered back to the mobile device.
The performance metric is the execution time of the
application. As the execution time represents the re-
sponsive delay/latency for the application, we simply
use the term delay or latency in the paper. The delay
is the summation of the computational time of all the
modules and the data transmission time between the
modules.

Local Extrama

Detection

Keypoint

Localization

Orientation

Assignment

Descriptor

Generation

Grayscale

Similarity

Caculation

Classification

Input Image

Output Result

SIFT

Fig. 1. The functional modules of image based object

recognition

3.2 Single user computation partitioning

We first describe the Single user Computation Partition-
ing Problem(SCPP), in which one single user runs the
application and requests the cloud for computation
offloading. Suppose the application consists of a se-
quence of n modules. Each module can be executed
either at the mobile side or at the cloud side. The
execution time of module j is cj if it is offloaded
onto cloud (1 ≤ j ≤ n); otherwise, it is wj , where
wj > cj . If two adjacent modules j and j + 1 run
on different sides, the data transmission time is πj ;
otherwise the data transmission time between j and
j+1 becomes zero when they run on the same side. To
model that the input/output data of the application
should be from/to the mobile device, we add two
virtual modules 0 and n + 1 as the entry and exit
modules.

Definition 1 Single user Computation Partitioning
Problem(SCPP): Given the computation cost cj and wj

(1 ≤ j ≤ n), and communication cost πj (0 ≤ j ≤ n),
the SCPP is to determine which modules should be
offloaded onto cloud such that the application delay
is minimized. It is formulated by

min
xj

d =

n∑

i=1

[(1− xj)wj + xjcj] +

n∑

j=0

|xj − xj+1|πj ,

(1)
where xj is a binary decision variable. xj = 1 if the
module j is offloaded onto cloud, otherwise xj = 0;
and x0 = xn+1 = 0.

3.3 Multiple users computation partitioning

Next, we illustrate the system model of multiple users
computation partitioning. The system consists of two
parts: cloud and mobile client. At mobile client, we
have a set of users that send requests to cloud for
partitioned execution of the application. The monitor

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366735, IEEE Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, OCTOBER 2013 4

TABLE 1

Mathematical notations in this paper

j index of module of the application;
n total number of modules that the application con-

tains;
cj execution time of module j at the cloud side;
wj execution time of module j at the mobile device;
πj data transmission time between module j and

module j + 1;
tj the completion time of module j;
xj decision variables in SCPP that indicate whether

module j is offloaded onto cloud;

t
(c)
j

the completion time of module j if it is scheduled
at the mobile side;

λ number of user’s requests;
r number of cloud servers;
i index of the user;
k index of the machine that could be the mobile

device or the cloud server;
T the length of time interval;
δi release time of user i’s request;

(i, j) the j-th module for the user i;
wi,j execution time of module j on the mobile device

of user i;
πi,j data transmission time from module j to j+1 for

user i;
τi,j the start time of module (i, j);
ti,j the completion time of module (i, j);
xi,j,k binary variable that indicates if module (i, j) is

executed on server k;
yi,j binary variable that indicates if module j and j+1

of user i are executed on different sides k;
zi,i′,j,j′ binary variable that indicates if the execution of

module (i, j) precedes module (i′, j′);

∆t the length of time slot;
η the index of time slot;
λη the number of user’s requests at time slot η;

λ the expectation value of λη over all time slots;
var the variance value of λη over all time slots;
rη the number of cloud servers allocated to server

user’s requests at time slot η;

agent of the client middle-ware collects information
on the device and wireless channel conditions. These
information is sent with the requests to the cloud. The
PaaS middleware at the cloud provides programming
and run time support for partitioning and execution
of the applications. Upon receiving users’ requests,
the partitioner of the PaaS middleware is to make
the partitioning decisions for each user, i.e., to decide
which modules of the application are executed on the
mobile device and which modules are offloaded to
the cloud, and also to schedule the offloaded modules
onto the cloud servers/VMs. In our model, we assume
that the users are requesting for partitioned execution
of the same application. However, we can extend
the model by considering that the users request for
various applications, and easily apply the methods in
Section 5,6,7 into the extended model. In our paper,
we focus on the study of the partitioning problem
and the design of corresponding algorithms that are
implemented in the partitioner.

We consider a fixed time period (0, T), during
which a total number λ of requests are sent to the

Application

Mobile OS

Hardware

Monitor Agent

App Store

Programming APIs

Partitioner

Client Middleware

Run Time System for

Distributed Execution

Run Time System for

Distributed Execution

PaaS Middleware

VM Pool

Cloud

Fig. 2. System model of multi-user computation parti-

tioning

cloud. Let i denote a particular request and δi denote
the release time for request i, where 1 ≤ i ≤ λ and
0 ≤ δi ≤ T . For convenience of description, when we
mention user i or i-th user in this paper, we refer to
the user who emits request i.

We model cloud resources as a set of servers/VMs.
The number of cloud resources is denoted as r. As
mentioned in the SCPP, cj represents remote compu-
tation cost (time) of the j-th module of the application.
Usually the mobile users have different processing
capabilities and networking bandwidth. Thus, we use
a λ×n matrix W to represent local computation cost in
which each wi,j gives the execution time to complete
the module j on the i-th user’s mobile device. Π is a
λ× (n+ 1) communication cost matrix in which each
πi,j (0 ≤ j ≤ n) represents the data transmission time
from the module j to j + 1 for the user i.

We first study the offline multi-user partitioning
problem, in which we assume perfect knowledge on
the requests released from time 0 to T . We develop
an offline algorithm as well as a set of competitive
benchmark algorithms in Section 4 and 5. Based on
the offline solutions, we design an online solution in
Section 6.

Definition 2 Multi-user Computation Partitioning
Problem(MCPP): Given λ, r, δi, cj , Wλ×n and Πλ×(n+1),
the problem is to determine for all the users at which
machine (including the mobile device and the cloud
servers) and at what time each module is executed,
such that the average application delay of the users
is minimized.

We formulate MCPP as a Mixed Integer Linear
Programming(MILP) problem. In this formulation, we
define one continuous variable ti,j and three 0-1 dis-
crete variables xi,j,k, yi,j , zi,i′,j,j′ . Please refer to Table
1 for their meaning. xi,j,k = 1 if the module (i, j) is
executed on the machine k, and otherwise xi,j,k = 0.
Note that k = 1, 2, ..., r represents the servers at the
cloud side, and k = 0 represents the mobile device.
yi,j = 1 if the two dependent modules, (i, j) and
(i, j+1), are executed on different sides, and otherwise

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366735, IEEE Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, OCTOBER 2013 5

yi,j = 0 if the two modules are on the same side;
zi,i′,j,j′ = 1 if the execution of module (i, j) precedes
the module (i′, j′), and otherwise zi,i′,j,j′ = 0. We
also define a positive constant IN which is as great
as infinity. The MILP formulation can be written by
Equation (2).

Min
1

λ

λ∑

i=1

(ti,n+1 − ti,0);

Subject to:

(a)
r∑

k=0

xi,j,k = 1, ∀i ∈ [1, λ], ∀j ∈ [0, n+ 1];

(b) ti,j+1 ≥ ti,j + πi,j · yi,j + wi,j+1 · xi,j+1,0

+cj+1 · (1− xi,j+1,0), ∀i ∈ [1, λ], ∀j ∈ [0, n];

(c) ti′,j′ ≥ ti,j + cj′ − IN × (1− zi,i′,j,j′)

−IN × (2− xi,j,k − xi′,j′,k),

∀i, j, (i, j) 6= (i′, j′), ∀k ∈ [1, r];

(d) yi,j ≥ xi,j,0 − xi,j+1,0, ∀i ∈ [1, λ], ∀j ∈ [0, n];

(e) yi,j ≥ xi,j+1,0 − xi,j,0, ∀i ∈ [1, λ], ∀j ∈ [0, n];

(f) yi,j ≤ xi,j,0 + xi,j+1,0, ∀i ∈ [1, λ], ∀j ∈ [0, n];

(g) yi,j ≤ 2− xi,j,0 − xi,j+1,0, ∀i ∈ [1, λ], ∀j ∈ [0, n];

(h) zi,i′,j,j′ > (ti′,j′ − ti,j)/IN, ∀i, j, (i, j) 6= (i′, j′);

(i) zi,i′,j,j′ ≤ 1 + (ti′,j′ − ti,j)/IN, ∀i, j, (i, j) 6= (i′, j′);

(j) xi,j,k, yi,j , zi,j,i′,j′ ∈ {0, 1}, ti,j ≥ 0, ∀i, j, k, i′, j′

(k) xi,0,0 = 1, xi,n+1,0 = 1, ti,0 = δi, ∀i ∈ [1, λ].
(2)

Constraint (b) guarantees the temporal order for
the execution of two dependent modules. Constraint
(c) indicates that each cloud server can and only can
process one module at one time. In another word,
if two modules are scheduled to the same machine,
one module will not be started until the other one
is finished. Since yi,j and zi,i′,j,j′ are two auxiliary
variables, constraints (d)-(g) show that variables yi,j
is determined by xi,j,k, and constraints (h)-(i) indicate
the value of zi,i′,j,j′ depends on the value of ti,j and
ti′,j′ . According to our system model, the input data
of the application is from mobile device, so we have
xi,0,0 = 1 for all i in constraint (k). Note that ti,0
represents the release time of request i. Thus, we have
ti,0 = δi in constraint (k).

3.4 Uniqueness of MCPP

We compare the MCPP with classical job scheduling
problems and discuss their differences.

Comparison with TSPHC. The first classical
scheduling problem similar to MCPP is Tasks
Scheduling Problem for Heterogeneous Comput-
ing(TSPHC) [14]. In this problem, an application is
represented by a directed acyclic graph(DAG) in
which nodes represent application tasks and edges
represent intertask data dependencies. Given a hetero-
geneous machine environment, where the machines

have different processing speed, and the data transfer
rate between machines are different, the objective of
the problem is to map tasks onto the machines and
order their executions so that task-precedence require-
ments are satisfied and a minimum completion time is
obtained. The TSPHC is NP-complete in general case,
and various efficient heuristics were proposed in the
literatures [14][21].

Intuitively, we may model our problem as similar
to MCPP as possible. In our problem, we have λ× n
tasks, where the precedence dependence exists among
the tasks from the same users. The machines can be
abstracted as a set of r cloud servers/VMs and one
mobile device. Note that the sole mobile device in
our model, unlike the machines in TSPHC, is able to
execute more than one task simultaneously. The data
transfer rate is infinite between the cloud VMs , while
being constrained between any pair of the mobile
device and cloud VM. The problem is to map the tasks
onto the (r + 1) machines such that the precedence
constraints are satisfied, and the weighted summation
of all the tasks’ completion time is minimized. The
tasks that appear in the last position of the application
flow are assigned the weight of one, and others are
assigned the weight of zero.

The key difference between MCPP and TSPHC is
the optimization objective. In TSPHC the optimization
objective is the makespan which is the maximum
completion time of all the tasks, while in MCPP
the objective is the total weighted completion time.
Although various efficient heuristics were proposed
for TSPHC to optimize the makespan, there were few
solutions on optimizing the total weighted completion
time. We can only find some early efforts to minimize
the total weighted completion time on single machine
or on parallel machine without considering the com-
munications. Even these simplified versions for MCPP
have been proved to be NP-hard [15].

Comparison with HFS. The second classical
scheduling problem is Hybrid Flow Shop (HFS)
scheduling [16]. In this problem, the job is divided
into a series of stages. There are a number of identical
machines in parallel at each stage. Each job has to be
processed first at Stage 1, then Stage 2, and so on. At
each stage, the job requires processing on only one
machine and any machine can do. Assuming all the
jobs are released at the beginning, the problem is to
find a schedule to minimize the makespan. We note
that the application and its functional modules in our
problem are analogous to a job and stages in HFS. The
mobile devices and cloud VMs may be modeled as the
machines in HFS. However, our MCPP is far different
from HFS in terms of the following aspects. 1) In
MCPP, there exists communication overhead between
stages, which makes the problem more complex than
HFS; 2) in MCPP, since both cloud VM and mobile de-
vice are able to execute any module of the application,
the set of machines are not partitioned into subsets

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366735, IEEE Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, OCTOBER 2013 6

according to the stages; 3) the objective in MCPP is
the total completion time rather than the makespan.

4 SEARCHADJUST

The most widely used method for solving MILP
problems is branch and bound [17]. It transfers the
MILP problem into standard Linear Programming
(LP) problem by relaxing the integral variables. Based
on the optimal solution obtained using LP, the MILP
problem is then divided into subproblems by restrict-
ing the range of the integral variables. The subprob-
lem is solved using LP, and then divided into sub-
subproblems. This process is done recursively until a
feasible and satisfactory solution is found.

Unfortunately the LP-based solution is not practical
for the MCPP, because it contains an exploding num-
ber of variables and constraints when the problem
scales up. From equation (2), we can see that the
number of variables zi,i′,j,j′ achieves the magnitude
of λ2n2, and the number of constraints (c) is λ2n2r.
Although we can express the model by deleting all
the auxiliary variables zi,i′,j,j′ and yi,j , the number
of variables xi,j,k remains a large magnitude of λnr.
Thus, in this section, we design a greedy heuristic
algorithm, named as SearchAdjust, to solve the MCPP.

4.1 Overview

The idea of SearchAdjust is that we first relax the
resources constraints in the MCPP. For each user,
we can have an optimal partitioning by using the
solution of SCPP. Under these optimal partitions, we
search the time intervals during which the resources
constraints are violated. We then adjust the schedule
in a greedy way that can release as long resources
occupation period as possible at these time intervals,
and meanwhile increase the average application delay
as little as possible. The searching and adjusting are
done alternatively until the resource constraints are
satisfied for all the time. The algorithm is designed
due to the observation that the SCPP initiated solu-
tion is optimal but not feasible in the solution space
of MCPP. Hence, we can adjust the initial solution
iteratively to make it feasible, while not sacrificing
the objective function (average application delay) too
much.

Before describing the algorithm, we first introduce
three important data structures as below.

(1) Execution Schedule S: For each user i, we can
create a n × 3 table to store its execution schedule in
which each row is a three-tuple (xi,j,0, τi,j , ti,j), where
as described in Section 3.3 xi,j,0 indicates at which
side the module (i, j) is scheduled, and τi,j , ti,j are
respectively the start time and completion time of the
module (i, j).

(2) Cloud Resource Occupation List Lcro: The list
records the number of occupied servers at each time
interval. Each element e of the list is denoted as

(start, end, num), where start/end represents the s-
tart/end point of the time interval, and num is the
number of occupied server at the interval. The time
intervals in the list have no overlapping with each
other, and are able to constitute a continuous time
interval. The elements are stored in the list according
to the ascending order of the time intervals. Thus, we
have ek.end = ek+1.start and ek.start < ek+1.start,
∀k ≥ 1. Note that the length of each interval is not
necessary to be the same.

(3) Module Adjustment List Ladj : The list records
the modules which could release the cloud resource
occupation period by waiting to execute later on or
changing to run at mobile side, their rewards, and
corresponding released cloud resource occupation pe-
riod for the adjustment. We denote each item as
(i, j, reward,Drel), where i, j indicates the module,
reward represents the reward of the adjustment on
this module and Drel is the released cloud resource
occupation period. The modules are stored in the list
by a descending order of reward.

Algorithm 1 gives the pseudo code of the greedy
heuristic. First, we get the optimal partitioning and
corresponding execution schedule for each user with-
out considering the cloud resource constraint (line
1). Second, we compute the cloud resource occupa-
tion list Lcro (line 2). It records the number of the
occupied/in-use servers at each time interval. Then,
we find the earliest interval that the number of oc-
cupied servers exceeds the up-bound r (line 3). We
name the start of the interval as critical point tcri
on the time axis, as before it the resource constraint
is satisfied, and after it the constraint is violated.
Next, for each user we look for the module that was
scheduled at the cloud side, and the execution time
of which spans the critical point. In order to release
the cloud resource immediately after the critical point,
we adjust the schedule of this module by moving
it back to mobile side or delaying its execution for
some time. The adjustments are scored based on a
reward function (which represents the greedy strategy
in our algorithm) (line 6). The modules with positive
score/reward are added into the module adjustment
list Ladj (line 7-9). After the searching for all the users,
α modules with largest rewards are selected from the
list Ladj to adjust (line 12). In each iteration, the critical
point tcri would be moved forward along the time
axis. The algorithm stops until the resource constraint
is satisfied at all the times (line 3).

4.2 Details of SearchAdjust

In the following, we present details of SearchAdjust:
1) how to obtain the initial optimal but infeasible
solution; 2) how to compute the cloud resource oc-
cupation list Lcro and search the critical point; 3) the
reward function of SearchAdjust; 4) how to determine
the number of modules α to adjust in each iteration.

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366735, IEEE Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, OCTOBER 2013 7

Algorithm 1: The Greedy Heuristic for MCPP

Input : A set of λ users, and a set of r cloud servers
Output: The execution schedule (xi,j,0, τi,j , ti,j)

1 Compute the initial execution schedule using SCPP
solution;

2 Compute the cloud resource occupation list Lcro ;
3 while search the critical point from Lcro do
4 for each user do
5 if find the module that is scheduled onto cloud,

and its execution time cover the critical point
then

6 Compute the reward of adjusting the
module;

7 if Reward > 0 then
8 Insert this module into list Ladj by a

descending order of its reward;

9 Select the first α modules from list Ladj to adjust;
10 Update the execution schedule of the selected

modules;
11 Re-compute the cloud resource occupation list

Lcro;

12 return the execution schedule for all the users;

4.2.1 Initial Solution

Consider the SCPP shown in Definition 1, suppose
that the completion time of module j is denoted
as tj . As every module can be completed either at
mobile side or at the cloud side, we use notation
t
(c)
j to represent the completion time of module j if

it is scheduled at the cloud side. Correspondingly,

notation t
(m)
j is the completion time of module j if

scheduled at mobile side. Then, we have a recursive
formulation of tj :

t
(c)
j = min{t

(c)
j−1 + cj , t

(m)
j−1 + cj + πj−1,j}, (3)

t
(m)
j = min{t

(m)
j−1 + wj , t

(c)
j−1 + wj + πj−1,j}, (4)

where j = 1, 2, ..., n, n+ 1. The module 0 and module
n + 1 are respectively the entry and exit module we
have added virtually into the application graph. The
computation time of these two modules are zero.

In order to determine the optimal partitioning, we
construct a graph which contains 2 × (n + 1) nodes.

Each node is denoted as v
(p)
j , and labeled with its

completion time t
(p)
j , where 0 ≤ j ≤ n + 1 and

p ∈ {c,m}. Since the input data of the application is

from the mobile device, we let t
(m)
0 = 0 and t

(c)
0 =∞.

Starting from the nodes v
(m)
0 and v

(c)
0 , and we can

recursively compute the labels of all the nodes by

equation (3)(4). For each node, for example, v
(m)
j , there

are two possible edges from its precedent nodes to it,

v
(c)
j−1 and v

(m)
j−1. The edge that leads to less value of t

(m)
j

according to equation (4) is added into the graph. The

partitioning result is actually a path from node v
(m)
0

to node v
(m)
n+1. Fig.3 shows an example of the method.

There are four modules in the application. The colored
nodes indicate the places that the modules are sched-
uled to. For the MCPP, with the optimal partitions
xi,j,0 for each user i, we can easily obtain the initial
execution schedule S = {(xi,j,0, τi,j , ti,j)}.

1

1 2

2

3

3

4

4 50

Cloud

Mobile

{c1, c2, c3, c4} = {0.1, 0.2, 0.2, 0.1};

{w1, w2, w3, w4} = {0.4, 0.8, 0.8, 0.4};

{π0,1, π1,2, π2,3, π3,4, π4,5}={1.0, 0.6, 0.5, 0.5, 0.4}.

1.1

0.4

1.2

1.2 2.0

1.4 1.5

2.3 1.90

Fig. 3. An example of SCPP solution

4.2.2 Computation of Cloud Resources Occupation

List and Critical Point

The cloud resource occupation list Lcro records the
number of occupied server at each time interval. In
each iteration of Algorithm 1, Lcro needs to be re-
computed. We design an algorithm to calculate Lcro.
The input of the algorithm is the execution schedule
of each user {(xi,j,0, τi,j , ti,j)}. In the algorithm, Lcro

is first initialized by the time interval (0,∞), with the
number of occupied servers at this interval being zero.
For each module (i, j) that is allocated to the cloud,
we first respectively search from Lcro the interval in
which the start and completion time of the module’s
execution period are located. The interval covering the
start or the completion point is split into new sub-
intervals, which are then inserted into Lcro. For the
interval which is entirely covered by module (i, j)’s
execution period, we increase the number of occupied
servers by one. The algorithm stops until all the
modules on cloud are finished. After finishing one
module, the length of Lcro increases at most by 2. The
length of Lcro returned by the algorithm would be at
most 2λn.

4.2.3 Reward Functions/Greedy Strategies

The reward function is to evaluate the reward of
adjusting the schedule of one module. It is defined by
the released cloud resource occupation period, denoted as
Drel, minus the extra delay caused by this adjustment,
denoted as Ddelay ,

Reward = Drel −Ddelay. (5)

The reward function is defined due to the motiva-
tion that we always prefer to select the module to
adjust which can release as a long cloud resources
occupation period as possible, and meanwhile causing
as short extra delay as possible. Next we describe the
definition of Drel and Ddelay .

Released Cloud Resource Occupation Period. Note
that only the modules satisfying the following two
conditions could be adjusted: (a) the module is exe-
cuted at the cloud side, xi,j,0 = 0; and (b) its execution
duration covers the critical point, τi,j < tcri < ti,j . For
one user i, assuming the module j0 is the candidate
module which cloud be moved to mobile side. To
distinguish with the original execution schedule of user
i, we use τ ′i,j and t′i,j to respectively represent the
start time and completion time after the movement of

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366735, IEEE Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, OCTOBER 2013 8

jj-1 j+1

j-1 j+1j

jj-1 j+1

j-1 j+1j

jj-1 j+1

jj-1 j+1Delay

Drel

Ddelay

j+2

j+2

j+2

j+2

j+2

j+2

Drel

Ddelay

Ddelay

Drel

Exec. on Cloud

Exec. on Mobile

Data Trans.(a) Movement: Drel > Ddelay

(b) Movement: Drel < Ddelay

(c) Waiting

Fig. 4. Reward function

module j0. The released cloud resource occupation period
due to the adjustment of module (i, j0) is defined by

Drel(i, j0) = min{τ ′i,jc , ti,jm−1} − tcri (6)

where jc, jm ∈ [j0 + 1, n + 1]. jc represents the first
successor of module j0 that is scheduled to the cloud;
if no successor of module j is at the cloud side, then
τ ′i,jc = ∞. jm is the first successor of module j0 that
is scheduled onto the mobile side; if no successor of
module j0 is at mobile side, then jm = n+ 1.

Extra Delay. The extra delay caused by the adjust-
ment of module (i, j0) is defined by

Ddelay(i, j0) = τ ′i,j0+1 − τi,j0+1 (7)

The reward of adjustment of one module could be
positive or negative. Fig.4(a) indicates that Drel >
Ddelay , hence the reward of the adjustment is positive;
while in Fig.4(b) the reward of the adjustment is
negative. In each iteration of algorithm, we only select
the modules with positive and as large as possible
reward to adjust.

Other Reward Functions. Now we pose another
question: do we have other reward functions? Actu-
ally there exist two typical functions: (a) Reward =
−Ddelay , and (b) Reward = Drel. The former function
means that the modules with as small extra delay as
possible are selected despite of its released cloud re-
source occupation duration. The latter function prefer-
s to select the module that could release longer cloud
resource occupation duration. We evaluate the two
functions in Section 7. We find that function (a) ob-
tains good average application delay, but requires a
long time to converge, while function (b) leads to
bad average application delay. The reward function
in Equation (5) is able to achieve good average delay
and fast convergence speed.

Adjusting Options. Remember that we actually
have two adjusting options to release the resources
which have been occupied at the critical point, i.e.,
waiting and movement. Waiting means to purely
delay the execution of the modules at the cloud side,
while movement means to change the execution place
of the module. Fig.4 illustrates the reward functions
under the two adjusting options. The three colors of
the bar represent three different execution procedures
of the application graph, i.e., local execution, remote
execution and data transmission. The length of the

bar represents how much time the procedure takes.
The completion time of the application graph equals
to the total length of all the bars in various colors.
Fig.4(a)(b) shows the option of moving module j
from the cloud side to the mobile side. It can re-
lease certain cloud occupation time Drel and cause
extra application delay Ddelay . Fig.4(a) illustrates the
case of Drel > Ddelay . Fig.4(b) illustrates the case of
Drel < Ddelay . Fig.4(c) shows the option of waiting.
We can see that waiting adjustment always has a non-
positive reward. Hence, to simplify the Algorithm 1,
we use the moving adjustment, and do not consider
the waiting adjustment.

4.2.4 Number of modules to adjust α

Now we answer the question: how many modules are
adjusted in each iteration? Note that in Algorithm 1,
only the modules with positive rewards are put into
the Ladj . First, we get average Drel of all the modules

in Ladj , which is denoted as D
(avg)
rel . Then, from the

cloud resource occupation list Lcro, we compute the
average number of occupied servers in the period

from tcri to tcri+D
(avg)
rel , which is denoted as num(avg).

The number of modules to adjust α is given by
Equation (8-10):

α = min{LengthOf(Ladj), num
(avg) − r}, (8)

num(avg) =

∑
e∈L

(sub)
cro

(e.end− e.start)× e.num
∑

e∈Sub{Lcro}
(e.end− e.start)

, (9)

where L
(sub)
cro is the subset of Lcro, which includes all

the time intervals located at [tcri, tcri +D
(avg)
rel],

L(sub)
cro = {e ∈ Lcro|e.start, e.end ∈ [tcri, tcri +D

(avg)
rel]}.

(10)
In our algorithm, the adjustment on the schedule

usually leads to the decreasing of application per-
formance. We avoid the case that excessive modules
are moved back to mobile side, such that the cloud
servers are not utilized completely. So α is constrained
by an up-bound num(avg) − r as shown in Equation
(8).

4.3 Theoretical Analysis

In Algorithm 1, the execution schedules indicate if
each module is executed at mobile side or at the cloud
side. However, for the modules that are allocated to
the cloud, the results do not specify which cloud
server hosts the offloaded module. We may question:
could the completion time of each module ti,j be
delayed when allocating the offloaded modules onto
the cloud servers?

Theorem 1 (Feasibility) For the execution sched-
ule S = {(xi,j,0, τi,j , ti,j)} generated by Algorithm
1, we can always find a feasible schedule S′ =

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366735, IEEE Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, OCTOBER 2013 9

{(x′i,j,k, τ
′
i,j , t

′
i,j)} of MCPP by assigning the offload-

ed modules onto the cloud servers, such that each
module (i, j) is completed no later than ti,j , t′i,j ≤ ti,j .

Proof: Consider a simple case where the offloaded
modules are scheduled online to the cloud servers
with the policy of ’first-come-first-serve’. τi,j can be
taken as the time that the module (i, j) comes to the
cloud. We can prove using mathematical induction,
by the ’first-come-first-serve’ policy every offloaded
module (i, j) can start exactly at time τi,j and be
completed by the time ti,j on the cloud servers. For
the new schedule S′, we have τ ′i,j = τi,j , and t′i,j = ti,j .

The offloaded modules are ordered according to
their arriving time τi,j . For the 1-st module which
comes to the cloud earliest, obviously it is able to start
at its arriving time τi1,j1 . For the s-th module which
comes to the cloud in s-earliest time, we can prove
if 1-st, 2-nd, ... , (s − 1)-th modules start to run at
their arriving time, then the s-th module can also be
executed at the cloud servers at its arriving time τis,js .
The proof is as follows.

Up to the time when the s-th module comes, we
can conclude: 1) at least one cloud server is idle at
τi,j ; 2) if the cloud server is idle at time τis,js , it must
be idle all the time [τis,js ,+∞). The first conclusion
is due to the fact, that our algorithm guarantees the
number of occupied cloud servers does not exceed the
constraint r at all the times if each module is executed
according to the schedule S. The second conclusion is
proved in this way: if 2) does not hold, which means
that up to the time τis,js , some module which arrives
at the cloud earlier than the s-th module has already
been allocated to the cloud server. It contradicts with
the ’first-come-first-serve’ policy. Because of the two
conclusions, the s-th module can start on the cloud
server at its arriving time. If multiple idle servers
exist, we randomly allocate the module to one of
them.

Theorem 2 (Complexity) For a given application
graph, the complexity of Algorithm 1 is O(λ2).

Proof: In Algorithms 1, the evaluation of the
reward for adjusting each offloaded module is the
most time costly operation. In each iteration, at most
λ × n modules need to be evaluated. The question
is how many iterations Algorithm 1 needs to stop.
The worst case is that the resources constraints r = 0,
and only one module is moved to the mobile side
in each iteration. In this case, Algorithm 1 needs at
most λ×n iterations, such that the offloaded modules
are all moved to the mobile side. By neglecting the
constant n for a given application graph, the worst
time complexity of Algorithm 1 is on the order of
O(λ2).

5 BENCHMARK OFFLINE SOLUTIONS

List scheduling is considered as an efficient
method to solve existing job scheduling problems

[16][20][22][23]. Although MCPP is different from
existing job scheduling problems, we are still
interested to know how list scheduling based
algorithms perform when used to solve the MCPP.
We have two ways to solve the MCPP using list
scheduling method. One way is, as described in
3.4, we can fit the MCPP into the TSPHC model
by abstracting both the mobile devices and cloud
servers as the processors. The problem can be solved
by Heterogeneous-Earliest-Finish-Time (HEFT)
algorithm, which is demonstrated to be an accurate
and efficient list scheduling algorithm for TSPHC
[14]. The time complexity of HEFT is on the order
of O(λ × r). We will evaluate the performance of
HEFT algorithm when it is used to solve the MCPP
in Section 7.

Algorithm 2: The MEDLS Heuristic

Input : The execution schedule (xi,j,0, τi,j , ti,j)
Output: The execution schedule xi,j,k, τi,j , ti,j

1 for each user i do
2 Insert the first offloaded module of the user

into a scheduling list Ls;

3 Sort the modules in Ls by non-increasing order of
their ready time τi,j ;

4 while there are unscheduled tasks in the list Ls do
5 Select the first module (i0, j0) from the list for

scheduling;
6 for each machine k, including cloud servers and the

user’s mobile device do
7 Compute the extra delay of module (i0, j0)

on machine k.;

8 Assign task (i0, j0) to the machine that
minimizes the extra delay;

9 Update the execution schedule for user i0,
(xi0,j,k, τi0,j , ti0,j);

10 Remove the module (i0, j0) from Ls, and add
the first successive offloaded module of (i0, j0)
into Ls;

11 return the execution schedule xi,j,k, τi,j , ti,j ;

The other way is that we divide the MCPP into two
phases. In the first phase, named as partitioning, we
simply decide for each user which modules are exe-
cuted at mobile side and which others are scheduled
at the cloud side. The partitioning phase is done using
the SCPP method, which is introduced in Section 4.2.1.
In the second phase, the list scheduling method is
applied to allocate the offloaded modules onto the
cloud servers or to move the offloaded modules to
the mobile side. Based on the generated execution
schedule from the first phase, the task that is ready
to start earliest is assigned with the highest priority.
Each selected task will be scheduled to the machine
(including the cloud servers and the mobile device)
which leads to a minimum extra delay. We name
the method as Minimum Extra Delay List Scheduling
(MEDLS). Algorithm 2 gives the pseudo code of the
MEDLS. The time complexity of the algorithm is also
O(λ× r).

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366735, IEEE Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, OCTOBER 2013 10

6 ONLINE SOLUTION

In contrast to the offline solutions, an online solution
only knows the release time of past requests and cur-
rent requests but have no knowledge about the future
requests. The partitioning for one user’s request can
not be determined before the request is released. In
this section, we present the design, and analyze the
performance of our online solution.

In our online solution, we do not partition user’s
requests one by one. Instead, we divide the whole
time interval (0, T) into small time slots, and do the
partitioning every time slot. Let η denotes the index
of the time slot, and ∆t denotes the length of the
time slot. We do the partitioning at the end of each
time slot for all the requests that are released during
that time slot. For each partitioning, we first select a
number of idle servers from all the r cloud servers,
and then use our offline solution to do the partitioning
with the selected cloud servers. The offline solution
is performed repeatedly every ∆t. Note that ∆t is
small enough relative to the completion time of the
application.

Now the question here is that how many servers are
allocated to the load at each time slot η, such that the
overall delay for the requests during (0, T) is as low
as possible. If we allocate too many servers to current
load, it is possible that there is no enough idle cloud
servers to accommodate the load in future time slots.
If we always try to reserve more servers to future
load, the performance of current load would yield
to significant degradation. The online algorithm tries
to balance a tradeoff between provisioning enough
servers for current load, and reserving enough servers
for future load, through a control parameter Λ.

Let λη denote the number of requests that arrive
at the system during time slot η. Let rη denote the
number of servers that are allocated to the requests
at the end of time slot η. The overall delay of the λη

requests are obtained by our PRL model dη = F(
rη
λη

),

which is numerically analyzed in Section 7.1.2. Sup-
pose dη is normalized by the length of the time slot
∆t. Think in the way that in order to accommodate the
load λη , rη servers will be occupied for dη time slots.
Therefore, we define workload size Wη that arrives
at the cloud servers at the end of time slot η by
Wη = rη × dη = rη × F(

rη
λη

). Note that the workload

size Wη reduces by rη at the end of time slot η + 1.
Let Qη denote the total backlogged workload size of
the cloud servers at the end of time slot η, before
any other loads arrive. Let Dη denote the number of
servers that are busy/occupied at the end of time slot
η, where 0 ≤ Dη ≤ r. Then the dynamic of Qη+1 can
be described as

Qη+1 = Qη +Wη −Dη. (11)

Without loss of generality, we assume load λη is a
stochastic process across time slot η. Let λ and var re-

spectively denote the expectation value and variance
of load sequence λη . We say that the system is stable
if limη→∞E(Qη) <∞, i.e., the amount of backlogged
workload size is bounded. The arriving load λη is said
to be supportable if there exists a resource allocation
mechanism under which the system is stable.

Theorem 3 For any given λ and r, the expectation
of application delay of the arriving load λη is up-
bounded by dopt, where

dopt = min
r∗≥0

F(
r∗

λ
),

s.t. r∗ ×F(
r∗

λ
) < r.

(12)

Proof: In order to support the arriving load, it
should be satisfied that limη→∞E(Qη) < ∞. Thus,
from Equation (11), we have E(Wη) = E[rη×F(

rη
rη
)] ≤

Dη . Dη represents the workload size that the cloud can
finish in time slot η. The maximum of Dη is equal
to r, and can be achieved if and only if all the r
cloud servers are busy to process the workload during
time slot η. Thus, we have E[rη × F(

rη
rη
)] ≤ r. Let

E(rη) = r∗, we then get Equation (12).
The key aspect of our algorithm is that it manages

a pool of idle servers. At each time slot, some server-
s are removed from the pool to accommodate the
coming load, meanwhile some new servers become
idle and are added into the pool. Suppose Iη is the
number of idle servers at the end of time slot η before
allocating the servers for load λη . The parameter Iη
can be obtained by the recursive equation

Iη+1 = Iη − rη +Rη+1, (13)

where rη are the number of servers that are allocated
to load λη , and Rη+1 are the number of servers which
are newly added into the pool of idle servers at the
end of time slot η+1. Note that we have I1 = r at the
initial time slot.

The online algorithm first calculates the optimal
overall delay dopt and corresponding number of al-
located servers ropt at each time slot according to
Equation (12), where ropt = argminr∗≥0F(

r∗

λ
). At

the end of each time slot η, the algorithm does the
following:
• Compute the number of idle servers Iη by Equa-

tion (13).
• Compute the number of released servers in next

time slot Rη+1 according to the delay of previous load
dη−1, dη−2, dη−3 ...
• Determine the number of servers to be allocated

rη . We are trying to guarantee that the delay of the
load λη achieves dopt. Thus, intuitively we would
allocate

ropt

λ
× λη servers to the current load. If the

number of idle servers is not enough to guarantee the
delay dopt, i.e., Iη <

ropt

λ
× λη , we would allocate all

the idle servers to current load, i.e., rη = Iη ; otherwise,
we would consider the following rules:

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366735, IEEE Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, OCTOBER 2013 11

• Rule 1 Allocating more servers to improve the
performance at current time slot, i.e., rη ≥

ropt

λ
×

λη .
• Rule 2 Reserving enough servers for next time

slot. The idle servers in next time slot η+1 would
be enough to accommodate (1 + Λ)λ load, i.e.,
rη < Iη +Rη+1 − (1 + Λ)λ.

• Rule 3 Avoiding over-provisioning servers for
current load, i.e., rη ≤ Cmaxλη , where Cmax is
a constant of our PRL model. If and only if
rη
λη

< Cmax, increasing the number of allocated

servers rη would lower the delay of current load
(see Fig.5f); otherwise if

rη
λη
≥ Cmax, increasing

rη would not improve the performance of current
load.

• If Rule 1 contradicts with Rule 2, i.e.,
ropt

λ
× λη >

Iη + Rη+1 − (1 + Λ)λ, then we give priority to Rule
1, in which case we have rη =

ropt

λ
× λη ; otherwise

we have rη = min{Iη +Rη+1 − (1 + Λ)λ,Cmaxλη, Iη}.
Note that Rule 1 and Rule 3 never contradicts with
each other, because

ropt

λ
≤ Cmax.

7 EVALUATION

We will respectively evaluate the performance of the
offline solutions and online solutions. Our online so-
lution divides the time axis into a number of small
time slots, in each of which the offline solution is
applied to partition all the requests that arrive during
that time slot. Since the time slot is small enough, the
release time of all the requests in each time slot are
the same. Therefore, for simplicity, in the evaluation of
offline solution, the release time of all the requests are
assigned as zero. Through the evaluation of various
offline solutions, we aim to answer two questions: 1)
which solution performs best; 2) how the application
performance (delay) varies depending on the number
of cloud resources and the load, i.e., Performance-
Resource-Load (PRL) Model. The evaluation of online
solution is then based on the PRL model and the real
world wikipedia load traces [18].

7.1 Evaluation of Offline Solutions

We use the application of image based object recog-
nition as shown in Fig.1 in our evaluation. It contains
seven modules, therefore we have n = 7. We profile
manually the execution time of each module on our
laboratory server, and the data size that needs to
be transferred between two connective modules. We
assume that the processing time of each module on
the mobile devices is F times greater than that on the
server. Since the users’ mobile devices have different
processing capability, the users have various factor
F . In our experiments, the local computation cost is
generated by Wλ×7 = [F1, F2, ..., Fλ]

T × C, where C
is a 1 × 7 vector of the profiled execution time of
each module on the server and Fi yields a uniform

distribution in the interval [1, 6]. The communication
cost is generated by Πλ×8 = [1

B1
, 1
B2

, ..., 1
Bλ

]T × D,
where D is a 1×8 vector of the profiled data size, and
Bi (1 ≤ i ≤ λ) is the communication bandwidth which
also yields a uniform distribution. We have generated
more than 2000 test cases by changing the number
of cloud servers r or the number of users (load) λ.
Whenever λ is changed, Wλ×7 and Πλ×8 need to be
re-generated.

The comparison of various algorithms are based on
the following two metrics:
• Metric 1: Application Delay Ratio (ADR). The

main performance measure of the algorithms is the
average application delay that is experienced by the
mobile users. Since a large set of tests are performed
under different load λ and resources r, it is necessary
to normalize the application delay to a lower bound,
which is called the Application Delay Ratio (ADR).
The ADR value of an algorithm is defined by

ADR =
application delay

dscpp
. (14)

The denominator is the application delay under the
SCPP solution. In SCPP, the cloud resources are as-
sumed to be unconstrained, and each user’s execu-
tion schedule is generated independently by SCPP
method. The ADR of the MCPP algorithms can not be
less than one since the dominator is the lower bound.
The MCPP algorithm that gives the lowest ADR is the
best algorithm with respect to performance.
• Metric 2: Running Time of the Algorithms.

The running time of an algorithm is its execution
time for outputting the schedule. The metric gives
the average cost of the algorithm. For the algorithms
which have very close ADR values, the one with
minimum running time is considered as the best one.

7.1.1 Performance of SearchAdjust

We compare the ADR performance of the greedy
heuristic, SearchAdjust (Algorithm 1), under three
different greedy strategies, with two list scheduling
algorithms, HEFT [14] and MEDLS (Algorithm 2). A
concise description about the algorithms is as follows.

• G-MaxREL. G-MaxREL is the greedy heuristic
with the strategy to maximize the Released Cloud
Resource Occupied Period. The reward function
in the algorithm is Reward = Drel.

• G-MinED. G-MinED is the greedy heuristic with
the strategy to minimize the Extra Delay. The
reward function is Reward = −Ddelay .

• G-MaxRME. G-MaxRME is the greedy heuristic
with the strategy to maximize Released Cloud
Resource Occupied Period minus Extra delay. The
reward function is Reward = Drel −Ddelay .

• HEFT. HEFT is a well-known list scheduling
algorithm specifically for TSPHC problems. We
can also use the algorithm to solve our MCP
problem.

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366735, IEEE Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, OCTOBER 2013 12

0 200 400 600 800 1000 1200 1400
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

No. of cloud servers

A
D

R

G−MaxRME

G−MinED

G−MaxREL

HEFT

MEDLS

(a) Comparison of ADR based perfor-
mance under various number of cloud
servers (λ = 2000)

0 200 400 600 800 1000 1200 1400 1600 1800
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

No. of users

A
D

R

G−MaxRME

G−MinED

G−MaxREL

HEFT

MEDLS

(b) Comparison of ADR based perfor-
mance under various load (r = 200)

200 400 600 800 1000 1200 1400
0

0.5

1

1.5

No. of cloud servers

R
u

n
n

in
g

 o
f

th
e

A
lg

o
ri

th
m

 (
s)

G−MaxRME

G−MinED

G−MaxREL

HEFT

MEDLS

(c) Comparison of the algorithm running
time

0
200

400
600

800
1000

0

500

1000

1500

2000
0.8

1

1.2

1.4

1.6

1.8

No. of cloud serversNo. of users

A
D

R

(d) The 3D Performance-Resource-Load
(PRL) curve

No. of cloud servers

N
o

.
o

f
u

se
rs

1.
00

96

1.
02

97

1.
05

57

1.
08

64

1.
12

35

1.
17

21

1
.2

4
0
5

1
.3

4
0
2

1
.4

9
6
2

100 200 300 400 500 600 700 800 900 1000
200

400

600

800

1000

1200

1400

1600

1800

2000

(e) Contour lines of of PRL model

0 0.2 0.4 0.6 0.8 1
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

r/γ

A
D

R

0.5

(f) The ADR performance varies depend-
ing on r/λ

Fig. 5. Evaluation results of offline solutions

• MEDLS. MEDLS is a list scheduling algorithm
which is designed to solve the MCP problem [14].
In this algorithm, each module is scheduled to the
machine which causes the Minimum Extra Delay.

In the first experiment, the number of users is fixed
at λ = 2000. The ADR-based performance of the algo-
rithms are compared with respect to various number
of cloud servers (see Fig.5a). Among the three greedy
heuristics, G-MaxRME and G-MinED achieve better
performance than G-MaxREL. Compared with HEFT,
the performance of our proposed greedy heuristics
(G-MaxRME and G-MinED) is better for any number
of cloud servers. Compared with MEDLS, the greedy
heuristics (G-MaxRME and G-MinED) have better
performance when the cloud resources is relatively
tight (r < 800). When the cloud resources increase
to r > 800, the greedy heuristics have the same
performance with MEDLS, because in this case the
SCPP solution used as the initial solution in both the
greedy heuristics and MEDLS becomes feasible for
MCPP. The average ADR value of the greedy heuristic
(G-MaxRME or G-MinED) on all the numbers of
cloud servers is better than the HEFT algorithm by 11
percent, and the MEDLS algorithm by 10 percent. It is
also shown that, for all these five algorithms, the per-
formance increases as the number of the cloud servers
increases. It demonstrates the application providers
can increase the overall application performance by
leasing more cloud resources.

Next, we fix the number of cloud servers, r = 200,
and compare the ADR performance of the five algo-
rithms when the number of users λ varies (see Fig.5b).

The two proposed greedy heuristics (G-MaxRME and
G-MinED) outperform other algorithms in terms of
the overall ADR performance under various num-
ber of users. For the greedy heuristics and MEDL-
S, there exists a threshold, λ = 400, below which
the performance is not affected by the number of
users. It is because in this case the cloud always
has enough resources to accommodate the offloaded
modules, such that each user can realize its SCPP
based optimal partitions. However, when the number
of users exceeds the threshold, it is shown that the
performance degrades quickly as λ increases.

We compare the cost of the algorithms by using
the metric of the algorithm running time (see Fig.5c).
MEDLS is the least costly one among the five algo-
rithms. For the two greedy heuristics (G-MaxRME and
G-MinED) which have the best ADR-based perfor-
mance, it is shown that G-MaxRME is more costly
than G-MinED. This is because G-MaxRME includes
the released cloud resource occupation time into the
reward function, and hence needs fewer iterations
than G-MinED. We conclude that G-MaxRME is the best
one among all the five algorithms in terms of both ADR
based performance and running time. Another interest-
ing thing we can observe from Fig.5c is that, our
proposed greedy heuristics have less running time as
the cloud resources increase, while HEFT has longer
running time as the cloud resources increase. This is
because the greedy heuristics need more iterations to
adjust the SCPP initial solution as the cloud resources
constraint is lower. However, as the cloud resources
increase, the running time of HEFT increases because

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366735, IEEE Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, OCTOBER 2013 13

0 500 1000 1500 2000 2500 3000
250

300

350

time (× 100 ms)

th
e
 n

u
m

b
e
r

o
f
re

q
u
e
s
ts

Fig. 6. One selected wikipedia load trace: it contains

3000 time slots. The expectation value and variance of

this trace are λ = 305, var = 12
more time is spent in machine selection with an
insertion-based policy.

7.1.2 Performance-Resource-Load (PRL) Model

Finally, we evaluate how the ADR-based performance
changes with the provisioning cloud resources r and
load λ on the system by using our proposed greedy
heuristic (G-MaxRME). We have measured the ADR
value of G-MaxRME algorithm in about 2000 test
cases, where the number of cloud servers r varies
in [10, 2000] and the number of users λ varies in
[200, 2000]. Fig.5d and Fig.5e show a 3-dimension
visual PRL curve and its corresponding contour lines.
Note the contour line contains the (r, λ) points which
has the same ADR value. The straight contour lines
approximately from the origin (0, 0) show that the
ADR based performance depends on the ratio of r
and λ. Based on this observation, we construct a
mathematical PRL model d = F(r

λ
). Fig.5f shows

the fitting curve of ADR and r
λ

values from our
simulation results. The greater the r/λ value is, the
better the performance is. When r/λ is more than
about 1/2, the performance is not affected by the
increase of r/λ, because the number of cloud resources
is equivalent to unlimited with respect to the number
of requesting users.

7.2 Evaluation of Online Solution

To realistically evaluate the performance of our online
solution, we use the wikipedia request traces [18]
to do the simulations. The whole data set contains
10% of all the requests directed to Wikipedia server
from September 19, 2007 to January 2, 2008. The total
number of the requests are 20.6 billion. Each request in
the data set includes a time stamp which is recorded
in milliseconds. From the whole data set we select 10
traces, each of which has a length of 5 minutes. For
each trace, we count the number of requests every one
time slot (we set the length of time slot ∆t = 100ms in
this simulation). Thus, each trace contains 3000 time
slots. Note that to evaluate how the variance of the
load trace influences our online algorithm, we select
the 10 traces which have the same expectation value
(λ = 305) but different variances (5 ≤ var ≤ 50). Fig.6
shows one of the 10 selected traces. Table 2 shows the
setting up of the parameters in our simulation.

TABLE 2

Parameters setting up for online algorithm

Parameters Values

Length of time slot ∆t 100 ms
Length of load trace N 3000 time slots

The expectation value of load trace λ 305
The variance of load trace var (5, 50)
The number of cloud servers r 3000
Control parameter of online algorithm Λ 0, 0.4

We evaluate our online algorithm in terms of the
three metrics: (i) application delay, (ii) server utiliza-
tion, and (iii) Service Level Agreement (SLA) viola-
tion. Application delay indicates the average delay of
all the requests in the load trace. Server utilization is

defined by U = 1−

∑
N

η=1
(Iη−rη)

rN
, where N = T

∆t
is the

length of load trace in time slots and Iη−rη represents
the number of servers that are spare during time slot
η. SLA violation is defined as the percentages of re-
quests that do not meet the delay requirements. For la-
tency sensitive applications, the application provider
requires that the delay of each request should be
less than a constraint. If and only if the delay of all
the requests meet the delay requirement, we say the
SLA are satisfied, in which case the value of SLA
violation is zero. Note the difference between metric
(i) and metric (iii). The two metrics are not positively
correlated. If the input load trace has low application
delay, it does not necessarily have low SLA violation;
and vice versa.

Fig.7 shows the evaluation results for multiple load
trace variances and three values of Λ. It is shown
that as the variance of input load trace var increases,
the application delay and SLA violation generally
increases and server utilization generally decreases.
The reason is that as var increases, the load fluctuation
over time has greater magnitude, resulting more time
slots in which the cloud servers are either overloaded
or mostly spare. In particular, Fig.7a demonstrates
that the application delay of our online algorithm is
very close to the optimum dopt (shown as dash line)
when the variance is small. For example, the ratio
between the application delay (var = 20, Λ = 0.4)
and dopt is 1.08. The smaller var is, the closer the
ratio value is to 1. We analyze the whole wikipedia
request data set during October 2007, we found that
more than 90% of the traces (3000 time slots length)
has var ≤ 20. This evaluation implies that our online
algorithm can achieve a delay of 1.08dopt at most time,
i.e. 90% time of the whole month in October 2007 for
wikipedia requests data set.

The trade-off between reserving more servers for
future time slots (Λ = 0.4) and allocating more servers
for current time slot (Λ = 0) is also interesting. Fig.7a
shows that when the load trace has small variance,
it is better to allocate more servers for current time;
while the load trace has large variance, it is better
to reserve more servers for future time. Although

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366735, IEEE Transactions on Computers

IEEE TRANSACTION ON COMPUTERS, OCTOBER 2013 14

10 20 30 40 50
20

25

30

35

40

45

50

var

a
p

p
lic

a
ti
o

n
 d

e
la

y
 (

ti
m

e
 s

lo
ts

)

Λ = 0

Λ = 0.4

Λ = 0.8

(a) The overall application delay increas-
es as load variance var increases

10 20 30 40 50
40

50

60

70

80

90

100

var

s
e

rv
e

r
u

ti
liz

a
ti
o

n
 (

%
)

Λ = 0

Λ = 0.4

Λ = 0.8

(b) The cloud server utilization varies
depending on var

10 20 30 40 50
0

1

2

3

4

var

S
L
A

 v
io

la
ti
o
n
 (

%
)

Λ = 0

Λ = 0.4

Λ = 0.8

(c) SLA violation increases as var be-
comes larger

Fig. 7. The three key metrics for online algorithm on Wikipedia load traces

reserving more server for future time slots always
leads to lower server utilization than allocating more
servers for current time (shown in Fig.7b), it can
achieve better performance in term of SLA violation
(shown in Fig.7c). However, when the value of Λ is
too large, i.e., Λ = 0.8, the algorithm does not achieve
good performance in terms of all the three metrics.

8 CONCLUSION

In this paper, we have focused on the Multi-user Com-
putation Partitioning Problem (MCPP). We have de-
signed an offine algorithm, SearchAdjust, and a set of
competitive benchmark algorithms to solve the prob-
lem, and conducted extensive simulations to compare
their performance. SearchAdjust was demonstrated to
outperform the list scheduling algorithms, HEFT and
MEDLS, by 10 percent in term of the application delay.
From the simulations, we also draw a Performance-
Resource-Load (PRL) model to show how the perfor-
mance (application delay) varies depending on the
load and provisioned cloud resources. Based on the
PRL model and offline algorithm, we further design
an online algorithm that can be deployed in practical
mobile cloud systems. We show our online algorithm
can achieve satisfactory application delay by real trace
driven simulations.

ACKNOWLEDGMENTS

The research is supported by Hong Kong RGC under
GRF (Grant No. c02461), and Microsoft (Grant No. H-
ZD89).

REFERENCES

[1] G. Canepa, and D. Lee. A Virtual Cloud Computing Provider
for Mobile Devices. In Proc. of ACM MCS, 2010.

[2] E. E. Marinelli. Hyrax: Cloud Computing on Mobile Devices
using MapReduce. In Master Thesis, Carnegie Mellon Universtiy,
2009.

[3] L. Yang, J. Cao, S. Tang, T. Li, and A. Chan. A Framework
for Partitioning and Execution of Data Stream Applications in
Mobile Cloud Computing. In Proc. of CLOUD, 2012.

[4] E. Cuervoy, A. Balasubramanianz, and D. Cho. MAUI: Making
Smartphones Last Longer with Code Offload. In Proc. of
MobiSys, 2010.

[5] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. CloneCloud:
Elastic Execution between Mobile Device and Cloud. In Proc.
of EuroSys, 2010.

[6] X. Zhang, A. Kunjithapatham, S. Jeong, S. Gibbs. Towards
an elastic application model for augmenting the computing
capabilities of mobile devices with cloud computing. In Mobile
Networks and Applications, vol.16, no.3, pp.379-394, 2009.

[7] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso. Calling
the Cloud: Enabling Mobile Phones as Interfaces to Cloud
Applications. In Proceedings of Middleware, 2009.

[8] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The
Case for VM-Based Cloudlets in Mobile Computing. In IEEE
Pervasive Computing, vol. 8, no. 4, pp.14-23, 2009.

[9] K. Kumar, and Y. Lu. Cloud computing for mobile users: Can
offloading computation save energy. In IEEE Computer, vol. 43,
no. 4, pp.51-56, 2010.

[10] Z. Li, C. Wang, and R. Xu. Computation offloading to save
energy on handheld devices: a partition scheme. In Proc. of
ICCASES, 2001.

[11] M. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and
R. Govindan. Odessa: enabling interactive perception appli-
cations on mobile devices. In Proc. of MobiSys, 2011.

[12] D.G. Lowe. Distinctive image features from scale-invariant
keypoints. In International Journal of Computer Vision, vol.60,
no.2, pp.91-110, 2004.

[13] U. Sharma, P. shenoy, S. Sahu, and A. Shaikh. A cost-aware
elasticity provisioning system for the cloud. In Proc. of ICDCS,
2011.

[14] H. Topcuoglu, S. Hariri, and M. Wu. Performance-effective
and low-complexity task scheduling for heterogeneous com-
puting. In IEEE Transactions on Parallel and Distributed Systems,
vol.13, no.3, pp.260-273, 2002.

[15] L. Hall, D. Shmoys, and J. Wein. Scheduling to minimize
average completion time: offline and on-line algorithms. In
Proc. of SDA, 1996.

[16] M. Pinedo. Scheduling Theory, Algorithms, and Systems, 2nd
ed. Prentice Hall, Upper Saddle River, New Jersey 07458, 2002.

[17] E.L.Lawler, and D.E.Wood. Branch-and-Bound Methods: A
Survey. In Operations Research, vol.14, pp.699-719, 1966.

[18] Guido Urdaneta, Guillaume Pierre, Maarten van Steen.
Wikipedia workload analysis for decentralized hosting. In
Elsevier Computer Networks, vol.53, no.11, pp.1830-1845, 2009.

[19] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang.
ThinkAir: Dynamic resource allocation and parallel execution
in cloud for mobile code offloading. In Prof. of Infocom, 2012.

[20] Y. Lee, and A. Zomaya. Energy conscious scheduling for
distributed computing systems under different operating con-
ditions. In IEEE Transactions on Parallel and Distributed Systems,
vol.22, no.8, pp.1374-1381, 2011.

[21] Y. Lee, and A. Zomaya. A novel state transition method for
metaheuristic-based scheduling in heterogeneous computing
systems. In IEEE Transactions on Parallel and Distributed Systems,
vol.19, no.9, pp.1215-1223, 2008.

[22] Y. Kwok, and I. Ahmad. Dynamic critical-path scheduling:
an effective technique for allocating task graphs to multi-
processors. In IEEE Transactions on Parallel and Distributed
Systems, vol.7, no.5, pp.506-521, 1996.

[23] S. Darbha, and D.P. Agrawal. Optimal Scheduling Algorithm
for Distributed-Memory Machines. In IEEE Transactions on
Parallel and Distributed Systems, vol.9, no.1, pp.87-95, 1998.

