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Abstract: In this paper, a new predetermined time constant approximation (Tsp) method for optimising 

the search space boundaries to improve SGAs convergence is proposed. This method is demonstrated on 
parameter identification of higher order models. Using the dynamic response period and desired settling time 
of the transfer function coefficients offered a better suggestion for initial Tsp values. Furthermore, an 
extension on boundaries derived from the initial Tsp values and the consecutive execution, brought the elite 
groups within feasible boundary regions for better exploration. This enhanced the process of locating of the 
optimal values of coefficients for the transfer function. The Tsp method is investigated on two processes; 
excess oxygen and a third order continuous model with and without random disturbance. The simulation 
results assured the Tsp method’s effectiveness and flexibility in assisting SGAs to locate optimal transfer 
function coefficients.                       

Key words: Predetermined Time Constant Approximation; Genetic Algorithms; Search Space 
Boundary Constraints; Premature Convergence. 

 

INTRODUCTION 
Search space boundary constraint is one of the common phenomena that lead to 

premature convergence in standard genetic algorithms (SGAs). An optimisation process 
has prematurely converged to a local optimum if it is no longer able to explore other parts 
of the search space region than the area currently being explored and there exists another 
region that may contain a superior solution [1]. This is especially true when the optimum 
values are located near to the boundary region or outside the boundary region. Therefore, 
an optimum search space region is required for better exploration and to avoid premature 
convergence. Parameter identification of continuous higher order models where the model 
parameters distinguish the dynamic characteristics of system are of particular concern. 
Without any prior knowledge of the transfer function coefficients, it is highly infeasible to 
predict the search space upper (SBUpper) and lower boundaries (SBLower).   

Significant work has been undertaken to improve the defined search space to an 
optimal solution. Based on the complex Box technique, a boundary search method for 
optimisation problems in the case of the optimal solution at the boundary was proposed 
[2]. A technique for resolving the structural optimisation difficulties in quantising the 
subjective uncertainties of active constraints are proposed by fuzzy logic formulation [3]. A 
new approach called the self-adaptive boundary search strategy for penalty factor 
selection within SGA was proposed [4]. This approach guides the SGA to preserve around 
constraint boundaries and improves the efficiency of attaining the optimal or near optimal 
solution.  

Another method to improve the prematurity and to sustain the diversity population 
was proposed by Niche Genetic Algorithm (NGM) associated with isolation mechanism [5]. 
A comparison study was done on NGM and Annealing Genetic Algorithm (AGA) where the 
AGA has better premature convergence [6], however it is time consuming. Another 
method, named Accelerating Genetic Algorithm (AGM) was proposed to resizing the 
feasible  region  into the  elite individual’s  adjacent  region for  better  local  searching  and  
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convergence [7]. Search space boundary reduction for the candidate diameter for each 
link by pipe index vector and critical path method along with modified genetic operator’s 
derivatives was proposed [8][9]. Further, an improved AGM based on the saddle 
distribution by which adding random individuals into initial population to increase the 
searching ability of optimal solution was proposed [10]. Literature survey discloses that 
most techniques are considered based on limited or confined search space boundaries 
and involves complex mathematics. Also, the discussed research information has an initial 
approach about the search parameter and inevitably is time consuming for convergence. 

This paper introduces and investigates the predetermined time constant 
approximation (Tsp) method to improve the SGAs exploration and exploitation towards 
global optima. This method employs a novel search space boundary extension technique 
by Tsp which guides the search to concentrate on optimal value within the boundaries of 
the feasible region of the solution space. The structure of this paper is as follows; first, 3 
SGAs convergence states for an optimal value by search space boundary constraints are 
discussed. Second, the approximation process of predetermined time constant methods is 
discussed.  Further, search space boundary extensions for better exploration and for 
optimal exploitation are discussed here. Third, the effectiveness of predetermined time 
constant approximation method is assessed with two processes.  

 
 POLYNOMIAL COEFFICIENTS 
Consider a system can be modelled by the general order differential equation, 
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where f(t - θ) is the input signal or forcing function with time delay, y(t) is the output signal 
and Kp is process gain. Assuming zero initial condition, y(0)=0, y'(0)=0, and taking the 
laplace transform of equ. 1 gives the general order transfer function is of the form, 
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where an…a1 are coefficients of the denominator polynomial. The denominator polynomial 
coefficients provide a foundation for determining a system’s dynamic response 
characteristics. In particular the system’s poles directly define the components in the 
homogeneous response. Thus, optimal poles identification is primarily considered here. 

 
 CONVERGENCE CONSTRAINTS OF SGAs BY SEARCH SPACE BOUNDARIES 
In most situations, selecting the search space boundaries is delicate if there is no 

prior knowledge of optimum value location. Thus, randomly selected search space 
boundary is a significant factor which leads the SGAs are often converged and trapped in 
local optima, resulting suboptimal solutions. Particularly, it locates near the boundary or 
outside of boundary.  

As shown in figure 1, the SGAs convergences by search space boundary constraints 
can be classified by three states; 

 State 1 – If the optimal value (Xi) located within uniformly distributed elite group 
around boundary region [Xi – ΔGO, Xi + ΔGO], the genetic operators have higher 
probability of converging to global optimum. Thus, the randomly generated initial 
population within well distributed elite group search boundary has higher probability 
exploring and exploiting a better parent chromosome. Further, the selected parent 
chromosome will be evaluated by genetic precision process (selection, crossover and 
mutation) to produce fitter offspring without any convergence constraint.    

 State 2 – If the Xi located near ([SBLower, Xi – ΔGO], [Xi + ΔGO, SBUpper]), the SGAs 
possibly will converge to local minima. The elite group which is distributed near the 
boundary may have located a part of elite group at outer boundary. If the elite group 
at outer part may have the genetic information of optimal value, the genetic operators 
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Figure 1: Schematic diagram of feasible serach space 
boundary region 

 

 
Figure 2: Optimising the search space  

boundary by Tsp 
 

will suffer to exploit the optimal value and the exploration process will retard. As a 
result, the search space boundary constrains will lead the SGAs to converge to local 
minima. 

 State 3 – If the Xi located outside the boundary region [SBLower > Xi > SBUpper], the 
SGAs will fail to explore and exploit the optimal value. The simulation may retarded 
and stopped. 

where SBLower is lower search 
boundary, SBUpper is upper 
search boundary and ΔGO is the 
genetic operator for 
convergence precision.  

By approximating the 
distribution of the elite group in a 
boundary region at the initial stage, gives the genetic operators opportunity to locate the 
optimal value rapidly without any constraint. To improve searching space boundaries for 
optimal model identification, a straightforward trial and error technique without a 
mathematical constraint is introduced here, named predetermined time constant 
approximation (TSp). The approximation process can be simplified as follows;  

 Selecting σTs, where σ is the settling band in %. (σ = 3, 4 and 5). The selection of 
desired σ is according to the raggedness of dynamic response.       

 Estimating process’s dynamic response period (DRP)(τ2-τ). At C(t) = 0(T=τ) to C(t) = 1 ± 
σ (%)(T=τ2), where C(t) is desired settling 
point.     

 Approximating an initial τ1 = DRP(τ2-τ) / σ.    

 Calculating initial TSp by identified τ1 
according to the respective transfer 
function coefficients
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where SBO is optimum search space 
boundary, SBLower is lower search boundary 
and SBUpper is upper search boundary. An optimum search space boundary can be 
approximated by TSp, as illustrated in figure 2 and can be expressed as;  

 UpperSLowerOO SBTSBSBSB
P
 ;                                                 (3) 

For an SBO, the SBUpper and SBLower are extended by 100% and 75% from TSp, 
respectively. Especially, 100% of extension for SBUpper is required as the optimal solution 
mostly located near to the upper boundary region. Such a search space extension is 
required for SGAs to explore the elite groups which are uniformly distributed within 
boundaries and to exploit the Xi. 

 

 SIMULATION STUDIES 
To illustrate the non-complexity and effectiveness, the proposed Tsp method is 

applied on two industrial processes; excess oxygen (EO2) and 3rd order transfer function.    
   

Process 1 – Excess Oxygen (EO2) 
A raw numerical data of EO2 is collected from a real industrial furnace by empirical 

technique for 1000 seconds with 5 seconds interval. As illustrated in fig. 3, the process 
response of EO2 is exhibiting the first-order plus dead-time (FOPDT) dynamic system. The 
data was gathered by the step input of increasing air ratio from 9.5 to 10.5 in volumetric.  
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Figure 3: Step response of EO2 
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As discussed earlier, the time 
constant (τS) of transfer function are 
primarily considered here for an 
optimal model identification by TSp 
method. Whereas, the process gain 
(Kp) and transport delay (θ) can be 
approximated by close observation 
on transient response.  As illustrated 
on the transient response of EO2, the 
Kp ≈ 1.54 and θ ≈ 160s. As a result, 
an extension on the search space 
boundaries are approximated for  2:1pK  and  200:50 .  

According to the EO2 response, the DRP(τ2-τ) = 700s – 100s = 600s. Selecting σTs = 
5Ts, as the desired Ts is 1% settling band, gives the initial τ1 as 120s. For EO2, the 
selection of an optimal model is a 3rd order transfer function. Therefore, the TSp for the 3rd 
order polynomial coefficients can be approximated,   
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  Process 2 – 3rd Order Transfer Function  

For simulation study, the transfer function of a 3rd order process is selected with 
process gain (Kp = 10),  
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The particular motive of selecting this 3rd order transfer function is that it has a real 
pole at -5.1245 and a pair of complex poles at -0.0378 ± 0.1076i which are exhibiting a 
significant oscillatory response. Also, to assess the TSp method’s flexibilities and 
effectiveness, the 3rd order transfer function coefficients are moderately small parameters. 
So, an appropriate search space boundary extension is required. 

According to the 3rd order process step response (Fig. 3), the DRP(τ2-τ) = 123s – 0s = 
123s. Selecting σTs = 5Ts, as the desired Ts is 1% settling band, gives the initial τ1 is 
24.6s. Therefore, the TSp for the 3rd order polynomial coefficients can be approximated by,   

18.735.181514887
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 DISCUSSION 

Generally, the all process of search space boundary adjustment and an optimal Xi 
identification can be simplified as follows;   

1. Initial attempt – Identified TSp according to the respective transfer function coefficients 
are applied with 100% extension on SBUpper. The SBLower is extended to 
approximately 95% (10) instead 75% for better exploration at beginning stage. 
Execute the SGAs.  

2. Second attempt – Genetically identified TSp of respective transfer function coefficients 
by initial attempts are extended accordingly (SBUpper to 100% and SBLower to 75%) to 
optimise SBO. Execute the SGAs. 

3. Subsequent attempt – Continuing the SGAs execution with unchanged boundary 
search approximation by second attempt, until optimal Xi and minimum sum of 
square error (SSE) attained. 

4. *Subsequent attempt – If the extended boundary in second attempt is not a SBO, 
consecutive boundary adjustment is essential until SBO achieved. Then, continuing 
the SGAs execution until optimal Xi and SSE attained. 
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                Table 1: Simulation Results of EO2 Executions 

Execution 
Cycle 

S
3
 S

2 
S

1 
Tsp 
(S

3
) 

Tsp 
(S

2
) 

Tsp 
(S

1
) 

SSE Gen 
SBU SBL SBU SBL SBU SBL 

1 3.5e6 10 8.6e4 10 7.2e2 10 8088.2 10085 178.73 0.86796 70 

2 1.6e4 2e3 2e4 2e3 3.5e2 40 4039.7 14074 180.02 0.49128 20 

3 1.6e4 2e3 2e4 2e3 3.5e2 40 2699.7 13304 180.38 0.51873 40 

4 1.6e4 2e3 2e4 2e3 3.5e2 40 4875.7 14995 183.64 0.49413 40 

5 1.6e4 2e3 2e4 2e3 3.5e2 40 8187.7 14524 181.41 0.48654 20 

6 1.6e4 2e3 2e4 2e3 3.5e2 40 8079.1 16513 184.16 0.53421 35 

7 1.6e4 2e3 2e4 2e3 3.5e2 40 4330.5 14555 177.2 0.5109 90 

8 1.6e4 2e3 2e4 2e3 3.5e2 40 4137.2 15028 181.88 0.48758 22 

9 1.6e4 2e3 2e4 2e3 3.5e2 40 9903.9 16043 182.3 0.51771 80 

 

 

Figure 4: Two optimal values of S3 for EO2 
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Figure 5: Transient responses of 2 global optimal  

values with real process of EO2 
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  Simulation Results of EO2 
As illustrated in table 1, the SGAs is explored well the entire search space boundaries 

and exploited the elite group within boundary region [Xi – ΔGO, Xi + ΔGO] for  TSp values of 
S2 and S1 at initial attempt. This can be seen the consistency of the TSp values of S2 and 
S1 in further execution with readjusted boundaries at 2nd attempt. This has enhanced the 
exploitation an optimal Xi at each subsequent attempted by SGAs.  

Based on initial attempt, 
the elite groups of TSp value of 
S3 are uniformly distributed 
around Xi – ΔGO region. As 
illustrated table 1, the TSp value 
of S3 is still continuously 
evolving within boundary SBO 
region at each execution. 
Therefore, further readjustment 
on SBO boundaries is not 
required as the elite groups are 
still within the boundary range 
(state 1) as discussed section 
3. For 3rd order model of EO2, 
the TSp values by 5th iteration 

are selected as the SSE and 
Gen (generation) is minimum 
and optimal. 

However, the 
inconsistency of S3 shows that 
there are two global optimal Xi 
(Xi = 8187.7; 4137.2), which are 
frequently appears within the 
SBO region at 1st, 2nd, 4th, 5th, 
6th, 7th and 8th iterations. This 
has been verified by simulation 
results in Fig. 4 and 5 of both 
global optimal Xi values of S3 
and minimum SSE.  
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Figure 6: Transient response of 3rd order transfer  

function real and model process 
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Table 3: Simulation Results of 3rd Order Transfer Function with 5% Disturbance Iterations 

Iteration 
S

3
 S

2 
S

1 
Tsp  
(S

3
) 

Tsp  
(S

2
) 

Tsp  
(S

1
) 

SSE Gen 
SBU SBL SBU SBL SBU SBL 

1 29774 10 3630 10 98 0 380.4 82.03 11.27 150.832 90 

2 760 95 165 20 22 3 95.15 77.78 6.296 60.1486 78 

3 190 24 155 20 13 2 25.29 77.57 6.211 33.4558 43 

4 50 6 155 20 13 2 24.02 77.57 6.196 33.4456 37 

5 50 6 155 20 13 2 24.67 77.58 6.049 33.4481 32 

6 50 6 155 20 13 2 24.05 76.33 6.398 33.4452 28 

7 50 6 155 20 13 2 26.14 77.91 6.215 33.4627 22 

8 50 6 155 20 13 2 24.25 77.51 6.198 33.4459 30 

9 50 6 155 20 13 2 22.99 77.58 6.186 33.4503 21 

10 50 6 155 20 13 2 22.89 77.58 6.183 33.4511 42 

11 50 6 155 20 13 2 22.76 77.84 6.114 33.4596 34 
 

Table 2: Simulation Results of 3rd Order Transfer Function Iterations 

Iteration 
S

3
 S

2 
S

1 
Tsp  
(S

3
) 

Tsp  
(S

2
) 

Tsp  
(S

1
) 

SSE Gen 
SBU SBL SBU SBL SBU SBL 

1 29774 10 3630 10 98 0 141.3 76.75 7.439 60.092 70 

2 280 35 150 20 15 2 42.55 77.73 6.281 8.4924 50 

3 85 12 150 20 15 2 23.25 77.67 6.182 7.7894 30 

4 50 5 150 20 15 2 22.98 77.69 6.179 7.7899 20 

5 50 5 150 20 15 2 21.23 77.67 6.157 7.8149 20 

6 50 5 150 20 15 2 22.18 77.67 6.189 7.7915 30 

7 50 5 150 20 15 2 21.98 77.68 6.197 7.6025 25 

8 50 5 150 20 15 2 21.41 77.69 6.171 7.6171 35 

9 50 5 150 20 15 2 23.53 77.67 6.186 7.7898 25 

10 50 5 150 20 15 2 22.62 77.68 6.175 7.7914 15 

11 50 5 150 20 15 2 23.49 77.69 6.183 7.7895 20 
 

  Simulation Results of 3rd Order Transfer Function 
According to the table 2, the distribution of elite groups within boundary region [Xi – 

ΔGO, Xi + ΔGO], the exploitation of optimal Xi and the consistency of the TSp values of S2 
and S1 in further execution by SGAs are exhibiting similar process characteristics as EO2.  

On other hand, the simulation 
result reveals that the elite group of 
TSp values of S3 are distributed 
near to SBLower region. This is 
clearly noticeable at 1st, 2nd and 3rd 
iterations results that the TSp value 
of S3 is remain exploiting at 
SBLower. This caused the SGAs 
suffered to exploit an optimal Xi 
and converged to local minima as 
a part of elite group is located at 
outside of SBLower (state 2). As a 
result, 3 adjustments on 
boundaries, especially on SBLower 
are required to optimise the SBO 
and to bring the elite groups within 
feasible boundary region. As 
expected, the boundaries are optimised and explored the elite groups well at 4th iteration. 
Further SGAs execution enhanced an optimal Xi exploitation.  
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Figure 8: Transient responses of 3rd order transfer function 
real and model with 5% disturbance 
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Further, the flexibilities and effectiveness of TSp methods is assessed on 3rd order 
transfer function model with 5% disturbance. Initially identified transfer function coefficients 
without the disturbance are applied on 3rd order model with disturbance.  The simulation 
result in figure 7 reveals that the exploration of elite groups and exploitation of an optimal 
Xi for 3rd order model with disturbance is immensely similar process with 3rd order model 
without disturbance.  

Thus, the effectiveness 
of TSp methods is well 
demonstrated in optimizing 
the SBO and exploiting the Xi 
with or without disturbance. 
By comparing the identified 
TSp coefficients with 3rd order 
transfer function model’s 
coefficients, the S2 and S1 
values have 99% similarity. 
But, the S3 value only has 
54% of similarity. 
Nevertheless, the identified 
model responses, with and 
without noise, closely match 
the response of the actual 
system as illustrated in figure 
6 and 7. Based on minimum 
SSE, the selected 3rd order model transfer function without disturbance is; 

1197.668.7798.21

997.9
)(

23 


sss
sG                                          (8) 

and with 5% disturbance is; 

1398.633.7605.24

976.9
)(

23 


sss
sG                                                                                 (9) 

 

CONCLUSIONS AND FUTURE WORK 
The proposed predetermined time constant (TSp) method enhanced the optimization 

of search space boundaries for global optima convergence. The response’s dynamic 
period and settling time provide better presumption of an initial TSp for search space 
optimisation. The extended SBUpper and SBLower for an optimal search boundary (SBO) 
derived from initial TSp brought the elite group within a feasible bounded search region. 
Further, SGAs execution improved the exploration of elite groups to locate exploit the 
optimal values for the identified model parameters. As expected, the polynomial 
coefficients (for S1, S2 and S3) of both (EO2 and 3rd order TF) processes are optimised well 
by SGAs with optimised boundaries.  Future work will be carried out on designing the 
Matlab coding for automatic self adjusting boundary and identification of parameters of 
more complex models with poles and zeros.  
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