
Magnetically-regulated fragmentation of a massive, dense and turbulent clump

http://researchonline.ljmu.ac.uk/4080/

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk
LETTER TO THE EDITOR

Magnetically-regulated fragmentation of a massive, dense and turbulent clump

F. Fontani¹, B. Commerçon², A. Giannetti³, M.T. Beltrán¹, A. Sánchez-Monge⁴, L. Testi¹,⁵,⁶, J. Brand⁷, P. Caselli⁸, R. Cesaroni¹, R. Dodson⁹, S. Longmore¹⁰, M. Rioja⁸,¹¹,¹², J.C. Tan¹³, and C.M. Walmsley¹

Abstract

Massive stars, multiple stellar systems and clusters are born from the gravitational collapse of massive dense gaseous clumps, and the way these systems form strongly depends on how the parent clump fragments into cores during collapse. Numerical simulations show that magnetic fields may be the key ingredient in regulating fragmentation. Here we present ALMA observations at ~ 0.25″ resolution of the thermal dust continuum emission at ∼ 278 GHz towards a turbulent, dense, and massive clump, IRAS16061–5048c1, in a very early evolutionary stage. The ALMA image shows that the clump has fragmented into many cores along a filamentary structure. We find that the number, the total mass and the spatial distribution of the fragments are consistent with fragmentation dominated by a strong magnetic field. Our observations support the theoretical prediction that the magnetic field plays a dominant role in the fragmentation process of massive turbulent clumps.

Key words. Stars: formation – ISM: clouds – ISM: molecules – Radio lines: ISM

1. Introduction

High-mass stars, multiple systems, and clusters are born from the gravitational collapse of massive dense clumps (compact structures with $M \geq 100 \, M_\odot$, and $n(H_2) \geq 10^3 \, cm^{-3}$) inside large molecular clouds. Stars more massive than $8 \, M_\odot$ are expected to form either through direct accretion of material in massive cores within the clump that does not fragment further (e.g. McKee & Tan 2003, Tan et al. 2013), or as a result of a dynamical evolution where several low-mass seeds competitively accrete matter in a highly fragmented clump (Bonnell et al. 2004). In the latter scenario, each clump forms multiple massive stars and many lower mass stars: the unlucky losers in the competitive accretion scenario. There is still vigorous debate on which of these scenarios is more likely to occur, and fragmentation appears to be particularly important in this debate. Theoretical models and simulations show that the number, the mass, and the spatial distribution of the fragments depend strongly on which of the main competitors of gravity is dominant. The main physical mechanisms that oppose gravity during collapse are: intrinsic turbulence, radiation feedback, and magnetic pressure (e.g. Krumholz 2006, Hennebelle et al. 2011). Feedback from nascent protostellar objects through outflows, winds and/or expansion of ionised regions (especially from newly born massive objects) can be important in relatively evolved stages (Bate 2009), but even then seems to be of only secondary importance (Palau et al. 2013).

In a pure gravo-turbulent scenario, the collapsing clump should fragment into many cores, the number of which is comparable to the total mass divided by the Jeans mass (Dobbs et al. 2005); on the other hand, fragmentation can be suppressed by temperature enhancement due to the gravitational energy radiated away from the densest portion of the clump that collapses first (Krumholz 2006), or by magnetic support (Hennebelle et al. 2011). The work by Commerçon et al. (2011) has shown that models with strong magnetic support predict fragments more massive and less numerous than those predicted by the models with weak magnetic support. The crucial parameter in their 3-D simulations is $\mu = (M/\Phi)/(M/\Phi)_{\text{crit}}$, where (M/Φ) is the ratio between total mass and magnetic flux, and the critical value $(M/\Phi)_{\text{crit}}$, i.e. the ratio for which gravity is balanced by the mag-
nentic field (thus, for \((M/\Phi)_{R_{\text{crit}}} > 1\) the magnetic field cannot prevent gravitational collapse), is given by theory (Mouschovias & Spitzer 1976). The outcome of the simulations also depends on other initial global parameters of the clump such as gas temperature, angular momentum, total mass, and average volume density. But once these parameters are fixed, the final population of cores shows a strong variation with \(\mu\).

Hiterto, studies of the fragmentation level in massive clumps at the earliest stages of the gravitational collapse remain limited. This investigation is challenging for several reasons: pristine massive clumps are rare and typically located at distances larger than 1 kpc, hence to reach the linear resolution required for a consistent comparison with the simulations (about 1000 A.U.) requires observations with sub-arcsecond angular resolution. Furthermore, the small mass of the fragments expected in the simulations (fractions of \(M_\odot\)) requires extremely high sensitivities. In general, the few studies performed so far with sub-arcsecond angular resolution, or close to \(\sim 1''\), reveal either low fragmentation (e.g. Palau et al. 2013 Longmore et al. 2011), or many fragments but too massive to be consistent with the gravoturbulent scenario (Bontemps et al. 2010 Zhang et al. 2015). Furthermore, comparisons with models that assume the actual physical conditions (temperature, turbulence) of the collapsing parent clump have not been published yet.

In this letter, we report on the population of fragments derived in the image of the dust thermal continuum emission at \(\sim 278\) GHz obtained with the Atacama Large Millimeter Array (ALMA) towards the source IRAS16061–5048c1, hereafter I16061c1. a massive \((M \sim 280M_\odot\), Beltrán et al. 2006) Gianiketti et al. (2013) and dense (column density of \(H_2\), \(N(H_2) \sim 1.6 \times 10^{23}\) cm\(^{-2}\)) molecular clump located at 3.6 kpc (Fontani et al. 2005). The clump was detected at 1.2 mm at low angular resolution with the Swedish-ESO Submillimeter Telescope (SEST, panel (A) if Fig. 1). Nevertheless, several observational results indicate the possible embedded star formation activity is in a very early stage (Sanchez-Monge et al. 2013). In particular, the depletion factor of CO (ratio between expected and observed abundance of CO) is 12. This provides strong evidence for the chemical youth of the clump, because what causes depletion factors of CO larger than unity is the freeze-out of this molecule onto dust grains, a mechanism inefficient only in cold and dense pre-stellar and young protostellar cores (Caselli et al. 1999 Emprechtinger et al. 2009 Fontani et al. 2012). The observations and the data reduction procedures are presented in Sect. 2. Our results are shown in Sect. 3 and discussed in Sect. 4.

2. Observations and data reduction

Observations of I16061c1 with the ALMA array were performed during southern winter, 2015. The array was in configuration C36-6, with maximum baseline of 1091 m. The phase centre was at R.A. (J2000): \(16^h10^m6.6^s\) and Dec (J2000): \(-50^\circ50'29''\). The total integration time on source was \(\sim 18\) minutes. The precipitable water vapour during observations was \(\sim 1.8\) mm. Bandpass and phases were calibrated by observing J1427−4206 and J1617−5848, respectively. The absolute flux scale was set through observations of Titan and Ceres. From Beltrán et al. (2006), we know that the total flux measured with the single-dish in an area corresponding to the ALMA primary beam at the observing frequency (\(24\) cm) is \(\sim 2.3\) Jy, while the total flux measured with ALMA in the same area is 0.63 Jy. Thus, we recover \(\sim 30\%\) of the total flux. The remaining \(\sim 70\%\) is likely contained in an extended envelope that is resolved out. Continuum was extracted by averaging in frequency the line-free chan-

![Fig. 1. (A) Dust continuum emission map (dashed contours) obtained with the SEST telescope with an angular resolution of \(24''\) at 1.2 mm towards I16061c1 (Beltrán et al. 2006). The map is superimposed on the Spitzer-MIPS image at 24\(\mu\)m (in units of MJy/sr). The circle indicates the ALMA primary beam at 278 GHz (\(\sim 24''\)). (B): Enhancement of the rectangular region indicated in panel (A), showing the contour map of the thermal dust continuum emission at frequency 278 GHz detected with ALMA, in flux density units. The first contour level, and the spacing between two adjacent contours, both correspond to the 3\(\sigma\) rms of the image (0.54 mJy/beam). The cross marks the phase center. The ellipse in the bottom left corner shows the synthesized beam, and corresponds to 0.36 x 0.18'' (Position Angle = 86 deg). The numbers indicate the twelve identified fragments (see Sect. 3). (C): Simulations of the thermal dust emission at 278 GHz predicted by the models of Commerçon et al. (2011), which reproduce the gravitational collapse of a 300 M\(_\odot\) clump, in case of strong magnetic support (\(\mu = 2\)), obtained at time t2 (see text), projected on a plane perpendicular to the direction of the magnetic field. (D): Same as panel (C) for the case \(\mu = 200\) (weak magnetic support). (E): Synthetic ALMA images of the models presented in panel (C). The contours correspond to 0.54, 1.2, 2, 5, 10, 30, and 50 mJy/beam. (F): same as panel (E) for the case \(\mu = 200\) (weak magnetic support).]
The angular resolution of the final image is $\sim 0.25''$ (i.e. ~ 900 AU at the source distance). We were sensitive to point-like fragments of 0.06 M$_\odot$. Together with the continuum, we detected several lines among which N$_2$H$^+$ (3–2). These data will be presented and discussed in a forthcoming paper. In this letter, we only use the N$_2$H$^+$ (3–2) line to derive the virial masses, as we will show in Sect. 4.

3. Results

The ALMA map of the dust thermal continuum emission is shown in Fig. [4]B: we have detected several dense condensations distributed in a filamentary-like structure extended east-west, surrounded by fainter extended emission. This structure has been decomposed into twelve fragments (Fig. [4]B). The fragments have been identified following these criteria: (1) peak intensity greater than 5 times the noise level; (2) two partially overlapping fragments are considered separately if they are separate at their half peak intensity level. The minimum threshold of 5 times the noise was adopted according to the fact that some peaks at the edge of the primary beam are comparable to about 4-5 times the noise level. We decided to use these criteria and decompose the map into cores by eye instead of using decomposition algorithms (such as Clumpfind) because small changes in their input parameters could lead to big changes in the number of identified clumps (Pineda et al. 2009). The main physical properties of the fragments derived from the continuum map, i.e. integrated and peak flux, size, and gas mass, and the methods used to derive them, are described in Appendix A. The derived parameters are listed in Table A-1. The mean mass of the fragments turns out to be 4.4 M$_\odot$, with a minimum value of 0.7 M$_\odot$ and a maximum of ~ 9 M$_\odot$. The diameters (undeconvolved for the beam) range from 0.011 to 0.032 pc, with a mean value of 0.025 pc.

To investigate the stability of the fragments, we have calculated the virial masses M_{vir}, i.e. the masses required for the cores to be in virial equilibrium, from the line widths observed in N$_2$H$^+$ (3–2). As stated in Sect. 2 in this work we use this molecular transition only for the purpose to derive the level of turbulence (the key ingredient of the models, together with the magnetic support) of the dense gas out of which the fragments are formed. The approach used to derive M_{vir} is described in Appendix A and the values obtained are reported in Table A-1. The average ratio between M_{vir} and M computed from the continuum emission is about 0.4, indicating that the gravity dominates, according to other ALMA studies of fragmentation (Zhang et al. 2013). However, the uncertainties due to the dust mass opacity coefficient (see Eq. [1]) can be of a factor 2-3, hence it is difficult to conclude that the fragments are unstable. Moreover, the formula of the virial mass we use does not consider the magnetic support. Because this latter is expected to be relevant, it is likely that the fragments are closer to virial equilibrium and would not tend to fragment further. If one assumes, for example, the value of 0.27 mG measured by Pillai et al. (2015) in another infrared-dark cloud, the ratio between virial mass and gas mass becomes about 1, and the fragments would be marginally stable. A similar conclusion is given in Tan et al. (2013), were the dynamics of four infrared-dark clouds similar to I16061c1 is performed.

4. Discussion and conclusion

We have simulated the gravitational collapse of I16061c1 through 3D numerical simulations following Commerçon et al. (2011), adopting mass, temperature, average density, and level of turbulence of the parent clump very similar to those measured (Beltrán et al. 2009, Giannetti et al. 2013). In particular, the Mach number setting the initial turbulence, has been derived from the line width of C18O (3–2) by Fontani et al. (2012). Because these observations were obtained with angular resolution of $\sim 24''$, and the critical density of the line ($\sim 5 \times 10^4$ cm$^{-3}$) Fontani et al. (2005) is comparable to the average density of the clump as a whole (Beltrán et al. 2006), the C18O line width represents a reasonable estimate of the intrinsic turbulence of the parent clump. The models were run for $\mu=2$ (strongly magnetised case) and $\mu=200$ (weakly magnetised case). Then, we have post-processed the simulations data and computed the dust emission maps at 278 GHz: the final maps obtained in flux density units at the distance of the source have been imaged with the CASA software, in order to reproduce synthetic images with the same observational parameters as those of the observations. A detailed description of the parameters used for the numerical simulations, of the resulting maps, and how they have been post-processed, is given in Appendix B. Further descriptions of the models can be found also in Commerçon et al. (2011). To investigate possible effects of geometry, we have imaged the outcome of the simulations projected on three planes: (x,y), (x,z) and (y,z), where x
is the direction of the initial magnetic field. As an example, in Figure 1(C) and 1(D) we show the results for the cases of strong and weak magnetic support, respectively, projected on the (y,z) plane, i.e. on a direction perpendicular to the magnetic field. The synthetic images obtained with CASA are shown in panels (E) and (F). All the planes for both µ = 2 and µ = 200 are shown in Appendix B, in Figs. [B-1] and [B-2] respectively. An important result of the simulations (see Figure B-3 in Appendix B) is that the total flux seen by the interferometer in the µ = 2 case decreases until about 35 × 10^13 yrs and then goes through a minimum and starts gradually to increase. In the µ = 200 case by contrast, the decrease is not reversed. We conclude from this that in the µ = 2 case, the fragments continue to accrete material and eventually they will reach the total flux observed in the ALMA image. Thus, we have in the µ = 2 case analysed the synthetic images produced at the time at which the total flux in the fragments matches the observed value within an uncertainty of about 10% (the calibration uncertainty on the flux density, see the ALMA Technical Handbook) while for the µ = 200 case we have analysed the synthetic images obtained at the end of the simulations. This corresponds to two different times: t₂ = 48 500 yrs after the birth of the first protostar for µ = 2; t₂₀₀ = 59 500 yrs after the birth of the first protostar for µ = 200.

The synthetic maps with µ = 200 show more fragments with lower peak fluxes, and the overall structure is more chaotic and never filamentary, independently of the projection plane. The identification of the fragments and the derivation of their properties in the synthetic images have been made following the same criteria and procedures used for the ALMA data. Therefore, any systematic error introduced by the assumptions made (e.g., the assumed dust temperature, gas-to-dust ratio, dust grain emissivity) are the same both in the real and synthetic images, thus they do not affect their comparison. The statistical properties of the synthetic core populations are summarised in Table B-1 of Appendix B. We have also compared the cumulative distribution of the peak fluxes of the fragments in the observed and synthetic images. The results are shown in Fig. 2. The case with µ = 200 has lower peak values for the whole populations, while 1 or 2 fragments have a higher peak value than the maximum observed. The µ = 2 case has a broader distribution of values. Overall, the ALMA map shows a narrower distribution of peak fluxes, with a deficit of both very weak and very strong peaks, which in turn are present in both synthetic images. However, the µ = 2 model roughly spans the observations, while the µ = 200 model is heavily biased below the data. Also, non-parametric statistical test (Anderson-Darling test) implies that all the µ = 200 cases can be excluded as being drawn from the same parent distribution as the observed values with a confidence level exceeding 99.8%. The µ = 2 case is less obvious, because two projections could be excluded at a 98.99% confidence level, while the third projection, (y,z), with a null hypothesis probability of ~ 90% cannot be excluded at the 2σ level. The deficit of very strong and very weak peaks in the real image may be due to a difference between the µ values assumed in the simulations and the real one, or to some other unknown (or doubtful) initial assumption such as, e.g., the density profile or the homogeneous temperature of the collapsing clump.

Based on the overall morphologies shown in Fig. 1 (and in Figs. [B-1] and [B-2]), and on the statistical properties of the fragments reported in Fig. 2 undoubtedly the model that better reproduces the data is the one with µ = 2. Hence, with these new ALMA observations, compared with realistic 3D simulations that assume as initial conditions the properties of the parent clump, we demonstrate that the fragmentation due to self-gravity is dominated by the magnetic support, based on the evidence that: (1) the overall morphology of the fragmenting region is filamentary, and this is predicted only in case of a dominant magnetic support; (2) the observed fragment mass distribution is most easily understood in simulations assuming substantial magnetic support.

Acknowledgments. This paper makes use of the following ALMA data: ADS/IAO.ALMA.2012.1.00366.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. We acknowledge the Italian-ARC node for their help in the reduction of the data. We acknowledge partial support from Italian Ministero dell’Istruzione, Universitá e Ricerca through the grant Progetti Premiali 2012 – iALMA (CUP C52I13000140001) and from Gothenburg Centre of Advanced Studies in Science and Technology through the program Origins of habitable planets.

References

Crutcher, R.M. 2013, ARA&A, 50, 29

Appendix A: Physical properties of the fragments

A-1. Derivation of the parameters

- **Integrated flux densities:** The integrated flux densities of the fragments, \(S_\nu \), have been obtained from the \(3\sigma \) rms contour in the continuum image. In the few cases for which the \(3\sigma \) rms contours of two adjacent fragments are partly overlapping (e.g. fragments 5, 6, and 7 in Fig. 1), the edges between the two have been defined by eye at approximately half of the separation between the peaks. The results are shown in Table A-1.

- **Gas masses:** The gas mass of each fragment has been calculated from the equation:
 \[
 M = \frac{qS_\nu d^2}{\kappa_\nu B_\nu(T_\nu)},
 \]
 where \(S_\nu \) is the integrated flux density, \(d \) is the distance to the source, \(\kappa_\nu \) is the dust mass opacity coefficient, \(g \) is the gas-to-dust ratio (assumed to be 100), and \(B_\nu(T_\nu) \) is the Planck function for a black body of temperature \(T_\nu \). We adopted \(T_\nu = 25 \text{ K} \), corresponding to the gas temperature derived by Giannetti et al. (2013), assuming coupling between gas and dust (reasonable assumption at the high average density of the clump). The dust mass opacity coefficient was derived from the equation \(\kappa_\nu = \kappa_{\nu 0}(\nu/\nu_0)^{\beta} \). We assumed \(\beta = 2 \) and \(\kappa_{\nu 0} = 0.899 \text{ cm}^2 \text{ g}^{-1} \) at \(\nu_0 = 230 \text{ GHz} \), according to Ossenkopf & Henning (1994). The largest mass derived is \(9 M_\odot \), the smallest is \(0.7 M_\odot \) (see Table A-1).

- **Size:** The size of each fragment has been estimated as the diameter of the circle with area equivalent to that encompassed by the \(3\sigma \) rms contour level. The results are shown in Table A-1. The ALMA beam size is much smaller than the size of the fragments, so that deconvolution for the beam is irrelevant to derive the source size.

- **Virial masses:** The virial masses were derived in this way: first, we extracted the \(N_2^+ \text{H}^+ (3–2) \) spectra from the \(3\sigma \) level of the 12 continuum cores. All the spectra are fitted in an automatic way using a procedure based on the integration of the python module PyMC and the CLASS extension WEEDS (Marej et al. [maret]). Then, the virial masses, \(M_{\text{vir}} \), are computed from the formula
 \[
 M_{\text{vir}} = 210r_0\Delta r^2 M_\odot,
 \]
 where \(r_0 \) is the size of the fragment, and \(\Delta r \) is the line width at half maximum of the average \(N_2^+ \text{H}^+ (3–2) \) spectrum obtained from the fitting procedure described above. The results are shown in Table A-1.

Appendix B: Simulations and synthetic images

B-1. Methods and initial conditions for the numerical calculations

We perform a set of two radiation-magneto-hydrodynamics calculations which includes the radiative feedback from the accreting protostars. We use the RAMSES code with the grey flux-limited-diffusion approximation for radiative transfer and the ideal MHD for magnetic fields (Commerçon et al. 2012, 2014; Teyssier 2002; Fromang et al. 2006). The initial conditions are similar to those used in Hennebelle et al. (2011) and Commerçon et al. (2011) with slight modifications in order to match roughly the observed properties of 116061c1. Note that the models presented in this paper have been made with initial conditions very similar to those measured from previous observations in 116061c1, to perform an appropriate comparison with observations for this specific source. Our aim is not to fine-tune the initial conditions such that the models best reproduce the observations. We consider an isolated spherical core of mass \(300 M_\odot \), radius \(0.25 \text{ pc} \) and temperature \(20 \text{ K} \). We assume a Plummer-like initial density profile \(\rho(r) = \rho_0/(1+(r/r_0)^2) \), with \(\rho_0 = 3.96 \times 10^5 \text{ cm}^{-3} \) and \(r_0 = 0.085 \text{ pc} \), and a factor 10 for the density contrast between the center and the border of the core. Such a density profile is suggested by observational findings (Beuther et al. 2002). The initial magnetic field is aligned with the x-axis and its intensity is proportional to the column density through the cloud (Hennebelle et al. 2011). In this paper, we investigate two degrees of magnetization, \(\mu = 2 \) which is close to the values 2-3 that are observationally inferred (e.g., Crutcher 2012), and \(\mu = 200 \), which corresponds to a quasi-hydrodynamical case. Last, we apply an initial internal turbulent velocity field to the cores. The velocity field is obtained by imposing a Kolmogorov power spectrum with randomly determined phases (i.e., a ratio 2:1 between the solenoidal and the compressive modes). There is no global rotation of the cloud, meaning that the angular momentum is contained within the initial turbulent motions, which are then amplified by the gravitational collapse. The amplitude of the velocity dispersion is scaled to match a turbulent Mach number of 6.44, in agreement with \(\text{C}^{18}\text{O} \) observations (Fontani et al. 2012). Following Hennebelle et al. (2011 Eq. 2 therein), the virial parameter is \(\alpha_{\text{vir}} \sim 0.72 \) for \(\mu = 2 \), and \(\alpha_{\text{vir}} \sim 0.54 \) for \(\mu = 200 \) (close to virial equilibrium in both cases). The two calculations, \(\mu = 2 \) and \(\mu = 200 \), start with the same initial turbulent velocity field (only one realisation is explored) and turbulence is not maintained during the collapse. Investigation of the effect of different initial turbulent seeds is beyond the scope of this paper. The computational box has a 2563 resolution, and the grid is refined according to the local Jeans length (at least 8 cells/Jeans length) down to 7 levels of refinement (minimum cell size of 13 AU). Below 13 AU, the collapsing gas is described using sub-grids models attached to sink particles, similar to what is done in other studies (Krumholz et al. 2009). We use the sink particle method presented in (Bleuler et al. 2014), though with slight modifications on the checks performed for the sink creation. The sink particles accrete the gas that sit in their accretion volumes (sphere of radius \(\sim 52 \text{ AU} \), 4 cells) and that is Jeans unstable. We consider that half of the mass accreted into the sink particles actually goes into stellar material. The luminosity of the protostars is then computed using mass-radius and mass-luminosity empirical relations of main sequence stars (e.g. Weiss et al. 2005) and is injected within the accretion volume in the computational domain as a source term (e.g. Krumholz et al. 2009). We do not account for accretion luminosity.

B-2. Outcomes of the numerical calculations

We run the calculations until they reach a star formation efficiency (SFE) > 20% (where the star formation efficiency corresponds to the ratio between the mass of the gas accreted into the sink particles and the total mass of the cloud). Again, the choice of the times at which we stop the calculations is not aimed at best reproducing the observed values. Model \(\mu = 2 \) is post-processed at time \(t_2 = 48500 \text{ yrs} \) after the birth of the first protostar, which is the time at which the total flux in fragments is equal to the observed value (within the uncertainty), and \(\mu = 200 \) at time \(t_{200} = 59500 \text{ yrs} \). At these times, model \(\mu = 2 \) has formed 38 sink particles (for a total mass of 60 \(M_\odot \)) while model \(\mu = 200 \) has formed 119 sink particles (for a total mass of 85 \(M_\odot \)). Fig. B-3 shows the time evolution after the first sink creation of: the SFE, the number
Table A-1. Peak position (in R.A. and Dec. J2000), integrated flux (inside the 3σ rms contour level), peak flux, diameter, mass, line width at half maximum, and virial mass of the 12 fragments identified in Fig.1(B). The line widths are computed from the N_2H^+ (3–2) spectra extracted from the polygons defining the external profile of each fragment, as explained in Appendix A.

<table>
<thead>
<tr>
<th>Fragment</th>
<th>R.A. (J2000) h:m:s</th>
<th>Dec. (J2000) deg : ′′′</th>
<th>S_v (Jy)</th>
<th>S_v^{peak} (Jy beam^{-1})</th>
<th>D (pc)</th>
<th>M (M_☉)</th>
<th>Δν (km s^{-1})</th>
<th>M_{vir} (M_☉)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16:10:07.12</td>
<td>-50:50:27.7</td>
<td>0.007</td>
<td>0.0054</td>
<td>0.011</td>
<td>0.72</td>
<td>0.51</td>
<td>0.28</td>
</tr>
<tr>
<td>2</td>
<td>16:10:06.93</td>
<td>-50:50:24.4</td>
<td>0.045</td>
<td>0.0092</td>
<td>0.031</td>
<td>4.70</td>
<td>0.90</td>
<td>1.86</td>
</tr>
<tr>
<td>3</td>
<td>16:10:06.83</td>
<td>-50:50:25.6</td>
<td>0.012</td>
<td>0.0041</td>
<td>0.018</td>
<td>1.25</td>
<td>0.48</td>
<td>0.47</td>
</tr>
<tr>
<td>4</td>
<td>16:10:06.60</td>
<td>-50:50:26.6</td>
<td>0.012</td>
<td>0.0058</td>
<td>0.016</td>
<td>1.25</td>
<td>0.82</td>
<td>1.26</td>
</tr>
<tr>
<td>5</td>
<td>16:10:06.40</td>
<td>-50:50:26.0</td>
<td>0.044</td>
<td>0.0048</td>
<td>0.029</td>
<td>4.59</td>
<td>0.49</td>
<td>0.77</td>
</tr>
<tr>
<td>6</td>
<td>16:10:06.29</td>
<td>-50:50:26.5</td>
<td>0.073</td>
<td>0.0086</td>
<td>0.028</td>
<td>7.62</td>
<td>0.36</td>
<td>0.38</td>
</tr>
<tr>
<td>7</td>
<td>16:10:06.27</td>
<td>-50:50:27.1</td>
<td>0.050</td>
<td>0.0083</td>
<td>0.023</td>
<td>5.22</td>
<td>0.33</td>
<td>0.26</td>
</tr>
<tr>
<td>8</td>
<td>16:10:06.16</td>
<td>-50:50:27.3</td>
<td>0.052</td>
<td>0.0180</td>
<td>0.024</td>
<td>5.42</td>
<td>0.84</td>
<td>2.01</td>
</tr>
<tr>
<td>9</td>
<td>16:10:05.98</td>
<td>-50:50:26.8</td>
<td>0.045</td>
<td>0.0100</td>
<td>0.029</td>
<td>4.70</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>10</td>
<td>16:10:06.05</td>
<td>-50:50:28.4</td>
<td>0.084</td>
<td>0.0111</td>
<td>0.031</td>
<td>8.76</td>
<td>1.04</td>
<td>3.47</td>
</tr>
<tr>
<td>11</td>
<td>16:10:05.82</td>
<td>-50:50:27.9</td>
<td>0.052</td>
<td>0.0028</td>
<td>0.032</td>
<td>5.43</td>
<td>1.00</td>
<td>3.29</td>
</tr>
<tr>
<td>12</td>
<td>16:10:05.53</td>
<td>-50:50:30.0</td>
<td>0.032</td>
<td>0.0041</td>
<td>0.030</td>
<td>3.34</td>
<td>0.76</td>
<td>1.82</td>
</tr>
</tbody>
</table>

Fig. B-1. Top panels show the thermal dust continuum emission map at frequency 278 GHz predicted by the models of Commerçon et al. (2011), which reproduce the gravitational collapse of a 300 M_☉ clump, in case of strong magnetic support (μ=2) at time t_3=34300 years after the birth of the first protostar (see main text for details). In the bottom panels, we show the models after processing in the CASA simulator, adopting the same observational conditions of the real observations. Units of the colour-scale are Jansky/beam. Contour levels are 0.6, 1, 5, 10, 30 and 50 mJy beam^{-1} in all bottom panels.

Table B-1. Statistical comparison between the fragment population derived from the ALMA image of I16061c1 shown in Fig.1 and the simulations presented in Figs. B1 and B2 of the Appendix. The derivation of the parameters obtained for both the observed and synthetic images is described in Sect.4 and in Appendix A, respectively.

<table>
<thead>
<tr>
<th>S_v^{peak} (Jy)</th>
<th>M^{peak} (M_☉)</th>
<th>N</th>
<th>D_{mean} (pc)</th>
<th>S^{mean} (Jy)</th>
<th>M^{mean} (M_☉)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ = 2 (x,y)</td>
<td>0.52</td>
<td>53</td>
<td>0.025</td>
<td>0.042</td>
<td>4.42</td>
</tr>
<tr>
<td>μ = 2 (x,z)</td>
<td>0.36</td>
<td>36</td>
<td>0.013</td>
<td>0.026</td>
<td>2.76</td>
</tr>
<tr>
<td>μ = 2 (y,z)</td>
<td>0.47</td>
<td>49</td>
<td>0.017</td>
<td>0.039</td>
<td>4.1</td>
</tr>
<tr>
<td>μ = 200 (x,y)</td>
<td>0.22</td>
<td>23</td>
<td>0.015</td>
<td>0.017</td>
<td>1.74</td>
</tr>
<tr>
<td>μ = 200 (x,z)</td>
<td>0.24</td>
<td>25</td>
<td>0.014</td>
<td>0.016</td>
<td>1.67</td>
</tr>
<tr>
<td>μ = 200 (y,z)</td>
<td>0.28</td>
<td>24</td>
<td>0.016</td>
<td>0.021</td>
<td>2.19</td>
</tr>
</tbody>
</table>

http://www.ita.uni-heidelberg.de/dulemond/software/radmc-3d/
Fig. B-2. Same as Fig. B-1 for the case $\mu=200$ at time $t_{200}=59500$ yrs after the birth of the first protostar (see main text for details).

Fig. B-3. From top to bottom: evolution with time of the number of sink particles, of the SFE, and of the total flux emission at 278 GHz (within a total area of 80000 AU \times 80000 AU) for the two models after the creation of the first sink. The circles indicate the time at which the simulations are post-processed. In the bottom panel, the different lines correspond to the different projection planes as illustrated in the bottom-right corner.