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Abstract	

	 The	binding	of	carotenoids	to	the	myofibrillar	protein	F-actin	purified	from	the	white	

muscle	of	Atlantic	salmon	(Salmo	salar	L.)	was	studied	using	in	vitro	reconstitution.	The	

binding	of	astaxanthin	and	canthaxanthin	was	saturable,	and	analysis	revealed	the	presence	

of	a	single	carotenoid-binding	site.	The	dissociation	constants	(Kd)	for	actin	prepared	from	2.5	

Kg	FW	fish	were	1.04	±	0.13	µg	carotenoid	mg-1	actin	and	0.54	±	0.11	µgmg-1	for	astaxanthin	

and	canthaxanthin,	respectively.	The	saturation	binding	level	(Bmax)	for	astaxanthin	was	1.39	

±	0.07	µgmg-1	and	1.04	±	0.08	µgmg-1	for	canthaxanthin.	These	values	were	higher	for	F-actin	

prepared	from	organic	and	small	(~0.5	Kg	FW)	salmon	than	for	non-organic	and	larger,	

mature	fish.	The	structural	specificity	of	carotenoid	binding	revealed	a	preference	for	

carotenoids	that	possess	a	keto	group	at	C-4	on	the	β	end-group	of	the	molecule,	but	the	

presence	of	hydroxyl	groups	at	C-3	or	C-4	reduced	overall	binding	efficiency.	The	study	

suggests	that	the	ability	of	myofibrillar	proteins	to	bind	carotenoids	is	not	a	limiting	factor	

governing	the	deposition	of	carotenoids	in	the	muscle	of	salmonids.		

	

	



Introduction	

Global	Atlantic	salmon	production	was	2.0	million	tonnes	gutted	weight	equivalent	in	

2014	(Kontali	analysis).		The	pigmentation	of	all	salmon	species	is	a	key	quality	parameter	in	

the	commercial	production	of	these	species	in	seawater	cages.	Carotenoids	are	responsible	

for	the	pigmentation	of	the	muscle	and	skin	of	a	number	of	wild	and	farmed	salmonids.		The	

two	most	abundant	pigments	that	are	deposited	in	the	white	muscle	of	salmonids	such	as	

Atlantic	salmon	(Salmo	salar)	and	Rainbow	trout	(Oncorhynchus	mykiss)	are	astaxanthin	(3,3ʹ-

dihydroxy-ß,ß-carotene-4,4ʹ-dione)	and	canthaxanthin	(ß,ß-carotene-4,4ʹ-dione).	The	extent	

of	deposition	of	these	carotenoids	in	muscle	varies	amongst	different	fish	species.	For	

example,	canthaxanthin	is	preferentially	bound	to	the	muscle	of	S.	salar	compared	to	

astaxanthin	(Kiessling	et	al.	2003).	However,	in	O.	mykiss,	the	situation	is	reversed	with	

studies	by	Choubert	&	Storebakken	(1989)	and	Storebakken	&	Choubert	(1991),	showing	that	

the	mean	retention	for	astaxanthin	was	1.3-1.5x	higher	than	that	for	canthaxanthin.	In	

addition	a	range	of	other	dietary	carotenoids	and	a	small	number	of	carotenoid	metabolites	

are	found	at	smaller	concentrations	in		such	muscle	tissue	including	lutein	(β,ε-carotene-3,3’-

diol),	zeaxanthin	(β,β-carotene-3,3’-diol)	and	idoxanthin	(β,ε-carotene-3,3’-diol;	Schiedt	

1998).	These	carotenoids	are	associated	with	the	muscle	myofibrils	and	were	originally	

thought	to	be	loosly	bound	to	the	actomyosin	complex	(Henmi	et	al.	1987;	1989).		

Actin	is	a	single	chain	polypeptide	(Mr	=	43,000)	and	exists	as	two	inter-changeable	

forms,	namely	the	filamentous	form	and	the	monomeric	globular	form,	termed	F-and	G-

actin,	respectively.	F-actin	is	the	major	protein	of	muscule	thin	filaments.	Although	a	number	

of	isoforms	of	actin	are	known	to	exist	the	behaviour	and	properties	of	actin	isolated	from	a	

wide	range	of	animals	(including	fish)	appear	to	be	similar	(Swezey	&	Somero	1982).	The	3D	

structure	of	actin	filaments	reveals	the	presence	of	two	strings	of	actin	globules	wound	

around	each	other	in	a	double	helix	structure	(Kabasch	et	al.	1990;	Lorenz	et	al.	1993;	von	

der	Ecken	et	al.	2015).	Even	though	the	atomic	structure	of	F-actin	is	not	yet	fully	resolved,	it	

is	clear	that	a	series	of	hydrophobic	grooves	or	pockets	are	created	between	the	F-actin	

subunits	(Dominguez	&	Holmes	2011;	von	der	Ecken	et	al.	2015).	

Both	in	vivo	and	in	vitro	F-actin	exists	in	filaments	that	can	reach	several	µm	in	length	

(Schoenenberger	et	al.	1999).	In	vivo	F-actin	combines	with	mysosin	to	form	an	actomyosin	

complex	in	the	myofbrils.	This	is	the	major	contractile	protein	complex	in	the	white	muscle	



and	in	species	such	as	Atlantic	salmon	and	Rainbow	trout	is	pigmented	with	dietary	

carotenoids	and	their	metabolites.	Previous	studies	on	the	isolated	actomyosin	complex	by	

Henmi	and	colleagues	(1989,	1990a,	1990b,	1991)	have	explored	some	of	the	properties	of	

the	complex	in	relation	to	pigment	binding	and	have	demonstrated	that	carotenoids	can	bind	

to	this	complex	in	vitro.	Subsequently,	Saha	et	al.	(2005,	2006)	and	Matthews	et	al.	(2006)	

have	explored	aspects	of	astaxanthin	binding	to	fish	muscle	proteins.	The	latter	study	

tentatively	identified	that	that	carotenoids	are	specifically	bound	to	α-actinin,	a	rod-like	

protein	belonging	to	the	spectrin	family.	This	particular	protein	serves	an	important	role	in	

the	organisation	of	muscles	(and	the	cytoskelton)	by	providing	cross-linking	resulting	in	the	

bundling	together	of	F-actin	filaments	(Sjöblom	et	al.	2008).			

The	aim	of	this	study	was	to	determine	the	binding	characteristics	of	the	two	principle	

carotenoids	used	in	the	pigmentation	of	farmed	fish,	namely	astaxanthin	and	canthaxanthin,	

to	a	preparation	of	muscle	actin	filaments	purified	from	Atlantic	salmon.	To	achieve	this	we	

adopted	an	in	vitro	reconstitution	approach	whereby	exogenous	purified	carotenoids	are	

added	to	the	F-actin	apo-protein	to	produce	a	caroteno-protein	complex.	A	number	of	

carotenoids	were	tested	in	order	to	determine		whether	F-actin	displayed	and	specific	

structural	preferences	for	the	binding	of	carotenoids.		

	 	

Materials	and	methods	

Isolation	of	actin	and	myosin	

	 Fresh	fish	were	obtained	from	EWOS	Innovation	research	facilities	at	Dirdral,	Norway	

(Atlantic	salmon)	and	at		Colaco,	Chile	(Rainbow	trout	and	Coho	salmon).	The	procedures	

used	for	the	isolation	and	purification	of	actomyosin,	actin	and	myosin	from	the	white	muscle	

of	Atlantic	salmon	and	other	fish	was	that	of	Martone	et	al.	(1986)	as	modified	by	Park	&	

Lanier	(1989).	Unless	otherwise	stated	all	chemicals	were	obtained	from	Sigma	(Poole,	UK).		

All	procedures	were	carried	out	at	4oC.	Muscle	proteins	were	prepared	from	white	muscle	

(fresh	and	not	frozen	fillets	were	used	throughout).	The	muscle	was	ground	in	20	mM	Tris-

HCl	buffer	(pH	7.5)	containing	0.1	M	KCl	and	0.02%	(w/v)	NaN3	and	left	to	stand	for	15	min	

before	centrifugation	for	10	min	at	1,000	g	(Sigma	6K15).	The	supernatant	was	discarded	and	

the	pellet	(‘myofibrilar	proteins’)	was	resuspended	in	20	mM	Tris-maleate	buffer	(pH	6.8)	

containing	0.45	M	KCl,	5.0	mM	beta-mercaptoethanol,	0.2	M	Mg(CH3COO)2	and	1.0	mM	

ethylene	glycol-bis	N,N,Nʹ,Nʹ-tetraacetic	acid.	To	this,	ATP	was	added	to	a	final	concentration	



of	5.0	mM,	mixed	and	left	for	1	hr,	after	which	it	was	centrifuged	at	10,000	g	for	15	min.	The	

resulting	supernatant	(‘crude	myosin’)	was	used	for	the	further	purification	of	myosin	(see	

below).	The	pellet,	containing	‘crude	actin’,	was	resuspended	in	0.8	M	KCl,	5.0	mM	beta-

mercaptoethanol	and	0.2	M	Mg(CH3COO)2,	stirred	for	5	min	and	centrifuged	at	10,000	g	for	

15	min.	The	supernatant	was	discarded	and	the	pellet	(‘actin’)	was	further	extracted	with	2.0	

mM	KHCO3	for	1	hr,	after	which	it	was	centrifuged	at	20,000	g	for	1	hr.	The	pellet	consisted	

of	insoluble	F-actin	and	the	supernatant	contained	purified	soluble	G-actin.	

	 Myosin	was	purified	from	the	‘very	crude	myosin’	supernatant	(see	above)	by	dilution	

of	the	supernatant	with	1.0	mM	KHCO3	for	15	min,	followed	by	centrifugation	at	12,000	g	for	

10	min.	The	supernatant	was	discarded	and	the	pellet	(containing	‘crude	myosin’)	was	

resuspended	in	20	mM	Tris-HCl	buffer	(pH	7.5)	containing	0.5	M	KCl	and	5.0	mM	beta-

mercaptoethanol	with	gentle	homogenisation.	After	10	min,	1.0	mM	KHCO3	and	MgCl2	(to	a	

final	concentration	of	10.0	mM)	were	added.	After	incubation	for	12	hr,	the	preparation	was	

centrifuged	at	20,000	g	for	15	min	and	the	resulting	supernatant	was	discarded.	The	pellet	

(containing	‘myosin’)	was	resuspended	in	20	mM	Tris-HCl	buffer	(pH	7.5)	containing	0.5	M	

KCl	and	5.0	mM	beta-mercaptoethanol	with	gentle	homogenisation	to	yield	a	fraction	termed	

‘purified	myosin’.	SDS-PAGE	was	used	to	identify	and	confirm	the	purity	of	each	fraction	

obtained. 

Proteins	were	 prepared	 from	 previously	 pigmented	 fresh	 fish	 of	 2.5	 Kg	 FW,	 unless	

otherwise	 stated.	 Purified	 F-actin	 was	 stored	 at	 4oC	 in	 complete	 darkness	 and	 used	 for	

reconstitution	studies	usually	within	48	hours	of	preparation.	

	

Protein	determination	

	 The	total	protein	content	in	the	isolated	muscle	fractions	and	in	reconstituted	actin-

carotenoid	complexes	were	determined	using	the	Bradford	method	(Bioquant	Kit,	Merck	Ltd,	

Poole,	UK).	

	

In	vitro	reconstitution	of	muscle	proteins	

	 The	methods	employed	are	based	on	those	described	by	Zagalsky	(1985).	The	

structures	of	the	carotenoids	used	in	the	reconstitution	studies	are	shown	in	Fig.	1.	All	

procedures	were	carried	out	at	4oC.	F-actin	was	purified	as	described	above.	The	bound	

carotenoids	were	stripped	from	the	protein	by	adding	acetone	(1:1,	v/v)	while	votex	mixing.	



Three	volumes	of	diethyl	ether	were	added	and	the	sample	inverted	three	times.	The	

resulting	upper	solvent	layer	was	carefully	removed	and	the	extraction	procedure	repeated	

until	the	no	more	colour	could	be	extracted	from	the	protein.	Any	remaining	solvent	was	

removed	from	the	carotenoid-free	protein	by	gentle	flushing	with	oxygen-free	nitrogen.		

Purified	carotenoid	(1	mgmL-1)	was	dissolved	in	acetone	(0.42mL)	then	added,	with	

vigorous	mixing,	to	1.00	mL	of	the	carotenoid-free	apoprotein	(typically	1mgmL-1).	Sodium	

phosphate	buffer	(3.00mL;	50mM,	pH	7)	was	added	and	the	sample	inverted.	Acetone	was	

removed	from	the	resulting	caroteno-protein	by	either	rotary	evaporation	or	by	flushing	the	

vial	with	oxygen-free	nitrogen.	The	sample	was	then	centrifuged	for	10	min	at	2000g,	the	

pellet	washed	in	buffer	and	re-centrifuged.	The	final	pellet	was	resuspended	in	sodium	

phosphate	buffer.		

In	order	to	remove	any	non-specifically	bound	carotenoid	present	in	the	sample	

following	reconstitution,	the	resulting	caroteno-protein	was	gently	washed	with	n-heptane.	

The	level	of	free	(i.e.	unbound)	carotenoid	was	always	less	than	0.1%	(w/w)	of	total	

carotenoid	at	this	stage.	The	efficiency	of	binding	of	carotenoids	was	expressed	as:	binding	

efficiency	(%)	=	[ #.%	&	'()&)
+, -	100	

	

Chromatography	and	spectroscopy	

	 Carotenoids	were	 extracted	 from	 reconstituted	 proteins	 as	 follows.	 In	 a	 separating	

funnel,	acetone	(3.00mL)	was	added	to	the	reassembled	caroteno-protein	complex	(3.00mL)	

and	thoroughly	mixed.	Diethyl	ether	(1.00mL)	was	then	added	and	the	solution	inverted	three	

times	to	ensure	good	mixing.	The	lower	aqueous	layer	was	removed	and	the	upper,	pigmented,	

layer	 reserved.	 The	diethyl	 ether	 layer	was	 then	washed	with	distilled	water	 at	 least	 three	

times,	 before	 the	 sample	 was	 dried	 under	 a	 steady	 stream	 of	 oxygen-free	 nitrogen.	 The	

extraction	 was	 repeated	 at	 least	 once	 and	 extracts	 pooled.	 The	 carotenoid	 content	 and	

composition	 was	 determined	 by	 normal-phase	 HPLC	 using	 a	 modification	 of	 the	 method	

developed	 by	 Schüep	&	 Schierle	 (1995).	 A	 Lichrosorb	 silica	 60	 rapid	 analysis	 column	 (50	 x	

4.6mm,	5µm	particles;	Phenomenex,	Macclesfield,	U.K.)	and	security	guard	cartridge	were	first	

acidified	with	1%	(v/v)	H3PO4	in	methanol	(Kirkland	&	Dilks,	1973)	to	prevent	peak	tailing.	The	

solvent	system	(n-hexane:	acetone,	86:14,	v/v)	was	delivered	at	a	flow	rate	of	1.2	mLmin-1	at	

20oC	using	an	Agilent	 	 (Stockport,	U.K.)	1100	series	Binary	pump.	Samples	were	 injected	 in	



20µL	 of	 the	 eluting	 solvent	 using	 an	 Agilent	 1100	 series	 autosampler.	 Carotenoids	 were	

detected	using	an	Agilent	1100	series	diode-array	detector	and	integrated	at	their	λmax	using	

Chemstation	6.1	 software	 (Agilent).	 The	 tR	of	 canthaxanthin	and	all-trans	 astaxanthin	were	

1.54	and	4.26	min,	respectively.	

Carotenoids	were	quantified	in	n-hexane	using	their	published	extinction	coefficients	(

):	all-E	astaxanthin	2100;	canthaxanthin	2200	(Britton,	1995).	Roche	Vitamins	Ltd.	(Basel,	

Switzerland)	kindly	provided	the	carotenoid	standards	used	in	this	study.			

	

Data	analysis	

The	analysis	of	data	from	the	reconstitution	experiments	was	performed	by	non-linear	

regression	using	the	ligand-binding	macro	of	SigmaPlot	7	(SPSS	UK	Ltd.,	Woking,	UK).		

	

Results	

 
Carotenoid	distribution	

The	isolation	of	the	myobrillar	protein	fractions	from	pigmented	fillets	of	both	

Atlantic	salmon	(containing	astaxanthin	and	canthaxanthin)	and	Rainbow	trout	(astaxanthin	

only)	revealed	that	the	ratio	of	carotenoid	:	protein	was	highest	in	the	fraction	containing	F-

actin	(Table	1).	These	pigments	were	also	present	in	those	other	fractions	that	possess	F-

actin	(e.g.,	actomyosin),	however	carotenoids	could	not	be	detected	in	the	fractions	

containing	only	myosin	or	G-actin.	A	similar	pattern	was	seen	in	Coho	salmon	(O.	kisutch;	

possessing	only	astaxanthin),	but	the	F-actin	fraction	in	Coho	had	a	much	higher	ratio	of	

carotenoid	:	protein	than	that	seen	in	either	Atlantic	salmon	or	Rainbow	trout.	Myofibrillar	

protein	fractions	obtained	from	an	unpigmented	fish	(Haddock;	Melanogrammus	aeglefinus)	

were	devoid	of	carotenoids	(data	not	shown).	

In	Atlantic	salmon	(the	only	fish	studied	which	had	more	than	one	carotenoid	at	high	

concentration	in	the	muscle)	the	ratio	of	astaxanthin	:	canthaxanthin	was	increased	in	all	

fractions	(e.g.,	in	F-actin	63:38)	compared	to	the	original	fillet	(55:45),		suggesting	that	

canthaxanthin	is	less	tightly	bound	to	muscle	proteins	than	astaxanthin	and	is	preferentially	

lost	from	the	muscle	during	the	isolation	of	proteins.	In	Rainbow	Trout	both	lutein	and	

€ 
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zeaxanthin	were	detected	in	all	protein	fractions,	in	a	near-identical	ratio	to	astaxanthin	as	

that	seen	in	the	original	fillets	(data	not	shown).			

	

Reconstitution	of	actomyosin	and	myosin	

Actomysin	purified	from	fillets	of	Atlantic	salmon	was	found	to	readily	bind	both	

astaxathin	and	canthaxanthin	(data	not	shown).	Differences	in	the	binding	behaviour	for	

these	two	carotenoids	were	only	evident	at	very	high	doses	of	carotenoid,	well	above	the	in	

situ	levels	observed	in	farmed	or	wild	fish.	However,	the	in	vitro	reconstitution	of	actomyosin	

with	these	carotenoids	displayed	characteristics	consistent	with	non-specific	binding	of	the	

pigments	to	the	protein	(data	not	shown).	As	a	result	the	actomyosin	fraction	was	not	used	in	

further	studies.	Neither	astaxanthin	nor	canthaxanthin	would	bind	to	myosin	isolated	from	

salmonids.	

	

Reconstitution	of	F-actin	

The	binding	characteristics	of	astaxanthin	and	canthaxanthin	to	F-actin	purified	from	

Atlantic	salmon	are	shown	in	Figs.	2A-C	for	large	(~2.5	Kg	FW),	organically-reared	(~2.5	Kg	

FW),		and	small	(~0.5	Kg	FW),	respectively.	Both	carotenoids	display	behaviour	characteristic	

of	ligand-binding	saturation	for	a	single	binding	site.	In	contrast	to	the	behaviour	seen	for	

actomyosin	there	is	little	evidence	of	non-specific	binding	of	carotenoids	to	F-actin	purified	

from	Atlantic	salmon.	Saha	et	al.		(2005)	have	proposed	that	carotenoid	aggregates	(see	

Ruban	et	al.	1993)	may	be	present	in	isolated	pigment-protein	preparations.	However,	there	

was	no	evidence	in	this	study	that	these	micro-crystalline	structures	were	present.	

The	saturation	binding	capacity	(Bmax)	and	the	dissociation	constants	(Kd)	of	these	two	

carotenoids	are	shown	in	Table	2.	For	large	salmon,	both	the	Bmax	and	the	Kd	are	higher	for	

astaxanthin	than	for	canthaxanthin.	There	were	no	significant	differences	seen	in	binding	of	

astaxanthin	and	canthaxanthin	at	low	(more	physiologically	relevant)	doses	of	carotenoid.	

Similarly,	no	significant	differences	in	the	binding	of	carotenoids	between	fish	of	different	

sizes	at	low	doses	of	carotenoid	were	observed.	Where	differences	are	seen	in	the	overall	

capacity	for	F-actin	from	different	sized	fish	to	bind	carotenoids,	the	doses	are	well	in	excess	

of	those	found	in	farmed	fish.	However,	the	binding	efficiency	of	carotenoids	(determined	

over	the	full	dose	range)	is	lowest	in	smaller,	younger	fish	(~0.5	Kg	FW).	The	capacity	of	F-



actin	to	bind	carotenoids	such	as	astaxanthin	is	higher	in	these	small,	juvenile,	fish	compared	

with	larger,	mature,	fish	but	at	levels	much	higher	than	seen	in	vivo	(Table	2).		

Competitive	binding	of	carotenoids	was	explored	by	delivering	a	mixture	of	

astaxanthin	and	canthaxanthin	to	F-actin	isolated	from	Atlantic	salmon	at	a	defined	molar	

ratio.	The	amount	of	astaxanthin	was	constant	throughout	(at	approx.	the	Kd	value	

determined	earlier)	and	the	amount	of	canthaxanthin	was	altered	so	that	the	total	amount	of	

carotenoid	delivered	to	the	isolated	protein	varied	between	treatments.	The	data	shown	in	

Fig.	3	reveal	that	in	Atlantic	salmon	astaxanthin	is	preferentially	bound	to	F-actin	compared	

to	canthaxanthin	and	even	the	presence	of	ten-fold	higher	levels	of	canthaxanthin	does	not	

affect	its	binding.	The	amount	of	total	carotenoid	(astaxanthin	+	canthaxanthin)	bound	to	the	

reconstituted	F-actin	did	not	vary	significantly	between	treatments,	except	when	a	ratio	of	

0.1:1.0	astaxanthin	:	canthaxanthin	was	used.	In	this	case	the	shape	of	the	resulting	dose	

curve	would	strongly	suggest	non-specific	binding	of	canthaxanthin	was	present.	Such	non-

specific	binding	behaviour	for	canthaxanthin	has	also	been	seen	when	canthaxanthin	is	used	

on	its	own	in	reconstitution	studies	with	F-actin.	

The	ability	of	isolated	F-actin	to	bind	a	range	of	carotenoids	possessing	different	

structrual	features	was	explored.	The	data	presented	in	Table	3	shows	that	F-actin	prepared	

from	Atlantic	salmon	can	bind	a	number	of	different	carotenoids	that	possess	keto-groups	at	

C4	(and/or	C4’)	or	hydroxyl-groups	at	C3	(and/or	C3’)	positions	on	the	molecule.	Binding	

efficiencies	are	highest	for	those	carotenoids	that	possess	keto-groups	such	as	astaxanthin,	

canthaxanthin	and	astacene	(3,3’dihydroxy-2,2,2’,3’-tetrahydro-β,β-carotene-4,4’-dione).	

Efficiences	were	lowest	for	hydroxy-echinenone	(3’-hydroxy-β,β-caroten-4-one)	and	for	the	

carotenoid	diols	lutein	and	zeaxanthin.	Carotenoids	such	as	ß-carotene	(β,β-carotene;	the	

only	hydrocarbon	tested),	crustaxanthin	(β,β-carotene-3,4,3’,4’-tetrol)	and	isozeaxanthin	

(β,β-carotene-4,4’-diol)	did	not	bind	to	isolated	F-actin.	The	inability	of	either	crustaxanthin	

or	isozeaxanthin	to	bind	to	F-actin	suggests	that	the	presence	of	a	hydroxyl	group	at	C4	

and/or	C4’	serves	to	inhibit	binding.	

	

Discussion	

	 Henmi	and	colleagues	(1987)	first	identified	the	actomyosin	complex	as	the	

main	site	for	carotenoid	binding	in	salmonid	muscle.	When	isolated	from		pigmented	



salmonid	fillets	this	caroteno-protein	complex	does	indeed	contain	carotenoids,	as	do	all	

fractions	that	contain	filamentous	actin	(Table	1).	The	optical	characteristics	(circular	

dichrosim)	of	the	reconsituted	actomyosin	complexes	demontrated	that	carotenoids	were	

only	weakly	bound	to	the	protein	(Hemni	et	al.	1990).	However,	attempts	to	reconstitute	the	

complex	in	the	present	study	with	exogenous	astaxanthin	and	canthaxanthin	displayed	dose	

behaviour	characteristic	of	a	significant	level	of	non-specific	binding	(data	not	shown).	Such	

behaviour	was	not	seen	with	the	reconstitution	of	F-actin	purified	from	Atlantic	salmon.	

Binding	of	carotenoids	was	associated	only	with	F-actin	but	not	with	myosin	or	monomeric	

actin	(i.e.,	globular	or	G-actin).		

The	reconstitution	of	isolated	F-actin	with	selected	carotenoids	(mainly	xanthophylls;	

see	Fig.	1	for	structures)	was	used	to	explore	whether	F-actin	displayed	any	preferences	in	

terms	of	binding.		Henmi	et	al.	(1989)	demonstrated	that	a	range	of	carotenoids	could	be	

bound	to	isolated	actomyosin	including	acyl	esters	of	astaxanthin,	canthaxanthin,	echinenone	

(β,β-caroten-4-one),	zeaxanthin	and	β-carotene.	In	particular,	the	binding	of	acyl	esters	of	

astaxanthin	to	isolated	proteins	would	not	be	predicted	but	was	not	tested	with	F-actin	in	the	

present	study.	However	it	is	notable	that	isolated	F-actin	did	not	bind	the	carotenoid	

hydrocarbon	β-carotene	in	the	present	study,	in	contrast	to	the	observations	of	Hemni	et	al.	

(1989).	Isolated	F-actin	from	Atlantic	salmon	demonstrates	the	ability	to	bind	a	range	of	

carotenoids,	albeit	with	different	efficiencies	(Table	3).		The	lower	binding	efficiencies	seen	

for	hydroxy-carotenoids	such	as	lutein	and	zeaxanthin	would	be	consistent	with	the	presence	

of	trace	amounts	of	a	small	number	of	other	oxygenated	carotenoids	(xanthophylls)	in	the	

flesh	of	farmed	and	wild	Atlantic	salmon.	Whilst	the	ability	of	the	protein	to	bind	these	

xanthophylls	may	be	reduced	in	salmonids	it	is	also	known	that	the	absorption	of	3-hydroxy-

carotenoids	from	the	diet	is	less	efficient	than	4-keto-carotenoids	(Schiedt	et	al.		1985).	The	

astaxanthin	metabolite	idoxanthin	is	also	found	in	the	muscle	of	salmonids	(Schiedt	et	al.	

1989)	and	although	not	tested	here	in	reconstitution	studies,	its	structure	is	consistent	with	

the	observations	above	in	that	it	would	be	predicted	to	be	bound	to	F-actin.	Hemni	et	al.	

(1990)	observed	that	astaxanthin	and	canthaxanthin	were	bound	in	the	all-E	form	to	

actomyosin.	In	the	current	study	only	all-E	forms	of	carotenoids	were	used	and	the	ability	of	

F-actin	to	bind	Z-isomers	was	not	explored.	However,	in	one	experiment	Z-isomers	of	

astaxathin	were	present	in	actin-containing	fractions	isolated	from	Rainbow	Trout.	These	

geometric	isomers	were	not	detected	in	the	original	fillets	and	it	is	possible	that	they	were	



produced	as	an	artefact	of	the	isolation	procedure.	Racemic	astaxanthin	was	used	for	

reconstitution	in	the	current	study.	This	mixture	of	optical	isomers	(the	(3S,3’S),	(3R,3’S)	and	

(3R,3’R)	forms)	are	known	to	be	utilised	equally	when	fed	individually	to	salmonids	(e.g.,	

Storebakken	et	al.	1985).	

It	has	been	proposed	that	only	one	cyclic	end-group	of	a	carotenoid	molecule	is	

involved	in	binding	so	that	the	carotenoid	was	effectively	held	in	a	hydrophobic		‘binding	

pocket’	(Henmi	et	al.	1989).	The	structure	of	F-actin	possess	a	number	of	hydrophobic	

‘grooves’	located	in	between	the	G-actin	subunits	(von	der	Ecker	et	al.	2015).	α-Actinin	is	a	

cross-liking	protein	that	serves	to	organise	the	actin	filaments	into	bundles,	as	present	in	the	

F-actin	fraction	in	this	study.	Factors	such	as	the	arrangement	of	the	actin	filaments	

(exposing	any	putative	carotenoid	binding	sites)	may	also	influence	binding	and	it	is	likely	

that	α-actinin	will	play	a	role	in	this.	

Binding	of	oxygenated	carotenoids	(xanthophylls)	to	proteins	occurs	in	a	wide	range	

of	organisms.	A	study	of	the	xanthophyll-binding	protein	found	in	the	human	retina	

(Yemelyanov	et	al.	2001)	showed	that	a	number	of	different	carotenoids	could	readily	bind	to	

this	protein.	Similarly,	in	vitro	reconstitution	studies	on	both	invertebrate	(e.g.	α-

crustacyanin;	Britton	et	al.	1997)	and	plant	(e.g.,	the	light-harvesting	complexes;	Phillip	et	al.	

1996)	pigment-protein	complexes	reveal	extensive	plasticity	in	carotenoid	binding.	In	the	

light-harvesting	complexes	from	higher	plants	a	strong	preference	for	carotenoids	that	

possess	a	hydroxyl	group	at	C-3	is	observed	(Philip	et	al.	1996).	The	general	dependence	for	

binding	of	carotenoids	with	functional	groups	at	C-3	and/or	C-4	on	one	or	both	cyclic	end-

groups	is	common	across	a	range	of	carotenoid	binding	proteins.	In	the	present	study,	

carotenoids	possessing	a	hydroxy-group	at	C-3	and/or	a	keto-group	at	C-4	are	readily	bound	

to	F-actin	from	Atlantic	salmon.	Indeed	the	data	suggest	a	preference	for	carotenoids	

possessing	the	latter.	An	interesting	observation	was	the	ability	of	F-actin	to	readily	bind	

astacene	in	vitro.	This	carotenoid	results	from	the	oxidation	of	astaxanthin	(particularly	under	

basic	conditions)	and	when	used	as	a	pigment	in	salmonid	diets	it	fails	to	result	in	muscle	

colouration	(Bernhard	1990).	For	this	carotenoid,	its	ability	to	bind	to	the	muscle	protein	per	

se	has	been	demonstrated	and	further	suggests	that	uptake	and/or	subsequent	transport	via	

lipoproteins	are	the	main	limiting	factors	in	pigmentation	and	not	protein-binding	per	se.		

The	data	obtained	from	this	examination	of	the	in	vitro	binding	behaviour	of	

carotenoids	suggests	that	there	is	little	discrimination	between	astaxanthin	and	



canthaxanthin	in	terms	of	their	ability	to	bind	to	actin	filaments	isolated	from	Atlantic	

salmon.	There	is	little	difference	in	the	capacity	of	isolated	F-actin	to	bind	either	carotenoid,	

except	in	small	(juvenile)	or	organically-reared	fish	(Table	2).	It	is	not	clear	why	actin	isolated	

from	organically-reared	salmon	(originally	pigmented		with	carotenoids	from	the	yeast	

Phaffia	rhodozyma)	should	behave	differently.	The	overall	binding	capacity	of	F-actin	for	

carotenoids	is	also	highest	in	smaller	fish,	although	the	overall	efficiencies	of	binding	are	

lower.		

The	binding	characteristics	of	astaxanthin	and	canthaxanthin	to	F-actin	are	almost	

identical	within	a	‘physiologically-relevant’	range	of	pigmentation	(i.e.,	the	levels	seen	in	F-

actin	isolated	from	pigmented	whole	fish)	for	both	Atlantic	salmon	and	Rainbow	trout	(data	

not	shown).		However,	at	much	higher	carotenoid	concentrations	in	Rainbow	trout	saturation	

binding	of	either	astaxanthin	or	canthaxanthin	was	not	acheived,	suggesting	that	substantial	

non-specific	binding	of	carotenoid	occurred	(data	not	shown).	In	reconstitution	studies,	

saturation	binding	capacities	for	astaxanthin	to	actin	isolated	from	Atlantic	salmon	are	in	the	

range	1.3-3.4	µg	carotenoid	mg-1	protein	(Table	2).	These	values	are	much	larger	than	those	

seen	in	F-actin	isolated	from	pigmented	farmed	Atlantic	salmon	(typically	up	to	0.25	µg	

carotenoid	mg-1	protein).	This	indicates	that	the	inherent	capacity	of	isolated	actin	filaments	

to	bind	carotenoids	is	not,	in	itself,	a	limiting	factor	in	the	desposition	of	dietary	carotenoids	

to	the	muscle		of	Atlantic	salmon.	Based	on	the	properties	of	muscle	proteins	alone,	it	should	

theoretically	be	possible	to	significantly	increase	the	amounts	of	bound	carotenoid	and	

overall	pigmentation	in	farmed	salmonids.	However,	factors	such	as	the	absorption,	

metabolism	and	transportation	of	dietary	carotenoids	are	clearly	much	more	important	in	

influencing	the	deposition	of	carotenoids	in	the	muscle	of	salmonids.	Whilst	the	lipid	content	

of	the	feed	is	an	important	factor	in	determining	pigment	deposition	in	farmed	fish	(e.g.,	

Bjerkeng	et	al.	1997)	,	the	high	levels	currently	adopted	in	fish	farming	are	not	regarded	as	

limiting.	Similarly	the	age	or	size	of	the	fish	may	influence	deposition	of	pigments	into	the	

muscle	of	farmed	fish	(see	Schiedt	1998).	In	this	study	we	have	shown	that	F-actin	purified	

from	juvenile	Atlantic	salmon	can,	in	vitro,		bind	higher	levels	of	carotenoid	than	older	fish	

(Table	2).	A	similar	observation	was	also	made	by	Saha	et	al.	(2005,	2006).	In	addition,	actin	

prepared	from	juvenile	fish	displayed	a	higher	saturation	binding	level	for	canthaxanthin	than	

astaxanthin	–	a	reverse	of	the	situation	seen	in	actin	isolated	from	older	Altantic	salmon	

(Table	2).	These	differences	between	carotenoid	binding	behaviour	in	actin	from	juvenile	and	



older	fish	are	small	and	not	understood.	However,	it	is	worth	noting	that	the	ratios	of	

carotenoid:protein	achieved	in	these	in	vitro	studies	are	considerably	higher	than	those	seen	

in	vivo	in	either	farmed	or	wild	fish	and	outside	a	physiologically	meaningful	range.	

In	fresh	fillets	of	Coho	salmon	the	ratio	of	carotenoid	:	F-actin	is	much	higher	than	

that	seen	in	either	Atlantic	salmon	or	Rainbow	trout	(Table	1)	–	which	matches	the	in	vivo	

state	as	the	pigmenting	efficiencies	in	Coho	salmon	are	higher.	However,	the	levels	are	well	

below	the	saturation	binding	levels	seen	in	F-actin	isolated	from	any	salmonids	and	as	such	

does	not	in	itself	explain	why	farmed	Coho	salmon	have	the	ability	to	deposit	far	higher	levels	

of	carotenoid	than	other	farmed	salmonids.	Unfortunately	the	F-actin	preparations	from	

Rainbow	trout	did	not	display	saturation	binding	for	either	astaxanthin	or	canthaxanthin	and	

the	resulting	pattern	of	binding	was	characteristic	of	significant	non-specific	binding	of	

pigment	to	the	protein.	This	is	similar	to	the	observations	of	Saha	et	al.	(2006).	

The	behaviour	of	F-actin	isolated	from	Atlantic	salmon	in	binding	exogenous	

carotenoids	is	consistent	with	the	presence	of	a	single	binding	site	for	carotenoids	in	the	

protein.	Treatment	of	reconstituted	F-actin	with	Triton	X-100	had	little	overall	effect	on	the	

carotenoid	content	of	the	complex	(i.e.,	no	carotenoid	was	released	from	the	reconstituted	

pigment-protein	complex)	although	total	lipids	were	reduced	by	>50%	(data	not	shown).	The	

observation	that	no	carotenoid	was	released	from	the	binding	site		suggests	that	lipids	either	

do	not	play	a	role		in	carotenoid	binding	per	se	or	that	only	a	fraction	of	the	lipids	are	

essential	for		such	binding.	Lipids	are	however	known	to	be	important	in	carotenoid	uptake	in	

salmonids	(see	Schiedt	1998). 

Overall,	the	data	derived	from	the	reconstitution	studies	conducted	here	

demonstrate	that	the	intrinsic	properties	of	F-actin	(and	its	associated	proteins	such	as	α-

actinin)	are	not	a	major	factor	in	regulating	the	deposit	of	carotenoids	in	the	muscle	of	

farmed	or	wild	fish.	For	example,	canthaxanthin	may	be	more	effectively	deposited	than	

astaxanthin	in	Atlantic	salmon	(up	to	2.7Kg	weight;	Kiessling	et	al.	2003)	yet	the	isolated	

protein	does	not	discriminate	between	these	two	carotenoids	when	each	is	delivered	

individually	and	indeed	shows	a	preference	for	astaxathin	when	the	two	pigments	are	used	

together	in	vitro.	In	addition,	the	saturation	binding	levels	observed	for	carotenoid	binding	to	

F-actin	in	vitro	are	far	higher	than	those	observed	in	pigmented	fish.	We	conclude	that	the	

carotenoid	binding	site	is	not	a	major	limiting	factor	in	regulating	pigmentation	of	the	white	

muscle	of	in	salmonids.		
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Figure	Legends	

	

Figure	1	Structures	of	the	carotenoids	used	in	this	study	for	reconstitution	of	F-actin.	

	

Figure	2	Saturation	binding	curves	for	the	binding	of	astaxanthin	(•)	and	canthaxanthin	(o)	to	

F-actin	purified	from	(A)	large	(~2.5	Kg	FW)	Atlantic	salmon;	(B)		large	(~2.5	Kg	FW)	organic	

Atlantic	salmon;	and,	(C)	small	(~0.5	Kg	FW)	Atlantic	salmon.	Curves	were	fitted	by	non-linear	

regression	using	SigmaPlot	(SPSS	UK.	Ltd.);	mean	±	S.E,	n	=	3-6.	The	Y-axis	is	shifted	in	order	

to	improve	clarity	of	the	binding	curve	at	low	doses.	

	

	

Figure	3	Competitive	binding	of	astaxanthin	and	canthaxanthin	in	F-actin	purified	from	large	

(~2.5	Kg	FW)	Atlantic	salmon	(mean	±	SE,	n=3).	Ratio	of	astaxanthin	:	canthaxanthin	bound	to	

F-actin	compared	to	the	ratio	of	the	two	carotenoids	delivered	to	the	isolated	protein.	 
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Figure	3.		

	

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.11101001000

As
ta

xa
nt

hi
n 

(u
g/

m
g 

F-
ac

tin
)

Ratio astaxanthin : canthaxanthin


