
1

Node Feedback TCP Based Mechanism for Mobile Ad-hoc

Network

Farooq Alam

A thesis submitted in partial fulfilment of the requirements of Liverpool John

Moores University for the degree of Master of Philosophy

July 2014

2

List of Publications

This research is resulted in the following publications.

Node Feedback Based TCP Scheme for Mobile Ad-hoc Network, the 11th Annual Post

Graduate Symposium on the Convergence of Telecommunications, Networking and

Broadcasting (PGNet 2010) 21-22 June 2010, Liverpool, UK

Node Feedback Based TCP Scheme for Mobile Ad-hoc Network, GESJ: Computer

Science and Telecommunications 2011|No.2 (31)

3

Acknowledgement

I am grateful to Allah SWT who has showered his extreme kindness by enabling me to

complete this project. I am thankful to my supervisors Dr. Robert Askwith and Professor

Madjid Merabti for their continuous support throughout this project.

My mother prayers and my wife and my two daughters’ moral support were of great

assistance in my work. I would also like to pay special thanks to my sisters, friends and

colleagues for their encouragements.

Special thanks to technical and administrative staff for their support and help.

4

Abstract

A mobile ad-hoc network is an autonomous system of mobile nodes establishing a

network in the absence of any fixed infrastructure. Mobile ad-hoc network due to

potentially high mobility have provided new challenges by introducing special

consideration differentiating from the unique characteristics of the wireless medium and

the dynamic nature of the network topology. Due to unique network formation, routing in

mobile ad-hoc network is a challenging issue. Effort has been undergoing to transform

TCP so that it could support routing function in an ad-hoc network. This research has

discovered that most of the TCP based variant routing solutions of mobile ad-hoc

network has not been successful in addressing problem at full. Taking TCP based routing

solution as a main problem, this research has proposed a novel routing solution called

Node feedback TCP based mechanism as a routing scheme for mobile ad-hoc network.

Node feedback TCP based mechanism introduces a new flavor of TCP for mobile ad-hoc

network. It follows an intermediate approach in between some of the existing

mechanisms of TCP based schemes for mobile ad-hoc network. We have addressed TCP

slow start mechanism in the context of mobile ad-hoc network and introduce measures

through whom TCP can differentiate between real congestion and congestion assumed by

TCP due to packet lost or route failure in mobile ad-hoc network. In addition our

proposed mechanisms also deal with out-of-order delivery problem of TCP in mobile ad-

hoc network. It is important to mention that NFBTCP not only address TCP related issues

but also provides a number of different operations to assists in the smooth running of an

ad-hoc network.

The scheme has been developed in Java and Evaluated in SWANS. In the light of the

simulation experiments, it could be seen that NFBTCP performed well in all simulation

environment. It can be confirmed that NFBTCP has proven itself as a fully functional and

operationalable for mobile ad-hoc network, thus should be seen or taken as a new novel

TCP based solution for mobile ad-hoc network. A higher number of route requests and

route replies representing networking activities were observed with the increase of

mobile nodes. In addition to the messages activities, good numbers of routes were added

at the end of each simulation cycle. It is quite understandable that the more routes

available for data transfer in mobile ad-hoc network, the better. Moreover, such additions

5

to the available routes could directly impact overall throughout. Lastly, nodes in mobile

ad-hoc network suffer with limited resources. That makes conservation of all such

resources an important issue in the context of mobile ad-hoc network. The results of

simulation experiments validate the main concepts of the scheme especially congestion

avoidance and out-of-order packet delivery. The scheme generates a higher number of

routes suggesting that the implemented congestion avoidance and out-of-order packet

delivery mechanisms of NFBTCP are successful in reducing the impact of link breakage

since subsequently it was not possible for more routes to be added. The addition of more

routes demonstrates that more packets are broadcast and suggests smooth flow of data

and control packets. We believe NFBTCP offers a complete and an effective TCP based

routing solution for mobile ad-hoc network.

6

List of Abbreviation

NFBTCP Node FeedBack TCP based mechanism

TCP Transmission Control Protocol

MANET Mobile Ad-hoc Network

SWANS Scalable Wireless Ad-hoc Network Simulator

JiST Java in Simulation Time

AODV Ad-hoc On-demand Distance Vector Routing

BER Bit Error Rate

CWND Congestion Window

ACK Acknowledgement

RTO Retransmission Time Out

OSI Open System Interconnection

RFN Route Failure Notification

RRN Route Re-establishment Notification

ATCP Ad-hoc Transmission Control Protocol

TCP-F TCP Feedback

TCP-ELFN TCP Explicit Link Failure Notification

ICMP Internet Control Message Protocol

AFP Ad-hoc Formation Packet

AACK Ad-hoc Acknowledge Packet

JAP Joining Ad-hoc Packet

AP Acknowledgement Packet

LFD Link Failure Detection

LFUP Link Failure Update Packet

LUP Link Update Packet

LCD Link Capacity Detection

LFP Link Formation Packet

BUP Buffer Update Packet

7

List of Publications ... 2

Acknowledgement .. 3

Abstract ... 4

Chapter 1. Introduction ... 8

1.1. Introduction .. 8

1.2. The Transmission Control Protocol ... 10

1.3. Problem statement. ... 11

1.4. Aims and Objectives .. 11

1.5. Research contribution. ... 12

1.6. Organization ... 14

Chapter 2. Literature Review .. 15

2.1. Introduction .. 15

2.2. OSI Reference Model .. 15

2.3. Characteristics of Mobile Ad-Hoc Network .. 16

2.4. Routing Protocols for MANET .. 21

2.5. Transmission Control Protocol .. 22

2.6. TCP based routing for Mobile Ad-hoc Network ... 23

2.8. Summary .. 38

Chapter 3. Research Methodology .. 39

3.1. Introduction .. 39

3.2. TCP in Mobile Ad-hoc network .. 39

3.3. Factors Affecting TCP Performance in MANET .. 40

3.4 Discussion ... 41

3.5. Methodology .. 43

3.6. Summary .. 44

Chapter 4. Node Feedback TCP Based Mechanism for Mobile Ad-hoc Network 45

4.1. Introduction .. 45

4.2. NFBTCP Specification and Operational Details ... 48

4.3. Summary .. 66

Chapter 5. Simulation and Implementation .. 67

5.1. Introduction .. 67

5.2. SWANS.. 67

5.3. Implementation .. 69

5.4. Simulation Experiments ... 70

5.5. Comparison and Discussion ... 74

5.6. Summary .. 78

Chapter 6. Conclusions and Future Work ... 79

6.1. Introduction .. 79

6.2. Conclusions .. 80

6.3. Future Work ... 81

References ... 83

Appendix ... 87

8

Chapter 1. Introduction

1.1. Introduction

A wireless network allows a more flexible model of communication than a traditional

network since the user is not limited to a fixed physical location. Wireless networks can

further be categorized into one of two types, wireless fixed network and mobile ad-hoc

network. A mobile ad-hoc network has become increasingly important because of their

promise of ubiquitous connectivity beyond traditional fixed network. A mobile ad-hoc

network has provided new challenges including limited power, routing, frequent topology

changes. A mobile ad hoc network can be deployed anywhere at any time therefore are

used in situations such as during earthquake, floods, disasters etc [20].

It is due to unique art of an ah-hoc network formation routing has attained a primary

focus. In essence routing indicates route establishment between two communicating

devices in a network. In the existing literature several routing mechanism have proposed

some of the known schemes [18, 19, 20, 22, and 27] are Destination Sequence Distance

Vector (DSDV), Dynamic Source Routing (DSR), Ad-Hoc On-demand Distance Vector

Routing (AODV), Temporally Ordered Routing Algorithm (TORA) and Mobile Ad-hoc

on Demand Data Delivery Protocol (MAODDP). It is known that routing in ad-hoc

network still needs some refinement towards more effective standard routing solution. In

this context a sufficient amount of work has been conducted modifying TCP to support

routing in ad-hoc network.

Transmission control protocol is the most reliable transport layer protocol for Internet.

The major functions of TCP is end-to-end connection, congestion control, flow control,

in order delivery of packets and reliable transportation of data packets and is performing

well in wired networks with the above mentioned features, that’s why TCP is the

backbone of internet [13]. It is a known fact that due to unique nature of mobile ad-hoc

network packets are lost because of frequent path breaks due to mobility of destination

node or mobility of the nodes working as routers between source node and destination

node, high bit error rate in the wireless channel, collisions due to hidden terminals etc [9].

Many protocols have been developed in the context of TCP but none of them is capable

enough to improve TCP performance over mobile ad-hoc network.

9

Node Feedback TCP based mechanism [49] aims to enhance TCP performance in a

mobile ad-hoc network. One of the distinguishing features of NFBTCP is the feedback

from the active node to TCP. After route failure, once the communication is re-

established nodes which were in active communication before the communication or the

route path broken is responsible to inform about the link capacity to the TCP. TCP adjust

the size of congestion window (CWND) according to the link capacity of the established

connection. In this way TCP doesn’t need to invoke slow start mechanism. This feedback

assists TCP in adjusting the size of congestion window; therefore TCP doesn’t need

reinitiating slow start mechanism. Moreover, this scheme also proposed solution to the

out of delivery problem of TCP in mobile ad-hoc network.

NFBTCP uses notification failure to enable TCP differentiating between the real

congestion and congestion assumed by the TCP due to link loss or route failure. We

believe proposed mechanism will not only overcome some of the weaknesses of the

existing schemes but also will yield an efficient TCP modified version for mobile ad-hoc

network. NFBTCP has coded in java and evaluated in SWAN. A higher number of route

requests and route replies representing networking activities were observed with the

increase of mobile nodes. It can be well understood that increase of mobile nodes to some

extent implies increase in the communication takes place in a network. Moreover to the

messages activities, good numbers of routes were added at the end of each simulation

cycle. It is quite understandable that the more routes available for data transfer in mobile

ad-hoc network, the better. Furthermore, such additions to the available routes could

directly impact overall throughput. It is due to the nature of mobile ad-hoc network,

where routes forms and broken almost unexpectedly. Therefore an alternative route to the

destination is always beneficial. Lastly, nodes in mobile ad-hoc network suffer with

limited resources. That makes conservation of all such resources an important issue in

mobile ad-hoc network. NFBTCP has shown satisfactory performance by conserving

available memory in most of the conducted experiments. This chapter introduces research

and problem domain of this project, which are discussed in due course and has been

organised as follows. In section 1.2 Transmission Control Protocol is introduced followed

by a discussion of its performance in mobile ad-hoc network in section 1.3. Aims and

10

objectives are presented in section 1.4. In section 1.5 a summarised view of NFBTCP is

covered and the organisation of this dissertation is presented in section 1.6

1.2. The Transmission Control Protocol

Transmission control protocol works on the transport layer of OSI model stack. The main

functions of TCP are end-to-end connection, congestion control, flow control, in-order

delivery of packets and reliable transportation of data packets [5]. Throughput of a

network degrades if the transport layer protocol cannot perform the above-mentioned

functions properly. TCP should maximize the throughput by differentiating between

congestion and link failure and should take appropriate actions according to the problem

occurred. If it’s real congestion then it should inform the sender to slow down the sending

rate of data packets. And if it’s not congestion and the loss of packets is due to link

failure then it should inform the sender about link failure and not to send data packets to

the destination node. Congestion window controls the sending rate of data packet to the

destination. The network throughput depends on the size of congestion window. The size

of congestion window gets lager depending on the rate of arrival of every new

acknowledgment received by the TCP sender. When the data packet is lost and the sender

does not receive ACK from the receiver within the retransmission timeout period then

TCP shrinks its congestion window and invokes congestion control mechanism [9].

A significant amount of research has been done to make TCP capable of supporting

communication over mobile ad-hoc network [4, 5, 7, 8, 9, 10, 11, 12 and 13]. However,

despite numerous attempts TCP failed to show impressive performance in such an

environment. Although TCP provides reliable end-to-end delivery of data over wired

networks, several recent studies have indicated that TCP performance degrades

significantly in mobile ad hoc networks. This is mainly because TCP considers any

packet loss and/or delay as a congestion signal although MANET encounters several

types of losses and delays that are not related to congestion. Non-congestion

losses/delays mainly occur because TCP cannot adapt well to such mobile wireless multi-

hop networks. The following subsections discuss different factors that affect TCP

performance in MANET.

In mobile ad-hoc network packets loss is quite frequent due to frequent path breaks as a

result of mobility of destination node or mobility of the nodes working as routers between

11

source node and destination node, high bit error rate in the wireless channel, collisions

due to hidden terminals etc, when the data packet is lost and the sender dose not receive

acknowledgement from the receiver within the retransmission timeout period then TCP

assumes this as congestion and invokes the congestion control mechanism [9]. When

TCP assumes packet loss as congestion then it shrinks its congestion window and reduces

the packet transfer rate and thus degrades overall throughput of the network. To gain high

throughput from the network TCP should differentiate between congestion and packet

loss due to mobility or path breakage.

1.3. Problem statement.

To address the problems experienced by TCP in MANET, a number of proposals have

been presented. The vast majority of these proposals are TCP modifications that address

some particular TCP inefficiency. The main design requirement is indeed to keep the

improved transport protocol backward compatible with the legacy TCP, so that

“improved” and “legacy” users may be able to communicate with each other. The

differences between MANET and traditional wired networks are so many, that TCP

would need a large number of modifications to work in this environment. It is well

known that TCP shows a number of different issues in mobile ad-hoc networks. These

issues till-to-date pose an open question to the research community. Existing literature

report various solution, however these solutions lack in one way or the other. Therefore

the problem still stands as before, clearly there is a need of a solution which can cope

with TCP issues in ad-hoc network. We stress that without taking into consideration

typical ad-hoc network environment a successful solution is difficult to develop.

Moreover, we understand the solution should be designed in a manner which can deliver

solution of number of different problem in sequence they occur in mobile ad-hoc network

environment. In the light of the above discussion we propose Node Feedback TCP based

mechanism to enhanced TCP performance in mobile ad-hoc network.

1.4. Aims and Objectives

In view of the above discussion it can clearly be understood that TCP performance over

mobile ad-hoc network has been a challenge and thus needed to be resolved. We have

proposed and develop a novel scheme NFBTCP to enhance TCP effectiveness within an

12

ad-hoc network. It was discovered that TCP performance in a mobile ad hoc network is

degraded due to ad-hoc network formation and operational pattern. A set of aims and

objectives were defined in between from the start to the end of this projects which are as

follows.

 We have investigated TCP performance in mobile ad-hoc network in order to

develop an understanding of the research domain at a wider level.

 We have evaluated existing TCP based routing solution for mobile ad-hoc

network with a view of identifying weaknesses in the reported schemes.

 We have proposed a novel TCP based solution for mobile ad-hoc network. The

proposed solution addresses identified known weaknesses as reported in the

existing solutions.

 The proposed scheme was designed using standard design mechanisms so that it

could be used to implement the scheme using a computer language. Moreover,

this design was helpful in looking back towards any improvement during the

implementation stage of NFBTCP.

 The developed scheme was evaluated in a simulation frame. Evaluation

experiments were conducted to monitor and performance of the proposed scheme

in varying simulation environments. It is important to mention that the scheme

has showed an expected performance with satisfactory results are achieved at

different experiment’s cycle.

1.5. Research contribution.

Node feedback TCP based mechanism introduces a new flavor of TCP for mobile ad-hoc

network. It follows an intermediate approach in between some of the existing

mechanisms of TCP based schemes for mobile ad-hoc network. We have addressed TCP

slow start mechanism in the context of mobile ad-hoc network and introduce measures

through whom TCP can differentiate between real congestion and congestion assumed by

TCP due to packet lost or route failure in mobile ad-hoc network. In addition our

proposed mechanism also deals with out-of-order delivery problem of TCP in mobile ad-

hoc network. It is important to mention that NFBTCP not only addresses TCP related

13

issues but also provides a number of different operations to assists in the smooth running

of an ad-hoc network.

The scheme has been developed in Java and evaluated using SWANS. Evaluation

observations detail the confirmation of the theoretical concepts which were included as a

part of the functional specification of NFBTCP. NFBTCP has validated itself as a fully

functional and operational-able for mobile ad-hoc networks, thus should be taken as a

new novel TCP based solution for mobile ad-hoc networks. In the light of the conducted

experiments, it can be seen that NFBTCP performed well in all simulation environments.

A higher number of route requests and route replies representing networking activities

were observed with the increase of mobile nodes. This clearly showed that NFBTCP fits

well within mobile ad-hoc networking environment.

Increase of mobile nodes to some extent implies increase in the communication taking

place in a network. In addition to the message activities, good numbers of routes were

added at the end of each simulation cycle. It is quite understandable that the more routes

available for data transfer in mobile ad-hoc network, the better. In this context unlike

traditional TCP better route connectivity is possible through NFBTCP. In addition to the

above, more available routes could directly impact overall throughput. It is due to the

nature of ad-hoc network, where routes forms and broken almost unexpectedly. Therefore

an alternative route to the destination is always beneficial. It is a well-known fact that

nodes in mobile ad-hoc network suffer with limited resources. That makes conservation

of all such resources an important issue in the context of mobile ad-hoc network.

NFBTCP has shown self-explanatory performance by conserving available memory in

most of the experiments. It can be easily understood that a direct way of measuring the

proposed scheme performance is to monitor the throughput. A particular attention was

given to that where it was found that most of the simulation cycle ended with an expected

throughput. Since TCP is used for transporting data packets, therefore having most of the

sent packets delivered at the destination by NFBTCP implies that the scheme has met the

desired end objective. We believe NFBTCP offers a complete and an effective TCP based

routing solution for mobile ad-hoc networks.

14

1.6. Organization

We have followed a defined pattern from the start to the end of this research project. The

whole problem is divided into sub tasks and each of these has been compiled in different

chapters of this thesis. Introductions to each of these chapters are as follows.

Chapter 1. Introduction: An introduction to the problem area with a brief background is

explained in this chapter. In addition, a summary of the developed solution for the chosen

problem and the research contribution are also briefed.

Chapter 2. Literature Review: This chapter presents an in-depth explanation of the

research domain, previously reported solutions and critical analysis with a view to

understanding weaknesses within the reported architectures.

Chapter 3. Problem Analysis: In this chapter the identified problem has been analyzed in

view of the related reported work.

Chapter 4. NFBTCP: This chapter focuses on the proposed scheme. In this context, an

explanation of the associated functions and overall benefit of the developed scheme are

also presented. NFBTCP offers a new novel TCP based solution for Mobile Ad-hoc

Networks. It was necessary to have the structural design of the scheme conducted prior to

implementation. This chapter presents the proposed scheme design, pseudo codes and

implementation details.

Chapter 5. Evaluation and Discussion: NFBTCP has been evaluated in SWANS through

different simulation pattern. The scheme has proved to be implementable and efficient to

support communication operation in mobile ad-hoc network. Evaluation has been

concluded in discussion section within this chapter.

Chapter 6. Conclusions and Future Work: This section presents conclusions derived both

from background research and the proposed scheme development and evaluation phases.

In addition, thoughts regarding future research directions are also presented.

This chapter focuses on the introduction of the problem being investigated besides

general introduction of the problem domain in general. The following chapter analyzes

some of the previously reported solution.

15

Chapter 2. Literature Review

2.1. Introduction

A Mobile Ad-hoc Network is a collection of mobile nodes connected together in the

absence of any fixed infrastructure. Nodes in ad hoc networks work both as hosts and

routers forwarding data packets for other nodes in the network [22]. This process may

involve multiple intermediate nodes, and it may produce the establishing of a multihop

connection (multi-hop ad hoc network) between sender and receiver. These networks are

appropriate for scenarios where wired networks are not possible such as in a disaster

recovery, battlefield, short-lived networks as in conference spots, etc. In the last few

years MANET are emerged as a flexible and low-cost extension of wired infrastructure

networks. MANETs inherit the traditional problems of wireless communication and

wireless networking, like high bit error rate, high sensitivity of wireless channel from

outside signals, the possibility of path asymmetry, and so on. In addition, the multihop

nature of connections, the lack of a fixed infrastructure, and node mobility add new

problems, such as network partitions, route failures, and the hidden terminal. These new

problems pose a number of design constraints that are specific to ad-hoc networking.

2.2. OSI Reference Model

Protocol layering is a common technique to simplify networking designs by dividing

them into functional layers, and assigning protocols to perform each layer's task [31]. For

example, it is common to separate the functions of data delivery and connection

management into separate layers, and therefore separate protocols. Thus, one protocol is

designed to perform data delivery and another protocol layered above the first performs

connection management. The data delivery protocol is fairly simple and knows nothing

of connection management. The connection management protocol is also fairly simple,

since it doesn't need to concern itself with data delivery. Protocol layering produces

simple protocols, each with a few well-defined tasks.

16

There are seven layers in the OSI reference model. Open system interconnection is a

standard for worldwide communications that defines a networking framework for

implementing protocols in seven layers. Control is passed from one layer to the next,

starting at the application layer on source node and proceeding to the bottom physical

layer and on the receiving node the control is passed from physical layer proceeding to

the bottom application layer to complete transfer of data packets. In the wireless protocol

stack there are five layers. The application layer performs the functions of presentation

and session layers. A brief introduction to different layers is as follows.

 APPLICATION LAYER: The application layer interfaces directly to and

performs common application services for the application processes. The common

application services provide semantic conversion between associated application

processes.

 TRANSPORT LAYER: The transport layer provides reliable transfer of data

between end users. The transport layer can keep track of the packets and

retransmit those that fail.

 NETWORK LAYER: The network layer provides the functional and procedural

means of transferring variable length data sequences from a source to a

destination via one or more networks while maintaining the quality of service

requested by the Transport layer. The Network layer performs network routing,

flow control, segmentation/desegmentation, and error control functions.

 DATA LINK LAYER: The data link layer provides the functional and

procedural means to transfer data between network entities and to detect and

possibly correct errors that may occur in the Physical layer.

 PHYSICAL LAYER: The physical layer defines all electrical and physical

specifications for devices. This includes the layout of pins, voltages, and cable

specifications. Hubs and repeaters are physical-layer devices.

2.3. Characteristics of Mobile Ad-Hoc Network

A mobile ad-hoc network can be thought of as a collection of mobile platforms each

combining the functionality of a router and a host as shown in figure 2.1. These mobile

17

platforms, also called hosts are attached to a number of wireless communication mediums

and are free to move about arbitrarily. These hosts are equipped with wireless

transmitters and receivers using antennas which may be Omni directional, highly

directional, possible steerable or some combination thereof. A mobile ad-hoc network is

established through the mutual co-operation of mobile nodes that forward and receive

packets for each other. Mobile ad-hoc networks offers self-configuration and on the fly

network facilities to places where it is not possible otherwise. Two or more nodes can

form an ad-hoc network without need of a centralized infrastructure. In due course,

routing is achieved through routing protocol finding distension of interest for nodes in a

network. It is understandable that different protocols adopt various strategies to offer

such services.

Node mobility introduces certain scalability problems in mobile ad-hoc network

protocols, when the network topology changes frequently control messages have to be

sent between nodes so that new routes are found and propagated through the network [20]

as shown in figure 2.1A and 2.1B.

 Figure 2.1A

A
C

D

F E

18

 Figure 2.1B

In networks where the topology changes infrequently, it is reasonable to expect that when

this happens there might be a short period where lots of control messages will propagate

through the network to distribute the new destination paths. But when a high rate of

topology change is one of the characteristics of the network, the protocol designer should

make provision for highly dynamic and fast adapting algorithms that minimize control

messages and attempt to utilize long-lived routes to the maximum extent.

In many kinds of mobile ad-hoc network, mobile nodes usually rely on exhaustible means

for providing energy, such as batteries. For these nodes, energy conservation suddenly

becomes an important design decision [26]. Nodes with low battery power may decide to

enter a power saving mode when they having nothing to send or until another high

priority event is generated. This behavior may affect the way the whole network is

operating, since each node is responsible for forwarding other node’s packets, apart from

its own. If nodes decide to become “selfish” and break the collective and cooperative

nature of ad hoc networking by not forwarding other node’s data the ad hoc architecture

is endangered. A multitude of other problems and design trade-offs concerned with

power utilization in such networks and the particular area is becoming the focus of

increased attention.

Last but not least we should examine briefly some security issues in ad-hoc networks. As

with any wireless communications, ad-hoc networks can be highly vulnerable to security

threats. On one hand, their distributed nature makes it difficult to implement any security

A

E

D

C

19

scheme that relies on a central authority. While on the other hand there is an increased

possibility for eavesdropping, denial-of-service and ma-in-the-middle attacks. Add to this

the fact that the more secure architecture is the slower and more cumbersome the whole

issue of security in ad hoc networks becomes somewhat problematic. Nevertheless, the

decentralized architecture provides a more resilient approach to single points of failures.

2.3.1. Applications of Mobile Ad-hoc Networking

Some of the application of ad-hoc network is communication in situations where

battlefield survivability counts or infrastructure is non-existent, which is the case during

disaster relief or rescue operations [30]. Both of these applications rely on the

decentralized and cooperative attributes of mobile ad-hoc networks. However a number

of other applications can be envisioned.

 Conferencing: This scenario envisages a group of people gathering in the same

area and exchanging shared information using the multi-hop characteristics of ad

hoc network [26]. Currently, this is done by requiring everyone to connect to a

central network which at times might be unavailable or the overhead might be too

costly when all that is required is the sharing of small amount of data.

 Ubiquitous Computing: If projections and estimations are correct then soon we

could be living in a world where electronic devices can join spontaneously in

established networks and exchange data with other devices in their close vicinity,

in a transparent and simple fashion. Bluetooth is an emerging standard for

realizing such a vision and is backed by such companies as Ericsson Inc, IBM,

Intel, Microsoft and Nokia [26]. It is a short-range radio technology aimed at

eliminating wires between electronic devices. Bluetooth allows up to eight

devices to be connected into what is called a piconet [28]. This could be a suitable

technology that an ad-hoc network could use for transferring information without

utilizing fixed infrastructure.

 Data Gathering: Another application where ad-hoc networks can prove useful is

the collection of data from remote areas like air or sea [28]. A network of sensors

can contain small, inexpensive, short-range radio transmitter that can collectively

gather and forward data towards a base station. Current alternatives include either

storing data for later collection or using large or expensive satellite transmitters.

20

But for cases like animal tracking where a small transmitter is essential, ad-hoc

network can prove be to be a useful too, provided there is a reasonable coverage

of the specific area with tracking devices.

There are also existing and future military networking requirements for robust, IP-

compliant data services within mobile wireless communication networks many of these

networks consist of highly-dynamic autonomous topology segments. Also, the

developing technologies of "wearable" computing and communications may provide

applications for mobile ad hoc networks. When properly combined with satellite-based

information delivery, Mobile ad hoc networks can provide an extremely flexible method

for establishing communications for fire, safety, rescue operations or other scenarios

requiring rapidly deployable communications with survivable, efficient dynamic

networking. There are likely other applications for MANET technology, which are not

presently realized or envisioned by the author. It is simply put, improved IP-based

networking technology for dynamic, autonomous wireless networks.

2.3.2. Problems, Constraints and Challenges of Mobile Ad hoc Networks

When designing mobile ad-hoc networks, several interesting and difficult problems arise

due to the shared nature of the wireless medium, the limited transmission range of

wireless devices, node mobility, and battery limitations. This section will describe some

of these problems.

 Dynamic topologies: The network topology of an ad-hoc network is very

dynamic as the mobility of nodes or memberships of nodes are very random and

rapid [30]. This emphasizes the need for routing solutions to be dynamic.

 Bandwidth-constrained: variable capacity links: Wireless links will continue to

have significantly lower capacity than their hardwired counterparts. In addition,

the realized throughput of wireless communications after accounting for the

effects of multiple access, fading, noise, and interference conditions, etc is often

much less than a radio's maximum transmission rate [30]. One effect of the

relatively low to moderate link capacities is that congestion is typically the norm

rather than the exception, i.e. aggregate application demand will likely approach

21

or exceed Network capacity frequently. As the mobile network is often simply an

extension of the fixed network infrastructure, mobile ad hoc users will demand

similar services. These demands will continue to increase as multimedia

computing and collaborative networking applications rise.

 Energy-constrained operation: Some or all of the nodes in a mobile ad-hoc

network may rely on batteries or other exhaustible means for their energy [30].

For these nodes, the most important system design criteria for optimization may

be energy conservation.

 Limited physical security: Mobile wireless networks are generally more prone to

physical security threats than are fixed- cable nets [20]. The increased possibility

of eavesdropping, spoofing, and denial-of-service attacks should be carefully

considered. Existing link security techniques are often applied within wireless

networks to reduce security threats. As a benefit, the decentralized nature of

network control in mobile ad hoc network provides additional robustness against

the single points of failure of more centralized approaches.

 In Summary, these characteristics create a set of underlying assumptions and

performance concerns for protocol design, which extends beyond those guiding the

design of routing within the higher-speed, semi-static topology of the fixed Internet.

2.4. Routing Protocols for MANET

Development of routing protocols for ad hoc networks has been one of the hottest topics

within this area in recent years. As a consequence, a large number of routing protocols

have been designed, either by modifying Internet routing protocols, or proposing new

routing approaches.

MANET routing protocols are typically subdivided into two main categories: proactive

routing protocols and reactive on-demand routing protocols [19]. Proactive routing is

derived from the traditional distance vector and link state protocols developed for the

internet. The primary characteristic of proactive approaches is that each node in the

network maintains a route to every other node in the network at all times. Route creation

and maintenance is accomplished through some combination of periodic and event-

triggered routing updates. This approach has the advantage that routes are available at the

22

moment they are needed. A source can simply check its routing table, when it has data

packets to send to some destination, and begin packet transmission. However, the

primary disadvantage of these protocols is that the control overhead can be significantly

large.

Reactive on demand routing protocols take a very different approach than proactive

protocols, since they do not maintain a route between all pairs of network nodes. Instead,

reactive protocols discover the route to a destination only when there is a demand for it.

Specifically, when a source node needs to send date packets to some destination, it

checks its routing table to determine whether it has a route. If no route exists, it performs

a route discovery procedure to find a path to the destination. Hence, route discovery

becomes on-demand. With this approach, if two nodes never need to talk to each other,

then nodes in the network do not need to utilize their resources maintaining a path

between each other.

The benefit of this approach is that signaling overhead is likely to be reduced compared

to proactive approaches, particularly in networks with low to moderate traffic load. When

the number of data sessions in the network becomes high, then the overhead generated by

the reactive routing protocols may even surpass that of the proactive approaches. The

drawback of reactive approaches is the introduction of route acquisition latency. That is,

when a route is needed by a source node, there is some finite latency while the route is

discovered. In contrast, with a proactive approach, routes are typically available at the

moment they are needed.

2.5. Transmission Control Protocol

Transmission Control Protocol (TCP) is the standard for reliable connection-oriented

transport protocols, and is normally used over IP (Internet Protocol) to provide end-to-

end reliable communications to Internet applications [16]. TCP provides a reliable,

connection-oriented, and full duplex type of service. In addition, TCP implements both

flow control and congestion control mechanisms. The former prevents the TCP receiver’s

buffer from being overflowed. The second is an end-to-end congestion control

mechanism that prevents a process injecting into the network an excessive traffic load.

Congestion control is concerned with the traffic inside the network. Its purpose is to

prevent collapse inside the network when the traffic source (sender) is faster than the

23

network in forwarding data. In a network with shared resources, where multiple senders

compete for link bandwidth, it is necessary to adjust the data rate used by each sender in

order not to overload the network. Packets that arrive at a router and cannot be forwarded

are dropped, consequently an excessive amount of packets arriving at a network

bottleneck leads to many packet drops. These dropped packets might already have

travelled a long way in the network and thus consumed significant resources.

Additionally, the lost packets often trigger retransmission, which means that even more

packets are sent into the network. Thus network congestion can severely deteriorate

network throughput. If no appropriate congestion control is performed this can lead to a

congestion collapse of the network, where almost no data is successfully delivered [48].

2.6. TCP based routing for Mobile Ad-hoc Network

In the light of the conducted research it can be concluded that TCP based routing is an

interesting and growing topic with in Ad-hoc networking. A good number of solutions

concerning TCP in MANET have been reported. However these solutions suffer from

certain weaknesses, thus requiring some effective mechanism to support routing

operations [49]. In this section an overview of the existing schemes are presented. A

summarize comparison of the studied schemes is shown in table 2.1

2.6.1. TCP-Feedback

TCP-Feedback uses a feedback based approach to avoid congestion in mobile ad-hoc

networks [9]. It requires the support of a reliable link layer and a routing protocol that can

provide feedback to the TCP sender about the path breaks. The routing protocol is

expected to repair the broken path within a reasonable time period. When an intermediate

node detects a path break, it originates a route failure notification (RFN) packet and sends

it to the sender of a TCP session. The intermediate node that originates the RFN packet is

called the failure point (FP). Every intermediate node that forwards the RFN packet

understands the route failure, updates its routing table accordingly, and avoids forwarding

any more packets on that route. If any of the intermediate nodes that receive RFN has an

alternate route to the same destination, then it rejects the RFN packet and uses the

alternate path for forwarding further data packets.

24

When a TCP sender receives an RFN packet, it goes into a snooze state. In the snooze

state, a sender stops sending any more packets to the destination, cancels all the timers,

freezes its congestion window, freezes the retransmission timer, and sets up a route

failure timer. This route failure timer is dependent on the routing protocol and network

size. When the break path rejoins or another path is detected then a route re-establishment

notification (RRN) is sent to the sender and the sender changes from the snooze state to

the connected state.

Critique

In the event of route failures, as the route re-establishment time increases, the use of

feedback shows saving in unnecessary packet transmission. In TCP-F the RRN packet is

generated when the intermediate node detects re-establishment of a broken path and it

depends on information from the routing protocol. TCP-F has an additional state

compared to the traditional TCP state machine, and hence its implementation requires

modifications to the existing TCP libraries. Another disadvantage of TCP-F is that the

congestion window used after a new route is obtained may not reflect the achievable

transmission rate acceptable to the network and the TCP-F.

2.6.2. TCP with Explicit Link Failure Notification (TCP-ELFN)

TCP-ELFN uses explicit link failure notification for improving TCP performance in

mobile ad-hoc network [13]. This is similar to TCP-F, except for the handling of explicit

link failure notification (ELFN) and the use of TCP probe packets for detecting the route

reestablishment. The ELFN is originated by the node detecting a path break upon

detection of a link failure to the TCP sender. There are different ways in which the ELFN

message can be implemented e.g. by sending an ICMP destination unreachable message

to the sender. Once the TCP sender receives the ELFN packet, it disables its

retransmission timers and enters into a standby state. In this state, it periodically

originates probe packets to see if a new route is re-established. Upon reception of an

ACK by the TCP receiver for the probe packets, it leaves the standby state, restores the

retransmission timers, and continues to function as normal.

Critique

When a node detects a path break, it sends an ELFN packet to the sender about a broken

path to stop further packets being sent to the destination, thus it can reduce congestion in

25

the network. In TCP-ELFN when the network is temporarily partitioned, the path failure

may last longer; this can lead to the origination of periodic probe packets consuming

bandwidth and power. Another disadvantage is that the congestion window used after a

new route is obtained may not reflect the achievable transmission rate acceptable to the

network and the TCP receiver.

2.6.3. Ad-hoc Transmission Control Protocol (ATCP)

ATCP is implemented as a thin layer residing between the IP and TCP protocols and

doesn’t need changes in the existing TCP protocol [12]. The ATCP layer essentially

makes use of the explicit congestion notification (ECN) for maintenance of the states.

This layer is active only at the TCP sender. The major function of the ATCP layer is to

monitor the packets sent and received by the TCP sender, the state of the TCP sender, and

the state of the network. There are four states in the ATCP NORMAL, CONGESTED,

LOSS, and DISCONN.

When a TCP connection is established, the ATCP sender is in NORMAL state. In this

state, ATCP doesn’t interfere with the operation of TCP and it remains invisible. When a

packet is lost or arrives out-of-order at the destination, which generates duplicate ACKs.

The ATCP sender counts the number of duplicate ACKs received and if it reaches three,

instead of forwarding the duplicate ACKs to TCP, it puts TCP in a persist state and

ATCP in the LOSS state. In the LOSS state, ATCP retransmits the unacknowledged

segments from the TCP buffer. When a new ACK comes from the TCP receiver, it is

forwarded to TCP and the TCP sender is removed from persist state and then the ATCP

sender changes to the NORMAL state.

When the network gets congested, the ECN flag is set in the data and the ACK packets.

When the ATCP sender receives this ECN message in the normal state, it changes to the

CONGESTED state and just remains invisible, permitting TCP to invoke normal

congestion control mechanism. When a route failure or network partition occurs in the

network, ATCP expects the network layer to detect these and inform the ATCP sender

through an ICMP destination unreachable message. Upon reception of the destination

unreachable message, ATCP puts the TCP sender into the persist state and enters into the

DISCONN state. It remains in the DISCONN state until it is connected and receives any

26

data or duplicate ACKs. The connected status of the path can be detected by the

acknowledgments for the periodic probe packets generated by the TCP sender. When

ATCP puts TCP into the persist state, it sets the congestion window to one segment in

order to make TCP probe for the new congestion window when the new route is

available.

Critique

The advantage of ATCP is that standard TCP/IP is unmodified and it is invisible to TCP

and therefore nodes with and without ATCP can interoperate. ATCP does not interfere

with TCPs functioning in cases where the TCP connection is between a node in the

wireless network and another in the mobile ad-hoc network. The drawback of ATCP is

that nodes without ATCP will experience all of the performance problems associated

with running TCP over a mobile ad-hoc network. In ATCP the congestion window is set

to one segment which may not reflect the achievable transmission rate acceptable to the

network and TCP receiver.

2.6.4. Split_TCP

Split-TCP splits transport layer objectives into congestion control and end-to-end

reliability [8]. Split-TCP splits a long TCP connection into a set of short concatenated

TCP connections called segments or zones, with a number of selected intermediate nodes

known as proxy nodes. A proxy node receives the TCP packets, reads its contents, stores

it in its local buffer, and sends an acknowledgment to the source (or the previous proxy)

called local acknowledgment (LACK).

LACK does not guarantee end-to-end delivery. The responsibility of further delivery of

packets is assigned to the proxy node. A proxy node clears a buffered packet once it

receives LACK from the immediate successor proxy node for that packet. The source

node clears the buffered packets only after receiving the end-to-end acknowledgment for

those packets. Transmission control window at the TCP sender is also split into two

windows, i.e. the congestion window and the end-to-end window. The congestion

window changes according to the rate of arrival of LACKs from the next proxy node and

the end-to-end window is updated based on the arrival of end-to-end ACKs.

27

Critique

The advantage of splitting a TCP connection into multiple segments is that once the

packet makes it to a proxy it has traversed the previous segment and thus avoids having

to travel all the way back to the source if the packet needs to be retransmitted. Split-TCP

requires modifications to the TCP protocol structure. The overhead incurred in including

frequent end-to-end ACKs in addition to the LACKs can consume extra bandwidth. The

failure of proxy nodes or frequent path breaks affects the performance of split-TCP. The

loss of end-to-end semantics may cause problems to applications that rely on such a

guarantee provided by TCP.

2.6.5. Cross-Layer Approach

Cross-layer design is the interaction among the layers in the protocol stack [2]. For

compatibility with the Internet, existing standard protocol stacks would be deployed in

the new networks and mobile devices. However, these protocol stacks which are

architected and implemented in a layered manner do-not function efficiently in mobile

wireless environments. The system performance of future networks will be enhanced by

cross-layer design between PHY, MAC and higher layer protocols [1]. Following is some

of the key information available at different layers that can be exchanged among each

other for cross-layer design.

 An application layer can communicate to other layers for the

application’s QoS needs, i.e. the delay tolerance, acceptable delay

variation, required throughput and acceptable packet loss rate. TCP

may provide packet loss and throughput information to the

application. The application can use this input to adapt its sending

rate.

 The information available with TCP is re-establishment time-out,

congestion window, number of packets lost and actual throughput.

[13]. When channel conditions are poor, retransmissions at the link

layer result in delays which could lead to TCP retransmissions and

28

thus reduced throughput [9]. To avoid this, TCP and link layer could

exchange retransmission information.

 The information available at the network layer is Mobile-IP hand-off

initiation/completion events and the network interface currently in

use. Mobile-IP hand-off delay may lead to reduced throughput due to

the TCP retransmission time-out (RTO) and back-off mechanism.

TCP can be informed about the event of Mobile-IP hand-off to

reduce the retransmission latency.

2.6.6. Slow Start and Congestion Avoidance

A TCP sender must use the slow start and congestion avoidance algorithms to control the

amount of outstanding data injected into the network [14]. To implement these

algorithms, two state variables are added to the TCP per-connection state. The

congestion window is a sender limitation on the amount of data the sender can transmit

into the network before receiving an acknowledgment . The receiver's advertised window

is a receiver limitation on the amount of outstanding data.

2.6.7. Fast Retransmit and Fast Recovery

When the TCP receiver receives an out-of-order segment, it sends an immediate duplicate

acknowledgment to the TCP sender [13]. Duplicate acknowledgment happens when the

TCP receiver receives an out-of-order segment and since it did not receive the segment(s)

before this out-of-order segment, it cannot acknowledge the reception of this segment.

Keeping in mind this fact, the TCP receiver responds with an ACK that has the sequence

number of the expected packet, which is the same ACK it used to acknowledge the last

in-order segment it received. This duplicate acknowledgment informs the TCP sender

that the TCP receiver received an out of order packet and the sequence number of the

expected packet. From the TCP sender's perspective duplicate acknowledgment can be

caused by the following

· Dropped segments.

· The re-ordering of data segments by the network.

· Replication of ACK or data segments by the network.

29

2.6.8. Network Feedback Approaches

In these approaches, the network implements a monitoring mechanism that generates a

notification message when it detects an abnormal event so that TCP may react [15]. TCP-

F is proposed to overcome the TCP false reaction towards route failures in MANET. As

soon as the network layer at any node detects the disruption of a route, it explicitly sends

a Route Failure Notification packet to the source. Consequently, the TCP sender stops

sending packets and freeze all its variables (such as timers and congestion window size).

When one of the intermediate nodes learns about a new route to the destination, it sends a

Route Re-establishment Notification packet to the source. The TCP sender leaves the

snooze state, restarts the timers from their frozen values and resumes the transmission

based on the stored sender window and timeout values. Similarly, the approach uses an

Explicit Link failure Notification to inform the TCP sender about the route failure. The

only difference from TCP-F is that the sender in the snooze state periodically probes the

network and when an ACK is received, it considers it as an indication of route

reestablishment.

A modified version of this approach is known as TCP-RC. TCP-RC recomputed the

congestion window size and the slow start threshold for the TCP connection after the

route is reconstructed instead of using the frozen values. An obvious limitation of this

approach is that these techniques need to be deployed at every node. ATCP deals with the

problems of high BER, route failures, network partitioning and multipath routing. A thin

layer called ATCP is inserted between TCP and IP layers. The ATCP layer monitors TCP

state and the state of the network (based on ECN and ICMP message) and takes

appropriate action. The ATCP’s four possible states are: Normal, Congested, Loss and

disconnected.

When ATCP sees that three duplicate ACKs have been received, it considers it a channel

loss and only transmits the unacknowledged segments. Congestion is detected by ECN

message. In case of temporary network partitioning, the ATCP receives an ICMP

“Destination Unreachable” message. Hence, it puts the TCP sender in the persist state,

sets TCP's congestion window into one and enters itself in the disconnected state. TCP

periodically generates probe packets until it start receives their ACKs. This removes TCP

from persist mode and moves ATCP back into normal state.

30

TCP-BuS (TCP Buffering capability and Sequence information) is another approach used

to detect route failures. When a node detects a route failure, it sends an Explicit Route

Disconnection Notification to the source containing the sequence number of the TCP

segment pending in the head of the node's transmit queue. All the intermediate nodes will

buffer the packets in their queues. When a route is discovered, the receiver sends to the

sender the last sequence number it has successfully received. The sender only transmits

the lost packets and the intermediate nodes starts sending the buffered packets.

A new approach called Split TCP to improve the performance of TCP in terms of fairness

and throughput. This approach depends on splitting long TCP connections into shorter

localized segments. The interfacing node between two localized segments is called proxy.

The proxy intercepts TCP packets, buffers them and acknowledges their receipt to the

source (or previous proxy) by sending a local acknowledgment. Upon the receipt of a

LACK from the next proxy (or the final destination), a proxy will purge the packet from

its buffer. The source keeps transmitting according to the rate of arrival of LACKs from

the next proxy, but purges a packet from its buffer only upon receipt of an end-to-end

ACK for that packet from the destination. This keeps the end-to-end reliability of TCP.

2.6.9. End-to-End Approaches

End-to-end approaches require no network support [16]. The end nodes (sender or

receiver) can detect the network state by measuring appropriate traffic parameters. For

example, high volume of out of order delivery signifies route change. A heuristic is

employed to distinguish between route failures and congestion without relying on

feedback from other network nodes. When timeouts occur consecutively, this is taken to

be evidence of a route loss. The unacknowledged packet is retransmitted again but the

RTO remains fixed until the route is reestablished and the retransmitted packet is

acknowledged.

`TCP-DOOR (Detection of Out-Of-Order and Response) is another pure end-to-end

approach to improve TCP performance by detecting and responding to out-of-order

packet delivery events, which are interpreted as an indication of route failure. The non-

decreasing property of ACK sequence numbers makes it simple for the sender to detect

out-of-order delivery of non-duplicate ACK packets. To detect out-of-order delivery of

31

duplicate ACK packets, they use one-byte TCP option which is incremented with each

duplicate ACK packet.

Comparing the two approaches, we find that end-to-end approaches are easier to

implement and provide more flexibility, while feedback approaches are more accurate as

the information is coming directly from the network. Furthermore, it is clear that each

approach deals only with one or a subset of the factors causing the bad performance of

TCP in MANETs. However, most commonly, these solutions deal with route failures.

Actually, this is reasonable because in such a dynamic environment the frequency of

route failures is very high due to node mobility. We also find that most of the presented

approaches take reactive actions. In these approaches TCP takes different actions rather

than invoking congestion control when a non-congestion loss occurs. Some approaches

are preventive (e.g. Split TCP). The target of this kind of approaches is to reduce the

probability of other losses that may lead to false notification and unnecessary congestion

control reaction.

2.6.10. TCP Variants

This section presents the main TCP variants that have been investigated in the literature.

Each variant has its own features tailored to a specific problem faced by TCP congestion

control, and in most cases each new variant represents an evolution of the previous one.

2.6.10a. TCP Tahoe

Tahoe represents the basic TCP version that was specified by Jacobson [13]. It was the

first TCP designed to solve the congestion collapse affecting the Internet. Modern TCP

implementations still use most of the mechanisms developed for Tahoe, as it will be

shown below. In addition to the retransmit timeout mechanism, which was already

implemented in early TCP-like transport protocols, TCP Tahoe counts on the three key

mechanisms: Fast Retransmit, Slow Start, and Congestion Avoidance.

Critique

The Tahoe TCP implementation added a number of new algorithms and refinements to

earlier implementations e.g. slow-start, congestion avoidance and fast retransmit. With

Fast Retransmit, the data sender infers that a packet has been lost and retransmits the

packet without waiting for a retransmission timer to expire, leading to higher channel

32

utilization and connection throughput. Although Tahoe solved the congestion collapse

problem, it rapidly proved to be too conservative by always resetting its CWND to one

upon a lost packet.

2.6.10b. TCP Reno

TCP Reno conserved the three essential mechanisms of the basic TCP Tahoe, namely

Slow Start, Congestion Avoidance and Fast Retransmit [15]. The novelty introduced into

TCP Reno is the Fast Recovery mechanism. This mechanism prevents the

communication path from going empty after Fast Retransmit, thereby avoiding the need

to Slow Start to re-fill it after a single packet loss.

Fast Recovery is generally invoked when a TCP sender receives a predefined threshold of

duplicate ACKs, just after the Fast Retransmit mechanism. This threshold, usually known

as tcp rexmtthresh, is generally set to three. Once the threshold of dup ACKs is received,

the sender retransmits the packet that seems to have been dropped and reduces its

congestion window by one half. Unlike TCP Tahoe, TCP Reno does not invoke Slow

Start, but uses the additional incoming duplicate ACKs to clock out subsequent outgoing

data packets.

Fast Recovery assumes that each dup ACK received represents a single packet having left

the pipe. Thus, during Fast Recovery the TCP sender is able to make intelligent estimates

of the amount of outstanding data. Specifically, during Fast Recovery the usable TCP

window is defined as min (rwin, cwnd+ ndup), where rwin refers to the receiver

advertised window and ndup tracks the number of duplicate ACKs received. By using the

ndup variable, the sender may estimate the amount of packets in flight. After entering

Fast Recovery and retransmitting a single packet, the sender effectively waits until half a

window of dup ACKs have been received, and then sends a new packet for each

additional dup ACK that is received. Upon receipt of an ACK for new data (called a

“recovery ACK”), the sender exits Fast Recovery by setting ndup to 0.

Critique

TCP Reno is optimized for the case when a single packet is dropped from a window of

data. In such cases, the TCP sender can retransmit at most one dropped packet per

Round-trip Time (RTT). TCP Reno is more efficient than its predecessor (Tahoe) but

does not work so well when more than one packet is dropped from a window of data. The

33

problem is that TCP Reno may reduce the CWND multiple times for recovering the lost

packets, leading the connection to experience poor performance.

2.6.10c. TCP NewReno

NewReno improves the Reno implementation with regard to the Fast Recovery

mechanism [44]. The objective of TCP NewReno is to prevent a TCP sender from

reducing its congestion window multiple times in case several packets are dropped from a

single window of data. NewReno can also avoid retransmission by timeout in scenarios

where the involved congestion window is small preventing enough ACK packets from

reaching the sender. In TCP Reno, when the sender receives a partial ACK packet it exits

Fast Recovery. The term partial ACKs refers to ACK packets that acknowledges some

but not all of the data packets that were outstanding when the Fast Recovery was started.

Upon receipt of a partial ACK, the Reno sender brings the usable window back to the

congestion window size, and so exits Fast Recovery. If there are sufficient outstanding

packets, the sender may receive enough duplicate ACKs to retransmit the next lost packet

(or packets) until all dropped packets are retransmitted by the Fast Recovery mechanism.

At every invocation of the Fast Recovery, CWND is halved. If there are not enough

packets outstanding due to a low window size, then the sender needs to wait for the

expiration of the retransmission timer. In this case the CWND is reset to one, inducing

bandwidth wastage. Differently from Reno, the NewReno do not exit Fast Recovery

when it receives partial ACKs. Instead, TCP NewReno treats partial ACKs received

during Fast Recovery as an indication that the packet immediately following the

acknowledged packet in the sequence space has been lost, and should be retransmitted.

Thus, when multiple packets are lost from a single window of data, TCP NewReno can

recover without a retransmission timeout, retransmitting one lost packet per round-trip

time until all of the lost packets from that window have been retransmitted. TCP

NewReno remains in Fast Recovery until all of the data outstanding when Fast Recovery

was initiated has been acknowledged. In this way, TCP NewReno avoids multiple

reductions in the CWND or unnecessary retransmit timeout with Slow Start invocation,

thereby improving the end-to-end performance.

34

Critique

TCP NewReno advances the Reno implementation with respect to the fast recovery

mechanism by preventing a TCP sender from reducing its congestion window multiple

times in case several packets are dropped from a single window of data TCP NewReno

remains in fast recovery until all of the outstanding data is recovered without knowing

bandwidth capacity can impact the overall throughput of the network.

2.6.10d. TCP SACK

Selective Acknowledgment preserves the basic principles of TCP Reno [13]. In fact, it

uses the same algorithms of Reno for increasing and decreasing its congestion window.

The novelty in TCP SACK lies in its behavior when multiple packets are dropped from

one window of data, similarly to TCP NewReno. In SACK, the receiver uses the option

fields of the TCP header (Sack option) for notifying the status of data received and

queued by the receiver.

The SACK option field contains a number of SACK blocks, where each SACK block

reports the received and queued bytes of data that are contiguous and isolated (there are

gaps in the data stream). The first block in a SACK option is required to report the most

recently received segment, and the additional SACK blocks repeat the most recently

reported SACK blocks. The sender keeps a data structure called a scoreboard to keep

track of the SACK options (blocks) received so far. In this way, the sender can infer

whether there are missing packets at the receiver. If so, and if its congestion window

permits, the sender retransmits the next packet from its list of missing packets.

In case there are no such packets at the receiver and the congestion window allows, the

sender simply transmits a new packet. Like TCP Reno, the Sack implementation also

enters Fast Recovery upon receipt of generally three duplicate acknowledgments. Then,

its sender retransmits a packet and halves the congestion window. During Fast Recovery,

SACK monitors the estimated number of packets outstanding in the path (transmitted but

not yet acknowledged) by maintaining a variable called “pipe”. This variable determines

if the sender may send a new packet or retransmit an old one.

The sender may only transmit if pipe is smaller than the congestion window. At every

transmission or retransmission, pipe is incremented by one, and it is decremented by one

when the sender receives a duplicate ACK packet containing a SACK option informing it

35

that a new data packet has been received by the receiver. The Fast Recovery terminates

when the sender receives an ACK acknowledging all data that were outstanding when

Fast Recovery was entered. If the sender receives a partial ACK, i.e., an ACK that

acknowledges some but not all outstanding data, it does not exit Fast Recovery.

For partial ACKs, the sender reduces pipe by two packets instead of one, which

guarantees that a SACK sender never recovers more slowly than it would do if a Slow

Start had been invoked. If it happens that a retransmitted packet is dropped, the SACK

implementation reacts exactly as the Reno implementation. In such cases, the sender

times out, retransmits and enters Slow Start.

Critique

 SACK incorporates all the advantages found in NewReno and may recover multiple lost

packets in a window of data in just one single RTT. A SACK implementation requires

changes at both sender and receiver, though.

In similarity with the NFBTCP approach proposed here, SACK has the capability to

distinguish between route congestion and route breakages .This allows the congestion

window to be better controlled. However, SACK relies on a single ACK packet to

determine that a route is still alive and resumes data flow on this link, but doesn’t utilize

the full link capacity and therefore may have lower overall throughput than NFBTCP.

2.6.11. Explicit Congestion Notification

The ECN scheme specified in RFC 3168 [51] proposes to use network feedback to assist

a TCP connection in reacting to congestion effects. By using this mechanism, TCP does

not need to await a dropped packet due to buffer overflow to detect congestion and

properly slow down. Rather, it is informed by the intermediate nodes (routers) when

incipient congestion starts. ECN can prevent time wastage at the sender that, without

ECN, always has to wait for either three duplicate acknowledgments or timeout timer

expiration. The implementation of ECN requires specific flags in both IP and TCP

headers. Two bits are used in each header for proper signaling among sender, routers and

receiver. The active queue management (AQM) inside the routers marks packets when

congestion reaches a given threshold. The receiver simply echoes back the congestion

indication into the ACKs to the sender which reduces its sending rate to prevent severe

congestion.

36

Critique

ECN is appealing for Internet use since it does not render any overhead regarding the

current IP flows. Its drawback lies in the fact that to be effective, it requires changes to

every network element. Other than this, it provides similar capabilities to the NFBTCP

approach presented in this thesis in terms of link breakages, but doesn’t cover other

aspects such as link capacity and out-of-order delivery.

2.6.12. Delayed Acknowledgments (DA)

When data arrives at the receiver, the protocol requires that the receiver sends back an

acknowledgment for reliability reasons [50]. The data packets are sequentially numbered

so the receiver can acknowledge data by sending to the sender the sequence number of

the highest data packet it has in its buffer. The acknowledgment scheme is cumulative,

which means that by receiving the highest sequence number, the sender infers that all

prior data were successful received. Thus, a TCP receiver does not necessarily have to

transmit an acknowledgment for every incoming data packet.

RFC 813 [50] introduces a new mechanism that optimizes transmission efficiency by

reducing the number of acknowledgments generated by a TCP receiver. This RFC shows

that reducing the number of ACKs provides two benefits: lower processing overhead at

the sender and robustness against the well-known Silly Window Syndrome (SWS).

Measurements of TCP implementations, in particular on large operating systems, suggest

that most of the overhead involved in a packet handling is not in the TCP or IP layer

processing.

In fact, the most significant processing occurs in the scheduling of the handler that must

deal with the packet at the sender. The delay ACK mechanism optimizes transmission

efficiency by reducing the number of acknowledgments generated by a TCP receiver.

However, if the network is facing constraints, additional mechanisms are needed to make

sure that the receiver does not lead the sender to miss ACKs. Hence, RFC 813

recommends the use of a timer at the receiver to trigger ACK transmissions for data

packets that do not arrive at the receiver in due time. This timer should be reset at every

new incoming data packet and its duration could be either a fixed interval on the basis of

the channel characteristics such as typical RTT or be adaptive to the channel conditions.

Critique

37

Although a delayed acknowledgment establishes the foundation for the delayed ACK

mechanism, it does not specify clearly the actions to be taken by the receiver under a

constrained channel. Again, its focus is on congestion rather than out-of-order delivery as

tackled by NFBTCP.

TCP based

Schemes

End-to-

End

approach

Feedback

approach

Fast

Recovery

Slow

Start

Congestion

Avoidance

TCP Tahoe Yes No No Yes Yes

TCP NewReno Yes No Yes No Yes

TCP-F No Yes No Yes Yes

TCP-ELFN No Yes Yes No Yes

ATCP No Yes Yes Yes Yes

SPLIT TCP Yes Yes No Yes Yes

TCP-DOOR Yes No Yes No Yes

Table 2.1. Summary of TCP-based schemes for use in MANET.

2.7. Simulation tools.

SWANS was chosen for simulation experiments. SWANS capabilities are similar to

existing simulators but is able to simulate much larger networks and have a number of

other advantages over existing tools. SWANS can run existing Java network applications,

such as web servers and peer-to-peer applications, over the simulated network without

modification. The application is automatically transformed to use simulated sockets and

into a continuation-passing style [40]. The original network applications are run within

the same process as SWANS, which increases scalability by eliminating the considerable

overhead of process-based isolation. Network packets in SWANS are modeled as

immutable objects, allowing a single copy to be shared across multiple nodes. This saves

the memory and time of multiple packet copies on every transmission.

In SWANS, simulation events among the various entities such as packet transmissions

are performed with no memory copy and no context switch. The system also

continuously profiles running simulations and dynamically performs code in lining,

constant propagation and other important optimizations, even across entity boundaries.

This is important, because many stable simulation parameters are not known until the

simulation is running. Memory is critical for simulation scalability. Automatic garbage

38

collection of events and entity state in SWANS not only improves robustness of long-

running simulations by preventing memory leaks, it also saves memory by facilitating

more sophisticated memory protocols. An example of memory savings in SWANS is the

use of soft references for storing cached computations, such as routing tables. These

routing tables can be automatically collected, as necessary, to free up memory. In the

light of the above it is cleared that SWANS closely match the requirements of this

research project. Thus it is selected as a simulation tool for evaluation of NFBTCP.

2.8. Summary

This chapter is an effort to analyze some of the previously proposed scheme of this area.

In this context, introduction to the TCP along with a detail description of various TCP

related segments followed by a detail description of various schemes. Previously

presented solution could be categorized into one of two types. One type is the protocol

schemes which are not an extension of TCP; whereas the other type is the schemes which

are classified as TCP extensions. Most of the schemes discussed in this chapter focused

on some specific issue rather than taking other interrelated issues. Moreover, presence of

so many solutions to some extent emphasizes that the problem is still unresolved. The

focus of the next chapter is to analyze identified problem in view of the related reported

work.

39

Chapter 3. Research Methodology

3.1. Introduction

Taking into account TCP in mobile ad-hoc networks, many modified schemes are

reported in the available literature. It is a well-known fact that these schemes do not fully

address some of the main issues. The purpose of this chapter is to have an in-depth look

into the issues revolved around TCP degrading performance in mobile ad-hoc networks.

This will lead towards a conclusive problem analysis and its relation with potential

solution to enhance TCP performance. In essence, this chapter will follow a prescribed

sequence from basic to advanced operational pattern of TCP and its application over

mobile ad-hoc network.

3.2. TCP in Mobile Ad-hoc network

The Transmission Control Protocol is one of the most authentic transport layer protocols

for the Internet [17]. The most important functions of TCP are end-to-end connection,

congestion control, flow control, in-order delivery of packets and reliable transportation

of data packets. TCP performance has always been impressive in wired network and over

the Internet [13]. A significant amount of research has been done to make TCP capable of

supporting communication over mobile ad-hoc networks [4, 5, 6, 9, and 13]. However,

despite numerous attempts TCP failed to show impressive performance in such an

environment. Although TCP provides reliable end-to-end delivery of data over wired

networks, several recent studies have indicated that TCP performance degrades

significantly in mobile ad hoc networks. This is mainly because TCP considers any

packet loss and/or delay as a congestion signal although MANET encounters several

types of losses and delays that are not related to congestion. Non-congestion

losses/delays mainly occur because TCP cannot adapt well to such mobile wireless multi-

hop networks. The following subsections discuss different factors that affect TCP

performance in MANET.

40

3.3. Factors Affecting TCP Performance in MANET

In addition to the traditional problems of wireless networking, the mobile multi-hop ad-

hoc environment brings more challenges to TCP. In this section, we present a detailed

analysis of all the factors that cause degradation in the performance of TCP in MANET.

3.3.1. TCP Congestion Control in Mobile Ad-hoc network

Congestion control is concerned with the traffic inside the network. Its purpose is to

prevent collapse inside the network when the traffic source (sender) is faster than the

network in forwarding data. To this end, the TCP sender uses a limiting window called

congestion window. Assuming that the receiver is not limiting the sender, CWND defines

the amount of data the sender can send into the network before an ACK is received.

CWND controls the sending rate of data packet to the destination. The network

throughput depends on the size of the congestion window. The size of the congestion

window gets lager depending on the rate of arrival of every new ACK received by the

TCP sender. When a data packet is lost and the sender dose not receives ACK from the

receiver within the retransmission timeout period then TCP shrinks its congestion

window and invokes its congestion control mechanism [9]. Throughput of a network

degrades if the transport layer protocol cannot perform the above-mentioned functions

properly. TCP should maximize the throughput by differentiating between congestion

and link failure and should take appropriate actions according to the problem occurred. If

it’s real congestion then it should inform the sender to slow down the sending rate of data

packets. And if it’s not congestion and the loss of packets is due to link failure then it

should inform the sender about link failure and not to send data packets to the destination

node.

3.3.2. Network Partitioning

Network partitioning degrades throughput of TCP in mobile ad-hoc networks and is due

to randomly moving nodes. The path will break if the sender and the receiver of a TCP

connection lie in different partitions or any of the nodes between sender and receiver

moves to another network. Due to path loss packets will be lost and TCP will assume it as

congestion and will invoke the congestion control mechanism. Frequent disconnections

cause a condition called serial timeouts at the TCP sender. This may lead to long idle

41

periods during which the network is connected again, but TCP is still in the back off state

and TCP will assume it as congestion and will invoke the congestion control mechanism.

3.3.3. TCP Connection Management

TCP is a connection oriented transport protocol. This means that one application process

cannot send data to another; the two processes must first perform a handshake to open a

TCP connection with each other. During the TCP connection establishment, both sides of

the connection will initialize many TCP “state variables” associated with the TCP

connection. The connection state resides entirely in the two end systems. The

intermediate network elements do no maintain TCP connection state. A TCP connection

provides for full duplex data transfer. If there is a TCP connection between process A and

B, the application-level data can flow from A to B and from B to A at the same time. A

TCP connection is also always point-to-point, that is, between a single sender and a

single receiver. Multicasting is not possible with TCP.

3.3.4. Route Failures

In mobile ad-hoc networks packets loss is quite regular due to frequent path breaks

caused by the mobility of destination nodes or mobility of the nodes working as routers

between the source node and destination nodes, collisions due to hidden terminals etc,

when the data packet is lost and the sender dose not receive acknowledgement from the

receiver within the retransmission timeout period then TCP assumes this as congestion

and invokes the congestion control mechanism [9]. When TCP assumes packet loss as

congestion then it shrinks its congestion window and reduces the packet transfer rate and

thus degrades overall throughput of the network. To gain high throughput from the

network TCP should differentiate between congestion and packet loss due to mobility or

path breakage.

3.4 Discussion

The focus of this section is to discuss shortcomings of TCP in MANET with the intention

of addressing them within the proposed scheme in the next chapter. Transmission Control

Protocol provides a reliable, connection-oriented and full duplex type of service. The

major functions of TCP are end-to-end connection, congestion control, flow control, in-

order delivery of packets and reliable transportation of data packets. Throughput of a

42

network degrades if the transport layer protocol cannot perform the above-mentioned

functions properly. TCP performs well in wired network and is considered as the

backbone of the Internet [13]. In addition to the traditional problems of wireless

networking, the mobile multihop ad hoc environment brings more challenges to TCP. In

MANET, it may manifest in several forms like bandwidth asymmetry, loss rate

asymmetry and route asymmetry. If the ACKs get bunched up, the sender may transmit

data in a burst, which could lead to packet loss on the forward path. Also, disruption of

the ACK stream can disrupt window growth and degrade performance to a fraction of the

available bandwidth.

The main cause of route failures is node mobility. The route reestablishment duration

depends on the underlying routing protocol, mobility patterns of nodes and traffic

characteristics. It is possible that discovering a new route may take significantly longer

than the RTO at the sender. As a result, the TCP sender will unnecessary invoke

congestion control. If the sender and the receiver of a TCP connection lie in different

partitions, all the sender's packets get dropped by the network resulting in the sender

invoking congestion control.. In MANET, since the routes change many times during the

lifetime of a TCP connection, the relationship between the congestion window size and

the tolerable data rate becomes too loose.

In [7], the authors show that if the congestion window size is greater than an upper

bound, the TCP performance will degrade. It is reported that, given a specific network

topology and flow patterns, there exists an optimal TCP window size by which TCP

achieves the best throughput. Unfortunately, TCP operates at an average window size,

thus leads to increased packet loss due to the contention on the wireless channel. Since

batteries carried by each mobile node have limited power supply, their life time is

limited. Since each node acts as a router as well as an end system, unnecessary

retransmissions of TCP segments consume this scarce power resource causing inefficient

utilization of available power. Some routing protocols maintain multiple routes between

source and destination to minimize the frequency of route re-computation. Unfortunately,

this sometimes results in a significant number of out-of-sequence packets arriving at the

receiver causing the generation of duplicate ACKs which causes the sender to invoke

congestion control.

43

3.5. Methodology

We have followed a systematic approach from the start until the end of this project as

shown in figure 3.1. Initially requirement analysis was done to understand the problem

and associated task. The next step was to propose a suitable solution to address the

identified problem. This solution was later on draw using standard design techniques. The

same design was helpful during implementation process of the proposed solution.

Implemented model was evaluated through various simulation cycles in order to monitor

scheme performance in a practical environment.

The research methodology that I will adopt is quantitative approach. The advantage of the

quantitative approach is that it measures, analyses and test the data and hence facilitates

to test the hypothesis.

Figure. 3.1. Methodology used by NFBTCP.

Proposed solution

Requirement

analysis

Design

Implementation

Evaluation

44

3.6. Summary

In this chapter an in-depth look into the issues revolved around TCP degrading

performance in mobile ad-hoc networks is presented. This has led towards a conclusive

problem analysis and its relation with potential solution to enhance TCP performance. In

essence, this chapter has followed a prescribed sequence from basic to advanced

operational pattern of TCP and its application over mobile ad-hoc network. In addition a

brief explanation of the selected methodology is also presented. In the following chapter

Node Feedback Based Mechanisms is introduced.

45

Chapter 4. Node Feedback TCP Based Mechanism for Mobile

 Ad-hoc Network

4.1. Introduction

Node feedback TCP based mechanism introduces a new flavor of TCP for mobile ad-hoc

networks. It follows an intermediate approach in between some of the existing

mechanisms of TCP based schemes for mobile ad-hoc networks. We have addressed TCP

slow start mechanism in the context of mobile ad-hoc networks and introduced measures

through whom TCP can differentiate between real congestion and congestion assumed by

TCP due to packet lost or route failure in mobile ad-hoc networks. In addition our

proposed mechanisms also deal with the out-of-order delivery problem of TCP in mobile

ad-hoc networks. It is important to mention that NFBTCP not only addresses TCP related

issues but also provides a number of different operations to assists in the smooth running

of ad-hoc networks. Otherwise, it was clearly difficult to have a clear understanding of

NFBTCP modification of TCP for mobile ad-hoc network. In order to provide a concise

and stepwise sequence of overall operation we give a clear overview from the start of the

network until the over running of an ad-hoc network in congestion with TCP.

In the light of the background research of this thesis, it is well understood that TCP poor

performance over ad-hoc networks is related to the typical nature of the ad-hoc network.

Therefore it was necessary to define some of the interrelated operations alongside

modifications to TCP. All of these operations are made part of this specification. Overall

the operational structure of the proposed scheme can be seen in figure 4.1. In this context

the overall specification of the proposed scheme will have all types of operation bundled

within the same scheme. This is also done so as to support any future modification and to

enable further development of the scheme. This chapter has been organized as follows:

in section 2 specification of NFBTCP is given and a chapter summary is given in section

3.

46

Packet Received

Broadcasting

Joining Message

Forwarding

Acknowledgement

Link Failure

Update packet

Link Formation

Packet

Link Restored
Link Update

packet

Generating

Acknowledge

ment

Network

Formation

Generating

Broadcast and

Packet ID

Receive and

Forward

Packets

Link Capacity

Detection

Out of order

Delivery

Notification

Link Failure

Detection

Function network formation
broadcast Ad-hoc formation

packet which when received

by a node, it sends back an
ad-hoc acknowledge packet

to the sender of AFP. This

acknowledgement represents
a node’s wishe to be part of

the network. This information

is stored in the routing tables
of all participating nodes.

A broadcast IID and packet

ID is assigned to the packet

When a packet is received at an intermediate
node it first sees if the packet has been

received before, if so it is discarded

otherwise it is forwarded and the routing
table is updated. Route search is made when

a route is requested. If the route is found in

the routing table it is sent using the found
route otherwise it is forwarded to the next

hop-neighbor.

When a packet sequence is found
missing in an active data

transmission a request to resend

missing data packet is sent to the
sender. On receiving the missing data

packet the data frame is re organized

and is delivered to the destination.

Link capacity is calculated

and is sent to the TCP
sender so that adjustments

can be made accordingly.

When a node detects a link

failure, it broadcasts a link

failure update packet across the
network to inform other nodes

about the link failure.

Function generate acknowledgement
generates the acknowledgement with

an acknowledge packet and

broadcast ID using the reverse path
stored in the routing table through

which the packet was received. The

reverse path information is available
in routing table.

NFBTCP functions at

transport layer

Figure 4.1. Structural Representation of NFBTCP

47

The starting point of our implemented scheme is network formation, where a node

broadcasts ad-formation packet to other nodes about establishment of an ad-hoc mobile

network. Once an ad-hoc mobile is established, relevant information about all the nodes

are stored in routing tables of all mobile nodes. When an intermediate node detects

broken route informs other nodes about route failure. Similarly if alternative route is

available it forward packets using that route. To avoid congestion due to path break in

NFTCP sender is informed about broken path thus the sender stop sending further

packets until new route is available. For link capacity detection link bandwidth is

calculated after establishing new route to avoid invoking slow start mechanism of TCP.

NFBTCP also deals with out-of-order delivery issue in TCP by storing packets of an

active communication in a buffer at destination node and sends single ACK to the sender

once the full message is received. Below is the summarized pseudo code of NFBTCP.

The individual functions referred to in this pseudo-code will be discussed in more detail

in the proceeding sections.

// When initialising the network

Fn network formation

// In the packet receive loop

When packet received

 If destination node

 Fn out-or-order packet delivery

 If packet missing or out-of-order

 Request packet

 Else send single acknowledgment

 Endif

 Else receive and forward

 If broken link detected

 If no route to destination

 Send link failure packet to sender

 Else route restored broadcast link update packet

48

 If new route found

 Calculate link capacity

 Broadcast link formation packet

 EndIf

 EndIf

 Endif

4.2. NFBTCP Specification and Operational Details
This section presents the NFBTCP specification which is a combination of the existing

TCP functions and the functions defined by the proposed scheme. In this context, it is

important to mention that the purpose of this section is to take into consideration all those

aspects which are involved in the routine network operations. In the following section

details of various functions alongside some of the associated operations of the main

function are presented besides explanation of terms which are used as a part of this

specification.

4.2.1. Network Formation

NFBTCP defines ad-hoc network formation in between two or more mobile nodes. In

order to establish a network, a packet named as ad-hoc formation packet is broadcast by

any node as shown in figure 4.2.1A. In figure 4.2.1A Node A is broadcasting ad-hoc

formation packet to the rest of the nodes to form the potential network.

Figure 4.2.1A Node A broadcasting AFP

 B

 D

 C

A
 E

Broadcasting AFP

49

Nodes wish to be part of the network on reception of AFP send an Ad-hoc Acknowledge

Packet back to the sender node as shown in figure 4.2.1B where the nodes apart from

node A sending ad-hoc acknowledge packet. This packet shows nodes are agreed to join

the network. This automatically updates all the participating nodes with the relevant

location information about other nodes of the network.

 Figure 4.2.1B. Node broadcasting AACK

Function Network Formation

Broadcast ad-hoc formation packet
Received ad-hoc formation packet
Initializes routing table
Updates Routing Table
Send ad-hoc acknowledgement

End Function

It is important to note that this initial communication is taken as a starting point of

communication between the participating nodes of a mobile ad-hoc network. These initial

packets transmission is used to gather relevant information of other nodes of the network

A

 B

 C

 D

 E

Broadcasting AACK

Function network formation broadcast

Ad-hoc formation packet which when

received by a node, it sends back an

ad-hoc acknowledge packet to the
sender of AFP. These acknowledge

represents node wishes to be part of

the network. This information is
stored in routing table of all

participating nodes.

50

as shown in figure 4.2.1C where nodes are updating their self with the information of

other nodes.

 Figure 4.2.1C. Node Updating with Relevant Information of other nodes

NFBTCP besides introducing a unique way of network formation also enables any other

nodes want to join the established network via broadcasting joining message. Any node

who was not part of the network at the time of network formation can broadcast joining

message containing Joining Packet to introduce itself as a new participating node as

shown in figure 4.2.1D.

 Figure 4.2.1.D. Node F broadcasting Joining Message

A

 B

 C

 D

 E

Updating with Relevant Info

Network A

A

B

C
 F

Broadcasting Joining Message

51

Below mentioned is the explanation of some the packets which are used within network

formation of NFBTCP. Each of these packets are used to keep updated nodes with the

current situation of the network as any node which receive any of these packet is required

to forward it to the next hop neighbor. In this manner routes are formed and nodes in an

ad-hoc network are linked with each other.

 Ad-hoc Formation Packet (AFP). Ad-hoc formation packet is the packet which is

broadcast when two or more mobile nodes want to form an ad-hoc network. This packet

serves two purposes. Firstly, it indicates to the other nodes within the proximity that an

ad-hoc network is about to establish and lastly it gives other potential nodes a starting

point of communication via some relevant information about the other participating

nodes. This packet also helps nodes in determining the hop-count of one node to the other

node. Figure 4.2.1E describes AFP packet structure containing source sequence number

and broadcast ID.

Source Seq no: Broadcast ID Test Data

Figure 4.2.1E AFP packet structure

Ad-hoc Acknowledge Packet (AACK). This packet is broadcasted by the potential nodes

upon reception of ad-hoc formation packet. It serves two purposes; it shows willingness

of a node or nodes to become one of the participants of the network and it also gives

option to re-verify existing information about other nodes of the network. Ad-hoc

Acknowledgement packet contains source sequence number, Broadcast ID, destination

sequence number and acknowledgement of the received AFP packet as shown in figure

4.2.1F. The source sequence number, broadcast ID and destination sequence number are

generated by the node in an incrementing manner.

Source seq no: Broadcast ID Destination Seq no: ACK

Figure 4.2.1F AACK packet structure

52

Joining Ad-hoc Packet (JAP). Mobile nodes which were not the part of network at the

time of network formation are require to send a Joining Ad-hoc Packet (JAP) to join the

network. This packet serves two purposes i.e. informing participating nodes about the

new joining nodes and to update and re-verify previously stored links. Joining Ad-hoc

Packet contains source sequence number, Broadcast ID, destination sequence number and

message data as shown in figure 4.2.1G.

Source seq no: Broadcast ID Destination Seq: no Message data

Figure 4.2.1G JAP packet structure

4.2.2. Generating Acknowledgement

NFBTCP offer modification to the TCP scheme of generation acknowledgement for the

sender nodes of a packet. When a packet is arrived at a destination it issues an

acknowledgement back to the sender using the reverse path formed during the initial data

transmission. The reverse path information is stored in the routing tables of all

participating nodes. This process is known as generating acknowledgement and this is

achieved via acknowledge packet delivery from destination to the source node of a

packet. It should be noted that such packets are only sent when packets with data are

received at some destination. However, for control packets their individual

acknowledgement depends on the type of the packet is sent, some of such control packets

and their acknowledgment types are defined in section 4.2.1. These packets are sent back

to the source node using the same path developed during the delivery of packet from the

source to the destination node. This whole operation could be viewed in figure 4.2.2.

Where an acknowledged was send by Node B on receiving packet from Node A.

NFBTCP modifies TCP approach to discovered link break in an active path which is

explained in the later section of this chapter. NFBTCP defines number of operations

which are linked within the generating acknowledgement as shown in figure 4.2.2A. The

details of these operations are discussed within this section and are as follows.

53

 Figure 4.2.2. Node B is sending acknowledge packet to Node A via C

Function Generating Acknowledgement

Generate Ack Packet ID
Generate Ack Broadcast ID
Include the Reverse Path

End Function

Verifying Broadcast and Packet ID. An intermediate node of acknowledged packet

performs three operations in sequence, verifying broadcast and packet ID being the first

function during which intermediate or acknowledge packet receiving node verifies that it

has not received the same packet before. If a packet with the same broadcast and packet

ID has received before it is discarded and no further action is taken.

E

C

B

A

Packet 1

Acknowledge

Function generate acknowledgement

generates the acknowledgement with an
acknowledge packet and broadcast ID

using the reverse path stored in the

routing table through which the packet
was received. The reverse path

information is available in the routing

table.

54

Figure 4.2.2A. Operations of intermediate nodes on receiving acknowledged packet.

Updating and Re-verifying Information. Once the freshness of received packet is

confirmed the receiver node updates relevant information and forwards it for destination

node or issue an acknowledgment packet if it is destination of the packet.

Forwarding Acknowledge Packet. Intermediate nodes are responsible to forward

packets to the other node. In case of an acknowledged packet, the same route through

which packet received from the sender route is used. Therefore nodes which are used

during the first route use the same route from their storage to send it back to the source

node. In figure 4.2.2.B Node C forwarding acknowledge packet from Node E to Node A

Verifying Broadcast and Packet ID

Updating and Re-verifying Info

Forwarding Acknowledge Packet

55

 Figure 4.2.2B Node C Forwarding Acknowledge Packet from E to A

Acknowledgement Packet (AP). This packet is send by the destination node to the sender

node. Acknowledgement Packet contains source sequence number, broadcast ID,

destination sequence number and message data as shown in figure 4.2.2C.

Source Seq no: Broadcast ID Destination Seq no: Message data

Figure 4.2.2C AP packet structure

4.2.3. Generating Broadcast and Packet ID

This is an important aspect of NFBTCP as this is requiring avoiding loop problem within

an ad-hoc network. In general, if a packet is broadcasted and is not received at the

destined location, it is possible that this packet will loop around the network. In this case

either packet is eventually dropped or expired after its expiring time. Therefore in

NFBTCP all the participating nodes are required to generate fresh broadcast and packet

ID for each individual transmission as shown in figure 4.2.3. This same procedure is

followed in some of the earlier mentioned control packets for different purposes.

 A D

 B C

 E

Acknowledgement Packet (AP)

Forwarding AP

56

Figure 4.2.3. Node Generating Packet and Broadcast ID.

Function Receive and Forward

Received Packet
Read Packet
Search Routing Table for Received Packet ID and Broadcast ID
IF Packet ID and Broadcast ID found
Discard
ELSE
Update Routing Table
Search for Route
IF Route Found
Forward
ELSE
Forward to next hop neighbor

End Function

4.2.4. Forwarding Data Packets

In NFBTCP whenever any intermediate node receives a packet destined for any other

node of the network. It first see whether it has a route to the destination. If a route is

found it uses the same route to transfer the received packet to the destination node.

However, if no route is found for the destination node it forwards the data packet to the

next hop neighbor.

Generating Packet ID

Generating Broadcast ID

Broadcasting Packet

When a packet is received at an

intermediate node it first sees if the

packet has been received before, in case

if it is received before it is discarded

otherwise it is forwarded and the routing

table is updated.

Route search is made when a route is

requested. If the route is found in the

routing table it is sent using the found

route otherwise it is forwarded to the next

hop-neighbor.

57

 Figure 4.2.4. Node verifying broadcast and Packet ID on receiving packet.

If a route is found the following operations are performed in sequence before forwarding

the data packet using the found route to the destination node as shown in figure 4.2.4A.

 Figure 4.2.4A. Forwarding Packet Process of NFBTCP.

Packet received

Route Search

Route Found

Yes No

Use the route Pass it to next hop neighbor

Verifying Broadcast and Packet ID

Updating and Re-verifying Info

Forwarding received packet

58

Verifying Broadcast and Packet ID. An intermediate node of acknowledged packet

perform three operations in sequence, verifying broadcast and packet ID being the first

function during which intermediate or acknowledge packet receiving node verify that it

has not received the same packet before. If a packet with the same broadcast and packet

ID has received before it is discarded and no further action is taken.

Updating and Re-verifying Information. Once it has confirmed that the packet with the

same ID has not received before, receiver node updates relevant information about the

sending node or other nodes of the network.

Figure 4.2.4B Node D forwarding packet to Node C

Forwarding Received Packet. If a route is found intermediate node forward the received

packet using the available route as shown in figure 4.2.4B. In figure 4.2.4.B Node D

forwarding received packet from Node A to Node C.

4.2.5. Link Failure Detection (LFD)

Mobile ad-hoc network by nature suffers with frequent topology changes and link failures

happens unpredictably, detecting such failures in a mobile ad-hoc network is an

important aspect to be seen. Such failure could be a means to degrading TCP

 A
 D

 B

 C

 E

Forwarding Packet

59

performance over mobile ad-hoc network that makes this as an interrelated issue with the

problem being investigated. It is assumed that the quicker we can detect such failures the

better it could be for the network. Since, it could also add extra burden on the network via

unnecessary data and control packets to the same route without knowing the route is

broken. This could further leads to a point where network congestion could occur. If for a

long time no packets are delivered and no acknowledgments are received, causing the

TCP sender to reduce its window size dramatically, even though in fact no real

congestion situation might exist.

NFBTCP introduces a new mechanism of updated notification to address this issue. The

main aim of NFBTCP is the minimization of route failures, their prediction and a fast

notification of the source in case of a route failure. In NFBTCP routing protocol which is

used alongside TCP is made responsible for sending updated notifications whenever a

link failure is detected. This could stop the sender sending any further packets using the

broken route. A routing protocol is used alongside TCP which can also be made aware of

the situation. In this case TCP will no longer be required to utilize its normal procedure

of transporting packets via the same route. A specific action will be taken to

communicate any updated link failure with TCP as effectively as possible in the

implementation phase of this research project

60

Function Broadcast Link Failure

Detect Link Failure
Generate Update Packet
Broadcast Update Packet

End Function

It could further be noted that Routing protocols for mobile ad-hoc network follows

different strategies for route managements depend on the routing protocol used, this

information can assist the routing protocol in the route management process and thus

could make it easy to introduce such mechanisms in the overall communication structure

of routing protocol used and TCP. It will be worthwhile to mention that AODV will be

used alongside TCP to verify various concepts of the scheme alongside TCP in a

simulation environment.

TCP

Receiver

TCP

Sender

 A

 B

 D

 E

 C

 Broadcast Link Failure Detection

When a node detects a link failure, it

broadcasts a link failure update packet across

the network to inform other nodes about the

link failure.

Figure.4.2.5 Link Failure Detection

61

Figure 4.2.5a Route Search

Figure 4.2.5a shows the route search process where a search is made whenever a route

request is received. If a suitable route is found the packet is forwarded to the destination.

4.2.5a Link Failure Update Packet (LFUP)

Link Failure Update Packet contains detail of failed route or a link. This packet is

broadcast by an intermediate route which is in between the sender and the receiver of an

active communication. A node on finding any route failure can broadcast LFUP. This

could also update the routing tables of all other nodes in an active path.

Figure 4.2.5b Node B is broadcasting LFUP

Link Failure Update Packet contains source sequence number, broadcast ID, destination

sequence number and link breakage message as shown in figure 4.2.5c.

Route Search

Route Found

Forward the Packet

 A

 B

 C

 D

 E

Broadcasting LFUP

62

Figure 4.2.5c LFUP Packet Structure

4.2.5b Link Update Packet (LUP)

Link update packet is broadcast when a new route is established between sender and

destination node. Link update packet contains information about new link and is

broadcast to all nodes involved in current communication. It could also be used to update

routing table of all nodes in an active communication path. Upon receiving link update

packet normal communication is resumed between source and destination nodes.

Source Seq no: Broadcast ID Destination Seq no: New Link Update

message

Figure 4.2.5d LUP structure

Link Update Packet contains source sequence number, broadcast ID, destination

sequence number and new link update message as shown in figure 4.2.5d.

4.2.6. Link Capacity Detection (LCD)

It is well known in the context of mobile ad-hoc networks that link breakage happens

frequently and unpredictably. This results in data loss and could also slow down the

network speed. Protocols for mobile ad-hoc network deal with this problem in various

manners. However in the case of TCP, TCP suffers from two main problems, congestion

and slow start mechanism. Whenever TCP recovers from congestion or after

retransmission timeout it invokes slow start mechanism. TCP shrinks its transmission rate

to one segment (i.e. the size announced by the other end or the default, typically 512).

Each time Acknowledgement is received, the congestion window is increased by one

segment. The sender can transmit up to the maximum of the congestion window size.

In our scheme link capacity information is available at the routing table of the routing

protocol. Additional parameters could be added in the existing specification of the

routing protocol mentioned above to store such information. Therefore, whenever a new

Source Seq no: Broadcast ID Destination Seq no: Link Breakage Update

message

63

link is established nodes involved in active communication update their routing table with

the link capacity information. In addition, all the nodes in between the sender and

receiver are also updated.

TCP sender can get information from link formation packet stored in a routing table and

can adjust its congestion window size accordingly. When a node detects new link it

broadcast link formation packet (LFP), as shown in figure 4.2.6, containing link capacity

information and is stored in a routing table of the routing protocol, therefore TCP doesn’t

need to invoke slow start mechanism when new link is detected and communication is

resumed. Therefore, prior to a communication the TCP sender gets information about link

capacity from the routing table of the next node involved in communication and adjusts

its congestion window size.

It has been mentioned above that congestion could be avoided through the use of LFD

operation of the proposed scheme. In this context LCD operation determines link

capacity of a newly established link. In NFBTCP mobile nodes are made responsible to

inform TCP sender about the new link capacity of the established link. This whole

process is shown in figure 4.2.6 where a new link is established in between A and F via

Node B and Node E, Please note that either Node E which is adjacent to the receiving

node F will broadcast LFP.

Figure 4.2.6 Broadcasting LFP

A

E

C

D

B

Broadcasting LFP

TCP Receiver

TCP

Sender

64

Function Link Capacity

Calculate Link Capacity
Update Link Capacity

End Function

4.2.7 Link Formation Packet

Link formation packet contains information about the link capacity. This packet is

broadcast in link capacity detection operation of the proposed scheme. In order to get link

capacity information, link formation packet is broadcast and is stored in routing table of

routing protocol. Routing protocols with cache can add an extra parameter to link

formation packet and can store in its cache. Every time when a new link is detected link

formation packet is updated with link capacity information. LFP contains source

sequence number, broadcast ID, destination sequence number and link capacity

information message as shown in figure 4.2.7.

Source Seq no: Broadcast ID Destination Seq no: Link Capacity info: Message

Figure 4.2.7 LFP packet structure

4.2.8. out-of-order delivery Notification

It has been mentioned before that mobile ad-hoc networks suffer from frequent topology

changes. TCP is known for in-order delivery to the receptionist; however no direct

effective mechanism is known which can be used to deal with lost or dropped packets.

This is of particular interest in the context of mobile ad-hoc networks, where packets

could be dropped due to link or route failure. NFBTCP uses some of the known benefits

to deliver solutions for the out-of-order delivery problem in mobile ad-hoc network

environments.

In order to deal with out-of-order delivery of data packets a buffer is created in between

TCP and the receiving node. Therefore rather than delivering a packet as it arrives all the

packets of a single transmission are stored in the buffer. Likewise, TCP will be modified

Link capacity is calculated and is sent

to the TCP sender so that adjustments

could be made accordingly.

65

so that it can send one acknowledgement for the complete delivery of all the data packets

of a single transmission rather than a single acknowledgement for a single packet. If a

lost packet is detected a Buffer Update Packet will be sent to the sender pointing the

missing packet as shown in figure 3.2.8 This lost packet can easily be identified either via

sequence number or broadcast ID. Please note this information is normally included or

assigned by the routing protocol of MANET. It is the responsibility of the sending node

to re-broadcast the missing packet as identified by the TCP back to the receiver side

using the same route as for the previous packet.

Figure.4.2.8 Broadcasting Buffer Update Packet

Function out-of-order delivery

Discover missing packet sequence
Requesting missing data packet
Receive requested data packet
Arranging data frame
Delivering data to the destination

End function

4.2.8a. Buffer Update Packet

Buffer Update Packet is sent whenever an out-of-order delivery is received at TCP buffer

side. This serves an additional purpose and can also be used to update the intermediate

D

A

B

E

C

BUFFER

TCP Receiver

TCP sender

When a packet sequence is found missing

in an active data transmission a request to

resend missing data packet is sent to the

sender. On receiving the missing data

packet the data frame is re organized and

is delivered to the destination.

66

nodes about the availability of the other nodes in between the source and the receiving

node. Needless to mention such information is always fruitful and could also be used for

any other possible communication by the intermediate nodes. Buffer update Packet

contains source sequence number, broadcast ID, destination sequence number and out-of-

order delivery notification message as shown in figure 4.2.8a.

Figure 4.2.8a BUP packet structure

4.3. Summary

In this chapter a detailed description outlining the main operations of NFBTCP is

presented. The focus of this chapter is to establish a clear understanding related to the

effectiveness of the proposed scheme. In this context, various functions as defined by the

scheme specification are explained. In addition, all such explanations are aided by both

the diagrammatic representation and pseudo codes of the individual functions. In view of

the given scheme brief it can easily be understood that the scheme follows a unique and

novel operational pattern in correspondence with the operational requirements of an ad-

hoc network. It is quite clear that without implementation the scheme cannot be

evaluated. Therefore, the proposed scheme is implemented in Java and evaluated in

SWANS. The focus of the next chapter is on testing and evaluating NFBTCP in a

simulation environment.

Source Seq no: Broadcast ID Destination Seq no: Out-of-order delivery

Notification Message

67

Chapter 5. Simulation and Implementation

5.1. Introduction

It was crucial to evaluate the implemented scheme to verify both concept and efficiency

in varying as a simulation environment. ‘SWANS’ has been selected as simulation

software. This decision is based on the fact that simulation of large number of Ad-hoc

nodes is much easier to monitor in SWANS than in many other known simulators of

similar type [41]. Simulation environments were created using different input parameters;

it was due to aim of observing NFBTCP under different simulation environments. It is

important to mention that the simulation covers most of the standard aspect of an

evaluation cycle namely mobility, congestion control and physical network attributes.

SWANS has certain limitation besides numerous benefits. Some of these weaknesses

include its text based nature and usability. It is known that SWANS is easy to use with

support of high scalability, however a user should have some previous understanding of

the language in which software is written in order to have full benefits of the SWANS. In

this chapter details of simulation experiments and a discussion of simulation results has

been presented.

5.2. SWANS

Scalable wireless Ad-hoc network simulator (SWANS) runs over java in simulation time

JiST platform. JiST is a high performance discrete event simulation engine that runs over

a standard Java virtual machine [40]. The SWANS simulator combines the traditional

systems-based and languages-based approaches to simulation construction. It was created

primarily because existing network simulation tools are not sufficient for current research

needs, and its performance serves as a validation of the virtual machine-based approach

to simulator construction [41]. It is organized as independent software components that

can be composed to form complete wireless network configurations.

68

5.2.1. Why SWANS was Chosen

Simulations play an important role in the development and evaluation of future systems.

Researchers usually use simulations for the evaluation of ad hoc network protocols

because they easily allow for a large number of nodes and reproducible environment

conditions. Some of the existing well known network simulators are ns2, GloMoSim and

SWANS. For the evaluation of NFBTCP, SWANS was chosen for simulation

experiments. SWANS capabilities are similar to existing simulators but is able to

simulate much larger networks and have a number of other advantages over existing

tools. SWANS can run existing Java network applications, such as web servers and peer-

to-peer applications, over the simulated network without modification. The application is

automatically transformed to use simulated sockets and into a continuation-passing style

[40]. The original network applications are run within the same process as SWANS,

which increases scalability by eliminating the considerable overhead of process-based

isolation. Network packets in SWANS are modeled as immutable objects, allowing a

single copy to be shared across multiple nodes. This saves the memory and time of

multiple packet copies on every transmission. A diagram illustrating how SWANS works

is shown in figure 5.In SWANS, simulation events among the various entities such as

packet transmissions are performed with no memory copy and no context switch. The

system also continuously profiles running simulations and dynamically performs code in

lining, constant propagation and other important optimizations, even across entity

boundaries. This is important, because many stable simulation parameters are not known

until the simulation is running. Memory is critical for simulation scalability. Automatic

garbage collection of events and entity state in SWANS not only improves robustness of

long-running simulations by preventing memory leaks, it also saves memory by

facilitating more sophisticated memory protocols. An example of memory savings in

SWANS is the use of soft references for storing cached computations, such as routing

tables. These routing tables can be automatically collected, as necessary, to free up

memory. SWANS is unique in a way that it allows integration of new scheme within the

existing model more comfortably than some other simulators such as ns2. In addition,

SWANS is capable of running simulations involving thousands of mobile nodes with

results that match the accuracy of other well known simulation software. In addition,

69

almost all of the mobility models are available in the software in order to design

simulation configuration of one choice. In the light of the above it is clear that SWANS

closely matches the requirements of this research project. Thus it is selected as a

simulation tool for evaluation of NFBTCP. The coded file of the proposed implemented

scheme is included in SWANS. A script file is written specifying various parameters as

needed in a simulation experiments. The software is then recompiled in order to take

effects of the changes. The same processes were followed in the case of NFBTCP.

5.3. Implementation

Implementation of defined functions has been done in Java using a single file

NFBTCP.Java. This single file is later added in SWANS which is then re-complied and

simulation experiments were run using AODV as a routing protocol. Details of

simulation and results are also explained in this chapter.

Figure 5. SWANS structure.

Terrain

model

Physical Layer

Process

 Memory

Time

 Run thread

 NFBTCP

AODV

OS

MODEL

(Dassf
runtime

kernel)

RF Channel Model

70

5.3.1. Implementation Language

Java language has been selected as an implementation language to program the proposed

scheme. It is due to the fact that the proposed scheme will be evaluated in SWAN

simulator software which is written in Java. Java is an object oriented language which

supports inheritance, polymorphism and message passing etc. at present it is famous in

mobile phones and bank applications. Java also offers independent architecture and many

enterprise applications are being developed in Java. A class implementing interface is

defined prior to a static class referring to the actual interface class of the simulation

software. This has been followed by a constructor where variables as defined in the actual

code files are initialized. Functions have been written which reflect specification and

network operational patterns which can be seen in the appendix. It is important to

mention that Java has been selected as the implementation language due to simulation

software programming which is done in Java.

5.4. Simulation Experiments

Evaluation experiments were conducted on Windows under SWANS and various input

parameters were used to monitor the developed scheme. A single simulation script with

the reference to NFBTCP implementation file is created and for each simulation

experiment different nodes and mobility patterns were used. In total eight different

experiments were conducted. In each of these experiments varying mobile nodes, field

and grid size were used. It is important to note that packet loss was defined as none.

Since declaring packet lost means nothing to the simulator. From the first until the fourth

experiment numbers of nodes were increased to 200 with a fixed field size of 500 and

grid size of 25. In the second set of experiments nodes were increased in the same

manner as was in the first set of experiments. However, the field size was decreased to

250 and grid size was decreased to 15. In the light of evaluation experiments it can be

seen that all functions as defined by NFBTCP is fully applicable and operational. In the

first set of experiments a higher number of route requests and route replies were observed

as can be seen in figure5.1. In addition 213 routes were added as can be seen in figure 5.1

71

Figure 5.1 simulatin with 50 mobile nodes screenshot of experiment 1

In the second set of experiment nodes were increased to 100 with a fixed field and grid

size. An increase in the route requests and route replies were observed in addition to the

higher number of routes which were added at the end of simulation cycle. These could

also be observed in figure 5.2.

Figure 5.2 simulatin with 100 mobile nodes screenshot of experiment 2

In the third set of experiment higher message activity in terms of route requests and route

replies were observed in comparison with the above two experiments as it was expected

due to an increased in number of nodes. Likewise, higher numbers of routes were added

as shown in figure 5.3. This show a very good behavior as it was expected.

72

Figure 5.3 simulatin with 150 mobile nodes screenshot of experiment 3

In the fourth set of experiment nodes were increased to 200 with a fixed field size of 500

and grid size of 25. In these set of experiments the higher message activity in terms of

route requests and route replies were observed due to an increase in number of nodes as

shown in figure 5.4. Likewise, higher numbers of routes were added.

Figure 5.4 simulatin with 200 mobile nodes screenshot of experiment 4

In the remaining four sets of experiments mobile nodes were increased from 50 to 200

however the fixed field size was decreased to 250 and grid size was decreased to 15. In

the fifth set of experiment result shows same high performance as with the double field

and grid sizes as shown in figure 5.5.

73

Figure 5.5 simulatin with 50 mobile nodes screenshot of experiment 5

In the sixth set of experiment nodes were increased to 100 with a fixed field and grid size.

An increase in the route requests and route replies were observed in addition to the higher

number of routes which were added at the end of simulation experiments as shown in

figure 5.6.

Figure 5.6 simulatin with 100 mobile nodes screenshot of experiment 6

In the seventh set of experiment nodes were increased to 150 with a fixed field and grid

size. Higher message activity in terms of route requests and route replies were observed

in comparison with the above two experiments with the same fixed field and grid size, as

it was expected due to an increased in number of nodes. Likewise, higher numbers of

routes were added as shown in figure 5.7.

74

Figure 5.7 simulatin with 150 mobile nodes screenshot of experiment 7

In the eight set of experiment nodes were increased to 200 with a fixed field and grid

size. Higher route requests and route replies were observed due to an increased in number

of nodes. Likewise, higher numbers of routes were added as shown in figure 5.8.

Figure 5.8 simulatin with 200 mobile nodes screenshot of experiment 8

5.5. Comparison and Discussion

As mentioned previously a systematic approach has been followed from the start to the

end of the project. A special focus was given on the meeting the defined aims and

objectives of this project. These aims and objectives are transformed into milestones and

75

each of these milestone are evaluated as a sign of marking project progress. In addition,

all of these objectives are achieved as a project outcome. In the context of this particular

project, evaluation observation details one of the two things related to the proposed and

implemented scheme. The first in between these two factors is the confirmation of the

theoretical concepts which were included as a part of functional specification of

NFBTCP. It can be confirmed that NFBTCP has proven itself as a fully functional and

operational-able for mobile ad-hoc network, thus should be seen or taken as a new novel

TCP based solution for mobile ad-hoc network. The second and the last aspect is the

scheme performance. In the light of the above given experiments details, it could be seen

that NFBTCP performed well in all simulation environment.

It could be noted from the light of the literature review that there are a number of

different schemes such as TCP-F, TCP-ELFN, ATCP and Split-TCP etc, were proposed.

However, it is known that these schemes in one way or the other lack a number of known

operational requirements and thus do not fully address TCP performance within mobile

ad-hoc networks. In TCP-F the RRN packet is generated when the intermediate node

detects re-establishment of broken path and it depends on information from routing

protocol. TCP-F has an additional state compared to the traditional TCP state machine,

and hence its implementation requires modifications to the existing TCP libraries.

Another disadvantage of TCP-F is that the congestion window used after a new route is

obtained may not reflect the achievable transmission rate acceptable to the network and

the TCP-F. In TCP-ELFN when the network is temporarily partitioned, the path failure

may last longer; this can lead to the origination of periodic probe packets consuming

bandwidth and power. Another disadvantage is that the congestion window used after a

new route is obtained may not reflect the achievable transmission rate acceptable to the

network and the TCP receiver. ATCP depend on the network layer protocol to detect the

route changes and partitions, which not all routing protocols may implement. Addition of

a thin ATCP layer to the TCP/IP protocol stack requires changes in the interface

functions. Split-TCP requires modifications to TCP protocol. The end-to-end connection

handling of traditional TCP is violated. The failure of proxy nodes or frequent path

breaks, affects the performance of split-TCP. In view of simulation results where

NFBTCP showed better throughput performance as more routes available in an ad hoc

76

network implies possibility of higher throughput since more data can be transferred using

the established routes. It does however require a more practical demonstration of

comparison with other schemes which is included as a part of potential future PhD study.

 A higher number of route requests and route replies representing networking activities

were observed with the increase of mobile nodes. This clearly showed that NFBTCP fits

well within mobile ad-hoc networking environments. Since increase of mobile nodes to

some extent implies increase in the communication taking place in a network. In addition

to the messages activities, good numbers of routes were added at the end of each

simulation cycle. It is quite understandable that the more routes available for data transfer

in a mobile ad-hoc network, the better. Moreover, such additions to the available routes

could directly impact overall throughput. It is due to the nature of mobile ad-hoc

networks, where routes forms and are broken almost unexpectedly. Therefore an

alternative route to the destination is always beneficial. Lastly, nodes in mobile ad-hoc

networks suffer with limited resources. That makes conservation of all such resources an

important issue in the context of mobile ad-hoc networks.

This research analyzed TCP performance over mobile ad-hoc network prior to proposing

a functional solution to address identified weaknesses. In this context, both TCP and

previously reported schemes have been taken into consideration so as to build a fully

effective model. Thus NFBTCP has been a more reliable and effective TCP based

solution for mobile ad-hoc networks. In NFBTCP, TCP specific functions are modified in

NFBTCP specification to solve TCP issues in mobile ad-hoc network. Examples of such

main functions are Generating Acknowledgement, Generating Broadcast and Packet ID,

Link Failure Detection, Link Capacity Detection and out-of-Order Delivery Notification.

Generating acknowledgement process in NFBTCP is achieved via acknowledge packet

(AP) delivery from destination to the source node of a packet. When an intermediate

node receives a packet from a source node for destination node verify broadcast and

packet ID that it has not received the same packet before it is discarded. If the same

packet is not received the intermediate node stores it and sends acknowledge pack to the

sender and forwards the packet received from the source node to the destination node.

Thus, nodes in NFBTCP maintain fresh information about other nodes and can be used to

send control acknowledgements. Therefore, TCP does not need to send

77

acknowledgements as normal; rather it is replaced by the control acknowledgement of

NFBTCP. Therefore, TCP does not need to shrink its congestion window due to TCP

sender not receiving acknowledgement rather it is directly handled by NFBTCP.

 In NFBTCP when a destination node or intermediate node responsible for forwarding

packet to the destination node detects link breakage it inform the TCP sender about link

breakage so that the TCP sender stops sending further packets to the destination unless a

new route is established. Detecting link failures is very important and informing the TCP

sender about the link failure can improve network throughput. In NFBTCP intermediate

nodes between the sender and destination nodes are made responsible for responding

quickly to link failures and broadcast link failure update packets containing link failure

information. All nodes involved in current communications update their routing tables

upon reception of an LFUP. In NFBTCP when a new link is established a link update

packet is broadcast to inform the source node about the new established route to allow the

sending packets to resume

 NFBTCP introduces a link capacity detection function to detect the link capacity of

communication between source and destination nodes. A link formation packet is used to

inform the TCP sender about link capacity so that it adjusts its congestion window

according to information available in the link formation packet, thus improving overall

throughput of the network. NFBTCP uses some of the known benefits to deliver solutions

to the out-of-order delivery problem of TCP in mobile ad-hoc network environments. All

the packets of a single transmission are stored in a buffer created between TCP and the

receiving node and a send single acknowledgement is sent to the TCP sender. The buffer

update packet contains information about lost packets and will be sent to the TCP sender

pointing out missing packets and this lost packet will be identified by either sequence

number or broadcast ID. Thus TCP sender obtains information from buffer update

packets to resend it to the sender. In summary, in the light of the NFBTCP specification

and above explanation it is quite clear that NFBTCP offers an excellent TCP based

solution for communication over mobile ad-hoc network.

 In the following chapter conclusions which are drawn from the start until the end of this

research project and directions for future work are presented.

78

5.6. Summary
In this chapter a detailed account of the evaluation phase of the proposed and developed

scheme is presented. The evaluation results clearly demonstrate the effectiveness of

NFBTCP in addressing issues of TCP performance in mobile ad-hoc networks. In view of

the obtained results it can easily be observed that some of the known TCP issues in

mobile ad-hoc networks are effectively addressed by NFBTCP. Moreover, a good

throughput at the end of various simulation cycles indicates a notable performance for

NFBTCP over mobile ad-hoc networks. The focus of the next chapter is on concluding

research findings which are gathered at various stages of this project.

79

Chapter 6. Conclusions and Future Work

6.1. Introduction

This work could be seen as a series of associated tasks which were carried out before

being reached to the final solution of the problem being investigated. In this context

phase one could include researching the main problem domain and analyzing the existing

solutions. After analyzing the existing solutions certain shortcomings were identified in

this area and have been selected to work on as a part of this project. The phase two

comprises proposing a novel solution to the problem, design, implementation and

evaluation. NFTCP follows an intermediate approach in between some of the existing

mechanisms of TCP based schemes, different functions were developed to improve TCP

performance over mobile ad-hoc network, thus should be taken as novel based solution

for mobile ad-hoc network. The novelty of NFBTCP is the most important aspect of this

project. The network formation of NFBTCP is an additional function added to the TCP

structure for the formation of the mobile ad-hoc network. NFBTCP also deals with

congestion avoidance in a TCP based transmission. The effect of the link breakage is one

of the constraints of TCP over mobile ad-hoc network. Detecting link breakage as soon as

it happens and informing the sender about the link breakage improves TCP performance.

In NFBTCP nodes destination node or nodes part of communication inform sender about

broken path to stop sending further packets in order to avoid congestion and packet lost

due to retransmission timeout. In NFBTCP a buffer is created at destination node which

stores all packets and if a packet is lost or out of order packets arrived at destination node

request the missing packet and single acknowledgement is sent to the sender after arrival

of the packets in a data frame. Implementation of the scheme has been done in java and

evaluated using SWANS. Simulation results show more routes were added at the end of

each experiment. Alternative route to the destination is always valuable in mobile ad-hoc

networks where routes are form and broken frequently. The simulation experiment

results demonstrate that the main concepts have been successfully met as underlined in

the proposed scheme, especially congestion control and out-of-order packet delivery. The

higher number of routes with the increase of mobile nodes suggests that the implemented

congestion avoidance mechanism is functional with a reduction in link breakage since

80

otherwise it would not be possible for more routes to be added. The congestion control

process affects the smooth flow of data and control packets. Similarly, the addition of

mobile nodes illustrates that more packets are broadcasted. A route can be established

each time a request for route formation is sent. Therefore continuation of route formation

explains why the flow was normal in a simulation cycle. Thus the proposed scheme

addresses congestion avoidance as expected. In order to avoid out-of-order packet

delivery a buffer was introduced into NFBTCP; more throughput at the end of each

simulation cycle also suggests that the idea of adding state worked well in the scenarios

considered. Conclusions can be seen as a combination of these two phases and are

presented in section 2 where directions of future work are given in section 3 of this

chapter.

6.2. Conclusions

Routing in mobile ad-hoc networks is a challenging issue. Much effort is going on to

invent routing mechanisms which can fulfill the typical routing requirements of mobile

ad-hoc networks. TCP/IP has initially been designed to support similar tasks in fixed

networks. Work has been done to transform TCP as a routing solution for mobile ad-hoc

networks. This research has discovered that most of the TCP based variant routing

solutions of mobile ad-hoc networks have not been successful in addressing the problem

fully. Taking TCP based routing solutions as a main problem; this research has proposed

a novel routing solution called Node feedback TCP based as a routing scheme for mobile

ad-hoc networks. The scheme has been developed in Java and evaluated using SWANS.

The following are the conclusions driven in the light of the conducted research.

Evaluation observations detail the confirmation of the theoretical concepts which were

included as a part of the functional specifications of NFBTCP. NFBTCP has validated

itself as a fully functional and operational-able for mobile ad-hoc networks, thus should

be taken as a new novel TCP based solution for mobile ad-hoc networks. In the light of

the conducted experiments, it can be seen that NFBTCP performed well in all simulation

environments. A higher number of route requests and route replies representing

networking activities were observed with the increase of mobile nodes. This clearly

showed that NFBTCP fits well within a mobile ad-hoc networking environment. Increase

of mobile nodes to some extent implies increase in the communication taking place in a

81

network. In addition to the messages activities, a good numbers of routes were added at

the end of each simulation cycle. It is quite understandable that the more routes available

for data transfer in a mobile ad-hoc network, the better. In this context unlike traditional

TCP better route connectivity is possible through NFBTCP.

It is important to mention that more routes have a direct connection with the overall

throughput. In mobile ad-hoc networks routes form and are broken almost unexpectedly,

hence an alternative route to the destination is always beneficial. Nodes in mobile ad-hoc

networks suffer from limited resources it makes conservation of all such resources an

important issue in the context of mobile ad-hoc networks.

In relation to the literature review TCP invokes congestion control mechanism

unnecessarily. This has been addressed through a newly introduced congestion control

mechanism of NFBTCP. In NFBTCP it is the responsibility of the node forwarding

packet to the destination node upon detecting route breakage to inform the TCP sender

about route breakage so that the TCP sender does not invoke the congestion control

mechanism. The TCP sender should wait until a new route is established instead of

invoking the congestion control mechanism. This approach is more feasible and close to

the ad hoc network operational requirement. Link failure due to frequent topology

changes is the major factor affecting TCP performance over mobile ad-hoc. This could

further lead to a point where network congestion could occur. In NFBTCP routing

protocol which is used alongside TCP is made responsible for sending updated

notifications whenever a link failure is detected. A link Failure Update Packet is

broadcast to inform the TCP sender about link failures. This could also update the routing

tables of all other nodes on an active path.

6.3. Future Work

NFBTCP has been designed and implemented in a manner which allows integration of

other schemes with the implemented. In addition, it has proven itself as a suitable and

efficient scheme in view of the implementation and simulation phase. However, the

following are some of the directions which could be taken in any possible modification of

the developed scheme.

82

 Extending NFBTCP Support. NFBTCP can be overlooked in order to extend it

support for sister networks of an ad-hoc network. Since, most of the transportation

concepts are similar at a normal level.

 Evaluation of NFBTCP with Routing Schemes. In the presented research,

NFBTCP has been simulated with AODV, it has always been a good area to

further monitor scheme performance with some other schemes such as DSR,

MAODDP and DSDV.

 Security. This has been a challenging issue in the context of mobile ad-hoc

networking. Though many secure routing schemes [MAODDP] have been

proposed however, it would be good to look into it from a different perspective by

addressing security at a transport level.

 Hidden Terminal Problem. NFBTCP has addressed several TCP related issue

without being too deep into MANET other related problem. It does make sense

because such topics fall outside the scope of the conducted research. However, it

could provide a complete new vision to the whole scenario if this particular

problem is addressed in view of further enhancing NFBTCP performance of

handing such issues.

83

References

[1] M. Issoufou Tiado, R. Dhaou and A.-L. Beylot ‘’RCL : A new Method for Cross–

Layer Network Modelling and Simulation’’ ENSEEIHT – IRIT Lab. 2 rue C.

Camichel, 2005

[2] Raisinghani, V.T.; Iyer, S ‘’Cross-layer feedback architecture for mobile device

protocol stacks’’ Communications Magazine, IEEE Volume 44, Issue 1, Page: 85

– 92. 2006

[3] Jaehoon Kim and Kwangsue Chung ‘’C-Snoop: Cross Layer Approach to

Improving TCP Performance Over Wired and Wireless Networks’’ School of

Electronics Engineering, 2007

[4] S. Shakkottai, T. S. Rappaport, and P. C. Karlsson, "Cross-layer design for

wireless networks," IEEE Communications Magazine, vol. 41, pp. 74-80, 2003.

[5] V. T. Raisinghani and S. Iyer, "Cross-layer design optimization in wireless

protocol stacks," Computer Communications, vol. 27, pp. 720-724, 2004.

[6] L. Chen, S. H. Low, and J. C. Doyle, "Joint congestion control and media access

control design for ad hoc wireless networks," presented at IEEE INFOCOM,

2005.

[7] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, and R. Sivakumar, "ATP: A

reliable transport protocol for ad-hoc networks," presented at MOBIHOC:

PROCEEDINGS OF The Fourth ACM International Symposium on Mobile Ad

Hoc Networking and Computing, 2003.

[8] S. Kopparty, S. V. Krishnamurthy, M. Faloutsos, and S. K. Tripathi, "Split TCP

for mobile ad hoc networks," presented at GLOBECOM'02 - IEEE Global

Telecommunications Conference, 2002.

[9] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash, "Feedback based

scheme for improving TCP performance in ad-hoc wireless networks," presented

at Proceedings of the 18th International Conference on Distributed Computing

Systems, 1998.

[10] X. Yu, "Improving TCP performance over mobile ad hoc networks by exploiting

cross-layer information awareness," presented at MobiCom Proceedings of the

Tenth Annual International Conference on Mobile Computing and Networking,

2004.

[11] Dan Liu, Mark Allman, Shudong Jin, Limin Wang, “Congestion Control Without

a Startup Phase”, Workshop on Protocols for Fast Long-Distance Networks

(PFLDnet), 2007

[12] J. Liu and S. Singh, "ATCP: TCP for mobile ad hoc networks," IEEE Journal on

Selected Areas in Communications, vol. 19, pp. 1300-1315, 2001.

84

[13] G. Holland and N. Vaidya, “Analysis of TCP performance over mobile ad hoc

networks,” – Part II: Simulation details and results, Technical report TR99-005,

1999.

[14] Sumitha Bhandarkar, A.L. Narasimha Reddy, Mark Allman, Ethan Blanton,

“Improving the Robustness of TCP to Non-Congestion Events“, RFC 4653. 2006

[15] Shugong Xu Tarek Saadawi Myung Lee, “Comparison of TCP Reno and Vegas in

Wireless Mobile Ad Hoc Networks“Dept. of Electrical Engineering, City

University of New York, City College, New York, NY 10031.

[16] G. Holland and N. Vaidya, "Analysis of TCP performance over mobile ad hoc

networks," Wireless Networks, vol. 8, pp. 275-288, 2002.

[17] B.S. Bakshi, P. Krishna, D.K. Pradhan and N.H. Vaidya, Improving performance

of TCP over wireless networks, in: International Conference on Distributed

Computing Systems, 1997.

[18] J. Broch, D.A. Maltz, D.B. Johnson, Y. Hu and J. Jetcheva, A performance

comparison of multi-hop wireless ad hoc network routing protocols, in:

ACM/IEEE International Conference on Mobile Computing and Networking pp.

85–97, 1998.

[19] T. D. Dyer and R. V. Boppana, "A comparison of TCP performance over three

routing protocols for mobile ad hoc networks," presented at Proceedings of the

2001 ACM International Symposium on Mobile Ad Hoc Networking and

Computing: MobiHoc, 2001.

[20] H.Bakht, “A Study of Routing Protocols for Mobile Ad-hoc Networks” in 1
st

International Computer Engineering Conference, 2004.

[21] J. Broch, D.B. Johnson and D.A. Maltz, The dynamic source routing protocol for

mobile ad hoc networks, Internet Draft, IETF MANET Working Group, 1998.

[22] H.Bakht, M.Merabti, and R.Askwith, “Mobile Ad-hoc On-demand Data Delivery

Protocol,” 3
rd

 Annual Post-Graduate Symposium on the Convergence of

Telecommunications”, Networking and Broadcasting, 2002.

[23] A. Gupta and H. D. Sharma, "A Survey on Wireless Ad Hoc Networks," IETE

Technical Review, vol. 20, pp. 339-347, 2003.

[24] T. -Y. Wu, C. -Y. Huang, and H. -C. Chao, "A survey of mobile IP in cellular and

mobile ad-hoc network environments," Ad Hoc Networks, vol. 3, pp. 351-370,

2005.

[25] S. Toumpis and A. J. Goldsmith, "Capacity regions for wireless ad hoc networks,"

IEEE Transactions on Wireless Communications, vol. 2, pp. 736-748, 2003.

[26] H.Bakht. “Critical ad-hoc networking features”, Published in Computing

Unplugged, 2005.

[27] C.E. Perkins, E.M. Royer, “Ad hoc on demand distance vector (AODV) routing,

Internet Draft”, Mobile Ad Hoc Network (MANET) Working Group, IETF, 1998.

85

[28] S Pradhan, E Lawrence and J Das, S Newton “Bluetooth potential in the m-

enterprise: a feasibility study”, Information Technology: Coding and Computing,

2004

 [29] T. Camp, J. Boleng, and V. Davies, "A survey of mobility models for ad hoc

network research," Wireless Communications and Mobile Computing, vol. 2, pp.

483-502, 2002.

[30] H.Bakht. “Some characteristics of Mobile Ad-Hoc Network”, Published in

Computing Unplugged, July 2004.

[31] W. A. Melendez, E. L. Petersen ‘The upper layers of the ISO/OSI reference

model (Part II)’ Computer Standards & Interfaces pp.185-199. 1999.

[32] Shin-Jer Yang , Yung-Chieh Lin, “Tuning Rules in TCP Congestion Control on

the Mobile Ad Hoc Networks”, Proceedings of the 20
th

 International Conference

on Advanced Information Networking and Applications, Volume 01 , 2006.

[33] Christian Lochert, Björn Scheuermann, Martin Mauve, “A survey on congestion

control for mobile ad hoc networks”, Wireless Communications & Mobile

Computing, Volume 7 , Issue 5, pp. 655 – 676, June 2007, ISSN:1530-8669.

[34] Jehan.M, G.Radhamani, T.Kalakumari, “A survey on congestion control

algorithms in wired and wireless networks”, Proceedings of the International

conference on mathematical computing and management (ICMCM 2010), June

2010.

[35] Foez ahmed, Sateesh Kumar Pradhan, Nayeema Islam, Sumon Kumar

Debnath,“Performance Evaluation of TCP over Mobile Ad-hoc Networks” in

(IJCSIS) International Journal of Computer Science and Information Security

,Vol. 7, No. 1, 2010.

[36] K. Satyanarayan Reddy and Lokanatha C. Reddy, “A survey on congestion

control mechanisms in high speed networks”, IJCSNS-International Journal of

Computer Science and Network Security, vol. 8, no. 1, pp. 187 – 195, 2008.

[37] Lianghui Ding, Wenjun Zhang, Hui Yu, Xinbing Wang, Youyun Xu,

“Incorporating TCP acknowledgements in MAC layer in IEEE 802.11 multihop

ad hoc networks”, GLOBECOM'09 Proceedings of the 28th IEEE conference on

Global telecommunications, 2009.

[38] Lianghui Ding, Wenjun Zhang, Hui Yu, Xinbing Wang, Youyun Xu, “Improve

throughput of TCP-Vegas in multihop ad hoc networks”, Journal Computer

Communications, Volume 31 Issue 10, pp. 2581-2588 June, 2008.

[39] Farzaneh Razavi Armaghani, Sudhanshu Shekhar Jamuar, Sabira Khatun, Mohd

Fadlee A. Rasid, “Performance Analysis of TCP with Delayed Acknowledgments

in Multi-hop Ad-hoc Networks”, Wireless Personal Communications, Volume 56,

Number 4, pp. 791-811, 2011.

[40] Elmar Schoch, Michael Feiri, Frank Kargl, Michael Weber, “Simulation of Ad

Hoc Networks: ns-2 compared to JiST/SWANS”, SIMUTools March 3–7, 2008.

86

[41] Rimon Barr, “SWANS– Scalable Wireless Ad hoc Network Simulator”, User

Guide, March 19, 2004.

[42] Fard, M.A.K. “Improve TCP performance over mobile ad hoc network by

retransmission timeout adjustment”, IEEE 3rd International Conference on

Communication Software and Networks (ICCSN), pp. 437 – 441, 2011.

[43] Ahmad Dalal'ah, Samir Bataineh, Awos O. Kan'an, “Improving TCP performance

over mobile ad hoc networks”, International Journal of Internet Technology and

Secured Transactions, Vol. 2, pp. 137 – 159, 2010.

[44] Dhananjay Bisen, Sanjeev Sharma, “Improving performance of TCP-NewReno

over mobile Ad-hoc Networks using ABRA”, International Journal of Wireless &

Mobile Networks (IJWMN) Vol. 3, No. 2, 2011.

[45] K. Batri, S. Anbu karuppusamy, “Improving TCP Performance in Ad-Hoc

Networks”, European Journal of Scientific Research, Vol.65 No.2, pp. 237-245,

2011.

[46] Javier Gomez, Luis A. Mendez, Victor Rangel, Andrew T. Campbell, “Power

Controlled QoS tuning for wireless ad hoc networks PCQoS”,Telecommunication

System, 2010.

[47] Monika Rani, Harish Kumar, Gurpal Singh3, “Optimal Routing Protocol for TCP-

NewReno in Wireless Mobile Ad-hoc Networks”, International Journal of

Network and Mobile Technologies, Vol 2, Issue 3, 2011.

[48] Md. Mohsin Ali, A. K. M. Sazzadul Alam, and Md. Shohan Sarker, “TCP

Performance Enhancement in Wireless Mobile Ad Hoc Networks”, International

Journal on Internet and Distributed Computing Systems. Vol 1 No: 1, 2011.

[49] F Alam, R. Askwith and M. Merabti, “Node Feedback Based TCP Scheme for

Mobile Ad-hoc Network”, GESJ: Computer Science and Telecommunications

2011|No.2 (31).

[50] D.D. Clark “Window and Acknowledgement Strategy in TCP” RFC 813, July

1982.

[51] K. Ramakrishnan, S. Floyd and D. Black"The Addition of Explicit Congestion

Notification (ECN) to IP" RFC 3168, September 2001.

87

Appendix
Programing Codes:

public class TransNFBTCP
{

public static class NFBTCPOptions extends TransInterface.TransMessage
 {

public NFBTCPOptions ()
 {

}
 /**
* Returns the size of the option in a message. *
* @return size of option
*/

public int getSize()

{
return 0;
}

/**
* Retrieve the option and store it in the given byte array.
*
* @param msg byte array to copy the option to
* @param offset starting index in the destination array
*/

public void getBytes(byte[] msg, int offset)

{
throw new RuntimeException("not implemented");
}
}

/**
* Data structure for NFBTCP Message.
* NFBTCP Packet
* header:
* srcPort : 2
* dstPort : 2

88

* seqNum : 4
* ackNum : 4
* offset and flags : 2
* window size : 2
* checksum : 2
* urgent pointer : 2
* TOTAL HEADER SIZE : 20
* options : variable
* data : variable
*/

public static class NFBTCPMessage extends TransInterface.TransMessage
{

/**
* Minimum size of NFBTCP message.
*/

public static final int HEADER_SIZE = 20;

/**
* 16-bit source port number.
*/

private short srcPort;

/**
* 16 bit destination port number.
*/

private short dstPort;

/**
* 32 bit sequence number of first data octet in this segment.
*/

private int seqNum;

/**
* 32 bit acknowledgement number.
*/

89

private int ackNum;

/**
* 16 bit offset and flags.
* this contains:
* 4 bit data offset (number of 32 bit words in the NFBTCP header)
* 6 bit reserved
* 1 bit URG - urgent pointer field significant
* 1 bit ACK - acknowledgement field significant
* 1 bit PSH - push function
* 1 bit RST - reset the connection
* 1 bit SYN - synchronize sequence numbers
* 1 bit FIN - no more data from sender
*/

private short offsetAndFlags;

/**
* 16 bit window size (number of data octets to be accepted).
*/

private short windowSize;

/**
* checksum.
*/

private short errorChecksum;

/**
* current value of the urgent pointer as a positive offset from the sequence
number.
*/

private short urgentPointer;

/**
* options field (contains padding to make this field 32 bit boundary).
*/

private NFBTCPOptions options;

/**

90

* data.
*/

private Message payload;

/**
* constructor for NFBTCPMessage.
*
* @param srcPort source port number
* @param dstPort destination port number
* @param seqNum sequence number
* @param ackNum acknowledgement number
* @param offset data offset (start of data in the header; used when the packet
has options)
* @param URG urgent flag
* @param ACK acknowledgement flag
* @param PSH push flag
* @param RST reset flag
* @param SYN SYN flag
* @param FIN FIN flag
* @param windowSize size of receiving window
* @param data data
*/

public NFBTCPMessage (short srcPort, short dstPort, int seqNum, int ackNum,
short offset,
boolean URG, boolean ACK, boolean PSH, boolean RST, boolean SYN,
boolean FIN, short windowSize, Message data)

{
this.srcPort = srcPort;

this.dstPort = dstPort;

this.seqNum = seqNum;

this.ackNum = ackNum;

// filling offsetAndFlags
this.offsetAndFlags = (short)((short)(offset << 12) + (short)((URG ? 1 : 0) <<
5)
+ (short)((ACK ? 1 : 0) << 4) + (short)((PSH ? 1 : 0) << 3) +
(short)((RST ? 1 : 0) << 2) + (short)((SYN ? 1 : 0) << 1) + (short)(FIN ? 1 :
0));

this.windowSize = windowSize;

this.payload = data;

91

this.options = new NFBTCPOptions ();
}

/**
* constructor for NFBTCPMessage (reconstruct NFBTCPMessage from byte array).
*
* @param data array containing NFBTCP message
* @param offset start index to read the array
*/

public NFBTCPMessage (byte[] data, int offset)

{
byte[] temp;

// source port (unsigned short)
temp = new byte [2];
System.arraycopy(data, offset, temp, 0, 2);

srcPort = (short) Pickle.arrayToUShort(temp, 0);

// destination port (unsigned short)
temp = new byte [2];
System.arraycopy(data, offset+2, temp, 0, 2);

dstPort = (short) Pickle.arrayToUShort(temp, 0);

// sequence number (unsigned integer)
temp = new byte [4];
System.arraycopy(data, offset+4, temp, 0, 4);

seqNum = (int) Pickle.arrayToUInt(temp, 0);

// acknowledgement number (unsigned integer)
System.arraycopy(data, offset+8, temp, 0, 4);
ackNum = (int)Pickle.arrayToUInt(temp, 0);

// offset and flags (unsigned short)
System.arraycopy(data, offset+12, temp, 0, 2);
offsetAndFlags = (short) Pickle.arrayToUShort(temp, 0);

// window size (unsigned short)
System.arraycopy(data, offset+14, temp, 0, 2);
windowSize = (short) Pickle.arrayToUShort(temp, 0);

// checksum (short)
System.arraycopy(data, offset+16, temp, 0, 2);
errorChecksum = (short) Pickle.arrayToUShort(temp, 0);

// urgent pointer (short)
System.arraycopy(data, offset+18, temp, 0, 2);

92

urgentPointer = (short) Pickle.arrayToUShort(temp, 0);

// options
int tempOffset = getOffset ();

int diff = tempOffset - 5;

if (diff == 0)

{
this.options = new NFBTCPOptions ();
}

else

{
this.options = new NFBTCPOptions ();
}

// payload
temp = new byte [data.length-20-options.getSize()];
System.arraycopy(data, offset+20+options.getSize(), temp, 0,
data.length-20-options.getSize());
payload = new MessageBytes (temp);
}

/**
* Method called to create a SYN packet.
*
* @param sourcePort source port number
* @param destPort destination port number
* @param seqNumber sequence number
* @param windowSize size of receiving window
* @return SYN packet
*/

//Network formation
private static class NFMessage implements NFBTCPMessage
 {
private static final int MESSAGE_SIZE = 20; private NetAddress ip; private
int seqNum;

public AdhocFMessage(NetAddress ip, int seqNum)
{
 this.ip = ip; this.seqNum = seqNum;
 }
 public NetAddress getIp()
 {
 return ip;
 }
 public JAPMessage(NetAddress ip, int seqNum)

{
 this.ip = ip; this.seqNum = seqNum;
 }

93

 public NetAddress getIp()
 {
 return ip;
 }
public int getSize()
{
 return JAPMESSAGE_SIZE;
 }
public AdhocFMessage(NetAddress ip, int seqNum)
{
 this.ip = ip; this.seqNum = seqNum;
 }
 public NetAddress getIp()
{
 return ip;
}
public AACKMessage(NetAddress ip, int seqNum)
{
 this.ip = ip; this.seqNum = seqNum;
}
public NetAddress getIp()
{
 return ip;
 }
public int getSize()
{
 return AACKMessage_SIZE;
 }}

public static NFBTCPMessage createSYNPacket (int sourcePort, int destPort, int
seqNumber,
short windowSize)

{
int seqNum = seqNumber;

int ackNum = 0;

short offset = 5;

boolean URG = false;

boolean ACK = false;

boolean PSH = false;

boolean RST = false;

boolean SYN = true;

boolean FIN = false;

return new NFBTCPMessage ((short)sourcePort, (short)destPort, seqNum, ackNum,
offset,

94

URG, ACK, PSH, RST, SYN, FIN, windowSize, new MessageBytes (""));
}

/**
* Method called to create a SYNACK packet.
*
* @param sourcePort source port number
* @param destPort destination port number
* @param seqNumber sequence number
* @param ackNumber acknowledgement number
* @param windowSize size of receiving window
* @return SYNACK packet
*/

// Creating acknowledgement packet

public static NFBTCPMessage createACKPacket (int sourcePort, int destPort, int
seqNumber, int ackNumber, short windowSize)
{
int seqNum = seqNumber;
int ackNum = ackNumber;
short offset = 5;
boolean URG = false;
boolean ACK = true;
boolean PSH = false;
boolean RST = false;
boolean SYN = false;
boolean FIN = false;

return new NFBTCPMessage ((short)sourcePort, (short)destPort, seqNum, ackNum,
offset, URG, ACK, PSH, RST, SYN, FIN, windowSize, new MessageBytes (""));
}

 /**
 * Method called to create a FIN packet.
 *
 * @param sourcePort source port number
 * @param destPort destination port number
 * @param seqNumber sequence number
 * @param ackNumber acknowledgement number
 * @param windowSize size of receiving window
 * @return FIN packet
 */

//Forwarding Data Packets
private static class PrecursorSet
{
 private Map map = new HashMap();

 private RouteNFBTCP thisNode;
 /**
 * Constructs a new PrecursorSet object.

95

 *
 * @param thisNode reference to this RouteNFBTCP instance
 */
 public PrecursorSet(RouteNFBTCP thisNode)
 {
 this.thisNode = thisNode;
 }
 /**
 * Returns an Iterator for the set.
 *
 * Each item of the iterator is of type Map.Entry,
 * with map keys of type MacAddress, and map values of type
PrecursorInfo
 *
 * @return the iterator
 */
 public Iterator iterator()
 {
 return map.entrySet().iterator();
 }

 /**
 * Adds an item to the precursor set.
 *
 * @param m Mac address of node to add to set
 */

 public void add(MacAddress m)
 {
printlnDebug("Adding "+m+" to precursor set", thisNode.netAddr); map.put(m,
new PrecursorInfo());
}
 /**
 * Removes an item from the precursor set.
 *
 * @param m Mac address of the node to remove from set
 */

public void remove(MacAddress m)
{
 printlnDebug("Removing "+m+" from precursor set", thisNode.netAddr);
 map.remove(m);
 }

public static NFBTCPMessage createFINPacket (int sourcePort, int destPort,
int seqNumber, int ackNumber, short windowSize)

{
int seqNum = seqNumber;

96

int ackNum = ackNumber;

short offset = 5;

boolean URG = false;

boolean ACK = true;

boolean PSH = false;

boolean RST = false;

boolean SYN = false;

boolean FIN = true;

return new NFBTCPMessage ((short)sourcePort, (short)destPort, seqNum, ackNum,
offset,
URG, ACK, PSH, RST, SYN, FIN, windowSize, new MessageBytes (""));
}

/**
* Method called to create a RST packet.
*
* @param sourcePort source port number
* @param destPort destination port number
* @param seqNumber sequence number
* @param ackNumber acknowledgement number
* @param windowSize size of receiving window
* @return RST packet
*/

//Link Failure Detection

private static class LinkFailureDetection (LFD) implements NFBTCPMessage
{
 private static final int MESSAGE_SIZE = 20;

 /** List of net addresses for destinations that have become unreachable. */
 private LinkedList unreachableList;

 /**
 * Constructs a new Link Failure Update Packet Message object with an
empty unreachable list.
 */

public LinkFailureUpdatePacket ()
{
 this(new LinkedList());
 }
 /**
 * Constructs a new Route Link Update Packet object with a given
unreachable list.

97

 *
 * @param list List of net addresses for destinations that have become
unreachable
 */

public LinkUpdatePacket (LinkedList list)
{
 this.unreachableList = list;
}
 /**
 * Returns the unreachable list.
 *
 * @return linked list of unreachable node net addresses
 */

public LinkedList getUnreachableList()
{
 return this.unreachableList;
 }
 /**
 * Add an unreachable node.
 *
 * @param node netAddress of node to be added
 */

public void addUnreachable(NetAddress node)
{
 this.unreachableList.add(node);
}

//Link Capacity detection

public static NFBTCPMessage createSYNACKPacket (int sourcePort, int destPort,
int seqNumber, int ackNumber, short windowSize)

{
 int seqNum = seqNumber;

 int ackNum = ackNumber;

 short offset = 5;

 boolean URG = false;

 boolean ACK = true;

 boolean PSH = false;

 boolean RST = false;

 boolean SYN = true;

 boolean FIN = false;

98

 return new NFBTCPMessage ((short)sourcePort, (short)destPort,
seqNum, ackNum, offset,
 URG, ACK, PSH, RST, SYN, FIN, windowSize, new MessageBytes (""));
 }

 /**
 * Method called to create an ACK packet.
 *
 * @param sourcePort source port number
 * @param destPort destination port number
 * @param seqNumber sequence number
 * @param ackNumber acknowledgement number
 * @param windowSize size of receiving window
 * @return first ACK packet (ACK for SYNACK packet)
 */

//out of order delivery notification

public static NFBTCPMessage createRSTPacket (int sourcePort, int destPort, int
seqNumber, int ackNumber, short windowSize)

{
int seqNum = seqNumber;

 int ackNum = ackNumber;

 short offset = 5;

 boolean URG = false;

 boolean ACK = false;

 boolean PSH = false;

 boolean RST = true;

 boolean SYN = false;

 boolean FIN = true;

 return new NFBTCPMessage ((short)sourcePort, (short)destPort, seqNum,
ackNum, offset,
 URG, ACK, PSH, RST, SYN, FIN, windowSize, new MessageBytes (""));
 }

public static NFBTCPMessage createRSTPacket (int sourcePort, int destPort,
int seqNumber, int ackNumber, short windowSize)

{
int seqNum = seqNumber;

99

int ackNum = ackNumber;

short offset = 5;

boolean URG = false;

boolean ACK = false;

boolean PSH = false;

boolean RST = true;

boolean SYN = false;

boolean FIN = true;

return new NFBTCPMessage ((short)sourcePort, (short)destPort, seqNum, ackNum,
offset,
URG, ACK, PSH, RST, SYN, FIN, windowSize, new MessageBytes (""));
}

// Accessor functions

/**
* Accessor for source port.
*
* @return source port
*/

public short getSrcPort ()

{
return this.srcPort;
}

/**
* Accessor for destination port.
*
* @return destination port
*/

public short getDstPort ()

{
return this.dstPort;
}

/**

100

* Accessor for sequence number.
*
* @return sequence number
*/

public int getSeqNum ()

{
return this.seqNum;
}

/**
* Accessor for acknowledgement number.
*
* @return acknowledgement number
*/

public int getAckNum ()

{
return this.ackNum;
}

/**
* Accessor for offset in the message.
*
* @return offset from the beginning to header to data
*/

public short getOffset ()

{
return (short)(this.offsetAndFlags >> 12);
}

/**
* Accessor for URGENT flag.
*
* @return state of the URG flag (true if flag is set)
*/

public boolean getURG ()

{
return (((this.offsetAndFlags >> 5) % 2) > 0 ? true : false);
}

101

/**
* Accessor for ACK flag.
*
* @return state of the ACK flag (true if flag is set)
*/

public boolean getACK ()

{
return (((this.offsetAndFlags >> 4) % 2) > 0 ? true : false);
}

/**
* Accessor for PSH flag.
*
* @return state of the PSH flag (true if flag is set)
*/

public boolean getPSH ()

{
return (((this.offsetAndFlags >> 3) % 2) > 0 ? true : false);
}

/**
* Accessor for RST flag.
*
* @return state of the RST flag (true if flag is set)
*/

public boolean getRST ()

{
return (((this.offsetAndFlags >> 2) % 2) > 0 ? true : false);
}

/**
* Accessor for SYN flag.
*
* @return state of the SYN flag (true if flag is set)
*/

102

public boolean getSYN ()

{
return (((this.offsetAndFlags >> 1) % 2) > 0 ? true : false);
}

/**
* Accessor for FIN flag.
*
* @return state of the FIN flag (true if flag is set)
*/

public boolean getFIN ()

{
return ((this.offsetAndFlags % 2) > 0 ? true : false);
}

/**
* Accessor for window size.
*
* @return window size
*/

public short getWindowSize ()

{
return this.windowSize;
}

/**
* Accessor for options.
*
* @return NFBTCPOptions object
*/

public NFBTCPOptions getOptions ()
{
return this.options;
}

/**
* Accessor for payload.
*
* @return payload
*/

103

public Message getPayload ()
{
return this.payload;
}

/**
* Returns the size of the NFBTCP message.
*
* @return size of message
*/

public int getSize()

{
return HEADER_SIZE + options.getSize() + payload.getSize();
}

/**
* Retrieves the message in byte array.
*
* @param msg byte array to store the message
* @param offset start index of the destination array
*/

public void getBytes(byte[] msg, int offset)

{
// source port (unsigned short)
Pickle.ushortToArray(srcPort, msg, offset);

// destination port (unsigned short)
Pickle.ushortToArray(dstPort, msg, offset+2);

// sequence number (unsigned integer)
Pickle.uintToArray(seqNum, msg, offset+4);

// acknowledgement number (unsigned integer)
Pickle.uintToArray(ackNum, msg, offset+8);

// offset and flags (unsigned short)
Pickle.ushortToArray(offsetAndFlags, msg, offset+12);

// window size (unsigned short)
Pickle.ushortToArray(windowSize, msg, offset+14);

// checksum (short)
Pickle.ushortToArray(errorChecksum, msg, offset+16);

104

// urgent pointer (short)
Pickle.ushortToArray(urgentPointer, msg, offset+18);

// options
options.getBytes (msg, offset+20);

// payload
payload.getBytes (msg, offset+20+options.getSize());
}

/**
* Returns string representation of the NFBTCP message.
*
* @return string representation of the message
*/

public String toString()

{
StringBuffer sb = new StringBuffer();

sb.append("src="+getSrcPort());

sb.append(" dst="+getDstPort());

sb.append(" seq="+getSeqNum());

sb.append(" ack="+getAckNum());

sb.append(" off="+getOffset());

sb.append(" flags:");

if(getURG()) sb.append(" URG");

if(getACK()) sb.append(" ACK");

if(getPSH()) sb.append(" PSH");

if(getRST()) sb.append(" RST");

if(getSYN()) sb.append(" SYN");

if(getFIN()) sb.append(" FIN");

sb.append(" win="+getWindowSize());

String payload = new String (((MessageBytes)getPayload()).getBytes());

sb.append(" payload=("+payload.length()+") ");

if (payload.length()>10) payload=payload.substring(0, 10)+"...";

105

sb.append(payload);
return sb.toString();
}

/**
* Prints out the message header and payload.
*
* @param numTabs number of tabs
* @param isPrintPayload set to true to print out payload in message
*/

public void printMessage (int numTabs, boolean isPrintPayload)

{

String tabs = "";

for (int i = 0; i < numTabs; i++)

{
tabs = tabs + "\t";
}

System.out.println (tabs + "\tsrc port: " + getSrcPort() + "\tdst port: " +
getDstPort());

System.out.println (tabs + "\tseq num: " + getSeqNum());

System.out.println (tabs + "\tack num: " + getAckNum());

System.out.println (tabs + "\toffset: " + getOffset());

System.out.print (tabs + "\tflags: ");
if (getURG())

{
System.out.print ("URG ");
}

if (getACK())

{
System.out.print ("ACK ");
}

if (getPSH())

{
System.out.print ("PSH ");

106

}

if (getRST())

{
System.out.print ("RST ");
}

if (getSYN())

{
System.out.print ("SYN ");
}

if (getFIN())

{
System.out.print ("FIN ");
}

System.out.println ();

System.out.println (tabs + "\twindow size: " + getWindowSize());

if (isPrintPayload)

{
String temp = new String (((MessageBytes)getPayload()).getBytes());

int length = temp.length();

if (length > 10)

{
temp = temp.substring (0, 10);
temp = temp + " ...";
}

System.out.println (tabs + "\tpayload: " + temp + " (" + length + ")");
}
}

/**
* Prints out the message header with zero tabs. */

public void printMessage ()
{
printMessage (0);
}

/**

107

* Prints out the message header.
*
* @param numTabs number of tabs
*/

public void printMessage (int numTabs)

{
printMessage (numTabs, false);
}

} // class: NFBTCPMessage

//
// NFBTCP entity implementation
//

/**
* probability (in percent) that a message will not be sent.
* (0 --> no packets are dropped; 100 --> no packets are transmitted)
*/

private static final int DROP_PROBABILITY = 5;

/** Entity reference to itself. */

private TransInterface.TransNFBTCPInterface self;

/** Entity reference to network layer. */

private NetInterface netEntity;

/** Hashmap to hold references to socket callbacks. */

private HashMap handlers;

/**
* Constructor.
*/

108

public TransNFBTCP()

{self = (TransInterface.TransNFBTCPInterface)JistAPI.proxy(
this, TransInterface.TransNFBTCPInterface.class);
handlers = new HashMap ();
}

/**
* Returns an entity reference to this object.
*
* @return entity reference to TransNFBTCP itself
*/

public TransInterface.TransNFBTCPInterface getProxy()

{
return self;
}

/**
* Sets the reference to the network layer.
*
* @param netEntity entity reference to network layer
*/

public void setNetEntity(NetInterface netEntity)
{

if(!JistAPI.isEntity(netEntity)) throw new IllegalArgumentException("expected
entity");

this.netEntity = netEntity;
}

/** {@inheritDoc} */

public void addSocketHandler(int port, SocketHandler socketCallback)

{
handlers.put(new Integer (port), socketCallback);

if (NFBTCPSocket.PRINTOUT >= NFBTCPSocket.INFO)

{
System.out.println ("TransNFBTCP::addSockethandler: port = " + port);
}
}
*/
/** {@inheritDoc} */

109

public void delSocketHandler(int port)

{handlers.remove (new Integer (port));

if (NFBTCPSocket.PRINTOUT >= NFBTCPSocket.INFO)

{System.out.println ("TransNFBTCP::delSockethandler: port = " + port);
}
}

*/ /** {@inheritDoc} */

public boolean checkSocketHandler(int port)

{boolean ret = handlers.containsKey (new Integer (port));
return ret;
}
*/
/** {@inheritDoc} */

public void receive(Message msg, NetAddress src, MacAddress lastHop,
byte macId, NetAddress dst, byte priority, byte ttl)

{
int dstPort = ((NFBTCPMessage)msg).getDstPort();
SocketHandler handler =
(SocketHandler)handlers.get(new Integer (dstPort));

if(handler==null)

{if (NFBTCPSocket.PRINTOUT >= NFBTCPSocket.FULL_DEBUG)

{System.out.println ("%%%%%%% TransNFBTCP::receive (t=" + JistAPI.getTime()+")
-> handler for port " + dstPort + " = null!!!");

}
return;
}
JistAPI.sleep(Constants.TRANS_DELAY);

handler.receive(msg, src, ((NFBTCPMessage)msg).getDstPort());
}

*/ /** {@inheritDoc} */

public void send(Message msg, NetAddress dst, int dstPort,
int srcPort, byte priority)

{// get a random number between 0 and 100

110

int prob = Math.abs(Constants.random.nextInt()) % 101;

if (prob >= DROP_PROBABILITY)

{JistAPI.sleep(Constants.TRANS_DELAY);

netEntity.send(msg, dst, Constants.NET_PROTOCOL_NFBTCP,

priority, Constants.TTL_DEFAULT);
}

else

{if (NFBTCPSocket.PRINTOUT >= NFBTCPSocket.NFBTCP_DEBUG)

{System.out.println ("%%%%%% TransNFBTCP::send: PACKET DROPPED: " + msg);
}
}
}

*/

}// class: TransNFBTCP

