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Abstract 

A mobile ad-hoc network is an autonomous system of mobile nodes establishing a 

network in the absence of any fixed infrastructure. Mobile ad-hoc network due to 

potentially high mobility have provided new challenges by introducing special 

consideration differentiating from the unique characteristics of the wireless medium and 

the dynamic nature of the network topology. Due to unique network formation, routing in 

mobile ad-hoc network is a challenging issue. Effort has been undergoing to transform 

TCP so that it could support routing function in an ad-hoc network. This research has 

discovered that most of the TCP based variant routing solutions of mobile ad-hoc 

network has not been successful in addressing problem at full. Taking TCP based routing 

solution as a main problem, this research has proposed a novel routing solution called 

Node feedback TCP based mechanism as a routing scheme for mobile ad-hoc network.  

Node feedback TCP based mechanism introduces a new flavor of TCP for mobile ad-hoc 

network. It follows an intermediate approach in between some of the existing 

mechanisms of TCP based schemes for mobile ad-hoc network. We have addressed TCP 

slow start mechanism in the context of mobile ad-hoc network and introduce measures 

through whom TCP can differentiate between real congestion and congestion assumed by 

TCP due to packet lost or route failure in mobile ad-hoc network. In addition our 

proposed mechanisms also deal with out-of-order delivery problem of TCP in mobile ad-

hoc network. It is important to mention that NFBTCP not only address TCP related issues 

but also provides a number of different operations to assists in the smooth running of an 

ad-hoc network.   

The scheme has been developed in Java and Evaluated in SWANS.  In the light of the 

simulation experiments, it could be seen that NFBTCP performed well in all simulation 

environment. It can be confirmed that NFBTCP has proven itself as a fully functional and 

operationalable for mobile ad-hoc network, thus should be seen or taken as a new novel 

TCP based solution for mobile ad-hoc network.  A higher number of route requests and 

route replies representing networking activities were observed with the increase of 

mobile nodes. In addition to the messages activities, good numbers of routes were added 

at the end of each simulation cycle. It is quite understandable that the more routes 

available for data transfer in mobile ad-hoc network, the better. Moreover, such additions 
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to the available routes could directly impact overall throughout. Lastly, nodes in mobile 

ad-hoc network suffer with limited resources. That makes conservation of all such 

resources an important issue in the context of mobile ad-hoc network. The results of 

simulation experiments validate the main concepts of the scheme especially congestion 

avoidance and out-of-order packet delivery. The scheme generates a higher number of 

routes suggesting that the implemented congestion avoidance and out-of-order packet 

delivery mechanisms of NFBTCP are successful in reducing the impact of link breakage 

since subsequently it was not possible for more routes to be added. The addition of more 

routes demonstrates that more packets are broadcast and suggests smooth flow of data 

and control packets. We believe NFBTCP offers a complete and an effective TCP based 

routing solution for mobile ad-hoc network. 
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Chapter 1. Introduction 

1.1. Introduction 

A wireless network allows a more flexible model of communication than a traditional 

network since the user is not limited to a fixed physical location. Wireless networks can 

further be categorized into one of two types, wireless fixed network and mobile ad-hoc 

network. A mobile ad-hoc network has become increasingly important because of their 

promise of ubiquitous connectivity beyond traditional fixed network. A mobile ad-hoc 

network has provided new challenges including limited power, routing, frequent topology 

changes. A mobile ad hoc network can be deployed anywhere at any time therefore are 

used in situations such as during earthquake, floods, disasters etc [20].  

It is due to unique art of an ah-hoc network formation routing has attained a primary 

focus. In essence routing indicates route establishment between two communicating 

devices in a network. In the existing literature several routing mechanism have proposed 

some of the known schemes [18, 19, 20, 22, and 27] are Destination Sequence Distance 

Vector (DSDV), Dynamic Source Routing (DSR), Ad-Hoc On-demand Distance Vector 

Routing (AODV), Temporally Ordered Routing Algorithm (TORA) and Mobile Ad-hoc 

on Demand Data Delivery Protocol (MAODDP). It is known that routing in ad-hoc 

network still needs some refinement towards more effective standard routing solution. In 

this context a sufficient amount of work has been conducted modifying TCP to support 

routing in ad-hoc network. 

Transmission control protocol is the most reliable transport layer protocol for Internet. 

The major functions of TCP is end-to-end connection, congestion control, flow control, 

in order delivery of packets and reliable transportation of data packets and is performing 

well in wired networks with the above mentioned features, that’s why TCP is the 

backbone of internet [13]. It is a known fact that due to unique nature of mobile ad-hoc 

network packets are lost because of frequent path breaks due to mobility of destination 

node or mobility of the nodes working as routers between source node and destination 

node, high bit error rate in the wireless channel, collisions due to hidden terminals etc [9]. 

Many protocols have been developed in the context of TCP but none of them is capable 

enough to improve TCP performance over mobile ad-hoc network.    
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Node Feedback TCP based mechanism [49] aims to enhance TCP performance in a 

mobile ad-hoc network. One of the distinguishing features of NFBTCP is the feedback 

from the active node to TCP. After route failure, once the communication is re-

established nodes which were in active communication before the communication or the 

route path broken is responsible to inform about the link capacity to the TCP. TCP adjust 

the size of congestion window (CWND) according to the link capacity of the established 

connection. In this way TCP doesn’t need to invoke slow start mechanism. This feedback 

assists TCP in adjusting the size of congestion window; therefore TCP doesn’t need 

reinitiating slow start mechanism. Moreover, this scheme also proposed solution to the 

out of delivery problem of TCP in mobile ad-hoc network. 

NFBTCP uses notification failure to enable TCP differentiating between the real 

congestion and congestion assumed by the TCP due to link loss or route failure. We 

believe proposed mechanism will not only overcome some of the weaknesses of the 

existing schemes but also will yield an efficient TCP modified version for mobile ad-hoc 

network.  NFBTCP has coded in java and evaluated in SWAN. A higher number of route 

requests and route replies representing networking activities were observed with the 

increase of mobile nodes. It can be well understood that increase of mobile nodes to some 

extent implies increase in the communication takes place in a network. Moreover to the 

messages activities, good numbers of routes were added at the end of each simulation 

cycle. It is quite understandable that the more routes available for data transfer in mobile 

ad-hoc network, the better. Furthermore, such additions to the available routes could 

directly impact overall throughput. It is due to the nature of mobile ad-hoc network, 

where routes forms and broken almost unexpectedly. Therefore an alternative route to the 

destination is always beneficial. Lastly, nodes in mobile ad-hoc network suffer with 

limited resources. That makes conservation of all such resources an important issue in 

mobile ad-hoc network. NFBTCP has shown satisfactory performance by conserving 

available memory in most of the conducted experiments. This chapter introduces research 

and problem domain of this project, which are discussed in due course and has been 

organised as follows. In section 1.2 Transmission Control Protocol is introduced followed 

by a discussion of its performance in mobile ad-hoc network in section 1.3. Aims and 
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objectives are presented in section 1.4.  In section 1.5 a summarised view of NFBTCP is 

covered and the organisation of this dissertation is presented in section 1.6 

1.2. The Transmission Control Protocol  

Transmission control protocol works on the transport layer of OSI model stack. The main 

functions of TCP are end-to-end connection, congestion control, flow control, in-order 

delivery of packets and reliable transportation of data packets [5]. Throughput of a 

network degrades if the transport layer protocol cannot perform the above-mentioned 

functions properly. TCP should maximize the throughput by differentiating between 

congestion and link failure and should take appropriate actions according to the problem 

occurred. If it’s real congestion then it should inform the sender to slow down the sending 

rate of data packets. And if it’s not congestion and the loss of packets is due to link 

failure then it should inform the sender about link failure and not to send data packets to 

the destination node. Congestion window controls the sending rate of data packet to the 

destination. The network throughput depends on the size of congestion window. The size 

of congestion window gets lager depending on the rate of arrival of every new 

acknowledgment received by the TCP sender. When the data packet is lost and the sender 

does not receive ACK from the receiver within the retransmission timeout period then 

TCP shrinks its congestion window and invokes congestion control mechanism [9]. 

A significant amount of research has been done to make TCP capable of supporting 

communication over mobile ad-hoc network [4, 5, 7, 8, 9, 10, 11, 12 and 13]. However, 

despite numerous attempts TCP failed to show impressive performance in such an 

environment. Although TCP provides reliable end-to-end delivery of data over wired 

networks, several recent studies have indicated that TCP performance degrades 

significantly in mobile ad hoc networks. This is mainly because TCP considers any 

packet loss and/or delay as a congestion signal although MANET encounters several 

types of losses and delays that are not related to congestion. Non-congestion 

losses/delays mainly occur because TCP cannot adapt well to such mobile wireless multi-

hop networks. The following subsections discuss different factors that affect TCP 

performance in MANET. 

In mobile ad-hoc network packets loss is quite frequent due to frequent path breaks as a 

result of mobility of destination node or mobility of the nodes working as routers between 
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source node and destination node, high bit error rate in the wireless channel, collisions 

due to hidden terminals etc, when the data packet is lost and the sender dose not receive 

acknowledgement from the receiver within the retransmission timeout period then TCP 

assumes this as congestion and invokes the congestion control mechanism [9]. When 

TCP assumes packet loss as congestion then it shrinks its congestion window and reduces 

the packet transfer rate and thus degrades overall throughput of the network. To gain high 

throughput from the network TCP should differentiate between congestion and packet 

loss due to mobility or path breakage.  

1.3. Problem statement. 

To address the problems experienced by TCP in MANET, a number of proposals have 

been presented. The vast majority of these proposals are TCP modifications that address 

some particular TCP inefficiency. The main design requirement is indeed to keep the 

improved transport protocol backward compatible with the legacy TCP, so that 

“improved” and “legacy” users may be able to communicate with each other. The 

differences between MANET and traditional wired networks are so many, that TCP 

would need a large number of modifications to work in this environment. It is well 

known that TCP shows a number of different issues in mobile ad-hoc networks. These 

issues till-to-date pose an open question to the research community. Existing literature 

report various solution, however these solutions lack in one way or the other. Therefore 

the problem still stands as before, clearly there is a need of a solution which can cope 

with TCP issues in ad-hoc network. We stress that without taking into consideration 

typical ad-hoc network environment a successful solution is difficult to develop. 

Moreover, we understand the solution should be designed in a manner which can deliver 

solution of number of different problem in sequence they occur in mobile ad-hoc network 

environment. In the light of the above discussion we propose Node Feedback TCP based 

mechanism to enhanced TCP performance in mobile ad-hoc network.   

1.4. Aims and Objectives  

In view of the above discussion it can clearly be understood that TCP performance over 

mobile ad-hoc network has been a challenge and thus needed to be resolved. We have 

proposed and develop a novel scheme NFBTCP to enhance TCP effectiveness within an 
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ad-hoc network. It was discovered that TCP performance in a mobile ad hoc network is 

degraded due to ad-hoc network formation and operational pattern. A set of aims and 

objectives were defined in between from the start to the end of this projects which are as 

follows.   

 We have investigated TCP performance in mobile ad-hoc network in order to 

develop an understanding of the research domain at a wider level. 

 We have evaluated existing TCP based routing solution for mobile ad-hoc 

network with a view of identifying weaknesses in the reported schemes. 

 We have proposed a novel TCP based solution for mobile ad-hoc network. The 

proposed solution addresses identified known weaknesses as reported in the 

existing solutions. 

 The proposed scheme was designed using standard design mechanisms so that it 

could be used to implement the scheme using a computer language. Moreover, 

this design was helpful in looking back towards any improvement during the 

implementation stage of NFBTCP. 

 The developed scheme was evaluated in a simulation frame. Evaluation 

experiments were conducted to monitor and performance of the proposed scheme 

in varying simulation environments. It is important to mention that the scheme 

has showed an expected performance with satisfactory results are achieved at 

different experiment’s cycle.  

1.5. Research contribution. 

Node feedback TCP based mechanism introduces a new flavor of TCP for mobile ad-hoc 

network. It follows an intermediate approach in between some of the existing 

mechanisms of TCP based schemes for mobile ad-hoc network. We have addressed TCP 

slow start mechanism in the context of mobile ad-hoc network and introduce measures 

through whom TCP can differentiate between real congestion and congestion assumed by 

TCP due to packet lost or route failure in mobile ad-hoc network. In addition our 

proposed mechanism also deals with out-of-order delivery problem of TCP in mobile ad-

hoc network. It is important to mention that NFBTCP not only addresses TCP related 
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issues but also provides a number of different operations to assists in the smooth running 

of an ad-hoc network.   

The scheme has been developed in Java and evaluated using SWANS.  Evaluation 

observations detail the confirmation of the theoretical concepts which were included as a 

part of the functional specification of NFBTCP. NFBTCP has validated itself as a fully 

functional and operational-able for mobile ad-hoc networks, thus should be taken as a 

new novel TCP based solution for mobile ad-hoc networks. In the light of the conducted 

experiments, it can be seen that NFBTCP performed well in all simulation environments. 

A higher number of route requests and route replies representing networking activities 

were observed with the increase of mobile nodes. This clearly showed that NFBTCP fits 

well within mobile ad-hoc networking environment.  

Increase of mobile nodes to some extent implies increase in the communication taking 

place in a network. In addition to the message activities, good numbers of routes were 

added at the end of each simulation cycle. It is quite understandable that the more routes 

available for data transfer in mobile ad-hoc network, the better. In this context unlike 

traditional TCP better route connectivity is possible through NFBTCP. In addition to the 

above, more available routes could directly impact overall throughput. It is due to the 

nature of ad-hoc network, where routes forms and broken almost unexpectedly. Therefore 

an alternative route to the destination is always beneficial. It is a well-known fact that 

nodes in mobile ad-hoc network suffer with limited resources. That makes conservation 

of all such resources an important issue in the context of mobile ad-hoc network. 

NFBTCP has shown self-explanatory performance by conserving available memory in 

most of the experiments. It can be easily understood that a direct way of measuring the 

proposed scheme performance is to monitor the throughput. A particular attention was 

given to that where it was found that most of the simulation cycle ended with an expected 

throughput. Since TCP is used for transporting data packets, therefore having most of the 

sent packets delivered at the destination by NFBTCP implies that the scheme has met the 

desired end objective. We believe NFBTCP offers a complete and an effective TCP based 

routing solution for mobile ad-hoc networks. 
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1.6. Organization 

We have followed a defined pattern from the start to the end of this research project. The 

whole problem is divided into sub tasks and each of these has been compiled in different 

chapters of this thesis. Introductions to each of these chapters are as follows. 

Chapter 1. Introduction: An introduction to the problem area with a brief background is 

explained in this chapter. In addition, a summary of the developed solution for the chosen 

problem and the research contribution are also briefed.  

Chapter 2. Literature Review: This chapter presents an in-depth explanation of the 

research domain, previously reported solutions and critical analysis with a view to 

understanding weaknesses within the reported architectures. 

Chapter 3. Problem Analysis: In this chapter the identified problem has been analyzed in 

view of the related reported work.  

Chapter 4. NFBTCP: This chapter focuses on the proposed scheme. In this context, an 

explanation of the associated functions and overall benefit of the developed scheme are 

also presented. NFBTCP offers a new novel TCP based solution for Mobile Ad-hoc 

Networks. It was necessary to have the structural design of the scheme conducted prior to 

implementation. This chapter presents the proposed scheme design, pseudo codes and 

implementation details. 

Chapter 5. Evaluation and Discussion: NFBTCP has been evaluated in SWANS through 

different simulation pattern. The scheme has proved to be implementable and efficient to 

support communication operation in mobile ad-hoc network. Evaluation has been 

concluded in discussion section within this chapter. 

Chapter 6. Conclusions and Future Work: This section presents conclusions derived both 

from background research and the proposed scheme development and evaluation phases. 

In addition, thoughts regarding future research directions are also presented. 

This chapter focuses on the introduction of the problem being investigated besides 

general introduction of the problem domain in general. The following chapter analyzes 

some of the previously reported solution. 
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Chapter 2. Literature Review 

2.1. Introduction 

A Mobile Ad-hoc Network is a collection of mobile nodes connected together in the 

absence of any fixed infrastructure. Nodes in ad hoc networks work both as hosts and 

routers forwarding data packets for other nodes in the network [22]. This process may 

involve multiple intermediate nodes, and it may produce the establishing of a multihop 

connection (multi-hop ad hoc network) between sender and receiver. These networks are 

appropriate for scenarios where wired networks are not possible such as in a disaster 

recovery, battlefield, short-lived networks as in conference spots, etc. In the last few 

years MANET are emerged as a flexible and low-cost extension of wired infrastructure 

networks. MANETs inherit the traditional problems of wireless communication and 

wireless networking, like high bit error rate, high sensitivity of wireless channel from 

outside signals, the possibility of path asymmetry, and so on. In addition, the multihop 

nature of connections, the lack of a fixed infrastructure, and node mobility add new 

problems, such as network partitions, route failures, and the hidden terminal. These new 

problems pose a number of design constraints that are specific to ad-hoc networking. 

 

2.2. OSI Reference Model 

Protocol layering is a common technique to simplify networking designs by dividing 

them into functional layers, and assigning protocols to perform each layer's task [31]. For 

example, it is common to separate the functions of data delivery and connection 

management into separate layers, and therefore separate protocols. Thus, one protocol is 

designed to perform data delivery and another protocol layered above the first performs 

connection management. The data delivery protocol is fairly simple and knows nothing 

of connection management. The connection management protocol is also fairly simple, 

since it doesn't need to concern itself with data delivery. Protocol layering produces 

simple protocols, each with a few well-defined tasks. 
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There are seven layers in the OSI reference model. Open system interconnection is a 

standard for worldwide communications that defines a networking framework for 

implementing protocols in seven layers. Control is passed from one layer to the next, 

starting at the application layer on source node and proceeding to the bottom physical 

layer and on the receiving node the control is passed from physical layer proceeding to 

the bottom application layer to complete transfer of data packets. In the wireless protocol 

stack there are five layers. The application layer performs the functions of presentation 

and session layers.  A brief introduction to different layers is as follows.  

 APPLICATION LAYER: The application layer interfaces directly to and 

performs common application services for the application processes. The common 

application services provide semantic conversion between associated application 

processes. 

 TRANSPORT LAYER: The transport layer provides reliable transfer of data 

between end users. The transport layer can keep track of the packets and 

retransmit those that fail. 

 NETWORK LAYER: The network layer provides the functional and procedural 

means of transferring variable length data sequences from a source to a 

destination via one or more networks while maintaining the quality of service 

requested by the Transport layer. The Network layer performs network routing, 

flow control, segmentation/desegmentation, and error control functions. 

 DATA LINK LAYER: The data link layer provides the functional and 

procedural means to transfer data between network entities and to detect and 

possibly correct errors that may occur in the Physical layer. 

 PHYSICAL LAYER: The physical layer defines all electrical and physical 

specifications for devices. This includes the layout of pins, voltages, and cable 

specifications. Hubs and repeaters are physical-layer devices. 

 

 

2.3. Characteristics of Mobile Ad-Hoc Network 

A mobile ad-hoc network can be thought of as a collection of mobile platforms each 

combining the functionality of a router and a host as shown in figure 2.1. These mobile 
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platforms, also called hosts are attached to a number of wireless communication mediums 

and are free to move about arbitrarily. These hosts are equipped with wireless 

transmitters and receivers using antennas which may be Omni directional, highly 

directional, possible steerable or some combination thereof. A mobile ad-hoc network is 

established through the mutual co-operation of mobile nodes that forward and receive 

packets for each other. Mobile ad-hoc networks offers self-configuration and on the fly 

network facilities to places where it is not possible otherwise. Two or more nodes can 

form an ad-hoc network without need of a centralized infrastructure. In due course, 

routing is achieved through routing protocol finding distension of interest for nodes in a 

network. It is understandable that different protocols adopt various strategies to offer 

such services.  

Node mobility introduces certain scalability problems in mobile ad-hoc network 

protocols, when the network topology changes frequently control messages have to be 

sent between nodes so that new routes are found and propagated through the network [20] 

as shown in figure 2.1A and 2.1B.  
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    Figure 2.1B 

In networks where the topology changes infrequently, it is reasonable to expect that when 

this happens there might be a short period where lots of control messages will propagate 

through the network to distribute the new destination paths. But when a high rate of 

topology change is one of the characteristics of the network, the protocol designer should 

make provision for highly dynamic and fast adapting algorithms that minimize control 

messages and attempt to utilize long-lived routes to the maximum extent. 

In many kinds of mobile ad-hoc network, mobile nodes usually rely on exhaustible means 

for providing energy, such as batteries. For these nodes, energy conservation suddenly 

becomes an important design decision [26].  Nodes with low battery power may decide to 

enter a power saving mode when they having nothing to send or until another high 

priority event is generated. This behavior may affect the way the whole network is 

operating, since each node is responsible for forwarding other node’s packets, apart from 

its own. If nodes decide to become “selfish” and break the collective and cooperative 

nature of ad hoc networking by not forwarding other node’s data the ad hoc architecture 

is endangered. A multitude of other problems and design trade-offs concerned with 

power utilization in such networks and the particular area is becoming the focus of 

increased attention. 

Last but not least we should examine briefly some security issues in ad-hoc networks. As 

with any wireless communications, ad-hoc networks can be highly vulnerable to security 

threats. On one hand, their distributed nature makes it difficult to implement any security 
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scheme that relies on a central authority. While on the other hand there is an increased 

possibility for eavesdropping, denial-of-service and ma-in-the-middle attacks. Add to this 

the fact that the more secure architecture is the slower and more cumbersome the whole 

issue of security in ad hoc networks becomes somewhat problematic. Nevertheless, the 

decentralized architecture provides a more resilient approach to single points of failures.  

 

2.3.1. Applications of Mobile Ad-hoc Networking  

Some of the application of ad-hoc network is communication in situations where 

battlefield survivability counts or infrastructure is non-existent, which is the case during 

disaster relief or rescue operations [30]. Both of these applications rely on the 

decentralized and cooperative attributes of mobile ad-hoc networks. However a number 

of other applications can be envisioned. 

 Conferencing: This scenario envisages a group of people gathering in the same 

area and exchanging shared information using the multi-hop characteristics of ad 

hoc network [26]. Currently, this is done by requiring everyone to connect to a 

central network which at times might be unavailable or the overhead might be too 

costly when all that is required is the sharing of small amount of data.   

 Ubiquitous Computing: If projections and estimations are correct then soon we 

could be living in a world where electronic devices can join spontaneously in 

established networks and exchange data with other devices in their close vicinity, 

in a transparent and simple fashion. Bluetooth is an emerging standard for 

realizing such a vision and is backed by such companies as Ericsson Inc, IBM, 

Intel, Microsoft and Nokia [26]. It is a short-range radio technology aimed at 

eliminating wires between electronic devices. Bluetooth allows up to eight 

devices to be connected into what is called a piconet [28]. This could be a suitable 

technology that an ad-hoc network could use for transferring information without 

utilizing fixed infrastructure.  

 Data Gathering: Another application where ad-hoc networks can prove useful is 

the collection of data from remote areas like air or sea [28]. A network of sensors 

can contain small, inexpensive, short-range radio transmitter that can collectively 

gather and forward data towards a base station. Current alternatives include either 

storing data for later collection or using large or expensive satellite transmitters. 
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But for cases like animal tracking where a small transmitter is essential, ad-hoc 

network can prove be to be a useful too, provided there is a reasonable coverage 

of the specific area with tracking devices. 

 

There are also existing and future military networking requirements for robust, IP-

compliant data services within mobile wireless communication networks many of these 

networks consist of highly-dynamic autonomous topology segments. Also, the 

developing technologies of "wearable" computing and communications may provide 

applications for mobile ad hoc networks. When properly combined with satellite-based 

information delivery, Mobile ad hoc networks can provide an extremely flexible method 

for establishing communications for fire, safety, rescue operations or other scenarios 

requiring rapidly deployable communications with survivable, efficient dynamic 

networking. There are likely other applications for MANET technology, which are not 

presently realized or envisioned by the author.  It is simply put, improved IP-based 

networking technology for dynamic, autonomous wireless networks. 

 

2.3.2. Problems, Constraints and Challenges of Mobile Ad hoc Networks 

When designing mobile ad-hoc networks, several interesting and difficult problems arise 

due to the shared nature of the wireless medium, the limited transmission range of 

wireless devices, node mobility, and battery limitations. This section will describe some 

of these problems.  

 Dynamic topologies: The network topology of an ad-hoc network is very 

dynamic as the mobility of nodes or memberships of nodes are very random and 

rapid [30]. This emphasizes the need for routing solutions to be dynamic.  

 Bandwidth-constrained: variable capacity links: Wireless links will continue to 

have significantly lower capacity than their hardwired counterparts. In addition, 

the realized throughput of wireless communications after accounting for the 

effects of multiple access, fading, noise, and interference conditions, etc is often 

much less than a radio's maximum transmission rate [30]. One effect of the 

relatively low to moderate link capacities is that congestion is typically the norm 

rather than the exception, i.e. aggregate application demand will likely approach 
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or exceed Network capacity frequently. As the mobile network is often simply an 

extension of the fixed network infrastructure, mobile ad hoc users will demand 

similar services. These demands will continue to increase as multimedia 

computing and collaborative networking applications rise. 

 Energy-constrained operation: Some or all of the nodes in a mobile ad-hoc 

network may rely on batteries or other exhaustible means for their energy [30]. 

For these nodes, the most important system design criteria for optimization may 

be energy conservation. 

 Limited physical security: Mobile wireless networks are generally more prone to 

physical security threats than are fixed- cable nets [20].  The increased possibility 

of eavesdropping, spoofing, and denial-of-service attacks should be carefully 

considered.  Existing link security techniques are often applied within wireless 

networks to reduce security threats. As a benefit, the decentralized nature of 

network control in mobile ad hoc network provides additional robustness against 

the single points of failure of more centralized approaches. 

 In Summary, these characteristics create a set of underlying assumptions and 

performance concerns for protocol design, which extends beyond those guiding the 

design of routing within the higher-speed, semi-static topology of the fixed Internet. 

 

2.4. Routing Protocols for MANET 

Development of routing protocols for ad hoc networks has been one of the hottest topics 

within this area in recent years. As a consequence, a large number of routing protocols 

have been designed, either by modifying Internet routing protocols, or proposing new 

routing approaches. 

MANET routing protocols are typically subdivided into two main categories: proactive 

routing protocols and reactive on-demand routing protocols [19]. Proactive routing is 

derived from the traditional distance vector and link state protocols developed for the 

internet. The primary characteristic of proactive approaches is that each node in the 

network maintains a route to every other node in the network at all times. Route creation 

and maintenance is accomplished through some combination of periodic and event-

triggered routing updates. This approach has the advantage that routes are available at the 



22 

 

moment they are needed. A source can simply check its routing table, when it has data 

packets to send to some destination, and begin packet transmission. However, the 

primary disadvantage of these protocols is that the control overhead can be significantly 

large.  

Reactive on demand routing protocols take a very different approach than proactive 

protocols, since they do not maintain a route between all pairs of network nodes. Instead, 

reactive protocols discover the route to a destination only when there is a demand for it. 

Specifically, when a source node needs to send date packets to some destination, it 

checks its routing table to determine whether it has a route. If no route exists, it performs 

a route discovery procedure to find a path to the destination. Hence, route discovery 

becomes on-demand. With this approach, if two nodes never need to talk to each other, 

then nodes in the network do not need to utilize their resources maintaining a path 

between each other.  

The benefit of this approach is that signaling overhead is likely to be reduced compared 

to proactive approaches, particularly in networks with low to moderate traffic load. When 

the number of data sessions in the network becomes high, then the overhead generated by 

the reactive routing protocols may even surpass that of the proactive approaches. The 

drawback of reactive approaches is the introduction of route acquisition latency. That is, 

when a route is needed by a source node, there is some finite latency while the route is 

discovered. In contrast, with a proactive approach, routes are typically available at the 

moment they are needed. 

2.5. Transmission Control Protocol 

Transmission Control Protocol (TCP) is the standard for reliable connection-oriented 

transport protocols, and is normally used over IP (Internet Protocol) to provide end-to-

end reliable communications to Internet applications [16]. TCP provides a reliable, 

connection-oriented, and full duplex type of service. In addition, TCP implements both 

flow control and congestion control mechanisms. The former prevents the TCP receiver’s 

buffer from being overflowed. The second is an end-to-end congestion control 

mechanism that prevents a process injecting into the network an excessive traffic load. 

Congestion control is concerned with the traffic inside the network. Its purpose is to 

prevent collapse inside the network when the traffic source (sender) is faster than the 
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network in forwarding data. In a network with shared resources, where multiple senders 

compete for link bandwidth, it is necessary to adjust the data rate used by each sender in 

order not to overload the network. Packets that arrive at a router and cannot be forwarded 

are dropped, consequently an excessive amount of packets arriving at a network 

bottleneck leads to many packet drops. These dropped packets might already have 

travelled a long way in the network and thus consumed significant resources. 

Additionally, the lost packets often trigger retransmission, which means that even more 

packets are sent into the network. Thus network congestion can severely deteriorate 

network throughput. If no appropriate congestion control is performed this can lead to a 

congestion collapse of the network, where almost no data is successfully delivered [48].  

 

2.6. TCP based routing for Mobile Ad-hoc Network 

In the light of the conducted research it can be concluded that TCP based routing is an 

interesting and growing topic with in Ad-hoc networking. A good number of solutions 

concerning TCP in MANET have been reported. However these solutions suffer from 

certain weaknesses, thus requiring some effective mechanism to support routing 

operations [49]. In this section an overview of the existing schemes are presented. A 

summarize comparison of the studied schemes is shown in table 2.1 

 

2.6.1. TCP-Feedback 

TCP-Feedback uses a feedback based approach to avoid congestion in mobile ad-hoc 

networks [9]. It requires the support of a reliable link layer and a routing protocol that can 

provide feedback to the TCP sender about the path breaks. The routing protocol is 

expected to repair the broken path within a reasonable time period. When an intermediate 

node detects a path break, it originates a route failure notification (RFN) packet and sends 

it to the sender of a TCP session. The intermediate node that originates the RFN packet is 

called the failure point (FP). Every intermediate node that forwards the RFN packet 

understands the route failure, updates its routing table accordingly, and avoids forwarding 

any more packets on that route. If any of the intermediate nodes that receive RFN has an 

alternate route to the same destination, then it rejects the RFN packet and uses the 

alternate path for forwarding further data packets.  
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When a TCP sender receives an RFN packet, it goes into a snooze state. In the snooze 

state, a sender stops sending any more packets to the destination, cancels all the timers, 

freezes its congestion window, freezes the retransmission timer, and sets up a route 

failure timer. This route failure timer is dependent on the routing protocol and network 

size. When the break path rejoins or another path is detected then a route re-establishment 

notification (RRN) is sent to the sender and the sender changes from the snooze state to 

the connected state.  

Critique  

In the event of route failures, as the route re-establishment time increases, the use of 

feedback shows saving in unnecessary packet transmission. In TCP-F the RRN packet is 

generated when the intermediate node detects re-establishment of a broken path and it 

depends on information from the routing protocol. TCP-F has an additional state 

compared to the traditional TCP state machine, and hence its implementation requires 

modifications to the existing TCP libraries. Another disadvantage of TCP-F is that the 

congestion window used after a new route is obtained may not reflect the achievable 

transmission rate acceptable to the network and the TCP-F. 

 

2.6.2. TCP with Explicit Link Failure Notification (TCP-ELFN) 

TCP-ELFN uses explicit link failure notification for improving TCP performance in 

mobile ad-hoc network [13]. This is similar to TCP-F, except for the handling of explicit 

link failure notification (ELFN) and the use of TCP probe packets for detecting the route 

reestablishment. The ELFN is originated by the node detecting a path break upon 

detection of a link failure to the TCP sender. There are different ways in which the ELFN 

message can be implemented e.g. by sending an ICMP destination unreachable message 

to the sender. Once the TCP sender receives the ELFN packet, it disables its 

retransmission timers and enters into a standby state. In this state, it periodically 

originates probe packets to see if a new route is re-established. Upon reception of an 

ACK by the TCP receiver for the probe packets, it leaves the standby state, restores the 

retransmission timers, and continues to function as normal. 

Critique  

When a node detects a path break, it sends an ELFN packet to the sender about a broken 

path to stop further packets being sent to the destination, thus it can reduce congestion in 
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the network. In TCP-ELFN when the network is temporarily partitioned, the path failure 

may last longer; this can lead to the origination of periodic probe packets consuming 

bandwidth and power. Another disadvantage is that the congestion window used after a 

new route is obtained may not reflect the achievable transmission rate acceptable to the 

network and the TCP receiver. 

 

 

2.6.3. Ad-hoc Transmission Control Protocol (ATCP) 

ATCP is implemented as a thin layer residing between the IP and TCP protocols and 

doesn’t need changes in the existing TCP protocol [12]. The ATCP layer essentially 

makes use of the explicit congestion notification (ECN) for maintenance of the states. 

This layer is active only at the TCP sender. The major function of the ATCP layer is to 

monitor the packets sent and received by the TCP sender, the state of the TCP sender, and 

the state of the network. There are four states in the ATCP NORMAL, CONGESTED, 

LOSS, and DISCONN.  

When a TCP connection is established, the ATCP sender is in NORMAL state. In this 

state, ATCP doesn’t interfere with the operation of TCP and it remains invisible. When a 

packet is lost or arrives out-of-order at the destination, which generates duplicate ACKs. 

The ATCP sender counts the number of duplicate ACKs received and if it reaches three, 

instead of forwarding the duplicate ACKs to TCP, it puts TCP in a persist state and 

ATCP in the LOSS state. In the LOSS state, ATCP retransmits the unacknowledged 

segments from the TCP buffer. When a new ACK comes from the TCP receiver, it is 

forwarded to TCP and the TCP sender is removed from persist state and then the ATCP 

sender changes to the NORMAL state.  

When the network gets congested, the ECN flag is set in the data and the ACK packets. 

When the ATCP sender receives this ECN message in the normal state, it changes to the 

CONGESTED state and just remains invisible, permitting TCP to invoke normal 

congestion control mechanism. When a route failure or network partition occurs in the 

network, ATCP expects the network layer to detect these and inform the ATCP sender 

through an ICMP destination unreachable message. Upon reception of the destination 

unreachable message, ATCP puts the TCP sender into the persist state and enters into the 

DISCONN state. It remains in the DISCONN state until it is connected and receives any 
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data or duplicate ACKs. The connected status of the path can be detected by the 

acknowledgments for the periodic probe packets generated by the TCP sender. When 

ATCP puts TCP into the persist state, it sets the congestion window to one segment in 

order to make TCP probe for the new congestion window when the new route is 

available.  

Critique 

The advantage of ATCP is that standard TCP/IP is unmodified and it is invisible to TCP 

and therefore nodes with and without ATCP can interoperate. ATCP does not interfere 

with TCPs functioning in cases where the TCP connection is between a node in the 

wireless network and another in the mobile ad-hoc network. The drawback of ATCP is 

that nodes without ATCP will experience all of the performance problems associated 

with running TCP over a mobile ad-hoc network. In ATCP the congestion window is set 

to one segment which may not reflect the achievable transmission rate acceptable to the 

network and TCP receiver.  

 

 

 

2.6.4. Split_TCP 

Split-TCP splits transport layer objectives into congestion control and end-to-end 

reliability [8]. Split-TCP splits a long TCP connection into a set of short concatenated 

TCP connections called segments or zones, with a number of selected intermediate nodes 

known as proxy nodes. A proxy node receives the TCP packets, reads its contents, stores 

it in its local buffer, and sends an acknowledgment to the source (or the previous proxy) 

called local acknowledgment (LACK).  

LACK does not guarantee end-to-end delivery. The responsibility of further delivery of 

packets is assigned to the proxy node. A proxy node clears a buffered packet once it 

receives LACK from the immediate successor proxy node for that packet. The source 

node clears the buffered packets only after receiving the end-to-end acknowledgment for 

those packets. Transmission control window at the TCP sender is also split into two 

windows, i.e. the congestion window and the end-to-end window. The congestion 

window changes according to the rate of arrival of LACKs from the next proxy node and 

the end-to-end window is updated based on the arrival of end-to-end ACKs.  
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Critique 

The advantage of splitting a TCP connection into multiple segments is that once the 

packet makes it to a proxy it has traversed the previous segment and thus avoids having 

to travel all the way back to the source if the packet needs to be retransmitted. Split-TCP 

requires modifications to the TCP protocol structure. The overhead incurred in including 

frequent end-to-end ACKs in addition to the LACKs can consume extra bandwidth. The 

failure of proxy nodes or frequent path breaks affects the performance of split-TCP. The 

loss of end-to-end semantics may cause problems to applications that rely on such a 

guarantee provided by TCP. 

 

2.6.5. Cross-Layer Approach  

Cross-layer design is the interaction among the layers in the protocol stack [2]. For 

compatibility with the Internet, existing standard protocol stacks would be deployed in 

the new networks and mobile devices. However, these protocol stacks which are 

architected and implemented in a layered manner do-not function efficiently in mobile 

wireless environments. The system performance of future networks will be enhanced by 

cross-layer design between PHY, MAC and higher layer protocols [1]. Following is some 

of the key information available at different layers that can be exchanged among each 

other for cross-layer design. 

 

 An application layer can communicate to other layers for the 

application’s QoS needs, i.e. the delay tolerance, acceptable delay 

variation, required throughput and acceptable packet loss rate. TCP 

may provide packet loss and throughput information to the 

application. The application can use this input to adapt its sending 

rate. 

 The information available with TCP is re-establishment time-out, 

congestion window, number of packets lost and actual throughput. 

[13]. When channel conditions are poor, retransmissions at the link 

layer result in delays which could lead to TCP retransmissions and 
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thus reduced throughput [9]. To avoid this, TCP and link layer could 

exchange retransmission information. 

 The information available at the network layer is Mobile-IP hand-off 

initiation/completion events and the network interface currently in 

use. Mobile-IP hand-off delay may lead to reduced throughput due to 

the TCP retransmission time-out (RTO) and back-off mechanism. 

TCP can be informed about the event of Mobile-IP hand-off to 

reduce the retransmission latency. 

 

2.6.6. Slow Start and Congestion Avoidance  

A TCP sender must use the slow start and congestion avoidance algorithms to control the 

amount of outstanding data injected into the network [14].  To  implement  these 

algorithms,  two  state  variables  are  added  to  the  TCP  per-connection  state.  The 

congestion window is a sender limitation on the amount of data the sender can transmit 

into the network before receiving an acknowledgment . The receiver's advertised window 

is a receiver limitation on the amount of outstanding data.  

 

 

2.6.7. Fast Retransmit and Fast Recovery  

When the TCP receiver receives an out-of-order segment, it sends an immediate duplicate 

acknowledgment to the TCP sender [13]. Duplicate acknowledgment happens when the 

TCP receiver receives an out-of-order segment and since it did not receive the segment(s) 

before this out-of-order segment, it cannot acknowledge the reception of this segment. 

Keeping in mind this fact, the TCP receiver responds with an ACK that has the sequence 

number of the expected packet, which is the same ACK it used to acknowledge the last 

in-order segment it received. This duplicate acknowledgment informs the TCP sender 

that the TCP receiver received an out of order packet and the sequence number of the 

expected packet. From the TCP sender's perspective duplicate acknowledgment can be 

caused by the following   

· Dropped segments.  

· The re-ordering of data segments by the network.  

· Replication of ACK or data segments by the network.  
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2.6.8. Network Feedback Approaches 

In these approaches, the network implements a monitoring mechanism that generates a 

notification message when it detects an abnormal event so that TCP may react [15]. TCP-

F is proposed to overcome the TCP false reaction towards route failures in MANET. As 

soon as the network layer at any node detects the disruption of a route, it explicitly sends 

a Route Failure Notification packet to the source. Consequently, the TCP sender stops 

sending packets and freeze all its variables (such as timers and congestion window size). 

When one of the intermediate nodes learns about a new route to the destination, it sends a 

Route Re-establishment Notification packet to the source.  The TCP sender leaves the 

snooze state, restarts the timers from their frozen values and resumes the transmission 

based on the stored sender window and timeout values. Similarly, the approach  uses an 

Explicit Link failure Notification to inform the TCP sender about the route failure. The 

only difference from TCP-F is that the sender in the snooze state periodically probes the 

network and when an ACK is received, it considers it as an indication of route 

reestablishment. 

A modified version of this approach is known as TCP-RC. TCP-RC recomputed the 

congestion window size and the slow start threshold for the TCP connection after the 

route is reconstructed instead of using the frozen values. An obvious limitation of this 

approach is that these techniques need to be deployed at every node. ATCP deals with the 

problems of high BER, route failures, network partitioning and multipath routing. A thin 

layer called ATCP is inserted between TCP and IP layers. The ATCP layer monitors TCP 

state and the state of the network (based on ECN and ICMP message) and takes 

appropriate action. The ATCP’s four possible states are: Normal, Congested, Loss and 

disconnected.  

When ATCP sees that three duplicate ACKs have been received, it considers it a channel 

loss and only transmits the unacknowledged segments. Congestion is detected by ECN 

message. In case of temporary network partitioning, the ATCP receives an ICMP 

“Destination Unreachable” message. Hence, it puts the TCP sender in the persist state, 

sets TCP's congestion window into one and enters itself in the disconnected state. TCP 

periodically generates probe packets until it start receives their ACKs. This removes TCP 

from persist mode and moves ATCP back into normal state. 
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TCP-BuS (TCP Buffering capability and Sequence information) is another approach used 

to detect route failures. When a node detects a route failure, it sends an Explicit Route 

Disconnection Notification to the source containing the sequence number of the TCP 

segment pending in the head of the node's transmit queue. All the intermediate nodes will 

buffer the packets in their queues. When a route is discovered, the receiver sends to the 

sender the last sequence number it has successfully received. The sender only transmits 

the lost packets and the intermediate nodes starts sending the buffered packets. 

A new approach called Split TCP to improve the performance of TCP in terms of fairness 

and throughput. This approach depends on splitting long TCP connections into shorter 

localized segments. The interfacing node between two localized segments is called proxy. 

The proxy intercepts TCP packets, buffers them and acknowledges their receipt to the 

source (or previous proxy) by sending a local acknowledgment. Upon the receipt of a 

LACK from the next proxy (or the final destination), a proxy will purge the packet from 

its buffer. The source keeps transmitting according to the rate of arrival of LACKs from 

the next proxy, but purges a packet from its buffer only upon receipt of an end-to-end 

ACK for that packet from the destination. This keeps the end-to-end reliability of TCP. 

 

2.6.9. End-to-End Approaches 

End-to-end approaches require no network support [16]. The end nodes (sender or 

receiver) can detect the network state by measuring appropriate traffic parameters. For 

example, high volume of out of order delivery signifies route change. A heuristic is 

employed to distinguish between route failures and congestion without relying on 

feedback from other network nodes. When timeouts occur consecutively, this is taken to 

be evidence of a route loss. The unacknowledged packet is retransmitted again but the 

RTO remains fixed until the route is reestablished and the retransmitted packet is 

acknowledged. 

`TCP-DOOR (Detection of Out-Of-Order and Response) is another pure end-to-end 

approach to improve TCP performance by detecting and responding to out-of-order 

packet delivery events, which are interpreted as an indication of route failure. The non-

decreasing property of ACK sequence numbers makes it simple for the sender to detect 

out-of-order delivery of non-duplicate ACK packets. To detect out-of-order delivery of 
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duplicate ACK packets, they use one-byte TCP option which is incremented with each 

duplicate ACK packet. 

Comparing the two approaches, we find that end-to-end approaches are easier to 

implement and provide more flexibility, while feedback approaches are more accurate as 

the information is coming directly from the network. Furthermore, it is clear that each 

approach deals only with one or a subset of the factors causing the bad performance of 

TCP in MANETs. However, most commonly, these solutions deal with route failures. 

Actually, this is reasonable because in such a dynamic environment the frequency of 

route failures is very high due to node mobility. We also find that most of the presented 

approaches take reactive actions. In these approaches TCP takes different actions rather 

than invoking congestion control when a non-congestion loss occurs. Some approaches 

are preventive (e.g. Split TCP). The target of this kind of approaches is to reduce the 

probability of other losses that may lead to false notification and unnecessary congestion 

control reaction.  

 

2.6.10. TCP Variants 

This section presents the main TCP variants that have been investigated in the literature. 

Each variant has its own features tailored to a specific problem faced by TCP congestion 

control, and in most cases each new variant represents an evolution of the previous one. 

 

2.6.10a. TCP Tahoe 

Tahoe represents the basic TCP version that was specified by Jacobson [13]. It was the 

first TCP designed to solve the congestion collapse affecting the Internet. Modern TCP 

implementations still use most of the mechanisms developed for Tahoe, as it will be 

shown below. In addition to the retransmit timeout mechanism, which was already 

implemented in early TCP-like transport protocols, TCP Tahoe counts on the three key 

mechanisms: Fast Retransmit, Slow Start, and Congestion Avoidance.  

Critique 

The Tahoe TCP implementation added a number of new algorithms and refinements to 

earlier implementations e.g. slow-start, congestion avoidance and fast retransmit. With 

Fast Retransmit, the data sender infers that a packet has been lost and retransmits the 

packet without waiting for a retransmission timer to expire, leading to higher channel 
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utilization and connection throughput. Although Tahoe solved the congestion collapse 

problem, it rapidly proved to be too conservative by always resetting its CWND to one 

upon a lost packet. 

 

2.6.10b. TCP Reno 

TCP Reno conserved the three essential mechanisms of the basic TCP Tahoe, namely 

Slow Start, Congestion Avoidance and Fast Retransmit [15]. The novelty introduced into 

TCP Reno is the Fast Recovery mechanism. This mechanism prevents the 

communication path from going empty after Fast Retransmit, thereby avoiding the need 

to Slow Start to re-fill it after a single packet loss. 

Fast Recovery is generally invoked when a TCP sender receives a predefined threshold of 

duplicate ACKs, just after the Fast Retransmit mechanism. This threshold, usually known 

as tcp rexmtthresh, is generally set to three. Once the threshold of dup ACKs is received, 

the sender retransmits the packet that seems to have been dropped and reduces its 

congestion window by one half. Unlike TCP Tahoe, TCP Reno does not invoke Slow 

Start, but uses the additional incoming duplicate ACKs to clock out subsequent outgoing 

data packets. 

Fast Recovery assumes that each dup ACK received represents a single packet having left 

the pipe. Thus, during Fast Recovery the TCP sender is able to make intelligent estimates 

of the amount of outstanding data. Specifically, during Fast Recovery the usable TCP 

window is defined as min (rwin, cwnd+ ndup), where rwin refers to the receiver 

advertised window and ndup tracks the number of duplicate ACKs received. By using the 

ndup variable, the sender may estimate the amount of packets in flight. After entering 

Fast Recovery and retransmitting a single packet, the sender effectively waits until half a 

window of dup ACKs have been received, and then sends a new packet for each 

additional dup ACK that is received. Upon receipt of an ACK for new data (called a 

“recovery ACK”), the sender exits Fast Recovery by setting ndup to 0. 

Critique 

TCP Reno is optimized for the case when a single packet is dropped from a window of 

data. In such cases, the TCP sender can retransmit at most one dropped packet per 

Round-trip Time (RTT). TCP Reno is more efficient than its predecessor (Tahoe) but 

does not work so well when more than one packet is dropped from a window of data. The 
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problem is that TCP Reno may reduce the CWND multiple times for recovering the lost 

packets, leading the connection to experience poor performance.  

 

2.6.10c. TCP NewReno 

NewReno improves the Reno implementation with regard to the Fast Recovery 

mechanism [44]. The objective of TCP NewReno is to prevent a TCP sender from 

reducing its congestion window multiple times in case several packets are dropped from a 

single window of data. NewReno can also avoid retransmission by timeout in scenarios 

where the involved congestion window is small preventing enough ACK packets from 

reaching the sender. In TCP Reno, when the sender receives a partial ACK packet it exits 

Fast Recovery. The term partial ACKs refers to ACK packets that acknowledges some 

but not all of the data packets that were outstanding when the Fast Recovery was started. 

Upon receipt of a partial ACK, the Reno sender brings the usable window back to the 

congestion window size, and so exits Fast Recovery. If there are sufficient outstanding 

packets, the sender may receive enough duplicate ACKs to retransmit the next lost packet 

(or packets) until all dropped packets are retransmitted by the Fast Recovery mechanism.  

At every invocation of the Fast Recovery, CWND is halved. If there are not enough 

packets outstanding due to a low window size, then the sender needs to wait for the 

expiration of the retransmission timer. In this case the CWND is reset to one, inducing 

bandwidth wastage. Differently from Reno, the NewReno do not exit Fast Recovery 

when it receives partial ACKs. Instead, TCP NewReno treats partial ACKs received 

during Fast Recovery as an indication that the packet immediately following the 

acknowledged packet in the sequence space has been lost, and should be retransmitted. 

Thus, when multiple packets are lost from a single window of data, TCP NewReno can 

recover without a retransmission timeout, retransmitting one lost packet per round-trip 

time until all of the lost packets from that window have been retransmitted. TCP 

NewReno remains in Fast Recovery until all of the data outstanding when Fast Recovery 

was initiated has been acknowledged. In this way, TCP NewReno avoids multiple 

reductions in the CWND or unnecessary retransmit timeout with Slow Start invocation, 

thereby improving the end-to-end performance. 
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Critique 

TCP NewReno advances the Reno implementation with respect to the fast recovery 

mechanism by preventing a TCP sender from reducing its congestion window multiple 

times in case several packets are dropped from a single window of data TCP NewReno 

remains in fast recovery until all of the outstanding data is recovered without knowing 

bandwidth capacity can impact the overall throughput of the network. 

 

2.6.10d. TCP SACK 

Selective Acknowledgment preserves the basic principles of TCP Reno [13]. In fact, it 

uses the same algorithms of Reno for increasing and decreasing its congestion window. 

The novelty in TCP SACK lies in its behavior when multiple packets are dropped from 

one window of data, similarly to TCP NewReno. In SACK, the receiver uses the option 

fields of the TCP header (Sack option) for notifying the status of data received and 

queued by the receiver. 

The SACK option field contains a number of SACK blocks, where each SACK block 

reports the received and queued bytes of data that are contiguous and isolated (there are 

gaps in the data stream). The first block in a SACK option is required to report the most 

recently received segment, and the additional SACK blocks repeat the most recently 

reported SACK blocks. The sender keeps a data structure called a scoreboard to keep 

track of the SACK options (blocks) received so far. In this way, the sender can infer 

whether there are missing packets at the receiver. If so, and if its congestion window 

permits, the sender retransmits the next packet from its list of missing packets.  

In case there are no such packets at the receiver and the congestion window allows, the 

sender simply transmits a new packet. Like TCP Reno, the Sack implementation also 

enters Fast Recovery upon receipt of generally three duplicate acknowledgments. Then, 

its sender retransmits a packet and halves the congestion window. During Fast Recovery, 

SACK monitors the estimated number of packets outstanding in the path (transmitted but 

not yet acknowledged) by maintaining a variable called “pipe”. This variable determines 

if the sender may send a new packet or retransmit an old one. 

The sender may only transmit if pipe is smaller than the congestion window. At every 

transmission or retransmission, pipe is incremented by one, and it is decremented by one 

when the sender receives a duplicate ACK packet containing a SACK option informing it 
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that a new data packet has been received by the receiver. The Fast Recovery terminates 

when the sender receives an ACK acknowledging all data that were outstanding when 

Fast Recovery was entered. If the sender receives a partial ACK, i.e., an ACK that 

acknowledges some but not all outstanding data, it does not exit Fast Recovery.  

For partial ACKs, the sender reduces pipe by two packets instead of one, which 

guarantees that a SACK sender never recovers more slowly than it would do if a Slow 

Start had been invoked. If it happens that a retransmitted packet is dropped, the SACK 

implementation reacts exactly as the Reno implementation. In such cases, the sender 

times out, retransmits and enters Slow Start.  

Critique 

 SACK incorporates all the advantages found in NewReno and may recover multiple lost 

packets in a window of data in just one single RTT. A SACK implementation requires 

changes at both sender and receiver, though. 

In similarity with the NFBTCP approach proposed here, SACK has the capability to 

distinguish between route congestion and route breakages .This allows the congestion 

window to be better controlled. However, SACK relies on a single ACK packet to 

determine that a route is still alive and resumes data flow on this link, but doesn’t utilize 

the full link capacity and therefore may have lower overall throughput than NFBTCP. 

 

2.6.11. Explicit Congestion Notification 

The ECN scheme specified in RFC 3168 [51] proposes to use network feedback to assist 

a TCP connection in reacting to congestion effects. By using this mechanism, TCP does 

not need to await a dropped packet due to buffer overflow to detect congestion and 

properly slow down. Rather, it is informed by the intermediate nodes (routers) when 

incipient congestion starts. ECN can prevent time wastage at the sender that, without 

ECN, always has to wait for either three duplicate acknowledgments or timeout timer 

expiration. The implementation of ECN requires specific flags in both IP and TCP 

headers. Two bits are used in each header for proper signaling among sender, routers and 

receiver. The active queue management (AQM) inside the routers marks packets when 

congestion reaches a given threshold. The receiver simply echoes back the congestion 

indication into the ACKs to the sender which reduces its sending rate to prevent severe 

congestion.  
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Critique 

ECN is appealing for Internet use since it does not render any overhead regarding the 

current IP flows. Its drawback lies in the fact that to be effective, it requires changes to 

every network element. Other than this, it provides similar capabilities to the NFBTCP 

approach presented in this thesis in terms of link breakages, but doesn’t cover other 

aspects such as link capacity and out-of-order delivery. 

 

2.6.12. Delayed Acknowledgments (DA) 

When data arrives at the receiver, the protocol requires that the receiver sends back an 

acknowledgment for reliability reasons [50]. The data packets are sequentially numbered 

so the receiver can acknowledge data by sending to the sender the sequence number of 

the highest data packet it has in its buffer. The acknowledgment scheme is cumulative, 

which means that by receiving the highest sequence number, the sender infers that all 

prior data were successful received. Thus, a TCP receiver does not necessarily have to 

transmit an acknowledgment for every incoming data packet. 

RFC 813 [50] introduces a new mechanism that optimizes transmission efficiency by 

reducing the number of acknowledgments generated by a TCP receiver. This RFC shows 

that reducing the number of ACKs provides two benefits: lower processing overhead at 

the sender and robustness against the well-known Silly Window Syndrome (SWS). 

Measurements of TCP implementations, in particular on large operating systems, suggest 

that most of the overhead involved in a packet handling is not in the TCP or IP layer 

processing. 

In fact, the most significant processing occurs in the scheduling of the handler that must 

deal with the packet at the sender. The delay ACK mechanism optimizes transmission 

efficiency by reducing the number of acknowledgments generated by a TCP receiver. 

However, if the network is facing constraints, additional mechanisms are needed to make 

sure that the receiver does not lead the sender to miss ACKs. Hence, RFC 813 

recommends the use of a timer at the receiver to trigger ACK transmissions for data 

packets that do not arrive at the receiver in due time. This timer should be reset at every 

new incoming data packet and its duration could be either a fixed interval on the basis of 

the channel characteristics such as typical RTT or be adaptive to the channel conditions.  

Critique 
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Although a delayed acknowledgment establishes the foundation for the delayed ACK 

mechanism, it does not specify clearly the actions to be taken by the receiver under a 

constrained channel. Again, its focus is on congestion rather than out-of-order delivery as 

tackled by NFBTCP. 

 

TCP based 

Schemes 

End-to-

End 

approach 

Feedback 

approach 

Fast 

Recovery  

Slow 

Start 

Congestion 

Avoidance 

TCP Tahoe Yes No No Yes Yes 

TCP NewReno Yes No Yes No Yes 

TCP-F No Yes No Yes Yes 

TCP-ELFN No Yes Yes No Yes 

ATCP No Yes Yes Yes Yes 

SPLIT TCP Yes Yes No Yes Yes 

TCP-DOOR Yes No Yes No Yes 

     

Table 2.1. Summary of TCP-based schemes for use in MANET. 

 

2.7. Simulation tools. 

SWANS was chosen for simulation experiments. SWANS capabilities are similar to 

existing simulators but is able to simulate much larger networks and have a number of 

other advantages over existing tools. SWANS can run existing Java network applications, 

such as web servers and peer-to-peer applications, over the simulated network without 

modification. The application is automatically transformed to use simulated sockets and 

into a continuation-passing style [40]. The original network applications are run within 

the same process as SWANS, which increases scalability by eliminating the considerable 

overhead of process-based isolation. Network packets in SWANS are modeled as 

immutable objects, allowing a single copy to be shared across multiple nodes. This saves 

the memory and time of multiple packet copies on every transmission. 

In SWANS, simulation events among the various entities such as packet transmissions 

are performed with no memory copy and no context switch. The system also 

continuously profiles running simulations and dynamically performs code in lining, 

constant propagation and other important optimizations, even across entity boundaries. 

This is important, because many stable simulation parameters are not known until the 

simulation is running. Memory is critical for simulation scalability. Automatic garbage 
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collection of events and entity state in SWANS not only improves robustness of long-

running simulations by preventing memory leaks, it also saves memory by facilitating 

more sophisticated memory protocols. An example of memory savings in SWANS is the 

use of soft references for storing cached computations, such as routing tables. These 

routing tables can be automatically collected, as necessary, to free up memory. In the 

light of the above it is cleared that SWANS closely match the requirements of this 

research project. Thus it is selected as a simulation tool for evaluation of NFBTCP.    

2.8. Summary 

This chapter is an effort to analyze some of the previously proposed scheme of this area. 

In this context, introduction to the TCP along with a detail description of various TCP 

related segments followed by a detail description of various schemes. Previously 

presented solution could be categorized into one of two types. One type is the protocol 

schemes which are not an extension of TCP; whereas the other type is the schemes which 

are classified as TCP extensions. Most of the schemes discussed in this chapter focused 

on some specific issue rather than taking other interrelated issues. Moreover, presence of 

so many solutions to some extent emphasizes that the problem is still unresolved. The 

focus of the next chapter is to analyze identified problem in view of the related reported 

work.  
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Chapter 3. Research Methodology 

3.1. Introduction 

Taking into account TCP in mobile ad-hoc networks, many modified schemes are 

reported in the available literature. It is a well-known fact that these schemes do not fully 

address some of the main issues. The purpose of this chapter is to have an in-depth look 

into the issues revolved around TCP degrading performance in mobile ad-hoc networks. 

This will lead towards a conclusive problem analysis and its relation with potential 

solution to enhance TCP performance. In essence, this chapter will follow a prescribed 

sequence from basic to advanced operational pattern of TCP and its application over 

mobile ad-hoc network. 

3.2. TCP in Mobile Ad-hoc network 

The Transmission Control Protocol is one of the most authentic transport layer protocols 

for the Internet [17]. The most important functions of TCP are end-to-end connection, 

congestion control, flow control, in-order delivery of packets and reliable transportation 

of data packets. TCP performance has always been impressive in wired network and over 

the Internet [13]. A significant amount of research has been done to make TCP capable of 

supporting communication over mobile ad-hoc networks [4, 5, 6, 9, and 13]. However, 

despite numerous attempts TCP failed to show impressive performance in such an 

environment. Although TCP provides reliable end-to-end delivery of data over wired 

networks, several recent studies have indicated that TCP performance degrades 

significantly in mobile ad hoc networks. This is mainly because TCP considers any 

packet loss and/or delay as a congestion signal although MANET encounters several 

types of losses and delays that are not related to congestion. Non-congestion 

losses/delays mainly occur because TCP cannot adapt well to such mobile wireless multi-

hop networks. The following subsections discuss different factors that affect TCP 

performance in MANET. 
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3.3. Factors Affecting TCP Performance in MANET 

In addition to the traditional problems of wireless networking, the mobile multi-hop ad-

hoc environment brings more challenges to TCP. In this section, we present a detailed 

analysis of all the factors that cause degradation in the performance of TCP in MANET. 

 

3.3.1. TCP Congestion Control in Mobile Ad-hoc network 

Congestion control is concerned with the traffic inside the network. Its purpose is to 

prevent collapse inside the network when the traffic source (sender) is faster than the 

network in forwarding data. To this end, the TCP sender uses a limiting window called 

congestion window. Assuming that the receiver is not limiting the sender, CWND defines 

the amount of data the sender can send into the network before an ACK is received. 

CWND controls the sending rate of data packet to the destination. The network 

throughput depends on the size of the congestion window. The size of the congestion 

window gets lager depending on the rate of arrival of every new ACK received by the 

TCP sender. When a data packet is lost and the sender dose not receives ACK from the 

receiver within the retransmission timeout period then TCP shrinks its congestion 

window and invokes its congestion control mechanism [9]. Throughput of a network 

degrades if the transport layer protocol cannot perform the above-mentioned functions 

properly. TCP should maximize the throughput by differentiating between congestion 

and link failure and should take appropriate actions according to the problem occurred. If 

it’s real congestion then it should inform the sender to slow down the sending rate of data 

packets. And if it’s not congestion and the loss of packets is due to link failure then it 

should inform the sender about link failure and not to send data packets to the destination 

node. 

 

3.3.2. Network Partitioning 

Network partitioning degrades throughput of TCP in mobile ad-hoc networks and is due 

to randomly moving nodes. The path will break if the sender and the receiver of a TCP 

connection lie in different partitions or any of the nodes between sender and receiver 

moves to another network. Due to path loss packets will be lost and TCP will assume it as 

congestion and will invoke the congestion control mechanism. Frequent disconnections 

cause a condition called serial timeouts at the TCP sender. This may lead to long idle 
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periods during which the network is connected again, but TCP is still in the back off state 

and TCP will assume it as congestion and will invoke the congestion control mechanism. 

 

3.3.3. TCP Connection Management 

TCP is a connection oriented transport protocol. This means that one application process 

cannot send data to another; the two processes must first perform a handshake to open a 

TCP connection with each other. During the TCP connection establishment, both sides of 

the connection will initialize many TCP “state variables” associated with the TCP 

connection. The connection state resides entirely in the two end systems. The 

intermediate network elements do no maintain TCP connection state. A TCP connection 

provides for full duplex data transfer. If there is a TCP connection between process A and 

B, the application-level data can flow from A to B and from B to A at the same time. A 

TCP connection is also always point-to-point, that is, between a single sender and a 

single receiver. Multicasting is not possible with TCP. 

 

3.3.4. Route Failures 

In mobile ad-hoc networks packets loss is quite regular due to frequent path breaks 

caused by the mobility of destination nodes or mobility of the nodes working as routers 

between the source node and destination nodes, collisions due to hidden terminals etc, 

when the data packet is lost and the sender dose not receive acknowledgement from the 

receiver within the retransmission timeout period then TCP assumes this as congestion 

and invokes the congestion control mechanism [9]. When TCP assumes packet loss as 

congestion then it shrinks its congestion window and reduces the packet transfer rate and 

thus degrades overall throughput of the network. To gain high throughput from the 

network TCP should differentiate between congestion and packet loss due to mobility or 

path breakage. 

3.4 Discussion 

The focus of this section is to discuss shortcomings of TCP in MANET with the intention 

of addressing them within the proposed scheme in the next chapter. Transmission Control 

Protocol provides a reliable, connection-oriented and full duplex type of service. The 

major functions of TCP are end-to-end connection, congestion control, flow control, in-

order delivery of packets and reliable transportation of data packets. Throughput of a 
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network degrades if the transport layer protocol cannot perform the above-mentioned 

functions properly. TCP performs well in wired network and is considered as the 

backbone of the Internet [13].  In addition to the traditional problems of wireless 

networking, the mobile multihop ad hoc environment brings more challenges to TCP. In 

MANET, it may manifest in several forms like bandwidth asymmetry, loss rate 

asymmetry and route asymmetry. If the ACKs get bunched up, the sender may transmit 

data in a burst, which could lead to packet loss on the forward path. Also, disruption of 

the ACK stream can disrupt window growth and degrade performance to a fraction of the 

available bandwidth. 

The main cause of route failures is node mobility. The route reestablishment duration 

depends on the underlying routing protocol, mobility patterns of nodes and traffic 

characteristics. It is possible that discovering a new route may take significantly longer 

than the RTO at the sender. As a result, the TCP sender will unnecessary invoke 

congestion control. If the sender and the receiver of a TCP connection lie in different 

partitions, all the sender's packets get dropped by the network resulting in the sender 

invoking congestion control.. In MANET, since the routes change many times during the 

lifetime of a TCP connection, the relationship between the congestion window size and 

the tolerable data rate becomes too loose.  

In [7], the authors show that if the congestion window size is greater than an upper 

bound, the TCP performance will degrade. It is reported that, given a specific network 

topology and flow patterns, there exists an optimal TCP window size by which TCP 

achieves the best throughput. Unfortunately, TCP operates at an average window size, 

thus leads to increased packet loss due to the contention on the wireless channel. Since 

batteries carried by each mobile node have limited power supply, their life time is 

limited. Since each node acts as a router as well as an end system, unnecessary 

retransmissions of TCP segments consume this scarce power resource causing inefficient 

utilization of available power. Some routing protocols maintain multiple routes between 

source and destination to minimize the frequency of route re-computation. Unfortunately, 

this sometimes results in a significant number of out-of-sequence packets arriving at the 

receiver causing the generation of duplicate ACKs which causes the sender to invoke 

congestion control.  
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3.5. Methodology  

We have followed a systematic approach from the start until the end of this project as 

shown in figure 3.1. Initially requirement analysis was done to understand the problem 

and associated task. The next step was to propose a suitable solution to address the 

identified problem. This solution was later on draw using standard design techniques. The 

same design was helpful during implementation process of the proposed solution. 

Implemented model was evaluated through various simulation cycles in order to monitor 

scheme performance in a practical environment. 

The research methodology that I will adopt is quantitative approach. The advantage of the 

quantitative approach is that it measures, analyses and test the data and hence facilitates 

to test the hypothesis.  

 

     

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 3.1. Methodology used by NFBTCP. 
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3.6. Summary 

In this chapter an in-depth look into the issues revolved around TCP degrading 

performance in mobile ad-hoc networks is presented. This has led towards a conclusive 

problem analysis and its relation with potential solution to enhance TCP performance. In 

essence, this chapter has followed a prescribed sequence from basic to advanced 

operational pattern of TCP and its application over mobile ad-hoc network. In addition a 

brief explanation of the selected methodology is also presented. In the following chapter 

Node Feedback Based Mechanisms is introduced. 
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Chapter 4. Node Feedback TCP Based Mechanism for Mobile 

 Ad-hoc Network 

4.1. Introduction 

Node feedback TCP based mechanism introduces a new flavor of TCP for mobile ad-hoc 

networks. It follows an intermediate approach in between some of the existing 

mechanisms of TCP based schemes for mobile ad-hoc networks. We have addressed TCP 

slow start mechanism in the context of mobile ad-hoc networks and introduced measures 

through whom TCP can differentiate between real congestion and congestion assumed by 

TCP due to packet lost or route failure in mobile ad-hoc networks. In addition our 

proposed mechanisms also deal with the out-of-order delivery problem of TCP in mobile 

ad-hoc networks. It is important to mention that NFBTCP not only addresses TCP related 

issues but also provides a number of different operations to assists in the smooth running 

of ad-hoc networks. Otherwise, it was clearly difficult to have a clear understanding of 

NFBTCP modification of TCP for mobile ad-hoc network. In order to provide a concise 

and stepwise sequence of overall operation we give a clear overview from the start of the 

network until the over running of an ad-hoc network in congestion with TCP.  

In the light of the background research of this thesis, it is well understood that TCP poor 

performance over ad-hoc networks is related to the typical nature of the ad-hoc network. 

Therefore it was necessary to define some of the interrelated operations alongside 

modifications to TCP. All of these operations are made part of this specification.  Overall 

the operational structure of the proposed scheme can be seen in figure 4.1. In this context 

the overall specification of the proposed scheme will have all types of operation bundled 

within the same scheme. This is also done so as to support any future modification and to 

enable further development of the scheme.  This chapter has been organized as follows: 

in section 2 specification of NFBTCP is given and a chapter summary is given in section 

3. 
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Function network formation 
broadcast Ad-hoc formation 

packet which when received 

by a node, it sends back an 
ad-hoc acknowledge packet 

to the sender of AFP. This 

acknowledgement represents 
a node’s wishe to be part of 

the network. This information 

is stored in the routing tables 
of all participating nodes. 

A broadcast IID and packet 

ID is assigned to the packet  

When a packet is received at an intermediate 
node it first sees if the packet has been 

received before, if so it is discarded 

otherwise it is forwarded and the routing 
table is updated. Route search is made when 

a route is requested. If the route is found in 

the routing table it is sent using the found 
route otherwise it is forwarded to the next 

hop-neighbor. 

 

When a packet sequence is found 
missing in an active data 

transmission a request to resend 

missing data packet is sent to the 
sender. On receiving the missing data 

packet the data frame is re organized 

and is delivered to the destination. 

 

Link capacity is calculated 

and is sent to the TCP 
sender so that adjustments 

can be made accordingly. 

 

When a node detects a link 

failure, it broadcasts a link 

failure update packet across the 
network to inform other nodes 

about the link failure. 

Function generate acknowledgement 
generates the acknowledgement with 

an acknowledge packet and 

broadcast ID using the reverse path 
stored in the routing table through 

which the packet was received. The 

reverse path information is available 
in routing table. 

 

NFBTCP functions at 

transport layer 

Figure 4.1. Structural Representation of NFBTCP 
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The starting point of our implemented scheme is network formation, where a node 

broadcasts ad-formation packet to other nodes about establishment of an ad-hoc mobile 

network. Once an ad-hoc mobile is established, relevant information about all the nodes 

are stored in routing tables of all mobile nodes. When an intermediate node detects 

broken route informs other nodes about route failure. Similarly if alternative route is 

available it forward packets using that route. To avoid congestion due to path break in 

NFTCP sender is informed about broken path thus the sender stop sending further 

packets until new route is available. For link capacity detection link bandwidth is 

calculated after establishing new route to avoid invoking slow start mechanism of TCP. 

NFBTCP also deals with out-of-order delivery issue in TCP by storing packets of an 

active communication in a buffer at destination node and sends single ACK to the sender 

once the full message is received. Below is the summarized pseudo code of NFBTCP. 

The individual functions referred to in this pseudo-code will be discussed in more detail 

in the proceeding sections. 

 

// When initialising the network 

Fn network formation  

 

// In the packet receive loop 

When packet received 

 If destination node  

  Fn out-or-order packet delivery 

   If packet missing or out-of-order 

    Request packet 

   Else send single acknowledgment 

   Endif 

 Else receive and forward 

  If broken link detected 

   If no route to destination  

    Send link failure packet to sender 

   Else route restored broadcast link update packet 
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   If new route found  

    Calculate link capacity 

    Broadcast link formation packet 

   EndIf 

  EndIf 

 Endif 

 

 

4.2. NFBTCP Specification and Operational Details  
This section presents the NFBTCP specification which is a combination of the existing 

TCP functions and the functions defined by the proposed scheme. In this context, it is 

important to mention that the purpose of this section is to take into consideration all those 

aspects which are involved in the routine network operations. In the following section 

details of various functions alongside some of the associated operations of the main 

function are presented besides explanation of terms which are used as a part of this 

specification. 

 

4.2.1. Network Formation  

NFBTCP defines ad-hoc network formation in between two or more mobile nodes. In 

order to establish a network, a packet named as ad-hoc formation packet is broadcast by 

any node as shown in figure 4.2.1A. In figure 4.2.1A Node A is broadcasting ad-hoc 

formation packet to the rest of the nodes to form the potential network.  

 

 

 

 

 

 

 

 

Figure 4.2.1A Node A broadcasting AFP 
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Nodes wish to be part of the network on reception of AFP send an Ad-hoc Acknowledge 

Packet back to the sender node as shown in figure 4.2.1B where the nodes apart from 

node A sending ad-hoc acknowledge packet. This packet shows nodes are agreed to join 

the network. This automatically updates all the participating nodes with the relevant 

location information about other nodes of the network. 

 

 

 

 

 

 

 

 

 

 

                                     Figure 4.2.1B. Node broadcasting AACK 

 

 

 

 

Function Network Formation 
 

Broadcast ad-hoc formation packet 
Received ad-hoc formation packet 
Initializes routing table 
Updates Routing Table 
Send ad-hoc acknowledgement 

 
End Function 

 

It is important to note that this initial communication is taken as a starting point of 

communication between the participating nodes of a mobile ad-hoc network. These initial 

packets transmission is used to gather relevant information of other nodes of the network 

A 

 B 

 C 

 D 

 E 

Broadcasting AACK 

Function network formation broadcast 

Ad-hoc formation packet which when 

received by a node, it sends back an 

ad-hoc acknowledge packet to the 
sender of AFP. These acknowledge 

represents node wishes to be part of 

the network. This information is 
stored in routing table of all 

participating nodes. 
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as shown in figure 4.2.1C where nodes are updating their self with the information of 

other nodes. 

 

 

 

 

 

 

  

 

 

 

 

          Figure 4.2.1C. Node Updating with Relevant Information of other nodes   

 

NFBTCP besides introducing a unique way of network formation also enables any other 

nodes want to join the established network via broadcasting joining message. Any node 

who was not part of the network at the time of network formation can broadcast joining 

message containing Joining Packet to introduce itself as a new participating node as 

shown in figure 4.2.1D.  

 

 

 

 

 

 

 

 

 

                                  Figure 4.2.1.D. Node F broadcasting Joining Message  
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Below mentioned is the explanation of some the packets which are used within network 

formation of NFBTCP. Each of these packets are used to keep updated nodes with the 

current situation of the network as any node which receive any of these packet is required 

to forward it to the next hop neighbor. In this manner routes are formed and nodes in an 

ad-hoc network are linked with each other.  

 

 Ad-hoc Formation Packet (AFP).  Ad-hoc formation packet is the packet which is 

broadcast when two or more mobile nodes want to form an ad-hoc network. This packet 

serves two purposes. Firstly, it indicates to the other nodes within the proximity that an 

ad-hoc network is about to establish and lastly it gives other potential nodes a starting 

point of communication via some relevant information about the other participating 

nodes. This packet also helps nodes in determining the hop-count of one node to the other 

node. Figure 4.2.1E describes AFP packet structure containing source sequence number 

and broadcast ID. 

 

Source Seq no: Broadcast ID Test Data 

 

Figure 4.2.1E  AFP packet structure 

 

Ad-hoc Acknowledge Packet (AACK).  This packet is broadcasted by the potential nodes 

upon reception of ad-hoc formation packet. It serves two purposes; it shows willingness 

of a node or nodes to become one of the participants of the network and it also gives 

option to re-verify existing information about other nodes of the network. Ad-hoc 

Acknowledgement packet contains source sequence number, Broadcast ID, destination 

sequence number and acknowledgement of the received AFP packet as shown in figure 

4.2.1F. The source sequence number, broadcast ID and destination sequence number are 

generated by the node in an incrementing manner. 

   

Source seq no: Broadcast ID Destination Seq no: ACK 

 

Figure 4.2.1F AACK packet structure  
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Joining Ad-hoc Packet (JAP). Mobile nodes which were not the part of network at the 

time of network formation are require to send a Joining Ad-hoc Packet (JAP) to join the 

network. This packet serves two purposes i.e. informing participating nodes about the 

new joining nodes and to update and re-verify previously stored links. Joining Ad-hoc 

Packet contains source sequence number, Broadcast ID, destination sequence number and 

message data as shown in figure 4.2.1G.  

 

Source seq no: Broadcast ID Destination Seq: no  Message data 

 

Figure 4.2.1G JAP packet structure 

 

4.2.2. Generating Acknowledgement  

NFBTCP offer modification to the TCP scheme of generation acknowledgement for the 

sender nodes of a packet. When a packet is arrived at a destination it issues an 

acknowledgement back to the sender using the reverse path formed during the initial data 

transmission. The reverse path information is stored in the routing tables of all 

participating nodes. This process is known as generating acknowledgement and this is 

achieved via acknowledge packet delivery from destination to the source node of a 

packet. It should be noted that such packets are only sent when packets with data are 

received at some destination. However, for control packets their individual 

acknowledgement depends on the type of the packet is sent, some of such control packets 

and their acknowledgment types are defined in section 4.2.1. These packets are sent back 

to the source node using the same path developed during the delivery of packet from the 

source to the destination node. This whole operation could be viewed in figure 4.2.2. 

Where an acknowledged was send by Node B on receiving packet from Node A. 

NFBTCP modifies TCP approach to discovered link break in an active path which is 

explained in the later section of this chapter.  NFBTCP defines number of operations 

which are linked within the generating acknowledgement as shown in figure 4.2.2A. The 

details of these operations are discussed within this section and are as follows. 
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              Figure 4.2.2. Node B is sending acknowledge packet to Node A via C 

 

Function Generating Acknowledgement 
 

Generate Ack Packet ID 
Generate Ack Broadcast ID 
Include the Reverse Path 

 
End Function 
 

 

Verifying Broadcast and Packet ID.  An intermediate node of acknowledged packet 

performs three operations in sequence, verifying broadcast and packet ID being the first 

function during which intermediate or acknowledge packet receiving node verifies that it 

has not received the same packet before. If a packet with the same broadcast and packet 

ID has received before it is discarded and no further action is taken. 

  

E 

C 

B 

A 

Packet 1 

Acknowledge 

Function generate acknowledgement 

generates the acknowledgement with an 
acknowledge packet and broadcast ID 

using the reverse path stored in the 

routing table through which the packet 
was received. The reverse path 

information is available in the routing 

table. 
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Figure 4.2.2A. Operations of intermediate nodes on receiving acknowledged packet. 

 

Updating and Re-verifying Information.  Once the freshness of received packet is 

confirmed the receiver node updates relevant information and forwards it for destination 

node or issue an acknowledgment packet if it is destination of the packet.  

 

Forwarding Acknowledge Packet.  Intermediate nodes are responsible to forward 

packets to the other node. In case of an acknowledged packet, the same route through 

which packet received from the sender route is used. Therefore nodes which are used 

during the first route use the same route from their storage to send it back to the source 

node.  In figure 4.2.2.B Node C forwarding acknowledge packet from Node E to Node A 

 

  

Verifying Broadcast and Packet ID 

Updating and Re-verifying Info 

Forwarding Acknowledge Packet 
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              Figure 4.2.2B Node C Forwarding Acknowledge Packet from E to A 

 

Acknowledgement Packet (AP). This packet is send by the destination node to the sender 

node. Acknowledgement Packet contains source sequence number, broadcast ID, 

destination sequence number and message data as shown in figure 4.2.2C. 

 

Source Seq no: Broadcast ID Destination Seq no: Message data 

 

Figure 4.2.2C AP packet structure 

 

4.2.3. Generating Broadcast and Packet ID 

This is an important aspect of NFBTCP as this is requiring avoiding loop problem within 

an ad-hoc network. In general, if a packet is broadcasted and is not received at the 

destined location, it is possible that this packet will loop around the network. In this case 

either packet is eventually dropped or expired after its expiring time.  Therefore in 

NFBTCP all the participating nodes are required to generate fresh broadcast and packet 

ID for each individual transmission as shown in figure 4.2.3. This same procedure is 

followed in some of the earlier mentioned control packets for different purposes.  
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Acknowledgement Packet (AP) 
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Figure 4.2.3. Node Generating Packet and Broadcast ID. 

 

Function Receive and Forward 
 
Received Packet 
Read Packet 
Search Routing Table for Received Packet ID and Broadcast ID 
IF Packet ID and Broadcast ID found 
Discard 
ELSE 
Update Routing Table 
Search for Route 
IF Route Found 
Forward 
ELSE 
Forward to next hop neighbor 

 
End Function 
 

4.2.4. Forwarding Data Packets  

In NFBTCP whenever any intermediate node receives a packet destined for any other 

node of the network. It first see whether it has a route to the destination. If a route is 

found it uses the same route to transfer the received packet to the destination node. 

However, if no route is found for the destination node it forwards the data packet to the 

next hop neighbor.   

Generating Packet ID 

Generating Broadcast ID 

Broadcasting Packet  

When a packet is received at an 

intermediate node it first sees if the 

packet has been received before, in case 

if it is received before it is discarded 

otherwise it is forwarded and the routing 

table is updated. 

Route search is made when a route is 

requested. If the route is found in the 

routing table it is sent using the found 

route otherwise it is forwarded to the next 

hop-neighbor. 
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        Figure 4.2.4. Node verifying broadcast and Packet ID on receiving packet.  

 

If a route is found the following operations are performed in sequence before forwarding 

the data packet using the found route to the destination node as shown in figure 4.2.4A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                        Figure 4.2.4A.  Forwarding Packet Process of NFBTCP. 

 

Packet received 

Route Search 

Route Found  

Yes No 

Use the route Pass it to next hop neighbor 

Verifying Broadcast and Packet ID 

Updating and Re-verifying Info 

Forwarding received packet 
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Verifying Broadcast and Packet ID.  An intermediate node of acknowledged packet 

perform three operations in sequence, verifying broadcast and packet ID being the first 

function during which intermediate or acknowledge packet receiving node verify that it 

has not received the same packet before. If a packet with the same broadcast and packet 

ID has received before it is discarded and no further action is taken. 

 

Updating and Re-verifying Information.  Once it has confirmed that the packet with the 

same ID has not received before, receiver node updates relevant information about the 

sending node or other nodes of the network.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.4B Node D forwarding packet to Node C 

 

Forwarding Received Packet. If a route is found intermediate node forward the received 

packet using the available route as shown in figure 4.2.4B. In figure 4.2.4.B Node D 

forwarding received packet from Node A to Node C. 

 

4.2.5. Link Failure Detection (LFD) 

Mobile ad-hoc network by nature suffers with frequent topology changes and link failures 

happens unpredictably, detecting such failures in a mobile ad-hoc network is an 

important aspect to be seen. Such failure could be a means to degrading TCP 

 A 
 D 

 B 

 C 

  E 

Forwarding Packet 
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performance over mobile ad-hoc network that makes this as an interrelated issue with the 

problem being investigated. It is assumed that the quicker we can detect such failures the 

better it could be for the network. Since, it could also add extra burden on the network via 

unnecessary data and control packets to the same route without knowing the route is 

broken. This could further leads to a point where network congestion could occur. If for a 

long time no packets are delivered and no acknowledgments are received, causing the 

TCP sender to reduce its window size dramatically, even though in fact no real 

congestion situation might exist. 

 

NFBTCP introduces a new mechanism of updated notification to address this issue. The 

main aim of NFBTCP is the minimization of route failures, their prediction and a fast 

notification of the source in case of a route failure. In NFBTCP routing protocol which is 

used alongside TCP is made responsible for sending updated notifications whenever a 

link failure is detected. This could stop the sender sending any further packets using the 

broken route. A routing protocol is used alongside TCP which can also be made aware of 

the situation. In this case TCP will no longer be required to utilize its normal procedure 

of transporting packets via the same route. A specific action will be taken to 

communicate any updated link failure with TCP as effectively as possible in the 

implementation phase of this research project 
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Function Broadcast Link Failure 

 
Detect Link Failure 
Generate Update Packet 
Broadcast Update Packet 

 
End Function 
 

It could further be noted that Routing protocols for mobile ad-hoc network follows 

different strategies for route managements depend on the routing protocol used, this 

information can assist the routing protocol in the route management process and thus 

could make it easy to introduce such mechanisms in the overall communication structure 

of routing protocol used and TCP. It will be worthwhile to mention that AODV will be 

used alongside TCP to verify various concepts of the scheme alongside TCP in a 

simulation environment. 

 

 

 

 

          

TCP 

Receiver 

        

TCP 

Sender    
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  E 

  C 

 Broadcast Link Failure Detection 

When a node detects a link failure, it 

broadcasts a link failure update packet across 

the network to inform other nodes about the 

link failure. 

Figure.4.2.5 Link Failure Detection 
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Figure 4.2.5a Route Search 

 

Figure 4.2.5a shows the route search process where a search is made whenever a route 

request is received.  If a suitable route is found the packet is forwarded to the destination. 

 

4.2.5a Link Failure Update Packet (LFUP) 

Link Failure Update Packet contains detail of failed route or a link. This packet is 

broadcast by an intermediate route which is in between the sender and the receiver of an 

active communication. A node on finding any route failure can broadcast LFUP. This 

could also update the routing tables of all other nodes in an active path.   

 

 

 

 

 

 

 

 

 

 

Figure 4.2.5b Node B is broadcasting LFUP 

 

Link Failure Update Packet contains source sequence number, broadcast ID, destination 

sequence number and link breakage message as shown in figure 4.2.5c. 

Route Search 

Route Found  

Forward the Packet  

   A 

   B 

   C 

   D 

  E 

Broadcasting LFUP 
 



62 

 

 

Figure 4.2.5c LFUP Packet Structure 

 

4.2.5b Link Update Packet (LUP) 

Link update packet is broadcast when a new route is established between sender and 

destination node. Link update packet contains information about new link and is 

broadcast to all nodes involved in current communication. It could also be used to update 

routing table of all nodes in an active communication path. Upon receiving link update 

packet normal communication is resumed between source and destination nodes. 

 

Source Seq no: Broadcast ID Destination Seq no: New Link Update 

message 

      

Figure 4.2.5d LUP structure 

 

Link Update Packet contains source sequence number, broadcast ID, destination 

sequence number and new link update message as shown in figure 4.2.5d. 

 

4.2.6. Link Capacity Detection (LCD) 

It is well known in the context of mobile ad-hoc networks that link breakage happens 

frequently and unpredictably. This results in data loss and could also slow down the 

network speed. Protocols for mobile ad-hoc network deal with this problem in various 

manners. However in the case of TCP, TCP suffers from two main problems, congestion 

and slow start mechanism. Whenever TCP recovers from congestion or after 

retransmission timeout it invokes slow start mechanism. TCP shrinks its transmission rate 

to one segment (i.e. the size announced by the other end or the default, typically 512). 

Each time Acknowledgement is received, the congestion window is increased by one 

segment. The sender can transmit up to the maximum of the congestion window size. 

In our scheme link capacity information is available at the routing table of the routing 

protocol. Additional parameters could be added in the existing specification of the 

routing protocol mentioned above to store such information. Therefore, whenever a new 

Source Seq no: Broadcast ID Destination Seq no: Link Breakage Update 

message 
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link is established nodes involved in active communication update their routing table with 

the link capacity information. In addition, all the nodes in between the sender and 

receiver are also updated.  

TCP sender can get information from link formation packet stored in a routing table and 

can adjust its congestion window size accordingly. When a node detects new link it 

broadcast link formation packet (LFP), as shown in figure 4.2.6, containing link capacity 

information and is stored in a routing table of the routing protocol, therefore TCP doesn’t 

need to invoke slow start mechanism when new link is detected and communication is 

resumed. Therefore, prior to a communication the TCP sender gets information about link 

capacity from the routing table of the next node involved in communication and adjusts 

its congestion window size. 

It has been mentioned above that congestion could be avoided through the use of LFD 

operation of the proposed scheme. In this context LCD operation determines link 

capacity of a newly established link. In NFBTCP mobile nodes are made responsible to 

inform TCP sender about the new link capacity of the established link.  This whole 

process is shown in figure 4.2.6 where a new link is established in between A and F via 

Node B and Node E, Please note that either Node E which is adjacent to the receiving 

node F will broadcast LFP. 

 

 

 

 

 

    

    

 

 

Figure 4.2.6 Broadcasting LFP 
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Function Link Capacity 
 

Calculate Link Capacity 
Update Link Capacity 

 
End Function 

 

4.2.7 Link Formation Packet 

Link formation packet contains information about the link capacity. This packet is 

broadcast in link capacity detection operation of the proposed scheme. In order to get link 

capacity information, link formation packet is broadcast and is stored in routing table of 

routing protocol. Routing protocols with cache can add an extra parameter to link 

formation packet and can store in its cache. Every time when a new link is detected link 

formation packet is updated with link capacity information. LFP contains source 

sequence number, broadcast ID, destination sequence number and link capacity 

information message as shown in figure 4.2.7. 

 

 

Source Seq no: Broadcast ID Destination Seq no: Link Capacity info: Message 

 

Figure 4.2.7 LFP packet structure 

 

 

4.2.8. out-of-order delivery Notification 

It has been mentioned before that mobile ad-hoc networks suffer from frequent topology 

changes. TCP is known for in-order delivery to the receptionist; however no direct 

effective mechanism is known which can be used to deal with lost or dropped packets. 

This is of particular interest in the context of mobile ad-hoc networks, where packets 

could be dropped due to link or route failure. NFBTCP uses some of the known benefits 

to deliver solutions for the out-of-order delivery problem in mobile ad-hoc network 

environments.  

In order to deal with out-of-order delivery of data packets a buffer is created in between 

TCP and the receiving node. Therefore rather than delivering a packet as it arrives all the 

packets of a single transmission are stored in the buffer. Likewise, TCP will be modified 

Link capacity is calculated and is sent 

to the TCP sender so that adjustments 

could be made accordingly. 
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so that it can send one acknowledgement for the complete delivery of all the data packets 

of a single transmission rather than a single acknowledgement for a single packet. If a 

lost packet is detected a Buffer Update Packet will be sent to the sender pointing the 

missing packet as shown in figure 3.2.8 This lost packet can easily be identified either via 

sequence number or broadcast ID. Please note this information is normally included or 

assigned by the routing protocol of MANET. It is the responsibility of the sending node 

to re-broadcast the missing packet as identified by the TCP back to the receiver side 

using the same route as for the previous packet. 

 

 

 

 

 

 

 

 

 

 

Figure.4.2.8 Broadcasting Buffer Update Packet 

 

 

Function out-of-order delivery 

Discover missing packet sequence 
Requesting missing data packet 
Receive requested data packet 
Arranging data frame 
Delivering data to the destination 
 

End function 

 

 

4.2.8a. Buffer Update Packet  

Buffer Update Packet is sent whenever an out-of-order delivery is received at TCP buffer 

side. This serves an additional purpose and can also be used to update the intermediate 
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When a packet sequence is found missing 

in an active data transmission a request to 

resend missing data packet is sent to the 

sender. On receiving the missing data 

packet the data frame is re organized and 

is delivered to the destination. 
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nodes about the availability of the other nodes in between the source and the receiving 

node. Needless to mention such information is always fruitful and could also be used for 

any other possible communication by the intermediate nodes. Buffer update Packet 

contains source sequence number, broadcast ID, destination sequence number and out-of-

order delivery notification message as shown in figure 4.2.8a. 

  

 

Figure 4.2.8a BUP packet structure 

 

4.3. Summary 

In this chapter a detailed description outlining the main operations of NFBTCP is 

presented. The focus of this chapter is to establish a clear understanding related to the 

effectiveness of the proposed scheme. In this context, various functions as defined by the 

scheme specification are explained. In addition, all such explanations are aided by both 

the diagrammatic representation and pseudo codes of the individual functions. In view of 

the given scheme brief it can easily be understood that the scheme follows a unique and 

novel operational pattern in correspondence with the operational requirements of an ad-

hoc network. It is quite clear that without implementation the scheme cannot be 

evaluated.  Therefore, the proposed scheme is implemented in Java and evaluated in 

SWANS.  The focus of the next chapter is on testing and evaluating NFBTCP in a 

simulation environment.  

Source Seq no: Broadcast ID Destination Seq no: Out-of-order delivery  

Notification Message 
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Chapter 5. Simulation and Implementation 

 

 

5.1. Introduction 

It was crucial to evaluate the implemented scheme to verify both concept and efficiency 

in varying as a simulation environment. ‘SWANS’ has been selected as simulation 

software. This decision is based on the fact that simulation of large number of Ad-hoc 

nodes is much easier to monitor in SWANS than in many other known simulators of 

similar type [41]. Simulation environments were created using different input parameters; 

it was due to aim of observing NFBTCP under different simulation environments. It is 

important to mention that the simulation covers most of the standard aspect of an 

evaluation cycle namely mobility, congestion control and physical network attributes. 

SWANS has certain limitation besides numerous benefits. Some of these weaknesses 

include its text based nature and usability. It is known that SWANS is easy to use with 

support of high scalability, however a user should have some previous understanding of 

the language in which software is written in order to have full benefits of the SWANS. In 

this chapter details of simulation experiments and a discussion of simulation results has 

been presented. 

5.2. SWANS 

Scalable wireless Ad-hoc network simulator (SWANS) runs over java in simulation time 

JiST platform. JiST is a high performance discrete event simulation engine that runs over 

a standard Java virtual machine [40]. The SWANS simulator combines the traditional 

systems-based and languages-based approaches to simulation construction. It was created 

primarily because existing network simulation tools are not sufficient for current research 

needs, and its performance serves as a validation of the virtual machine-based approach 

to simulator construction [41]. It is organized as independent software components that 

can be composed to form complete wireless network configurations. 
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5.2.1. Why SWANS was Chosen 

Simulations play an important role in the development and evaluation of future systems. 

Researchers usually use simulations for the evaluation of ad hoc network protocols 

because they easily allow for a large number of nodes and reproducible environment 

conditions. Some of the existing well known network simulators are ns2, GloMoSim and 

SWANS. For the evaluation of NFBTCP, SWANS was chosen for simulation 

experiments. SWANS capabilities are similar to existing simulators but is able to 

simulate much larger networks and have a number of other advantages over existing 

tools. SWANS can run existing Java network applications, such as web servers and peer-

to-peer applications, over the simulated network without modification. The application is 

automatically transformed to use simulated sockets and into a continuation-passing style 

[40]. The original network applications are run within the same process as SWANS, 

which increases scalability by eliminating the considerable overhead of process-based 

isolation. Network packets in SWANS are modeled as immutable objects, allowing a 

single copy to be shared across multiple nodes. This saves the memory and time of 

multiple packet copies on every transmission. A diagram illustrating how SWANS works 

is shown in figure 5.In SWANS, simulation events among the various entities such as 

packet transmissions are performed with no memory copy and no context switch. The 

system also continuously profiles running simulations and dynamically performs code in 

lining, constant propagation and other important optimizations, even across entity 

boundaries. This is important, because many stable simulation parameters are not known 

until the simulation is running. Memory is critical for simulation scalability. Automatic 

garbage collection of events and entity state in SWANS not only improves robustness of 

long-running simulations by preventing memory leaks, it also saves memory by 

facilitating more sophisticated memory protocols. An example of memory savings in 

SWANS is the use of soft references for storing cached computations, such as routing 

tables. These routing tables can be automatically collected, as necessary, to free up 

memory. SWANS is unique in a way that it allows integration of new scheme within the 

existing model more comfortably than some other simulators such as ns2. In addition, 

SWANS is capable of running simulations involving thousands of mobile nodes with 

results that match the accuracy of other well known simulation software. In addition, 
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almost all of the mobility models are available in the software in order to design 

simulation configuration of one choice. In the light of the above it is clear that SWANS 

closely matches the requirements of this research project. Thus it is selected as a 

simulation tool for evaluation of NFBTCP. The coded file of the proposed implemented 

scheme is included in SWANS. A script file is written specifying various parameters as 

needed in a simulation experiments. The software is then recompiled in order to take 

effects of the changes. The same processes were followed in the case of NFBTCP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

5.3. Implementation  

Implementation of defined functions has been done in Java using a single file 

NFBTCP.Java. This single file is later added in SWANS which is then re-complied and 

simulation experiments were run using AODV as a routing protocol. Details of 

simulation and results are also explained in this chapter. 

Figure 5. SWANS structure. 
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5.3.1. Implementation Language 

Java language has been selected as an implementation language to program the proposed 

scheme. It is due to the fact that the proposed scheme will be evaluated in SWAN 

simulator software which is written in Java. Java is an object oriented language which 

supports inheritance, polymorphism and message passing etc. at present it is famous in 

mobile phones and bank applications. Java also offers independent architecture and many 

enterprise applications are being developed in Java. A class implementing interface is 

defined prior to a static class referring to the actual interface class of the simulation 

software. This has been followed by a constructor where variables as defined in the actual 

code files are initialized. Functions have been written which reflect specification and 

network operational patterns which can be seen in the appendix. It is important to 

mention that Java has been selected as the implementation language due to simulation 

software programming which is done in Java.  

5.4. Simulation Experiments  

Evaluation experiments were conducted on Windows under SWANS and various input 

parameters were used to monitor the developed scheme. A single simulation script with 

the reference to NFBTCP implementation file is created and for each simulation 

experiment different nodes and mobility patterns were used. In total eight different 

experiments were conducted. In each of these experiments varying mobile nodes, field 

and grid size were used. It is important to note that packet loss was defined as none. 

Since declaring packet lost means nothing to the simulator. From the first until the fourth 

experiment numbers of nodes were increased to 200 with a fixed field size of 500 and 

grid size of 25.  In the second set of experiments nodes were increased in the same 

manner as was in the first set of experiments. However, the field size was decreased to 

250 and grid size was decreased to 15. In the light of evaluation experiments it can be 

seen that all functions as defined by NFBTCP is fully applicable and operational. In the 

first set of experiments a higher number of route requests and route replies were observed 

as can be seen in figure5.1. In addition 213 routes were added as can be seen in figure 5.1 
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Figure 5.1 simulatin with 50 mobile nodes     screenshot of experiment 1 

 

In the second set of experiment nodes were increased to 100 with a fixed field and grid 

size. An increase in the route requests and route replies were observed in addition to the 

higher number of routes which were added at the end of simulation cycle. These could 

also be observed in figure 5.2. 

 

 
 

Figure 5.2 simulatin with 100 mobile nodes   screenshot of experiment 2 

 

In the third set of experiment higher message activity in terms of route requests and route 

replies were observed in comparison with the above two experiments as it was expected 

due to an increased in number of nodes. Likewise, higher numbers of routes were added 

as shown in figure 5.3. This show a very good behavior as it was expected.   
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Figure 5.3 simulatin with 150 mobile nodes  screenshot of experiment 3 
 

In the fourth set of experiment nodes were increased to 200 with a fixed field size of 500 

and grid size of 25. In these set of experiments the higher message activity in terms of 

route requests and route replies were observed due to an increase in number of nodes as 

shown in figure 5.4. Likewise, higher numbers of routes were added.  

 

 
 

Figure 5.4 simulatin with 200 mobile nodes  screenshot of experiment 4 

 

In the remaining four sets of experiments mobile nodes were increased from 50 to 200 

however the fixed field size was decreased to 250 and grid size was decreased to 15.  In 

the fifth set of experiment result shows same high performance as with the double field 

and grid sizes as shown in figure 5.5.  
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Figure 5.5 simulatin with 50 mobile nodes  screenshot of experiment 5 
 

In the sixth set of experiment nodes were increased to 100 with a fixed field and grid size. 

An increase in the route requests and route replies were observed in addition to the higher 

number of routes which were added at the end of simulation experiments as shown in 

figure 5.6.   

 

 
 

Figure 5.6 simulatin with 100 mobile nodes  screenshot of experiment 6 
 

In the seventh set of experiment nodes were increased to 150 with a fixed field and grid 

size. Higher message activity in terms of route requests and route replies were observed 

in comparison with the above two experiments with the same fixed field and grid size, as 

it was expected due to an increased in number of nodes. Likewise, higher numbers of 

routes were added as shown in figure 5.7. 
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Figure 5.7 simulatin with 150 mobile nodes  screenshot of experiment 7 
 

 

In the eight set of experiment nodes were increased to 200 with a fixed field and grid 

size. Higher route requests and route replies were observed due to an increased in number 

of nodes. Likewise, higher numbers of routes were added as shown in figure 5.8. 

 

 

 
 

Figure 5.8 simulatin with 200 mobile nodes  screenshot of experiment 8 
 

 

 

5.5. Comparison and Discussion 

As mentioned previously a systematic approach has been followed from the start to the 

end of the project. A special focus was given on the meeting the defined aims and 

objectives of this project. These aims and objectives are transformed into milestones and 
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each of these milestone are evaluated as a sign of marking project progress. In addition, 

all of these objectives are achieved as a project outcome. In the context of this particular 

project, evaluation observation details one of the two things related to the proposed and 

implemented scheme. The first in between these two factors is the confirmation of the 

theoretical concepts which were included as a part of functional specification of 

NFBTCP.  It can be confirmed that NFBTCP has proven itself as a fully functional and 

operational-able for mobile ad-hoc network, thus should be seen or taken as a new novel 

TCP based solution for mobile ad-hoc network. The second and the last aspect is the 

scheme performance.  In the light of the above given experiments details, it could be seen 

that NFBTCP performed well in all simulation environment.  

It could be noted from the light of the literature review that there are a number of 

different schemes such as TCP-F, TCP-ELFN, ATCP and Split-TCP etc, were proposed. 

However, it is known that these schemes in one way or the other lack a number of known 

operational requirements and thus do not fully address TCP performance within mobile 

ad-hoc networks. In TCP-F the RRN packet is generated when the intermediate node 

detects re-establishment of broken path and it depends on information from routing 

protocol. TCP-F has an additional state compared to the traditional TCP state machine, 

and hence its implementation requires modifications to the existing TCP libraries. 

Another disadvantage of TCP-F is that the congestion window used after a new route is 

obtained may not reflect the achievable transmission rate acceptable to the network and 

the TCP-F. In TCP-ELFN when the network is temporarily partitioned, the path failure 

may last longer; this can lead to the origination of periodic probe packets consuming 

bandwidth and power. Another disadvantage is that the congestion window used after a 

new route is obtained may not reflect the achievable transmission rate acceptable to the 

network and the TCP receiver. ATCP depend on the network layer protocol to detect the 

route changes and partitions, which not all routing protocols may implement. Addition of 

a thin ATCP layer to the TCP/IP protocol stack requires changes in the interface 

functions. Split-TCP requires modifications to TCP protocol. The end-to-end connection 

handling of traditional TCP is violated. The failure of proxy nodes or frequent path 

breaks, affects the performance of split-TCP.  In view of simulation results where 

NFBTCP showed better throughput performance as more routes available in an ad hoc 
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network implies possibility of higher throughput since more data can be transferred using 

the established routes. It does however require a more practical demonstration of 

comparison with other schemes which is included as a part of potential future PhD study. 

 A higher number of route requests and route replies representing networking activities 

were observed with the increase of mobile nodes. This clearly showed that NFBTCP fits 

well within mobile ad-hoc networking environments. Since increase of mobile nodes to 

some extent implies increase in the communication taking place in a network. In addition 

to the messages activities, good numbers of routes were added at the end of each 

simulation cycle. It is quite understandable that the more routes available for data transfer 

in a mobile ad-hoc network, the better. Moreover, such additions to the available routes 

could directly impact overall throughput. It is due to the nature of mobile ad-hoc 

networks, where routes forms and are broken almost unexpectedly. Therefore an 

alternative route to the destination is always beneficial. Lastly, nodes in mobile ad-hoc 

networks suffer with limited resources. That makes conservation of all such resources an 

important issue in the context of mobile ad-hoc networks. 

This research analyzed TCP performance over mobile ad-hoc network prior to proposing 

a functional solution to address identified weaknesses. In this context, both TCP and 

previously reported schemes have been taken into consideration so as to build a fully 

effective model. Thus NFBTCP has been a more reliable and effective TCP based 

solution for mobile ad-hoc networks. In NFBTCP, TCP specific functions are modified in 

NFBTCP specification to solve TCP issues in mobile ad-hoc network. Examples of such 

main functions are Generating Acknowledgement, Generating Broadcast and Packet ID, 

Link Failure Detection, Link Capacity Detection and out-of-Order Delivery Notification.  

Generating acknowledgement process in NFBTCP is achieved via acknowledge packet 

(AP) delivery from destination to the source node of a packet. When an intermediate 

node receives a packet from a source node for destination node verify broadcast and 

packet ID that it has not received the same packet before it is discarded. If the same 

packet is not received the intermediate node stores it and sends acknowledge pack to the 

sender and forwards the packet received from the source node to the destination node. 

Thus, nodes in NFBTCP maintain fresh information about other nodes and can be used to 

send control acknowledgements. Therefore, TCP does not need to send 
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acknowledgements as normal; rather it is replaced by the control acknowledgement of 

NFBTCP. Therefore, TCP does not need to shrink its congestion window due to TCP 

sender not receiving acknowledgement rather it is directly handled by NFBTCP. 

 In NFBTCP when a destination node or intermediate node responsible for forwarding 

packet to the destination node detects link breakage it inform the TCP sender about link 

breakage so that the TCP sender stops sending further packets to the destination unless a 

new route is established. Detecting link failures is very important and informing the TCP 

sender about the link failure can improve network throughput. In NFBTCP intermediate 

nodes between the sender and destination nodes are made responsible for responding 

quickly to link failures and broadcast link failure update packets containing link failure 

information. All nodes involved in current communications update their routing tables 

upon reception of an LFUP. In NFBTCP when a new link is established a link update 

packet is broadcast to inform the source node about the new established route to allow the 

sending packets to resume 

 NFBTCP introduces a link capacity detection function to detect the link capacity of 

communication between source and destination nodes. A link formation packet is used to 

inform the TCP sender about link capacity so that it adjusts its congestion window 

according to information available in the link formation packet, thus improving overall 

throughput of the network. NFBTCP uses some of the known benefits to deliver solutions 

to the out-of-order delivery problem of TCP in mobile ad-hoc network environments. All 

the packets of a single transmission are stored in a buffer created between TCP and the 

receiving node and a send single acknowledgement is sent to the TCP sender. The buffer 

update packet contains information about lost packets and will be sent to the TCP sender 

pointing out missing packets and this lost packet will be identified by either sequence 

number or broadcast ID. Thus TCP sender obtains information from buffer update 

packets to resend it to the sender. In summary, in the light of the NFBTCP specification 

and above explanation it is quite clear that NFBTCP offers an excellent TCP based 

solution for communication over mobile ad-hoc network. 

 In the following chapter conclusions which are drawn from the start until the end of this 

research project and directions for future work are presented. 
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5.6. Summary 
In this chapter a detailed account of the evaluation phase of the proposed and developed 

scheme is presented. The evaluation results clearly demonstrate the effectiveness of 

NFBTCP in addressing issues of TCP performance in mobile ad-hoc networks. In view of 

the obtained results it can easily be observed that some of the known TCP issues in 

mobile ad-hoc networks are effectively addressed by NFBTCP. Moreover, a good 

throughput at the end of various simulation cycles indicates a notable performance for 

NFBTCP over mobile ad-hoc networks. The focus of the next chapter is on concluding 

research findings which are gathered at various stages of this project. 
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Chapter 6. Conclusions and Future Work 
 

6.1. Introduction 

This work could be seen as a series of associated tasks which were carried out before 

being reached to the final solution of the problem being investigated. In this context 

phase one could include researching the main problem domain and analyzing the existing 

solutions. After analyzing the existing solutions certain shortcomings were identified in 

this area and have been selected to work on as a part of this project. The phase two 

comprises proposing a novel solution to the problem, design, implementation and 

evaluation. NFTCP follows an intermediate approach in between some of the existing 

mechanisms of TCP based schemes, different functions were developed to improve TCP 

performance over mobile ad-hoc network, thus should be taken as novel based solution 

for mobile ad-hoc network. The novelty of NFBTCP is the most important aspect of this 

project. The network formation of NFBTCP is an additional function added to the TCP 

structure for the formation of the mobile ad-hoc network. NFBTCP also deals with 

congestion avoidance in a TCP based transmission. The effect of the link breakage is one 

of the constraints of TCP over mobile ad-hoc network. Detecting link breakage as soon as 

it happens and informing the sender about the link breakage improves TCP performance. 

In NFBTCP nodes destination node or nodes part of communication inform sender about 

broken path to stop sending further packets in order to avoid congestion and packet lost 

due to retransmission timeout. In NFBTCP a buffer is created at destination node which 

stores all packets and if a packet is lost or out of order packets arrived at destination node 

request the missing packet and single acknowledgement is sent to the sender after arrival 

of the packets in a data frame. Implementation of the scheme has been done in java and 

evaluated using SWANS. Simulation results show more routes were added at the end of 

each experiment. Alternative route to the destination is always valuable in mobile ad-hoc 

networks where routes are form and broken frequently.  The simulation experiment 

results demonstrate that the main concepts have been successfully met as underlined in 

the proposed scheme, especially congestion control and out-of-order packet delivery. The 

higher number of routes with the increase of mobile nodes suggests that the implemented 

congestion avoidance mechanism is functional with a reduction in link breakage since 
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otherwise it would not be possible for more routes to be added. The congestion control 

process affects the smooth flow of data and control packets. Similarly, the addition of 

mobile nodes illustrates that more packets are broadcasted. A route can be established 

each time a request for route formation is sent. Therefore continuation of route formation 

explains why the flow was normal in a simulation cycle. Thus the proposed scheme 

addresses congestion avoidance as expected. In order to avoid out-of-order packet 

delivery a buffer was introduced into NFBTCP; more throughput at the end of each 

simulation cycle also suggests that the idea of adding state worked well in the scenarios 

considered.  Conclusions can be seen as a combination of these two phases and are 

presented in section 2 where directions of future work are given in section 3 of this 

chapter. 

6.2. Conclusions 

Routing in mobile ad-hoc networks is a challenging issue. Much effort is going on to 

invent routing mechanisms which can fulfill the typical routing requirements of mobile 

ad-hoc networks. TCP/IP has initially been designed to support similar tasks in fixed 

networks. Work has been done to transform TCP as a routing solution for mobile ad-hoc 

networks. This research has discovered that most of the TCP based variant routing 

solutions of mobile ad-hoc networks have not been successful in addressing the problem 

fully. Taking TCP based routing solutions as a main problem; this research has proposed 

a novel routing solution called Node feedback TCP based as a routing scheme for mobile 

ad-hoc networks. The scheme has been developed in Java and evaluated using SWANS. 

The following are the conclusions driven in the light of the conducted research.  

Evaluation observations detail the confirmation of the theoretical concepts which were 

included as a part of the functional specifications of NFBTCP.  NFBTCP has validated 

itself as a fully functional and operational-able for mobile ad-hoc networks, thus should 

be taken as a new novel TCP based solution for mobile ad-hoc networks. In the light of 

the conducted experiments, it can be seen that NFBTCP performed well in all simulation 

environments. A higher number of route requests and route replies representing 

networking activities were observed with the increase of mobile nodes. This clearly 

showed that NFBTCP fits well within a mobile ad-hoc networking environment. Increase 

of mobile nodes to some extent implies increase in the communication taking place in a 
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network. In addition to the messages activities, a good numbers of routes were added at 

the end of each simulation cycle. It is quite understandable that the more routes available 

for data transfer in a mobile ad-hoc network, the better. In this context unlike traditional 

TCP better route connectivity is possible through NFBTCP. 

It is important to mention that more routes have a direct connection with the overall 

throughput. In mobile ad-hoc networks routes form and are broken almost unexpectedly, 

hence an alternative route to the destination is always beneficial. Nodes in mobile ad-hoc 

networks suffer from limited resources it makes conservation of all such resources an 

important issue in the context of mobile ad-hoc networks.  

In relation to the literature review TCP invokes congestion control mechanism 

unnecessarily. This has been addressed through a newly introduced congestion control 

mechanism of NFBTCP. In NFBTCP it is the responsibility of the node forwarding 

packet to the destination node upon detecting route breakage to inform the TCP sender 

about route breakage so that the TCP sender does not invoke the congestion control 

mechanism. The TCP sender should wait until a new route is established instead of 

invoking the congestion control mechanism. This approach is more feasible and close to 

the ad hoc network operational requirement. Link failure due to frequent topology 

changes is the major factor affecting TCP performance over mobile ad-hoc. This could 

further lead to a point where network congestion could occur. In NFBTCP routing 

protocol which is used alongside TCP is made responsible for sending updated 

notifications whenever a link failure is detected. A link Failure Update Packet is 

broadcast to inform the TCP sender about link failures. This could also update the routing 

tables of all other nodes on an active path. 

6.3. Future Work 

NFBTCP has been designed and implemented in a manner which allows integration of 

other schemes with the implemented. In addition, it has proven itself as a suitable and 

efficient scheme in view of the implementation and simulation phase. However, the 

following are some of the directions which could be taken in any possible modification of 

the developed scheme. 
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 Extending NFBTCP Support. NFBTCP can be overlooked in order to extend it 

support for sister networks of an ad-hoc network. Since, most of the transportation 

concepts are similar at a normal level. 

 Evaluation of NFBTCP with Routing Schemes. In the presented research, 

NFBTCP has been simulated with AODV, it has always been a good area to 

further monitor scheme performance with some other schemes such as DSR, 

MAODDP and DSDV. 

 Security. This has been a challenging issue in the context of mobile ad-hoc 

networking. Though many secure routing schemes [MAODDP] have been 

proposed however, it would be good to look into it from a different perspective by 

addressing security at a transport level. 

 Hidden Terminal Problem. NFBTCP has addressed several TCP related issue 

without being too deep into MANET other related problem. It does make sense 

because such topics fall outside the scope of the conducted research. However, it 

could provide a complete new vision to the whole scenario if this particular 

problem is addressed in view of further enhancing NFBTCP performance of 

handing such issues.   

 



83 

 

References 
 

[1]  M. Issoufou Tiado, R. Dhaou and A.-L. Beylot ‘’RCL : A new Method for Cross–

Layer Network Modelling and Simulation’’ ENSEEIHT – IRIT Lab. 2 rue C. 

Camichel, 2005 

[2]  Raisinghani, V.T.; Iyer, S ‘’Cross-layer feedback architecture for mobile device 

protocol stacks’’ Communications Magazine, IEEE Volume 44, Issue 1, Page: 85 

– 92. 2006 

[3]  Jaehoon Kim and Kwangsue Chung ‘’C-Snoop: Cross Layer Approach to 

Improving TCP Performance Over Wired and Wireless Networks’’ School of 

Electronics Engineering, 2007 

[4] S. Shakkottai, T. S. Rappaport, and P. C. Karlsson, "Cross-layer design for 

wireless networks," IEEE Communications Magazine, vol. 41, pp. 74-80, 2003. 

[5] V. T. Raisinghani and S. Iyer, "Cross-layer design optimization in wireless 

protocol stacks," Computer Communications, vol. 27, pp. 720-724, 2004. 

[6] L. Chen, S. H. Low, and J. C. Doyle, "Joint congestion control and media access 

control design for ad hoc wireless networks," presented at IEEE INFOCOM, 

2005. 

[7] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, and R. Sivakumar, "ATP: A 

reliable transport protocol for ad-hoc networks," presented at MOBIHOC: 

PROCEEDINGS OF The Fourth ACM International Symposium on Mobile Ad 

Hoc Networking and Computing, 2003. 

[8] S. Kopparty, S. V. Krishnamurthy, M. Faloutsos, and S. K. Tripathi, "Split TCP 

for mobile ad hoc networks," presented at GLOBECOM'02 - IEEE Global 

Telecommunications Conference, 2002. 

[9] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash, "Feedback based 

scheme for improving TCP performance in ad-hoc wireless networks," presented 

at Proceedings of the 18th International Conference on Distributed Computing 

Systems, 1998. 

[10] X. Yu, "Improving TCP performance over mobile ad hoc networks by exploiting 

cross-layer information awareness," presented at MobiCom Proceedings of the 

Tenth Annual International Conference on Mobile Computing and Networking, 

2004. 

[11] Dan Liu, Mark Allman, Shudong Jin, Limin Wang, “Congestion Control Without 

a Startup Phase”, Workshop on Protocols for Fast Long-Distance Networks 

(PFLDnet), 2007  

[12] J. Liu and S. Singh, "ATCP: TCP for mobile ad hoc networks," IEEE Journal on 

Selected Areas in Communications, vol. 19, pp. 1300-1315, 2001. 



84 

 

[13]  G. Holland and N. Vaidya, “Analysis of TCP performance over mobile ad hoc 

networks,” – Part II: Simulation details and results, Technical report TR99-005, 

1999. 

[14]  Sumitha Bhandarkar, A.L. Narasimha Reddy, Mark Allman, Ethan Blanton, 

“Improving the Robustness of TCP to Non-Congestion Events“, RFC 4653. 2006 

[15]  Shugong Xu Tarek Saadawi Myung Lee, “Comparison of TCP Reno and Vegas in 

Wireless Mobile Ad Hoc Networks“Dept. of Electrical Engineering, City 

University of New York, City College, New York, NY 10031. 

[16] G. Holland and N. Vaidya, "Analysis of TCP performance over mobile ad hoc 

networks," Wireless Networks, vol. 8, pp. 275-288, 2002. 

[17] B.S. Bakshi, P. Krishna, D.K. Pradhan and N.H. Vaidya, Improving performance 

of TCP over wireless networks, in: International Conference on Distributed 

Computing Systems, 1997. 

[18] J. Broch, D.A. Maltz, D.B. Johnson, Y. Hu and J. Jetcheva, A performance 

comparison of multi-hop wireless ad hoc network routing protocols, in: 

ACM/IEEE International Conference on Mobile Computing and Networking  pp. 

85–97, 1998. 

[19]      T. D. Dyer and R. V. Boppana, "A comparison of TCP performance over three 

routing protocols for mobile ad hoc networks," presented at Proceedings of the 

2001 ACM International Symposium on Mobile Ad Hoc Networking and 

Computing: MobiHoc, 2001. 

[20]     H.Bakht, “A Study of Routing Protocols for Mobile Ad-hoc Networks” in 1
st
 

International Computer Engineering Conference, 2004. 

[21]  J. Broch, D.B. Johnson and D.A. Maltz, The dynamic source routing protocol for 

mobile ad hoc networks, Internet Draft, IETF MANET Working Group, 1998. 

[22]      H.Bakht, M.Merabti, and R.Askwith, “Mobile Ad-hoc On-demand Data Delivery 

Protocol,” 3
rd

 Annual Post-Graduate Symposium on the Convergence of 

Telecommunications”, Networking and Broadcasting, 2002. 

[23] A. Gupta and H. D. Sharma, "A Survey on Wireless Ad Hoc Networks," IETE 

Technical Review, vol. 20, pp. 339-347, 2003. 

[24] T. -Y. Wu, C. -Y. Huang, and H. -C. Chao, "A survey of mobile IP in cellular and 

mobile ad-hoc network environments," Ad Hoc Networks, vol. 3, pp. 351-370, 

2005. 

[25] S. Toumpis and A. J. Goldsmith, "Capacity regions for wireless ad hoc networks," 

IEEE Transactions on Wireless Communications, vol. 2, pp. 736-748, 2003. 

[26]  H.Bakht. “Critical ad-hoc networking features”, Published in Computing 

Unplugged, 2005. 

[27]  C.E. Perkins, E.M. Royer, “Ad hoc on demand distance vector (AODV) routing, 

Internet Draft”, Mobile Ad Hoc Network (MANET) Working Group, IETF, 1998. 



85 

 

[28]  S Pradhan, E Lawrence and J Das, S Newton “Bluetooth potential in the m- 

enterprise: a feasibility study”, Information Technology: Coding and Computing, 

2004 

 [29] T. Camp, J. Boleng, and V. Davies, "A survey of mobility models for ad hoc 

network research," Wireless Communications and Mobile Computing, vol. 2, pp. 

483-502, 2002. 

[30]  H.Bakht. “Some characteristics of Mobile Ad-Hoc Network”, Published in 

Computing Unplugged, July 2004. 

[31]  W. A. Melendez, E. L. Petersen ‘The upper layers of the ISO/OSI reference 

model (Part II)’ Computer Standards & Interfaces pp.185-199. 1999. 

[32] Shin-Jer Yang , Yung-Chieh Lin, “Tuning Rules in TCP Congestion Control on 

the Mobile Ad Hoc Networks”, Proceedings of the 20
th

 International Conference 

on Advanced Information Networking and Applications, Volume 01 , 2006. 

[33] Christian Lochert, Björn Scheuermann, Martin Mauve, “A survey on congestion 

control for mobile ad hoc networks”, Wireless Communications & Mobile 

Computing, Volume 7 , Issue 5, pp. 655 – 676, June 2007, ISSN:1530-8669. 

[34] Jehan.M, G.Radhamani, T.Kalakumari, “A survey on congestion control 

algorithms in wired and wireless networks”, Proceedings of the International 

conference on mathematical computing and management (ICMCM 2010), June 

2010. 

[35] Foez ahmed, Sateesh Kumar Pradhan, Nayeema Islam, Sumon Kumar 

Debnath,“Performance Evaluation of TCP over Mobile Ad-hoc Networks” in 

(IJCSIS) International Journal of Computer Science and Information Security 

,Vol. 7, No. 1, 2010. 

[36] K. Satyanarayan Reddy and Lokanatha C. Reddy, “A survey on congestion 

control mechanisms in high speed networks”, IJCSNS-International Journal of 

Computer Science and Network Security, vol. 8, no. 1, pp. 187 – 195, 2008. 

[37] Lianghui Ding, Wenjun Zhang, Hui Yu, Xinbing Wang, Youyun Xu, 

“Incorporating TCP acknowledgements in MAC layer in IEEE 802.11 multihop 

ad hoc networks”, GLOBECOM'09 Proceedings of the 28th IEEE conference on 

Global telecommunications, 2009. 

[38] Lianghui Ding, Wenjun Zhang, Hui Yu, Xinbing Wang, Youyun Xu, “Improve 

throughput of TCP-Vegas in multihop ad hoc networks”, Journal Computer 

Communications, Volume 31 Issue 10, pp. 2581-2588  June, 2008. 

[39] Farzaneh Razavi Armaghani, Sudhanshu Shekhar Jamuar, Sabira Khatun, Mohd 

Fadlee A. Rasid, “Performance Analysis of TCP with Delayed Acknowledgments 

in Multi-hop Ad-hoc Networks”, Wireless Personal Communications, Volume 56, 

Number 4, pp. 791-811, 2011. 

[40] Elmar Schoch, Michael Feiri, Frank Kargl, Michael Weber, “Simulation of Ad 

Hoc Networks: ns-2 compared to JiST/SWANS”, SIMUTools March 3–7, 2008. 



86 

 

[41] Rimon Barr, “SWANS– Scalable Wireless Ad hoc Network Simulator”, User 

Guide, March 19, 2004. 

[42] Fard, M.A.K. “Improve TCP performance over mobile ad hoc network by 

retransmission timeout adjustment”, IEEE 3rd International Conference on 

Communication Software and Networks (ICCSN), pp. 437 – 441, 2011. 

[43] Ahmad Dalal'ah, Samir Bataineh, Awos O. Kan'an, “Improving TCP performance 

over mobile ad hoc networks”, International Journal of Internet Technology and 

Secured Transactions, Vol. 2, pp. 137 – 159, 2010. 

[44]  Dhananjay Bisen, Sanjeev Sharma, “Improving performance of TCP-NewReno 

over mobile Ad-hoc Networks using ABRA”, International Journal of Wireless & 

Mobile Networks (IJWMN) Vol. 3, No. 2, 2011. 

[45] K. Batri, S. Anbu karuppusamy, “Improving TCP Performance in Ad-Hoc 

Networks”, European Journal of Scientific Research, Vol.65 No.2, pp. 237-245, 

2011. 

[46] Javier Gomez, Luis A. Mendez, Victor Rangel, Andrew T. Campbell, “Power 

Controlled QoS tuning for wireless ad hoc networks PCQoS”,Telecommunication 

System, 2010. 

[47] Monika Rani, Harish Kumar, Gurpal Singh3, “Optimal Routing Protocol for TCP-

NewReno in Wireless Mobile Ad-hoc Networks”, International Journal of 

Network and Mobile Technologies, Vol 2, Issue 3, 2011. 

[48] Md. Mohsin Ali, A. K. M. Sazzadul Alam, and Md. Shohan Sarker, “TCP 

Performance Enhancement in Wireless Mobile Ad Hoc Networks”, International 

Journal on Internet and Distributed Computing Systems. Vol 1 No: 1, 2011. 

[49] F Alam, R. Askwith and M. Merabti, “Node Feedback Based TCP Scheme for 

Mobile Ad-hoc Network”, GESJ: Computer Science and Telecommunications 

2011|No.2 (31). 

[50] D.D. Clark “Window and Acknowledgement Strategy in TCP” RFC 813, July 

1982. 

[51] K. Ramakrishnan, S. Floyd and D. Black"The Addition of Explicit Congestion 

Notification (ECN) to IP" RFC 3168, September 2001. 

 

 



87 

 

Appendix 
Programing Codes: 

 

 
public class TransNFBTCP  
{ 
 
public static class NFBTCPOptions extends TransInterface.TransMessage 
 { 
 
public NFBTCPOptions  ()  
 {    
   
}       
 /**  
* Returns the size of the option in a message. *    
* @return size of option  
*/ 
 
public int getSize() 
 
 
{ 
return 0; 
} 
 
/** 
* Retrieve the option and store it in the given byte array. 
* 
* @param msg byte array to copy the option to 
* @param offset starting index in the destination array 
*/ 
 
 
 
 
 
public void getBytes(byte[] msg, int offset) 
 
 
 
{ 
throw new RuntimeException("not implemented"); 
} 
} 
 
/** 
* Data structure for NFBTCP Message. 
* NFBTCP Packet 
*  header: 
*      srcPort           : 2 
*      dstPort           : 2 
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*      seqNum            : 4 
*      ackNum            : 4 
*      offset and flags  : 2 
*      window size       : 2 
*      checksum          : 2 
*      urgent pointer    : 2 
*  TOTAL HEADER SIZE     : 20 
*  options               : variable 
*  data                  : variable 
*/ 
 
 
 
 
public static class NFBTCPMessage extends TransInterface.TransMessage 
{ 
 
/** 
* Minimum size of NFBTCP message. 
*/ 
 
 
 
public static final int HEADER_SIZE = 20; 
 
/** 
* 16-bit source port number. 
*/ 
 
 
 
 
private short srcPort; 
 
/** 
* 16 bit destination port number. 
*/ 
 
 
 
private short dstPort; 
 
/** 
* 32 bit sequence number of first data octet in this segment. 
*/ 
 
 
 
 
private int seqNum; 
 
/** 
* 32 bit acknowledgement number. 
*/ 
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private int ackNum; 
 
/** 
* 16 bit offset and flags. 
* this contains: 
*  4 bit data offset (number of 32 bit words in the NFBTCP header) 
*  6 bit reserved 
*  1 bit URG  - urgent pointer field significant 
*  1 bit ACK  - acknowledgement field significant 
*  1 bit PSH  - push function 
*  1 bit RST  - reset the connection 
*  1 bit SYN  - synchronize sequence numbers 
*  1 bit FIN  - no more data from sender 
*/ 
 
 
 
private short offsetAndFlags; 
 
/** 
* 16 bit window size (number of data octets to be accepted). 
*/ 
 
 
 
private short windowSize; 
 
/** 
* checksum. 
*/ 
 
 
 
private short errorChecksum; 
 
/** 
* current value of the urgent pointer as a positive offset from the sequence 
number. 
*/ 
 
 
 
private short urgentPointer; 
 
/** 
* options field (contains padding to make this field 32 bit boundary). 
*/ 
 
 
 
private NFBTCPOptions options; 
 
/** 
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* data. 
*/ 
 
 
 
private Message payload; 
 
 
/** 
* constructor for NFBTCPMessage. 
* 
* @param srcPort source port number 
* @param dstPort destination port number 
* @param seqNum sequence number 
* @param ackNum acknowledgement number 
* @param offset data offset (start of data in the header; used when the packet 
has options) 
* @param URG urgent flag 
* @param ACK acknowledgement flag 
* @param PSH push flag 
* @param RST reset flag 
* @param SYN SYN flag 
* @param FIN FIN flag 
* @param windowSize size of receiving window 
* @param data data 
*/ 
 
 
 
 
public NFBTCPMessage (short srcPort, short dstPort, int seqNum, int ackNum, 
short offset, 
boolean URG, boolean ACK, boolean PSH, boolean RST, boolean SYN, 
boolean FIN, short windowSize, Message data) 
 
{ 
this.srcPort = srcPort; 
 
this.dstPort = dstPort; 
 
this.seqNum = seqNum; 
 
this.ackNum = ackNum; 
 
// filling offsetAndFlags 
this.offsetAndFlags = (short)((short)(offset << 12) + (short)((URG ? 1 : 0) << 
5) 
+ (short)((ACK ? 1 : 0) << 4) + (short)((PSH ? 1 : 0) << 3) + 
(short)((RST ? 1 : 0) << 2) + (short)((SYN ? 1 : 0) << 1) + (short)(FIN ? 1 : 
0)); 
 
this.windowSize = windowSize; 
 
this.payload = data; 
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this.options = new NFBTCPOptions (); 
} 
 
/** 
* constructor for NFBTCPMessage (reconstruct NFBTCPMessage from byte array). 
* 
* @param data array containing NFBTCP message 
* @param offset start index to read the array 
*/ 
 
 
 
 
 
public NFBTCPMessage (byte[] data, int offset) 
 
{ 
byte[] temp; 
 
// source port (unsigned short) 
temp = new byte [2]; 
System.arraycopy(data, offset, temp, 0, 2); 
 
srcPort = (short) Pickle.arrayToUShort(temp, 0); 
 
// destination port (unsigned short) 
temp = new byte [2]; 
System.arraycopy(data, offset+2, temp, 0, 2); 
 
dstPort = (short) Pickle.arrayToUShort(temp, 0); 
 
// sequence number (unsigned integer) 
temp = new byte [4]; 
System.arraycopy(data, offset+4, temp, 0, 4); 
 
seqNum = (int) Pickle.arrayToUInt(temp, 0); 
 
// acknowledgement number (unsigned integer) 
System.arraycopy(data, offset+8, temp, 0, 4); 
ackNum = (int)Pickle.arrayToUInt(temp, 0); 
 
// offset and flags (unsigned short) 
System.arraycopy(data, offset+12, temp, 0, 2); 
offsetAndFlags = (short) Pickle.arrayToUShort(temp, 0); 
 
// window size (unsigned short) 
System.arraycopy(data, offset+14, temp, 0, 2); 
windowSize = (short) Pickle.arrayToUShort(temp, 0); 
 
// checksum (short) 
System.arraycopy(data, offset+16, temp, 0, 2); 
errorChecksum = (short) Pickle.arrayToUShort(temp, 0); 
 
// urgent pointer (short) 
System.arraycopy(data, offset+18, temp, 0, 2); 
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urgentPointer = (short) Pickle.arrayToUShort(temp, 0); 
 
// options 
int tempOffset = getOffset (); 
 
int diff = tempOffset - 5; 
 
if (diff == 0) 
 
{ 
this.options = new NFBTCPOptions (); 
} 
 
else 
 
{ 
this.options = new NFBTCPOptions (); 
} 
 
// payload 
temp = new byte [data.length-20-options.getSize()]; 
System.arraycopy(data, offset+20+options.getSize(), temp, 0, 
data.length-20-options.getSize()); 
payload = new MessageBytes (temp); 
} 
 
/** 
* Method called to create a SYN packet. 
* 
* @param sourcePort source port number 
* @param destPort destination port number 
* @param seqNumber sequence number 
* @param windowSize size of receiving window 
* @return SYN packet 
*/ 
 
//Network formation 
private static class NFMessage implements NFBTCPMessage 
  { 
private static final int MESSAGE_SIZE = 20;  private NetAddress ip;  private 
int seqNum; 
     
public AdhocFMessage(NetAddress ip, int seqNum) 
{ 
  this.ip = ip; this.seqNum = seqNum; 
    } 
 public NetAddress getIp() 
 { 
       return ip; 
 } 
 public JAPMessage(NetAddress ip, int seqNum) 
     
{ 
      this.ip = ip; this.seqNum = seqNum; 
   } 
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 public NetAddress getIp() 
 { 
      return ip; 
    }        
public int getSize() 
{ 
      return JAPMESSAGE_SIZE; 
 }    
public AdhocFMessage(NetAddress ip, int seqNum) 
{ 
      this.ip = ip; this.seqNum = seqNum; 
 } 
 public NetAddress getIp() 
{ 
      return ip; 
} 
public AACKMessage(NetAddress ip, int seqNum) 
{ 
      this.ip = ip; this.seqNum = seqNum; 
} 
public NetAddress getIp() 
{ 
      return ip; 
 }      
public int getSize() 
{ 
      return AACKMessage_SIZE; 
 }} 
 
 
public static NFBTCPMessage createSYNPacket (int sourcePort, int destPort, int 
seqNumber, 
short windowSize) 
 
{ 
int seqNum = seqNumber; 
 
int ackNum = 0; 
 
short offset = 5; 
 
boolean URG = false; 
 
boolean ACK = false; 
 
boolean PSH = false; 
 
boolean RST = false; 
 
boolean SYN = true; 
 
boolean FIN = false; 
 
return new NFBTCPMessage ((short)sourcePort, (short)destPort, seqNum, ackNum, 
offset, 
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URG, ACK, PSH, RST, SYN, FIN, windowSize, new MessageBytes ("")); 
} 
 
/** 
* Method called to create a SYNACK packet. 
* 
* @param sourcePort source port number 
* @param destPort destination port number 
* @param seqNumber sequence number 
* @param ackNumber acknowledgement number 
* @param windowSize size of receiving window 
* @return SYNACK packet 
*/ 
 
// Creating acknowledgement packet 
 
public static NFBTCPMessage createACKPacket (int sourcePort, int destPort, int 
seqNumber, int ackNumber, short windowSize) 
{ 
int seqNum = seqNumber; 
int ackNum = ackNumber; 
short offset = 5; 
boolean URG = false; 
boolean ACK = true; 
boolean PSH = false; 
boolean RST = false; 
boolean SYN = false; 
boolean FIN = false; 
       
return new NFBTCPMessage ((short)sourcePort, (short)destPort, seqNum, ackNum, 
offset, URG, ACK, PSH, RST, SYN, FIN, windowSize, new MessageBytes ("")); 
} 
 
    /** 
     * Method called to create a FIN packet. 
     * 
     * @param sourcePort source port number 
     * @param destPort destination port number 
     * @param seqNumber sequence number 
     * @param ackNumber acknowledgement number 
     * @param windowSize size of receiving window 
     * @return FIN packet 
     */ 
    
 
 
//Forwarding Data Packets  
private static class PrecursorSet 
{ 
      private Map map = new HashMap(); 
     
        
  private RouteNFBTCP thisNode; 
    /** 
     * Constructs a new PrecursorSet object. 
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     *  
     * @param thisNode reference to this RouteNFBTCP instance 
     */ 
    public PrecursorSet(RouteNFBTCP thisNode) 
    { 
      this.thisNode = thisNode; 
    } 
    /** 
     * Returns an Iterator for the set. 
     *  
     * Each item of the iterator is of type Map.Entry, 
     * with map   keys of type MacAddress, and map values of type 
PrecursorInfo 
     *  
     * @return the iterator 
     */ 
  public Iterator iterator() 
   { 
      return map.entrySet().iterator(); 
    } 
         
    /** 
     * Adds an item to the precursor set. 
     *  
     * @param m Mac address of node to add to set 
     */ 
     
 public void add(MacAddress m) 
    { 
printlnDebug("Adding "+m+" to precursor set", thisNode.netAddr); map.put(m, 
new PrecursorInfo()); 
} 
    /** 
     * Removes an item from the precursor set. 
     *  
     * @param m Mac address of the node to remove from set 
     */ 
     
public void remove(MacAddress m) 
{ 
      printlnDebug("Removing "+m+" from precursor set", thisNode.netAddr); 
      map.remove(m); 
    } 
 
 
 
 
 
 
 
public static NFBTCPMessage createFINPacket (int sourcePort, int destPort, 
int seqNumber, int ackNumber, short windowSize) 
 
{ 
int seqNum = seqNumber; 
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int ackNum = ackNumber; 
 
short offset = 5; 
 
boolean URG = false; 
 
boolean ACK = true; 
 
boolean PSH = false; 
 
boolean RST = false; 
 
boolean SYN = false; 
 
boolean FIN = true; 
 
return new NFBTCPMessage ((short)sourcePort, (short)destPort, seqNum, ackNum, 
offset, 
URG, ACK, PSH, RST, SYN, FIN, windowSize, new MessageBytes ("")); 
} 
 
/** 
* Method called to create a RST packet. 
* 
* @param sourcePort source port number 
* @param destPort destination port number 
* @param seqNumber sequence number 
* @param ackNumber acknowledgement number 
* @param windowSize size of receiving window 
* @return RST packet 
*/ 
 
 
//Link Failure Detection 
 
private static class LinkFailureDetection (LFD) implements NFBTCPMessage 
{ 
     private static final int MESSAGE_SIZE = 20; 
     
    /** List of net addresses for destinations that have become unreachable. */ 
    private LinkedList unreachableList; 
     
    /** 
     * Constructs a new Link Failure Update Packet  Message object with an 
empty unreachable list. 
     */ 
     
public LinkFailureUpdatePacket () 
{ 
      this(new LinkedList()); 
 } 
    /** 
     * Constructs a new Route Link Update Packet  object with a given 
unreachable list. 
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     *  
     * @param list List  of net addresses for destinations that have become 
unreachable 
     */ 
     
public LinkUpdatePacket (LinkedList list) 
{ 
      this.unreachableList = list; 
} 
    /** 
     * Returns the unreachable list. 
     *  
     * @return linked list of unreachable node net addresses 
     */ 
     
public LinkedList getUnreachableList() 
{ 
      return this.unreachableList; 
    } 
    /** 
     * Add an unreachable node. 
     *  
     * @param node netAddress of node to be added 
     */ 
     
public void addUnreachable(NetAddress node) 
{ 
      this.unreachableList.add(node); 
} 
  
 
//Link Capacity detection 
 
public static NFBTCPMessage createSYNACKPacket (int sourcePort, int destPort, 
int seqNumber, int ackNumber, short windowSize) 
     
{ 
        int seqNum = seqNumber; 
       
  int ackNum = ackNumber; 
       
  short offset = 5; 
       
  boolean URG = false; 
       
  boolean ACK = true; 
       
  boolean PSH = false; 
       
  boolean RST = false; 
       
  boolean SYN = true; 
       
  boolean FIN = false; 
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  return new NFBTCPMessage ((short)sourcePort, (short)destPort, 
seqNum, ackNum, offset,  
        URG, ACK, PSH, RST, SYN, FIN, windowSize, new MessageBytes ("")); 
    } 
 
    /** 
     * Method called to create an ACK packet. 
     * 
     * @param sourcePort source port number 
     * @param destPort destination port number 
     * @param seqNumber sequence number 
     * @param ackNumber acknowledgement number 
     * @param windowSize size of receiving window 
     * @return first ACK packet (ACK for SYNACK packet) 
     */ 
     
 
 
//out of order delivery notification 
 
public static NFBTCPMessage createRSTPacket (int sourcePort, int destPort, int 
seqNumber, int ackNumber, short windowSize) 
 
{ 
int seqNum = seqNumber; 
       
 int ackNum = ackNumber; 
       
 short offset = 5; 
       
 boolean URG = false; 
       
 boolean ACK = false; 
       
 boolean PSH = false; 
       
 boolean RST = true; 
       
 boolean SYN = false; 
       
 boolean FIN = true; 
       
 return new NFBTCPMessage ((short)sourcePort, (short)destPort, seqNum, 
ackNum, offset,  
        URG, ACK, PSH, RST, SYN, FIN, windowSize, new MessageBytes ("")); 
    } 
 
 
 
public static NFBTCPMessage createRSTPacket (int sourcePort, int destPort, 
int seqNumber, int ackNumber, short windowSize) 
 
{ 
int seqNum = seqNumber; 
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int ackNum = ackNumber; 
 
short offset = 5; 
 
boolean URG = false; 
 
boolean ACK = false; 
 
boolean PSH = false; 
 
boolean RST = true; 
 
boolean SYN = false; 
 
boolean FIN = true; 
 
return new NFBTCPMessage ((short)sourcePort, (short)destPort, seqNum, ackNum, 
offset, 
URG, ACK, PSH, RST, SYN, FIN, windowSize, new MessageBytes ("")); 
} 
 
 
// Accessor functions 
 
/** 
* Accessor for source port. 
* 
* @return source port 
*/ 
 
 
 
 
public short getSrcPort () 
 
{ 
return this.srcPort; 
} 
 
/** 
* Accessor for destination port. 
* 
* @return destination port 
*/ 
 
 
 
 
public short getDstPort () 
 
{ 
return this.dstPort; 
} 
 
/** 
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* Accessor for sequence number. 
* 
* @return sequence number 
*/ 
 
 
 
 
public int getSeqNum () 
 
{ 
return this.seqNum; 
} 
 
/** 
* Accessor for acknowledgement number. 
* 
* @return acknowledgement number 
*/ 
 
 
 
public int getAckNum () 
 
{ 
return this.ackNum; 
} 
 
/** 
* Accessor for offset in the message. 
* 
* @return offset from the beginning to header to data 
*/ 
 
 
 
public short getOffset () 
 
{ 
return (short)(this.offsetAndFlags >> 12); 
} 
 
/** 
* Accessor for URGENT flag. 
* 
* @return state of the URG flag (true if flag is set) 
*/ 
 
 
 
public boolean getURG () 
 
{ 
return (((this.offsetAndFlags >> 5) % 2) > 0 ? true : false); 
} 
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/** 
* Accessor for ACK flag. 
* 
* @return state of the ACK flag (true if flag is set) 
*/ 
 
 
 
 
public boolean getACK () 
 
{ 
return (((this.offsetAndFlags >> 4) % 2) > 0 ? true : false); 
} 
 
/** 
* Accessor for PSH flag. 
* 
* @return state of the PSH flag (true if flag is set) 
*/ 
 
 
 
 
 
public boolean getPSH () 
 
{ 
return (((this.offsetAndFlags >> 3) % 2) > 0 ? true : false); 
} 
 
/** 
* Accessor for RST flag. 
* 
* @return state of the RST flag (true if flag is set) 
*/ 
 
 
 
 
public boolean getRST () 
 
{ 
return (((this.offsetAndFlags >> 2) % 2) > 0 ? true : false); 
} 
 
/** 
* Accessor for SYN flag. 
* 
* @return state of the SYN flag (true if flag is set) 
*/ 
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public boolean getSYN () 
 
{ 
return (((this.offsetAndFlags >> 1) % 2) > 0 ? true : false); 
} 
 
/** 
* Accessor for FIN flag. 
* 
* @return state of the FIN flag (true if flag is set) 
*/ 
 
 
 
public boolean getFIN () 
 
{ 
return ((this.offsetAndFlags % 2) > 0 ? true : false); 
} 
 
/** 
* Accessor for window size. 
* 
* @return window size 
*/ 
 
 
 
 
public short getWindowSize () 
 
{ 
return this.windowSize; 
} 
 
/** 
* Accessor for options. 
* 
* @return NFBTCPOptions object 
*/ 
 
 
 
 
public NFBTCPOptions getOptions () 
{ 
return this.options; 
} 
 
/** 
* Accessor for payload. 
* 
* @return payload 
*/ 
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public Message getPayload () 
{ 
return this.payload; 
} 
 
/** 
* Returns the size of the NFBTCP message. 
* 
* @return size of message 
*/ 
 
 
 
 
public int getSize() 
 
{ 
return HEADER_SIZE + options.getSize() + payload.getSize(); 
} 
 
/** 
* Retrieves the message in byte array. 
* 
* @param msg byte array to store the message 
* @param offset start index of the destination array 
*/ 
 
 
 
 
 
public void getBytes(byte[] msg, int offset) 
 
{ 
// source port (unsigned short) 
Pickle.ushortToArray(srcPort, msg, offset); 
 
// destination port (unsigned short) 
Pickle.ushortToArray(dstPort, msg, offset+2); 
 
// sequence number (unsigned integer) 
Pickle.uintToArray(seqNum, msg, offset+4); 
 
// acknowledgement number (unsigned integer) 
Pickle.uintToArray(ackNum, msg, offset+8); 
 
// offset and flags (unsigned short) 
Pickle.ushortToArray(offsetAndFlags, msg, offset+12); 
 
// window size (unsigned short) 
Pickle.ushortToArray(windowSize, msg, offset+14); 
 
// checksum (short) 
Pickle.ushortToArray(errorChecksum, msg, offset+16); 
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// urgent pointer (short) 
Pickle.ushortToArray(urgentPointer, msg, offset+18); 
 
// options 
options.getBytes (msg, offset+20); 
 
// payload 
payload.getBytes (msg, offset+20+options.getSize()); 
} 
 
/** 
* Returns string representation of the NFBTCP message. 
* 
* @return string representation of the message 
*/ 
 
 
 
 
public String toString() 
 
{ 
StringBuffer sb = new StringBuffer(); 
 
sb.append("src="+getSrcPort()); 
 
sb.append(" dst="+getDstPort()); 
 
sb.append(" seq="+getSeqNum()); 
 
sb.append(" ack="+getAckNum()); 
 
sb.append(" off="+getOffset()); 
 
sb.append(" flags:"); 
 
if(getURG()) sb.append(" URG"); 
 
if(getACK()) sb.append(" ACK"); 
 
if(getPSH()) sb.append(" PSH"); 
 
if(getRST()) sb.append(" RST"); 
 
if(getSYN()) sb.append(" SYN"); 
 
if(getFIN()) sb.append(" FIN"); 
 
sb.append(" win="+getWindowSize()); 
 
String payload = new String (((MessageBytes)getPayload()).getBytes()); 
 
sb.append(" payload=("+payload.length()+") "); 
 
if (payload.length()>10) payload=payload.substring(0, 10)+"..."; 
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sb.append(payload); 
return sb.toString(); 
} 
 
/** 
* Prints out the message header and payload. 
* 
* @param numTabs number of tabs 
* @param isPrintPayload set to true to print out payload in message 
*/ 
 
 
 
 
 
public void printMessage (int numTabs, boolean isPrintPayload) 
 
{ 
 
String tabs = ""; 
 
for (int i = 0; i < numTabs; i++) 
 
{ 
tabs = tabs + "\t"; 
} 
 
 
System.out.println (tabs + "\tsrc port: " + getSrcPort() + "\tdst port: " + 
getDstPort()); 
 
System.out.println (tabs + "\tseq num: " + getSeqNum()); 
 
System.out.println (tabs + "\tack num: " + getAckNum()); 
 
System.out.println (tabs + "\toffset: " + getOffset()); 
 
System.out.print (tabs + "\tflags: "); 
if (getURG()) 
 
{ 
System.out.print ("URG "); 
} 
 
if (getACK()) 
 
{ 
System.out.print ("ACK "); 
} 
 
if (getPSH()) 
 
{ 
System.out.print ("PSH "); 
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} 
 
if (getRST()) 
 
{ 
System.out.print ("RST "); 
} 
 
if (getSYN()) 
 
{ 
System.out.print ("SYN "); 
} 
 
if (getFIN()) 
 
{ 
System.out.print ("FIN "); 
} 
 
System.out.println (); 
 
System.out.println (tabs + "\twindow size: " + getWindowSize()); 
 
if (isPrintPayload) 
 
{ 
String temp = new String (((MessageBytes)getPayload()).getBytes()); 
 
int length = temp.length(); 
 
if (length > 10) 
 
{ 
temp = temp.substring (0, 10); 
temp = temp + " ..."; 
} 
 
System.out.println (tabs + "\tpayload: " + temp + " (" + length + ")"); 
} 
} 
 
/** 
* Prints out the message header with zero tabs. */ 
 
 
 
 
 
public void printMessage () 
{ 
printMessage (0); 
} 
 
/** 
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* Prints out the message header. 
* 
* @param numTabs number of tabs 
*/ 
 
 
 
 
public void printMessage (int numTabs) 
 
{ 
printMessage (numTabs, false); 
} 
 
 
} // class: NFBTCPMessage 
 
 
////////////////////////////////////////////////// 
// NFBTCP entity implementation 
// 
 
/** 
* probability (in percent) that a message will not be sent. 
* (0 --> no packets are dropped; 100 --> no packets are transmitted) 
*/ 
 
 
 
private static final int DROP_PROBABILITY = 5; 
 
/** Entity reference to itself. */ 
 
 
 
private TransInterface.TransNFBTCPInterface self; 
 
/** Entity reference to network layer. */ 
 
 
 
private NetInterface netEntity; 
 
/** Hashmap to hold references to socket callbacks. */ 
 
 
 
private HashMap handlers; 
 
/** 
* Constructor. 
*/ 
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public TransNFBTCP() 
 
{self = (TransInterface.TransNFBTCPInterface)JistAPI.proxy( 
this, TransInterface.TransNFBTCPInterface.class); 
handlers = new HashMap (); 
} 
 
/** 
* Returns an entity reference to this object. 
* 
* @return entity reference to TransNFBTCP itself 
*/ 
 
 
 
public TransInterface.TransNFBTCPInterface getProxy() 
 
{ 
return self; 
} 
 
/** 
* Sets the reference to the network layer. 
* 
* @param netEntity entity reference to network layer 
*/ 
 
 
 
public void setNetEntity(NetInterface netEntity) 
{ 
 
if(!JistAPI.isEntity(netEntity)) throw new IllegalArgumentException("expected 
entity"); 
 
this.netEntity = netEntity; 
} 
 
/** {@inheritDoc} */ 
 
 
 
public void addSocketHandler(int port, SocketHandler socketCallback) 
 
{ 
handlers.put(new Integer (port), socketCallback); 
 
if (NFBTCPSocket.PRINTOUT >= NFBTCPSocket.INFO) 
 
{ 
System.out.println ("TransNFBTCP::addSockethandler: port = " + port); 
} 
} 
*/ 
/** {@inheritDoc} */ 
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public void delSocketHandler(int port) 
 
{handlers.remove (new Integer (port)); 
 
if (NFBTCPSocket.PRINTOUT >= NFBTCPSocket.INFO) 
 
{System.out.println ("TransNFBTCP::delSockethandler: port = " + port); 
} 
} 
 
*/ /** {@inheritDoc} */ 
 
 
public boolean checkSocketHandler(int port) 
 
{boolean ret = handlers.containsKey (new Integer (port)); 
return ret; 
} 
*/ 
/** {@inheritDoc} */ 
 
 
public void receive(Message msg, NetAddress src, MacAddress lastHop, 
byte macId, NetAddress dst, byte priority, byte ttl) 
 
{ 
int dstPort = ((NFBTCPMessage)msg).getDstPort(); 
SocketHandler handler = 
(SocketHandler)handlers.get(new Integer (dstPort)); 
 
if(handler==null) 
 
{if (NFBTCPSocket.PRINTOUT >= NFBTCPSocket.FULL_DEBUG) 
 
{System.out.println ("%%%%%%% TransNFBTCP::receive (t=" + JistAPI.getTime()+") 
-> handler for port " + dstPort + " = null!!!"); 
 
} 
return; 
} 
JistAPI.sleep(Constants.TRANS_DELAY); 
 
handler.receive(msg, src, ((NFBTCPMessage)msg).getDstPort()); 
} 
 
*/ /** {@inheritDoc} */ 
 
 
public void send(Message msg, NetAddress dst, int dstPort, 
int srcPort, byte priority) 
 
{// get a random number between 0 and 100 
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int prob = Math.abs(Constants.random.nextInt()) % 101; 
 
if (prob >= DROP_PROBABILITY) 
 
 
{JistAPI.sleep(Constants.TRANS_DELAY); 
 
netEntity.send(msg, dst, Constants.NET_PROTOCOL_NFBTCP, 
 
priority, Constants.TTL_DEFAULT); 
} 
 
else 
 
 
{if (NFBTCPSocket.PRINTOUT >= NFBTCPSocket.NFBTCP_DEBUG) 
 
 
{System.out.println ("%%%%%% TransNFBTCP::send: PACKET DROPPED: " + msg); 
} 
} 
} 
 
*/ 
 
}// class: TransNFBTCP 
 


