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Abstract 
Background 

The aim of this research project was to provide a bio-sensing component for a real-time adaptive 

technology in the context of cultural heritage. The proposed system was designed to infer the 

interest or intention of the user and to augment elements of the cultural heritage experience 

interactively through implicit interaction. Implicit interaction in this context is the process whereby 

the system observes the user while they interact with artefacts; recording psychophysiological 

responses to cultural heritage artefacts or materials and acting upon these responses to drive 

adaptations in content in real-time. 

  

Real-time biocybernetic control is the central component of physiological computing wherein 

physiological data are converted into a control input for a technological system. At its core the bio-

sensing component is a biocybernetic control loop that utilises an inference of user interest as its 

primary driver. A biocybernetic loop is composed of four main stages: inference, classification, 

adaptation and interaction. The programme of research described in this thesis is concerned 

primarily with exploration of the inference and classification elements of the biocybernetic loop but 

also encompasses an element of adaptation and interaction. These elements are explored first 

through literature review and discussion (presented in chapters 1-5) and then through experimental 

studies (presented in chapters 7-11).  

 

Experimental work 

The goal of the experimental work was to explore the issues involved in constructing a 

biocybernetic loop and build a real-time biocybernetic control loop to work in a cultural heritage 

context. With the thesis was concerned with several key questions: 

 

 How to define an appropriate psychological construct? I.e. exploring the concept of interest 

in an applied context. 

 Which physiological measurements best capture interest? i.e. investigating measures of the  

autonomic and central nervous system using ambulatory sensors. 

 What classification strategy is best-suited the purpose and requirements of the 

biocybernetic loop? I.e. examining subject independent and subject dependent approaches 

in conjunction with machine learning algorithms. 

 How should classifiers be trained for use in a real-time application? I.e. exploring how best 

to aggregate classifier training data for use in a real-time system   

 How do users perceive system accuracy? i.e. exploring the relationship between 

mathematical accuracy and a users‘ perception 
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A programme of five studies was completed to explore these issues in depth  

 

 Study one: explored a psychophysiological inference (as autonomic activation) using a 

range of autonomic measures and classification algorithms under laboratory conditions. It 

was concluded that the support vector machine classifier was the more accurate of the 

classification algorithms tested and that indices of autonomic activation are best measured 

and classified using a subject dependent approach (see chapter 7). 

 Study two: The aim of this study was to investigate cross-session classification of 

autonomic activation wherein a support vector machine classifier was trained on session 

one and applied to data from session two. It was concluded that indices of autonomic 

activation are best classified within the same session and that classifier training should 

occur on the same day for subject dependent classification (see chapter 8).  

 Study three: This study was concerned with the classification of multiple 

psychophysiological measures recorded using ambulatory sensor apparatus in response to 

audio material in a cultural heritage setting. It was concluded that combining measures of 

autonomic and central nervous system activation resulted in a high classification accuracies 

of when inferring participant interest (see chapter 9) 

 Study four: represents a replication of study three, using multiple sources of media (audio, 

video, still image and combinations thereof) in a cultural heritage setting. From the results 

it was concluded that subject dependent approach to classification and classifier training 

was more accurate when compared to subject independent. In addition, combining 

measures of autonomic and central nervous system activation provided the highest 

classification accuracies (see chapter 10). 

 Study five: represents a culmination of the previous studies to create a real-time 

classification protocol to capture high or low interest in response to video material. The 

results of this study showed that classifying the inference of interest in real-time was stable 

across the experimental session and that user perception (due to human factors) of system 

accuracy varied across the session starting with a perception of high system accuracy, then 

perceiving a drop in accuracy, and by the end of the session perceiving system accuracy to 

be higher than the initial perception (see chapter 11). 
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Main Conclusions 

The results from the experimental work are  discussed (see chapter 12) in the context of a 

functioning biocybernetic control loop, identifying issues concerned with the psychological 

construct of interest, measuring psychophysiological responses and classifying 

psychophysiological states in real-time. The following guidelines represent a summary of the 

findings from the classification analyses performed in this thesis: 

 

 Normalisation of psychophysiological data is not indicated for use in subject dependent 

systems and presents increased computational cost with no increased benefit to 

classification accuracies when compared to absolute values 

 Classifiers perform poorly when tasked with classifying data across repeated sessions and 

repeated exposures to same stimuli 

 In the case of subject dependent applications, classifiers should be trained for each session 

using a combination of psychophysiological data and subjective assessment for training 

data captured during that session  

 When designing systems to integrate real-time machine learning classification into 

biocybernetic control loops, there is a trade-off between the time required for classifier 

training, accuracy of the resulting classifier and speed of deployment 

 Classifiers can more accurately reflect a user‘s appraisal of psychophysiological state when 

trained repeatedly during the same session, resulting in more accurate classifications and 

potentiating an increase in user acceptance or trust towards the system 

 Users are likely to overestimate the accuracy of the system  
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1. Introduction  

A central feature of the early 21st century has been the acceleration of technological progress in the 

fields of ubiquitous computing (such as smart phones and tablet computers) and wearable 

technologies (such as smart watches). These innovations have set in motion a trend of human-

technological integration which is set to accelerate in the coming decades, with the further 

integration of computing technology into most aspects of daily life (Kurzwiel, 2005). This trend 

encompasses a range of fields including: self-health monitoring, entertainment, communication and 

biological enhancement.  

 

These new technologies and supporting infrastructures are becoming increasingly complicated; 

however there has not been a concomitant increase in support or usability for the user of these 

systems. The lack of support for users of increasingly complex systems can lead to an asymmetry 

of communication or purpose between the user and the system, asymmetry in this context is an 

artifact of poor human computer interface (HCI) design that implies that the system has been 

designed with optimal usability and that user needs past the point of operation are for the most part 

are an irrelevancy. The more advanced the system, the greater the chance that communication 

between the user and the system will become more asymmetrical (Norman 2007), rather than a 

transparent communication where interaction and purpose is one and the same thing. Assimilating 

these technologies will require novel forms of human computer interaction (HCI), which are task 

appropriate and enhance the user experience. Most crucially, the actions and assessment from the 

system should be transparent to the user. 

 

A significant issue is that the technology or system remains largely unaware of and unaffected by 

the affective ―state‖ of the user, their goals or the environment in which they work, whereas the 

system can convey a disproportionate amount of information about its own state to the user. The 

majority of today‘s computing systems utilise keyboards, mice and screens to enable a dialogue 

with the user and this human-computer interaction relationship which has remained largely 

unchanged since the 1970s. Under the traditional interaction model of mouse and keyboard, it is the 

user that adapts to the system, such that the computer issues commands (i.e. ―to do this task - first 

complete this task‖ and so on.) In this example the system makes no attempt to adapt to the needs 

of the user.  To counter this asymmetry, researchers and practitioners in HCI are seeking to develop 

new paradigms and techniques to enable greater interactivity between users and systems. 

 

In the fields of physiological and affective computing, researchers have considered how systems 

might adapt to users based upon situational needs and psychophysiological state. The goal of these 

approaches is to devise computer systems that respond in a logical, considered and timely fashion 
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to real-time changes in a user‘s cognitive state (e.g. workload or inattention), affective state (e.g. 

frustration) or motivations, as represented by psychophysiology. A core element of this approach is 

to open a channel of implicit and symmetrical communication between a user and the computer 

system, by granting the system access to a representation of the psychological status of the user 

(Serbedzija & Fairclough, 2009), and this channel of communication is achieved by monitoring, 

analysing and responding to covert psychophysiological activity from the user in real-time 

(Fairclough, 2009). Systems that are designed in this way can potentially promote greater 

performance efficiency (by monitoring the cognitive workload of the user) or maximise learning 

and information retention (by monitoring the affective state or motivations of the user). 

 

The mechanism of action which initiates the communication then manages and transforms the 

psychophysiological data into a control signal useable by systems, is known as a biocybernetic loop 

(Pope, Bogart, & Bartolome, 1995).  Typically a biocybernetic loop is designed to monitor or 

promote specific psychological states in the user of computer or adaptive automated systems (in 

which the level of automation is dependent on the state of the operator). These states often 

represent positive or negative control loops. In a negative control loop (such as that designed for 

NASA by Pope et al, 1995) the goal of this control system is to avoid operator states that are 

detrimental to task performance, such as extreme cognitive workload. The goal of a positive control 

loop is to promote operator states to achieve a system or user assignment, such as improving 

knowledge transfer (in a learning environment) or increasing the entertainment value of an activity 

(in a leisure-focused environment). In order to influence the psychological state of the user 

effectively, biocybernetic loops must be designed with a degree of autonomy (Serbedzija & 

Fairclough, 2009).  

 

The creation of a biocybernetic loop is a multidisciplinary task involving elements from 

psychophysiology, computer science and human factors/HCI and constructed in a series of stages 

(see Figure 1.1); each stage is reliant upon the other for data and pre-processing and when taken as 

a whole becomes an analysis framework which reinforces the behaviour and purpose of both the 

system and the user. Fairclough & Gilleade (2012) described the four stages that typically form a 

biocybernetic loop.  
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Figure 1.1. Representation of the human-machine biocybernetic loop 

 

1. Inference  

 

This stage is concerned with making a link between the target psychological state and a 

physiological measure. A psychophysiological construct is created that best represents the target 

psychological state (such as a state of high cognitive workload) and physiological measures are 

selected which provide the most valid operationalisation of that psychological state. The choice of 

sensor technology and signal processing techniques are crucial for this stage of the loop, which 

must be appropriate for application in the field and provide high signal fidelity. The selection of 

features of the inference model is central to the effectiveness of the loop. If the physiological 

measures do not capture the psychological construct with sufficient sensitivity and reliability then 

the inference model does not provide a clear link between the user state and system operation. 

 

2. Classification  

 

Classification concerns the identification of the psychophysiological state in real-time or near real-

time. It is important that information passed from this stage be timely if the loop is to function 

dynamically. The choice of classification algorithm is crucial at this point. The classifier must be 

capable of processing and categorising information in both an accurate and timely manner. The 

cost of misclassification of user responses must be considered carefully as ultimately the classifier 

feeds forward judgements into the adaptation engine and thus shapes the efficacy of system 

adaptation in response to user behaviour.  
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3. Adaptation  

 

At this stage the psychophysiological response has previously been measured and classified. The 

results from the classification are then used to inform what form of adaptation is to be used at the 

interface. Thus adaptation is concerned with employing the governing rule set or purpose of the 

loop, that is, what actions should be taken at the interface in response to classification judgements 

about the user‘s state.  

 

4. Interaction  

 

The process of adaptation is given form at the interface between the user and the system. The form 

of adaptation will shape user perceptions of system efficacy from the psychophysiological 

inference to classification and adaptation.  The form of adaptation must be carefully designed to 

provide timely and relevant action or feedback at the interface in order to engender the trust of the 

user.  

 

The research presented within the thesis is concerned with the construction of a biocybernetic loop 

for the purpose of enhancing cultural heritage experiences. Experimental work will be presented 

which details the stages completed to build the loop: creation of psychophysiological inference 

suitable for cultural heritage; classification of the psychophysiological response and output of the 

classification judgement for use in an adaptive system. 

 

To examine the issues involved with creating a biocybernetic loop in more detail, the literature has 

been reviewed with a focus on the core processes involved in creating the biocybernetic loop. In 

the following text, the way in which psychological constructs, physiological measurement and 

machine learning classification as separate elements interact to form the basis of a biocybernetic 

control loop will be discussed. The theoretical psychological basis that informs the experimental 

work presented in this thesis will be discussed, principally describing how an inference of 

psychological state is created and operationalised using a psychological construct and physiological 

measurements and the scope in which the inference is valid. A section will describe machine 

learning classification in the context of physiological computing, the automatic detection of 

psychophysiological states and adaptive biocybernetic control. The issues surrounding adaptive 

biocybernetic control and how users interact with such systems will also be discussed. The 

challenges involved with applying adaptive biocybernetic control in a real-time context will be 

defined before outlining the planned research project to explore and investigate these issues. 



16 

 

2. The inference model: Psychological Constructs, 

Measurement and Inference  

In this chapter how psychological theory and physiological methods converge to create a 

psychophysiological inference will be discussed, from initial theoretical foundation, to measuring 

the psychophysiological response and creating the inference. 

 The Psychological Construct 2.1.

One of the main issues with the use of psychological constructs within a bio-cybernetic loop, 

involves the identification and definition of a psychological state (e.g. emotion, motivation, 

cognition) to drive the biocybernetic loop. When creating a loop for any task involving human 

operators (such as a cultural heritage experience), consideration must be given to the motivations or 

emotional state of the user as the majority of user interactions are goal driven and imply a degree of 

motivation and emotional engagement. In a recent survey of emotion recognition for affective 

computing literature Calvo and D‘Mello (2010) identified no clear definition of what constitutes 

the basis of psychophysiological phenomena such as emotion. They detailed six theoretical 

perspectives on the issue. For the purposes of this thesis, three of these perspectives (embodiment, 

neuroscience and core-affect) can be seen to offer a firm but flexible epistemological footing, from 

which psychophysiological responses and motivations can be inferred within the boundaries of a 

biocybernetic loop. 

 

Embodiment sometimes referred to as the James-Lange (James 1894) theory of emotion, 

emphasises emotional experience as being ―embodied‖ within human physiology. This theory 

states that emotions are both ―felt‖ physiologically and manifested as changes in the sympathetic 

nervous system (SNS) which is part of the autonomic nervous system (ANS). Thus emotional 

experience is embodied in peripheral physiology. This position contrasts with the Cannon-Bard 

(Cannon 1927) theory where responses to emotional stimuli or events occur simultaneously in the 

brain and body. This minor but crucial distinction, places equal focus on the brain, specifically the 

thalamus (the part of the brain that deals with sensory and motor processing) and the autonomic 

nervous system. This suggests that emotions result when the thalamus signals other areas of the 

brain in response to a stimulus, resulting in a top-down physiological reaction. The theory of 

embodiment is important to the construction of a biocybernetic loop as it provides the theoretical 

grounding that psychophysiological reactivity can be measured and recorded by placing sensors on 

the body. Indeed, the approach of using sensors placed around the body to capture emotion-

autonomic nervous system responses has met with much success, as detailed in Kreibig (2010). 
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The field of affective neuroscience offers a unique perspective towards understanding the general 

organisation of the brain and its relation to those physiological and cognitive processes 

underpinning emotional experience. This area of research concentrates on the development of 

techniques and methods to uncover the basic principles and underlying circuitry involved in 

attention, language, emotion and consciousness (Dalgleish et al. 2009, Panksepp 2004, Damasio 

2003). This is achieved by mapping psychophysiological states onto neural circuitry using indices 

of brain activation, measured by a variety of techniques such as functional magnetic resonance 

imaging (fMRI), electroencephalography (EEG) etc.  

 

Core affect is a theory posited by Russell (1980, 2003) which argues that the different theories of 

emotion all examine different forms of emotional phenomena which may be reconciled within a 

two-dimensional space. This theory has its basis in the concept of ―core affect‖ expressed as a 

circumplex model (see Figure 2.1), which places emotional experience upon a point in two 

dimensional space described as valence (pleasure – displeasure) and arousal (sleepy – activated).  

 

Figure 2.1 The circumplex model of emotion showing both axes (Russell 1980) 

 

A key component of Russell‘s theory emphasises the importance of context (e.g. the exact event 

that elicits the response) when separating emotional episodes, such as separating a particular 

episode of happiness from the base emotion category. While this appears to be a concept specific to 

emotion recognition, the same holds true for all psychophysiological states, in that the context of 

the event that elicits the response is a key component when attempting to measure and differentiate 

a psychophysiological state from background physiological activity; for example, measuring 

indices of brain activity to determine cognitive overload during a demanding mental task, while 

performing routine manual operations. Russell‘s circumplex metaphor becomes a useful tool when 

constructing a biocybernetic loop, the model allows the heterogeneous elements that comprise 

psychological phenomena to be unified as a set of independent yet loosely coupled components, 

such as appraisals, physiological responses, expressions etc. and visualised upon a scale within n 
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dimensional space, providing a basis from which ad-hoc models of psychophysiological 

phenomena can be created for specific contexts, such as measuring cognitive workload or a level of 

vigilance. 

 

These three approaches become a road map for conceptualising and building a psychological 

construct which forms the basis around which a biocybernetic loop can be assembled. This 

roadmap provides a number of testable assumptions to be made:  

 

1. Psychological phenomena are embodied physiologically  

2. Psychological phenomena have neurological and autonomic nervous system correlates 

3. Psychological phenomena can be placed upon a uni-dimensional or two-dimensional scale, 

such that magnitude changes in physiology can be measured and classified into scalar or 

binary states. 

 

Evidence for assumptions 1 and 2 has been gathered by empirical work completed over 120 years, 

demonstrating an association between psychological states and physiological responses (see 

Cacioppo et al. (2007) for in-depth review). Measuring the psychophysiological response will be 

discussed in section 3.2. The third assumption refers to a conceptual psychological space and there 

is an issue to be addressed concerning the role of subjective judgements during the development of 

a biocybernetic loop and during the systems interaction with the user.  

 

To build a psychological construct that captures the cultural heritage experience, an assumption of 

―interest‖ on behalf of the heritage visitor could be made to describe a cultural heritage experience. 

The concept of interest was described by Berlyne (1960) as an exploratory drive, defining ―interest‖ 

as a psychophysiological state that fosters curiosity and the drive to explore the object or situation 

at hand. Furthermore, Berylne posited that interest is experienced through increased arousal and 

sensation seeking, i.e. objects that inspire curiosity via novelty and emotional conflict. Silvia 

(2005; 2010; 2008) expanded upon this concept to incorporate a cognitive dimension, whereby 

interest is driven by stimulus complexity. However, these two theoretical approaches do not take 

into account the influence of emotional resonances within the cultural heritage experience. An 

object may create interest as a result of its novelty or complexity, but the emotional states that 

accompany curiosity or interest also represent an important component of the process. For example, 

a visitor may be repulsed by a painting which leads to a sudden interest in the object.  

 

The experience of interest is followed by a sense of positive emotion derived from intellectual 

engagement; positive emotions experienced as a result of interest can therefore occur even during 

engagement with negative material (Hidi & Renninger, 2006).  
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In in forming a psychological construct to describe a cultural heritage experience the assumptions 

made of a user‘s psychophysiological state may be: 

 

 A level of cognitive engagement based on the novelty and complexity of an artefact, 

 A level of physiological stimulation while engaged with the artefact,  

 An emotional response (positive or negative) towards the artefact  

  Measuring the psychophysiological response  2.2.

Measuring psychophysiological responses is typically achieved by placing sensor hardware around 

the body. Sensor types include (but are not limited to) the Electroencephalogram (EEG) which 

measures voltage fluctuations resulting from brain activity at the surface of the cortex; 

Electrocardiogram (ECG) used to for recording measures of heart muscle activity over time; Skin 

conductance,  also known as galvanic skin response (GSR) or electrodermal activity which is a 

method of measuring changes in skin electro-conductivity due to variations in eccrine secretions; 

respiration (RSP) as measured using a thoracic band to capture the depth and rate of chest cavity 

expansion/contraction and facial electromyography (fEMG) commonly measured from the face 

which measures electrical activity produced by skeletal muscle.  

 

There is a current trend in industry, driven by the quantified self-movement, e-health and mobile 

computing industry, to miniaturise sensor technologies and output the data gathered to handheld 

devices for self-monitoring. These devices include the iHealth (iHealth, 2014) suite of ambulatory 

products containing a pulse oximeter (to measure blood oxygen), an adhesive patch ECG (to 

measure heart rate) and a wearable blood pressure vest monitor pulse oximetry. Advances in EEG 

monitoring in the form of the ―in-the-ear‖ EEG (Looney et al. 2012) for long term monitoring of 

brain activity preceding epileptic seizures, similarly the development of pulse rate measurement 

and classification (in an adaptive game) from the ear using pulse oximetry to help gamers maintain 

a level of calm and vigilance during gameplay (Matson, 2014) and a mass market heart rate 

monitoring watch (coupled with mobile phone for processing) produced by Samsung (Samsung 

Gear 2 2014.). However, research in the field normally utilises laboratory grade sensor equipment 

or high quality ambulatory sensors. 

 

From the standpoint of the biocybernetic loop, choice of sensor is closely related to the rationale 

for the loop itself. In the case of cultural heritage, the rationale is to measure a level of ―interest‖ 

consisting of indices of cognition (as attention), physiological arousal (as activation) and 

approach/avoidance (as valence). In this instance the most sensitive and robust measures appear to 

be, skin conductance (EDA) which is linearly correlated with levels of physiological arousal 
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(Dawson 2007), cardiovascular responses (ECG) such as heart rate (HR) which is also used as a 

metric for levels of physiological arousal (Anttonen & Surakka 2005) and measures of brain 

activity from electroencephalography (EEG) which have been used as indices of arousal, attention 

and cognitive work load in biocybernetic loops specifically for adaptive task automation (Scerbo et 

al. 2001).  

 

Speaking purely in terms of a biocybernetic loop constructed around an inference of user ―interest‖ 

towards cultural heritage artefacts, understanding the underlying neural pathways, and their 

connections to psychophysiological states, during cultural heritage experiences is therefore 

important to the development of a functional biocybernetic loop. The Inference of interest in this 

context concerns the creation of a one-to-many relationship in which two or more physiological 

elements or measures are associated with one psychological element or construct. 

 

 Cognitive engagement (as cognition) can be quantified using Electroencephalography (EEG), 

particularly using alpha waves which have been associated with changes in cognitive load, i.e. a 

higher cognitive load is indicative of greater cognitive engagement (Goldman et al, 2002). 

Furthermore,  recent studies in the field of  neuroaesthetics have used functional magnetic 

resonance imaging (fMRI), functional near infrared spectroscopy (fNIRS) and EEG to investigate 

the relationship between brain activity and cultural heritage experiences, in particular the 

perception of beauty and aesthetics (Nadal & Pearce, 2011). This research contends that the 

prefrontal cortex (PFC), in particular Brodman‘s area (BA) 10 located in the dorsal PFC, plays an 

important part in the evaluation of artworks through attentional top-down feedback that is the 

interpretation of sensory processing through cognitive engagement with the stimuli (e.g. Cupchik et 

al, 2009; Vessel et al, 2012; see Hahn et al, 2006 for a review).  

 

Moreover, it has also been noted that alpha activation in the PFC is reduced during aesthetic 

experiences1, particularly during the judgment of beauty (Cela-Conde et al, 2011), making EEG an 

appropriate measure to encapsulate cognitive engagement in cultural heritage settings. Cognitive 

engagement can therefore be captured and quantified using spontaneous EEG measures of 

electrocortical activation in CH contexts. Additionally, the aspect of arousal or activation described 

by Berlyne (1960) and Russell (1980) can be captured through changes in the visitor‘s 

psychophysiology. Thus, cognitive engagement can be quantified through changes in 

psychophysiology and brain activation. In addition it has been hypothesised that greater activation 

of the left hemisphere of the PFC is associated with positive emotions whereas greater activation of 

the right hemisphere is linked to negative emotions (see Coan & Allen, 2004 for a review), thus the 

                                                      
1   EEG alpha activation has a converse relationship with brain activity (Goldman et al, 2002), i.e. higher alpha activity is 

associated with reduced brain activation. 
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emotional response (as valence) to cultural heritage artefacts could also be captured using 

spontaneous EEG measures of electrocortical activation.  

 

The level of physiological stimulation (as activation) associated with the construct of interest can 

be captured via the level of skin conductance (SC) and supplemented by the measurement of heart 

rate (HR); SC is highly sensitive to sympathetic nervous system activity (Boucsein, 1992) and HR 

captures both sympathetic and parasympathetic components of the autonomic nervous system. Both 

SC and HR have been found to be appropriate measures to be used in CH environments (Tschacher 

et al, 2011). 

 

Measuring the physiological response for the detection and categorisation of psychological states 

for use within biocybernetic loops presents a number of technical and ergonomic challenges. For 

example, for ethical or ergonomic reasons, methods of signal acquisition must be as non-intrusive 

and transparent to the user as possible (Sakr et al. 2010). This would impact on the availability of 

physiological signals and restrict the range of sensor hardware that can be applied for signal 

acquisition used to monitor signals from the central (CNS) and autonomic nervous system (ANS). 

Furthermore, Fairclough (2009) identifies sensitivity and diagnosticity as fundamental criteria 

when choosing measures of psychophysiological responses and the sensor hardware with which to 

capture them. These criteria arise from the rationale of the biocybernetic loop e.g. ascertain a level 

of interest in a cultural heritage exhibit. The success and effectiveness of the loop is dependent on 

the assumption that the psychophysiological measure (or array of measures) is an accurate and 

sensitive representation of the relevant psychological element or dimension.  

 

Sensitivity refers to attributes within the physiological measure that have high temporal resolution 

and capability of differentiating multiple levels along a psychological dimension. Features such as 

noise and interference and the filters required to detect and reduce them can affect the sensitivity of 

physiological signal data. For example EDA and ECG signals are highly susceptible to movement 

artefacts; skin conductance level (a measure of EDA) is dependent on continuous contact with the 

skin; loose sensor contacts result in loss of signal and data. Diagnosticity refers to the ability of the 

measure to target the specifics of the psychological construct, while at the same time remaining 

unaffected by related influences. Thus, diagnosticity can be seen as a function of context, in that 

physiological measures may have many psychological effectors, for example blood pressure as an 

indicator of frustration (while learning) or a state of positive challenge (while playing games) 

(Fairclough 2009). In these instances, it is the context that provides the association between 

measure and psychological state and allows the scope of the link to be reduced and an inference to 

be defined. 
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The intrusiveness, sensitivity and diagnosticity of measures is inextricably linked to the form factor 

and type of sensor hardware used to measure the physiological response. These concerns have 

implications when making any inference between psychological state and physiological response, 

for the given context. Therefore, the biggest challenge when constructing a biocybernetic loop be it 

for physiological or affective computing applications is finding stable relationships (one-to-one or 

many to one) between physiological response and psychological state across different contexts and 

users.  

 

The definition of what constitutes a valid psychophysiological inference should be treated with care. 

Psychophysiological inference does not provide a literal, isomorphic representation of a given 

thought, intention or emotion; but rather represents an operationalisation of internal states, the 

quality of which may vary from measure to measure, and between different states (Fairclough 

2009). Therefore, the caveat that psychophysiology provides a less-than-perfect representation of 

internal states must be considered explicitly during the design and construction of a biocybernetic 

loop, and addressed by asking and answering the question: is the psychophysiological inference 

between the psychological states and physiological responses sufficiently sensitive and diagnostic 

to realise the query criteria that is the basis of the loop? 

  Creating the Psychophysiological inference 2.3.

Creating psychophysiological inferences has its basis in reductionism.  Reductionism holds that 

any complex system may be understood as the sum of its parts and the examination of its individual 

parts increases our understanding of the complex system. For example, a complex psychological 

state such as interest can be measured with reference to one component of its manifestation in the 

body, e.g. heart rate.  

 

It is at this point in creating an inference between psychological state and physiological response 

where context becomes a key element. As previously discussed, the rationale of the biocybernetic 

loop provides the setting (e.g. to measure a level of interest and adapt information on this basis) 

and context provides the indication of state induction i.e. viewing a painting or artefact. Thus, 

psychophysiological inference takes place in the context of a specific psychological construct and a 

particular task - hence the process of making the inference is relative and must be grounded in an 

appropriate scenario that represents the operating conditions of the biocybernetic loop. 

 

Cacioppo, Tasinary & Bernston (2007) proposed a general framework for psychophysiological 

inference, which includes rules of evidence and the limitations of psychophysiological inference. In 

this framework psychophysiological inference is separated into two domains; the psychological and 
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the physiological. Each domain is a separate entity consisting of the conceptual variables within the 

psychological domain (the psychological model) and empirical variables within the physiological 

domain (the physiological response). These domains are mapped onto each other forming a series 

of relationships, and it is the type of relationship that delineates the strength of the inference. 

Within the suggested framework five relationships are demarcated to represent the elements within 

each domain. 

 

 A one-to-one relationship (i.e. one element in the psychological domain is associated with 

only one element within the physiological domain and vice versa). 

 A many-to-one relationship (i.e. in which, two or more physiological elements are 

associated with one in the psychological domain). 

 A one-to-many relationship (i.e. one element within the psychological domain is associated 

with many elements within the physiological domain). 

 A many-to-many relationship (i.e. in which two or more psychological elements are 

associated with two or more elements within the physiological domain).  

 A null relationship, in which, no association between elements within the psychological or 

physiological domains is possible. 

 

This framework can be seen as a useful tool when creating experimental methodologies in which 

the relationship between psychological elements and physiological responses needs to be defined 

clearly as proof of concept, or in situations in which a relationship needs to be leveraged in an 

applied context, such as the dynamic basis of a biocybernetic loop. When establishing an inference 

between psychological states and physiological responses, the unique one-to-one relationship is 

clearly the gold standard for biocybernetic loops. However, instances of this form of isomorphic 

relationship are rare in the literature, relative to the other categories (Fairclough 2009).  Such 

relationships are normally established within the laboratory and much research has been completed 

to define relationships between psychological states and physiological responses (see Kreibig 2010 

for a review). In the case of a many-to-one relationship, a psychological state may be only be fully 

represented by a psychophysiological response pattern that incorporates several measures, and it is 

the aggregation of these responses that defines the strength of the inference. This pattern is inverted 

in a one-to-many relationship, in which one physiological response - e.g. systolic blood pressure  -

may increase in response to many psychological states – e.g. when a person is excited, frustrated or 

stressed (Cacioppo & Gardner, 1999). In the case of a many-to-many relationship, a mixture of 

psychological states may combine to exert multiple, overlapping paths of influence over many 

physiological responses.  
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The inference model has clear implications for the design and construction of biocybernetic loops 

regardless of application domain. The rationale for loop informs the creation of the psychological 

construct and this construct then becomes the framework into which physiological sensor 

technology is adapted for use. The type of sensor technology required should possess sufficient 

sensitivity (i.e. signal fidelity) and specificity (i.e. capture only what is under observation) to meet 

the requirements of the biocybernetic loop. The measures derived from the signal must be 

sufficiently diagnostic to allow a one-to-one or one-to-many inference link between psychological 

state and physiological response. The diagnosticity of measures can be maximised by using context 

to set the boundaries in which the psychophysiological inference is valid. A valid inference model 

is the fundament of the biocybernetic loop. Accurate classification of the psychophysiological 

response requires data that has a high degree of separation between psychological states. Without 

this separation, no adaptation will occur and the loop becomes ineffective. Thus, when constructing 

a biocybernetic loop an acceptable level of diagnosticity within the specific context of the task and 

the system must be established. 

3.  Classification 

The process of classification plays a crucial role in the construction of a biocybernetic loop. Once 

the target psychophysiological construct has been operationalised and validated, classification 

provides the means by which physiological response data can be categorised as belonging to a 

specific inference class. This assessment can be subsequently made available to the adaptation 

component of the loop to be acted upon in real-time.  

 

Currently the majority of research exploring methods for measuring and classifying 

psychophysiological states have been conducted in laboratory settings. These approaches combine 

multivariate physiological data, such as ECG, RSP, GSR, EEG fEMG etc. measured from the 

peripheral and central nervous system with statistical and machine learning classification 

algorithms (e.g. Picard 2003, Picard & Klein 2002, Regan & Atkins 2007, Wilhelm & Grossman 

2010, Petrantonakis & Hadjileontiadis 2010).  Examples include the application of fuzzy logic 

models to transform and transpose physiological signals into levels of arousal and valence 

(Mandryk & Atkins 2007), regression decision trees to determine affective states from ECG and 

GSR physiological data (Rani et al. 2005, Villon & Lisetti 2006). Picard and colleagues (2007) 

used K-means (nearest neighbour clustering algorithms) to partition and categorise physiological 

signals as affective states for use with adaptive computing systems. Other research utilises more 

advanced algorithmic techniques, such as Support Vector Machines, to partition incoming signals 

to detect levels of physiological activation as a measure of agitation transition for monitoring the 
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onset of epileptic episodes (Sakr et al. 2010) and Neural Networks to monitor the ANS for variance 

when presented with emotional stimuli (Lee et al. 2006).  

 

Evaluating the performance of classifiers for physiological computing applications, involves 

gathering and aggregating physiological data (feature vectors) from individuals, in groups or singly, 

to create training datasets (feature sets). These datasets represent a matrix of ―supervised‖ data in 

which the each row of physiological values represents an observation. Each observation then has a 

label associated, which denotes that observation‘s (predictor) class. Classifiers are subsequently 

trained using these data and used as the basis for comparison against new instances of 

physiological data.  

 

There are a number of issues to be addressed during the creation of training data for supervised 

learning algorithms. As supervised learning methods are completely dependent on the training 

dataset to create predictive models, it is imperative that the training dataset contains 

psychophysiological data that is completely representative of the psychological construct under 

examination. Therefore, the psychological construct under examination should be correctly induced 

as an exemplar and recorded before training of the classifier occurs or the predictive model will be 

ineffective. A second issue concerns the features of psychophysiological data itself, which exhibit 

intra and inter individual variability related to demographic factors such as age, state of health, 

gender and other factors (Novak et al. 2012). A subject dependent classifier is one that is trained 

using the psychophysiological data (both features and class labels) from a single individual, a 

subject independent classifier is one trained using psychophysiological data from n individuals 

associated with class labels from each individual or from some other source such as survey.  The 

choice of subject-independent (nomothetic) or subject-dependent (idiodynamic) feature data also 

has implications for how the data is processed (nomothetic feature data may require normalisation 

to maintain similar value ranges) and ultimately for how a classifier is trained and applied i.e. to 

generalise predictions across a group of users or trained to specific individuals for specific contexts. 

Put simply, should the designer construct a biocybernetic loop that is trained to the individual or 

attempt to aggregate data from multiple users to create a generic training set that can generalise 

across a population? 
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In a recent survey of methods for data fusion, classification and adaptation using autonomic 

nervous system responses for use in physiological computing, Novak and colleagues (2012) present 

the results from 102 completed studies that applied machine learning algorithms to physiological 

data in three categories of task: classifying basic emotions, classifying responses in arousal valence 

space and classifying single specific responses (either as binary or multiple levels). The machine 

learning algorithms reported in the survey included: k-nearest neighbour (KNN); Naïve Bayes and 

Bayes networks (BN); linear discriminant analysis (LDA); support vector machine (SVM); 

regression decision trees (RDT); and artificial neural networks (NN).  

 

The data shown in Table 3-1 displays the averaged accuracy for each classifier (averaged over all 

studies using highest reported accuracy for each study), the number of studies, the number of 

classes and classification methodology: Subject dependent (individual); subject independent 

(across a group); or unknown (where no methodology was reported). 

 Type # Studies Avg. # Classes D I Unk. Avg. Acc % 

KNN 16 5 5 4 7 72.58 

BN 10 4 5 1 4 77.04 

LDA 25 3 10 8 7 70.53 

SVM 22 3 10 6 6 80.33 

RDT 12 3 5 1 6 84.85 

NN 17 3 9 3 5 80.70 

Totals 102  44 23 35  

 

Table 3-1 Averaged number of classes and accuracies across all studies: D = subject dependent; I = 

subject independent; Unk = unknown 

 

In these results the data indicates that LDA has been used in the highest number of studies (25), 

assigned with classifying on average 3 classes of psychophysiological response ranging from basic 

emotion discrimination to workload level. The popularity of LDA is based upon its ease of use and 

transparency (the contribution of each physiological feature towards discrimination between the 

classes can be seen). However, LDA has the lowest average performance (accuracy 70.53%) of all 

the surveyed classifiers followed by KNN (72.58%) and BN (77.04%) shown in Table 3-1; 

however, the low number of studies reported (12) may have positively biased the average accuracy 

report in comparison with other classifiers which have a larger proportion of studies to providing a 

more balanced view of their accuracy. The two remaining classifiers SVM and ANN essentially 

score equally (80.33 and 80.70 respectively) when tasked with an average of 3 class 

discriminations and have a high number of studies supporting this high average accuracy. Of the 

classification methodologies used to complete the studies, 44 were subject-dependent, 23 subject-
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independent and 35 unknown. From these data it can be seen that subject-dependant classification 

is the most applied technique and the most accurate on average (83.4% for subject-dependent 

versus 69.4% for subject independent). This observation has clear implications for the construction 

of a biocybernetic loop and makes an implicit recommendation that calibrating the loop for 

individuals appears to deliver the highest classification accuracy.  Furthermore, it can be seen that 

RDT SVM and NN represent the top tier of accuracy for machine learning algorithms, able to deal 

effectively with the variance inherent in psychophysiological data and should be investigated for 

application within biocybernetic loops. However, KNN was used during a high number of studies 

and is also worthy of investigation due to a high degree of transparency. 

 

The classification of psychophysiological data falls within the field of pattern recognition. In this 

field, there are two types of classification methods: numeric and non-numeric. Numeric methods 

consist of deterministic and statistical measures, which can be considered as measurements made 

on a geometric pattern space. Such methods are commonly referred to as clustering techniques or 

unsupervised classifiers, which seek to partition data and cluster data points around the boundary of 

each partition in order to make a determination of class membership. Non-numeric methods seek to 

objectify categorisation problems into symbolic abstract representations (such as algebraic form) 

that do not directly manipulate the numerical values they represent. This allows for simultaneous 

analysis and computation of numerous paths of class membership; techniques‘ that utilise this 

approach are commonly referred to as supervised learning classifiers and include Support Vector 

Machines (SVM) and Artificial Neural Networks (NN). The goal of supervised learning is to build 

a concise model of the distribution of class labels in terms of predictor features. The resulting 

classifier is then used to assign class labels to the testing instances where the values of the predictor 

features are known, but the value of the class label is unknown (Kotsiantis et al. 2006). 

 

In the following sections the machine learning algorithms identified from the survey data as 

potential candidates for application within a biocybernetic loop will be investigated further. 

 K-Nearest Neighbour 3.1.

As identified from the survey data, KNN is a popular numeric method of classification (with 16 

studies shown in Table 3-1), nearest neighbour techniques belong to the class of supervised learning 

algorithms. This algorithm classifies data based on the shortest distance of an item of test data to 

the neighbouring training data class sample(s), this makes KNN a two stage process, stage one 

gathers training data and stage two gathers test data for comparison. Test data is then assigned to 

whichever class it appears closest to, using a distance metric such as Euclidean distance for 



28 

 

comparison. Computing ―k‖ involves determining the number of nearest neighbours (via majority 

vote) required to provide the most accurate prediction of which class an item of test data belongs to.  

 

Figure 3.1 Example k-nearest neighbour query; 3 nearest neighbours 

 

By taking several distance measures against many class samples (Figure 3.1), the effect of any 

noisy physiological measurement is likely to be averaged out over k-samples. However, reliable 

classification of psychophysiological data by numeric pattern recognition systems depends heavily 

on the use of noise-free features as input. Therefore, the KNN approach is best applied in situations 

where a high number of classes are to be classified and where physiological data is continuous and 

free of noise, such as within laboratory settings (Petrantonakis & Hadjileontiadis, 2010; Novak et al. 

2012). KNN has been shown to have a high accuracy rate in this setting when applied to classifying 

basic emotions with an average of 5 classes (Picard et al. 2001; Lisseti et al. 2003; Wagner et al. 

2005).  

 

With reference to  

Table 3-1, it can be seen that KNN is the second least accurate classification algorithm scoring an 

average 72.58% accuracy over 16 studies; KNNs popularity is based on its simplicity and 

transparency, in that the algorithm is easily understood and can be rapidly developed and deployed. 

However, in order to be an effective classifier, input data must be rescaled (i.e. normalised between 

0 and 1) so all input features weigh equally due to the algorithm‘s reliance on distance calculations 

to complete classifications. Furthermore, the selection of physiological features must be optimised, 

as high dimensional data increases computational load and decreases accuracy as some features 

may be irrelevant but weigh equally in the distance calculation (Novak et al. 2012).  

 

No. Studies No. classes Classifying D I Unk. Avg. Accuracy 

2 2 O  1 1 71.80 

5 3 BE/O 1 1 3 72.13 

5 4 BE/AV 4 2  70.51 

4 >4 BE  1 2 72.52 
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Table 3-2 K-Nearest Nieghbour number of studies, number of classes, Averaged accuracy per number 

of classes: D = subject dependent; I = subject independent; Unk = unknown 

 

Looking closer at the studies which utilised KNN as a classifier, Table 3-2 shows that KNN has 

been applied to the classification of basic emotions (BE), activation and valence states (AV), and 

other psychophysiological states (O) such as stress and anxiety; of these applications classifying 

basic emotions with three to four classes is most common. For example, Kolodyzhniy and 

colleagues (2011) completed a study testing the applicability of feature selection, linear and non-

linear classifiers and crossvalidation procedures to automated emotion classification. They 

reanalysed data from a previously completed study involving emotion elicitation using film clips, 

presented over two sessions to create a test-retest scenario. Thirty four participants took part in the 

video study. Kolodyzhniy et al, used six 10 minute long video clips pre-classified as frightening, 

sad and neutral to elicit fear, sadness and neutral emotional states, recording and classifying 

measures of the autonomic nervous system such as electrocardiogram (ECG), electrodermal 

activity (EDA) and respiration etc. To create the datasets for classification they first created an 

average of a 180 second baseline period which preceded each video clip was displayed, maximal 

reactivity from baseline was then calculated for each psychophysiological measure for each 

emotion induction and each participant. These data were then aggregated as test and retest data to 

create the training and testing datasets used for classification. Data was then classified in two ways; 

as subject - stimulus dependent and subject - stimulus independent , they achieved best results 

classifying  subject-stimulus dependent data using KNN with 17 nearest neighbours reaching 

81.9% 17.1 averaged crossvalidation accuracy over the three emotion elicitation conditions, 

classified separately they achieved 80.9% for fear, 80.9% and 83.8% for the sadness and neutral 

conditions respectively. This subject dependent classification result compares favourably against a 

77.5%  20.1 averaged accuracy, fear 77.9%, sadness 70.6% and neutral 83.8% classification of 

subject independent data. These results indicate that it is possible to apply the KNN algorithm to 

classify and detect affective states from physiological signals with moderate accuracy. Furthermore, 

the computational simplicity of the algorithm makes it a primary candidate when considering 

applications involving real-time measurement and classification. However, the sensitivity of the 

algorithm to noisy features within psychophysiological data requires careful consideration.  

 

 Decision Trees 3.2.

Regression decision trees (also known as decision or classification trees) work by creating a tree 

structure that maps observations about a value to assumptions about target class of that value. 

Within the tree structure, a leaf represents a class label and a branch represents a binary decision 

that denotes the class label. The algorithm works by progressing through several branching IF–
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THEN logical rules, this branching logic structure is why they are referred to as trees. The tree 

shown in Figure 3.2, is a simple example of a decision tree classifying skin conductance response 

(SC) to trigger an adaptation component; IF no response is detected nothing is classified, IF the 

skin conductance response is greater than 0 then branching logic classifies it into one of 3 THEN 

states, in this case high medium or low arousal (using SC to infer a level of arousal) based on the 

level of response, once classified the judgement is passed to the adaptation component. 

 

Figure 3.2 Simple regression decision tree for a biocybernetic loop 

 

While the rules in this example are simple and could arguably have been set by an expert, decision 

tree rule-sets are not defined manually. Several different algorithms exist which learn and output 

the rules based on training data at each new node of the tree (see Kothari & Dong 2000 for a 

review), these algorithms select the feature that best discriminates between classes after all the 

previous decisions made in the tree have been taken into account. The efficacy of decision trees for 

psychophysiological data classification can be seen in  

Table 3-1 by its high average accuracy of 84.85% over 12 studies. Decision trees offer a high 

degree of transparency, in that the tree structure is easy to comprehend and visualise. In some cases 

algorithms allow manual pruning of the ―tree‖, which reduces the complexity of the logic structures, 

preventing over fitting of the data, and can also act as a form of dimensionality reduction, 

increasing the strength of the inference. Decision trees perform best when applied to problems with 

a low number of classes but high number of levels within each class, for example:  anxiety levels 

(Rani et al. 2007, 83.5%); (Liu et al. 2009, 88.5%), levels of stress and fatigue (Rigas et al. 2011, 

stress 76%;fatigue 81%), and stress levels alone (Plarre et al. 2011, 90.2%).   
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No. Studies No. classes Classifying D I Unk. Avg. Accuracy Stdev 

5 2 BE/O 1 2 4 81.68 5.57 

5 3 BE/O 2  3 79.84 9.05 

1 4 AV 1   77.00 0.00 

1 >4 BE 1   89.20 0.00 

Table 3-3 Decision Trees number of studies, number of classes, Averaged accuracy per number of 

classes: D = subject dependent; I = subject independent; Unk = unknown 

The data in Table 3-3., shows that out of the 12 studies reported, decision trees are most frequently 

used to in the classification of basic emotions or other states, in this instance decision trees are used 

predominantly in the classification of other states such as stress, anxiety and amusement. For 

example, in a study investigating the characterisation of game players‘ experience using 

physiological signals and a decision tree classifier; Levillain and colleagues (2010) aimed to find 

the optimal balance between amusement and challenge then apply this information to drive changes 

inside of gaming environments. For this study 25 participants were required to play a first person 

shooter game on a gaming console while measures of autonomic nervous system activity (ECG, 

EDA and Respiration) were recorded. The game was split into 4 ―game sequences‖ ranging from 

simple non-challenging to complex most-challenging gameplay. To derive class labels for classifier 

training, participants were asked to rate each game sequence by answering four questions posited 

as binary choices: 

 

 Which sequence is most amusing? 

 Which sequence is least amusing? 

 Which sequence is most challenging? 

 Which sequence is least challenging? 

 

These labels were then associated with the features derived from the physiological measures to 

create classifier training datasets and classified using a decision tree algorithm. Their main 

objective was to extract and classify those physiological features that best characterise a player‘s 

level of enjoyment (as amusement); in this regard they achieved a modest level of classification 

accuracy of 80.40% classifying the least amusing game sequence and 71.30% for the most amusing 

sequence. This result shows that it is possible to identify and classify a key psychological state 

using measures of physiology with a moderate to high degree of accuracy and use this output inside 

possible biocybernetic loops with gaming applications to achieve an optimal state of satisfaction 

when playing a game. Furthermore, the computational simplicity and transparency of the decision 

tree algorithm makes it a prime candidate for real-time applications providing the algorithm has the 

ability to handle noisy features inherent to psychophysiological feature data.  
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 Support Vector Machine 3.3.

A considerable amount of research for pattern recognition within affective / physiological 

computing has concentrated on two non-numeric machine learning techniques the support vector 

machine (SVM) (22 studies) and artificial neural networks (NN) (17 studies). These techniques 

have been used primarily to classify psychophysiological data from multiple modalities (ANS, 

EEG, fEMG etc.), to discriminate between basic emotions, level of emotional response or 

physiological activation. A SVM is a set of related supervised machine learning algorithms that 

allow the analysis and categorisation of data and the recognition of patterns within that data. The 

SVM (Vapnik & Cortes, 1995) is a maximum margin, two stage non-probabilistic binary classifier 

that works within high dimensional or infinite feature space. Physiological input data is mapped 

onto this feature space in the form of feature vectors, using linear or nonlinear mapping and 

separated into two classes by a hyperplane (Figure 3.3). Values lying close to the intersection of the 

hyperplane become support vectors and distance based geometry (similar to KNN) is then used to 

determine the class of a new data point by: (1) calculating the distance from the hyperplane relative 

to its position (above or below) and (2) by its distance from a support vector if the value falls 

within the threshold boundary of the hyperplane intersection. In addition the SVM can perform 

non-linear classification by applying various ―kernel tricks‖, implicitly mapping inputs into higher 

dimensional feature space. 

 

Figure 3.3 Example SVM separating hyperplane 
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No. Studies No. classes Classifying D I Unk. Avg. Accuracy Stdev 

10 2 O/BE/AV 2 3 5 84.61 6.51 

6 3 AV/O 3 2 1 77.09 15.37 

5 4 BE 2 
 

3 71.78 9.58 

1 >4 BE 1 
  

95.80 0.00 

Table 3-4 Support Vector Machine number of studies, number of classes, Averaged accuracy per 

number of classes: D = subject dependent; I = subject independent; Unk = unknown 

 

As can be seen from Table 3-1, the SVM has been used in 22 studies and performs well when 

applied to psychophysiological data, with an average accuracy of 80.33 % over all of the studies 

reported. The data shown in Table 3-4 displays that, similar to KNN and decision trees, the 

classification of basic emotions and other states (such as stress) are the key classification tasks; and 

out of the 22 reported studies 10 apply the SVM to tasks involving two classes, six studies utilise it 

to identify three classes decreasing to five studies for four classes and only one study using the 

SVM to classify more than four classes. The high number of studies involving two class 

classification can be accounted for given the SVM‘s binary nature, meaning it lends itself to two 

class problems more easily than those involving more than two, which require careful 

methodological planning. On the whole the SVM is applied in subject dependent classification; 

however there are a high number of studies with unreported dependency methodologies. 

 

The SVM has been employed within the fields of affective and physiological computing in a 

variety of ways, both singly and in conjunction with other analysis techniques. The bulk of these 

studies applied the SVM to discriminating between the ―basic‖ emotional states: anger, sadness, 

joy, fear, disgust and surprise (Ekman, 1999) using a combination of ANS and fEMG (see Katsis et 

al. 2006, 2008; Pastor-Sanz et al. 2008; Calvo et al. 2009) or ANS with facial feature tracking 

(Bailenson et al. 2008). Exploring other affective dimensions, the SVM has been used to classify 

states in arousal-valence space using a combination of ANS and EEG features (Chanel et al. 2009; 

Shen et al. 2009). In research focused on healthcare and quality of life (Sakr et al, 2010), a multiple 

SVM architecture was used to detect levels of physiological agitation (an indication of stress) in 

healthy participants completing a stroop colour-word interference test in a laboratory environment. 

HR, GSR and skin temperature measures were used to create a model of agitation transition, for 

diagnosing the early onset of agitated state episodes related to dementia. SVMs show great promise 

in this area, with reported average detection rates of 91%, over 58 subjects.  

 

Research in the field of performance enhancement used SVMs to capture physiological measures 

which infer cognitive performance and workload, in order to improve performance in a virtual 
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reality stroop colour interference task (Wu et al., 2010). Wu and colleagues measured indices of 

skin conductance, respiration, ECG and EEG activity continuously during task performance over 

three conditions, low threat (colour naming) high threat (word reading) and high threat 

(interference). Reported results from using the SVM approach were again very promising, with 

quoted accuracy ratings of 96.5% over 30 subjects tested against a training set of a further 120 

subjects. However, the authors noted that a certain degree of data preparation was required before 

the SVM could be applied to subject test data, such as interval normalisation [0, 1], feature ranking 

to determine the optimal training set using sequential forward selection (SFS) (Guyon & Ellisseeff 

2003) and best 5 fold crossvalidation accuracy from each feature selected in SFS. In effect the raw 

data measures were processed for statistical significance and only those measures with the highest 

significance (per subject) were included in the SVM categorisation process. 

 

The SVM is best applied in situations where a low number of classes are required or where high 

class problems can be reduced to a series of binary class discriminations. In these situations, the 

SVM has proven to be highly accurate. However, the high number of subject-dependent studies 

(10) versus subject-independent (6) may highlight issues regarding the ability of the classifier to 

generalise across a population of users and suggests that SVM should be considered for 

applications involving single users. There is some evidence to suggest that the SVM can be applied 

to raw psychophysiological data (data that has not been pre-processed). In a study completed by 

Rani and colleagues (2006) five affective states - engagement, anxiety, boredom, frustration, and 

anger - were invoked in participants while completing anagrams tasks and playing a game of pong. 

They reported an 85.81% accuracy rating (averaged over the five states) for the SVM using raw 

physiological data as input. If valid, this last point could have positive implications for the building 

of a biocybernetic loop which includes the SVM as the classification core, as this would indicate 

that the feature data captured from sensors would need very little preparation before classification, 

resulting in a more responsive system with reduced computation needs.   

 Artificial Neural Networks 3.4.

Artificial neural networks (NN) are information processing constructs that attempt to mimic how 

biological systems process information. The design of these constructs is drawn from the 

components that make up the human brain and this biological approach is combined with numerical 

and statistical analysis elements. A neural network in general terms, is an interconnected network 

of a number of processing elements called ―neurons‖ which is created for a specific purpose, such 

as signal processing or data classification. Figure 3.4 shows a simple representation of an example 

neural network. Here each circular node represents an artificial neuron and an arrow represents a 

connection from the output of one neuron to the input of another. Each node can contain one of a 
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number of processing techniques (such as propositional logic or statistical test). Each processing 

node (in the hidden layer) receives a number of inputs and uses them to calculate its activation 

based on the weighted sum of the inputs. This value is used as a threshold. If the value exceeds the 

threshold, the node outputs the class of the input data. This output is then fed to the next layer of 

neurons and so on, until the final output is determined. There is only one hidden layer in the 

example but there can be many. When layers are aggregated, they are referred to as a multilayer 

perceptron. This ability to aggregate processing units and the inherent interconnectedness give NNs 

the potential to process large volumes of complex or noisy data. NNs learn by example. They can 

be trained with known examples of problems in order to ‗acquire‘ knowledge about them. Once 

appropriately trained, the network can then be applied to solve ‗unknown‘ or ‗untrained‘ instances 

of a problem.  

 

Figure 3.4 Example Neural Network with one hidden layer 

 

No. Studies No. classes Classifying D I Unk. Avg. Accuracy Stdev 

6 2 O/BE 3 
 

3 83.46 8.13 

3 3 O/AV 3 1 
 

73.94 10.51 

5 4 BE 2 2 1 74.78 12.01 

2 >4 BE 1 
 

1 90.55 6.55 

Table 3-5 Artificial Neural Networks number of studies, number of classes, Averaged accuracy per 

number of classes: D = subject dependent; I = subject independent; Unk = unknown 

 

The use of neural networks within the fields of psychophysiology, physiological and affective 

computing is a relatively new technique. However, the data in 

Table 3-1 Table 3-1 shows this technique is becoming increasingly popular in these fields with 17 

studies reported to date. Table 3-5 shows that of these 17 studies, six applied NN‘s to two class 

problems, classifying other psychophysiological states (such as entertainment preference and 

workload) and basic emotions and as the number of classes increases to five classes and beyond 

NN‘s are exclusively applied to classifying basic emotions in a subject dependent manner. The 
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average accuracy of 80.70% shows neural networks to be in the same accuracy class as decision 

trees and support vector machines, NNs have been applied to a wide variety of data from basic 

emotion discrimination (Nasoz et al. 2004, 2010; Wagner et al. 2005), workload level (Wilson and 

Russell, 2003a/b, 2007) to entertainment preference (Yannakakis & Hallam, 2008). For example 

the study from Wilson & Russell (2007) used a NN to analyse psychophysiological signals (ANS 

and EEG measures) to aid in real-time adaptation of difficulty levels when subjects performed a 

complex aviation task (analysing radar data for potential military value), they found a significant 

increase in subject performance when comparing adaptation versus no adaptation in task difficulty. 

Using the NN to categorise mental workload they reported 89.7% and 80.1% accuracies for easy 

and hard condition adaptations respectively, they then compared this result against a new condition, 

that of subjects trained in the task versus non-trained and found that the NN technique scored 

significantly higher in terms of correct categorisations with 95.7% and 83.6% for easy and hard 

conditions respectively. 

 

Further work by Kliensmith et al (2011) adopted the NN approach to recognize and categorise non-

acted bodily gesture based indices of affect in subjects participating in a game task. They 

conducted an online posture evaluation survey with computer avatar stimuli, using a subset of 

postures (frustrated, concentrating, defeated and triumphant) to compare against NN 

categorisations for the same set of postures which used motion capture data as inputs for training. 

They then split these postures into ranks for arousal and valence and compared the results from 

human observation agreement and machine NN categorisation, the results from this comparison 

were very favourable with an 87.4% recognition rate for human observation and 87.2% for NN 

categorisation for arousal, and 84.3% and 83.9% for human and machine respectively for valence. 

Out of the 17 studies reported in the Novak et al. (2012) review, 9 used subject-dependent 

approaches and 3 used subject-independent (with 5 unreported), showing that overall this 

classification technique appears to perform optimally in situations that allow long calibration 

periods, calibrated to individuals and applied in real-time tasks; on average NNs were applied to 

tasks with 3 classes and in this type of scenario can output highly accurate classifications (for the 

given context). However, the long calibration periods (requiring a large dataset) coupled with the 

complexity of NNs once they are trained; give the NN a large computational requirement, in terms 

of both storage and processing. These requirements make NNs a classification technique best 

applied in contexts which do not require quick calibration and deployment.  

 

The classification approaches discussed in the current section all share a common theme, they 

concentrate on the detection of affective states within the confines of the laboratory, where levels 

of signal noise and confounds (such as movement) can be controlled or kept to a minimum using 

state of the art sensor technologies. Furthermore, laboratory testing also allows data to be analysed 
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and classified post hoc, using statistical and data processing techniques, which can sometimes 

affect classification outputs significantly. As a consequence very few studies utilise these 

techniques inside a biocybernetic loop as part of a live real-time system. From the literature, KNN, 

RDT and SVM appear to be the best candidates for deployment in real-time systems as the 

classification component of a biocybernetic loop. These algorithms are fairly transparent and the 

results from the literature show they are able to classify subject-dependant psychophysiological 

data with high accuracy. The suitability of applying these algorithms to classify 

psychophysiological data inside a biocybernetic loop suitable for cultural heritage environments 

will be investigated in detail in the experimental studies presented in this thesis.   

4.  Adaptation and interaction at the interface 

Adaptation is the final component of a biocybernetic loop. An adaptive component transposes 

classification output into adaptive control actions, in accordance with internal IF THEN rules to 

initiate interface adaptations or not. Adaptive systems that include a biocybernetic control loop can 

be divided into two categories: autonomous systems, where physiological input alone is used to 

drive adaptations; and hybrid decision support systems, where user decisions in conjunction with 

physiological input, are used to inform adaptations. The degree of automation provided by 

autonomous or hybrid user-driven adaptive systems can differ in both type and complexity. These 

automated responses range from the simple organisation and provision of information in response 

to physiological changes, to multi-layered response adaptations at key stages in a process in 

response to both user decisions and physiological changes or in extreme cases a hybrid system that 

relies on both decision based input and physiological changes but carries out a mission critical 

adaptation or decision automatically if certain response criteria are not met (Parasuraman et al, 

2000).  

 

An example of such as system could involve a biocybernetic loop used for information provision 

that monitors the level of interest of the user and makes information recommendations based on the 

classifications of this state. These recommendations can be implicit and fully automated; where 

information reaches the user in a pre-edited form, or there may be explicit recommendations e.g. 

you may be interest in x, which requires confirmation by the user. 

 

When designing an adaptive system that utilises biocybernetic control as its primary driver, the 

decision as to what level of automation is required is of paramount importance for the user 

experience and should be taken at the outset. The choice of autonomous or hybrid semi-

autonomous system design can create adaptive system experiences ranging from supportive 

learning experiences to a deeper performance enhancement through reciprocal task allocation. Too 
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much automation creates a risk that users feel alienated with no control as information is pushed at 

them or tasks reassigned, too little and the adaptive system serves small purpose, as tasks or 

interactions require too much effort to complete. The potential exists should a fully symmetrical 

dialogue be created, to provide a beneficial synergy between the human and the system, analogous 

to the synergy that can exist between two or more functionally communicating human beings. Thus, 

the goal of adaptive systems is to explicitly open a symmetrical dialogue between the user and the 

system with respect to maximising efficiency of the task and interactions with the system, and then 

synergistically drive this communication using implicit and explicit input (or combinations thereof) 

and adaptations to user psychophysiological states.  

 

Trust is a major concern in the communication between the user and the system during interaction 

with automated technology. Lee and See (2004) define trust as ―the attitude that an agent will help 

achieve an individual‘s goals in a situation characterised by uncertainty and vulnerability‖ (Lee and 

See, 2004, p. 51), Miller (2005) expands this definition into a series of ―attitudes‖:  

 

1. Trust is a response to knowledge or belief about world states, but is not in itself those 

beliefs. 

2. Trust is affective; trust and mistrust produce feelings about systems or agents they are 

directed at; future trust is in part a function of this affective response 

3. Trust is egocentric and therefore based upon individual interpretations about a system or 

agent‘s ability to achieve goals 

 

Miller (2005) posits that these attitudes are dynamic and have greater and lesser importance 

dependant on the situation: greater if the situation is characterised by uncertainty and vulnerability; 

lesser if the situation is well understood and predictable. The fostering of trust between user and 

system is important to ensure the human-computer interaction is reciprocal and user understanding 

of the internal logic of the adaptive system is clear and unambiguous. Lee and See (2004) refer to 

this fostering as ―tuning‖ and identify three routes to develop and tune user trust: analytic, analogic 

and affective methods:  
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 Analytic methods involve the detailed understanding and rational assessment of the 

mechanisms by which the system adapts to the user.  

 Analogic methods involve the use of observable cues to infer system membership, such as 

an assumption of trust precisely because it was designed by members of the same group or 

endorsements based on the word of already trusted intermediaries. 

 Affective methods are based on the affect generated by and towards the system, Lee and 

See (2004) base this on empirical findings that suggests that users tend to trust systems or 

devices that produce positive attitudes towards them 

 

Lee and See (2004) also report that trust has a temporal element, meaning that it takes time for 

users to acquire trust in a system, whether through experience (analytic), training (analogic) or 

endorsement (analogic/affective). Furthermore, they point out that if a system receives a strong 

enough negative endorsement from an already trusted source, the likelihood that a user will trust 

the system is reduced even when presented with evidence to the contrary. From this analysis it can 

be determined that trust in adaptive systems is something that is engendered over time through use 

and continuous feedback. If feedback is positive the affective dimension of trust increases positive 

attitudes towards the system; if feedback is negative yet the reason for system failures is 

understood the analytic dimension is engaged, which again increases positive attitudes. If the 

system receives a positive endorsement from a trusted or authoritative source the analogic 

dimension is engaged and increasing the likelihood in the system outputs.  

 

The majority of work in the field of adaptive systems has centred around one form of adaptive 

process; the modification of function allocation, in which the function modification acts as the 

interface between the user and the system, to determine which element performs which task i.e. the 

user or the system.  Adaptations of function modification can be categorised within a 2x2 model by 

their target function level and immediacy; that is, adaptations can affect the semantic or syntactic 

levels of a system (Foley & van Dam, 1982) and be either immediate or future adaptations 

(Solevey et al, In Press). The semantic level refers to the internal values and parameters of the 

functions performed by the system; whereas the syntactic level refers to the input output operations 

performed to complete those functions without and reference to the values or parameters; 

immediate changes affect current interactive elements; whereas future changes adjust variable and 

elements which have not yet appeared as interactive elements. Thus, semantic adaptations are those 

that change the behaviour of the system and the goals and action of the user; and syntactic 

adaptations are those that take place at the level of the interface and do not modify the functional 

basis of the system (Jacob 2001).  
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Sheridan & Verplank (1978) defined adaptive systems for function allocation as a system with 10 

levels of adaptation (LOA), ranging from the human operator completing the entire task, to the 

computer completing the entire task, with hybrid human-computer function allocations making up 

the  intermediate stage. More recently Parasuraman, Sheridan and Wickens (2000) updated the 10 

levels of adaptation model, to provide a framework consisting of four system function analogues of 

human information processing: information acquisition; information analysis; decision selection; 

and action implementation.  

 

One of the research aims of this thesis is to utilise a real-time biocybernetic loop aimed at cultural 

heritage applications, in which users receive information and decisions adapted to 

psychophysiological responses automatically. In this use case scenario all function allocation and 

information provision is immediate, and users interact with the system implicitly via physiological 

sensors recording a psychophysiological state of interest and the system explicitly provides 

adaptation using this state information. Using the above function allocation mapping, the loop is 

opened when the system acquires psychophysiological data from the user in response to cultural 

heritage exhibits; the system then performs analysis in the form of classifications; the system 

decides what content to produce next; the system implements the decisions and content is 

displayed; this new content creates new responses to acquire, closing the loop.   
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5.  Challenges for real-time psychophysiological state 

classification  

Building adaptive systems for use in real-time contexts presents many challenges, such as:  the 

choice of psychological model; type of sensor technology; measures of physiological activity to 

capture the psychological state; classifying the psychophysiological state; using classification 

output as part of an adaptation strategy; creating interface elements driven by the adaptation 

strategy and fostering trust in users of the system.   

 

The choice of psychological model is one that is purely dependent upon the context in which the 

biocybernetic control loop is to be applied. However, care must be taken to ensure that the 

inference between psychological model and physiological response can be verified and 

operationalised experimentally before application in the field. Inferences should ideally be one-to-

one or one-to-many (Cacioppo, Tasinary & Bernston, 2007) and model the psychophysiological 

state with sufficient diagnosticity, bounded by the rationale and task context of the system. Once 

the model is verified techniques should be applied to reduce the processing requirements and 

complexity of the system by reducing dimensionality of the physiological data (Novak et al. 2012). 

Reducing the dimensionality of the data also has the effect of reducing the complexity of 

classification protocols and the processing requirements for biocybernetic control systems. 

Specifically, a strong inference reduces in sensor requirements, measurements taken and data 

analysed; this simplifies the training of classifiers potentially leading to more accurate and timely 

user state classifications; more accurate classification output enables system adaptations that reflect 

the user state more effectively, allowing interface elements to change dynamically and accurately 

in response to the user state.  

 

There are few examples in the literature of applied real-time adaptive systems (e.g. Chanel et al. 

2011; Wilson & Russell, 2003; Pope et al. 1995; Scerbo et al. 2001), a review of the literature has 

shown that certain elements of the biocybernetic loop are receiving much interest (e.g. sensor 

technologies, psychophysiological measurement and classification); however, this research interest 

is focused on state detection within the confines of the laboratory and not in real-time field 

applications.  The lack of lack of real-time data can be seen as a limiting factor in the research, 

development and deployment of biocybernetic control loops. Furthermore, this lack of real-time 

data leaves a gap in the knowledge base into which valuable contributions can be made. 
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From the literature it can be determined that reliable psychophysiological state classification using 

pattern recognition algorithms depends critically on the use of noise free and highly separable 

features as input. It remains to be determined whether training classifiers using data from groups of 

individuals, or single individuals presents with the best chance of success when building a 

biocybernetic loop for adaptive systems. It is acknowledged in the literature that physiological 

responses to affective stimuli are strongly characterized by individual differences (Kim, 2007; 

Krohne 2003). Therefore, in order discriminate psychophysiological states among multiple 

individuals, each with their own personal psychophysiological traits, the choice of nomothetic 

(group) or idiodynamic (individual) classification methods and psychophysiological state induction 

paradigms requires in depth investigation and analysis. The results from the literature survey 

suggest that classifiers trained to individuals will prove the most accurate, if proven true this raises 

a number of issues such as: how to train classifiers in real-time for use with individuals; how can 

the classification output be validated i.e. can the classification output be trusted as reflecting the 

user state alone or will this output require combining with user judgements as a final stamp of 

validity and if so how can these judgement be included in the classification training process; finally, 

if user judgements are used to train a classifier what effect does this have on classification accuracy 

i.e. does it matter if the dataset is biased towards one class or another if it accurately reflects user 

judgements towards stimuli. 

 

The literature contains little data concerning the test-retest reliability of psychophysiological 

measures and their effect on automatic psychophysiological state classification, especially when 

real-time systems are the consideration. This lack of data may become an issue of some import as 

computing applications including biocybernetic control loops gain popularity outside of controlled 

laboratory environments, and begin to be used in the field. Which raises a series of questions, can a 

system trained on one occasion using data from individual or multiple users be used on a separate 

occasion or multiple occasions? Will the system require re-training; if so when is it appropriate to 

do so and how long will it take to calibrate? Furthermore, in a real-time systems context users 

could reasonably be expected to be ambulatory, which raises questions about the sensitivity, 

specificity and diagnosticity of psychophysiological measures when recorded from no-stationary 

sources, how will non-stationarity affect the strength of the inference and classification accuracy. 
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6. Outline of experimental studies 

The goal of this thesis is to develop a biocybernetic loop to adapt and personalise information for 

the individual in a cultural heritage setting. This will involve the design and development of a real-

time data processing pipeline that will translate raw psychophysiological data into control input for 

adaptive information provision or media tagging. A psychological construct will be posited and 

operationalised as physiological measures of the autonomic and central nervous system to create an 

inference model for a state of interest. Machine learning algorithms will be investigated to 

determine the efficacy of psychophysiological classification in both offline and online contexts. A 

series of experiments will be conducted to explore the design and implementation issues within two 

components (inference model and classification) of the biocybernetic loop culminating in a 

framework that integrates each of the components into a real-time proof-of-concept application. 

 

 Study one: explores a psychophysiological inference of participant interest (as autonomic 

activation) using a range of autonomic measures and compares the performance of the K-

Nearest Neighbour, Decision Tree and Support Vector classification algorithms under 

laboratory conditions using both subject dependent and subject independent classification 

methods  

 Study two: This study will explore and investigate cross-session classification of 

autonomic activation wherein a support vector machine classifier was trained on session 

one and applied to data from session two. The classification algorithm is applied to 

autonomic responses (heart rate, skin conductance and respiration) to art images (paintings), 

recorded in a laboratory setting  

 Study three: The goal of this third study is to examine the cultural heritage experience, then 

posit a three dimensional psychological model of interest as a potential driver of this 

experience and operationalise the interest model as multiple measures of 

psychophysiological activation. The operationalised measures will then be used for the 

subject dependent classification of multiple psychophysiological measures recorded using 

ambulatory sensor apparatus in response to audio material in a virtual cultural heritage 

setting 

 Study four: this study represents a replication in part of study three using multiple sources 

of media (audio, video, still image and combinations thereof) in a cultural heritage setting. 

A framework for a biocybernetic loop aimed at cultural heritage applications that utilises 

the interest model is proposed. The purpose of the framework is to take in 

psychophysiological measurement at one end and output classifications of user interest at 

the other. Two classification protocols are proposed and tested both subject dependently 

and independently  
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 Study five: represents a culmination of the previous studies in order to create a 

classification protocol and application framework to capture high or low interest in 

response to video material in real-time. The application utilises the input output framework 

from study four and proposes a new classification protocol to evolve the one proposed in 

the previous study. The support vector machine is tasked with classifying user interest as a 

binary condition (high or low) within the context of a user viewing video content over a 

number of training cycles. This experimental study investigates the concept of machine 

accuracy versus the perceived accuracy of the system by the user at runtime, the classifier 

is trained to classify user preference by the user while in operation over the course of the 

experiment 

 Finally the results from each experimental study are discussed as a whole in the context of 

the biocybernetic loop i.e. inference, classification interaction and adaptation. Furthermore 

the limitations of the work presented are discussed and future research work posited 
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7. Study One Classification of Psychophysiological Activation 

States using K Nearest Neighbour (KNN) 

 Abstract  7.1.

The following experimental study explores two stages of the biocybernetic loop: inference and 

classification. The first stage was investigated by ascertaining levels of psychophysiological 

activation towards still imagery as a three condition activation state (representing high, medium 

and low activation states) to create a psychophysiological inference (as autonomic activation), 

using a range of autonomic (heart rate and skin conductance) measures under laboratory conditions.  

The second stage was explored by determining which physiological measures provide the greatest 

contribution to classification accuracies and applying the k nearest neighbour (KNN) classification 

algorithm and comparing the classification results with those of a support vector machine (SVM) 

and regression decision tree (RDT). The classifiers were trained with data from 15 subjects using a 

subject independent approach, with either class labels provided by survey or by subjective 

assessment. The results showed that classifiers trained using subjective assessment were more 

accurate to those trained using survey class labels. Furthermore, the comparison of accuracies from 

each of the classification algorithms showed that in this instance the support vector machine was 

most accurate. From this the following conclusions were drawn; that the support vector machine 

classification algorithm is well placed for classifying psychophysiological responses in comparison 

to RDT or KNN; That classification accuracy increased when trained using subjective assessment 

when compared to survey labels;  That subject dependent classification methods should be 

investigated as a means to increase classification accuracies further. 
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 Introduction 7.2.

This experiment represents an exploration of the first stage of the biocybernetic loop investigating a 

psychophysiological state induction methodology; sensor hardware for autonomic nervous system 

measures; signal and measure analysis techniques and finally considering the suitability of KNN 

for classifying psychophysiological data when compared to the accuracy of SVM and RDT. The 

experimental approach builds upon the laboratory work of research in the field of physiological and 

affective computing as discussed above (e.g. Picard, 2003, Picard & Klein, 2002, Regan & Atkins, 

2007, Wilhelm & Grossman, 2010, Petrantonakis & Hadjileontiadis, 2010, Lang, et al 2008, Rani, 

et al 2006).  These studies form a core of research concerned with the application of physiology 

within computing and the categorisation of activation or affective states from physiological signals. 

Therefore, the overarching goal is to create a methodology and analytical framework that builds 

upon this previous research and forms the basis for future experiments, to inform the creation of an 

ad-hoc top-down psychophysiological activation-interest model with its basis in the circumplex 

model of Russell (1980) and to derive psychophysiological measurement and classification 

methods for use within a biocybernetic control loop.  

 

This experimental study aims to ascertain levels of psychophysiological activation as a three 

condition activation state (representing high, medium and low activation states in response to visual 

stimuli); to determine the accuracy of the k-nearest neighbour categorisation algorithm when 

compared to subjective response data; and to validate this response data against the predetermined 

arousal/valence space data provided by the IAPS image database (Lang et al. 2008). Furthermore, 

this experiment will attempt to reveal how psychophysiological activation - taken as Heart Rate and 

Skin Conductance - varies in subjects presented with visual stimuli with known properties. These 

measures reflect two components of autonomic regulation; a sympathetic component and a 

parasympathetic component that may reflect a possible top-down neural influence (Rainville et al 

2006). The variance in autonomic regulation will be recorded and features extracted from the 

measures to be used as input data for evaluating the efficacy of the k-nearest neighbour (KNN) 

algorithm when applied to the categorisation of levels of arousal to represent the three condition 

activation states. 
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The experimental study was conceived with the following aims:  

 

 Ascertain levels of psychophysiological activation as a three condition activation state 

(representing high, medium and low activation states) and determine which physiological 

measures provide the greatest contribution to classification accuracies  

 Determine the efficacy of the KNN categorisation algorithm to distinguish between levels 

of  physiological variance in response to High, Medium and Low activation image stimuli 

taken from the IAPS database  

 To determine the accuracy of the KNN categorisation algorithm when compared to 

subjective response data; and to validate this response data against the predetermined 

arousal/valence space data provided by the IAPS image database (Lang et al. 2008).  

 To compare the performance of KNN with SVM and regression decision trees (RDT). 

 Methods 7.3.

 Participants 7.3.1.

Fifteen participants, 9 male and 5 female, aged 20 – 45 years, took part in the experiment.  The 

experimental protocol conformed to the requirements of the University Research Ethics Committee 

lease of ethical approval. Subjects were required to provide notarised consent. 

 Design 7.3.2.

The experiment was designed as a subject static laboratory three factor repeated measures 

experiment; i.e. participants were exposed to IAPS images whose activation scores were classified 

as high, medium and low (Shown in Table 7-1). 

 

There were 10 images in each group. 

 

Category of Image High Medium Low 

Mean Arousal Rating 6.388 4.065 2.859 

Mean Valence Rating 3.682 3.588 4.325 

Table 7-1 Mean activation and valence values for each category of image 

 Apparatus 7.3.3.

To capture physiological signals for this experiment, the Biopac MP150 and MP35 sensor networks 

were used in conjunction with the signal analysis software Acqknowledge (Biopac Systems Inc.). 

Data for three subjects was obtained using the MP150 sensor hardware which later developed a 

fault, resulting in subsequent recording being performed using the MP35. The implementation of 
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the KNN algorithm used the city - block distance measure (which measures the distance between 

two points as the sum of absolute differences of their Cartesian coordinates), this is available in the 

bioinformatics module of Matlab (at2012) a mathematical analysis software application.  

 Experimental Measures 7.3.4.

The features derived from the measures heart rate and electrodermal activity were used on the 

results of research reviews that focus on autonomic nervous system activity using affective stimuli, 

two such reviews by Kreibig (2010) and Rani (2007) present tables that detail the physiological 

measures (and sets of features) associated with an affective or psychophysiological state. 

 

 For heart rate (in beats per minute) maximum, minimum, mean and standard 

deviation. 

 For electrodermal activity (in micro Ohms); area, mean, maximum and minimum 

 

For the electrocardiogram (heart rate) a sampling rate of 1 kHz was used with a band pass filter of 

5 – 35 Hz to remove noise and baseline drift. A low pass filter with a sampling rate of 1 kHz (1 

thousand samples per second) and fixed at 5Hz was applied to the EDA channel to remove high 

level and allow tonic changes in EDA to be observed. 
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 Procedure 7.3.5.

Upon arrival at the laboratory the participants were given an information pack detailing the 

experimental procedure.  Once notarised consent was given, they were seated and electrodes were 

applied. The participants were then required to view the thirty images chosen from the IAPS 

database and record a subjective two dimensional measure of level of arousal and valence using the 

Self-Assessment Manikin (Lang, 1985) provided. Upon completion electrodes were removed and 

any questions the participant wished to ask were answered. 

 

To present the stimulus images and record subjective responses an application was developed using 

the E-Prime experiment design environment (MacWhinney 2001, PSTinc 2011). The following 

categories of image were used as a stimulus pool for the experiment; images were counterbalanced 

within category (Van Ulzen et al., 2008) and presented to the participant randomly: 

 Ten images categorised as High arousal neutral valence 

 Ten images categorised as Medium arousal neutral valence  

 Ten images categorised as Low arousal neutral valence  

 

Three test images selected randomly from the Low arousal category of IAPS database were 

displayed at the start of the experiment, to establish signal fidelity and baseline sensor readings. 

The stimulus presentation timeline is illustrated in Figure 7.1.  

 

00:00:00 00:00:35

00:00:05

Fixation

00:00:10

Stimulus

00:00:15

Reflection

00:00:20

SAM Arousal

00:00:25

SAM Valence

00:00:30

Return To Baseline

 

Figure 7.1 Experimental procedure timeline 

The following tables (Tables 7 (2-4)) detail each image used, their IAPS code and valence/arousal 

ratings, and includes a representative sample of a stimulus image (one from each category) used for 

psychophysiological state induction. 
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High Activation Neutral Valence  

Image IAPS Valence Arousal 

 

Snake 1022 4.26 6.02 

Spider 1200 3.95 6.03 

Pitbull 1300 3.55 6.79 

Bear 1321 4.32 6.64 

Shark 1930 3.79 6.42 

War 2683 2.62 6.21 

Openchest 3250 3.78 6.29 

Lava 5940 4.23 6.29 

Tornado 5971 3.49 6.65 

Aimedgun 6250 2.83 6.54 

 Sample Image High Category: Bear, 

Valence rating: 4.32, Arousal rating: 

6.64 

Mean Arousal 6.388 Stdev 0.25 

Mean Valence 3.682 Stdev 0.55 

Table 7-2 Valence and Arousal values per IAPS image for high activation neutral valence category 

 

Medium Activation Neutral Valence  

Image IAPS Valence Arousal 

 

fingerprint 2206 4.06 3.71 

Neutral face 2210 4.38 3.56 

Boy 2280 4.22 3.77 

Sad girls 2455 2.96 4.46 

Police 2682 3.69 4.48 

Alcoholic 2752 4.07 4.3 

Jail 6010 3.73 3.95 

Cemetery 9000 2.55 4.06 

Cocaine 9101 3.62 4.02 

Hung man 9265 2.6 3.34 

 Sample Image Medium Category: 

Fingerprint, Valence rating: 4.45, Arousal 

rating: 2.81 

Mean Arousal 4.065 Stdev 0.31 

Mean Valence 3.588 Stdev 0.63 

Table 7-3 Valence and Arousal values per IAPS image for medium activation neutral valence category 
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Low Activation Neutral Valence  

Image IAPS Valence Arousal 

 

Sick man 2491 4.14 3.41 

Judge 2221 4.39 3.07 

Pine needle 5120 4.39 3.07 

Ironing board 7234 4.23 2.96 

Office 7700 4.25 2.95 

File cabinets 7224 4.45 2.81 

Neutral girl 2440 4.49 2.63 

Empty pool 9360 4.03 2.63 

Trashcan 7060 4.43 2.55 

Rocks 5130 4.45 2.51 

 Sample Image Low Category: Filing 

Cabinets, Valence rating: 4.06, Arousal 

rating: 3.71 

Mean Arousal 2.859 Stdev 0.27 

Mean Valence 4.325 Stdev 0.15 

Table 7-4 Valence and Arousal values per IAPS image for low activation neutral valence category 

 

 Analysis Framework 7.4.

A data analysis framework was developed to fit with the experimental study elements.  This 

framework is outlined in Figure 7.2 and is detailed as follows:  

 

 Capture physiological signals from participants using sensor hardware 

 Select features from the captured signals 

 Extract features to separate datasets 

 Form Analysis instances 

 Apply Principal Component Analysis to one instance of raw feature data 

 Order one instance of feature data using IAPS image scoring  

 Titrate one instance of feature data using participant subjective scores 

 Process one instance of feature data as normalised change scores (z-scoring) to reduce the 

effect of individual difference within participant responses as in Mandryk & Atkins (2007), 

who used this approach to normalise electrodermal activity data. 

o Create two instances of normalised feature data and order one using IAPS scoring 

and the other using subjective titration 

 

In this context the concept of titration is used to describe the process of re-ordering the feature data 

into categories based on the subjective scores from each participant for each image. In this way the 
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titrated dataset is labelled to better reflect the personalised experience and response of each 

participant.  

 

Figure 7.2 Experimental Analysis Framework 

 

Analysis groups were created to allow for a comparison of classification accuracies between the 

two modes of labelling images, to form training sets for use with the classification algorithms.  

Mode one used images labelled using generic IAPS ratings. Mode two used those that were 

―personalised‖ using titration. Group A consists of 10 images in the High, Medium and Low 

categories labelled within categories using standard IAPS arousal ratings. Group B consists of 10 

images in the High Medium and Low categories titrated using participant subjective arousal ratings. 

Groups C and D were created as reduced datasets of three images from each category to focus on 

data that were completely representative of each of the categories.  
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Table 7-5 presents the structure of the analysis approach used for comparing datasets. 

 

 Category High Medium Low 

Analysis  #Images #Images #Images 

A IAPS 10 10 10 

B Titration 10 10 10 

C IAPS 3 3 3 

D Titration 3 3 3 

Table 7-5 KNN analysis table 

 

The analysis table allowed the following hypotheses to be tested: 

 That on first exposure to the experimental visual stimuli, participant physiological responses 

will be of sufficient magnitude (in terms of variance per stimulus epoch) to allow the KNN 

classifier to successfully discriminate between three classes of response (high, medium and 

low) based on generic IAPS ratings.  

 The accuracy of the KNN classifier will increase when the images are categorised according to 

subjective rating responses (via the titration process) as opposed to classification via generic 

IAPS ratings, i.e. accuracy for B and D should be higher than A and C respectively  

 The accuracy of the KNN classifier will increase when the images are representative   

examples of each category of classification, i.e. accuracy for C and D should be higher than A 

and B respectively 

 When applying the KNN classifier to two classes of data (high and low) as opposed to three 

categories, predicted accuracies will increase 

 Applying Principle Component Analysis and Z-score normalisation techniques to reduce the 

variance of individual physiological responses within the data will increase KNN classification 

accuracies in all cases. 

 Results  7.5.

For the measures of HR and EDA separately and then combined, discrete classifier analysis from 

A-D were completed on the resulting datasets. Both measures were then analysed post hoc using 

principle component analysis and normalised change score data, the classifier was applied to these 

datasets using the same method. Figure 7.3 displays the KNN classifier percentage chance 

accuracies over the full range of data. The results from analysis D (Table 7-5) for KNN were used 

as a basis for comparison against results gained from the SVM and RDT classifiers for the same 

data. 
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Figure 7.3 KNN Classifier accuracies 3 classes vs. 2 classes all analyses 

 

For categorisation problems involving the three classes (high, medium and low) the KNN classifier 

reported poor accuracies regardless of whether the data is subjectively titrated or pre-categorised 

using IAPS scoring. Using the features of electrodermal activity titrated using subjective scoring 

for the three optimal images per category as input; the maximum accuracy of the classifier in a 

three class problem was 44%. In contrast, the maximum accuracy classifying three classes for 

features of heart rate for the same titration was 54%. This appears to show that heart rate is the 

most sensitive measure for three class problems when data is individuated using titration. These 

results indicate that the titration process is more effective at accurately depicting participant interest 

levels.  

 

Classification accuracy improved when the data was presented as a two class problem (High vs. 

Low activation). The titration process further improved accuracy. Using the EDA feature data as 

input, a classifier accuracy of 62% was reached, compared with a 58% accuracy using the heart rate 

feature data. Removing the Medium category of data presents the classifier with physiological data 

with a higher degree of differentiation between the classes. The lack of physiological, and therefore 

class, differentiation is best represented in Figure 7.4, which displays that participant physiological 

responses in the Medium and High categories of image become indistinguishable leading to 

classification errors. 
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Figure 7.4 KNN classification showing no clear differentiation between classes 

 

When HR and EDA data was combined into one dataset representing the three optimal images per 

category (Datasets C and D), the classifier reported the same low accuracies for the three class 

problem as reported previously, with the best achievable accuracy (46%). However, when KNN 

was used to classify C and D using the two category model (High vs. Low) accuracy increases to 

61%. 

 

On the premise that a reduction in feature dimensionality would improve classifier accuracies by 

providing factors that represented the most significance within the data, the combined HR and 

EDA data was pre-analysed with principal component analysis (PCA) (Cacioppo et al, 2007). 

However, for the three class problem, using the same titrated dataset, the classifier reported a 

maximum accuracy of 43% compared to a maximum of 39% for IAPS scoring. The results from 

the two class problem are more positive, classifier accuracy reaches 61% and 67% for IAPS 

scoring and Subjective titration respectively. The subjective titration accuracy represents the 

highest classifier accuracy overall for all analyses completed using this physiological data, as 

shown in Figure 7.3.  

 

The observed rise in accuracy can be explained by the reduced feature dimensionality and inherent 

normalisation and significance tests that PCA performs during the analysis. The purpose of PCA is 

to reduce feature dimensions based on those features that are highly correlated and output n number 

of factors (in this case four factors combining eight features) that represent the significant features. 

Consequently, the data provided to the classifier was highly correlated and normalised to reduce 

the spread of individual psychophysiological responses, allowing for better spatial separation 

between the physiological responses to the categories of stimulus. The increased separation 

between the two classes of physiological response is correlated with the observed rise in classifier 
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accuracy. These results were promising for two classes. However, for a problem of three classes, 

the classifier was unable to differentiate with any degree of accuracy between the high, medium 

and low activation state responses. 

 Comparing KNN and other classification algorithms 7.5.1.

The aim was to compare the classification performance of KNN with the RDT and SVM 

classification algorithms on dataset D, which consists of the 3 optimal subjectively rated images for 

the high and low categories of arousal. 

RDTs work by creating a tree structure that maps observations about a value to assumptions about 

that value‘s target class. Within the tree structure, a leaf represents a class label and a branch 

represents a binary decision that denotes the class label. 

 

Table 7-6 compares results from the PCA two class KNN analyses to those from the SVM and 

RDT classifiers.  KNN accuracies compare favourably with RDT for the subjective titration and 

poorly with the IAPS scoring.  

Subjective Titration  KNN 67% 

Subjective Titration SVM 83% 

Subjective Titration  RDT 67% 

IAPS Scoring  KNN 53% 

IAPS Scoring  SVM 81% 

IAPS Scoring  RDT 67% 

Table 7-6 Classifier Accuracy Comparison 

 

The similarity of reported accuracies for KNN and RDT reflects the poor differentiation in 

physiological responses, in that both classifiers require data with a high degree of separation in 

order to function optimally. The complexity of a decision ―tree‖ is directly correlated with the 

amount of spatial separation within the data; less separation is associated with more complexity and 

more classification errors.  

 

Neither KNN nor RDT compare favourably with the SVM classifier which reported a very positive 

83% and 81% accuracy for the two class three optimal images per category data. The type of SVM 

used to analyse this data was a radial basis kernel function (RBF) as this type has been shown to 

handle physiological data more effectively (Rani et al, 2006, Frantzidis et al, 2010). 

 

It can be concluded from the results, that the KNN classifier is sensitive to noise within the 

physiological data. This conclusion parallels the literature on this issue (Petrantonakis & 
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Hadjileontiadis, 2010). Noise, in this context, was implicit in the medium category of images and 

expressed in the participants‘ physiological responses (shown in Figure 7.4) and further conveyed 

in the classification output. Using heart rate features alone, the KNN classifier reported low 

accuracies for both three and two class data. Accuracies scaled to a maximum of 54% using 

subjective titration, barely above that expected by chance. When the classifier is applied to 

electrodermal features, the three class accuracies are again poor. However, a positive increase in 

accuracies was observed, with a maximum accuracy of 62% for two classes using subjective 

titration. This result shows that EDA contributed highest to any significance within the 

physiological data and is consistent with the literature (Rani et al. 2006, Villon & Lisetti 2006, 

Kreibig 2010) and suggests that EDA is a measure sensitive enough for inclusion in future 

experiments. 

 

The results for KNN compare favourably with RDT, in that output accuracy is similar. The RDT is 

better able to differentiate between data categorised using IAPS scoring and subjective titration, 

negating the effect of titration for a 1% difference in classifier accuracy between the two types of 

data categorisation. However, similar to KNN, the effects of noise within the data for RDT 

manifest in low accuracy output and an increase in the complexity of the decision tree. The 

increase in complexity is an important factor when considering the application of classifiers in real-

time environments, in that complexity has a concomitant computational cost in terms of processing 

and storage requirements. 

 

The maximum reported accuracy of 83% for the SVM shows its superiority for classifying 

physiological signals. The SVM overcomes noise within the data by adding support vectors and 

implicitly allowing for some misclassification of data points. The SVM uses, the distance from the 

hyperplane to insert support vectors, which in essence add ―weight‖ to new values (based on the 

distance from the respective support vector) pushing them into the correct class. However, there is 

an implicit trade-off when using SVMs on noisy data, as there is a direct correlation between the 

number of support vectors required for classification and the computational cost required for new 

classifications. The increased cost is acceptable in a laboratory environment, but may present 

problems when applied in a real-time context using embedded computing or mobile devices. 

 Conclusion  7.6.

From the results of the analysis, it is clear that in the context of this study (classifying 

psychophysiological responses to still imagery), the K nearest neighbour classifier is unable to 

differentiate between the three conditions representing a high, medium or low psychophysiological 

activation state with any degree of accuracy. Reporting a maximum 42% accuracy for three classes, 
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when subjective score data titration was used. The high degree of response overlap between the 

psychophysiological responses to the medium category of image and the psychophysiological 

responses for the low and high categories accounted for this lack of classification accuracy. When 

psychophysiological data is presented as a two class problem representing low and high activation 

states, in which the medium category of data is removed, the classifier reports higher accuracies of 

67% for data processed using titration and principal component analysis. Despite its simplicity, 

transparency and low computational requirements, the poor accuracy reported here indicates that 

the KNN classifier is unsuited to real-time applications, where due to environmental factors 

psychophysiological data may contain noise or other artefacts. Similarly, the results from the RDT 

classifier where closely aligned with those of KNN when applied to 2 and 3 class problems, 

indicating that the accuracy of this classifier also suffers when data is less linearly separable, 

resulting in complex decision trees and a high misclassification rate. 

 

The high classification result from the SVM classifier indicates agreement with those results 

reported in the literature (Novaks et al 2012), showing that the SVM is an algorithm capable of 

dealing effectively with data that has less than perfect differentiation. This capability may prove 

useful in future studies and making the SVM worthy of further investigation in both laboratory and 

field contexts. However, the high classification result obtained in this study was obtained through 

lengthy data processing techniques (e.g. z-scoring and subjective titration), and this additional data 

processing indicates that subject-independent classification techniques may be not suitable for real-

time application. Furthermore, the increase in classification accuracy achieved using the subjective 

titration process indicates that subject-independent classification techniques should be investigated 

further. This outcome is in-line with the results reported in the literature review, which highlights 

that subject-dependent classification techniques are to date the most utilised and accurate way to 

classify psychophysiological responses. 
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8. Study Two: Test Retest classification of autonomic 

activation using Support Vector Machine (SVM)  

 Abstract 8.1.

The aim of this study was to investigate cross-session classification of autonomic activation 

wherein a support vector machine classifier is trained on session one and applied to data from 

session two before re-testing with data from a third session. The classification algorithm is applied 

to autonomic responses (heart rate, skin conductance and respiration) to art images (paintings), 

recorded in a laboratory setting using data from 10 subjects. Two classification schemas were 

investigated by training classifiers with either survey or subjective assessment class labels. The 

effects of normalisation and dimension reduction of the physiological data on classification 

performance was examined and compared to physiological data with no data processing using both 

subject independent and subject dependent approaches.  It was shown in this instance that 

autonomic reactivity was greatest during initial exposure to a set of stimuli and that reactivity will 

decline with subsequent exposures. In addition, it was shown that normalising the physiological 

data providing negligible benefit in terms of classification accuracies and that PCA is useful tool 

for identifying uncorrelated features within psychophysiological feature data which can lead to 

greater classification accuracies. Furthermore, the results showed a marked difference when 

comparing classification accuracies between a classifier trained using survey labels versus those 

provided by subjective judgment and that in this instance subject dependent classification provided 

the highest classification accuracies when compared to subject independent classification.  

 Introduction 8.2.

The previous study demonstrated that the support vector machine algorithm produced the best 

performance for classification of autonomic activation when working on a subject-dependent basis. 

One of the goals of this programme of research is to posit a protocol for real-time classification, to 

achieve how classifiers perform in a variety of use contexts needs to be explored, such as 

performance within single sessions or across sessions / days. Consideration must be given to the 

effect of repeated testing within a subject-dependent context. To this end, determining whether a 

classifier built during sessional use on day one can be applied to consecutive sessions (day two, day 

three etc.) is an issue crucial to the real-time operation of a classification engine. The design 

implication is that if the classifier cannot generalise across sessions of use, it will need to be trained 

with each episode of usage. There are two main issues to be considered: (1) the test-retest validity 

of psychophysiological measures i.e. are the measures of physiological variance stable over 
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repeated testing, and (2) the ability of the SVM classification algorithm trained during one session 

to generalise to similar stimuli  at a later point of time.  

 

There is a rich body of research literature in the field of psychophysiology using the picture 

perception methodology to induce psychophysiological responses to imagery in a single 

experimental session (Lang et al, 1999). However, there is a paucity of literature to address the 

issue of test-retest validity of psychophysiological classification using machine learning algorithms. 

Test-retest reliability (stability) is an important trait for both physiological features and classifiers 

i.e. when some element of physiology is measured repeatedly under the same conditions, the 

resulting features should not vary ―too much‖ as this would jeopardise a classifier that was trained 

on an earlier data-set. The test-retest reliability of many physiological parameters can be found on 

the literature e.g. quantitative EEG features (Tomarken et al 1992, Gudmundsson et al 2007); heart 

rate variability and respiration rate (Guijit et al 2007); autonomic nervous system measures (e.g. 

heart rate electrodermal activity) and EMG (electromyography) (Arena et al 1983, et al 1989). This 

second experimental study aims to investigate the test-retest reliability of machine learning 

algorithms by utilising the SVM algorithm as a determinant statistical tool.  The working 

hypothesis of this study is that classification accuracy will remain high if a feature or subsets of 

features of psychophysiological reactivity are stable across sessions. If however, the classifier is 

unable to generalise across different stimuli or different experimental sessions, this could be 

indicative of poor classifier reliability due to the inherent variability in psychophysiological data or 

specificity of the protocol used to generate training data for the machine learning algorithm.  The 

consequence of poor test-retest reliability is that a subject-dependent classifier will not generalise 

to different stimuli or across different experimental sessions and must be trained every time that the 

system is used.  

 

The current experiment represents an advance on the previous study by applying a SVM 

classification algorithm to indices of autonomic activation in a series of two-class categorisation 

problems, i.e. a discrimination of high from low; baseline from high and baseline from low 

activation. These two class problems are based on a model which maps the IAPS (Lang et al., 

1999), image model of arousal / valence space, into one of high or low autonomic physiological 

activation. This experiment uses images selected from the Digital Image Visual Aesthetics Survey 

(DIVAS) (Kreplin, 2014), a survey of paintings that have been classified using subjective data into 

high and low activation.   In addition, we wished to explore issues surrounding the creation of a 

real-time classification engine for use in adaptive systems.  For instance, would it be possible to 

expose participants to standard material in order to train a system for subsequent classification - 

and if so, how often would the system require calibration? 
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The purpose of this experiment is: 

 

 To assess the stability of psychophysiological measures of autonomic activation across 

experimental sessions using the SVM as a discriminant tool 

 Assess classification accuracy by applying a Support Vector Machine (SVM) approach to 

autonomic activation 

 To test machine learning algorithms with cultural heritage material (paintings) 

 To test whether the SVM trained on one dataset can generalise to a second dataset 

 To assess test-retest validity of the SVM by training the algorithm to an image set and 

repeating exposure to the same image set at a later point in time 

 Methods 8.3.

 Participants 8.3.1.

Ten participants 6 female (aged 20-40) took part in the experiment, a mixture of undergraduate and 

postgraduate students at Liverpool John Moores University. All participants provided signed 

consent form and the protocol was approved by the University Research Ethics Committee.  

 Experimental design  8.3.2.

The experiment was designed as a repeated measures, laboratory investigation i.e. participants were 

exposed to high/low activation images from a standard database on three separate occasions, 

investigating the independent variable(s), level of activation with two conditions: High and Low 

activation with the following psychophysiological variables as dependent variable(s): heart Rate 

(HR), respiration (RSP) and skin conductance (SC).   

 Experimental Measures 8.3.3.

The Nexus X Mk II (MindMedia Inc.) sensor hardware was used to collect psychophysiological 

data.  A three-lead (lead 2 configuration) electrode connected to the torso was used to capture an 

ECG signal, which was filtered between 0.5 and 35Hz and sampled at 512Hz.  The skin 

conductance signal was collected from two fingers on the non-dominant hand via the SCL channel 

of the Nexus hardware, providing an unfiltered signal sampled at 512Hz.  An elasticated respiration 

band was worn around the chest by participants to collect respiratory rate and recorded using the 

RSP channel of the Nexus hardware providing an unfiltered signal sampled at 256Hz. Recorded 

data was saved to digital file and exported to AcqKnowledge 4.2 (BIOPAC systems Inc.) for 

processing. 
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 Experimental Material 8.3.4.

The 24 image stimuli used for this experiment were chosen the Digital Image Visual Aesthetics 

Survey (DIVAS) (Kreplin, et al., um) in which 1023 participants gathered from the internet, rated 

relatively unknown contemporary artworks. Participants were asked to sit comfortably (approx. 

distance 1 meter) in front of a large 32‖ television screen and view  images chosen from, after each 

image participants were asked to interact with a keyboard to record a subjective measure of  ―high‖ 

or ―low‖ activation using a simple scale. 

 

To present the stimulus images and record subjective responses an application was developed using 

the E-Prime experiment design environment (PSTinc 2011). Twelve images were selected from the 

database to represent high activation and a second group of twelve used to represent low activation 

these are shown in Tables (8-(1-4)). 
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Image Name Activation Score  

 

afremove 6.08 

magicrealism 5.26 

blood 5.49 

realmofsense 5.24 

watertrap 5.34 

forbiddenspark 5.75 

Table 8-1 Image Set 1, High activation, mean activation score: 5.53, SD 0.301. 

Image Name Activation Score  

 

tincan 2.71 

armchair 3.19 

lavoisier 3.85 

earthsky 3.48 

candle 3.89 

sidestreet 3.85 

Table 8-2 Image Set 1, Low Activation, mean activation score: 3.50, SD 0.451. 

Image Name Activation Score  

 

artistinlove 5.30 

pursuithappiness 5.42 

elytron 5.16 

summerwine 5.55 

repetition 5.26 

prevenit 5.96 

Table 8-3 Image Set 2, High activation, mean activation score: 5.44, SD 0.261. 

Image Name Activation Score  

 

lightafterstorm 3.29 

masquelavoisier 3.88 

swimmer 3.69 

spargel 2.84 

rootsarmchair 3.85 

planetsmos 3.95 

Table 8-4 Image Set 2, Low Activation, mean activation score: 3.58, SD 0.396. 

 

Both high/low activation groups were split into two sets of six and combined to yield: image set 1 

that was presented to participants on the first (training) and third (retest) session and image set 2 
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that was presented on the second test session.  Image set 1 was used to initially train the SVM 

algorithm during the first session, this algorithm was applied to classify a new image set (2) at 

session two and then re-applied to image set 1 during the third session (see Figure 8.1). Thus, a 

classifier trained on image set one and tested using image set 2 creates a test of subject-dependent 

generalisation performance. Whereas, a classifier trained using image set 1 and tested using image 

set 1 separated temporally creates a test of classifier reliability. When combined as an experimental 

protocol these data create a test-retest classification assessment scenario.  

 

 
Figure 8.1 Sequence of testing for SVM experiment (a) and (b) examples of low and high activation 

images (left to right) 

 Procedures 8.3.5.

Instruction about the experimental procedure was given and participants were asked to complete a 

consent form in accordance with the Liverpool John Moores Ethical Committee, and then fitted 

with the sensor hardware.  Participants were asked to sit in a relaxed position approximately half a 

meter in front of a 32 inch high definition screen.  

 

During each test session, a 10 second baseline (focus on fixation image) was collected prior to a 10 

second exposure to each stimulus image.  The images were presented in two blocks (High vs. Low 

Activation) and the order of presentation was counterbalanced across participants.  Participants 

attended the second test session between 24-36 hours after the first session and the same time gap 

was used between the second test and the retest session. 

 

 
Figure 8.2 The stimulus presentation timeline 

Training: Day 1 

(Image set 1) 

Test: Day 2 

(Image set 2) 
Re-test: Day 3 

(Image set 1) 
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Figure 8.2 details the stimulus presentation timeline; after a 5 minute period in which participants 

were allowed to become comfortable wearing the sensor hardware the experimental procedure 

began with the display of two test images after which a fixation image lasting 10 seconds was 

displayed; this was followed immediately by the stimulus image which lasted 10 seconds. After 15 

second reflection period, participants were then asked to provide a rating of high or low activation; 

this was followed by a 15 second relaxation period, to allow participant physiology to return to a 

pre-stimulus baseline state. 

 Support vector machine parameterisation & accuracy estimation 8.3.6.

In this study a subject dependent approach was taken to analysing psychophysiological data to 

determine the recall accuracy of the SVM classifier. The SVM classifier implemented for this study 

was part of the bioinformatics module within Matlab. To evaluate classifier performance, over the 

training data, the sequential minimal optimisation (SMO) (Platt, 1998) and hold-out cross-

validation methods were chosen. To provide the optimal settings for the box constraint and sigma 

values of the SVM radial basis function (RBF) kernel a loose grid search algorithm was developed 

and applied outside of the hold-out cross-validation procedure see Algorithm 1. The hold-out cross-

validation method partitions the data into two parts, by randomly assigning data to either training or 

testing sets, ensuring that the classifier is trained and tested with novel data and is analogous to a 

real world task. This method of cross-validation has been shown to provide a more accurate 

assessment of potential classifier performance in comparison to k-fold cross-validation when 

applied to small datasets, such as those gained from real-time applications (Isaksson, et al, 2008). 
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ALGORITHM 1. Holdout Cross-validation using n by n grid search (loose) 

Input: Physiological data, Class labels, max Box-constraint, max Sigma 

Output: Optimal Box-constraint; Sigma; accuracy 

sigma = 0.1; 

box-constraint = 0.1;  

Counter = 1; 

Create array for box-constraint; sigma and accuracy values 

[optimalValues] ; 

for n to max box-constraint do 

 for n to max sigma do 

  Create two class problem 

  Create a 60/40 split of Physiological Data as training and test data with 

  associated Class labels: [train, test] 

Initialise a performance tracker 

  Get instances of training data: trainIdx = [train]; 

  Get instances of test data: testIdx = [test]; 

  Train SVM using training data, current value of box-constraint and sigma 

Test the SVM model using test instances of training data 

Gather performance statistics 

optimalValues  = [box-constraint, sigma, accuracy] 

  Counter = Counter + 1; 

sigma = sigma + 0.1; 

 end 

 sigma = 0.1 

 box-constraint = box-constraint + 0.1 

 Store performance statistics 

 Optimal = [optimalValues] 

end 

Find optimal settings 

Criteria = max[Optimal(accuracy)] 

Output optimal settings  

Parameters = [box-constraint, sigma, accuracy]   

 

 

Accuracy is determined by the number of true classifications plus the number of true negative 

classifications divided by the number of true plus false negative classifications plus the number of 

true negative classifications in the form of: 
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 Analysis 8.4.

  Feature Extraction  8.4.1.

Prior to commencing classification analysis of the physiological data, features were derived from 

measures of heart rate, skin conductance and respiration for a 10 second stimulus epoch. In total 11 

descriptive features were derived from the psychophysiological measures for each of the stimulus 

events and used as classification vectors for the SVM (see Table 8-5). These features were then 

aggregated into a single observation, such that each observation set creates a unique classifier 

feature vector for each stimulus event, giving 24 observations per session. This training set is then 

used as the basis for classifying new instances of data into its respective class.  

 

Measure Derivative 

Heart Rate Mean Stdev iBi-Mean iBi-Stdev 

Skin Conductance Mean Area Stdev  

Respiration Rate Mean Rate Stdev Amplitude 

Mean 
Amplitude 

Stdev 

Table 8-5 Features derived from physiological recordings 

 

Data from each participant were analysed separately to determine the recall accuracy of the SVM 

classifier when compared against DIVAS survey labels and for individual subjective labels. Labels 

derived from a survey of population rankings benefits from statistical standardisation making them 

efficient when applied in a classification context. However, these labels while statistically balanced 

may not always be representative of an individual‘s subjective judgment. Whereas, individualised 

labels are fully representative of the subjective judgment. However, these labels are labour 

intensive to collect and may be implicitly biased towards an individual‘s preference. Recall 

accuracy in the context of classification is determined by first validating the SVM model over the 

training data to derive the original SVM classification, this SVM model is subsequently tested over 

novel instances of test data. In a laboratory context, the labels associated with the test observations 

are known to the experimenter but unknown to the SVM model, thus recall accuracy is calculated 

by comparing SVM model classification output (in terms of class) and comparing those to the 

known labels, the result is how well the SVM model recalled the class of the observation. 
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A number of analysis trials were prepared in order to determine the effect of various data treatment 

methods on SVM classification accuracy: 

 Trials 1&2 compare raw untreated and normalised physiological data with labels derived 

from survey (effects of normalisation on classification) 

 Trial 3 shows the effect of feature dimension reduction using principle component analysis 

(effects of dimension reduction on classification) using survey derived labels 

 Trial 4 shows the effect of using raw feature data with labels derived from subjective 

ratings from each participant, comparing all features with a feature set with dimensionality 

reduced by PCA (effects of using subjective labels from each individual to train the 

classifier with and without dimension reduction)  

 Trial 5 – presents a generalised model to assess the future viability of the subject dependent 

classification approach compared to subject independent classification accuracy using 

survey derived labels 

  Trial 1 Raw Physiological Feature Analysis using Survey Labels 8.4.2.

This analysis trial consisted of untreated raw feature data, in which the features listed in Table 8-5 

were fused into three data sets; each dataset is representative of one of three experimental sessions, 

these were then split into the three experimental conditions, giving a total of 9 datasets containing 

12 observations, such that each condition (high and low) was compared against ―baseline‖ data 

(using feature data from the fixation image).  This partitioning resulted in two datasets that 

consisted of 6 condition images and 6 fixation images for a two condition discrimination analysis, 

high from baseline and low from baseline. To test high from low, the baseline images were 

removed leaving feature data for 6 High and 6 Low condition images. Reducing the data in this 

way ensured no bias of class labels was introduced during the training of the classification 

algorithm (SVM). For the raw feature data analysis all class labels used within the training phase of 

the algorithm were provided by the survey data of (Kreplin 2014).  
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 Trial 2 Normalised feature analysis using Survey Labels 8.4.3.

This analysis trial was completed to observe the impact of normalisation of the feature data on 

classification accuracy, the results from experiment one showed that a marginal increase in 

accuracy can be achieved by rescaling feature data to be within a standard range (0 to 1). The 

normalisation calculation was applied to columnar values (Novak et al. 2012), such that each 

feature was normalised to a standard score in the form of:  

   
    

 
 

Where Xi is the value to be scored   is the columnar mean of the dataset and   the columnar 

standard deviation. As with the raw feature analysis a total of 9 datasets containing 12 observations 

were created to test from condition discrimination.  

 Trial 3 Dimension reduction using principal component analysis 8.4.4.

Based on findings from study one, which showed improvement in classification accuracies when 

the dimensionality of feature data was reduced. Raw feature data from all participants for day 1 

were combined into one dataset and analysed using principal component analysis. Before 

completing this analysis HR-rate was removed from the dataset due to its direct correlation with 

HR-iBi. This analysis resulted in a total of 3 principal components HR-iBi – mean and standard 

deviation, and SC-level mean and area; SC-level area was added to the data set based on its high 

Eigenvalue (.976), a value of 1 is the generally accepted norm for acceptance within a PCA model. 

All respiration features were removed on the basis of the results from the PCA. Table 8-6 displays 

the amount of variance explained by the principal components. For each experimental session (train, 

test, retest) datasets for classification were constructed for each participant, from their individual 

psychophysiological data to correspond with the features identified by the PCA. 
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Component Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative 

% 

Total % of Variance Cumulative 

% 
1 2.824 31.382 31.382 2.824 31.382 31.382 

2 2.651 29.452 60.834 2.651 29.452 60.834 

3 1.227 13.634 74.468 1.227 13.634 74.468 

4 .967 10.743 85.211    

5 .475 5.278 90.488    

6 .330 3.666 94.155    

7 .242 2.690 96.845    

8 .211 2.348 99.193    

9 .073 .807 100.000    

Table 8-6 Total Variance Explained, Principle component analysis 

 Trial 4 Raw data analysis with associated subjective labels  8.4.5.

The purpose of this trial is to compare the effect of subjective response labels to those provided by 

the image survey on the performance of the classifier. The working hypothesis for this analysis is 

an expectation of greater classification accuracy across experimental sessions, given that the 

subjective label represents a more accurate indicator of the activation state for that particular 

participant in response to each image stimuli. This trial was completed using raw feature data and 

each observation was associated with the subjective response for that observation. Due to the 

nature of subjective ratings, the class labels provided by each participant contain a level of implicit 

class bias, for this reason, only psychophysiological data from the high and low classes of image 

were used to construct two datasets. Using these datasets two analysis runs were completed, firstly 

using raw untreated data and all derived features and secondly using raw untreated data and PCA 

derived features. For each analysis dataset, day 1 visit 1 data was aggregated and used to build the 

SVM classifier. The remaining data from day 2 and 3 were then used as novel data to test the 

generalisation (across session) performance.  

 Results 8.5.

In the following set of tests (trials 1-3), the SVM attempted to classify psychophysiological 

responses to three different conditions: baseline (i.e. viewing a fixation point for 10 sec), low 

activation images and high activation images.  The SVM classified a series of two-class problems 

(a discrimination of baseline from high, baseline from low, high from low activation), which were 

performed on each test session training, test and retest. The final test (trial 4) uses subjective labels 

associated with physiological response data, in one test all data is aggregated (inclusive of baseline 
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condition data); in the second test data from the high and low conditions is used.  The accuracies 

obtained from the classification from each of the trials, is recall accuracy, in that the class labels for 

each observation (classification vector) are known in the experimental context but remain unknown 

to the classifier. Thus, after a correlation test, the performance of the classifier in real-terms can be 

obtained by comparing the how accurately it recalls the label associated with each observation. The 

mean classification recall accuracies and variation of classifier performance for each analysis type 

and all participants are illustrated in the following text. 

  Trial 1 Classification of raw physiological features using survey labels 8.5.1.

Overall, it was anticipated that discriminating high activation from baseline would present highest 

classification accuracies.  In the first analysis trial this is shown to be true (Table 8-7(1)), with the 

training session showing a respectable classification recall accuracy of 88.33% (range 83.33-100%) 

for the high from baseline condition. However, the mean accuracy results from the remaining two 

discrimination conditions, low from baseline and high from low show only a marginal decrease in 

accuracy of 85% (range 66.67-100%) and 83.33% (range 66.67-100%) respectively. Moving to the 

second visit analysis for the same conditions, which tests the ability of the classifier trained on day 

one data to generalise across days and to novel stimuli (using image set 2), we can see a dramatic 

decrease in recall accuracies. The magnitude of the decrease in performance was striking, in this 

instance the high from baseline condition performs best with 53.33% (range 50-66.67%) barely 

above that of chance levels. In the retest analysis accuracies rise slightly over all conditions, again 

the high from baseline condition performs best reporting 53.33% (range 33.33-75%).  

 

Classification Raw Data (1) Normalised Data (2) 

Train Test Retest Train Test Retest 

Baseline vs. High 88.33 53.33 53.33 80.00 54.16 54.17 

Baseline vs. Low  85.00 50.83 52.50 86.67 55.00 60.83 

High vs. Low 83.33 49.17 52.50 88.33 54.17 59.00 

Table 8-7 Trial(s) (1), (2) Average SVM classification recall accuracy over the three test sessions, (raw 

and normalised feature data) n =10. 

 Trial 2 Classification of normalised features using survey labels 8.5.2.

The results presented in Table 8-7(2) show the normalised feature data classification results, similar 

to the raw data analysis, validating the training data shows favourable recall accuracies for all test 

conditions. However, unlike the previous analysis the standout classification performance is in the 

high from low discrimination test with a mean recall accuracy of 88.33% (range 66.67-100%), 

highlighting a possible advantageous effect from data normalisation. This effect proves modest in 

the test and retest classifications however, normalisation providing results of just 54.16% (range 

33.33-66.67%) and 59% (range 33.33-100%) for both test and retest conditions respectively.  
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 Trial 3 Effects of dimension reduction using principal component analysis 8.5.3.

As stated previously, a principal component analysis was completed to reduce the dimensionality 

of the data, consistent with this analysis, hr-rate mean, stdev; scl stdev and all features of 

respiration were removed from the physiological response data. The resulting dataset was then 

analysed in the same fashion as before (raw data vs. normalised), the effect of PCA on classifier 

performance can be seen in Table 8-8(a), (b).  

 

Classification Raw Data (a) Normalised Data (b) 

Train Test Retest Train Test Retest 

Baseline vs. High 76.67 50.83 49.17 80.00 57.50 55.83 

Baseline vs. Low  75.00 57.17 54.17 83.33 52.50 57.50 

High vs. Low 86.67 59.17 45.83 91.67 63.00 51.94 

Table 8-8 Trial 3(a), (b). Average SVM classification recall accuracy over the three test sessions, for 

PCA derived features (raw and normalised) n=10. 

 

Comparing the results from the PCA derived raw feature analysis (Table 8-8(a)) to the previous 

raw feature classification trial (Table 8-7(1)) there can be seen a decrease in the average training 

cross-validation accuracy across the three discrimination tests, and an increase in classifier 

accuracy variance across participants. However, even with the increased variance the results from 

the high from baseline and high from low test conditions remain above chance at 76.67% (range 

66.67-100%), 86.67% (range 66.67-100%) respectively.  Moving to the PCA derived normalised 

dataset (Table 8-8 (b)), the cross-validation of the training data presents with high accuracies and 

moderate inter-participant variance, with the high from low condition scoring 91.67% (range 

66.67-100 %) average recall accuracy. The remaining conditions also score well at 80% (range 

66.67-100%) and 83.33% (range 66.67-100%) for the high and low from baseline conditions 

respectively. However, results from the test and retest classification conditions present a far less 

positive result, similar to those reported in trials 1 and 2 above.  

 Trial 4 Classification of features using subjective ratings  8.5.4.

In this trial the effect of training the SVM classifier using labels provided by the participants during 

the experiment is explored, the first test (Table 8-9(i)) uses all physiological feature data to create 

the classification vector and the second (Table 8-9(ii)) features are drawn from those selected by 

PCA as the classification vector, both tests utilise the subjective ratings taken from participants 

after every image was presented. In both tests, the baseline period measurement data has been 

removed to give a discrimination test of high from low; the rationale for removing the baseline 

comparison data is concerned with the bias implicit to subjective ratings, i.e. there is no guarantee 

of balance within the class labels provided by the participant. This would reduce the amount of data 
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available to the classifier as an equal number of high or low class labels are required to compare 

against the baseline data. Recall accuracies for these tests are then calculated by taking the average 

classification accuracy for all participants with inter-participant variation in classifier performance 

included. However, even with the baseline data removed class bias is still integral to the dataset as 

it is truly representative of the subjective judgments given to the stimulus imagery.  

 

Classification Raw Data (i) Principal Components (ii) 

Train Test Retest Train Test Retest 

High vs. Low 80.43 70.38 70.83 86.27 67.80 72.92 

Table 8-9 Average SVM classification recall accuracy over the three test sessions, for PCA derived 

features (raw and PCA) n=10. 

 

The results obtained from the first test utilising all raw feature data as a classification vector are 

presented in Table 8-9, from this Table 8-9(i) there can be seen a marked improvement in classifier 

recall accuracies over the test and retest conditions in comparison to the standardised material 

results above. In this case the cross-validation of the training data presents with favourable recall 

accuracies of 80.43% (range 60-100%). Surprisingly, a favourable result of 70.38% (range 50-

83.33 %) and 70.83% (50-91.67%) is also observed in both the test and retest conditions 

respectively. However, inter-participant variation is higher in these tests, dropping to chance levels 

for both conditions. 

 

When comparing the principal component analysis derived features and associated subjective 

labels Table 8-9(ii), with those of the previous analysis, classifier mean accuracies remain largely 

unaffected. However, a greater variation between participants can be seen, shown as a decrease in 

classifier stability dropping below chance levels in some cases. In the training condition mean 

accuracies remain well above chance at 86.27% (range 72.73 -100 %). However, as with previous 

analyses, classification accuracies diminish in the test and retest conditions at 67.80% (range 41.67-

91.67%) and 72.92% (54.17-91.67 %) respectively, showing a greater degree of inter-participant 

classification variance. 

  Trial 5 Generalised models  8.5.5.

To determine whether the SVM classifier is able to generalise across individuals and across 

experimental sessions, two tests were completed. These tests aggregate all participant data for each 

visit (a total of 120 observations per condition) and use the full feature set. In the first test the 

classifier is trained using the standardised survey labels and associated psychophysiological 

responses, the second test utilises participant subjective labels as a basis for training the classifier. 

In both cases the classifier is tested using the novel data from visits 2 and 3. The results displayed 
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in Table 8-10 show the classifier recall accuracies for the discrimination tests that use the 

standardised survey labels, as can be seen from this table and indeed from all previous results 

reported here, in the cross validation test of first visit data the classifier presents with high accuracy 

for all three discrimination tests, with the high from low test reporting the highest recall accuracy 

of 81.25%. However, the same sharp decline in classifier recall accuracies reported in previous 

analyses that train the classifier using the standardised survey labels; for the test and retest 

conditions are again present here, with the classifier reporting accuracies barely above chance 

levels for any discrimination test. 

 

Classification Train Test Retest 

High vs. Baseline 75 52.5 55 

Low vs. Baseline 75 55 54.17 

High vs. Low 81.25 54.17 55 

Table 8-10 SVM classification recall accuracy over the three test sessions, datasets derived by 

combining all data from all participants and trained using survey labels 

 

The results reported here indicate, that a SVM classifier trained using subjectively labelled 

psychophysiological data outperforms one trained using standardised survey labeled data, both in 

terms of consistent mean recall accuracy reports across visits and classification variance between 

participants.  

 Discussion  8.6.

One goal of this experimental study was to assess the stability of psychophysiological measures of 

autonomic activation across experimental sessions using the SVM as a determinant tool. The 

results from the 5 classification trials show that in this instance, the features of heart rate (iBi mean 

& standard deviation) and skin conductance (mean and area), show moderate stability as indicators 

of psychophysiological activation across experimental sessions. However, this stability is only 

apparent in tests where subjective labels derived directly from individual participants in situ were 

used to train the SVM classifier. In all trials that involved training the classifier using labels from 

the survey data, the classifier performed poorly in the test and re-test conditions.  Evidence to 

support this position is apparent from high training data crossvalidation accuracies and a sharp 

decline (below chance levels in some instances) in the test and retest conditions e.g. trial 1 baseline 

vs. high; train: 88.33%; test: 53.33%; retest 53.33% (Table 8-7). One could argue for a possible 

methodological issue involving order effects within the data; however image presentation was 

counterbalanced across participants, leaving only the effects of training the SVM classifier using 

different label types, classification model over-fitting, or possible habituation effects on 

psychophysiological reactivity to explain the decrease in classification performance. Overfitting 
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occurs when a classification model begins to fit only to the training data rather than to generalising 

to new data from the presented training examples. However, every effort was taken to prevent 

classifier over-fitting through appropriate parameter tuning and the use of balanced classes. 

Furthermore, the decrease in classification performance post training is most apparent in the 

classification tests involving the training of the classifier using survey labels when compared to the 

test and retest results classifiers trained using subjective labels, possibly highlighting an interaction 

between training label type and psychophysiological habituation as the possible cause. 

 

The results show a marked difference when comparing classification accuracies between a 

classifier trained using survey labels and those provided by subjective judgment. For example, 

trials 1 (survey) and 4 (subjective) which both utilise raw physiological data and all features to 

discriminate high activation from low, we see similar high training data crossvalidation accuracies 

of 83.33% and 80.43%, however it is in the test and retest conditions where the effects become 

more pronounced; the classifier trained using survey labels reporting 49.17% and 52.50% accuracy 

for test and retest conditions respectively; however, the classifier trained using subjective 

judgments shows significant stability reporting 70.38% and 70.83% respectively for the same 

conditions (Table 8-9(i)). This finding highlights the importance of aggregating a good training 

data set for supervised classifiers as noted by Novak (2012). Furthermore, these results indicate that 

training supervised classifiers using psychophysiological data should take into account the 

subjective judgments of the individual user, that is, good training data is derived from valid 

psychological manipulations and one way to ensure that validity is to calibrate the manipulation to 

the individual rather than rely on group statistic as proof of validity.  These results make a strong 

argument that a subject-dependent approach should be employed when calibrating a classifier in 

the context of real-time physiological computing. 

 

The habituation effect represents the decrease in physiological response to stimulus after repeated 

presentations. Recall, that in this repeated measures study, experimental sessions one and two 

(separated by a number of days) used the same image stimuli for presentation.  In an experiment 

presenting pleasant, unpleasant and neutral picture stimuli repeatedly Lang, Bradley & Cuthbert 

(1993), compared the habituation response patterns of heart rate, electrodermal activity and facial 

corrugator muscle responses. They found that for the first (novel) instance of image presentation, 

psychophysiological responses showed a high degree of differentiation, all subsequent trials 

displayed a marked decreased (habituated) response in the indices of psychophysiological variance. 

This finding holds true in the current experimental context and is supported by high classification 

accuracies during the training phase followed by a steep drop in accuracy across test and retest 

conditions for all of the analysis trials completed. However, this effect is only clearly delineated 

from other possible confounds (such as internal SVM mechanics), in the generalised model trials 
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(trial 5) in the instance of classifying high from low activation using subjective labels; which shows 

a moderate habituation response over the full cohort of participants in the accuracy of the classifier 

for these data reporting 81.44% and 75.42% for the training and retest conditions respectively. 

 

There is a supposition in the literature that applying principal component analysis and 

normalisation to feature data, to reduce dimensionality and the scale of the data, should potentially 

provide improved classification performance (Novak 2012; Gudmundsson et al., 2010). This 

improved performance is only partially demonstrated in the results reported here. The effect of 

normalising the data resulted in higher crossvalidation accuracies, but poor test and retest 

accuracies coupled with higher inter participant accuracy variance, mean accuracy 54.16% (range 

33.33-66.67%) and 59% (range 33.33-100%) respectively. When considering the results from the 

classification trials that involve PCA (trial 3), the effect of dimension reduction on the classifier is 

similar; training condition cross-validation accuracies improve in some test conditions, specifically 

in the high from low activation discrimination; the same improvement is not observed in the test or 

retest conditions, however.  

 

Comparing the performance of a classifier trained using the subjective labels, and the full feature 

set with one trained using the PCA derived feature set (trial 4), mean accuracies over all three 

conditions compare favourably. However, there can be seen an increased level of inter-participant 

accuracy variation over the test and retest conditions of 67.80% (range 41.67-91.67%) and 72.92% 

(54.17-91.67 %) respectively for the PCA test compared to 70.38% (range 50-83.33 %) and 

70.83% (50-91.67%) for the raw feature data test. These findings indicate that applying PCA to 

reduce data dimensionality and increase classifier performance shows promise. Care must be taken 

however, to ensure that too much information about the physiological response is not removed. For 

example, a set of features may prove statistically significant in determining proof of ―effect‖, in 

terms of variance between conditions. However, when those features are used to train a classifier 

performance may not be optimal, as the reduced feature set does not represent the actual pattern of 

physiological response to stimuli (classifiers are essentially pattern recognition algorithms); thus, 

the application of PCA to feature data may remove elements of the ―pattern‖ of 

psychophysiological responses and while these elements may be redundant in a statistical sense 

they may prove essential within the classifier as truer representations or patterns of response to 

stimuli. For example, the features of respiratory activity were added back into the feature data for 

comparison with the PCA derived features (trial 4), which acted to stabilise the classifier over 

repeated sessions with the effect of reduced inter-participant variance in classification accuracies. 
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Mean accuracy reports can be seen as indicators of classifier performance when comparing a 

classification methodology across individuals, the results from this study indicate that a truer 

representation of performance would be a measure of accuracy variance; the lower the variance, the 

better the classifier will perform when trained to each individual; this is an issue of methodology 

and parameterisation not computational approach (in terms of type of classifier). The results 

reported here demonstrate, that higher classification accuracies can be achieved by adopting a 

subject-dependent methodology where the vagaries of an individual‘s psychophysiological 

response are integral to the training and use of the classifier, when compared to classifiers built 

with generalised deployment purposes in mind. Classifiers that generalise across populations are 

the ―Gold Standard‖ in the fields of affective and physiological computing; however the purpose of 

a physiological computing system generally, is applied to individuals and specific contexts. 

Therefore, any classification methodology that must adapt to and classify an individual‘s 

psychophysiological responses, would require a calibration period were the classifier is trained at 

runtime, using both the psychophysiological responses and associated subjective judgments before 

deployment in a real-time task context in order to perform optimally.  

 

Overall, the results from this study indicate that training classifiers using a subject-dependent 

approach to classify user interest using measures of autonomic activation can prove successful. 

However, this success is contingent on the aggregation of good training data that is wholly 

reflective of the individual‘s response to stimuli. The modest level of classification accuracy 

reported here may reflect the moderate level of psychological stimulation provided by passive 

viewing of a still image.  

 Conclusion 8.7.

This second experiment focused on classification within the context of psychophysiological 

responses to image material standardised by survey, using the support vector machine algorithm. In 

this study, the image presentation experimental paradigm was extended to include cultural heritage 

material (paintings), and a comparison of classifier accuracy when trained using labels provided by 

internet survey and subjective responses to the same stimuli. The results from this study and those 

of study one clearly indicate that training the SVM classifier using standardised labels meet with 

less than optimum results. However, when the SVM classifier is trained using subjective judgments, 

both the accuracy and the stability of the classifier is improved, and in the current study this 

improvement in classification performance can be observed across the training, test and retest 

conditions.  
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The application of the SVM to data obtained during the retest session was included to assess the 

stability of the algorithm over time.  It may be argued that autonomic reactivity is greatest during 

initial exposure to a set of stimuli and reactivity will decline with subsequent exposure due to 

familiarity, habituation etc.  In the case of these data, classification accuracy fell by approximately 

10% for all comparisons between the training and retest sessions.  This finding suggests that 

habituation towards repeated stimuli may indeed be a major factor, leading to classification 

instability over repeated long interval test sessions with the same stimuli and raises the question of 

when to train the classifier.  

It is apparent from these results that PCA is useful tool for identifying uncorrelated features within 

psychophysiological feature data i.e. those features that will potentially lead to more accurate 

classifications, such as heart rate inter-beat interval mean and standard deviation, skin conductance 

mean and area in this case. However, it can be seen from the results that utilising PCA derived 

features as feature sets for use in training and testing SVM classifiers results in an unstable 

classifier, from which classification accuracies can vary considerably between participants. 

 

It seems clear from the experimental results that classification accuracy tended to decline sharply 

when the SVM was applied to material that was similar but different to the training set.  The 

exception to this finding was the classification of the subjectively labelled data, which showed a 

less dramatic decrease of 10% between the test and retest conditions relative to the training 

condition. With the exception of the training validation tests, in the case of the survey labelled 

datasets, no test performed significantly above chance levels for the test and retest conditions.  Two 

conclusions can be drawn from a comparison between the test and retest sessions: (a) train the 

SVM using material that is representative of test material if possible, and (b) train and apply the 

SVM on the same day as testing to control for intra-individual differences.   
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9. Study 3: A Virtual Heritage installation
2
 

 Abstract 9.1.

The goal of this experimental study was to examine the cultural heritage experience then posit a 

three dimensional psychological model of interest as a potential driver of this experience and 

operationalise the model as multiple measures of psychophysiological activation. A three 

dimensional model of interest consisting of activation, cognition and valence was developed based 

upon a distillation of the four factors of cultural heritage experience described by Pine and Gilmore 

(1998). The interest model was then operationalised using psychophysiological measures to derive 

features of autonomic, cognitive and emotional activation, these data were then used to train and 

test a SVM classifier using both a subject-dependent and subject-independent classification 

methodology. Ten participants a mixture of students and cultural heritage patrons took part in study 

which used genuine cultural heritage material in the form of audio narratives presented in a 

simulated cultural heritage environment. The results show that in this instance the combination of 

psychophysiological interest with the SVM algorithm provided accurate and reliable classification 

using a subject dependent approach.  

  

                                                      
2
 This work was published Karran, A.J., Fairclough, S.H., K Gilleade ―Towards an adaptive cultural heritage experience using 

physiological computing‖ In proceedings of: CHI 2013 "Changing Perspectives", Volume: CHI 2013 Extended Abstracts, April 27, May 

2, 2013, Paris, France 
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 Introduction 9.2.

In the previous studies the results showed that the support vector machine classifier performance 

was good, providing the classifier was trained using data that was generated by the individual. 

However, these studies used material generated for laboratory based studies and focused on 

recording measures of activation as captured by a range of autonomic measures, and therefore this 

chapter will move towards a test case for cultural heritage in terms of setting and stimulus material.  

 

Psychophysiology, physiological computing and machine learning can provide a unique way to 

operationalise the covert psychological experience of media by measuring, analysing and 

classifying psychophysiological responses.  Physiological computing systems monitor the 

physiology of the user and use these data as input to a computing system (Fairclough, 2009).  The 

passive monitoring of spontaneous changes in physiology indicative of cognition, emotion or 

motivation is used to adapt software in real time. These systems are constructed around a 

biocybernetic loop (Fairclough & Gilleade, 2012) that handles the translation of raw physiological 

data into control input at the interface. Passive monitoring of user psychophysiology can be used to 

inform intelligent adaptation, thus permitting software to respond to the context of the user state to 

deliver personalised media. For example, an application designed to deliver media to users within a 

cultural heritage (CH) environment. In this environment the physiological computing system could 

monitor the CH experience in real-time by quantifying and classifying the psychological state of 

the visitor and using these data to personalise the experience by autonomously adapting 

information to provoke a state of interest or detect states reflecting low interest. To perform this act 

of personalisation, the physiological computing system must be sensitive to the psychological 

dimensions that underpin a CH experience. 
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 The cultural heritage experience 9.2.1.

De Rojas and Camarero (2008) described the cultural heritage experience in terms of satisfaction, 

which in turn is determined by positive expectations of the visitor being fulfilled.  The optimal CH 

experience has been defined in conceptual terms as a ―total experience‖ that incorporates aspects of 

leisure, culture and social interaction (Pine & Gilmore, 1998, De Rojas & Camarero, 2008).  There 

are several routes to the creation of memorable experiences.  The visitor may supply a cognitive 

and emotional resonance by actively encoding the visit with their own personal meanings. 

 

The analysis of cultural heritage experience described by Pine and Gilmore (1998) provided a 

deeper level of analysis by describing four crucial drivers of visitor experience: 

 

 entertainment (leisure, narrative) 

 educational (knowledge transfer) 

 aesthetics (pleasure) 

 escapist (immersion) 

 

The first factor refers to capacity of cultural heritage artefacts to engage the visitor in a cognitive 

and affective manner. The educational component of the CH experience represents the process of 

knowledge transfer by which the visitor is informed about artefacts. The aesthetic aspect of cultural 

heritage is perhaps the most difficult to understand because cultural artefacts are capable of 

evoking a range of aesthetic responses.  Previous definitions of aesthetic experience have 

emphasised both information processing and emotional responses (Leder et al, 2004), i.e. a 

cognitive perceptual process accompanied by a dynamic affective state. 

 

The final factor (escapist) is associated with the degree to which the visitor is immersed within a 

mixed reality (i.e. past – present, new technology – ancient artefact).  The concept of immersion is 

often associated with a sense of presence in a three-dimensional virtual reality (VR) (Russell, 

2003); however, the same concept may be applied to mixed reality systems such as augmented 

reality.  The degree of immersion may be characterised within three levels: (1) engagement (lack of 

awareness of time), (2) engrossment (lack of awareness of the real world), and (3) total immersion 

(sense of being within a computerised environment) (Jennett et al, 2008). Immersion has clear 

implications for creating stimulating experiences in CH contexts, particularly using technology to 

engage and engross the visitor in a particular artefact.  
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The experience of a cultural heritage environment, regardless of whether it is a museum or gallery, 

is shaped by exploratory behaviour driven by the interest and curiosity of the visitor. The next 

section details a conceptual model of interest distilled from the study of the CH experience. 

 Conceptual model of interest 9.2.2.

The concept of interest as a psychological entity was described by Berlyne (1960) in terms of 

increased arousal and sensation-seeking, i.e. objects inspire curiosity via novelty and emotional 

conflict.  This concept was expanded by Silvia (2008, 2010) to incorporate a cognitive dimension, 

i.e. interest driven by stimulus complexity.  Both cognitive and emotional facets of interest were 

explored by Hidi and Renninger (2006) who referred to the former as perceptual/representational 

processes, which was accompanied by a sense of positive emotion derived from intellectual 

engagement; they argued that positive emotion occurred even during engagement with negative 

material.  

 

The proposed model of interest distils the four elements of the Pine and Gilmore into two important 

elements, cognitive factors (education and knowledge transfer) and affective influences (aesthetics). 

Cognitive factors are defined here as stimulus features that drive the curiosity of the viewer, such 

as novelty and complexity, whereas affective influences are defined in a two dimensional space, 

similar to the circumplex model of Russell (1980) as activation and valence. It is proposed that 

activation, cognition and valence serve an interactive role in the CH experience with cognitive 

stimulation playing a primary role in the educational aspect and activation and valence capturing 

the emotional and aesthetic aspect of visitor experience. 

 

The model consists of three dimensions of perceptual representational processes, which are mapped 

onto a unidimensional scale ranging from high to low interest: 

 

 Cognition, which captures the novelty and complexity of the stimuli i.e. familiarity vs. 

unexpectedness and intricacy vs. simplicity  

 Activation, which captures how stimulating the stimuli is  

 Valence, to capture the level of positivity or negativity towards the stimuli 

 Operationalising the model 9.2.3.

The cognitive component of interest is identified with activation of the rostral prefrontal cortex i.e. 

Brodmanns area (BA) 10, which has been linked to working memory and attentional control 

(Ramnani & Owen, 2004). BA 10 has also been associated with a wide range of cognitive process, 

ranging from the selection and judgement of stimuli held in short term memory (Petrides 1994) to 



83 

 

reversal learning and stimulus selection (Dobbins et al 2002); of specific import to the interest 

model is the association with the ‗elaboration encoding‘ of information into episodic memory 

(Henson, et al 1999, Wagner, et al 1998), another area of import that overlaps this region of the 

prefrontal cortex is BA 8, a part of the medial pre-frontal cortex, that has been associated with 

processes that involve the motivational or emotional value of incoming information (Tataranni 

1999, Rolls 2000) and a link proposed between asymmetry of frontal alpha activation and 

emotional states (Davidson 1990).  

 

Operationalising the cognitive and valence components of the interest model using this research as 

a template, gives four cortical regions, that can be mapped simply using the international 10-20 

system (Jasper, 1958), for cognitive activation FP1 and FP2 corresponding with BA 10, for valence 

F3 and F4 corresponding with BA 8. These can be seen as potentially encapsulating the capture of 

responses to CH material, equating to the aesthetic and educational elements of the Pine and 

Gilmore (1998) model of CH experience. The measurement of cognition is captured using 

spontaneous measures of electrocortical activation (EEG), it has been shown that there is an inverse 

relationship between the level of alpha activity and brain activation (Goldman et al, 2002), i.e. 

higher alpha activity is associated with reduced brain activation, thus cognition becomes a ratio 

derived from activity in the beta band (12-30Hz), divided by activity in the alpha band (7-11Hz) at 

each site. Capturing valence will be through the level of frontal hemispheric asymmetry expressed 

as a ratio, subtracting right from left hemispheric alpha band activity. It has been hypothesized that 

greater left activation of the prefrontal cortex is associated with positive affect whereas greater 

right side activation is linked to negative affect (Davidson et al, 1990, Henriques & Davidson, 1990, 

Lang, 1995, Silbermann & Weingartner 1996, Davidson, 2004). 

 

The activation component is captured via the level of skin conductance (SCL) and supplemented by 

measuring heart rate (HR); SCL is highly sensitive to sympathetic activity (Boucsein, 1992) and 

HR captures both sympathetic and parasympathetic components of the autonomic nervous system. 

This array of physiological measures is designed to deliver a multidimensional representation of 

the psychological state of interest, to quantify the interest level of an individual in a dynamic 

fashion.  
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 Study Goals 9.2.4.

The aim for this study was to build and assess the performance of a subject-dependent classifier 

trained using psychophysiological responses to audio commentary in a cultural heritage scenario. 

The goal of the classifier was to discriminate between those audio segments where interest was 

high. To achieve this goal, subject-dependent classification was used to examine the impact of 

psychophysiological response data from each dimension of the interest model singly or in 

combination upon classification accuracy.  

   

The study was designed with a threefold purpose:  

1. To measure and classify psychophysiological reactivity in response to cultural heritage 

content presented as image and audio stimuli 

2. To classify the psychophysiological variance as a two condition level of interest (high or 

low) 

3. To evaluate the accuracy of the SVM classifier output when compared to subjective 

response data 

 Methodology 9.3.

 Participants 9.3.1.

Ten participants 8 female (aged 19-75) took part in the experiment, a mixture of 

undergraduate/graduate students at Liverpool John Moores University and patrons of a heritage 

institution. In accordance with the universities lease of ethical approval participants signed a 

consent form and were in good health. 

 Experimental Design 9.3.2.

The experiment was designed as a repeated measures, laboratory investigation i.e. participants were 

exposed to a digital image reproduction of a CH exhibit and audio narrative, investigating the 

independent variable(s), level of interest with two conditions: High and Low interest with 

dependent variable(s), heart Rate (HR), respiration (RSP) skin conductance (SC) and 

electrocortical activation (EEG). 
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 Apparatus and Experimental Measures 9.3.3.

Physiological responses from the autonomic system were measured during experimental sessions, 

using the Electrocardiogram (ECG, sampled from the torso) and SCL (distal phalanges, second and 

forth finger, non-dominant hand) channels of the Mind Media Nexus X Mk II (sampled at 512Hz). 

Four channels of electroencephalographic (EEG) data were recorded, measuring alpha (11-12Hz) 

and beta (13-30Hz) activity, using the Enobio wireless 4-channel sensor (sampled at 250Hz) with 

ground contacts on left ear lobe and inner ear (Starlabs Inc). A Biosemi EEG cap was fitted and 

aligned to ensure sensor placement, electro-conductive gel was added to sites FP1, FP2, F3 and F4 

and electrodes attached. Recorded data was saved to digital file and exported to AcqKnowledge 4.2 

(BIOPAC systems Inc.) for processing. 

 Task definition 9.3.4.

Participants were asked to stand in a relaxed position approximately 2 meters in front of a 3*2 

meter projection screen, giving an image size of approximately 103 inches in width and 78 inches 

in height, giving a 130 inch 4:3 aspect ratio screen. This was followed by the audio-visual 

presentation of the Valencia kitchen, lighting was dimmed throughout the presentation and audio 

was reproduced via a Dolby 5.1 surround sound speaker arrangement, at moderate easy listening 

volume (approx. 30dB). The presentation of the kitchen stimulus was linear and timed to progress 

through the narrative, giving four stories (average 17s in length) consisting of 3 factual elements. 

The audio commentary was divided into four ‗stories‘ consisting of three discrete ‗facts‘. The four 

stories were composed around elements in the still image refreshments, the Lady of the House, the 

ceramics and the dog. To draw the gaze of the viewer specific fragments of the mosaic were 

highlighted (see Figure 9.1). When the presentation was completed each participant was asked to 

rate which two stories were perceived to be the most interesting out of the four that were presented.  
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Figure 9.1 The still image used in the experiment with highlighted sections that were linked to the 

audio 

 

The full text for each story is presented below: 

 

Story 1 –Refreshment? 

1. According to the sources of the time a ―refreshment‖ was a snack or light meal served 

in the afternoon with drinks, sweets and chocolate.  

2. ―Refreshments‖ were served at social functions in upper-class families by the 

household servants. To the right of the Lady you can see a male servant is carrying the 

first dish of the depicted ―refreshment‖.  

3. The dish the servant is holding is called a salver or ―footed dish‖ which is reserved for 

fruit, sweetmeats, marzipans or sorbets.  

Story 2 – The Lady of the House 

1. For the occasion the Lady of the house is wearing a French style dress comprising of: a 

jacket of long tails, a bodice and a petticoat made of a silk cloth.  

2. The dress fabric is decorated with a motif of interlaced flowers and leaves, and the 

cuffs and edges are trimmed with lace. The Lady is also wearing a fichu, or kerchief, 

around her shoulders to compliment her dress.  

3. This fashion style was very popular in Spain at the time and can be seen today in the 

traditional costume of Valencia. 
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Story 3 – The Kitchen 

1. In Valencia, at the end of the 16
th
 century there was a stable production on painted 

tiles which were used in the construction of the Kitchen. 

2. By the 18
th
 century Valencia had become famous for the production of these tiles. 

From the ovens of Valencia‘s factories came tiles decorated in a variety of styles 

including baroque and rococo aesthetics. 

3. The scenes depicted are painted with a trompe l'oeil effect. Today we categorise these 

decorative walls as "traditionalist" 

Story 4 – The Family Pet 

1. To the right of the Lady a dog can be observed trying to attract her attention. 

2. Dogs were commonly kept as pets in upper-class households unlike cats which were 

used as a means of pest control.  

3. The dog‘s collar was used to symbolise the social status of the household, and so the 

more elaborate the collar the more important the family.  

 Procedure 9.3.5.

After receiving instruction about the experimental procedure, participants were asked to complete a 

consent form in accordance with the Liverpool John Moores Ethical Committees lease of ethical 

approval. Participants were then fitted with a wearable pouch to hold the nexus sensor hardware at 

the hip. Electrodes for ECG were placed on the torso. The Biosemi sensor cap was fitted and 

electrodes attached.  Participants were asked to stand in a relaxed position approximately 2 meters 

in front of a 2*3 meter projection screen and lighting was dimmed. The still image of the kitchen 

was displayed onto the projection screen using a ceiling-mounted projector. This was followed by 

the audio-visual presentation of the Valencia kitchen. The presentation of the kitchen stimulus was 

linear and timed to progress through the narrative; giving four stories consisting of 3 factual 

elements (see Figure 9.2). On completion of the presentation each participant was asked to rate 

which two stories were perceived to be the most interesting out of the four that were presented, 

these ratings were subsequently used as class labels within the SVM classifier. 

00:00:00 00:04:16

00:00:07

Introduction

00:00:47

Story 1

00:03:21

Story 3

00:01:38

Story 2

00:02:23

Story 4

 

Figure 9.2 Experimental stimulus timeline 



88 

 

 Analysis 9.4.

EEG (beta/alpha ratio) and autonomic data (mean and standard deviation of IBI (HR) and SCL) 

were extracted from an epoch that equated to each of the three facts (average 17s) related to each 

story.  Based on the subjective assessment of the participant, six of these facts were classified as 

‗high interest‘, i.e. they were associated with the two stories assessed to be of most interest for that 

particular individual.  All feature data was derived from raw signal output using AcqKnowledge 

4.1 (BioPac 2012). 

 Feature Derivatives 9.4.1.

Autonomic measures (activation) of heart rate and skin conductance level (SCL) were collected.  A 

three-lead electrode connected to the chest was used to capture an ECG signal, which was filtered 

between 0.5 and 35Hz.  The SCL signal was filtered at 35Hz only.  Heart rate was captured as the 

mean and standard deviation of the inter-beat interval (IBI); the same descriptive statistics were 

used to represent SCL. 

 

EEG data were collected using four channels.  Dry electrodes (i.e. no gel) were placed at FP1 and 

FP2 on the forehead. Electrodes were also placed at F3 and F4 using a small amount of electro-

conductive gel and an electrode designed to make contact through hair.  The resulting EEG signals 

from all four channels were filtered at 0.05 and 35Hz.  These data were subjected to a power 

spectral density analysis (Hanning window) to yield power in the alpha (8-12Hz) and beta (13-

30Hz) bands.  A ratio measure of cortical activation was obtained (beta/alpha) where a higher 

number is equated with increased activation, i.e. alpha activity = inverse of cortical activation. All 

features were derived from a single stimulus epoch representing a single fact (approx. 17 seconds). 

For Cognition: Where the ratio    is expressed as β (power) divided by α (power) at sites (fp1/fp2) 

and (f3/f4).  

   (
  

 

  
 
) 

For Valence: Where the ratio    is expressed as the natural log of α (power) subtracting right from 

left hemispheric activity at sites (FP2-FP1) and (F4-F3) (Coan & Allen, 2003). 

     (  
 )        

   

 

All features were extracted from a stimulus epoch that equated to the length of each of the three 

facts related to each story, these feature derivatives represent continuous values and not traditional 

change score from baseline, this approach was purposeful to be more representative of a real-time 

environment. 
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Measure Derivative 

Heart Rate iBi-Mean iBi-Stdev 
 

Skin Conductance Mean Stdev 

EEG 
Ratio β/α FP1 Ratio β/α FP2 Ratio β/α F3 Ratio β/α F4 

Ratio α FP1-FP2 Ratio α F3-F4  

Table 9-1 Features derived from physiological recordings 

 Results 9.5.

Prior to commencing classification analysis using the psychophysiological data, features were 

derived from measures of heart-rate, skin conductance and EEG (see Table 9-1). This resulted in a 

total of 10 features for each of the 12 stimulus events. These features were further subdivided into 

the three components interest model, activation 4 features (HR, iBi mean and standard deviation; 

SC, mean and standard deviation); cognition 4 features (beta/alpha power at sites FP1, FP2; F3, 

F4); valence 2 features (alpha power FP2-FP1; F4-F3), such that each set of psychophysiological 

features created a unique classifier feature vector for each of the components.  

 

The analysis was completed in two stages, subject-dependent testing to determine the recall 

accuracy of the SVM classifier for individual participant responses and subject-independent testing 

to test the generalizability of the SVM models across the population of participants. The SVM 

classifier is a supervised pattern recognition algorithm, requiring an n dimensional vector 

(observation) and an associated label (class) for training. In this instance based on the subjective 

assessment of the participant, six facts (two stories) were classified as ‗high interest‘, i.e. they were 

associated with the two stories assessed to be of most interest for that particular participant were 

used as class labels. This training set was then used as the basis for classifying new instances of 

data into its respective class. For this experimental study the SVM implementation within the 

matlab 2012Rb bioinformatics module was used and optimal parameterisation was achieved using 

a loose grid search algorithm. Each feature set was tested using the hold-out cross-validation 

method given in algorithm 1 see chapter 8 pp63. 

 

This approach has a number of advantages, each feature vector is identified as a separate element 

of the model; feature sets can be combined as a fusion of features; and the effect of each feature set 

or fusion of features on classifier class recall can be evaluated for both subject dependent and 

independent SVM models.  Fusion refers to the combination of feature data (Novak et al. 2012) 

into a vector that represents either single or multiple dimensions of the interest model. Table 9-2 

displays the feature sets, subject-dependent classification accuracy, mean recall accuracy and 

stability (as standard deviation) of the classifier for each fusion of features, for each participant and 
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each dimension of the interest model. Feature sets are denoted by: A (activation); C (cognition); 

and V (valence). 

 

Feature(s) P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

Mean 

Recall 

 

Stdev 

A 83 83 83 100 100 83 83 83 100 100 90 8.17 

A , C 83 67 83 100 100 100 100 83 100 100 92 11.18 

A , V 100 83 83 100 100 83 100 100 100 100 95 7.64 

A , C , V 100 83 100 100 100 83 83 83 100 100 93 8.17 

C , V 100 83 83 83 100 67 83 83 83 100 87 10.00 

C 100 83 83 83 67 83 67 83 83 100 83 10.54 

V 100 83 67 83 83 67 67 100 100 100 85 13.84 

Table 9-2 Classification recall accuracy (%) for all participants presented across each source of 

psychophysiological data using holdout crossvalidation 

 

The feature sets (activation, cognition and Valance) were classified alone and in combination, to 

determine which permutation of features provided the best class recall accuracy over all 

participants. The data table indicates that the combination of activation and valence features 

afforded the best mean classification recall accuracy of 95%. Similarly, the combination of 

activation and cognition or all three components together performed well with 92% and 93% 

respectively, showing a negligible difference in recall accuracy between these three feature vectors.  

 

As discussed previously in the second experimental study another way of viewing classifier 

performance and methodological validity is to examine the inter-participant variation within recall 

accuracies, Table 9-2 shows that classifier performance is most stable when the SVM is tasked with 

classifying three feature vector combinations; activation features alone resulted in a 90% 

classification accuracy and low variance (σ 8.17); the combination of activation and valence 95% 

(σ 7.54) and finally the combination of activation, cognition and valence 93% (σ 8.17). These 

results indicate that the classifier is most accurate and stable across individuals in situations where 

multi-dimensional feature data is used when compared with data from single dimensions of the 

interest model.   

 

Moving to the test of generalisation, which assesses the ability of the classifier to generalise from 

the population to new individuals, the results in Figure 9.3 show a sharp decrease in classification 

recall accuracies for all component features and fusions of features that represent the interest model, 

in this generalised SVM model the combinations of activation and cognition, activation cognition 
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and valence report the highest accuracies of 66.1%, while single dimensions of the interest model 

suffer lesser recall accuracy.  

 

Figure 9.3 Mean Classifier Recall Accuracy comparison generalised model vs. subject dependent 

model 

 

It is clear from this figure that in this instance, the subject-dependent classification model provides 

the greatest level of classification accuracy when compared to the generalised model, highlighting 

the strength of the subject-dependent methodological approach.  
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 Discussion  9.6.

In this study a multidimensional psychophysiological model of interest was tested in response to 

audio material in a cultural heritage context, the results showed that the subject-dependent 

classification accuracy of high/low interest was high and inter-participant accuracy variance was 

low for three combinations of feature data. The combination of autonomic (activation) and EEG 

frontal asymmetry (valence) gave the greatest accuracy (95%), followed closely by the feature set 

that combined all three (activation, cognition, valence) features of the interest model (92%). 

However, the classification of autonomic features alone reported a significant 90% accuracy and 

low inter-participant variation. Furthermore, the results showed that the generalised model 

produced a significantly lower level of classification accuracy when compared to the subject-

dependent model. This study represented an evolution of methodological approach taken in the 

previous studies, whereby the derived psychophysiological data was used without the use of any 

processing techniques (such as normalisation).  One of the major problems underlying 

normalisation is that the range of psychophysiological responses may fluctuate significantly due to 

inter-individual differences (personality) and intra-individual variability (e.g. transfer effects, time 

of exposure, time of day). The results show that the subject-dependent classification approach 

taken in this study negates these confounds by embracing these differences as co-factors within the 

classification context, that is, the variability is the pattern of response for that individual and 

classifiers are built to suit the individual.  

 

With respect to the classification results, it was apparent that accuracy was determined by the 

feature and source of psychophysiological responses used to train the SVM i.e. features specific to 

the cognitive, autonomic or valence components of the interest model.  The combination(s) of 

metric (feature) and source (component) yielded positive classification accuracies with low 

variability across individuals. Closer inspection of the classifications accuracies for each individual 

revealed that autonomic activation produced the best accuracy for any single psychophysiological 

dimension of the interest model when compared with cognition and valence. However, when the 

classification variability across all participants is taken into account, the combination of features 

derived from cognition and valence subcomponents delivered highest recall accuracy and lowest 

variance across all permutations.  

  



93 

 

This study was conducted to investigate the suitability of psychophysiological classification as a 

means of adapting information in a cultural heritage context such as a museum. The results are 

positive in this respect, particularly for the subject-dependent model. With regard to the model of 

interest, activation (Table 9-2) was the strongest single predictor of participant interest levels, and 

this could have been due to a high level of stimulation provided by the audio narrative. This finding 

is in line with research from (Bradely et al., 2008, Codispoti et al., 2008, Demaree et al, 2004) who 

concluded that measures of the autonomic nervous system are sensitive to some stimulus types 

such as video and audio-visual presentations. Furthermore, these results are very promising from a 

cultural heritage standpoint, when viewed from the perspective of a museum in which participants 

are stationary but standing naturally while viewing / listening to material about exhibits. 

 

The results reported here support the viability of subject-dependent multidimensional measurement 

and classification of interest using a machine learning classifier, e.g. in the case of classifying the 

independent measures autonomic activation and EEG asymmetry, which when combined provided 

the highest level of classification accuracy and stability across participants. This finding is 

supported in the literature where it is found that subject dependent approaches are generally more 

accurate than subject independent approaches (Novak 2012).  

 

A potential weakness which may have enhanced the classification results was the ―forced choice‖ 

within the subjective assessments of interest, that is, participants were asked to give a binary 

decision of interest or no interest.  In other words participants were required to make a binary 

choice, which may not be a realistic portrayal of a subjective assessment given in a cultural 

heritage environment. Furthermore, the task scenario itself was idiosyncratic in that a participant‘s 

subjective preference was used to train classifiers as opposed to standardised scoring which may 

have favoured a subject dependent approach. 

 

While the generalised model classification results are poor in comparison to subject-dependent 

results, it remains a subject of further study as to whether this is an artifact of small training data set 

size. The developed experimental methodology is geared towards real-time deployment and 

application within a CH context, which necessitates the use of small datasets, in such datasets 

individual differences may be more pronounced with a larger proportion of outliers when compared 

to a training set with a high number of participant data aggregated. In a larger data set the inter-

personal variation may possibly be averaged into appropriate ranges allowing for better 

differentiation between classes of physiological response and thus greater classification accuracies. 

However, aggregating a large dataset for this purpose would require a large n which may not be 

practical for real-time classification where individual preference recognition is the primary goal. 
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These results provide support to a subject-dependent multidimensional modelling approach for 

interest and the use of psychophysiological measures that are relatively independent of one another 

i.e. electrocortical vs. autonomic activity. When taken as a whole, the results from the 

multidimensional classifications are very promising, providing evidence of a possible many to one 

inference between a psychological state of interest and indices of physiological activation. 

However, whether this represents the fact that the measures are indicative of a correctly classified 

state of interest or merely an effect of this experimental study alone requires further research. 

 Conclusion 9.7.

  

This third experimental study focused on psychophysiological classification within the context of a 

virtual cultural heritage exhibit. This study provides a second step towards a framework that 

utilises psychophysiological data and a psychological model of interest for use in a real-time 

physiological adaptive system that could potentially be deployed within cultural heritage 

institutions to adaptively curate information according to a visitor‘s level of interest towards 

artefacts or exhibits.  

 

A three dimensional model of interest consisting of activation, cognition and valence was posited 

based upon a distillation of the four factors of cultural heritage experience described by Pine and 

Gilmore (1998). This interest model was then operationalised using psychophysiological measures 

to derive features of autonomic, cognitive and emotional activation, these data were then used to 

train and test a SVM classifier using both a subject-dependent and subject-independent 

classification methodology. 

 

The results show that in this instance the subject-dependent classification model provided higher 

classification accuracies when compared with the independent model. These high classification 

rates provide some evidence in support of a psychophysiological operationalisation of interest 

within an experimental context.  The combination of psychophysiological interest with the SVM 

algorithm provided accurate and reliable classification using a subject dependent approach. 

Moreover, the results show that it may be possible to utilise the operationalised model of interest in 

the field, using ambulatory sensor hardware and the SVM classification algorithm, to provide the 

basis for a real-time adaptive physiological computing application.   
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10. Study Four: Liverpool FACT Study – Classification of 

multimodal cultural heritage material 

 Abstract 10.1.

This fourth experimental study focused on psychophysiological classification within the context of 

in situ measurement of psychophysiological indices of interest using cultural heritage material 

presented as mixed media (audio, text, images and video). Responses from 8 participants all 

patrons of a cultural heritage institution were recorded and a process pipeline was developed to 

analyse these data and output vectors suitable for classification retrospectively. A framework 

(Interest as Binary or Interest as State (IBIS)) for a biocybernetic loop was proposed to take in 

psychophysiological measurement at one end and output classifications of user interest at the other. 

Two classifier training protocols utilising subjective judgements as classifier training labels were 

proposed and tested, and the results showed that including subjective judgements in the classifier 

training process results in high accuracies and stable classifiers. Furthermore, the results show that 

in this instance combining the features activation and valence of the interest model provided the 

highest classification rates. 
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 Introduction 10.2.

Psychophysiology, physiological computing and machine learning can provide a unique way to 

operationalise the covert psychological experience of cultural heritage material by measuring, 

analysing and classifying psychophysiological responses towards cultural heritage artefacts. If 

classification can be achieved in real-time a physiological computing system could be created 

where information provision such as the type or depth of information is personalised to the 

individual in a form of adaptive curation. For example, content for a museum audio guide could be 

selected based on the listener‘s psychophysiological responses to topical keywords. Whenever the 

listener responded with interest to a topic an adaptive guide pushes new content based on this 

theme. If the listener responded with no interest the system would skip this topic. In this scenario, 

the adaptive system requires only a binary classification of interest to be effective. 

 

To perform this act of personalisation, the physiological computing system must be sensitive to the 

psychological dimensions of interest and to the user‘s subjective judgement of interest. Measuring 

the dimensions of interest may be complicated by the different media used to convey information 

to the user, e.g. voice narration, still images, video and combinations thereof. However, in order to 

create this type of adaptive system, the process of psychophysiological measurement and 

classification must be conceptualised within the context of a working system. Interest is measured 

with respect to three psychological dimensions (activation, valence, cognition) and these 

dimensions may be described as dichotomous (high vs. low, positive vs. negative) consisting of a 

combination of signals from EEG, SCL and ECG which are used to generate features for each 

dimension. Each signal has its own frequency range and minimum time window to provide a 

sensitive response, coupled with distinct stimulus epochs, for example an audio narrative lasting 30 

seconds split into six 5 second windows (to correspond with a SCL response). 

 

Operationalising the interest model within a working biocybernetic loop for cultural heritage 

applications requires a framework that takes these dichotomous physiological inputs and outputs 

binary classification judgements in a format useable in an adaptive systems context. One issue with 

providing inputs for system adaptations is how to turn a multimodal representation of a user 

interest state into binary classification output that is diagnostic of the interest state. Another issue 

concerns the stimuli itself, in that dynamic media (such as audio narrative or video) may cause 

interest levels to fluctuate; one strategy for dealing with this could be to increase the frequency of 

classification to enable the system to respond faster to those dynamic fluctuations. These issues 

increases in complexity when the subjective judgement of user interest is taken into consideration 

when training classifiers, previous studies utilised standardised or ―forced‖ choice labels (i.e. which 

stories were most interesting) to train classifiers. However this method of forcing a binary choice or 
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relative choice on the user may have been restrictive, in that the system is making frequent binary 

judgements and in doing so may distort the nuanced response from the user. This issue could be 

addressed by capturing a more reasoned subjective response from the user before or while the 

system is in use and applying these responses during classifier training.  

 

Classifications can then be output based on how the classifier is trained, such as a singular binary 

output representing an overall interest rating (high or low) or multiple classifications representing 

each component of the interest model which are then combined to project interest upon a scale. 

However, the type and number of classifications would have a significant impact on the adaptation 

model needed to provide the cultural heritage experience which is informed by the rationale of the 

system, such as to provide infotainment or a ―memorable‖ experience. Capturing this more 

reasoned response from the user could be performed by using Likert scales during the classifier 

training process in order to increase a user‘s freedom of expression and capture a more nuanced 

subjective assessment of interest. However, while this captures the user experience more 

effectively, it presents issues for the system which must then decide how to partition these data into 

high and low categories. 

 The Interest as Binary - Interest as State (IBIS) Framework  10.2.1.

The framework developed to integrate the operationalised interest model in a working system is 

shown in Figure 10.1. At its core the framework utilises two classification methods, which receive 

psychophysiological input from three component processors, each component processor represents 

one dimension of the interest model e.g. activation, cognition and valence. When the 

psychophysiological data is classified, the outputs can represent either Interest as Binary (low or 

high) or Interest as a discrete State (low to high). In a real-time context, inputs from the 

physiological sensors are forwarded to the component processors; these processors derive features 

from the physiological data to create feature vectors used within the classifiers; the feature vectors 

are then associated with a training label derived from a user‘s subjective judgement and output to 

the classifier; feature vectors are either truncated into a single ―composite‖ classification vector 

used to classify interest as a binary state, or expanded using a classification from each component 

to create three binary classifications (activation, cognition and valence) which would apply 

propositional logic to create a series of discrete interest states. In this framework the classification 

process can be seen as an interpretive layer in which classifications can be a composite (as a binary 

high or low state) or a component (as in three discrete classifications of high or low states), it is 

upon the adaptation model to utilise these outputs effectively. 

 

The IBIS framework enables two classifications of the interest state to be completed concurrently 

as a composite model (single classification vector) and a component model (multiple classifications, 
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single discrete state). Using a cultural heritage exhibit as an example, psychophysiological signal 

data is captured from a user and processed to produce feature vectors, the exhibit experience 

consists of 20 second narrations and associated video. In this scenario the classifier is built using a 

single composite classification vector which comprises of the psychophysiological measurements 

(activation, cognition and valence) and a training label derived from a subjective rating of 

―interest‖, thus the composite model delivers one classification for each 20 second stimulus 

segment, representing an ―overall‖ interest classification; the component model classifiers are built 

using the psychophysiological measurement of activation, cognition and valence individually with 

a training label derived from a subjective judgement given for each component of the model to 

deliver 3 classifications each 20 second segment to represent interest upon a scale. That is, logic is 

applied to classifier output in the form of IF activation = high AND cognition = high AND valence 

= high THEN interest = high, and so forth.   

  

 

Figure 10.1 The Interest as Binary, Interest as Scale (IBIS) classification framework 

 

In operation within a cultural heritage context psychophysiological measurements are taken from 

sensors attached to the user and then processed into classification vectors, these vectors are used to 

train the classifier which outputs classifications as either a single binary state or multiple 

classifications with a majority vote leading to a discrete interest state ranging from very low to very 

high interest. 
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 Psychophysiological Signal Processing Pipeline:  10.2.2.

For this experimental study, a feature extraction processing pipeline was developed to duplicate the 

methods required in the IBIS framework to import raw signal information from digital storage and 

output feature vectors for use in training and testing the classifiers used to classify the interest state. 

The goal was to remove the reliance on external signal analysis software; previously base methods 

for signal analysis, measure derivatives and feature vector creation were completed using the 

Acqknowledge (Biopac Inc.) signal analysis software and a spread sheet.  

 

Figure 10.2 shows the data flow of pipeline processes used to output classification feature vectors. 

The pipeline starts with a module to import the physiological data; this module draws from two 

pools of digitally stored data which originates from the Nexus © and Enobio © ambulatory sensor 

hardware. These data are then stored internally and the process pipeline forks into two top level 

processes; process autonomic data and process EEG data. The autonomic data processor includes 

filters for both electrocardiogram (ECG) and skin conductance level (SCL) of 0.5 to 35Hz and 

35Hz respectively. The ECG data is then forwarded to a beat detection process to determine the 

inter-beat-interval (iBi) of heart rate and an epoch analysis process to produce the two derivatives, 

mean and standard deviation of iBi. The filtered SCL data is forwarded to the epoch analysis 

module to produce the two derivatives, mean and standard deviation of SCL. The resulting 

derivatives from ECG and SCL are then forwarded to a feature store for eventual output.  

 

The EEG data processor performs filtering (Bandpass 0.05-35Hz) and epoch analysis before 

forwarding the signal data to a Fast Fourier Transform (FFT) which transforms EEG data from 3 

sites of electrocortical activity FP1, FP2, FPz to determine the total amplitude spectra of the signal 

in the alpha (8-12Hz) and beta (13-30Hz) bands.  The data from the FFT are forwarded to two top 

level processes; calculate cognitive activity and calculate valence response and then subject to 

temporal analysis (2s Hanning window over 30s stimulus epoch). From this analysis cognitive 

activity is calculated as beta divided by alpha at sites FP1, FP2, FPz to give the ratio of beta to 

alpha and valence (hemispheric asymmetry) is calculated as natural log alpha (power) subtracting 

FP2 from FP1. The resulting 5 derivatives from the EEG data are then forwarded to the feature 

store and combined with the autonomic derivatives and exported to digital file as feature vectors. 

 

To test the validity of the processing pipeline, three participant data was subject to a correlation test 

with those derived from Acqknowledge (Biopac inc.), the results of this test were positive with a 

0.97 correlation between the data. 
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Figure 10.2 Meta Process Pipeline: feature extraction processing 
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 Study Goals 10.2.3.

This study was conducted to further iterate the subject-dependent classification methodology as a 

means of adapting information in a cultural heritage context such as a museum. The emphasis is 

placed on working with the composite model of interest as defined by the framework and data 

processing pipeline, using multimedia cultural heritage material produced by a partner institution 

presentation and measured with ambulatory physiological sensor hardware to provide a facsimile of 

a real-time sensor environment. The SVM classification algorithm will be applied to the 

classification of psychophysiological data from each dimension of the interest model separately and 

in combination and trained using participants subjective assessment of interest derived from Likert 

scales. 

 

The study was designed with the following goals:  

 

 To replicate the classification of cultural heritage material using the three component 

model of interest from study three 

 To test the interest model functions with an extended range of media (beyond audio 

narrative 

 The explore classification performance using two approaches to labelling cases for 

classification (composite vs. component)  

 Methods 10.3.

 Participants 10.3.1.

16 participants 8 female (aged 19-75) took part in the experiment; all participants were patrons of 

the host heritage institution (FACT). However, only 8 participant data were used for analysis, 4 

participants data was rendered unusable due to sensor failure, and the remainder due to a loss of 

signal fidelity due to ecological factors (such as cosmetics), of the remaining participant population 

5 were male 3 female (aged 20-40). In accordance with the universities lease of ethical approval 

participants signed a consent form and were of good health. 

 Experimental Design 10.3.2.

The experiment was designed as a repeated measures, laboratory study completed at a cultural 

heritage institution i.e. participants were exposed to a series of multimedia presentations from a 

proposed cultural heritage exhibit; the level of interest of participants for the exhibit was generated 

retrospectively from subjective questionnaire data.  
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 Experimental Measures 10.3.3.

Physiological responses from the autonomic system were measured during experimental sessions, 

using the Electrocardiogram (ECG, sampled from the torso) and SCL (distal phalanges, second and 

forth finger, non-dominant hand) channels of the Mind Media Nexus X Mk II (sampled at 512Hz). 

Three channels of electroencephalographic (EEG) data were recorded, measuring alpha (11-12Hz) 

and beta (13-30Hz) activity, using the Enobio wireless 4-channel sensor (sampled at 250Hz) with 

ground contacts on left ear lobe and inner ear (Starlab Inc). A mobile sensor forehead band was 

fitted and nasion aligned to ensure sensor placement at FP1, FP2, FPz and electrodes attached. 

Once extracted, the feature data was imported into Matlab 2012Rb for manipulation and 

classification using the SVM algorithm native to the Matlab environment. 

 Materials 10.3.4.

Stimulus material took the form of multimedia presentations of the work of three living film 

directors (see Table 10-1), the presentation of each directors work lasted 2 minutes and 30 seconds; 

director one, 4 segments; director two, 6 segments; director three, 5 segments, for a total of 15 

segments (7 min 30 sec). The presentations were displayed on a 22‖ computer LCD screen and 

audio was reproduced through stereo speakers at an easy listening volume of 70 dB placed on the 

floor approximately 45‖ in front of the participant. The presentation took the form of a 

documentary narrative, detailing the context, work and style of each director. Each narrative lasted 

30 seconds (see Figure 10.3). After each director presentation was complete, participants were 

asked to provide subjective judgements using a provided questionnaire consisting of three Likert 

scales ranked 1 – 10. These scales aligned to the 3 dimensions of the interest model; Activation: 

―how did this content make your feel‖ tired passive 0 to activated alert 10; Cognition: ―How would 

you rate your level of mental activity (thinking, understanding, effort)‖ low 0 to high 10; and 

Valence: ―how did this content make your feel‖ sad angry 0 to happy cheerful 10.  
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The presentation order of the director narratives was counterbalanced within director; the first 

narrative presented was used to prime participant physiology and not included in the classification 

analysis. 

 

Director Context Work Style 

Krzysztof 

Wodiczko 

Video 

Audio 

Video 

Audio 

 Video 

Audio 

Audio Video 

Audio 

Video 

Audio 

Video 

Audio 

Content Artist work Artist 

work 

Interview Interview Interview Artist 

work 

Length(sec) 30 30 30 30 30 

Ken  

Loach 

Video 

Audio 

Video 

Audio 

Video 

Audio 

Image 

Audio 

Image 

Audio 

Image 

Audio 

Audio Audio 

Content Interview Interview Interview Artist 

work 

Artist 

work 

Other 

films 

On 

realism 

On 

politics 

Length(sec) 30 30 30 30 30 30 

Apichatpong 

Weerasethakul 

Video 

Audio 

Video 

Audio 

 Audio Video 

Audio 

Audio Video 

Audio 

Video 

Audio 

Content Artist work Artist 

work 

Artist 

work 

Artist 

work 

Interview 

Length(sec) 30 30 30 30 30 

Table 10-1 FACT study stimulus material 

 Procedures 10.3.5.

After receiving instruction about the experimental procedure, participants were asked to complete a 

consent form in accordance with the Liverpool John Moores Ethical Committee. Electrodes were 

placed on the torso for ECG and on the distal phalanges of second and forth finger of the non-

dominant hand for SC. Participants were asked to sit comfortably but remain as still as possible, 

approximately half a meter in front of a 22‖, 16:9 aspect computer LCD screen. This was followed 

by the multimedia presentation of the CH material (Figure 10.3), which was counterbalanced and 

timed to progress linearly through one directors‘ material until exhausted. After each director 

presentation, participants were asked to complete a questionnaire comprising self-ratings of 

physiological activation, cognitive engagement and emotional valence. A second screen was 

provided to allow the participant to review the material during the subjective judgement segment to 

allow for recall and assessment.  

00:00:00 00:22:00

00:00:00

Director 1

00:02:59

Questionnaire

00:08:00

Director 2

00:10:47

Questionnaire

00:15:56

Director 3

00:18:35

Questionnaire

 

Figure 10.3 The procedure and stimulus timeline 
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 Analysis 10.4.

EEG (beta/alpha ratio) and autonomic data (mean and standard deviation of IBI (HR) and SCL) 

were extracted from an epoch that equated to 30s for a total of 15 stimulus events. All feature data 

were derived from raw signal output using the data process pipeline3. 

 Feature Extraction 10.4.1.

For this study, 8 features were derived from physiological signals (see Table 10-2), for HR, mean, 

and standard deviation of IBI; for skin conductance level, mean and standard deviation; for EEG-

electrocortical activity was derived from a fast Fourier transform (FFT) of total amplitude spectra 

using a 2 second Hanning window for each stimulus epoch (approx. 30 seconds), where the ratio :x 

is expressed as beta (power 13-30Hz) divided by  alpha (power 8-12Hz) at sites FP1, FP2, FPz. 

Hemispheric asymmetry was measured as the ratio :x expressed as alpha (power) subtracting right 

from left hemispheric activity at sites (FP1-FP2), this results in n 2 second psychophysiological 

responses (observation) stimulus  segment.   

For Cognition: Where the ratio :x  is expressed as β (power) divided by  α (power) at sites (FP1, 

FP2, FPz) for each 2 second window. 

   (
  

 

  
 
) 

For Valence: Where the ratio :x is expressed as the natural log of α (power) subtracting right from 

left hemispheric activity at sites (fp1, fp2) for each 2 second window.  

     (  
 )        

   

 

Component Measure Derivative 

Activation Heart Rate iBi-Mean iBi-Stdev  

Skin Conductance Mean Stdev 

Cognition EEG Ratio β /α FP1 Ratio β /α FP2 Ratio β /α FPz 

Valence Ratio α FP1-FP2 

Table 10-2 Features derived from physiological recordings and the relationship with the interest model 

 

  

                                                      
3 Software code provided under contract by Research Assistant K Gilleade   
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 Classification Trials 10.4.2.

The derived feature data were grouped according to the three dimensions of the interest model, 

such that each feature set created unique feature vectors for training the SVM classifier. Each 

dimension (referred to as a component) of the interest model has corresponding 

psychophysiological measures (Table 10-2) and labels (either as composite ―interest‖ or individual 

component responses). This approach has a number of advantages, each feature vector is identified 

as a separate component of the model; feature sets can be combined as a fusion of features; thus the 

effect of each feature set or fusion of features on classifier class recall can be evaluated. 

 

Accuracy in the context of classification in this study is determined using two methods. The first 

method uses the holdout method (Isaksson, et al, 2008) described in chapter 8 (pp63) for SVM 

parameterisation and cross-validation. This method of cross-validation uses the entire dataset as 

both training and testing data by splitting the data arbitrarily according to criteria; that is, data is 

randomly assigned to either training or testing according to the ―set size‖ determined before 

classification (in this case 60% training, 40% testing). The dataset contains both the classification 

vectors (observations) and its associated label (subjective judgements), testing the SVM model 

involves classifying the remaining (40%) novel instances of test data, to determine accuracy. In a 

laboratory context, the labels (subjective judgements) associated with the test vectors 

(observations) are known to the experimenter but unknown to the SVM model, thus accuracy is 

calculated by comparing SVM model classification output (in terms of class) and with the known 

class labels.  

 

As the current study is based exclusively upon the use of subjective feedback to provide class 

labels for training the classifier, careful consideration must be given to the balance of classes within 

the training data. In this instance these data are implicitly unbalanced due to the nature of 

subjective ratings, thus the commonly used accuracy metric which denotes the ―hit rate‖ 

performance of the classifier; i.e. the percentage of correct classifications, which may be higher if 

classes are biased towards one class or another (in this case high or low) and thus hit rate accuracy 

may not reflect the whole of classifier performance in this instance. To counter any possible class 

bias effects, the second method uses the same holdout crossvalidation method as previously 

described. However, the accuracy output in this case uses the f1 score, the f1-score (Powers 2011) 

measures classification accuracy using the statistics precision and recall. Precision is the ratio of 

true positives (TP) to all predicted positives (TP + FP). Recall is the ratio of true positives to all 

actual positives (TP + FN). The F1 score is achieved by calculating: 
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Or more formally: 

   
    

          
 

Where TP = the number of true positive classifications, FP the number of false positive 

classifications and FN the number of false negative classifications. The classification of the 

psychophysiological data was completed within three trials; each trial uses a unique set of labels 

derived from the questionnaire data to train the SVM classifier.  

 Deriving Binary Labels from Likert Scales 10.4.3.

For this study, participants were asked to complete a questionnaire consisting of three Likert scales 

ranked 1 – 10. These scales aligned with the 3 dimensions (referred to as components) of the 

interest model; Activation: tired passive 0 to activated alert 10; Cognition: low 0 to high 10; 

Valence: sad angry 0 to happy cheerful 10. Two forms of classification labels were derived from 

the questionnaire data to train the classifiers with, one which represents the overall level of 

―interest‖ towards the stimulus material and one that represents the individual component 

responses to the stimulus material, both ranked high or low. To derive the binary class labels for 

―interest‖ used within the classification analysis, the Likert scores for each participant and each 

stimulus segment were normalised in the form of: 

   ∑  (
       

         
)

   

 

Where    is the sum of subjective scores for each dimension of the model (activation, cognition 

and valence) combined, minC and maxC are the minima and maxima of the population of scores 

for each stimulus segment. The result    is a population of normalised scores. To set the threshold 

for class assignation, the median of this population was calculated. Above the median was labelled 

as high interest and below as low interest. Class labels for the individual components, were derived 

by modifying the above method to remove the sum component, thus xi becomes the population of 

scores for each of the components. 

 

The result, in the first instance is a class label (either high or low), that represents a single 

subjective judgement as a composite ―interest‖ score for each stimulus segment within each content 

block (director). In the second instance, the class label (high or low) represents the level of 

response for each component of the interest model individually. These labels are then associated 
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with the psychophysiological data for that stimulus segment and once combined these data become 

the feature vectors used to train and test the classification algorithm. 

 Results 10.5.

 Trial 1 Composite classification using “interest” labels 10.5.1.

In this trial, feature data from each participant is classified individually and classification was 

performed in such a way as to iterate through each combination of components of the interest 

model. The labels used for training the classifiers were calculated from the questionnaire data as 

the total subjective level of ―interest‖. These labels represent the composite of the scores provided 

for each component (activation, cognition and valence) of the interest model which were then 

combined to yield a unidimensional scale of interest, which was divided into binary states of high 

or low. The results displayed in Error! Reference source not found., show that in this instance 

he activation component presents with the highest mean accuracy and stability of accuracy across 

participants (0.87, σ 0.07). The combination of activation with valence and activation and cognition 

features both  present with high mean accuracy (0.81 σ 0.10, 0.82 σ 0.09) respectively, however the 

higher accuracy variance for these two feature classifiers shows these classifiers to be more 

unstable across some individuals. The classifier created to combine activation, cognition and 

valence to reflect the full interest model, reports a mean accuracy of 0.81 77.02% (σ 0.11) the 

higher variation in accuracy for this case is indicative of a classifier that is unstable across 

individuals. It is worth noting however, that the lowest reported accuracies still remain above 

chance levels.   

Participant (Subjective Judgement “interest”) F1-score 

Dimension P1 P2 P3 P4 P5 P6 P7 P8 Avg. F1-Score StDev 

A 0.93 0.83 0.97 0.84 0.91 0.73 0.87 0.89 0.87 0.07 

C 0.74 0.79 0.74 0.69 0.74 0.71 0.83 0.83 0.76 0.05 

V 0.68 0.58 0.59 0.71 0.75 0.70 0.77 0.69 0.68 0.07 

A,C 0.73 0.79 0.97 0.76 0.82 0.68 0.87 0.89 0.81 0.09 

A,V 0.65 0.80 0.99 0.81 0.93 0.73 0.78 0.89 0.82 0.10 

C,V 0.81 0.78 0.64 0.71 0.79 0.63 0.77 0.81 0.74 0.07 

A,C,V 0.67 0.81 0.97 0.69 0.90 0.69 0.85 0.89 0.81 0.11 

Table 10-3 Classification Accuracy (F1-score) across Individuals and Feature Sets (Activation (A), 

Cognition (C), Valence (V), Participant (P) – composite model 
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 Trial 2 Component classification with individual response labels 10.5.2.

In this trial, feature data from each participant is classified individually and a classifier for each 

component of the interest model is trained using labels provided by the individual for each 

component of the interest model individually. These labels were derived from the questionnaire 

data by normalising (range 0 to 1) to the min and max of all the subjective scores given for each 

component (activation, cognition and valence) of the interest model by each individual, for each 

stimulus segment from a particular director. The resulting binary label of high or low for each 

stimulus segment is derived from a unidimensional scale, where a value of 0.5 or above would be a 

labelled high. The results displayed in Table 10-4 show that in this instance the classification of the 

features of activation present with favourable accuracy (mean F1 0.90 σ 0.05), additionally the 

classifier displays a high degree of stability across participants in this instance. The classifiers for 

the features of cognition and valence both report low accuracy when compared to activation of  F1 

0.66 (σ 0.12) and  F1 0.69 (σ 0.16) respectively, both classifiers show low accuracy variance across 

participants however, creating a stable, if inaccurate classifier.    

 

Participant (Subjective Judgement ―component‖) F1-Score 

Dimension P1 P2 P3 P4 P5 P6 P7 P8 Avg. F1-Score StDev 

A 0.89 0.84 0.98 0.91 0.89 0.86 0.97 0.86 0.90 0.05 

C 0.75 0.79 0.56 0.40 0.63 0.66 0.73 0.74 0.66 0.12 

V 0.69 0.49 0.89 0.56 0.85 0.79 0.45 0.78 0.69 0.16 

Table 10-4 Classification Accuracy across Individuals and Feature Sets (Activation (A), Cognition (C), 

Valence (V); Participant (P)) - component model 

 Trial 3 Generalised model using both “composite” and “component” labels 10.5.3.

In this trial all participants‘ data is aggregated to create one large data set, and the classifier is 

trained using either the composite ―interest‖ class label or the ―component‖ specific label. This trial 

tests the classifiers ability to generalise across individuals and represents an estimate of the 

predictive potential of the classifier to generalise to new individuals using this data set. Here again 

the results displayed in Error! Reference source not found. show that the classifier for the 

ctivation component presents with the most favourable mean recall accuracies  F1 0.73 and  F1  0.85 

for classifiers trained using ―interest‖ or ―component‖ class labels respectively. Moving to the 

classification of the cognition and valence components, there can be seen a significant drop in 

accuracy reported for both components, for either labelling schema.  
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Generalised Models 

Dimension Composite Component 

A 0.73 0.85 

C 0.66 0.54 

V 0.59 0.67 

A,C 0.71  

A,V 0.65  

C,V 0.68  

A,V,C 0.70  

Table 10-5 Generalised Classification Performance: Feature Sets (Activation (A), Cognition (C), 

Valence (V)) 

 

Turning to the results from the classification of the components combined, it can be seen that in 

this instance the activation and cognition components combined provided the highest accuracy F1  

0.71, and the classification of full combination of components that make up the interest model 

presented a modest accuracy of F1 0.70 . 

 Discussion 10.6.

The goals of this study set out to replicate the subject-dependent approach taken in study three with 

respect to feature selection and a further test of the validity of the interest model posited in study 

three. Additionally this study set out to explore how a wider range of media types influenced the 

ability of the psychophysiological features to differentiate between states of high or low interest. 

Furthermore, novel methods of generating classifier training labels were explored with respect to 

subjective self-report data from questionnaire. A data analysis process pipeline was developed to 

perform the operations necessary to filter physiological signals and create feature vectors for 

classification from digital storage.  

 

The results indicate that the combination of physiological measures, psychological model of 

interest, derived psychophysiological features and classifier training protocol explored within this 

study provided classification rates of user interest in excess of 80%. This combination of 

psychological model and physiological features proved robust, despite the addition of a wider range 

of media types used as stimulus material. Additionally, these high classification rates support the 

use of the SVM algorithm and hold out training-validation methodology, which is now integral as 

an addition to the developed processing pipeline. Furthermore, classification rates gained from the 

activation component, which is based upon features of the autonomic nervous system, were shown 

to be the highest when classified alone and in combination with other components.    
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The results from the first classification trial which utilised the ―composite‖ interest labels for 

classifier training, showed that the subject-dependant classification of high/low interest was highest 

in four classifiers, activation 0.87 (σ 0.07); activation and valence 0.82 (σ 0.10); activation and 

cognition 0.81 (σ 0.09); activation, cognition and valence 0.81 (σ 0.11). The classifiers built using 

the features of activation alone or activation and valence together proved to be the most stable and 

best performing classifiers, reporting high accuracy and low accuracy variance. A noteworthy 

result within this classification trial is the stability reported by the other classifier variants, all 

report low but above chance classification accuracy, however the stability of these classifiers is 

superlative when compared to the best performing variants; leading to classifiers that exhibit lower 

accuracy but remain stable across participants.  

 

The classification results from trial one using the composite model were broadly equivalent to 

those results from trial two in which the labels used to train the classifier were derived from each 

component of the interest model. In this second trial the activation component reports the highest 

accuracy 0.90 (σ 0.05). The cognitive 0.66 (σ 0) and valence 0.69 (σ 0.16) component classifiers 

perform at a much lower accuracy yet display excellent stability in terms of accuracy variance 

across participants. An interesting finding is the lack of appreciable difference in classifier 

accuracy between trials one and two for component level classifications. This may be due to a high 

correlation between the two forms of label derivation from the subjective survey data, leading to 

almost identical classifier training outcomes for the classifiers built to classify each dimension of 

the interest model using composite and component labels. 

 

The final classification trial tested the ability of the classifier to generalise across individuals, that 

is to utilise all of the participant data and labels (both ―composite‖ and ―component‖) to build a 

classifier that would potentially generalise to new individuals after a single training session, and in 

this respect the classifiers performed poorly compared to subject-dependent classification. 

However, contrary to the expectation that the classifiers would generalise poorly, the classifiers for 

activation (0.73) and activation plus cognition (0.71) report respectable accuracies (i.e. well above 

chance), this result resonates with those gained from the subject-dependant classifications, in that 

the effect of the stimulus content on the psychophysiological state of the participants resulted in a 

strong delineation between the two classes of interest under observation. It remains an issue for 

speculation and investigation, as to whether the user of a system would perceive a difference in the 

quality of interactions with systems that were either 73% or 87% accurate.  The standout result 

from the generalised classification trial comes from an activation classifier trained using the 

―component‖ labels which reported an 85% classification accuracy. However, this result may be 

suspect given that the classification results from the classifiers for cognition and valence both 

report marginally above chance levels of classification accuracy. These divergent classification 
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results between the three components could be due to the nature of the questions asked in 

questionnaire used to gather subjective judgements. Participants may have not understood fully 

what was meant by mental activity or what they felt (in terms of valence), it would appear from the 

results that participants grasped more readily what was meant by activation however.   

 

The results for this study show that in terms of the interest model, the classification of activation 

and the fusion of activation and valence features, classified with highest accuracies, and the effect 

of either labelling schema used for training the classifiers produced only marginal differences in 

mean recall accuracy. For this study, classifiers trained using the ―composite‖ labels derived from 

subjective questionnaire data present with the lowest variation in accuracy across individuals, 

showing that classifiers trained using this methodology are more stable across individuals when 

tasked with classifying indices of autonomic and hemispheric asymmetry activity specific to a state 

of interest. These results remain consistent within the context of the interest model, in that the 

advancement of the measurement protocol, shows a strong association between the measures of 

activation and a user judged level of interest. Furthermore, the results show that it is possible to 

achieve good classification accuracy using a range of ambulatory sensors to measure the interest 

level of the individual in a cultural heritage context.  

  

However, given the small sample size of data collected for this study, these findings must be 

interpreted with caution; in that, the ecological field viability of the sensor technology is not a 

proven factor, and this can be seen as data loss due to sensor failure. This failure may have arisen 

from factors that cannot be controlled for in an ecologically valid real-time environment (such as a 

museum), such as cosmetics, heat and humidity, low battery power (which results in corrupt or 

inaccurate data). These issues can only be addressed by better sensor design and more robust error 

signalling, which would allow power to be topped up or display signal quality degradation. 

Furthermore, data from this study was analysed retrospectively using a process pipeline and the 

effect of analysing and classifying psychophysiological responses using this pipeline in real-time 

remains an issue still to be investigated. 

 

Interpreting these results within the domain of the IBIS classification framework and the wider 

context of a biocybernetic control loop for cultural heritage applications, it can be seen that the 

composite model of classification can reliably output high classification rates for a binary 

classification of high or low interest, and this output has the potential to be used readily within an 

adaptation model. However, the component model classification approach displayed poor results in 

comparison to the composite model, which despite its potential to output a more nuanced 

classification of interest means that this form of classification requires more development in terms 

of classification accuracies and second stage processing before it can be seen as a candidate for 
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inclusion in to a system of this type, an example of this development can be seen in Table 12-4 (pp 

158). An issue of import to the overarching goal of the research in this thesis is one of user 

perception; we have seen from the results of this study that including subjective judgements in the 

training of classifiers can have a large effect on classifier accuracy; how users perceive classifier 

accuracy and system utility or performance represents a research question still to be explored. 

 

 Conclusion  10.7.

This fourth experimental study focused on psychophysiological classification within the context of 

in situ measurement of psychophysiological indices of interest using cultural heritage multimedia 

material. A process pipeline was developed to analyse these data and output vectors suitable for 

classification retrospectively, and a framework for a biocybernetic loop was proposed to take in 

psychophysiological measurement at one end and output classifications of user interest at the other. 

Two classification training protocols that included subjective judgements as part of the classifier 

training process as to provide training labels were proposed and tested, and the results show that 

including subjective judgements in the classifier training process results in high accuracies and 

stable classifiers. Furthermore, the results show that in this instance combining features of 

activation and valence provides the highest classification rates. 
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11. Study 5: classifying the interest state in real-time 

 Abstract 11.1.

This fifth experimental study is focused on the subject dependent classification 

psychophysiological of indices of interest in real-time within the context of a laboratory. A real-

time application framework was developed that integrates the process pipeline developed in study 

four (Chapter 10 pp. 99) and the classification output proposed within the IBIS model. A proof of 

concept application based on this framework was used to capture, measure and classify user 

interest responses to multimedia stimuli in the form of movie trailers; 16 participants, all students 

took part in the study. The aim was to ascertain the nature of the relationship between mathematical 

accuracy as reported by the SVM classifier and the users‘ perception of that accuracy; this was 

achieved using a ―wizard of Oz‖ interaction paradigm. Classifiers were trained subject dependently 

over a series of four builds using subjective feedback to provide classifier class labels. ROC 

analysis revealed that while machine accuracy remains stable across four classifier training builds, 

user perception of that accuracy fluctuates across all four training builds, culminating in a 

perceived accuracy that on average exceeded that of the users‘ initial perception; and that the 

classifier developed high to excellent discriminatory power over the series of training builds, in 

terms of recognition of the users interest preference towards movie trailers.  Furthermore, the 

results showed that it is viable to classify and output indices of user interest as preference in real-

time and that these outputs would be transferable to other elements of a biocybernetic loop. 
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 Introduction 11.2.

Two of the key components of the biocybernetic loop are psychophysiological measurement and 

classification of the psychophysiological response, most work in the field is devoted to the 

identification of psychophysiological measures and offline classification. The implicit assumption 

is that good measures and accurate classifications will deliver biocybernetic adaptations the will 

improve the user experience, and by applying ―knowledge‖ (i.e. psychophysiological and 

subjective responses) from previous interactions biocybernetic systems have the potential to ―learn‖ 

user preferences, styles of work and levels of activity during interaction and task completion. 

Current research concerning the use or potential use of biocybernetic control is mostly concerned 

with verifying that physiological data can be used for controlling or informing the system to make 

changes (see Novak 2012, van de Laar et al. 2013). As a consequence of this focus, assessing the 

interaction between the mathematical accuracy of the system and the perception of that accuracy by 

users‘ remains largely unknown and under researched. 

 

There are a number of issues which can affect the adoption of biocybernetic control in systems. 

such as the use of psychophysiological data which is seen in some cases to be unreliable  input 

when used as the driver of the system (van de Larr et al 2013); the intentionality of the user and the 

measured psychophysiological response; and critically the issue of how to assess the accuracy of 

the system. Assessing system accuracy and performance for biocybernetic control systems, is an 

issue that can be split into two dimensions, one ―hard‖ which assesses the mathematical accuracy 

of the system (in terms of classification accuracy) and the second ―soft‖ which assesses the 

accuracy of the system in terms of user perception of system accuracy, and in this case soft 

accuracy can vary as a function of hard accuracy. However, soft accuracy can also be affected by 

perceptual bias i.e. a lack of trust in the system (Lee and See, 2007), or be linked to the cost of 

errors to the user or in system judgements when operating the system, for example in the case of 

classification within medical applications where misclassifications can affect diagnosis or treatment 

or in the case of entertainment (such as gameplay) where the cost of errors is a small annoyance to 

the user with low impact on the overall operation of the system. 

 

The issue of the unreliability of psychophysiological input as the driver of biocybernetic systems is 

concerned with the detection of artefacts within the measured signal such as, movement, electrical 

noise and biological factors such as inter and intra personal difference. These factors can 

potentially lead to ―interaction noise‖, in which biocybernetically controlled systems offer 

interactions or judgements to users that are not based on context, system rationale or accurate 
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classifications of user states, but rather upon the detection of artefacts as valid inputs (a false 

positive as it were). Interaction noise can be defined as those instances where psychophysiological 

classification is perceived as inaccurate by the user.  It may originate from several sources: (1) 

artifacts or poor sensor connections that distort the psychophysiological signal with consequences 

for classification, (2) non-stationarity and other factors that compromise the integrity of the data 

used to train the classifier, (3) clarity of feedback from the system at the interface, and (4) user 

perceptions of system accuracy. The effects of Inter and intra personal differences have been 

investigated in studies presented in this thesis (see chapter(s) 7, 8 and 9), and the results of these 

studies has shown that the impact of these factors can be decreased significantly through the 

application of a subject-dependent measurement and classification approach within systems, and 

possibly controlled fully if the subject-dependent approach is expanded to include training and 

calibrating a system to the user each time it is used. 

 

Solving issues such as artefact correction is a relatively mechanistic procedure involving various 

forms of signal filtering, artefact separation and removal (see Sweeny et al. 2012). However, 

artefact detection and removal from physiological signals is far from trivial and is currently an 

active area of research. Good system design can alleviate some of the issues that create interaction 

noise, specifically in dealing with the intentionality of the user and the measured 

psychophysiological response and reducing the effects of signal artefacts; in that a well-planned 

system rationale and specific task definition coupled with a psychophysiological model that is both 

sensitive and diagnostic of the user state, within the rationale and task, reduces the scope in which 

the system makes judgements, thus reducing the area of effect in which errors and thus interaction 

noise applies.  

 

Good design can also have a positive effect in how trust is engendered in and towards the system, 

trust has been shown to reduce the ―noise‖ in interactions between the user and the system (Lee and 

See 2004), whereby implicit input is accepted as being synergistic with the user, the system and the 

task.  However, in this instance interaction noise is seen a function of computational efficiency, in 

which the time taken to calibrate a system to the user and the timeliness and frequency of 

classifications are key variables. Thus, a system that requires a long time to calibrate to the user, 

takes a long time to generate classifications and classifies responses infrequently can create 

interaction noise by reducing the synergy that is created between user and system when information 

and interactions are timely. Manipulation of these key variables may prove to be an important 

factor that affects whether a user will accept and trust in a system and its purpose. 
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Determining the accuracy of biocybernetic control and the users perception of system accuracy, has 

clear implications for systems in both the design stage and while in operation. Assessing the 

performance of a system that has been built to calibrate itself to a user while it is in operation is an 

area of investigation in the field of (BCI) brain computer interfaces (van de Larr et al. 2012, Bos et 

al. 2012) where system performance (as classification accuracy) is defined as the amount of control 

perceived by the user during interaction with the system. However, this metric is difficult to 

evaluate as perceived control can vary as a function of classification accuracy and understanding 

this relationship is further complicated by the sheer range of classification accuracy measures 

available, such as, standard mathematical accuracy output (which is a percentage of correct 

interpretations); error rate; precision (the fraction of retrieved instances that are relevant); 

sensitivity (the fraction of relevant instances that are retrieved). However, of the metrics discussed 

here none contain a means of dealing with the bias implicit in systems that use the human operator 

as a means of calibration, in that these methods assume a balanced dataset from which performance 

is assessed (i.e. an equal number of high to low class data). The issue of class bias presents a 

dilemma when attempting to assess the performance of a classifier, in that creating balanced 

training data makes for a mathematically sound classifier. However, in the case of user-dependent 

biocybernetic control, bias represents a human factor. Therefore, even if a system is initially built 

using perfectly balanced data, with time (assuming retraining), when it is re-trained using data 

gathered in the field, bias will eventually creep into the training data. Removing the possibility of 

bias in the case of user-dependent systems to create the perfect training data set, would amount to 

an artificial calibration phase which would no longer represent real human responses but rather a 

stylised version of the ideal human response which could possibly lead to an increase in interaction 

noise. 

 

A different approach to assessing system performance in terms of ―hard‖ and ―soft‖ accuracy and 

one that could provide a more descriptive view that targets the relationship between hard 

mathematical and soft perceived accuracy for systems, is the receiver operator curve (ROC) and 

associated (AUC) area under the curve. The ROC displays the ratio between the true positive rate 

(fraction of true positive classifications) and the false positive rate (fraction of false positive 

classifications). The AUC value of the ROC gives the probability that the target state (e.g. a state of 

high interest) has a higher confidence than a non-target state (Fawcett 2006). In this the 

mathematical accuracy of the system can be mapped against the perceived accuracy of the system, 

highlighting the breakpoints of system accuracy and the corresponding user perceived accuracy rate, 

which could transfer into how likely a user is to accept or trust the system.  
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 Classifying the Interest Response in Real-time  11.3.

 The Interest as Binary - Interest as State (IBIS) Model  11.3.1.

The model developed in experiment 4 has been further iterated to overcome the issues identified 

with the component level classifications; this revised framework is shown in Figure 11.1. At its 

core the model utilises two classification methods, which receive psychophysiological input from 

three component processors, each component processor represents one dimension of the interest 

model e.g. activation, cognition and valence. When the psychophysiological data is classified, the 

outputs can represent either Interest as Binary (low or high) or Interest as a State (low to high). In 

comparison to the previous iteration of the IBIS output from the component processors has been 

truncated into the component model, which now outputs two forms of classification based upon the 

same input in parallel. In an online context, inputs from the physiological sensors are forwarded to 

the component processors; these processors derive features from the physiological data to create 

feature vectors used within the classifiers; the feature vectors are then associated with a training 

label and output to the classifier; feature vectors are either truncated into a single classification 

vector used to classify interest as a binary state, or expanded into multiple classifications (of binary 

states) utilising a majority vote to create a series of discrete interest states. In this model the 

classification process can be viewed as an interpretive layer applied using two time frames, one in 

which the classifier outputs a be binary high or low state infrequently (e.g. at the end of a stimulus 

event) or two as a ratio of classifications of high to low which can be frequent (e.g. a continuous 

updating ratio) or infrequent (e.g. a singular ratio interpretation), it is upon the adaptation model to 

utilise these outputs effectively.  

 

Thus, the IBIS model enables two classifications of the interest state to be completed concurrently 

as a composite model (single classification vector) and a voting model (multiple classifications, 

single discrete state or continuous ―interpretation‖ of the interest state). Using a cultural heritage 

exhibit as an example, psychophysiological signal data is captured from a user and processed to 

produce feature vectors, the exhibit experience consists of 20 second narrations and associated 

video. In this scenario the composite model delivers one classification for each 20 second stimulus 

segment, representing an ―overall‖ interest classification; the voting model delivers n 

classifications each 20 second segment to represent a nuanced state of interest for the stimulus 

segment. That is, a majority vote applied to the classification output forms a ratio of binary high to 

low classifications e.g. 8 high 2 low = highly interested or 5 high 5 low = neutral interest and so 

forth and this can be continuous or singular depending on the needs of the system. 
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Figure 11.1 The revised IBIS Framework 
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 Applied Real-Time Interest Classification Framework (ARTIC)  11.3.2.

For this experimental study, the feature extraction processing pipeline developed for study four 4 

(see chapter 10 of this thesis) is integrated into a software application capable of duplicating the 

methods required in the IBIS model to import raw signal information from digital storage and 

output feature vectors for use in training and testing the classifiers used to classify the interest state. 

The goal of the application is to integrate the methods and techniques for signal processing 

identified previously into a single application capable of calibrating a classifier to a user and then 

classifying that users interest state in real-time. 

 

Due to the complexity of the application framework some elements require extracting from the 

overall structure to highlight how these processes function within the application. Figure 11.2 

shows the function which displays the video content via display unit to the user, and takes the form 

of a video player sub-window, which also acts as the means for gathering and processing the 

subjective responses to each video after it has been viewed. To begin with the video player is 

executed and draws from the pool of video material, after a video is displayed a new window is 

displayed which asks the user of the system for a number of subjective responses. These responses 

are then processed and forwarded to the export module for aggregation and association with the 

psychophysiological responses for that video. The function then iterates until all video content is 

exhausted or the exit function is enabled. 
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Figure 11.2 The display video and subjective feedback process 

 

The data flow for the train classifier process is shown in Figure 11.3.  This module takes the feature 

vector output from the data export process and checks if a classifier needs constructing; if true, a 

check is performed to determine if the current request is for the first build of the classifier.  If this 

condition is satisfied, a further check is performed to determine if two full instances of two classes 

(i.e. two examples of high and low class data) exist within the data. If two examples of high and 

low class data are found, a classifier is built using the ―composite‖ model of interest data (i.e. all 

features from activation, cognition and valence plus the class label). However, if a classifier 

already exists and a new classifier build is required, then data collected for the current stimulus 

period is added to the existing training set and a new classifier is constructed based upon this new 

training set and applied to classify new instances of data. If no new classifier build is required, the 

train classifier process is bypassed and new vectors are classified and output. The requirement to 

check if a classifier build is required functions on the premise that there are 40 videos in the 

stimulus pool, the check works by subtracting the number of videos used to train the classifier 

initially and dividing the remainder by 4; If the remainder cannot be divided by four then the 

application exits; else each time the counter reaches the new build query value, the system 

performs a classifier build, integrating all new physiological feature vectors into the new training 

data set and then classifying fresh instances of data until the stimulus pool is exhausted. 
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Figure 11.3 The train classifier process 

 

The applied real-time interest classification (ARTIC) application framework is shown in Figure 

11.4, this details the data flow of pipeline processes used to output interest classifications. The 

pipeline starts with a module to import the physiological data; this module draws from two 

ambulatory physiological sensor technologies in real-time, the Nexus © (used to capture autonomic 

ECG and SCL responses) and the Enobio © (used to capture EEG responses). These data are then 

buffered internally and the process pipeline forks into two top level processes; process autonomic 

data and process EEG data. The autonomic data processor includes filters for both 

electrocardiogram (ECG) and skin conductance level (SCL) of 0.5 to 35Hz and 35Hz respectively. 

The ECG data is then forwarded to a beat detection process to determine the inter-beat-interval 

(iBi) of heart rate and an epoch analysis process to produce the two derivatives, mean and standard 

deviation of iBi. The filtered SCL data is forwarded to the epoch analysis module to produce the 

two derivatives, mean and standard deviation of SCL. The resulting derivatives from ECG and SCL 

are then forwarded to a feature store for eventual output. 
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Figure 11.4 The Applied Real-Time Interest Classification Framework (ARTIC) 
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The EEG data processor performs filtering (Bandpass 0.05-35Hz) and epoch analysis before 

forwarding the signal data to a Fast Fourier Transform (FFT) which transforms EEG data from 3 

sites of electrocortical activity FP1, FP2, FPz to determine the total amplitude spectra of the signal 

in the alpha (8-12Hz) and beta (13-30Hz) bands.  The data from the FFT are forwarded to two top 

level processes; calculate cognitive activity and calculate valence response and then subject to 

temporal analysis. From this analysis cognitive activity is calculated as beta divided by alpha at 

sites FP1, FP2, FPz to give the ratio of beta to alpha and valence (hemispheric asymmetry) is 

calculated as natural log alpha (power) subtracting FP2 from FP1. The resulting five derivatives 

from the EEG data are then forwarded to the feature store and combined with the autonomic 

derivatives and exported to the train classifier process (detailed in Figure 11.3).  The training of the 

classifier takes place within Matlab using the deployment command line processor for real-time 

data interaction; once trained the same command line processor is used to classify the feature data 

and export the classification output back into ARTIC. To train and ascertain estimated performance 

of the classifier in real-time, the sequential minimal optimisation (Platt, 1998) and hold-out cross-

validation methods are used on the aggregated training data. When coupled with a loose grid search 

algorithm (Algorithm 1 see chapter 8 pp63) these methods form the basis for the training and 

parameterisation of the SVM in real-time, providing the optimal settings for the box constraint and 

sigma values of the SVM radial basis function (RBF) kernel for each new instance of training data 

as the system is used. That is, for each new build of the system, training data is aggregated and 

cross-validated to create a new classifier in real-time, in this instance to prevent over fitting of the 

classifier to the training data and reduce computation time the box constraint and sigma values are 

set to a maximum of 2. 
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 Study Goals 11.4.

This study was conducted to iterate and utilise the subject-dependent classification methodology 

from previous studies in a real-time system. The emphasis is placed on the capture and 

measurement of psychophysiological responses to movie trailers within the composite model of 

interest, as defined by the IBIS framework (see Figure 11.1). The system is designed to apply the 

IBIS framework in a real-time application, and calibrate by creating a classifier and training data 

sets that are tailored to the user, by the user, across a series of four builds during runtime, and 

subsequently provide feedback to the user about the results of classifications, to assess the level of 

agreement with subjective assessments. Thus, to assess the efficacy of the system the research 

goals are: 

 Verify the psychological construct ―interest‖ consisting of three components activation, 

cognition and valence in real-time 

 Determine if classification accuracy improves with additional training data (i.e. does 

―machine learning‖ occur) 

 Determine the effect of additional training data on user perception of the systems accuracy  

 Determine the relationship between system accuracy and user perception of system 

accuracy 

 Methods 11.5.

 Participants 11.5.1.

16 participants 9 female (aged 19-25) took part in the experiment; all participants were from the 

student body at Liverpool John Moores University. However, only 14 participant data were used 

for analysis, 2 participants data was excluded based on an application exit due to not meeting the 

classifier training criteria, that is these participants did not produce the required instances of high 

and low classes over the maximum 12 videos needed to train the system. In accordance with the 

universities lease of ethical approval participants signed a consent form and were of good health. 

 Experimental Design 11.5.2.

The experiment was designed as a repeated measures design (i.e. the same participants took part in 

all build sessions). A ―Wizard of Oz‖ (Kelley 1983) real-time interaction prototyping approach was 

derived in order to provide feedback to the user. An real-time interactive application was used to 

gather and classify participant responses, the application required four build phases to complete the 

experiment, build 1: initial classifier training, requiring responses (both psychophysiological and 

subjective) from at least two of each of the target classes (high and low), once built the classifier 

begins to classify responses; build 2, which aggregates the responses from build 1 and all responses 
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gathered up until that point into a training data set then begins to classify responses based on these 

new training data; build 3, which aggregates the responses from builds 1 and 2 and all responses up 

until that point into a new training data set then begins to classify responses based upon these new 

training data; build 4 which aggregates the responses from the previous 3 builds and all responses 

up until that point to create a final training dataset then begins to classify responses based upon 

these new training data. 

 Experimental measures 11.5.3.

Physiological responses from the autonomic system were measured during experimental sessions, 

using the Electrocardiogram (ECG, sampled from the torso) and SCL (distal phalanges, second and 

forth finger, non-dominant hand) channels of the Mind Media Nexus X Mk II (sampled at 512Hz). 

Three channels of electroencephalographic (EEG) data were recorded, measuring alpha (11-12Hz) 

and beta (13-30Hz) activity, using the Enobio wireless 4-channel sensor (sampled at 250Hz) with 

ground contacts on left ear lobe and inner ear (Starlabs Inc). A mobile sensor forehead band was 

fitted and nasion aligned to ensure sensor placement at FP1, FP2, FPz and electrodes attached. All 

data was collected and analysed in real-time using an application developed using ARTIC 

framework as its basis
4
.  

 Materials 11.5.4.

The stimulus material used for this study took the form of movie video trailers from four genres of 

film: science fiction, comedy, action and horror (see Table 11-1). The presentation of each movie 

trailer lasted 60 seconds; each genre contained 10 trailers. Videos were displayed on a 42‖ LCD 

TV screen at 720p resolution and audio was reproduced through television stereo speakers at an 

easy listening volume of 70 dB. Participants sat at an approximate 1 meter distance directly in front 

of the television and within easy reach of a computer connected mouse. Video display and user 

interactions were captured using a computer with two display outputs; one screen output the video 

and subjective response collection application interface and the other displayed the classifier 

interface. The presentation order of the movie trailers was randomised for each participant, with 

each video presentation drawing from the pool of 40 until all material was exhausted.  

  

                                                      
4
 Application software and code based on the ARTIC framework was provided under EU FP7 project No.270318 (ARtSENSE)  
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Genre Length Number 

Science Fiction 60s 10 

Action 60s 10 

Comedy 60s 10 

Horror 60s 10 

Table 11-1 Genre, length and number of stimulus videos 

 Procedures 11.5.5.

After receiving instruction about the experimental procedure, participants were asked to complete a 

consent form in accordance with the Liverpool John Moores Ethical Committee. Electrodes were 

placed on the torso for ECG and on the distal phalanges of second and forth finger of the non-

dominant hand for SC. Participants were asked to sit comfortably but remain as still as possible, 

approximately 1 meter in front of a 42‖ 16:9 aspect television screen. The experimental procedure 

(see Figure 11.5) was completed in two parts, mode one (build) and mode two (classify). 

During the build mode a video trailer of 60 seconds duration randomly chosen from a pool of 40 

and displayed upon the television. After each video trailer presentation, participants were shown a 

simple interface on screen to interact with, which asked 4 questions and provided buttons for 

answers to each question in the form of: 

 

• Was this content interesting? Yes or No  

• Did you find this content activating? Yes or No 

• Did you find this content mentally engaging? Yes or No  

• Did you feel positive or negative about this content? Positive or Negative 

 

Once feedback was given another interface screen appeared to allow the next video in the sequence 

to be played 

 

• Play next video? Yes or No 

 

This procedure was repeated until (upon the second opaque screen) a message was received by the 

experimenter, that the system was building a classifier. The number of videos used to build the 

classifier was noted by the experimenter, and using a simple division ratio (40 – n) / 4) determined 

the amount of videos needed to complete 4 builds of the classifier within the bounds of the 

experimental material. If too many videos (i.e. >12) were used during the initial build process the 
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application was terminated and the experiment stopped, given that the remaining stimulus material 

would produce unequal classifier build phases (i.e. classifier training data set sizes would be 

unequal between builds making accuracy comparison between builds impossible). If however, the 

ratio of videos left allowed for 4 equal classifier builds the experiment proceeded. 

 

 
Figure 11.5 Experimental “Wizard of Oz” interaction procedure 

 

Mode 2 (classify) involved all of the procedures required in mode 1, however extra stages are 

included to qualify the ―wizard of Oz‖ experimental protocol. In this mode after each video trailer 

is displayed and subjective feedback is given and before the next video is displayed, the 

psychophysiological interest response is classified by the system, this classification is displayed to 

the experimenter on a separate screen opaque to the participant. The classification analysis is then 

told to the participant, who is asked verbally if they agree with the systems classification of their 

interest response, this response is then noted by the experimenter and associated with the systems 

response.  This sequence of events continues until the new build query point is reached, whereupon 

after the previous classification has been given to the participant and noted and before the next 

video trailer is played a system build order is completed to aggregate the classification vectors into 

a new training data set, and the procedure begins again. 
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 Analysis 11.6.

EEG (beta/alpha ratio) and autonomic data (mean and standard deviation of IBI (HR) and SCL) 

were extracted from a 60 second stimulus epoch for a total of 40 stimulus events. All feature data 

were derived from raw signal captured from sensor hardware in real-time and subject to filtering 

and epoch analysis (see Figure 11.4). For autonomic measures features were captured using a 12 

second data window with a moving window of 6 seconds (from which averages are taken). For 

EEG, features are captured using a 12 second data with moving 6 second window (from which 

power transformations are taken). This approach constructs a feature vector every 6 seconds 

resulting in 10 -1 (due to the overlapping data 12 second data windows) per sixty seconds stimulus 

epoch. This gives a potential of 360 – (n * 9) classification vectors, where n equals the total 

number of vectors used to train the classifier initially. 

 Feature Extraction 11.6.1.

For this study, 8 features were derived from physiological signals, for heart rate - mean, and 

standard deviation of IBI; for skin conductance level, mean and standard deviation; EEG features 

were derived from a fast Fourier transform (FFT) of total amplitude spectra using a 12 second 

feature window with an overlapping Hanning window of 1 second to construct a moving average 

every 6 seconds, where the ratio :x is expressed as beta (power 13-30Hz) divided by  alpha (power 

8-12Hz) at sites FP1, FP2, FPz. Hemispheric asymmetry was measured as the ratio :x expressed as 

alpha (power) subtracting right from left hemispheric activity at sites (FP1-FP2), this results in ten, 

six second psychophysiological responses (observation) per stimulus  segment.  

  

For Cognition: Where the ratio :x  is expressed as β (power) divided by  α (power) at sites (FP1, 

FP2, FPz). 

   (
  

 

  
 
) 

 

For Valence: Where the ratio :x is expressed as the natural log of α (power) subtracting right from 

left hemispheric activity at sites (fp1, fp2).  

     (  
 )        
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The table of features used for this study is shown in Table 11-2 

 

Component Measure Derivative 

Activation Heart Rate iBi-Mean iBi-Stdev  

Skin Conductance Mean Stdev 

Cognition EEG Ratio β /α 

FP1 

Ratio β /α 

FP2 

Ratio β /α 

FPz Valence Ratio α FP1-FP2 

Table 11-2 Features derived from physiological recordings and the relationship with the interest model 

 Results 11.7.

Across all participants it took on average 7 videos (min 4, max 12) to calibrate the classifier to the 

participant (build 1), classifier builds took on average 3.75 seconds and were completed in parallel 

with playing a video trailer, recording and analysing physiological signals. Each build used an 

average of 8 videos (min 7, max 9) worth of data per build (see Table 11-3). A classification was 

output continuously every 6 seconds and took on average 0.175s to complete depending on system 

load, these classifications were visualised within the application interface as a voting ratio (interest 

as state) but final judgement was output as a hard binary classification (interest as binary). 

 

 Avg Max Min 

Build 1 7 12 4 

Build 2 8 9 7 

Build 3 8 9 7 

Build 4 8 9 7 

Table 11-3 Build statistics average number of videos used per build 

The first part of the results analysis consists of receiver operating characteristic curves and the 

associated area under the curve measure, the ROC displays the ratio between the true positive rate 

(fraction of true positive classifications) and the false positive rate (fraction of false positive 

classifications) while the AUC value of the ROC gives the probability that the target state (e.g. a 

state of high interest) has a higher confidence than a non-target state given the null hypotheses (a 

value of 0.5). If the curve follows the diagonal, the null hypothesis is met then the tested classifier 

is little better than chance. In sum, ROC analysis provides information about the diagnosticity of a 

classifier: the closer the apex of the curve toward the upper left corner, the greater the 

discriminatory ability of the classifier (i.e., the true-positive rate is high and the false-positive [1 - 

Specificity] rate is low) and this is value is captured quantitatively by the AUC measure.  
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The confidence of AUC values for a classifiers ability to discriminate are: 

 

• .5 to .6 : no usefulness  

• .6 to.7  : poor to moderate  

• .7 to .8 : moderate to good 

• .8 to .9 : good to excellent  

• .9 to 1  : excellent 

 

Figure 11.6 ROC Build 1 

 

Figure 11.7 ROC Build 2 

Area Under the Curve 

Area 

Std. 

Errora 

Asymptotic 

Sig.b 

Lower 

Bound 

Upper 

Bound 

.828 .048 .000 .735 .922 
 

Area Under the Curve 

Area 

Std. 

Errora 

Asymptotic 

Sig.b 

Lower 

Bound 

Upper 

Bound 

.686 .073 .013 .544 .828 
 

 

The ROC curves displayed in Figure(s) Figure 11.6 – Figure 11.9 represent the accuracy of the 

system as perceived by the users of the system as it is trained over four training sessions (builds). 

As can be seen from Figure 11.6 & Figure 11.7, during the calibration phase (build 1) the AUC 

value of .828 shows a classifier with good to high discriminatory power for most participants, the 

values for (LB) lower bound .735 and (UB) upper bound .922 (which can be interpreted as 

classifier stability) show some variation, however this variation is not significant (AS =.000). The 

ROC plot for build two shows a sharp decline in perceived classifier discriminatory performance, 

and this is reflected in a low AUC value of .686, the results also show a significant (AS=.013) loss 

of classifier stability (LB .544, UB .828), placing this classifier in the category of poor to moderate 

usefulness with classification in some cases barely above chance.  
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Figure 11.8 ROC Build 3 

 

Figure 11.9 ROC Build 4 

Area Under the Curve 

Area 

Std. 

Errora 

Asymptotic 

Sig.b 

Lower 

Bound 

Upper 

Bound 

.801 .058 .000 .688 .915 
 

Area Under the Curve 

Area 

Std. 

Errora 

Asymptotic 

Sig.b 

Lower 

Bound 

Upper 

Bound 

.819 .054 .000 .714 .924 
 

 

For build three (Figure 11.8), the ROC plot shows (AUC .801) that the perceived accuracy of the 

system increases compared to build two, and variance decreases to non-significant levels (LB .688, 

UB .915. AS =.000). Similarly, perceived system accuracy for build four (Figure 11.9) also 

increase with an AUC of .819 (LB .714, UB .924 AS=.000) showing a significant decrease in 

variability.  

 

The plots shown in Figure(s) 11.10 and 11.11 highlight these findings more clearly and clearly 

portray the user perception of system accuracy decreasing sharply after build one before building to 

a peak at build four, this peak in perceived accuracy surpasses that observed for build 1. Comparing 

these plots with the mean system accuracy output (Figure 11.10) it can be seen that while user 

perception of system accuracy varies across builds, reported mean system accuracy remains stable 

within a 3% variation across the four classifier builds.  
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Figure 11.10 Mean system accuracy per build 

 
Figure 11.11 Mean perceived accuracy per 

build 

 

In order to determine if the variance between classifier build was of statistical significance a 

repeated measures ANOVA was completed. The results from this analysis showed no significant 

difference between classifier builds [F(3,11)=0.86, p=0.49] between participants for system 

reported accuracy (classifier trained accuracy). For user perceived accuracy the trend of accuracy 

over each build fell just outside significance [F(3,11)=3.15, p=0.069].  Post-hoc testing revealed a 

decline between builds 1 and 2 (Figure 11.11). 

 

 
Figure 11.12 Trend of true positive 

classifications 

 
Figure 11.13 Trend of false positive 

classifications 

 

Looking closer at system versus perceived classification output accuracies, which represent the 

system in operation; the ANOVA results show no statistically significant variance in true positive 

[F(2,12)=0.565, p=0.583)] and false positive [F(2,12)=1.84, p=0.200] classifications between 

builds. However, when the trend for true positive classifications (Figure 11.12) is examined, it can 

be seen that the number of true positive classifications increased with each classifier build. The 

trend for the number of false positive classifications (Figure 11.13) shows that the classifier is 
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stable for builds one and two, with a brief but not statistically significant increase in the number of 

false positive classifications during operation in build three before reducing in number in build four. 

 

 
Figure 11.14 Trend of true negative 

classifications 

 
Figure 11.15 Trend of false negative 

classifications 

 

The ANOVA models for true negative [F(2,12)=1.86, p=0.20] and false negative [F(2,12)=0.21, 

p=0.81] classifications revealed no significant variation between the four builds. The trends (Figure 

11.14 and Figure 11.15) however, show that in the case of true negative classification these tended 

to remain stable for builds one and two then decline sharply for build three before increasing 

slightly for build four. Similarly, in the case of false negatives, erroneous classifications remain 

stable during builds one and two, before decreasing sharply for build three and decreasing further 

for build four. 

 Discussion 11.8.

Overall, the results from the ROC and ANOVA analysis demonstrate that the ARTIC system 

displayed good to excellent discrimination power (i.e. classifying interest as high or low) with no 

statistically significant difference in system level outputs (in terms of raw accuracy output) 

between the four build phases. The classification trend plots also support this conclusion, showing 

that true positive classifications increased continuously after build two and false positive and false 

negative classifications decreased; this pattern increased the discriminatory potential of the 

classifier with each successive build. The decline of true negatives corresponds to the increase of 

true positives due to user preference, which is neither stable nor unbiased. From the standpoint of 

users, the system was perceived to be accurate in determining their interest state during build one, 

and then during build two users perceived accuracy to fall; however, perceived accuracy recovered 

and slightly exceeded build one during the fourth and final build. 
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With respect to mathematical accuracy (Figure 11.10) values peaked at build two, which is in 

contrast to the decrease in perceived system accuracy by users. This is possibly an effect of the 

increase in size of the training dataset, with an average of 8 videos giving 72 new feature vectors 

(plus initial training data) and not implicitly due to a more accurate representation of the user 

within the training data, indeed this can be seen in the results of the ANOVA test for perceived 

system accuracy (Figure 11.11) which decreased during build two. The increase in reported system 

accuracy and decrease in perceived system accuracy may be associated with the way in which the 

classifier is trained.  The classifier crossvalidates internally over the training data to determine 

optimal parameters for classification, such that the bias of subjective responses during build one is 

inherently smaller than at build two. This factor has the effect of rendering the system accurate for 

build one (both objectively and subjectively) and less accurate for build 2 (subjectively) while 

objectively becoming more accurate (due to a larger training dataset); successive builds however 

become more ―balanced‖ to the individual as the pattern of the bias becomes more explicit even 

though classifier accuracies remain stable on average. It should be noted that, even when perceived 

accuracies dropped significantly during operation at build two, classification accuracies remain 

above chance, a factor illustrated in the ROC analysis results (AUC 68.6)  perceived accuracy 

mean (74.15). 

 

The inclination towards greater classification stability and accuracy through the aggregation of 

more balanced training data across each successive build is highlighted in the following table 

(Table 11-4) , which shows the comparison between the average perceived accuracy of the system 

by the user and the average systems (F1 score) accuracy output. 

 

 
Perceived Accuracy F1 score 

Build 1 0.85 0.89 

Build 2 0.75 0.82 

Build 3 0.79 0.86 

Build 4 0.85 0.90 

Table 11-4 Effects of classifier retraining on average perceived accuracy compared to system accuracy 

output 

 

The trend in user perceptions of system accuracy; that system accuracy changed from build to build 

could be explained as a purely human factor, in that subjective judgements and agreement changed 

negatively even in the face of no statistically significant difference in reported classifier accuracy. 

Comparing the mean classifier accuracies between builds one and two (76.9% and 79.4%) there 

can be seen a moderate increase in classifier accuracy, which one would expect from a classifier 

receiving more data from which to train and make judgements from. However, it was noted in the 

experiment that a number of participants exclaimed negatively upon hearing system judgements 



135 

 

during system operation after build two, for example, system judgement: ―system indicates you 

were interested in this content‖, user: ―I was interested, but I do not like sci-fi movies‖, thus the 

feedback provided to train the system in this case and other cases where user preference is 

challenged is negative. This negative feedback to system judgements transforms into positive 

training for the classifier however, which may help to explain how user perception of system 

accuracy steadily increased after build two as system judgements thereafter are based on user 

preferences, making classifications of user interest transpose into judgements of preference (using 

interest as an index). 

 

Another possible explanation for the trend in perceived accuracy of the system is the engendering 

of trust in the system and its judgements i.e. users over the course of the experiment time may have 

come to recognise that the system was responding to the feedback they provided, as system 

judgements began to mirror user preference. However, this could also be an effect of the 

experimental fatigue as the novelty of the system wore off over time, leading to users agreeing with 

system judgements instead of stating their true preferences. As with all experiments involving 

subjective feedback this effect is hard to control for. However, this experimental study could be 

repeated with the addition of rest breaks to control for bias due to fatigue. 

 

There were some methodological issues which may have had an impact on the experimental results, 

the system was initially planned as a fully automated classification engine, which would output 

system judgements and receive feedback from users without the assistance of the experimenter. 

Thus, the ―wizard of Oz‖ protocol may have affected user feedback to system judgements given 

that human to machine to human interaction presents a different dynamic from pure human to 

machine interactions. The effects from this form of interaction are undetermined at this time. 

Another issue concerns the use of binary feedback input, as this represents a ―forced‖ choice and 

not a nuanced subjective response, reducing the fidelity of the response. This could be alleviated 

somewhat through the expression of the majority vote as an interest scale or number of discrete 

interest states.  

 

A factor unreported here and a possibility for further research is the classification outputs, 

classifications were output as infrequent (i.e. once per stimulus segment) binary classifications 

(high or low interest). However, the developed application (in accordance with the IBIS model) had 

the capacity to display classification output using both forms of classification judgement i.e. 

interest as binary (as used) and interest as state (unused). That is, the majority vote system used to 

output the binary classification was underutilised and the addition of some simple propositional 

logic to interpret the votes as a ratio, has the potential to output a number of discrete states which 

may be more reflective of a user state of interest. 
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Another factor that may have had an effect on system function, training and output is one of bias. 

Bias in classification problems presents serious implications for training classifiers, in that 

classifiers function optimally with an equal number of vectors for each class type. However, for 

this study, bias is not only uncontrolled for, it is embraced as part of the classifier training 

methodology. Here classifiers are trained for the individual by individual from the ground up, in 

that classification vectors are constructed from data captured from the individual, during the task 

context and then associated with a class label by the individual. Therefore, class bias was an 

implicit and necessary element in training a classifier for the purpose of determining a level of 

interest in the stimulus material. This methodology however, makes the developed system context 

dependant and not generalisable to other tasks; it should be noted that the stimulus material may 

also have played a part in increasing class bias, in that movie trailers are designed to engender 

interest in the viewer regardless of preference and hence bias responses towards the high interest 

category. 

 

This study demonstrated that additional data used to train classifiers has the effect of stabilising 

classification accuracies rather than significantly increasing classification accuracies. However, the 

effect of additional training data (as provided by users of the system) upon the perceived accuracy 

of the system, increased over time exceeding initial perceptions. The relationship between machine 

level system accuracy and perceived accuracy of the system is a complex one that suggests that; at 

least in the context of this study; that if systems are built with good to excellent mathematical 

accuracy, the perception of a systems accuracy by the user and thus acceptance of the system will 

increase, providing that accuracy reflects a user‘s preference. 
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 Conclusion 11.9.

This fifth experimental study focused on the subject dependent classification psychophysiological 

of indices of interest in real-time within the context of a laboratory. A real-time application 

framework was developed to integrate both the process pipeline developed in study four (chapter 

10 pp. 98) and the classification output proposed within the revised IBIS model. A proof of concept 

application based on this framework was used to capture, measure and classify user interest 

responses to multimedia stimuli in the form of movie trailers; 16 participants took part in the study, 

which further aimed to ascertain the nature of the relationship between mathematical accuracy as 

reported by the classifier and the users perception of that accuracy. The results indicated that while 

machine accuracy remained stable across four classifier training builds, user perception of that 

accuracy fluctuated across all four training builds, culminating in a perceived accuracy that on 

average exceeded that of the users‘ initial perception.  Furthermore, the results showed that it is 

viable to classify and output indices of user interest as preference in real-time and that these outputs 

would be transferable to other elements of a biocybernetic loop. 
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12. Discussion  

The goal of this thesis was to develop a biocybernetic loop to adapt and personalise information for 

the individual in a cultural heritage setting. This involved the design and development of a real-

time data processing pipeline that translated raw psychophysiological data into control input for 

adaptive information provision or media tagging. A psychological construct was posited and 

operationalised as physiological measures of the autonomic and central nervous system to create an 

inference model for a state of interest. Machine learning algorithms were investigated to determine 

the efficacy of psychophysiological classification in both offline and online contexts. A series of 

experiments was conducted to explore the design and implementation issues within two 

components (inference model and classification) of the biocybernetic loop culminating in a 

framework that integrated each of the components into a real-time proof-of-concept application. 

 

 Study one explored a psychophysiological inference (as autonomic activation) using a 

range of autonomic measures and classification algorithms under laboratory conditions. 

 Study two investigated cross-session classification of autonomic activation, wherein a 

support vector machine classifier was trained on session one and applied to data from 

session two.  

 Study three was concerned with the classification of multiple psychophysiological 

measures recorded using ambulatory sensor apparatus in response to audio material, in a 

cultural heritage setting.  

 Study four represented a replication of study three using multiple sources of media (audio, 

video, still image and combinations thereof) in a cultural heritage setting.  

 Study five was a culmination of the previous studies integrating all findings to create a 

real-time classification protocol to capture high or low interest in response to video 

material in real-time. 

 

Thus the work in this thesis has been aimed at understanding biocybernetic control through the use 

of the biocybernetic loop applied in a cultural heritage material and mixed media context. Five 

studies were performed to explore this aim and develop methodologies to inform future research 

into biocybernetic control for uses other than workload management and efficiency. 

 

The components of the biocybernetic loop are: inference, classification, adaptation and interaction, 

the results of the studies reported here will be discussed within this context. The main findings of 

the thesis will be discussed with reference to these components in the following sections. 
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  The inference model  12.1.

The psychophysiological inference is concerned with the quality of the operationalisation of the 

target psychological state using a physiological measure or range of physiological measures 

(Cacioppo, et al 2007). The selection of the psychophysiological features that form the inference 

model is central to the effectiveness of a biocybernetic control loop. If the physiological measures 

fail to capture the psychological construct with sufficient sensitivity and reliability then the 

biocyberentic loop does not encompass the clear link between the user state and system operation 

that is required to drive accurate system adaptation. The rationale that provided the systems context 

is one of a cultural heritage experience, specifically aimed at tasks such as viewing artefacts or 

paintings. The goal of the inference model was to provide an accurate and practical index of viewer 

interest, and to use this index to drive a process of adaptation to deliver content based upon the 

interest level of a visitor.  

 

The theoretical basis of the inference model of interest proposed in this thesis was informed by 

three perspectives; embodiment as proposed by Cannon-Bard (1927), which posited that responses 

to emotional stimuli or events occur simultaneously in the brain and body; affective neuroscience 

which offered methods from which to ascertain affective responses using measures of EEG; and 

core affect posited by Russell (1980, 2003) which offered the circumplex model as a two 

dimensional space upon which to ―map‖ autonomic and affective responses. These perspectives 

were combined to create the foundation upon which to base a psychophysiological inference model 

of interest. Empirical evidence (Kreibig 2010) for embodiment indicates that psychophysiological 

reactivity can be recorded from the autonomic nervous system by placing sensors on the body. The 

experimental evidence from neuroscience indicates that cognitive and affective responses can be 

taken from the brain and measured using EEG (Coan and Allen 2004), and that psychological 

phenomenon can be placed upon a uni-dimensional or two-dimensional scale, such that magnitude 

changes in physiology can be measured and classified into scalar or binary states.  

 

Initially in studies one and two (see chapters 7 & 8), the development of the inference model was 

one of autonomic reactivity as the model was expressed in terms of physiological activation in 

response to still imagery (a passive task). Study one employed images taken from the international 

affective picture system (IAPS) (Lang et al. 2008) database and the second study used images from 

a database of art paintings (Kreplin 2014.), both image sets were used because their psychological 

properties had been rated subjectively by a large group of individuals. The results from study one 

indicated that autonomic measures appeared stable within the context of the IAPS image viewing 

protocol (i.e. stimulus - response - rate, return to baseline, repeat) specifically, heart rate (HR-mean, 

max) heart rate inter-beat interval (ibi) (mean, max), and skin conductance level (SCL-mean and 
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area) were identified by principal component analysis (PCA) as providing the most variance in 

response to two conditions of image (high or low activation). Similarly, the results from study two 

also indicated the importance of HR, HR-ibi and SCL when measuring autonomic responses (as 

activation), in this instance HR (ibi) and SCL mean and standard deviation (stdev) were identified 

as providing the most variance in psychophysiological responses towards the stimulus material, due 

to the correlation with HR (ibi) the heart rate (as beats per minute and variants) measure was 

removed at this stage as part of the process of feature dimension reduction and to aid in 

classifications of activation responses. The measures identified in these studies combined to form 

an index of physiological activation were represented as HR (ibi) mean and stdev, and SCL mean, 

area and stdev. 

 

The next phase of development for the inference model was to extend the psychophysiological 

operationalisation beyond autonomic activation.  The concept of interest as a psychological entity 

as described by Berlyne (1960) and Silvia (2008, 2010) was investigated and key elements of the 

cultural heritage experience as described by Pine and Gilmore (1998) were distilled into a model 

with three dimensions designed to fully encompass an inclusive concept of interest.  The model 

consists of three dimensions of perceptual representational processes (Hidi and Renninger 2006), 

which are mapped onto a unidimensional scale ranging from high to low interest: 

• Cognition, which captures the novelty and complexity of the stimuli i.e. familiarity vs. 

unexpectedness and intricacy vs. simplicity  

• Activation, which captures how stimulating the stimuli is  

• Valence, to capture the level of positivity or negativity towards the stimuli 

 

To expand the range of the inference model to include measures from the cognitive domain (as 

cognition and valence) a third study was completed (see chapter 9), in this study the cognitive 

component of interest was identified with activation of the rostral prefrontal cortex (rostralPFC) i.e. 

Brodmanns area (BA) 10, an area of the brain dedicated to working memory, attentional control 

and novel problem solving (see Ramnani & Owen, 2004). The rostralPFC has also been associated 

with a wide range of cognitive process, ranging from the selection and judgement of stimuli held in 

short term memory (Petrides 1994) to reversal learning and stimulus selection (Dobbins et al 2002). 

The valance component of the interest model was identified with activation of the medial prefrontal 

cortex or BA 8, this area has been associated with processes that involve the motivational or 

emotional value of incoming information (Tataranni 1999, Rolls 2000) and a link has been 

proposed between asymmetry of frontal alpha activation and emotional states (Davidson 1993). It 

has been hypothesized that greater left activation of the prefrontal cortex is associated with positive 
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affect whereas greater right side activation is linked to negative affect (Davidson & Chapman, 1990, 

Chapman & Henriques, 1990, Lang, 1995, Silbermann & Wiengartner 1998, Davidson, 2004). This 

study utilised genuine cultural heritage material in the form of audio narratives to stimulate 

psychophysiological responses and the measures included in the model were expanded to include 

those indicated in the literature from electroencephalography (EEG) i.e. cognitive activation and 

frontal EEG asymmetry. From these measures six features were derived, four were of cognitive 

activation derived as a ratio of beta power dived by alpha power at sites FP1, FP2, F3, F4 and two 

were of valence captured through frontal asymmetry expressed as the natural log of alpha power, 

subtracting right from left hemispheric activity at sites FP2-FP1 and F4-F3.  

 

Within the context of the research presented in this thesis the three dimensions of the interest model 

formed a many-to-one inference between the measures of autonomic and central nervous system 

activation and the psychological construct of interest. However, there were a number of issues 

raised concerning the stability of the psychophysiological inference in a general sense, which were 

highlighted by the results reported from study two. This study tested the stability and reliability of 

psychophysiological responses over a number of experimental sessions using the same or similar 

stimuli. This material was presented in a test-retest format, in which images were shown on session 

one, then similar but novel examples of those images were displayed during the second session 

with the original images being re-tested during the third and final session. During each session 

autonomic psychophysiological responses were recorded and a classifier was used as a determinant 

tool; the results from the classifications showed that overall the two measures HR-ibi and skin 

conductance level (and associated features) were only moderately stable over repeated sessions. 

That is, classification accuracy was high on session one but subsequently declined during sessions 

two and three.  This result is consistent with earlier work (Arena et al 1983, et al 1989, Waters et al 

1987) that psychophysiological responses are reliable for baselines and procedures but these 

responses are subject to significant variation both within session and across sessions. In this case 

classification tests were performed on both a subject dependent and subject independent basis and 

in the case of the subject independent test the decline in classification accuracy was more 

pronounced.  This result could be explained by the presence of inter- and intra- individual 

differences in psychophysiological responses that may account for the sharp decline in 

classification accuracy from session to session. 
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The lack of day-to-day reliability in both psychophysiological response and classification accuracy 

essentially narrowed the scope in which the interest inference model was perceived to be diagnostic 

of a viewer‘s level of interest i.e. the inference of interest is valid only within the context of the 

current task and not generalisable across sessions but may generalise across stimulus types. This 

finding had far reaching effects for the design of the proposed system and how to classify the 

interest response; these effects will be discussed in subsequent sections. 

 

The validity of the inference model to generalise across different stimulus media types was tested 

in two studies (see chapter(s) 9, 10). Study three was conducted to test the three component interest 

model with audio narrative stimuli and participant in a standing position.  The three components of 

the inference model activation, cognition and valence were considered alone and in combination in 

this study. In this instance high classification rates were achieved for all three components of the 

model when classified separately. However, the highest classification accuracies were achieved 

when components of the model were combined, specifically when measures associated with 

activation and valence were combined. In Study four the interest inference model was further 

refined to reduce the dimensionality of features and stabilise the sensitivity and diagnosticity of the 

model in real-time environments when recorded using ambulatory sensors. Activation was reduced 

to four features, two for heart rate and two for skin conductance, cognition was reduced to three 

features measured from FP1, FP2, FPZ, and valence was reduced to a single feature measured from 

FP1, FP2. For this study mixed media stimulus material was used and a classifier was applied to 

the psychophysiological data as a determinant tool. Classification rates for this study were deviated 

from the results of study three, in that the single component classification accuracies for cognition 

and valence alone and in combination yielded poorer overall classification. The result for the 

activation component was in line with those reported in study three, as was the combination of 

activation and valence, showing in this instance that responses from autonomic activation and 

valence from hemispheric asymmetry best captured the viewer interest response.  

 

The combined results from studies three and four appear to indicate that interest should be 

represented not just an autonomic measure of activation but as a multidimensional construct. The 

multidimensionality enhances sensitivity in the sense that different components can be engaged by 

specific media i.e. autonomic activation to audio stimuli or different types of material i.e. activation 

of Fz to material with cognitive challenge or activation of frontal EEG asymmetry to emotional 

material. Viewed in terms of biocybernetic control and the cultural heritage rationale of the 

research the inference model developed to capture viewer interest meets the requirements for a 

stable many to one relationship as defined by Cacioppo, Tasinary and Bernston (2000). Here, 

interest is captured by features of heart rate skin conductance EEG activation and frontal 

asymmetry and the link between a viewer‘s state of interest and physiological reactivity has been 
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demonstrated with a good to excellent degree of discriminatory power. However, this link gains its 

validity from basing the selection of measures on solid theoretical evidence and past research in 

psychophysiology, and classifiers that are trained using subjective judgements. Thus, the validity of 

the inference must be assessed within that context. 

  Classification  12.2.

Classification concerns the identification of the psychophysiological state in real-time or near real-

time. It is important that information passed from this stage be timely if the loop is to function 

dynamically. The choice of classification algorithm is crucial at this point. The classifier must be 

capable of processing and categorising information in both an accurate and timely manner. The 

cost of misclassification of user responses must be considered carefully as ultimately the classifier 

feeds forward judgements into the adaptation engine and thus shapes the users‘ perception of the 

accuracy of the system. 

 

The initial classification of the interest response was completed using the k-nearest neighbour 

algorithm (KNN) (see chapter 7) and the results compared to two other classification algorithms, 

regression decision trees (RDT) and support vector machine (SVM); KNN was tasked with 

discriminating between three levels of autonomic activation (high, medium and low), and the 

classifier was trained using two types of class label; labels provided by IAPS survey (Lang et al 

2008); and subjective responses provided by participants of the study. It was concluded from the 

KNN classification results that that the KNN classifier was sensitive to noise within the 

physiological data which parallels the literature on this issue (Petrantonakis & Hadjileontiadis, 

2010). Noise, in this context, was implicit in the medium level of autonomic activation which was 

barely differentiated from either high or low activation responses. Furthermore, when the classifier 

was trained using subjective judgements, the number of classes was reduced to a two class problem 

(involving high and low responses) and the dimensionality of the feature data reduced, the KNN 

algorithm fared little better outputting classification accuracies of 67% (pp.56 Table 7-6). Thus 

KNN can be seen to be a poor classifier for physiological data where the magnitude response 

difference between one class and another is small, or where signal artefacts may be present in the 

data. Similarly, the results from the RDT classifications demonstrated a lack of robustness when 

applied to the same data, outputting the same 67% classification accuracy. However, when the 

SVM was applied to the same data, classification accuracy improved dramatically to 83%; this 

finding demonstrated that the SVM algorithm was better able to deal with noise within the 

physiological data. Furthermore, these results indicated that a subject dependent approach to both 

classifier calibration (i.e. training) and classification may prove to be most accurate as reported in 

the recent review by Novak et al (2012) (see chapter 3 pp29).  The results of the first study both 
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informed and supported the decision to move to a subject dependent approach to the classification 

of psychophysiological responses using SVM and this approach was used for all future studies. 

 

The first study also indicated that post processing techniques (such as normalisation) may not be a 

requirement for high accuracy classifications in the context of a subject dependent approach. The 

highest classification accuracies in the current work were gained using raw feature data (absolute 

values) in all classification techniques, and there is some support for this view in the 

psychophysiological literature (Waters et al 1987), who found that absolute scores were more often 

stable in comparison to change scores.  

 

The second study was performed as a second test of autonomic activation classification using a 

subject dependent approach (see chapter 8 pp67). In this case psychophysiological data were 

classified as raw (untreated) or normalised feature vector variants, and subjected to feature 

dimension reduction using PCA.  As with study 1, classification output remained unaffected by 

either normalisation or PCA; in the case of PCA the range of autonomic measures used in this 

study may have been relatively inter-related making the impact of the PCA negligible. The results 

from the classification trials, which compared training the SVM classifier with labels provided by 

survey or labels provided by subjective judgement for a two class high from low activation 

discrimination, are shown in Table 12-1.  These data illustrate how a classifier trained using 

subjective labels provided a clear advantage in terms of mean accuracy when compared to the 

classification using standardised survey labels. As a contrast a subject independent classification 

trial was completed and the classifier reported a high training accuracy followed by a sharp decline 

in accuracies for the test and retest conditions (Table 12-1).  

 

Training Method Train Test Retest 

Subjective Labels 80.43 70.38 70.83 

Survey Labels 86.67 59.17 45.83 

Subject Independent 81.25 54.17 55.00 

Table 12-1 Training method and mean classification accuracy for a high from low activation 

discrimination 

 

The results shown in Table 12-1 which displays mean accuracies for a discrimination of high from 

low activation suggest that collecting baseline psychophysiological measurements from which to 

compare for variance may be an unnecessary step in the current context. It was found that 

classification accuracies were maximised when the classifier was tasked with discriminating 

between the target high or low activation states as opposed to high or low states from a baseline 
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state. Thus, removing the baseline state comparisons has the effect of decreasing computational 

complexity and cost by reducing both the complexity of the training data, and the amount of steps 

needed before classifications can be performed.  

 

The results from the second study viewed from the standpoint of the day-to-day reliability of a 

classifier trained using psychophysiological data indicated that both psychophysiological measures 

(due to intra-personal differences) and subsequent classifications are unreliable over repeated 

sessions. This finding has clear implications for the training and use of classifiers in the larger 

context of biocybernetic control as the implication from the second experiment is that a system 

may require calibration for each user of the system for each session of use.  However, this is a 

subject for further investigation; when taken on face value machine learning classifiers are by 

definition learning engines and the aggregation of much larger datasets over many sessions may 

elicit different and more positive results in terms of inter and intra-subject generalisability.  

 

Study three expanded the range of psychophysiological data input for the SVM classifier to include 

EEG data and utilised naturalistic cultural heritage stimuli involving audio narratives (see chapter 

9). This study tested the capacity of the inference model to provide classification vectors that were 

sufficiently sensitive and diagnostic in a simulated environment when the participant was in a 

standing position to mimic posture in an actual cultural heritage institute and to test the capability 

of the interest model to generalise to different stimulus material. The classification of the interest 

response in the third study moved to a multidimensional model, which allowed a subject dependent 

classifier to be trained using unprocessed feature data for each aspect of the inference model 

(activation, cognition and valence) individually or in combination; in addition, classification 

accuracy was determined by comparing classifier recall accuracy and subjective responses. The 

results (pp. 90 Table 9-2) demonstrated high classification accuracy for each component of 

inference model when classified alone 90%, 83% and 85% for activation, cognition and valence 

respectively. However, by combining the features from each component of the model classification 

accuracies improved further i.e. Activation and cognition (92%), activation and valence (95%) and 

activation, cognition and valence together (93%), presented with high classification of recall 

accuracy and a more stable classifier across all participants. A subject independent classification of 

the feature data was generated for comparison and in this comparison subject dependent 

classification achieved higher accuracy, adding further strength to the validity of using a subject 

dependent approach to classification within the current application.  These results indicated that 

each component of interest model could be classified individually and in combination with a high 

degree of accuracy in response to audio narratives, and this informed the further development of a 

classification model which could potentially output a binary judgment as a ―composite‖ 
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aggregating all three component feature sets together or ―component‖ with each feature set 

classified separately.  

 

One issue that may have impacted on the high classification accuracies in the third study was the 

way in which subjective judgements, and therefore the classifier training labels were elicited. In 

this instance participants were offered a forced choice i.e. participants were asked to rank which 

audio narratives were interesting and now how interesting each narrative was. This choice while 

mirroring the binary aspect of the classifier may not have captured the participant‘s interest 

response as effectively and with the same level of sensitivity as a more nuanced approach such as a 

7-point Likert scale. However, when considering calibrating a classifier for use in a real-time 

system, such a forced choice may be necessary because this type of subjective choice may deliver 

more consistency for binary classifications and this approach has some support in the literature (see 

Levillian et al 2010 and chapter 3 pp 31) who used this form of subjective feedback to ascertain a 

user‘s level of amusement and challenge in a gameplay task.  

 

The fourth study iterated the subject dependent classification and recording methodology utilised in 

previous experiment and the goal of this study was to classify responses to genuine mixed media 

cultural heritage material (see chapter 10). The IBIS model (pp. 98 Figure 10.1) of classification 

was proposed to utilise the composite and component model binary classification output identified 

in study three. In addition, this study explored classification performance using two types of 

classifier training schema, a composite schema in which a classifier is trained using labels derived 

from a ―composite‖ of three likert scales to create a single label, and a component schema which 

used a training label for each component of the interest model derived from subjective judgments 

given for each component of the interest model i.e. activation, cognition, and valence. Similar to 

study three the results for the ―composite‖ trained classifiers showed that the combination of 

activation and valence (F1 0.82) and activation alone ( F1 0.87), presented with the highest 

classification accuracies. The classification output from the full interest model was also above 

chance (F1 0.81). The results for the ―component‖ trained classifiers on the other hand, with the 

exception of activation (F1 0.90) showed a marked decrease in accuracy for cognition (F1 0.66) and 

valence (F1 0.69). 
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The results from the fourth study provided further evidence that the composite classification model, 

which reduced the scores of all three components into a single a binary high or low label, was the 

best method of classification for these data. The classification rates for component labels with the 

exception of activation were poor, showing either a potential weakness in the component training 

schema or the way in which the labels were derived before the classifiers were trained. The results 

from the generalised model classification of the data which followed the same classification 

schemas produced accuracies similar to those reported in previous studies i.e. a decrease in 

classification accuracy. However, in this case the classification of activation alone using either 

composite (F1 0.73) or component (F1 0.85) schemas produced higher levels of classification 

accuracy, specifically in the case of the component schema. This finding highlights a potential 

issue in how labels are derived for training the classifiers.  The high classification accuracy of 

activation for both subject dependent and independent methods of classification could be 

tentatively explained with reference to how well participants understood the process of subjective 

self-assessment.  A better understanding of what activation meant in a conceptual sense and with 

reference to personal experience would equate to scores more reflective of the activation state, 

whereas even minimal confusion as to the nature of cognition and valence would result in scores 

that were less reflective of those states (and those psychophysiological variables associated with 

those states). Another possible explanation could be inter and intra-personal differences within 

responses, in that the stimulus materials used for the study may have universally elicited a high 

physiological activation response in each participant and low responses in terms of cognition and 

valence. 

 

The fourth study also proposed a process pipeline framework (pp. 100 Figure 10.2) to move away 

from commercial software and post-hoc data processing and to create a self-contained pipeline for 

data collection and post-processing. In this respect the experiment was a success, in that the 

developed process pipeline output physiological features that were of sufficient specificity and 

diagnosticity to allow for the inference model to be classified with moderate to high accuracy. The 

IBIS model also proved partially successful with the composite classification schema providing 

outputs that could be made readily available to other processes in a biocybernetic loop, such as an 

adaptation process.  
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Classification for the fifth and final study (see chapter 11) was completed in real-time; using an 

application developed using a revised IBIS classification model (pp. 118 Figure 11.1).  The IBIS 

model used the composite schema to perform classifications and a majority vote to output the final 

binary classification and the classifier was trained at runtime over a series of four builds during the 

course of the experimental procedure. The procedure involved viewing multimedia stimuli (movie 

trailers) and classifier training was performed by way of subjective judgements given at the end of 

each segment.  After an initial training (calibration) build classifications were completed on 

average every 6 seconds during a 60 second stimulus epoch.  This classifier was rebuilt at key 

points during the procedure to incorporate more training data into the underlying SVM. The results 

from this experiment were harder to interpret than previous studies due to the fact that user 

interactions with the system were iterative and dynamic. The results of the real-time classifications 

(pp. 132 Figure 11.10) i.e. one of mathematical accuracy as provided by the internal crossvalidation 

and parameter selection procedure, indicated that the classifier was stable with no significant 

variation across the four build sessions and achieved accuracy in the range of 76.8 - 79.4%. 

 

The general pattern of the classification results reported in this thesis indicated that classifiers 

respond best to data with a high degree of separation between the various classes, and that the KNN 

and RDT algorithms are not suited to real-time classification of psychophysiological data, despite 

their computational simplicity and transparency as discussed in chapter 3 of this thesis. In terms of 

classifier calibration the results indicate that classifiers are more accurate and stable when applied 

to psychophysiological data subject dependently i.e. classifiers trained using psychophysiological 

data recorded from a subject who then associates the class labels with that data. Furthermore, the 

results reported in this thesis also indicate that subject dependent classification is best performed on 

the same day as the classifier is trained, explained by inter and intra-subject response differences in 

same day and different day responses. Machine learning theory holds that classification accuracies 

will improve over time given more data to generalise from (Bishop 2006), thus the day to day 

stability and accuracy of a classifier may be increased if data is aggregated for training after each 

session of use. However, this lag between the application of the classifier and aggregating training 

data would mean a greater proportion of misclassifications of the target state until the optimal 

training set of psychophysiological responses were reached.  
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A noteworthy issue with subject dependency within classification is one of class bias, in an ideal 

world classifiers function optimally with data that is highly separable and contains an equal number 

of classes to prevent over fitting of the classifier to the training data. However, in the case of the 

research presented in this thesis bias is implicit to subjective responses (interest being wholly 

subjective phenomena) and these responses were ultimately used to train classifiers tailored 

specifically to individuals.  A methodological issue identified in study four which may have 

negatively affected the classification results concerned (based upon intra-subject difference) was 

the number a length of rest and subjective reflection periods, these periods may have had the effect 

of altering intra-personal physiological responses due to biological changes (such as hunger, 

fatigue or simply boredom). The results from experiment five (see chapter 11) appear to indicate 

that this effect can be decreased by calibrating and using a classifier within the same session. 

However, while the effect of intra-subject difference is lessened this may also indicate that the 

scope in which classifiers based upon subject-dependency would be limited to same session or 

same day applications at best.  
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The following guidelines represent a summary of the findings from the classification analyses 

performed in this thesis, which may prove useful to designers of similar systems: 

 

 Signal processing, such as filtering and artefact removal are major factors that will affect 

classification accuracies 

 Recording physiological baseline data to compare against an unnecessary step 

 Principal component analysis can prove valuable in cases were physiological measures are 

not highly inter-related  

 Normalisation of psychophysiological data is not indicated for use in subject dependent 

systems and presents increased computational cost with no increased benefit to 

classification accuracies when compared to absolute values 

 Normalisation is potentially useful for use in subject independent systems were 

generalisation across a population is indicated 

 Classifiers perform poorly when tasked with classifying data across repeated sessions and 

exposures to same stimuli 

 In the case of subject dependent applications, classifiers should be trained for each session 

using a combination of psychophysiological data and subjective assessment for training 

data captured during that session or just prior 

 When designing systems to integrate real-time machine learning classification into 

biocybernetic control loops, there is a trade-off between the time required for classifier 

training, accuracy of the resulting classifier and speed of deployment 

 Classifiers can more accurately reflect a user‘s appraisal of psychophysiological state when 

trained repeatedly during the same session, resulting in more accurate classifications and 

potentiating an increase in user acceptance or trust towards the system 

 

In sum, a model of classification was posited to output interest as a binary state or interest as a 

scale (IBIS), this model proved effective in study three when applied to audio stimuli (in the form 

of audio narratives), but proved less so when applied to mixed media in study four. In this regard 

only the composite model of classification was proven to be effective in both studies in comparison 

with the component model. In the final study the IBIS model was revised to integrate the composite 

model as one with two forms of classification output i.e. interest as binary or interest as state where 

both these forms of output are interpreted from multiple classification outputs using a majority vote 

as the final discriminant. The results from the final study showed that the IBIS model output was 

effective in real-time and that the classifiers built for each user by each user provided a stable 

inference of a user‘s interest preference when trained over a number of builds while users were 

exposed to video stimuli. 
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 Interaction and Adaptation 12.3.

In the fifth study, participants were provided with feedback in real-time about the systems 

classification assessment of their level of interest. Following the component mode of classification 

from the IBIS model, judgements were given as binary statements e.g. ―the system says you were 

interested/not interested in this content‖, ―do you agree?‖ both the systems judgement and the 

subjective agreement/disagreement with that judgement were recorded. From this recorded data the 

relationship between machine and perceived classification could be assessed. Table 12-2 shows the 

mean accuracies from all participants for both machine and perceived accuracy. These results show 

that from a machine accuracy standpoint the system displays no significant difference in accuracy 

across the four build sessions.  

 

Accuracy Type Build 1 Build 2 Build 3 Build 4 

Machine 76.9 79.4 76.8 78.4 

Perceived 84.3 74.2 78.7 85.4 

Table 12-2 Estimated marginal means: machine accuracy versus perceived accuracy 

 

However, users‘ perception of system accuracy provided a different perspective on machine-based 

classification; after initial calibration the system was perceived to be highly accurate but subjective 

accuracy fell by 10% during build two before increasing to the original level over the next two 

successive builds (Table 12-2).  A ROC-AUC analysis (Table 12-3) was completed on the accuracy 

data and the area under the curve portrayed a system that initially displays good to excellent 

discriminatory power falling into the poor to moderate range during use after build two before 

rising again in builds three and four.  

 
Area Under the Curve 

 

Build Area 

Std. 

Errora 

Asymptotic 

Sig.b 

Lower 

Bound 

Upper 

Bound 

1 .828 .048 .000 .735 .922 

2 .686 .073 .013 .544 .828 

3 .801 .058 .000 .688 .915 

4 .819 .054 .000 .714 .924 

Table 12-3 ROC-AUC results 
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The results from the real-time system show that the trend of classifications moves to more accurate 

determinations of true positive and true negative classifications over the course of the four builds.  

This trend is mirrored by a decrease in the number of misclassifications (false positives and 

negatives) as the classifier receives more training data. This increase of accuracy is not only a 

function of receiving more data however, but rather a complex interaction between the increase of 

training data and the way in which participants generate subjective class labels associated with that 

data. Furthermore, the positive results gained from the interaction of classifier and user may 

indicate that fully embracing subject-dependency within the calibration cycle of a biocybernetic 

control system leads to more accurate classifications and possibly systems that are more quickly 

accepted by the user.  

 

Another explanation for why user perceptions trended towards the positive as the experimental 

session progressed is to consider how users‘ perceptions may have altered with increased exposure 

to the system. One factor is the ―halo effect‖ which is the unconscious alteration of judgement in 

response to information perceived to be authoritative (Nisbett & Wilson 1977), in this case the 

―machine‖ as it were is perceived to be authoritative and thus the users assessment of how accurate 

the system was in comparison to their own may have been biased towards the system early in the 

experimental procedure. For example: 

 

 Build one, positive bias towards the system in comparison to self-judgements 

 Build two, disillusionment as system judgements clash with self-assessments 

 Builds three and four, time and exposure have begun to wear down the user making them 

again positively biased due to ennui.  

 

A secondary explanation could be that by builds three and four time and exposure to the system has 

―forced‖ a submission from the user that ―the system knows best‖, increasing the likelihood of 

agreement and possibly engendering trust. However, the results indicated that the system ―learned‖ 

a user‘s interest preference over the course of four builds resulting in positive agreement with 

system judgements towards the end of the experimental procedure. 

 

Adaptation is concerned with employing the governing rule set or purpose of the loop, that is, what 

actions should be taken at the interface in response to classification judgements about the user‘s 

state. The results from the studies reported in this thesis indicate that the proposed operationalised 

model of interest can be classified with a reasonable degree of accuracy and could, therefore, be a 

candidate for use in systems that incorporate a user‘s interest state into a bio-cybernetic control 

loop to drive adaptations, such as in the case of cultural heritage 
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In work completed previously
5
, an example of a possible cultural heritage application was 

described, that posited a form of biocybernetically controlled ―adaptive curation‖ that adapts 

content and information depending upon a user‘s level of interest. To complete this task the 

―INTREST framework‖ was proposed (shown in Figure 12.1). The proposed framework is based 

loosely around a series of narrative structure. These structures denote the purpose and placement of 

cultural heritage content (narrative arcs) used to stimulate psychophysiological responses. The 

INTREST framework is separated into five phases: narrative structure, adaptive story elements, 

physiological measurement, classification and narrative path. Each phase represents a requirement 

or process needed to form the system and can be summarised as: INput, sTimulus, REsponse, 

claSsification, ouTput.  

 
Figure 12.1 A Cultural Heritage “digital curator” Framework 

 

Phase one is concerned with the conceptual narrative structure, each block representing one 

element of a narrative arc. Phase two consists of adaptive story elements or information blocks 

created to fit in within the narrative structure, such as semantically linked mixed media content 

about the exhibit or installation. Phase three is focused on measuring interest in response to story 

elements. In phase four the classification of the level of interest is completed, outputting either high 

or low interest in response to story elements. This output is then used in the final phase to pull new 

content from the adaptive story elements, to create the narrative path of adapted information. When 

the application is operated a starting point is chosen by the system; the psychophysiological 

                                                      
5
 Published in Karran, A.J., Kreplin, U., "The Drive to Explore: Physiological Computing in a Cultural Heritage Context", Advances in 

Physiological Computing, Fairclough, S. F., Gilleade, K (eds) - Springer, (April 2014) 
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response to this content is then evaluated; if visitor interest is high then the system continues to 

draw content from the store for that narrative arc; if visitor interest is low, new content is drawn 

first from the same store, or if responses still indicate low interest content is drawn from the store 

of content for a different narrative arc in an attempt to elicit the more favourable high response.  

 

Within this scenario the narrative arcs represent elements of the same ―story‖ but with different 

content databases. For example, consider a Han dynasty vase (Circa 202 BC). The story starts with 

information about the vase and its provenance, interest is classified as low, new information is 

provided from further ahead in the story, however the response to this content is still classified as 

low interest. The system then adapts to these responses by drawing content from a concurrent 

narrative arc, this time the content is about how the vase is made and the ceramic processes of the 

period, this elicits a high response, after a number of content blocks are displayed the response is 

still high and remains that way until the content is exhausted. From this information the system can 

ascertain, that for this user of the system, content that explains how artefacts are created is of 

interest. When the user then moves to a different artefact the system utilises this information as the 

new start point for further content provision, if responses remain high, then the system adapts to 

give only this type of content. When responses drop to low interest, the entire process begins again. 

 

In this example, the adaptation strategy is one of a fully automated system meant to enhance a 

museum visitor‘s experience of paintings or artefacts and not to track the exposure or educational 

aspect of cultural heritage, and the results from studies three and four indicate that this classifier 

training method could prove effective. However, the results from study five also indicate that 

continuous classifier training could also prove effective; integrating this approach would allow the 

adaptation strategy to be expanded to create an intermediate stage hybrid semi-autonomous system 

(Parasuraman, Sheridan and Wickens, 2000) that makes content adaptations using a combination of 

psychophysiological responses and user decisions that is fully subject-dependent, in that the system 

is trained using user interest preference. 

 

The choice of adaptation strategy is closely linked with the classification model and accuracy of 

classifications and these have implications for how the system is perceived when it used. The cost 

of misclassifications within adaptive systems is both a technical and user perception issue; 

technical in that misclassifications can cause the system to function incorrectly; and 

misclassifications can cause perceptual shifts in users causing a lack of trust and an unwillingness 

to use the system. Within the context of the cultural heritage application, for the fully automated 

system the cost of misclassification is low possibly resulting in a low opinion of the system but 

having no real impact upon the visitors experience as the system is interactive only in so much as it 

adapts to user psychophysiological changes. However, in the case of the semi-autonomous system 
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in which user interactions are implicit to system function, misclassification costs are higher as users 

perceive more of the errors while the system is used; this can be alleviated somewhat by the 

continuous training of the system while it is used so it better reflects the interest preference of the 

user and by reducing the frequency of classifications. 

 

The timing of classification output can be crucial to the adaptation strategy and to a user‘s 

perception of misclassifications, when the cost of misclassification is low, the frequency of 

classifications can be lowered to reduce the amount of errors received. The results from the fifth 

study provided an example of an effective strategy as the system was tuned more to the user by 

training, system level misclassifications were reduced and at the user level the perception of 

misclassifications was reduced - and as a direct result trust may have been engendered in the 

biocybernetic loop.  However, the engendering of trust highlights a possible issue in the application 

of adaptive systems. Results showed user agreement with system judgements increased from the 

starting values, even in the face of reported stable system accuracies across all builds. Although 

this shows trust has been engendered (i.e. a changed ―attitude‖, Miller 2005), it is not necessarily a 

positive factor, as users judged system accuracy to be higher than it actually was according to 

mathematical criteria. This factor would indicate that trust in adaptive systems can be engendered 

fairly quickly which is a positive in the case of educational applications.  However, in the case of 

safety critical applications, the ease with which a user may trust the system is negative as users may 

overestimate actual accuracy leading to possible cascades of human-machine errors. This finding 

while potentially important is preliminary however and requires further investigation with a larger 

sample size before generalising. 

  Limitations 12.4.

There are a number of limitations to the work presented in this thesis, the first of which involves 

sample size. Due to the complexity of the experimental procedures and length of data analysis an 

average of 10 participants per study was used. This makes the indications and conclusions made 

within this thesis preliminary in nature and less generalisable than if a larger population of 

participants was used throughout the programme of research. 

 

The amount of features/vectors used for training and classification was an issue for concern in the 

current thesis. In studies one and two the standard IAPS image viewing protocol was used as the 

common physiological denominator from which to derive the temporal basis for 

psychophysiological recording i.e. the stimulus epoch. Thus for a 10 second viewing period 1 

feature vector was created (based on a 6 second SC response), this resulted in a low number of 

feature vectors for these studies. For study three, the impact of audio stimuli was unknown and 
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additional measures were under investigation. In this study each feature vector represented 17 

seconds of audio narrative resulting in a low number of feature vectors for classification, and this 

may have biased classifier training due to a scarcity of data in the training space, possibly leading 

to some over fitting. The effect of training set size and classifier performance is an area of much 

research and debate. However, in each study where classification was performed, the cross-

validation procedures used to report classifier accuracies was informed by the literature, as those 

best suited to small training set sizes indicated in real-time applications (Isaksson, et al, 2008). 

Another factor concerned with classification, and one that requires extensive investigation, is the 

effect of class bias. This was discussed in study five (pp. 120-121), in this study class bias was 

embraced as part of the classifier training protocol on the premise that the labels (which 

represented subjective feedback from the user) used to train the classifier were representative of a 

user‘s interest preference. However, class bias has the effect of forcing classifiers to ―over fit‖ to 

the data, meaning the likelihood of one class being chosen over another is greatly increased. This 

factor could be addressed by using a lengthier classifier calibration procedure in which a classifier 

is only build when equal numbers of the respective classes exists at each stage.  

 

Another limitation of the work involves the ―wizard of Oz‖ protocol used as a proxy for system 

interaction in study five. In this instance the human-machine-human (as machine) interaction may 

have biased the human subjective response to system classification judgements in either a negative 

or positive way. Furthermore, there are a variety of ways in which the system could feedback to the 

user from the very frequent and explicit to infrequent and implicit to providing no feedback at all, 

here only one aspect of interaction was explored. This would be an area for further study, with the 

easiest way to determine effects being to fully automate the experimental procedure to provide 

various types of feedback and observe the results 

 

Another factor that can be seen as a limitation of the work presented here involves the development 

of the interest model.  Due to limitations on time and resources this model may not have been 

developed in sufficient depth and the interest model may be too inclusive, i.e. the model is based on 

an ad hoc representation of perceptual representation processes as seen specifically from a 

perspective of cultural heritage and real-time measurement. As the inference of interest is a 

heterogeneous pattern, other factors involved in the perception and embodiment of interest such as 

curiosity, preference, drive etc. could have been expanded upon using other physiological measures. 

Applying imaging techniques such as functional magnetic resonance imaging (fMRI) or functional 

near-infrared spectroscopy (fNIRS) and a host of autonomic measures to expand the component 

level of the model may provide a more detailed picture of what it means to be interested. This 

could lead to developing a model of interest that reflects both the physical properties of the material 

(such as volume, pitch of audio etc.) and the type of media at the component level.  
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In this regard, the interest model as operationalised in this thesis could be seen as measuring more 

the sensory properties of the stimuli as opposed to a viewer‘s interest in the stimuli, and this could 

be a possible explanation of the high classification accuracies reported throughout the work. The 

material used to stimulate responses may have resulted in something more akin to a ―visceral‖ 

response and not be as representative of interest as a psychological construct. However, controlling 

for the sensory properties of stimuli may prove difficult, humans are sensory creatures, and our 

consciousness is interpretive and heavily biased towards sensory inputs and appraisals of those 

inputs. Thus, removing the sensory properties may cause unintended effects, such as low intensity 

responses and inaccurate subjective judgements (Levenson 2003), which could include factors 

other than interest as the stimulus material may indeed be ―less interesting‖ without those 

properties.  

 

The subject-dependent model of response recording and classifier training which proved to be 

successful could itself be seen as a limitation of the work, the small sample sizes used to perform 

the classification analysis, may have biased the research towards subject-dependency resulting in 

less focus and development of more generalisable subject-independent classification approaches. 

However, the decision to move to a fully subject-dependent approach was informed both by the 

literature (Novak et al, 2012) and the results from studies one and two. 

 

Another limitation not directly of the work itself but more of the technology involved is that of the 

sensor hardware used to record psychophysiological responses, no research was conducted to 

ascertain the acceptability and comfort with the sensor hardware, which while ambulatory was still 

bulky and quite involved when attached. Physiological sensor hardware is still in its infancy; 

however there is currently a movement in commercial markets to push devices that measure 

physiology in some way for lifestyle monitoring to consumers. This push may increase the 

likelihood of user acceptance as devices become smaller and more widespread. 
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  Future work 12.5.

There are a number of research threads that could explored within the context of this work, during 

an early study a classification method was posited, based on inter-subject response differences. In 

this method psychophysiological responses were measured based upon dynamic trends 

(increase/decrease) as features of slope; this slope gave an indication of the ―direction‖ of the 

response to stimuli e.g. heart rate went up, skin conductance went down, during a stimulus window. 

The direction of response for each feature was then codified as a string of 0‘s or 1‘s using second 

order logic derived after consultation with an expert in psychophysiological recording and the 

literature (Kreibig 2010). The codification process created a series of physiological ―signatures‖, 

which preliminary testing showed that classification accuracies were greatly improved in both 

subject-dependent and subject-independent models. Furthermore, the preliminary findings showed 

that out of 360 possible signature combinations only 16 were used in the classification analysis and 

they were common to most participant data resulting in excellent subject-independent 

generalisation performance. At the time this analysis was performed, it was determined that the 

amount of time and resources required to verify the results through further studies was prohibitive 

in the context of the research project directives, thus the approach was never pursued. Codification 

has since become a lively sub domain of machine learning research which would indicate there is 

some merit to investigating further.  

 

Another research thread directly related to the work presented would involve further testing and 

expansion of the IBIS model of classification, specifically to include the voting ratio of 

classification model which could provide a more nuanced interest state that may be more reflective 

of the user interest when applied in real-time. Furthermore the component level classification 

model which proved unsuccessful in study four could be revisited in the context of a real-time 

application; this classification model out of the three that were developed has the greatest potential 

to output and present interest as a scale, requiring only a propositional logic layer on top of the 

classification output to turn three binary classifications into a scale see Table 12-4 for an example.  
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Propositional Logic : Interest as a Scale  

IF AND AND Inferred Interest 

Activation + Cognition + Valence + Very High 

Activation + Cognition + Valence - High 

Activation + Cognition - Valence + High 

Activation + Cognition - Valence - Moderate 

Activation - Cognition + Valence + Moderate 

Activation - Cognition + Valence - Low 

Activation - Cognition - Valence + Low 

Activation - Cognition - Valence - Very Low 

Table 12-4 Example propositional logic giving interest as a scale 

 

These additions coupled with further exploration of the user-adaptive system trust dynamic could 

prove a fruitfully area of research useful in a wide variety of contexts such as system where 

function allocation is dependent on the synergy between adaptive system and user.  

 

The limitations of the interactive protocol identified here could be improved upon with further 

study; a series of experiments could be designed with separate cohorts of participants. Each study 

could focus upon one aspect of user-system interaction and contain one or more conditions in 

which a classifier is trained using a variety of methods, ranging from training with random data to 

training once with a large balanced training set to multiple times with balanced or unbalanced 

training data. This would demonstrate the effect of bias on classifications or in the case of random 

training data, demonstrate if there is indeed a ―halo‖ effect involved with using adaptive systems, 

as one would assume that given the randomness of the training data user agreement with system 

judgements would remain low. For the interactive aspect, an example study could be to calibrate 

the system to the user using a separate procedure utilising example video material. Once calibrated 

the system displays videos in sequence yet provides no feedback about system judgements until the 

procedure is completed. The system then provides a report about which videos were the most 

interesting and requests feedback from the user, this removes any effects the wizard of Oz may 

have had and ensures the user has no preconceived notions about what the system is doing, 

possibly leading to more viable subjective feedback. 
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13. Conclusion 

The body of research recounted here explored the biocybernetic control loop in the context of 

cultural heritage. The psychological construct ―interest‖ was explored and a three dimensional 

model of interest was posited and operationalised as three components of psychophysiological 

activation involving: 

 Cognition, which captures the novelty and complexity of the stimuli i.e. familiarity vs. 

unexpectedness and intricacy vs. simplicity  

 Activation, which captures how stimulating the stimuli is  

 Valence, to capture the level of positivity or negativity towards the stimuli 

 

The psychophysiological inference of interest was classified using the support vector machine 

classification algorithm using both subject dependent and independent approaches. A classification 

protocol was posited and developed into a process pipeline and application framework to measure 

psychophysiological indices of interest and output classification judgements of user interest in real-

time. A prototype real-time application was used to successfully verify the process pipeline and 

classification output.  

 

It was found that subject dependent classification of psychophysiological data and training of the 

classifier is more accurate than subject independent classification and that classifiers perform 

poorly when tasked with classifying data across repeated sessions and exposures to same stimuli. In 

the case of subject dependent applications, it was found that classifiers should be trained for each 

session using a combination of psychophysiological data and subjective assessment for training 

data captured during that session or just prior. In addition it was found that classifiers can more 

accurately reflect a user‘s appraisal of psychophysiological state when trained repeatedly during the 

same session, resulting in more accurate classifications and potentiating an increase in user 

acceptance or trust towards the system. 
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