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Abstract

This article evaluates the suitability of the ECOSSE model to estimate soil greenhouse gas (GHG) fluxes from
short rotation coppice willow (SRC-Willow), short rotation forestry (SRF-Scots Pine) and Miscanthus after land-

use change from conventional systems (grassland and arable). We simulate heterotrophic respiration (Rh),

nitrous oxide (N2O) and methane (CH4) fluxes at four paired sites in the UK and compare them to estimates of

Rh derived from the ecosystem respiration estimated from eddy covariance (EC) and Rh estimated from chamber

(IRGA) measurements, as well as direct measurements of N2O and CH4 fluxes. Significant association between

modelled and EC-derived Rh was found under Miscanthus, with correlation coefficient (r) ranging between 0.54

and 0.70. Association between IRGA-derived Rh and modelled outputs was statistically significant at the Aberys-

twyth site (r = 0.64), but not significant at the Lincolnshire site (r = 0.29). At all SRC-Willow sites, significant
association was found between modelled and measurement-derived Rh (0.44 ≤ r ≤ 0.77); significant error was

found only for the EC-derived Rh at the Lincolnshire site. Significant association and no significant error were

also found for SRF-Scots Pine and perennial grass. For the arable fields, the modelled CO2 correlated well just

with the IRGA-derived Rh at one site (r = 0.75). No bias in the model was found at any site, regardless of the

measurement type used for the model evaluation. Across all land uses, fluxes of CH4 and N2O were shown to

represent a small proportion of the total GHG balance; these fluxes have been modelled adequately on a

monthly time-step. This study provides confidence in using ECOSSE for predicting the impacts of future land

use on GHG balance, at site level as well as at national level.

Keywords: ECOSSE model, energy crops, greenhouse gases, land-use change, Miscanthus, short rotation coppice, short rotation

forestry
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Introduction

The interest in using bioenergy crops as an alternative

energy source to fossil fuels, and to reduce greenhouse

gas (GHG) emissions, has increased in recent decades

(Hastings et al., 2014). The commitment of the European

Union is to increase the percentage of energy from

renewable sources to 20% of total energy consumption

by 2020 (EU, 2009). Under the Climate Change Act 2008

(Great Britain, 2008), the UK government committed to

reduce GHG emissions by 80% in 2050 compared
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to 1990 levels; the use of bioenergy could contribute to

this target using dedicated ‘second generation’ (2G)

lignocellulosic crops/plantations, including short rota-

tion coppice (SRC), Miscanthus and short rotation for-

estry (SRF) (Somerville et al., 2010; McKay, 2011; DECC,

2012; Valentine et al., 2012). Consequently, a substantial

land-use change (LUC) may occur, and it might have

considerable environmental and economic impact (Far-

gione et al., 2008; Searchinger et al., 2008; Gelfand et al.,

2011).

Carbon dioxide (CO2) emissions of bioenergy had pre-

viously been assumed to be zero (Gustavsson et al.,

1995; UK, 2008) on the assumption that emissions during

combustion are balanced by the carbon (C) uptake dur-

ing the growth of these bioenergy plantations, but this

fails to take account of GHG emissions following LUC

and subsequent crop growth. To this end, it is important

to assess the GHG balance of bioenergy crops, particu-

larly during the first years after conversion.

Two approaches have been widely used to monitor

CO2 fluxes: eddy covariance (EC) and the enclosure (or

chamber) method. Eddy covariance (McMillen, 1988;

Aubinet et al., 2012) is a technique developed to esti-

mate land–atmosphere exchange of gas and energy at

ecosystem scale. The measured CO2 flux, known as net

ecosystem exchange (NEE), includes ecosystem respira-

tion (Reco) which consists of heterotrophic (Rh) and

autotrophic (Ra) respiration, and gross primary produc-

tion (GPP) at ecosystem scale. As photosynthesis only

occurs during daylight hours, the night time flux is typi-

cally used to partition the NEE signal between GPP and

Reco. A flux-partitioning algorithm that defines a short-

term temperature sensitivity of Reco is applied to extrap-

olate CO2 fluxes from night to day (Reichstein et al.,

2005). In a plant removal experiment (Hardie et al.,

2009), the total Rh from the whole soil profile was found

to be approximately between 46 and 59% of the total

Reco. Abdalla et al. (2014) used these values to simulate

Rh from selected European peatland sites using a soil

process-based model, ECOSSE.

Enclosure methods have been developed to measure

CO2 efflux from soil; these methods involve covering an

area of soil surface with a chamber and the soil CO2

efflux can be determined using two main modes:

dynamic (closed or open) and closed static. In the for-

mer mode, a steady stream of air is pumped directly in

to the chamber (Christensen, 1983; Skiba et al., 1992).

The latter mode simply involves closing the chamber

for approximately 20–60 min and taking gas samples at

intervals for analysis (Hutchinson & Mosier, 1981), or

circulating the chamber air through a nondestructive

infrared gas analyser (IRGA) for approximately 2 min

(Norman et al., 1992; Smith & Mullins, 2000). Several

studies have used the closed chamber method com-

bined with root-exclusion methods, tree grilling or

stable isotopes to understand the relative contribution

of Rh and Ra to total soil respiration (Rtot) under differ-

ent land uses.

Byrne & Kiely (2006) demonstrated that Ra under

grassland soil in Ireland accounted for approximately

50% of Rtot during the summer months and 38% during

the rest of the year. Pacaldo et al. (2013) reported a con-

tribution of Ra of about 18–33% of Rtot under SRC-Wil-

low at three different development stages in the USA.

In a study on commercial farms located across the UK,

Koerber et al. (2010) reported a contribution of Rh on

Rtot for wheat of approximately 32% from January to

May, 79% from June to September and 67% from Octo-

ber to December. A meta-analysis of soil respiration

partitioning studies reported values for the ratio Rh/Rtot

for forest soils as ranging from 0.03 to 1.0 (Subke et al.,

2006). Overall, the ratio was higher for boreal coniferous

forests than temperate sites. In temperate, mixed decid-

uous forests ranges for Rh/Rtot of 0.3–0.6 were reported

(Gaudinski et al., 2000; Borken et al., 2006; Millard et al.,

2010; Heinemeyer et al., 2012). Several studies have also

shown that bioenergy plantations have low nitrous

oxide (N2O) emissions compared to agricultural crops

because of their lower nutrient requirements, thus

reducing the fertilizer requirements, and more efficient

nutrient uptake, thus increasing competition with

microbial organisms of N2O production (Flessa et al.,

1998; Hellebrand et al., 2010; Drewer et al., 2012).

Methane (CH4) is another important GHG that may

be a substantial component of the GHG balance from

several terrestrial ecosystems (van den Pol-van Dasse-

laar et al., 1999). In agricultural systems, soil is typically

a small net source or sink for CH4 (Boeckx & Van

Cleemput, 2001). Bioenergy crops usually present either

a small CH4 sink (Hellebrand et al., 2003; Kern et al.,

2012) or a small CH4 source (Gelfand et al., 2011). The

magnitude of the CH4 flux is typically much smaller

than CO2 and N2O, in both agricultural soils (Boeckx &

Van Cleemput, 2001) and bioenergy crops (Hellebrand

et al., 2003). However, very few studies (Hellebrand

et al., 2003; Gelfand et al., 2011; Kern et al., 2012) have

reported on the contribution of CH4 emission from

bioenergy systems, increasing uncertainty in the direc-

tion of this small flux (Zona et al., 2013).

Several factors control the GHG emissions of both

bioenergy and conventional crops, such as site manage-

ment, for example fertilization (Crutzen et al., 2008;

Hellebrand et al., 2008, 2010), previous land use (Smith

& Conen, 2004) and climatic conditions (Flessa et al.,

1998; Hellebrand et al., 2003). Despite the high variabil-

ity of the GHG fluxes, to our knowledge, only one study

in the UK (Drewer et al., 2012) has reported on all three

GHG fluxes (CO2, N2O and CH4) from soils under

© 2015 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., 8, 925–940
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bioenergy crops (Miscanthus and SRC-Willow) and, in

particular, after transition from former conventional

systems. To fill this gap, soil models are a useful tool to

predict GHG fluxes when site measurements are not

available, especially when studying the effects of the

change in land use over time and under different cli-

matic conditions over large areas.

However, soil models need to be extensively tested

under a range of climates and soils before being applied

under conditions different from those used to parame-

terize and calibrate the model itself. In fact, model eval-

uation involves running a model using input values

that have not been used during the calibration process,

demonstrating that it is capable of making accurate sim-

ulations under a wide range of conditions (Moriasi

et al., 2007). A model can only be properly evaluated

against independent data and a useful model should be

able to simulate those data with some degree of accu-

racy (Smith & Smith, 2007).

Although several soil models have been developed

for conventional agricultural and forest systems, most

of them have not been fully parameterized and effec-

tively tested for application on 2G bioenergy crops, such

as Miscanthus, SRF and SRC (Dimitriou et al., 2012;

Borzezcka-Walker et al., 2013; Robertson et al., 2015).

Here, we focus on the applicability of the process-based

model ECOSSE to predict soil CO2 (heterotrophic respi-

ration), N2O and CH4 after transition from conventional

to bioenergy crops.

The ECOSSE model was developed mainly to simulate

the C and nitrogen (N) cycles using minimal input data

on both mineral and organic soils (Smith et al., 2010a,b).

The ECOSSE model has been previously evaluated across

the UK to simulate the effect on soil C of LUC to SRF

(Dondini et al., 2015a), Miscanthus and SRC-Willow (Don-

dini et al., 2015b), to simulate soil N2O emissions in crop-

land sites in Europe (Smith et al., 2010b; Bell et al., 2012)

and CO2 emissions from peatlands (Abdalla et al., 2014).

This article evaluates the suitability of ECOSSE for

estimating soil GHG fluxes from SRC-Willow, SRF-Scots

Pine and Miscanthus soils in the UK after LUC from

conventional systems (grassland and arable). Based on

previously published recommendations, a combination

of graphical techniques and error statistics has been

used for model evaluation (Moriasi et al., 2007). Model

testing is often limited by the lack of field data to which

the simulations can be compared (Desjardins et al.,

2010). In this study, the model is evaluated against

2 years of observations at four locations in the UK, com-

prising one transition to SRF-Scots Pine, three transi-

tions to SRC-Willow and two transitions to Miscanthus.

Modelled GHG fluxes from conventional systems have

also been evaluated against field measurements (three

grassland and two arable fields).

Materials and methods

ECOSSE model

The ECOSSE model includes five pools of soil organic matter,

each decomposing with a specific rate constant except for the

inert organic matter (IOM) which is not affected by decomposi-

tion. Decomposition is sensitive to temperature, soil moisture

and vegetation cover; soil texture (sand, silt and clay), pH and

bulk density of the soil along with monthly climate and land-

use data are the inputs to the model (Coleman & Jenkinson,

1996; Smith et al., 1997). The ECOSSE model is able to simulate

C and N cycle for six land-use categories of vegetation: arable,

grassland, forestry, seminatural, Miscanthus and short rotation

coppice willow (SRC-Willow).

The vegetation input to the soil (SI) is estimated by a subrou-

tine in the ECOSSE model which uses a modification of the

Miami model (Lieth, 1972), a simple model that links the cli-

matic net primary production of biomass (NPP) to annual mean

temperature and total precipitation (Grieser et al., 2006). For a

full description of the ECOSSE model and the plant input, esti-

mates refer to Smith et al. (2010a) and Dondini et al. (2015b).

The minimum ECOSSE input requirements for site-specific

simulations are as follows:

Climate/atmospheric data:

• 30-year average monthly rainfall, potential evapotranspira-

tion (PET) and temperature,

• Monthly rainfall, temperature and PET.

Soil data:

• Initial soil C content (kg ha�1),

• Soil sand, silt and clay content (%),

• Soil bulk density (g cm�3),

• Soil pH and

• Soil depth (cm).

Land-use data:

• Land use for each simulation year.

The initialization of the model is based on the assumption that

the soil column is at steady state under the initial land use at the

start of the simulation. Previous work has used soil organic car-

bon (SOC) measured at steady state to determine the plant inputs

that would be required to achieve an equivalent simulated value

(e.g. Smith et al., 2010a). This approach iteratively adjusts plant

inputs until measured and simulated values of SOC converge. In

the absence of additional measurements, estimated plant inputs

were calculated from a feature built in the ECOSSE model which

combine the NPP model Miami (Lieth, 1972, 1973), land-manage-

ment practices of the initial land use and measured above-ground

biomass (details are given in Dondini et al., 2015b).

Data

In 2011–2013, four sites were sampled in Britain using a paired

site comparison approach (Keith et al., 2015; Rowe et al., 2015).

© 2015 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., 8, 925–940
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The sites and the relative measurements contribute to the

ELUM (Ecosystem Land Use Modelling & Soil Carbon GHG

Flux Trial) project (Harris et al., 2014). Each site consisted of

one reference field (arable or grassland, depending on the pre-

vious land use of the bioenergy fields) and one or more adja-

cent bioenergy fields (Miscanthus, SRC-Willow, SRF-Scots Pine),

for a total of six transitions to bioenergy at four site across UK

(Table 1). A full description of the sites can be found in Drewer

et al. (2012, 2015); J. McCalmont, N. McNamara, I. Donnison

and J. Clifton-Brown (in preparation); and Z. M. Harris, G.

Alberti, J. R. Jenkins, E. Clark, R. Marshall, R. Rowe, N. McNa-

mara and G. Taylor (in preparation).

At each bioenergy and reference field, the NEE data were

obtained from continuous EC measurements (McMillen, 1988;

Aubinet et al., 2012) using open path IRGAs (LI-7500) and sonic

anemometers. All details regarding the EC data corrections,

quality control, footprint and gap filling procedures can be

found in Aubinet et al. (2003). The night time fluxes were used

to partition the NEE flux measurements into GPP and Reco

(Reichstein et al., 2005).

Soil GHG fluxes were measured on a monthly basis at eight

points randomly distributed within each field. Soil CO2 fluxes

were measured using an IRGA connected to an SRC-1 soil

respiration chamber (PP Systems, Amesbury, MA, USA). Mea-

surements of soil CH4 and N2O fluxes were made using a static

chamber method (approx. 30 l) with the addition of a vent to

compensate for pressure changes within the chamber during

times of sampling. Gas samples were analysed by gas chromato-

graph. All details regarding the chamber data can be found in

Drewer et al. (2012), Yamulki et al. (2013) and Case et al. (2014).

Measurements of soil C, soil bulk density and soil pH to 1 m

soil depth, as well as information on the land-use history, were

collected for each field (Keith et al., 2015; Rowe et al., 2015). Soil

texture was measured for each site up to a depth of 30 cm; val-

ues to 1 m soil depth were extracted from the soil database

(1 km resolution) described in Bradley et al. (2005), which is a

collated soils data set for England and Wales, Scotland and

Northern Ireland. Air temperature and precipitation data at

each location were extracted from the E-OBS gridded data set

from the EU-FP6 project ENSEMBLES, provided by the

ECA&D project (Haylock et al., 2008). This data set is known as

E-OBS and is publicly available (http://eca.knmi.nl/). For each

location, monthly air temperature and precipitation for the

30 years before measurements started were used to calculate a

long-term average (Table 2). At each site, air temperature and

precipitation were collected during the entire study period and

monthly values were used as input to the model. Monthly PET

was estimated using the Thornthwaite method (Thornthwaite,

1948), which has been used in other modelling studies when

direct observational data have not been available (e.g. Smith

et al., 2005; Dondini et al., 2015a).

Model evaluation and statistical analysis

Monthly simulations of soil CO2, N2O and CH4 fluxes were

evaluated against monthly chamber measurements. In addition,

the soil CO2 predicted by the ECOSSE model was compared to

estimates of Rh derived from the NEE measured by the EC.

At each site, the ECOSSE model has been run for the refer-

ence field (i.e. no land-use transition) and the bioenergy crop

field (i.e. following transition from the reference land cover).

The reference fields have been run for the conventional crop

(arable, grassland) with no LUC, and the length of the simula-

tions has been defined by the age of the plantation. At the

bioenergy sites, the model has been run for the reference fields

(conventional crop) with LUC to bioenergy crop; the length of

the simulations was based on the time after transition to bioen-

ergy crop. Measured soil characteristics and meteorological

data have been used as inputs to drive the model (see above

for input details), and the results of the simulations were

compared to the GHG fluxes measured at the sites.

We expected a monthly underestimate of the soil CO2 flux

simulations because the ECOSSE model simulates Rh (from

living micro-organisms + decomposition of old C sources, i.e.

saprotrophic), while the CO2 fluxes measured at the sites repre-

sent the total CO2 efflux from the soil profile (Ra + Rh, chamber

Table 1 Details of soil C, soil bulk density and soil pH to 1 m soil depth, as well as information on the land-use history at the study

fields. Soil texture to 1 m soil depth was extracted from the soil database (1 km resolution) described in Bradley et al. (2005)

Site Land use

Latitude,

longitude

Establishment

year Carbon (%) Nitrogen (%)

Bulk density

(g cm�3)

West Sussex Short rotation

coppice (SRC)-Willow

50.9,�0.4 2008 0.63 0.17 1.50

Grassland 50.9, �0.4 2000 0.53 0.17 1.55

East Grange Short rotation forestry

(SRF)-Scots Pine

56.0, �3.6 2009 0.95 0.18 1.47

Grassland 56.0, �3.6 2009 1.30 0.17 1.49

SRC-Willow 56.0, �3.6 2009 1.57 0.17 1.38

Arable 56.0, �3.6 Pre-1990 1.37 0.18 1.57

Lincolnshire SRC-Willow 53.1, �0.3 2006 1.26 0.11 1.41

Miscanthus 53.1, �0.4 2006 1.30 0.13 1.53

Arable 53.1, �0.5 Pre-1990 1.47 0.13 1.37

Aberystwyth Miscanthus 52.4, �4.0 2012 0.98 0.25 1.21

Grassland 52.4, �4.0 Pre-2007 1.16 0.26 1.45

© 2015 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., 8, 925–940
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measurements) or NEE (EC measurements). To compare the

modelled and measured Rh, we estimated the Rh as a propor-

tion of the measured CO2 flux, depending on the measurement

type (except EC data), vegetation type and growing season.

The EC measurements of NEE were used to derive Reco; to

our knowledge, only the study by Abdalla et al. (2014) has

reported estimates of Rh from Reco. Abdalla et al. (2014) applied

the approach proposed by Hardie et al. (2009) for peaty soils

and reported a contribution of Rh to Reco of 46–59%.

To represent the variations in Rh throughout the year,

Abdalla et al. (2014) assumed that Rh was at the lowest value of

the range (46% Reco) during the summer (June–August), the

highest value (59% Reco) during the winter (December–Febru-

ary) and at the mean value (52.5% Reco) during the rest of the

year (March–May and September–November). In this study,

we used the same approach of Abdalla et al. (2014) to derive Rh

from EC measurements from all land-use systems.

Chamber measurements represent the total CO2 flux from

the soil as the sum of Ra and Rh, with the exception of grass-

land where exclusion of full leaves from the chamber is diffi-

cult, and therefore, above-ground plant respiration is also

included in the measurements. We conducted a literature

review to determine the partitioning of Rtot measured by the

chambers under different vegetation types. Additional experi-

ments within the ELUM project were also undertaken to

directly quantify Rh and Ra at selected network sites (data not

shown); where available, we used the Rh site data to estimate

Rh from Rtot measured by the chambers (Lincolnshire – Mis-

canthus, West Sussex – SRC-Willow, Aberystwyth – Miscant-

hus). An overview of the data source and the monthly

proportion of Rh for each vegetation type and at each site are

shown in Table 3.

A quantitative statistical analysis was undertaken to deter-

mine the coincidence and association between measured and

modelled values, following methods described in Smith et al.

(1997) and Smith & Smith (2007). The statistical significance of

the difference between model outputs and experimental

observations can be quantified if the standard error of the mea-

sured values is known (Hastings et al., 2010). The standard

errors (data not shown) and 95% confidence intervals around

the mean measurements were calculated for all field sites.

The degree of association between modelled and measured

values was determined using the correlation coefficient (r).

Values for r range from �1 to +1. Values close to �1 indicate a

negative correlation between simulations and measurements,

values of 0 indicate no correlation and values close to +1 indi-

cate a positive correlation (Smith & Smith, 2007). The signifi-

cance of the association between simulations and

measurements was assigned using a Student’s t-test as outlined

in Smith & Smith (2007).

Analysis of coincidence was undertaken to establish how

different the measured and modelled values were. The degree

of coincidence between the modelled and measured values was

determined using the lack of fit statistic (LOFIT), and its signifi-

cance was assessed using an F-test (Whitmore, 1991) indicating

whether the difference in the paired values of the two data sets

is significant. The EC measurements were not replicated, so the

coincidence between measured and modelled values was deter-

mined using the mean difference (M), calculated as the sum of

the differences between measured and modelled values and

divided by the total number of measurements (Smith et al.,

1997). The variation across the different measurements was

then used to calculate the value of Student’s t-test and com-

pared to the t distributions (two-tailed test) to obtain the proba-

bility that the mean difference is statistically significant. All

statistical results were considered to be statistically significant

at P < 0.05.

Results

The ECOSSE model was evaluated by comparing the

outputs to the EC-derived and IRGA-derived Rh fluxes

from eleven fields over four sites, representing the

Table 2 Long-term (30 years) monthly rainfall, temperature, potential evapotranspiration (PET). Monthly rainfall and temperature

were extracted from the E-OBS data set (Haylock et al., 2008; http://eca.knmi.nl/). Monthly PET was estimated using the Thornth-

waite method (Thornthwaite, 1948)

Month

Aberystwyth East Grange Lincoln West Sussex

Rain

(mm)

Temperature

(˚C)

PET

(mm)

Rain

(mm)

Temperature

(˚C)

PET

(mm)

Rain

(mm)

Temperature

(˚C)

PET

(mm)

Rain

(mm)

Temperature

(˚C)

PET

(mm)

January 152 4 15 103 3 11 48 4 13 80 5 16

February 112 4 17 72 3 15 37 4 17 54 5 18

March 124 5 29 74 5 27 41 6 30 55 7 30

April 86 7 45 53 7 47 43 9 48 46 9 48

May 82 10 69 61 10 72 45 12 73 47 12 73

June 93 13 89 60 13 96 56 14 97 48 15 95

July 105 15 101 67 14 105 49 17 112 49 17 110

August 114 14 93 77 14 96 55 17 103 52 17 103

September 121 13 71 84 12 70 49 14 76 60 15 79

October 174 10 46 100 9 43 55 11 46 99 12 51

November 171 7 27 94 5 22 53 7 25 88 8 29

December 168 4 17 91 3 12 51 4 14 86 6 18
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Table 3 Contribution of heterotrophic respiration (Rh) on total respiration (Rtot) at the study sites

Arable SRC-Willow

Miscanthus

Grassland SRF-Scots Pine

Koerber

et al. (2010)

Pacaldo et al.

(2013)

Byrne &

Kiely (2006) Millard et al. (2010)

Lincolnshire January 32% Rtot 75% Rtot 41% Rtot
*

February 32% Rtot 75% Rtot 41% Rtot
*

March 32% Rtot 75% Rtot 85% Rtot
*

April 32% Rtot 75% Rtot 85% Rtot
*

May 32% Rtot 75% Rtot 85% Rtot
*

June 79% Rtot 75% Rtot 85% Rtot
*

July 79% Rtot 75% Rtot 44% Rtot
*

August 79% Rtot 75% Rtot 44% Rtot
*

September 79% Rtot 75% Rtot 44% Rtot
*

October 67% Rtot 75% Rtot 44% Rtot
*

November 67% Rtot 75% Rtot 41% Rtot
*

December 67% Rtot 75% Rtot 41% Rtot
*

West Sussex January 82% Rtot
* 60% Rtot

†

February 82% Rtot
* 60% Rtot

†

March 82% Rtot
* 60% Rtot

†

April 82% Rtot
* 60% Rtot

†

May 82% Rtot
* 60% Rtot

†

June 82% Rtot
* 40% Rtot

†

July 82% Rtot
* 40% Rtot

†

August 82% Rtot
* 40% Rtot

†

September 82% Rtot
* 60% Rtot

†

October 82% Rtot
* 60% Rtot

†

November 82% Rtot
* 60% Rtot

†

December 82% Rtot
* 60% Rtot

†

Aberystwyth January 62% Rtot
* 60% Rtot

†

February 62% Rtot
* 60% Rtot

†

March 36% Rtot
* 60% Rtot

†

April 36% Rtot
* 60% Rtot

†

May 36% Rtot
* 60% Rtot

†

June 36% Rtot
* 40% Rtot

†

July 36% Rtot
* 40% Rtot

†

August 36% Rtot
* 40% Rtot

†

September 36% Rtot
* 60% Rtot

†

October 36% Rtot
* 60% Rtot

†

November 62% Rtot
* 60% Rtot

†

December 62% Rtot
* 60% Rtot

†

East Grange January 32% Rtot 25% Rtot 60% Rtot
† 61% Rtot

February 32% Rtot 25% Rtot 60% Rtot
† 61% Rtot

March 32% Rtot 25% Rtot 60% Rtot
† 61% Rtot

April 32% Rtot 25% Rtot 60% Rtot
† 61% Rtot

May 32% Rtot 25% Rtot 60% Rtot
† 61% Rtot

June 79% Rtot 25% Rtot 40% Rtot
† 61% Rtot

July 79% Rtot 25% Rtot 40% Rtot
† 61% Rtot

August 79% Rtot 25% Rtot 40% Rtot
† 61% Rtot

September 79% Rtot 25% Rtot 60% Rtot
† 61% Rtot

October 67% Rtot 25% Rtot 60% Rtot
† 61% Rtot

November 67% Rtot 25% Rtot 60% Rtot
† 61% Rtot

December 67% Rtot 25% Rtot 60% Rtot
† 61% Rtot

*Values derived from direct measurements on root-exclusion plots.

†Where Rtot is 60% of measured CO2 to account for plant respiration.
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following land-use systems: grassland (permanent), ara-

ble (barley), Miscanthus, SRC-Willow and SRF-Scots

Pine.

Soil CO2 fluxes under Miscanthus were measured at

two sites, Lincolnshire and Aberystwyth. At both sites,

the modelled Rh followed the same seasonal pattern of

measured data (Fig. 1). At the Lincolnshire site, a statis-

tically significant association between modelled and EC-

derived Rh (r = 0.54) was found, but a small significant

bias in the model simulations when tested against the

EC-derived Rh was also found (Table 4). On the other

hand, the IRGA-derived Rh did not correlate well with

the modelled outputs (r = 0.29), but no bias was found

in the model simulations (Table 4).

At the Aberystwyth site, significant association

between modelled and measurement-derived Rh was

found, regardless the type of measurement used. A

slightly higher correlation coefficient was calculated

correlating the modelled Rh with the EC-derived Rh

(r = 0.70) compared to the one arising from the corre-

lation with the IRGA-derived Rh (r = 0.64). No signifi-

cant error between simulated and IRGA-derived Rh

was found for this site, but a bias in the model was

found when it was tested against the EC-derived Rh

(Table 4).

The model performance to simulate soil CO2 fluxes

under SRC-Willow was tested against measurements

taken at three sites: Lincolnshire, West Sussex and East

Grange (Fig. 2). At all sites, a good agreement was

found between simulations and measurement-derived

Rh with r values ranging from 0.44 to 0.77. Also, no sig-

nificant error between simulated and measurement-

derived Rh was found, with the exception of the EC-

derived Rh at the Lincolnshire site (Table 4).

Model performance to simulate soil CO2 fluxes under

SRF-Scots Pine has been evaluated against data collected

at the East Grange site (Fig. 3). The modelled outputs fol-

lowed the same pattern of the measured values, and the

statistical analysis showed good correlation with both

IRGA- and EC-derived Rh. Moreover, we found no statis-

tically significant error between modelled and measured

values as well as no bias in the model (Table 4).

Model simulations of soil Rh have also been evaluated

for conventional crops (arable and grassland). Overall,

(a)

(b)

Fig. 1 Eddy covariance derived (dotted line with diamond markers), IRGA derived (filled triangle) and modelled (solid line with circle

markers) monthly heterotrophic CO2 (Rh) underMiscanthus plantations during the measurement period.
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the simulated CO2 follows the same pattern as the mea-

sured values at all sites (Figs 4 and 5). The statistics

highlighted a significant correlation (ranging between

0.48 and 0.87 across all sites and measurements types)

and no significant error between modelled and mea-

sured values as well as no model bias under perennial

grass (Table 4). For the arable fields, the modelled CO2

was significantly correlated to the measured value just

for the IRGA-derived Rh at the Lincolnshire site

(r = 0.75); however, no bias in the model was found at

any site, regardless of the measurement types used for

the model evaluation (Table 4).

Monthly fluxes of CH4 and N2O were shown to be

highly variable, both spatially and temporally, across all

land uses, so we present an example of the correlation

between modelled and measured soil N2O and CH4

fluxes for each land use. Both N2O and CH4 are very

small fluxes and the model outputs were within the

(a)

(b)

(c)

Fig. 2 Eddy covariance derived (dotted line with diamond markers), IRGA derived (filled triangle) and modelled (solid line with cir-

cle markers) monthly heterotrophic CO2 (Rh) under SRC-Willow plantations during the measurement period.
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Fig. 3 Eddy covariance derived (dotted line with diamond markers), IRGA derived (filled triangle) and modelled (solid line with

circle markers) monthly heterotrophic CO2 (Rh) under short rotation forestry-Scots Pine plantation during the measurement period.

(a)

(b)

Fig. 4 Eddy covariance derived (dotted line with diamond markers), IRGA derived (filled triangle) and modelled (solid line with

circle markers) monthly heterotrophic CO2 (Rh) under arable plantations during the measurement period.

© 2015 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., 8, 925–940

934 M. DONDINI et al.



errors of the measurements, for both GHGs and at all

sites (data not shown). However, low correlation

between measured and modelled values has been found

for the majority of the sites, ranging from �0.02 to 0.61

for N2O and from �0.29 to 0.53 for CH4. The high vari-

ability of the measured N2O and CH4 fluxes led to a

statistically significant error between simulated and

measured values at most of the study sites (Tables 5

and 6).

Discussion

Soil CO2 emissions under Miscanthus have been quanti-

fied at two sites (Lincolnshire and Aberystwyth) using

two different sampling methods (EC and IRGA meth-

ods). At both sites, we found a high correlation

between measured and modelled Rh, ranging from 0.54

to 0.60, except for the IRGA values at Lincolnshire site

(r = 0.29, Table 4). The lack of association at this site

(a)

(b)

(c)

Fig. 5 Eddy covariance derived (dotted line with diamond markers), IRGA derived (filled triangle) and modelled (solid line with circle

markers) monthly heterotrophic CO2 (Rh) under grassland plantation during the measurement period.
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was mainly due to differences between modelled and

IRGA-derived Rh in the year 2013 (Fig. 1b). In April

2013, the soil was harrowed and disked to break up

the rhizomes for improved yield, so the system was

out of balance; the farmer also applied waste wood

products, which led to high CO2 emissions, undetected

by the model (May–August 2013 in Fig. 1b) as this was

not included in the management file. In the ECOSSE

model, the patterns of C and N debris return during

the growing season follow a standard exponential rela-

tionship, as originally derived by Bradbury et al.

(1993). Any alteration, such as harrowing or waste

application, cannot be easily entered by the user. The

scope of the present study is to evaluate the model

using independent data which has not been used to

develop the model. Therefore, we deliberately chose

not to apply any modifications to the model to fit the

measured data. However, the model was able to simu-

late independent data derived from two different

sources with a good degree of accuracy.

Soil CO2 emissions under SRC-Willow and SRF-Scots

Pine plantations have been quantified using the same

sampling methods. At all sites, the modelled Rh signifi-

cantly correlated with all types of measurements, show-

ing no significant error between measured and

modelled values (Fig. 2).

The model has also been tested against CO2 fluxes

measured under conventional crops. At all three grass-

land sites (West Sussex, Aberystwyth and East Grange),

the measured CO2 fluxes correlate significantly with the

modelled values and the statistical analysis showed no

error between measured and modelled values, and no

bias in the model (Fig. 5). This is a striking result which

underlines the good quality of the data provided for the

model evaluation, as well as the good model perfor-

mance to simulate soil CO2 fluxes.

Under grassland, Rh derived from the IRGA measure-

ments does not always show a high correlation with the

modelled values, particularly during the summer

months (Fig. 5). This lack of correlation is mainly due to

the difficulties in the separation of soil respiration from

grassland, due to the possible inclusion of vegetation

within the chamber. When deriving Rh from grassland,

we estimated that 60% of the measured CO2 can be

attributed to plant (leaf) respiration, as reported by

Byrne & Kiely (2006), but this crude estimate does not

always reflect the field conditions. For an accurate quan-

tification of the proportion of the CO2 derived from the

plant occluded in the chambers, field experiments

would be needed to explicitly quantify plant respiration

and biomass.

The analysis of the soil Rh fluxes from the arable

fields reveals reasonable model performance at the Lin-

colnshire site, while at the East Grange site, correlationT
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between modelled and measured IRGA values was poor

(Table 4). This discrepancy between modelled and

measurement-derived Rh appears to be due to the nat-

ure of the source data; in fact, the IRGA-derived Rh is

estimated from a single data point which is taken to

represent monthly CO2 fluxes. Therefore, the monthly

CO2 flux might not be properly represented if high flux

variation occurred within the month. Another explana-

tion could also be the discontinuity of the IRGA mea-

surements taken at the East Grange site (Fig. 4b). The

latter hypothesis is supported by the Rh results of the

arable field at the Lincolnshire site. In fact, the IRGA

measurements at the Lincolnshire site have been taken

over a 2-year period, and the statistical analysis shows a

good correlation against the model output (r = 0.75;

Table 4). Therefore, we conclude that the low correla-

tion at the East Grange arable field is mainly due to the

variability and quantity of the measurements, and that

the model accurately describes the CO2 emissions from

arable crop.

Generally, the model was able to predict seasonal

trends in Rh at most of the sites; however, the model

occasionally over/underestimated the flux values dur-

ing the warm weather in spring and summer. This is

particularly evident at the Lincolnshire site, resulting in

a high mean difference between modelled and EC-

derived Rh (Table 4). Despite using a generic method to

estimate Rh from Reco, therefore providing a challenging

test for the model, we found no significant mean differ-

ence between modelled and EC-derived Rh at three sites

(for a total of four land uses), proving that the model

adequately simulates soil processes under different

land-use systems and climate/soil conditions.

Low correlation between measurements and model

simulations arose predominantly when comparing

model outputs against the IRGA-derived data set; this is

mainly due to the nature of the measurements (single

data point representing total monthly CO2 flux), an

aspect not related to the soil processes described in the

model. However, it is to notice that the IRGA-derived Rh

has been estimated from direct measurements of total

soil respiration and the degree of correlation between

measured and modelled Rh is also related to the Rh : Rtot

ratio adopted. On the other hand, the EC-derived Rh

was estimated from the Reco during daytime, which is a

modelled flux driven by air temperature and other envi-

ronmental factors. Further model evaluation should be

based on comparison of the model output with direct

measurements of soil Rh fluxes, possibly using automatic

chambers on soil plots where roots have been excluded.

This measurement technique would provide continuous

Rh measurements which would be directly comparable

to the model outputs and therefore would provide a

more accurate evaluation of the performance of theT
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model. However, given the very limited input data used

to run the model and the number of sites/locations used

for the model evaluation, we conclude that the simula-

tions are robust and the model adequately simulate soil

CO2 fluxes under five land-use systems.

Model simulations of N2O and CH4 fluxes resulted

in low correlation and association at most of the study

sites (Tables 5 and 6), which is expected with such

low fluxes, and does not represent a failure of the

model. In fact, the measured N2O and CH4 fluxes are

pooled from sample data points containing outliers

and extreme variation between sample points in each

site, which results in a high standard error of the

measured values. But the N2O and CH4 flux simula-

tions are within the 95% confidence interval of the

measured values, showing that the model cannot be

improved to better fit these data and suggesting that

the lack of correlation between modelled and

measured values is due to the high variation in the

measured fluxes, which is a common phenomenon

verified in many N2O (e.g. Oenema et al., 1997; Skiba

et al., 2013; Cowan et al., 2015) and CH4 flux measure-

ment experiments (Parkin et al., 2012; Savage et al.,

2014). Moreover, if the measured values do not show

any seasonal trend, a significant correlation with the

model outputs cannot be obtained (Smith & Smith,

2007) and low correlation is expected.

Measured fluxes of CH4 were shown to be negligible

across all land uses and their contribution to the total

GHG balance, when converted to CO2 equivalent, was

on average <0.2%, except for the Miscanthus field at the

Aberystwyth site (3% of the total GHG balance). The

high mean value recorded for Miscanthus in 2012 is

driven by one replicate with very high CH4 production

and there was large standard error associated with the

measurements. In general, CH4 production or consump-

tion was negligible also for this field.

Across all land uses, measured fluxes of N2O

represent a small proportion (<1.5%) of the total GHG

balance, with the exception of the arable field at the Lin-

colnshire site and the Miscanthus field at the Aberyst-

wyth site (6% of the total GHG balance over the 2 years

measurement period at both fields). Due to technical

issues and issues regarding access to sites for sampling,

the data set for the arable and SRC-Willow fields at East

Grange is missing a substantial number of months, and

therefore, it was not possible to determine the annual

GHG balance.

Despite the very low values of the CH4 and N2O

fluxes, and their small contribution to the total GHG

balance at all experimental sites, both fluxes have been

modelled adequately on a monthly time-step and no

improvements can be made to the model with the avail-

able flux data.

In this study, all major GHG fluxes from five land-use

systems were reasonably well estimated using the

ECOSSE model. The results from this evaluation exer-

cise show that ECOSSE is robust for simulating GHG

fluxes from cropland, grassland, SRC-Willow, SRF-Scots

Pine and Miscanthus (and transitions from the former

two land uses to the latter three energy crops). This vali-

dation builds confidence that the model can be used to

investigate the impacts of land-use transitions spatially

in the UK and to investigate the effects of converting

large areas to grow bioenergy crops.
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