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Abstract 

Purpose: Supplementation with dietary forms of vitamin D is commonplace in clinical medicine, elite 

athletic cohorts and the general population, yet the response of all major vitamin D metabolites to high 

doses of vitamin D is poorly characterized. We aimed to identify the responses of all major vitamin D 

metabolites to moderate and high dose supplemental vitamin D3. 

Methods: A repeated measures design was implemented in which 46 elite professional European 

athletes were block randomized based on their basal 25[OH]D concentration into two treatment 

groups. Athletes received either 35,000 or 70,000 IU.week-1 vitamin D3 for 12 weeks and 42 athletes 

completed the trial. Blood samples were collected over 18 weeks to monitor the response to 

supplementation and withdrawal from supplementation. 

Results: Both doses led to significant increases in serum 25[OH]D and 1,25[OH]2D3. 70,000 IU.week-

1 also resulted in a significant increase of the metabolite 24,25[OH]2D at weeks 6 and 12 that persisted 

following supplementation withdrawal at week 18, despite a marked decrease in 1,25[OH]2D3. Intact 

PTH was decreased in both groups by week 6 and remained suppressed throughout the trial. 

Conclusions: High dose vitamin D3 supplementation (70,000 IU.week-1) may be detrimental for its 

intended purposes due to increased 24,25[OH]2D production. Rapid withdrawal from high dose 

supplementation may inhibit the bioactivity of 1,25[OH]2D3 as a consequence of sustained increases in 

24,25[OH]2D that persist as 25[OH]D and 1,25[OH]2D concentrations decrease. These data imply that 

lower doses of vitamin D3 ingested frequently may be most appropriate and gradual withdrawal from 

supplementation as opposed to rapid withdrawal may be favorable.  

 

Key Terms: 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D, 1,25-dihydroxyvitamin D3, 

parathyroid hormone, vitamin D 
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Text 1 

Introduction 2 

Vitamin D and its metabolites can be described as a group of seco-steroid hormones derived primarily 3 

from dermal synthesis following ultraviolet B (UVB) radiation exposure (sunlight) and also from the 4 

diet. Cholecalciferol (vitamin D3), resulting from both skin exposure to UVB and in limited amounts 5 

from dairy products, oily fish and meat, is considered to be the major contributor to vitamin D 6 

concentration (13); whereas ergocalciferol (vitamin D2) is exclusively derived from the diet of 7 

irradiated plants and mushrooms, and appears to have less biological significance. Following the 8 

photosynthetic conversion of 7-dehydrocholesterol to pre-vitamin D3 and subsequently vitamin D3 (or 9 

cholecalciferol, 13) or following dietary intake, vitamin D is transported in the circulation to the liver 10 

bound to the vitamin D binding protein (DBP), where it is hydroxylated at C-25 by the cytochrome 11 

P450 enzyme CYP27A1 (25-hydroxylase) to form 25-hydroxyvitamin D (25[OH]D or calcidiol). This 12 

metabolite is then carried, again by DBP, to the kidney where at the proximal renal tubule it is 13 

hydroxylated by CYP27B1 (1α-hydroxylase) at C-1α to form the biologically active metabolite, 1,25-14 

dihydroxyvitamin D3 (1,25[OH]2D or calcitriol)(1). The active compound, 1,25[OH]2D has long been 15 

known as a potent modulator of mineral homeostasis via transactivation of genes related to the 16 

maintenance of calcium and phosphate homeostasis. This biological activity is achieved through 17 

interaction of 1,25[OH]2D3 with its receptor, the vitamin D Receptor (VDR), which heterodimerizes 18 

with retinoid X receptor to form a transcriptional complex that can bind to vitamin D response 19 

elements in the promoter of vitamin D regulated genes (11). 20 

 21 

In the past decade, understanding of the biological effects of vitamin D has grown exponentially due 22 

to the development of the vitamin D knockout mouse (21) and high throughput gene microarray 23 

techniques (2). Vitamin D is now understood to be not only an important regulator of mineral 24 

homeostasis but may be influential in cell proliferation and differentiation (20), innate and acquired 25 

immunity (12), muscle development and repair (25, 26) and in the prevention of psychological 26 

diseases such as Alzheimer’s. This is particularly pertinent given the growing understanding that low 27 

vitamin D concentrations (< 30 nmol.L-1) are highly prevalent worldwide in general (33) as well as 28 
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athletic populations (3, 23). Despite a rich research base characterizing the biological importance of 29 

vitamin D, the regulation of the vitamin D endocrine system is less well understood. Practically this is 30 

an important consideration given that some authors advocate high doses of vitamin D, be administered 31 

to individuals with osteomalacia/rickets caused by severe vitamin D deficiency (defined < 12.5 32 

nmol/L), to ameliorate symptoms (14, 18). In the context of professional sport it is commonplace to 33 

supplement entire teams with a blanket approach to vitamin D supplementation, often without basal 34 

concentrations being assessed, and with a target concentration of >100 nmol/L the aim. Perhaps even 35 

more concerning is that the sports teams have access to vitamin D in single capsule form at doses up to 36 

50,000 IU (1,250 µg) making single dose weekly supplementation with mega doses practically very 37 

simple and without definitive guidelines for supplementation this could result in more harm than 38 

benefit. Such practice is in discord with recommendations set by the European Food Safety Authority, 39 

whom advise a safe daily upper limit of 4,000 IU.day-1
 (8), in line with advice portrayed by the US 40 

Institute of Medicine (IoM) guidelines for vitamin D intake (32). Notably the US IoM also state a no 41 

adverse effect limit (NOAEL) of 10,000 IU.day-1.  Evidence does not exist to appropriately define the 42 

effect that high dose blanket supplementation protocols, commonly employed in elite sport, have upon 43 

the negative regulators of the vitamin D endocrine system, notably 24,25-hydroxylase (CYP24A1 or 44 

24-hydroxylase), which functions to inactivate both 25[OH]D and 1,25[OH]2D3 (15) by hydroxylation 45 

at C-24. It is important to characterize the response high dose blanket approaches in order to avoid 46 

potentially detrimental effects of too much supplemental vitamin D and contribute toward the 47 

establishment of the most safe and effective vitamin D supplementation schemes for elite athletes. 48 

 49 

The current study therefore aimed to characterize the serum responses of the major vitamin D 50 

metabolites, 25[OH]D, 1,25[OH]2D3, 24,25[OH]2D and iPTH to high dose vitamin D supplementation 51 

(35,000 and 70,000 IU vitamin D3 weekly) in an elite professional team sport cohort. It was 52 

hypothesized that supplementation would dose dependently increase total serum 25[OH]D and the 53 

active metabolite 1,25[OH]2D3 in a concomitant manner but would also increase the production of 54 

24,25[OH]2D. 55 

 56 
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Methods 57 

Participants 58 

Forty-six elite male elite professional team sport athletes volunteered to participate in the current trial 59 

(Age = 26 ± 3 years, height = 1.86 ± 0.6 m, weight 101.5 ± 11 kg, fat mass 11.4 ± 3 %). Participants 60 

underwent a medical screening and provided full informed consent prior to inclusion into the study. 61 

Participants were excluded if they were currently taking vitamin D supplements, using sun beds or 62 

injured at the time of the study. Ethical approval was granted by the ethics committee of Liverpool 63 

John Moores University (Ethics code 12/SPS/047). The recruitment for the study began in November 64 

2012 and testing commenced in the same month. The study was concluded in April 2013. The study 65 

was conducted at latitude 52oN during the winter months in order to limit sunlight exposure.  66 

  67 

Supplementation 68 

Participants were randomly allocated to either 35,000 or 70,000 IU.week-1 supplemental vitamin D3 69 

(Maxi Nutrition, UK), herein referred to as moderate and high, respectively. Randomisation was 70 

achieved with blocking based on baseline serum 25[OH]D and the use of a random number table to 71 

allocate participants into balanced groups. The random allocation sequence was allocated by a 72 

member of the research team and known by the rest of the research team at the point of supplement 73 

administration. The supplemental doses were chosen based on the fact that they represent widely 74 

reported supplement strategies (PubMed literature based search), applied experience of the authors in 75 

both clinical and elite sporting settings and also the NOAEL set by the US IoM. Supplements were 76 

taken orally as a bolus in capsule form on a weekly basis to increase compliance with the protocol, 77 

which was 100% as club staff were present during the weekly distribution of supplementation and 78 

monitored the ingestion of capsules in order to track compliance. Supplementation continued for 12 79 

weeks at which point supplementation was ceased to monitor the response of vitamin D metabolites to 80 

withdrawal. Participants were blinded to the supplement they were receiving. Forty two players 81 

completed the trial whilst four dropped out or were excluded for the following reasons; one player did 82 

not tolerate venipuncture, one player would not comply with the supplementation protocol, two 83 

players used sun beds during the trial. The vitamin D supplements were batch screened by 84 
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chromatography and mass spectrometry for contaminants and confirmation of vitamin D content 85 

stated on the label. Screening was performed in accordance with ISO standard 17025. Sunlight 86 

exposure was minimal during the trial due to the latitude at which the players were based. Participants 87 

travelled for a two-day match fixture to a foreign climate at latitude 43oN, in December during a 88 

period of significant cloud cover. Thus, players were exposed to minimal amounts of sunlight during 89 

the study period although no direct measurement of UV exposure was taken. 90 

 91 

Blood Sampling 92 

Blood samples were drawn prior to supplementation (basal and then at 6, 12 and 18 (withdrawal) 93 

weeks from the start of supplementation. Blood was obtained from the antecubital vein into two serum 94 

separator tubes and two K2EDTA tubes (Becton, Dickinson and Co. Oxford, UK). Samples were then 95 

separated to isolate serum/plasma via centrifugation at 1500 RCF for 15 minutes at 4 oC. 96 

Serum/plasma was extracted and stored at -80 oC until required for analysis. All samples were 97 

collected in the medical room of a professional sports club. 98 

 99 

Analysis of Vitamin D Metabolites and Parathyroid Hormone 100 

Liquid chromatograph tandem mass spectrometry (LC-MS/MS) analysis of 25[OH]D3, 25[OH]D2, 101 

24,25[OH]2D3 and 24,25[OH]2D2 was performed using a Micromass Quattro Ultima Pt mass 102 

spectrometer (Waters Corp., Milford, MA, USA). NIST SRM972a traceable 25[OH]D3 and 25[OH]D2 103 

calibration standards (Chromsystems, München, Germany) and quality controls (UTAK Laboratories, 104 

CA, USA) were purchased commercially, ranged from 0-200 nmol/L. 24,25[OH]2D3 and 105 

24,25[OH]2D2 calibration standards were prepared from certified standards (IsoSciences, King of 106 

Prussia, PA, USA) spiked into human vitamin D depleted serum (BBI Solutions, Cardiff, UK), ranged 107 

from 0-14.8 nmol/L. To 100 L of human serum samples, calibration standards and quality controls, 108 

200 L of pretreatment solution consist of deuterated 25[OH]D3-[2H6] and 24R,25[OH]2D3-[2H6] in 109 

isopropanol:water 50:50 (v/v) was added to displace binding proteins. After mixing, the samples were 110 

loaded onto Supported Liquid Extraction (SLE+) plates (Biotage, Uppsala, Sweden), which were 111 
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eluted with 1.5 mL of n-heptane. The extraction procedure was performed by Extrahera positive 112 

pressure automation system (Biotage). Eluents were dried under nitrogen, followed by reconstitution 113 

with 50 L 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) (Sigma-Aldrich, Dorset, UK). After a 30 114 

minute incubation period at room temperature, 50 L of water was added to stop the reaction. 20 L 115 

of the derivatised extracts were injected into LC-MS/MS. Separation of vitamin D metabolites were 116 

achieved using core-shell C18 2.7m 50  2.1mm (Restek, PA, USA) reversed-phase column. A 117 

gradient elution profile was set up using mobile phase (A) LCMS grade water and (B) methanol 118 

containing 0.2 mM methylamine in 0.1% formic acid. The gradient at the start was 50:50 (v/v) at 119 

column flow rate of 0.4 mL/min, gradually increased to 99% B. 24,25[OH]2D3/D2 and 25[OH]D3/D2 120 

peaks were eluted at 1.39, 1.42, 1.68 and 1.73 minutes respectively (See Supplementary Digital 121 

Content 1, A Chromatogram from an extracted sample containing 86 nmol/L of 25[OH]D3/D2 and 122 

5.3 nmol/L of 24,25[OH]2D3/D2). Optimisation of MS/MS conditions were carried out by direct 123 

infusion of derivisated standards into the ion source via a T-connector. The precursor to product ion 124 

transitions were based on the molecular weight of the methylamine adduct of PTAD derived products 125 

(See Supplementary Digital Content 2, a table highlighting mass spectrometer parameter settings 126 

and multiple reaction monitoring (MRM) precursor to product ion transitions for 25[OH]D3/D2 and 127 

24,25[OH]2D3/D2.). 128 

 129 

Measurements of total 1,25[OH]2D were carried out using a commercially available enzyme 130 

immunoassay kit (IDS, Boldon, UK). Duplicate samples underwent immunoextraction with a 131 

1,25[OH]2D specific solid phase monoclonal antibody and incubated overnight with sheep anti-132 

1,25[OH]2D. 1,25[OH]2D linked biotin was added the next day, followed by horseradish peroxidase 133 

labelled avidin to selectively bind to biotin complex. After a wash step, colour was developed using a 134 

chromogenic substrate (3, 5’, 5, 5’- Tetramethylbenzidine; TMB). The absorbance of the stopped 135 

reaction mixtures were read in a microtiter plate spectrophotometer (Multiskan Go, Thermo Scientific, 136 

Finland) at wavelength of 450 nm. 137 

 138 
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Intact parathyroid hormone in K2EDTA plasma samples were determined by 139 

electrochemiluminescence immunoassay (ECLIA) performed using Roche e601 analyser (Mannheim, 140 

Germany). Two labelled monoclonal antibodies were employed to react with the N-terminal fragment 141 

(1-37) and C-terminal fragment (38-84) of PTH; forming a sandwich complex. The antibody complex 142 

was magnetically captured and washed to remove unbound substances. A voltage was applied to 143 

induce chemiluminiescent emission, which was measured by a photomultiplier. 144 

 145 

Assay validation 146 

Summary of assay characteristics are described in Supplementary Digital Content 3 (A table 147 

highlighting the assay characteristics for each parameter measured). Linearity of the methods were 148 

evaluated by analysing stock standards made up from reference calibration solutions spiked into 149 

human sera. Standard curve was constructed by plotting the analyte response against the concentration 150 

of their respective standards. A calibration curves were accepted as linear if the weighted linear 151 

regression produced a correlation coefficient (r2) value of >0.999. Intra and inter-assay imprecision of 152 

the methods were assessed by running quality control (QC) materials 10 times within a single run and 153 

separately over a three-month period. Assays were deemed acceptable when the QC results fall within 154 

±2SD from the mean value. Lower limit of quantification (LLoQ) was determined by the lowest 155 

concentration quantifiable with a precision CV of 20% over 12 replicates and minimum peak signal-156 

to-noise ratio of 10:1 (16). Assay recovery was determined by analysing samples containing a fixed 157 

amount of the analyte and calculate the percentage of the measured value against the sum of 158 

endogenous value plus spiking concentration. 159 

  160 

Statistical Analyses 161 

Comparisons of basal total serum 25[OH]D concentration for the two dose groups were made using an 162 

independent t-test. The effects of vitamin D dose and time on all repeated measures variables was 163 

determined using linear mixed modeling. Time (basal, weeks 6, 12 and 18) and dose (moderate and 164 

high) were modeled as fixed effects and participants as a random effect, with time being modeled as a 165 

continuous variable where linear or quadratic responses were observed. The covariance structure that 166 
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minimized the Hurvich and Tsai’s criterion (Corrected Akaike Information Criterion; AICC) value 167 

was used for the final fitted model for each metabolite. Where significant main or interaction effects 168 

were observed, post hoc pairwise comparisons were made with Sidak adjusted p-values. All statistical 169 

procedures were conducted using SPSS v22 for Windows (IBM, Armonk, NY, USA), and two-tailed 170 

statistical significance was accepted at the p < 0.05 level. Descriptive statistics are displayed as means 171 

± standard deviation (SD). For the calculation of sample size, Minitab software was used. Pilot work 172 

from our laboratories during the winter months suggested that the standard deviation for test–retest 173 

serum 25[OH]D concentrations (taken 6 weeks apart) in young athletes is ∼12 nmol.L-1. To enable the 174 

detection of a meaningful 50 nmol.L-1 increase in total serum 25[OH]D concentration  between pre-175 

supplementation and post-supplementation with 80% power; n = 6 participants per group was 176 

required. Thus, the recruitment of an entire squad of 42 players provided a large enough sample size to 177 

make valid conclusions from the derived data. 178 

 179 

Results 180 

Of the 42 participants that were enrolled onto the trial, 40 were tested for all primary outcome 181 

measures. This was due to player commitment to international duty. However, no participants 182 

presented with adverse side effects to supplementation during the trial and thus no participant was 183 

withdrawn. Basal (pre-treatment) total serum 25[OH]D concentrations were 86 ± 20 and 85 ± 10 184 

nmol.L-1 for high and moderate treatment groups, respectively (Figure 1). These concentrations were 185 

not significantly different between groups (t = 0.20, P = 0.84). . 186 

<Figure 1> 187 

Total serum 25[OH]D, displayed a significant interaction effect (F = 4.30, P = 0.008) between dose 188 

and time. Exploration of this interaction identified that both groups showed significantly elevated 189 

25[OH]D concentrations at weeks 6 (moderate = 108 ± 22 and high = 122 ± 25 nmol.L-1) and 12 190 

(moderate = 163 ± 47 and high = 188 ± 66 nmol.L-1). However, upon supplementation withdrawal the 191 

moderate treatment group demonstrated a return to 25[OH]D concentrations comparable with basal by 192 

week 18 (P = 0.178) whereas the high treatment did not (P = 0.007; Figure 2A).  193 
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Concentrations of the bioactive metabolite, 1α,25[OH]2D3 demonstrated a significant main effect for 194 

time (F = 6.13, P = 0.001). In the moderate treatment group, peak concentrations occurred at week 6 195 

(141 ± 58 pmol.L-1). However, a delayed response was observed in the high group with peak 196 

1α,25[OH]2D3  levels occurring at week 12 (112 ± 66 pmol.L-1
, Figure 2B). Following 197 

supplementation withdrawal, the concentration of 1α,25[OH]2D3  declined significantly in both groups 198 

at week 18 (moderate, 107 ± 32 and high = 104 ± 42 pmol.L-1, P =  0.042) compared with 199 

concentrations at week 12 and were comparable with basal by this time point (P = 0.332).  200 

 201 

The inactivated metabolite, 24,25[OH]D, showed comparable values between groups at basal 202 

(moderate = 8.3 ± 2.5 and high = 7.1 ± 1.7  nmol.L-1). Both groups showed significant increases in this 203 

metabolite by week 6 (moderate, P = 0.011 and high, P = 0.000) that continued to increase between 204 

weeks 6 and 12. A significant interaction effect was also detected as the high treatment group 205 

displayed markedly higher peak 24,25[OH]D concentrations (17.3 ± 4.5 nmol.L-1) versus moderate 206 

treatment (11.8 ± 1.9 nmol.L-1).  Interestingly, whereas 1α,25[OH]2D3  declined following 207 

supplementation withdrawal, 24,25[OH]D remained significantly elevated at week 18 when compared 208 

with basal values in both treatment groups (moderate, 11.4 ± 2.2 and high, 15.7 ± 4.6 nmol.L-1; P = 209 

0.000 for both groups). 210 

  211 

Intact parathyroid hormone was significantly suppressed in both groups by week 6 (moderate = 2.3 ± 212 

0.8 and high = 1.9 ± 0.4 pmol.L-1 vs basal values in moderate = 3.2 ± 2.3 and high 2.8 ± 1 pmol.L-1) 213 

and remained suppressed throughout the trial and following the withdrawal of supplementation 214 

(moderate = 2.1 ± 0.8 and high 2 ± 0.6 pmol.L-1).  215 

<Figure 2> 216 

Several studies have also examined the ratios of 25[OH]D and 1α,25[OH]2D3 to 24,25[OH]D and it is 217 

evident that additional information can be obtained that is not always obvious when measuring 218 

absolute concentrations (17, 19, 22). In addition, it has been suggested that the ratio of 25[OH]D to 219 

24,25[OH]D is predictive of the 25[OH]D response to supplementation (34) giving important 220 

information that surpasses simply measuring the absolute values for these metabolites. Therefore we 221 
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also calculated ratio data for the relationships between 25[OH]D and 1α,25[OH]2D3 to 24,25[OH]D. 222 

The ratio between 25[OH]D and 1α,25[OH]2D3  showed a significant main effect for time (F = 3.39, P 223 

= 0.023) but no group main effect with ratio’s for both supplemental treatments decreasing over the 224 

duration of the study, reaching significance by week 12 (P = 0.039) and increasing toward pre 225 

treatment values at week 18 (Figure 3A). The ratio of 25[OH]D to the inactivated 24,25[OH]D also 226 

showed a main effect for time (F = 14.94, P = 0.000) and the absence of a group main effect. Both 227 

groups demonstrated a significant lower ratio at week 18 compared to basal (P = 0.000; Figure 3B). 228 

Finally, the ratio of the bioactive 1α,25[OH]2D3  against the inactivated 24,25[OH]D was assessed. A 229 

significant interaction effect was observed as at week 6 the moderate treatment group showed an 230 

increased ratio whilst the high treatment group showed an inverse relationship. However, by week 12 231 

both treatment groups showed a significantly lower ratio of 1α,25[OH]2D3:24,25[OH]D (P = 0.005) 232 

that was maintained at week 18 following supplementation withdrawal (P = 0.003; Figure 3C). 233 

<Figure 3> 234 

 235 

Discussion 236 

The current investigation sought to define the serum responses of the major vitamin D metabolites in a 237 

professional athletic cohort to establish the efficacy of a blanket supplementation approach using two 238 

commonly employed and commercially available doses of vitamin D3.Our main findings demonstrate 239 

that both 35,000 and 70,000 IU.week-1 oral vitamin D3 supplementation significantly elevated total 240 

serum 25[OH]D concentrations. The highest dose led to an initial rapid increase in 1.25[OH]2D but 241 

then a decrease in serum 1,25[OH]2D at week 12 when there was a significant increase of 242 

24,25[OH]2D3 which had also been significantly increased at week 6. Resultantly, these responses led 243 

to a significantly lower ratio of 1,25[OH]2 D to 24,25[OH]2D from week 6 with the higher, 70,000 IU 244 

treatment. Following the withdrawal of supplementation, the concentrations of 25[OH]D and 245 

1α,25[OH]2D return to basal values within 6 weeks. These data imply that high doses of supplemental 246 

vitamin D3 are sufficient to markedly induce the expression of 24-hydroxylase leading to the negative 247 

control of 1,25[OH]2D activity. Finally, we demonstrate that elevating serum 25[OH]D and 248 

1α,25[OH]2D3 suppresses iPTH appearance in circulation. This finding is in agreement with previous 249 
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data published by our group (27) and is underpinned by the understanding that DNA binding 250 

sequences exist in the PTH gene (6), permitting suppression of the gene when adequate ligand 251 

(1,25[OH]2D) is available to induce transcriptional suppression by the VDR (30).  252 

 253 

The fact that the concentration of serum 24,25[OH]2D3 did not show a decline along with 1,25[OH]2D 254 

following the withdrawal of supplementation has practical implications. The finding suggests that the 255 

activity of 24-hydroxylase is sustained following large increases in 1,25[OH]2D and may persist and 256 

decrease both the concentration and subsequent biological activity of 1,25[OH]2D. Evidence is now 257 

emerging that the 24,25[OH]2D metabolite may act at the VDR as a “blocking molecule” binding to 258 

the VDR decreasing 1,25 [OH]2D activity (5). Since 24,25[OH]2D is present in the circulation in 259 

nmol/L concentration compared to pmol/L for 1,25[OH]2D the significantly higher prevailing 260 

24,25[OH]2D concentrations are liable to contribute to a significant decrease in the activity of the 261 

biologically active 1,25[OH]2D. Thus a dual regulation would appear to be present in subjects 262 

receiving high dose vitamin D supplementation preventing possible toxic effects, namely, 1) the 263 

positive stimulation of 24-hydroxylase and 2) the negative control of the vitamin D receptor activity. 264 

This notion is supported by previous mechanistic evidence that has determined the function of 265 

1α,25[OH]2D in regulating 24-hydroxylase activity in vitro. Identification of two VDREs in the 5’ 266 

region of the CYP24A1 promoter demonstrated that 1α,25[OH]2D3 could potently trans-activate the 267 

CYP24A1 gene, inducing a 10 to 100 fold increase in CYP24A1 mRNA to limit the transcription of 268 

1α,25[OH]2D3 responsive genes (24). Moreover, in vitro studies on primary human myoblasts indicate 269 

that the induction of 24-hydroxylase is dose dependent (10), which is in agreement with the serum 270 

response of 24,25[OH]D seen in vivo in the current study.  271 

 272 

These findings may explain reported observations of deterioration in skeletal muscle function, 273 

increased risk of falls and increased fracture risk in individuals supplemented with extreme dose 274 

vitamin D3 to correct for severe vitamin D deficiency. As an example, in a large-scale trial (n = 2256), 275 

women ≥ 70 years old were randomized to either 500,000 IU of vitamin D3 or placebo. The women 276 

randomized to the supplemental vitamin D3 experienced significantly more falls than the placebo 277 
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group in the year following dosing of which the falls ratio was greatest in the first month following the 278 

one off 500,000 IU dose (29). Furthermore, in a retrospective observational cohort study, very low (< 279 

10 nmol.L-1) and high (above 140 nmol.-1) concentrations of 25[OH]D showed an increased risk of all 280 

cause mortality indicating not only a lower limit but also an upper limit for serum 25[OH]D (7). This 281 

hypothesis also lends an explanation for the inconsistency in positive outcomes related to 282 

supplemental vitamin D reported by large-scale meta-analyses (4). It is reasonable to suggest that 283 

mega dose vitamin D supplements are detrimental to vitamin D target tissues by increasing the 284 

production of 24,25[OH]2D, which may act to block the activity of the VDR. It will be necessary to 285 

now perform mechanistic studies that clarify the function of 24,25[OH]2D and to determine whether 286 

high dose supplementation is detrimental to vitamin D signaling through the VDR. 287 

 288 

The current trial also had limitations that are important to consider for the design of future work. 289 

Firstly, although one of our goals was to use a ‘real world’ blanket supplementation approach, we 290 

acknowledge that the same protocol used in other athletic cohorts with different body composition, 291 

genotype and lower basal serum 25[OH]D concentrations may yield different results. Determining the 292 

response of the vitamin D metabolites to a similar protocol as we have used here across wider athletic 293 

cohorts will allow more conclusive recommendations to be made on dosing concentration and 294 

frequency. Indeed, we have previously shown that basal 25[OH]D concentrations vary across athletes 295 

from different professional sports (3). This assumption is also true for female cohorts and as such we 296 

appreciate that our findings cannot be conclusively extended to the female athletic population. 297 

Regarding genotype, genotypic variation in the vitamin D binding protein influences the response to 298 

exogenous vitamin D (9) and little is known of the variation in genes encoding other vitamin D 299 

metabolizing enzymes such as CY24A1 and CYP24B1. We did not perform genotyping and in light of 300 

recent evidence, we fully support genotype-phenotype studies in the context of vitamin D in future. 301 

Combining a genotyping approach with vitamin D metabolite ratio data, the latter as we have 302 

performed in this study, will offer a great advancement in the understanding of how genotype and 303 

supplementation interact and how this can be managed. We also did not measure serum or urinary 304 

calcium concentrations, which are markers of vitamin D toxicity and also regulate the PTH response. 305 
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Measuring Ca2+ excretion would add another aspect to our findings, however we do maintain that the 306 

observed increases in 24,25[OH]D are indicative of too much exposure to exogenous vitamin D. 307 

Finally, future work should aim to monitor FGF-23, a bone derived hormone that can function to 308 

lower both 25[OH]D and 1α,25[OH]2D3 by inducing the CYP24 genes (28). FGF-23 may also be a 309 

player in regulating the metabolite response to high dose supplementation and at present its role in 310 

lowering 25[OH]D by promoting 24-hydroxylase expression is still disputed (31). Extending the 311 

current findings to a broader range of vitamin D concentrations, coupled with intracellular signaling 312 

cascades related to the vitamin D axis will yield the most inferential data, moving towards safer and 313 

more effective vitamin D supplementation practices in athletes. 314 

 315 

Summary and implications for practice 316 

The data presented here are the first to characterize the response of two major metabolites of vitamin 317 

D in response to two high-dose supplementation protocols in healthy professional athletes. The results 318 

demonstrate that a blanket approach of high-dose supplementation with 70,000 IU.week-1 leads not 319 

only to increased 25[OH]D3 and 1,25[OH]2D3 concentrations but also stimulates elevated 320 

concentrations of the vitamin D metabolite 24,25[OH]2D3, which has been previously shown to limit 321 

the transcriptional activity of 1,25[OH]2D3. We demonstrated that this negative regulatory effect 322 

persists following cessation of vitamin D3 supplementation even as 1,25[OH]2D3 concentrations 323 

decrease. There are a number of novel key implications for practice that arise from our current 324 

observations. Firstly, we speculate that ‘high dose’ bolus supplementation with vitamin D3 is likely to 325 

be detrimental to the intended targeted downstream biological functions due to significant increases in 326 

the negative regulatory molecule, 24,25[OH]2D. Weekly doses amounting to more than 5,000 IU.day-1 327 

may need to be reassessed in light of our data. Rapid withdrawal from high dose supplementation may 328 

result in adverse outcomes as the concentration of 24,25[OH]2D3 remains elevated for several weeks 329 

following withdrawal from supplementation despite declines in 1,25[OH]2D3. If moderate to high 330 

doses of vitamin D3 have been administered, a gradual withdrawal from supplementation is advisable. 331 

At present the optimal approach has not been established. Lower doses administered often (daily) may 332 

offer the most potent beneficial biological effects and limit the transactivation of CYP24A1 and 333 
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subsequent production of the negative regulatory molecule, 24,25[OH]2D3. Future research must aim 334 

to establish the appropriate dose and frequency of administration to achieve a positive increase in both 335 

25[OH]D3 and 1,25[OH]2D3 whilst limiting the appearance of increased 24,25[OH]2D3 concentrations. 336 

The generation of 24,25 [OH]2D may be an aspect of the body’s defense mechanism to prevent 337 

“toxicity” when administered high doses of vitamin D. We postulate that single “super” doses of 338 

vitamin D3 administered on a weekly basis as is common practice in many professional sporting 339 

teams, may result in similar rapid transient increases in 1,25[OH]2D3 leading to significant increases in 340 

the negative regulatory metabolite, 24,25[OH]2D3. Further studies will be required to determine if the 341 

relationship we have observed is seen with higher and lower doses of vitamin D. 342 
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Figure Captions 

 

Figure 1. Distribution plot of basal serum total 25[OH]D concentrations in participants allocated to 

the 35,000 (moderate) and 70,000 IU.week-1 (high) supplemental treatment groups. No significant 

differences were detected between groups for basal total serum 25[OH]D. Data were normally 

distributed with no significant difference detected between groups. 

 

Figure 2. Serum responses of the major vitamin D metabolites with treatment of either 35,000 

IU.week-1 or 70,000 IU.week-1 vitamin D3 a) 25-hydroxyvitamin D (25[OH]D) b) 1α,25-

dihydroxyvitamin D3 (1α,25[OH]2D3) c) 24,25-hydroxyvitamin D and d) intact parathyroid hormone 

(iPTH). Samples were collected prior to supplementation (basal) and then at weeks 6, 12 and 18 of 

supplementation. At week 12, supplementation was stopped in both groups. * denotes significance for 

both groups compared with basal and # denotes significance for the 70,000 IU.week-1 compared with 

basal. 

 

Figure 3. Relationships between the major vitamin D metabolites, expressed as ratio at all test time 

points. a) ratio of 25-hydroxyvitamin D (25[OH]D) to the biologically active 1α,25-dihydroxyvitamin 

D3 (1α,25[OH]2D3). b) Ratio of 25[OH]D to the inactive metabolite 24,25[OH]D and c) ratio of 

1α,25[OH]2D3 to 24,25[OH]D. * denotes significance for both groups compared with basal. 

 

 

 


