
The application of neural networks to
problems in fringe analysis.

David John Tipper

A thesis submitted in partial fulfilment of the requirements of the
Liverpool John Moores University for the degree of Doctor of

Philosophy.

July 1999

School of Engineering,
Liverpool John Moores University

Dedicated to the memory of my grandfather,
Harold Smith.

Application of Neural Networks to Problems in Fringe Analysis
Abstract of Thesis

This thesis describes the use of neural networks to address two problems
which occur during the process of fringe analysis.

Phase Unwrapping

Due to the phase unwrapping problem being essentially one of recognition
(i. e. What is a phase wrap and what is noise?), it was thought that a neural
network would be ideally suited to the task of recognising the position of
phase wraps in an image. Initial experimentation involved the use of small
networks, typically containing less than 20 neurons for the unwrapping of
simple phase distributions in one dimension. It was shown that
backpropagation neural networks were capable of distinguishing phase
wraps from noise spikes, so the idea was extended to use larger networks to
process two dimensional "tiles" for the unwrapping of entire images.
Experimentation with both supervised and unsupervised learning was carried
out and the results showed that, again, backpropagation networks proved to
be the most reliable.

It was successfully shown that a backpropagation neural network can form
the basis of a reliable and robust phase unwrapping system.

Fringe optimisation.

Little work has been carried out in the field of optimisation of fringe patterns,
as the process was largely impossible until the invention of the adaptive
interferometer. The interferometer used twin optical fibres to produce a
fringe pattern. If the relative position of the fibres is varied, this can vary
characteristics of the fringe pattern, namely fringe spacing and orientation.
The use of neural networks to optimise a fringe pattern before analysis takes
place has been investigated. If the fringe pattern is optimised before
measurement takes place, the suitability of that pattern for any given surface
will be ensured. Neural networks were trained to analyse the parameters
which are easily controllable, i. e. mean intensity, visibility, fringe number and
fringe orientation. Two methods were investigated:

(a) The use of a separate network for each parameter, the outputs from each
one being combined to produce a final decision.

(b) The use of a single network to analyse the pattern "globally".

Again, experiments were carried out using both supervised and
unsupervised learning. The most accurate results were achieved using a
General Regression Network for global analysis. The final result was a
"closed loop" system, whereby the fringe pattern could be successfully
optimised before mathematical analysis took place.

I

Acknowledgements

The author would like to thank his supervisors, Prof. David Burton and Prof.
Michael Lalor for their support and guidance throughout this project. Also,
the author would like to take this opportunity to mention his third supervisor,
the late Dr. John Atkinson.

This work would not have reached completion without the unofficial help of
the author's friends and colleagues of the Coherent and Electro-Optics
Research Group, the Centre for Precision Measurement and the basement
laboratories at the John Moores University. He would, therefore, like to thank
them for making the impossible seem a little easier.

ii

Contents

Chapter 1: Introduction 1

Chapter 2: Fringe Analysis Techniques 5

2.1 Interference 6
2.2 Interferometry 11
2.2.1 Wavefront division 11
2.2.2 Amplitude division 13
2.3 Fringe analysis techniques 15
2.3.1 Phase stepping 15

2.3.2 Fourier fringe analysis 16

2.4 Problems encountered in fringe analysis 17

References 20

Chapter 3: Neural Networks 21

3.1 Introduction 22
3.2 A history of neural computing 25

3.3 Neural network operation 29

3.3.1 The activation function 31

3.3.2 The backpropagation paradigm 32

3.3.3 General regression networks 33

3.4 Neural networks for experimentation 33

3.4.1 Neural network configuration 33

3.4.2 Training the networks 34

3.4.3 The delta learning rule and its variations 36

References 40

Chapter 4: Phase Unwrapping 41

4.1 Introduction 42

4.2 Phase unwrapping by neural network 56

4.3 Experiments with unsupervised learning 68

4.3.1 Learning vector quantisation 68

III

4.3.2 Hopfield networks: the classical approach 69
4.4 Comparison of techniques 70
4.5 Phase unwrapping in two dimensions 74
4.5.1 Initial experimentation 75
4.5.2 Unwrapping by regions 76
4.5.3 Results 80
References 86

Chapter 5: Fringe Optimisation 87
5.1 Introduction 88

5.2 Experimental work 94

5.2.1 Initial optimisation experiments 94
5.2.2 Neural networks for fringe optimisation 98

5.2.3 Experimental methods 1 102

5.2.4 Experimental methods 2 116

5.2.5 Comparison of the two methods 120

5.3 An operational optimisation system 121

5.4 Evaluation of the optimisation system 122

References 129

Chapter 6: Discussion, Conclusion and Further Work. 130

Appendix 1: Phase unwrapping - training and test data 147

Appendix 2: Phase unwrapping - code 154

Appendix 3: Fringe optimisation - training and test data 159

Appendix 4: Fringe optimisation - code 162

Appendix 5: Published works 172

IN'

Chapter 1: Introduction

Chapter 1: Introduction.

Metrology is defined simply as "the science of measuring"[1]. While not a

new science, its use is becoming more widespread in modern industry. The

accurate measurement of engineering components is becoming increasingly

important. In today's marketplace, companies are under pressure to

produce better and more reliable components in order to have the advantage

over their competitors. To be successful, manufacturers need to ensure that

products comply with their specifications, which, as manufacturing

technology improves, are becoming increasingly exacting. Modern designs

are extremely complex and parts are manufactured to high tolerances. For

example, the design of the combustion chamber within a motor vehicle

cylinder head is far more involved than, say, thirty years ago. In the past,

the combustion chamber was designed simply as a place for fuel to be

compressed and ignited. Today, with ever-increasing demands for

performance and fuel economy, the way in which the fuel-air mixture burns is

important, so combustion chambers are designed to optimise the path of the

flame-front during ignition. To achieve this, the curvature of the chamber

must be measured extremely accurately. A number of methods exist which

can accomplish this task, including both contact and non-contact techniques.

This thesis is primarily concerned with a non-contact method of

measurement, which uses some form of "structured light", usually a pattern

of interference fringes, to generate the information about an engineering

component. The extraction of this information is often referred to as fringe

analysis.

Fringe analysis has been a recognised technique for many years. For

example, it enables surface profiles of objects to be measured with extreme

accuracy without use of intrusive, tactile probes that may themselves affect

the result of the measurement process. Chapter 2 describes in detail the

process of fringe generation. Whichever method of fringe generation is

I

used, e. g. holographic, moire, speckle etc., the net result is always the

same. A set of fringes is produced, usually referred to as interferograms.

Until the digital computer became a widely available tool, fringe analysis was

an extremely labour intensive task. The process generally involved manual

location of the fringes in an image and numbering of their position. This

changed, however, as the cost of computers decreased and their power

increased. Much effort has been made in making fringe analysis a viable

metrological process by increasing its accuracy and speed. This thesis

attempts to address two of the problems that arise during the process of

fringe analysis. Chapter 4 introduces a novel approach to the problem of

phase unwrapping. Whether the Fourier transform or the phase stepping

method is used, the mathematics involved in the analysis lead to a

distribution of phase values that are "wrapped" modulo 27C. This is explained

in detail in chapter 4. In order to produce an accurate height map of the

measured surface, the phase map must be reconstructed to give a

continuous distribution. It is this stage of the process that is usually the most

difficult to address. A number of algorithms have been developed to solve

the phase unwrapping problem. These are discussed in detail in chapter 4.

Even though the subject has been researched extensively, there is still no

"generic" phase unwrapper. Most algorithms are not robust enough to cope

with complex, noisy images. Some of the simpler algorithms have difficulty

in differentiating between noise and genuine phase wraps, the result being

errors that are propagated throughout the final unwrapped phase

distribution. It was thought that a new approach to the phase unwrapping

problem was needed, so this thesis describes a method using neural

networks, a method into which little research has been carried out in this

application.

The thesis also outlines an approach to a further problem: that of fringe

optimisation. Until recently, it was not possible to have great control over

the quality of the projected fringe pattern. With the development of the

adaptive interferometer, which is described in detail in chapter 2, it has

become possible to have a greater degree of control over such factors as
fringe spacing and orientation. With this adaptability comes the prospect of

optimising the fringe pattern to ensure a good result will be achieved before

the measurement process takes place. Again, this is a subject into which
little research has been carried out. The second part of this thesis describes

an approach that utilises a neural network to analyse the quality of a fringe

pattern to ascertain whether it conforms to a series of optimisation criteria.

References:

1. Chambers Scientific and Technical Dictionary, 1996

4

Chapter 2: Fringe analysis techniques

Chapter 2: Fringe analysis techniques

2.1 Interference

The phenomenon of interference is an important basis to the science of
fringe analysis. Consider two waves that can be described

u, = U, e ̀o'

and

U2 = Uie' 0Z

where u= spatial complex amplitude and

U= amplitude

= phase.

When these two waves overlap each other in space, electromagnetic wave

theory states that the resulting field is given by the summation of the

complex amplitude terms, thus:

u=u, +u2

The observable quantity is, however, not amplitude but intensity, which is

given by

I=I ri 2

The observed intensity of the overlapping waves is, therefore, given by

6

I= lu, +u2Ia

= U12 + U22 + 2U1U2 cos(o
1-

02)

=1I +12 +2 I1I2 cosAO

where

oý_ý, -12

The two waves interfere and A4 = ý, - 42 is referred to as the interference

term. Also, when

0ý _ (2n + 1)it for n=0,1,2,...

cosA = -1 and I reaches its minimum. In this case, the two waves interfere

destructively as they are in antiphase. The two waves interfere

constructively when they are in phase. This occurs when

$=2nn forn=0,1,2,...

when cosA4 =1 and I reaches its maximum.

For two waves of equal intensity, i. e. where I1 = 12 =1o the intensity equation

becomes

1=21, (1+cos0o

0o

=4locos' 2

7

where the intensity varies between 0 and 4I0.

The result of this interference is a fringe pattern of the type shown in figure
2.1.

ý..,. F. ýý . -_-.. _ tom......

w "-w . ter,.... - .ý, ý_ _. .,. _.... ., _.. > . -ý
LRAzNS l 4'. I'. s: MNar. -. r-wv ":, f- fl -. -_.... nn r w.. i. v' .P Mw4ni

ý/f(MWlbf. i, aM}a! ýMR! Y a. [ýwl "N: O'... rn - r r. --. i ... -+1 . ra. a1W>.. i-K. ý.. V-+öy

tYýýý! {tVYIMIMJi[IW. -e : fl+r^r. w.,, yN. "... ýc... v.. w .. .-.. -- . _. -. . "1 w. Y'. lYrtri[! y. qýY

ý'= ýýYY'/MW� Zia+h n.. , ..

%M: MIýtýýnyýywY'EWNbINAW'X . aV. fi". . f. ,.... f. _.. - . --.. ra ,M .ý

Figure 2.1: Cosinusoidal interference fringe pattern

A fringe pattern such as this can be a useful measurement tool. Consider

the structured light system as shown in figure 2.2.

The plane surface is illuminated by a fringe pattern whose intensity profile is

sinusoidal, the fringes having a period x. If the angle of illumination is 6;, the
fringes on the surface will have a period, y, given by

x
cos8,

If the fringe pattern is observed with an angle of 6v, the period of the

observed fringe pattern, z, is given by

z=ycosov

Substituting for y in the above equation, the period of the observed fringe

pattern can be described by the equation

xcosc,,
cosei

Consider the situation shown in figure 2.3. If the position of the surface

moves a distance dh, a change in the viewed position of the light, dz, will

occur. This change will be equivalent to a phase shift of dý. This phase

shift is given by

do= IT

The distance dz can be calculated thus:

a=dhtanO

b=dhtanOv

9

Figure 2.3

Adding the above equations gives

a+b= dh(tan0, +tan9,,)

However,

dz = (a + b)cos 8,

=dh(tan9, +tan8,,)cos8,,

Substituting gives

do=
(2fr dh(tan B; + tan 0,, cos B,,

.Y

10

If the image is viewed with the lens normal to the plane of the surface, Ov

becomes zero, reducing the above equation to

do
(27t dh sin 9;

x

This shows that the height at any point on the surface of an object is

proportional to the phase of the structured light reflected from the object. It

is this principle which makes the science of fringe analysis possible.

There are a number of ways in which a fringe pattern can be generated.

2.2 Interferometry

Interferometers are measurement instruments in which interference can be

observed and generally consist of

"a light source

" an element for splitting the light into two or more partial waves

" separate propagation paths for each of the partial waves

" an element for superposing the partial waves

"a detector to observe the interference pattern

Generally, interferometers are divided into two groups, depending on how

they split the light.

2.2.1 Wavefront division

There are a number of wavefront dividing interferometers, including the

Fresnel biprism, Lloyd's mirror and Michelson's stellar interferometer.

Undoubtedly the best known of this type of interferometer is the apparatus

used by Young in the earliest of interference experiments. In 1801, Young

experimented with the system shown schematically in figure 2.4(a). The

wavefront incident on the screen S1 is divided by the two small holes P1 and
P2. Spherical wavefronts emerge from the holes and will interfere, with the

interference being observed on the second screen, S2. The path length

difference s of the light reaching a point x can be calculated as shown in

figure 2.4(b). If the distance z is much greater than distance D, the distance

s can by approximated by

Dx
S

z

The phase difference then becomes

2ýc
Ao

2

2irD
=x Az

If this is inserted into the general expression for the resulting intensity

distribution, the intensity becomes

I(x)=21 1+cos 27c Dx
z

Interference fringes occur which are parallel to the y axis with a spatial

period of

A:
D

which decreases as the distance D increases. This explanation assumes

that the ideal case holds, where the light waves from P, and P2 are coherent.

12

However, this case becomes more difficult to fulfil as D increases. The

contrast of the fringes on SI is a measure of the degree of coherence.

Figure 2.4(a): Young's experiment

Subsequently, the pinholes were replaced by slits to produce straighter

fringes.

x

I

Y_

Figure 2.4(b)

2.2.2 Amplitude division

Here, the amplitude of the incident light is divided. This is usually done with

the aid of a beam splitter. This is normally a transparent plate coated with a

partially reflecting film, allowing part of the light to be transmitted and part to

1,

be reflected. A commonly used amplitude division instrument is the

Michelson interferometer, a schematic diagram of which is shown in figure

2.5. The light passes through the beamsplitter and the reflected and

transmitted partial waves propagate to the mirrors M1 and M2. From here

they are reflected back and recombined to form an interference fringe

pattern at the detector D. The path difference between the two partial waves

can be varied by moving one of the mirrors. Movement of a mirror through a

distance x gives a path difference of 2x and a phase difference of

0o_
12x IJ

The resultant intensity distribution is given by

I(x)=21 1+cos
4; cx

11 AA

rý

Figure 2.5: The Michelson Interferometer

M2

14

2.3 Fringe analysis techniques

For many years, the analysis of interferograms was a laborious job. Until
fairly recently, analysis was very much a labour-intensive operation, whereby
an operator would manually number fringes and locate positions. However,

as the power of computers and image processing equipment has increased

and its cost decreased, automatic fringe analysis has become a major area
for research.

There are two generally recognised techniques for the mathematical

analysis of fringe patterns; phase stepping and Fourier fringe analysis.

2.3.1 Phase stepping

Phase stepping relies on the use of multiple fringe images. Intensity values

of several images are recorded where the phase value of each one is shifted

by a known amount. Because the intensity equation (1) contains three

unknowns, at least three images are required to solve that equation. If four

images are used with phase intervals of i/2, equation (1) dictates that the

intensity values are given by:

I(0)(x, Y) = a(x, y) + b(x, Y)cos[(x, Y)]

I(n/2)(x, Y) = a(x, y) + b(x, y)cos[o(x, y) + it/2]

I(n)(x, Y) = a(x, y) + b(x, y)cos[o(x, y) + n]

I(3n/2)(x, Y) = a(x, y) + b(x, Y)cos[4 (x, Y) + 3n/2]

The above equations can then be solved simultaneously to give

tan 0 (x, y) =
I" -')_ I(32r)

I(O)-I(ir)

The phase, 0, at any point (x, y) is, therefore, given by

15

_arctan
1`21-1`3r/I1

(x, y)-
1(0)-1(ßz) J

Recently, further developments have been made in this field, utilising 5,6

and 7 step algorithms[1].

2.3.2 Fourier fringe analysis

The use of the Fourier transform for the analysis of fringe patterns was
pioneered in the early 1980s by Takeda et. al. [2] and requires only one
image. A number of steps are involved in the calculation, thus:

1. An image of a fringe pattern is taken.

2. A two-dimensional Fourier transform is performed on the image.

3. The result is filtered in the Fourier plane to remove the d. c. term
(a(x, y)), which eventually allows the term b(x, y) to be eliminated.

4. The remaining peak may be shifted to the origin. This step can be

omitted, as discussed by Burton et. a/. [3].

5. An inverse Fourier transform is performed on the data.

6. The inverse transform yields a phase distribution, which is wrapped

modulo 2ir. This step is explained in detail in chapter 4.

7. The phase map is unwrapped to give a continuous phase

distribution.

8. The unwrapped phase values are proportional to height.

16

Mathematically, the process can be described thus:

A fringe pattern, as explained earlier in this chapter, can be described by

I(x, y) = a(x, y) + b(x, y)cos[4(x, y)]

where I(x, y) = intensity at a point (x, y),

a(x, y) is the dc offset term, caused by effects such as background

illumination,

b(x, y) = signal amplitude and
4(x, y) = signal phase.

2.4 Problems encountered in fringe analysis

Although the phenomenon of interference fringes is one which has been

long recognised, the use of automatic fringe analysis as a metrology tool is a

more recent development. Its development as a science has only been

feasible since the development of the modern digital computer. This is due

to the complexity and scale of the calculations involved.

Even though much research has been done in the past fifteen years into the

subject, a number of problems still recur at points during the analysis of

fringe patterns. Two such problems are the subject of this thesis: phase

unwrapping and fringe optimisation. In spite of this research in the field of

fringe pattern analysis, the two problems addressed here do not have a

generic solution.

Phase unwrapping still continues to be the most complex part of the fringe

analysis process. As shown in the equations above, both Fourier techniques

and phase stepping cause the value of phase to be calculated as a tangent

function. As the calculation of height is dependent on phase, it is desirable

to compute the inverse of the tangent function to retrieve the necessary

17

phase values. Due to the nature of the tangent function, as shown in figure
2.4, if its inverse is calculated, the resulting values will be "wrapped"
between the values of -n and +n. This means that, instead of achieving a
smooth phase distribution, the result will resemble a "sawtooth" waveform,
with values lying only in the region of -n and +n. It is, therefore, necessary
to "unwrap" the resulting phase distribution, that is remove the 2a phase
discontinuities. Due to the amount of noise that is invariably present in a
wrapped phase distribution, the achievement of a correctly unwrapped
phase map can be problematic. This thesis attempts to outline a novel
approach to the problem that deals with excessive amounts of noise in a
phase distribution and still achieves an acceptable result.

Fringe optimisation is a relatively new field of research. Since the

development of the adaptive interferometer, it has been possible to have

automatic control of various parameters of a projected fringe pattern and,

therefore, control its suitability for measurement of a given surface. The

approach to the problem outlined in this thesis involves a method whereby

an interference fringe pattern is analysed to ascertain its quality before

measurement of an object takes place. The information gained from the

analysis is then fed back to the machine controlling the fringe pattern to

automatically adjust that pattern until it is seen as suitable for the

measurement required. The problems of phase unwrapping and fringe

optimisation are discussed in detail in chapters 4 and 5 respectively.

18

tan x

Figure 2.6: The tangent function.

19

References.

1. P. Hariharan; "Basics of Interferometry", Academic Press (1992)
2. M. Takeda, H. Ina and K. Kobayashi; "Fourier transform method of fringe

pattern analysis for computer based topography and interferometry. " J.
Opt. Soc. Am. 72(1982)1

3. D. R. Burton and M. J. Lalor; "Multichannel Fourier fringe analysis for 3-D
surface measurement" Proc. FRINGE '93, Akedemie Verlag (1993)37-44

-I ()

Chapter3: Neural networks

21

Chapter 3: Neural Networks.

3.1 Introduction

Since the construction of the first digital computer shortly after the Second
World War, the field of computing has developed at a phenomenal rate. It is

said that the average Personal Computer of 1999 has more computing power
than was available in the entire world in 1946. Today, computers are an
integral part of everyday life. From microwave ovens to power stations, the
list of computer controlled systems appears endless. This apparent level of

power seems to have given the modern digital computer some kind of

mystique. While there are some latter-day luddites who view the "computer

age" with degrees of scepticism, many see the digital computer as some kind

of panacea that is capable of solving mankind's problems with ease. The

reality is, however, somewhat different. While it is true that modern

machines are indeed powerful, they are far from the hyper-intelligent

creatures that science fiction writers would have one believe. It is fair to say

that the digital computer is exceptionally good at simple mathematics. Its

strength lies in the fact that the average processor can perform millions of

calculations per second. In comparison, the human brain is extremely slow.

The switching speed of a neuron is approximately one million times slower

than that of a computer gate [1]. However, with their capacity for parallel

processing, humans are far more efficient at more complex tasks such as

pattern recognition and speech understanding. Hence the neural network

was conceived in attempt to create machines which mimic the massively

parallel action of the computer known as the human brain.

The concept of the neural network originated in the early 1940s, when

McCulloch and Pitts first attempted to model the operation of the biological

neuron [2]. Figure 3.1 shows a schematic diagram of a biological neuron.

Signals from other neurons are delivered to it by a collection of axons.

Unless the collective influence of all its inputs reaches a threshold level, the

neuron remains dormant. When this threshold level is reached, the neuron

I-I

delivers an output in the form of an electrochemical pulse. The pulse
proceeds from the cell body, down the axon and into its branches, where the
dendrites of the following neuron are influenced over narrow gaps known as
synapses. When this process occurs, the neuron is said to fire. Simulated

neurons model this behaviour by acting as thresholding devices.

Y'Y
Synapses

Figure 3.1: Schematic diagram of a biological neuron

Figure 3.2 shows a schematic diagram of a simulated neuron or processing

element. Each processing element is essentially a node connected to other

nodes via links resembling axon-synapse-dendrite connections. Each link is

associated with a weight. This weight acts like a synapse to determine the

strength of one node's influence on another. This influence is a product of

the influencing neuron's output value and the connecting link's weight. Many

input paths are combined into an overall influence by an activation function,

usually a simple summation. The combined input is then modified by a

transfer function and this output is passed to an output path which is

connected to further input paths of other nodes in the network. It is this

series of interconnected nodes which is given the term neural network.

23

X1

X1 ti

Yj

Al I

Figure 3.2: A simulated neuron, or processing element

It is tempting at this point to use the common term Artificial Neural Network.
However, to use this terminology would be somewhat misleading as much of

a real biological neuron's character is not actually modelled - the simulated

neuron simply adds the weighted sum of its inputs. Also, use of the term

artificial in this context implies that an attempt is being made to reproduce a

system which behaves in an identical way to a human brain. The

methodology in this work is to use a computing paradigm which developed

from methods to mathematically model the brain's mode of operation, rather

than to mimic its behaviour accurately. An average adult brain contains

something of the order of 1014 neurons. A neural network contains a fraction

of this number. Even large networks rarely employ more than a few

thousand neurons. Also, the author does not wish to reinforce popular

misconceptions about this particular science. Popular works of fiction often

portray robots with human characteristics operated by neural network. This

may make exciting science fiction, but the reality is somewhat different.

Today's neural networks are far from sentient beings; they are simply

alternative computing paradigms with no more power than the average

desktop PC. Where this science may take us in the distant future remains

to be seen, but in 1999, the neural network is simply an alternative

I4

computing tool. During the years of research into the subject, a number of
alternative terms for the paradigm have been coined, some of which have

attempted to dispel the myth of replicating a human brain. These include

" Neurocomputing

" Network computation

9 Connectionism

" Layered adaptive systems

" Self-organising networks

" Neuromorphic systems

" Parallel distributed processing

It cannot be over-emphasised that the "simulated neuron" is designed to be

similar to a biological neuron only in its function as a thresholding device

which, when networked, is able to perform parallel tasks. The modern neural

network is not an attempt to reproduce an accurate copy of a fully functional

human brain.

3.2 A history of neural computing

The McCulloch-Pitts model is an accurate mathematical definition of the

neuron, but uses several simplifications. Only binary states are allowed; it

operates under a discrete time assumption and synchronous operation of all

neurons in a larger network is assumed. Figure 3.3 shows a schematic

diagram of the model. The inputs xi for i=1,2,..., n are 0 or 1 depending on the

presence or absence of an input impulse at time t. If the neuron's output is

denoted by y, then the firing rule for the model is given by:

ykf1 =1 if E w; xit >= T

0 if E w; x; t <T

where t is an integer and denotes the discrete time instant and wi is the

multiplicative weight connecting the ith input with the neuron. This assumes

25

a unity delay between t and t+1 and that w; =+1 for excitatory connections and
wi=-1 for inhibitory connections. T is the neuron's threshold value, which
needs to be exceeded by the weighted sum of the signals to fire. Although
this model is extremely simplistic, it has the potential to perform basic logic

operations. At the time of its conception, however, its actual implementation

was not technologically feasible. Before the arrival of solid state electronics,
the neural model was difficult to construct with the vacuum valves which were
the only components available to scientists. Although not widely used on its

own technical merit, it was from this model that the science of the neural
network evolved.

X1

11

tv

V

X71

Figure 3.3: The McCulloch-Pitts model

A learning scheme for updating neural connections was first proposed by

Donald Hebb[3] in 1949, which is now commonly referred to as the Hebbian

learning rule. His idea stated that information could be stored in connections

between neurons. The learning rule states that a connection weight on an

input path to a processing element is incremented if both the input is high

and the desired output is high. The biological equivalent of this rule says that

a neural pathway is strengthened when activation on each side of the

synapse is correlated.

26

The first recognised "learning machine" and precursor to many modern
neural network models was Rosenblatt's Perceptron[4]. The perceptron
consisted of neuron-like elements with trainable multiplicative weights, an
adder and a threshold function. Figure 3.4 shows a schematic diagram of the

perceptron used as a pattern classification system. The system was able to

identify both abstract and geometric patterns. The perceptron was highly

flexible as its performance was only degraded after damage to some of its

component parts. It was also able to successfully classify patterns when

noise was present in the input. The original aim of the perceptron was

pattern recognition. Its primary optical stimuli were provided by an array of
400 photocells, corresponding to the light-sensitive cells of the retina. The

photocells were randomly connected to associator units which received the

electrical impulses from the photocells. If the input from the photocells

exceeded a certain threshold value, the associator units produced an output.

At this stage, extremely early in the history of neural computing, the

perceptron was somewhat crude and had many limitations. The main

drawback of the perceptron was its inability to solve problems which are not

linearly separable at the output layer. It is this linearity that caused the

perceptron to be incapable of performing the basic logical function of

exclusive-OR (XOR). The 1960s saw much research into machine learning.

Another important early device was ADALINE (ADAptive LINEar combiner),

developed by Widrow and Hoff[5]. The Widrow-Hoff learning rule minimised

the summed square error between desired and actual output during training.

The ADALINE was the first neural computing system to be applied to a real-

world problem. Widrow used the adaptive linear element algorithm to

develop adaptive filters to eliminate echoes on telephone lines. ADALINE

and its extension MADALINE (Multiple ADALINEs), which was essentially a

two-layer adaline, had numerous practical applications, including pattern

recognition, weather forecasting and adaptive control. This era was one of

great optimism in the field of machine learning. However, lack of sufficient

computing power led to a gradual slowing down of research in this area.

Another blow was dealt with the publishing of Minsky and Papert's book

Perceptrons in 1969[6]. The work cast severe doubts on the suitability of

27

Perceptron-type networks to solve significant problems. The book provided
an involved mathematical analysis of an abstract version of the perceptron
and consequently highlighted its shortcomings.

1,1

Phot

Figure 3.4: The perceptron as a pattern recognition tool

Among the conclusions that Minsky and Papert drew was that the perceptron

was not capable of processing inputs that were visually non-local. It was this

which conveyed to much of the scientific community that the neural network

was far too limited in its scope to be of any real use as a computing paradigm

and therefore was not worthy of extensive research programmes. This,

coupled with the death of Frank Rosenblatt in 1971, saw a dramatic reduction

in the amount of research in the field.

From the late 1960s to the early 1980s, some research was carried out into

neural computing by a small number of researchers, namely Fukushima[7],

Kohonen[8], Anderson[9], Carpenter[10] and Grossberg[11]. With the arrival

of the 1980s came a renewed interest in the field, possibly due to the more

powerful computers which were becoming available. The new enthusiasm

for neural networks was headed by Hopfield and his seminal works on

recurrent neural network architecture for associative memories. In his 1982

28

Randomly connected
associator units

work[12], the first paper in this field to be presented to the American National
Academy of Sciences since the 1960s, Hopfield described a new neural
computing system which he called the "Hopfield model", or "cross-bar

associative network". The model was a neurocomputing system which
consisted of interconnected elements that sought an energy minimum and
was based on research into the olfactory system of the garden slug! The

model represented neural operation as a thresholding process and memory
by information store in the connections between processing elements. In the

early 1980s, much neural network research was carried out by McClelland

and Rumelhart[13]. They too were keen to keep the science a respectable
distance from popular misconceptions and use the term Parallel Distributed

Processing. Their introduction of new learning rules and other concepts

removed the barrier to network training that had existed in the 1960s by

solving the non-linearity problem. The major shortcomings of neural

computing that so hindered progress twenty years previously had finally been

addressed, making the neural network a viable computing tool once more.

It was this work which fired the new enthusiasm for neural computing. Since

the early 1980s, interest and funding in the field has increased dramatically,

making it possible for a new generation of researchers to continue the work

started with McCulloch and Pitts' simple neural model more than half a

century ago.

3.3 Neural network operation

The difference between neural computing and conventional computing has

already been stated. It is their ability to "learn through experience" that sets

neural networks apart from traditional computing methods. Whereas an

expert system relies on a series of rules to assimilate its knowledge, a neural

network will generate its own rules by learning from a set of examples shown

to it. This is achieved by use of a learning rule which adapts connections

between processing elements in response to the example inputs and

29

(depending on the type of network used) desired outputs. There are
generally three types of learning associated with neural networks-

9 Supervised learning: For each input stimulus, a corresponding desired
response is presented to the network, which configures its internal
connections to achieve the correct input/output mapping.

Unsupervised learning: Only input stimuli are presented to the network,
which organises its internal connections in a way that hidden processing
elements respond strongly to closely related groups of input stimuli.

9 Reinforcement learning: This falls between the two above types. An

input stimulus is presented to the network, but the network is only told

whether its response is "good" or "bad".

There are two distinct phases in neural network operation: learning and

recall. During the learning process, the network weights are modified in

response to the applied training data. Training is similar for networks

employing both supervised and unsupervised learning. When supervised
learning is used, the network must be shown a series of inputs and

corresponding outputs. The training sets for this method must therefore

contain input stimuli and desired responses. If the desired outputs are

different from the input stimuli, the network is hetero-associative, whereas if

the each desired output is equal to its input stimulus for all the training

vectors, the network is referred to as auto-associative. When unsupervised

learning takes place, the training vectors contain only input stimuli. During

learning, the most important feature of a neural network is its learning rule.

This rule specifies how the connection weights are adapted in response to

learning examples. In order to complete effective training, a number of

different training examples are usually presented to the network several

thousand times.

10

The recall process is the way in which the network responds to an input
stimulus after training. Generally, during recall, only input stimuli are
presented to the network.

3.3.1 The activation function

Each neuron consists of a processing element with input connections and a
single output. A schematic diagram of a neuron has already been shown in
figure 3.2. The output from any one neuron is generally given by the
equation

o=f(wtx)

or

o=f(Ew; x;)

where w is the weight vector and is defined as

W= WW It

and x is the input vector and can be defined by the equation

X=[Xl X2 ... Xn It

The vectors described here are column vectors and the superscript t

indicates a transposition. The function

f(wtx)

is referred to as the activation function and its domain is the set of activation

values net, which is defined as the scalar product of the weight and input

vectors

net = wt x

3' 1

The activation function is generally referred to as

f (net)

3.3.2 The backpropagation paradigm

The backpropagation algorithm largely overcomes the problems associated

with perceptron type networks. If an erroneous response is provided by the

network, the error is propagated backwards to the previous layer of

processing elements. The process continues until the error reaches the input

layer. A typical backpropagation network consists of one input layer, one

output layer and at least one hidden layer. Theoretically, there is no upper
limit on the number of layers used, but most classification problems can be

adequately solved using three or fewer hidden layers. Each layer of

processing elements is fully connected to the succeeding layer. For a given
input stimulus i and a desired output response d, the algorithm operates

thus:

" The input i is presented to the input layer.

" The input is propagated through the network to obtain an output response

o at the output layer.

" As the information is propagated through the network, all the summed

inputs and output states are set.

" The scaled local error for each processing element in the output layer and

delta weights is calculated.

" All the weights in the network are updated by adding the delta weights to

the corresponding previous weights.

The network also employs a "bias" neuron. This is connected to all neurons

in the hidden and output layers. The bias neuron provides a constant input of

+1 to the entire network.

;ý

3.3.3 General Regression Networks

Another network employed in this experimentation is the General Regression
Network (GRN). The GRN is a general purpose paradigm developed by
Specht [19]. It uses a standard statistical formula for calculating the mean, Y,

of a scalar random variable y given a measurement X of a vector random

variable x. The variable x corresponds to the array of network inputs and y to

the array of network outputs. When more than one input neuron is present,
the formula is applied to each neuron. The calculation of the mean value

requires knowledge of the probability density functions (pdf) of x and y.
Which are approximated from the training vectors. The advantages of GRN

are

" They learn quickly

" They converge to an optimum regression surface, as the number of

samples becomes large

" They can be used effectively with sparse data

" They can handle non-stationary data, that is, data whose first derivative is

not zero.

3.4 Neural networks for experimentation

3.4.1 Neural network configuration

The neural networks considered in this thesis were configured, trained and

implemented using the software package NeuralWorks Professional II Plus,

produced by NeuralWare, Inc. [14]. The package is commercially widely

available and runs on a conventional computer. The machine used to carry

out the experimentation described here was an IBM compatible 486 DX2/66

stand-alone PC. NeuralWorks Professional II Plus is a comprehensive multi-

paradigm neural network development system. The package enables the

user to design, build, train, test and implement a variety of types of neural

13

network. According to NeuralWare, Inc., the developers of the package,
typical uses of NeuralWorks include

" Financial analysis

9 Signal processing

" Automation and robotics

" Marketing analysis

" Medical diagnostics

" Classification

" Pattern recognition

9 Process control

" Optimisation

Network performance can be monitored by a number of instruments and

networks can be optimised using a large number of mathematical functions

and learning rules.

3.4.2 Training the networks

As described in section 3.2, in order to function correctly, a neural network

must be trained. During the learning process, a training set is applied to the

network. A training set contains a number of training vectors. For

supervised learning, each vector consists of both input and output values,

therefore, for a network with n input neurons and m output neurons, each

training vector will comprise n+m data. The position of each value in the

vector corresponds to the position of the neuron in the network associated

with that value. Consider the network shown in figure 3.5. This is a

backpropagation neural network trained to classify float glass. The network

consists of nine inputs, each corresponding to a separate input parameter.

The input parameters are, in order, refractive index of the glass and the

percentage content of each of the following chemicals: sodium, magnesium,

aluminium, silicon, potassium, calcium, barium and iron. The network has

34

only one output neuron. When the glass is classified as float, the output

neuron fires, or produces a "high" output. If the opposite is the case, the

neuron remains dormant, giving a "low" value. The training set for the

network is shown in figure 3.6. The set comprises 102 training vectors, each

of which contains ten values. The first nine values are the parameters
described above and the tenth value indicates whether the sample is float

glass. A 1.0 corresponds to "yes" and a value of 0.0 corresponds to "no". As

training progresses, each training vector is presented to the network.
Although training sets typically consist of one to two hundred vectors, training

can continue for several thousand presentations as the training vectors are

presented more than once. How the data is presented to the network is

dependent on which learning rule is used. This is an essential characteristic

of the network, whichever type of learning is used. As learning progresses,

the parameters which govern the learning rule may change. The long-term

control of these learning parameters is referred to as the learning schedule.

35

Figure 3.5: Float glass classification network.

3.4.3 The delta learning rule and its variations

One of the most widely used learning rules in the science of neural
computing is the delta learning rule. The simplest form of the delta rule is
based on reducing the error between the actual and desired outputs of the

network by modifying incoming connection weights. The rule is valid only for

networks employing supervised learning and having continuous activation
functions. The learning signal for the rule, referred to as the delta, is defined

by the equation

r=ldi -f (Wti x)]f (Wtj x)

The term f' (wt; x) is the derivative of the activation function f(net) calculated
for net = wt; x.

If a network's training set is ordered, problems may arise which cannot be

solved by use of the delta rule in its simplest form. If data are applied to the

network in an ordered manner, there is a significant risk that the RMS error

will show oscillatory behaviour and fail to converge. Best results are

achieved if the training vectors are presented to the network randomly. To

ensure that this occurs, variations on the theme of the delta rule have been

devised. The cumulative-delta rule was an attempt to alleviate the problem

of structured data presentation by accumulating weight changes over several

presentations and applying the changes all at once. The normalised-

cumulative-delta rule is an extension of the cumulative-delta rule in that the

value of the accumulation is linked to the size of the training set. This

method assures that data are presented to the network randomly. The

problem of poor training due to structured data presentation is therefore

considerably reduced.

The use of neural networks to solve pattern recognition problems has been

extensively researched during the past fifteen years[15]. Since the

resurgence of interest in the subject, its applications appear to have gone

from strength to strength. During this same period, fringe analysis has

36

become well established as a science. It is noteworthy that very little

research has been done to combine the two fields. With the number of
problems in fringe analysis which can be thought of as a type of pattern
recognition, the use of conventional algorithmic approaches seems to be

preferred. Some research, however, has been furthered. Mills et. al.
Describe the use of backpropagation networks to address a number of
problems in the fringe analysis process[16], while both Takeda[17] and the

author[18] have attempted to specifically address the problem of phase

unwrapping. The latter two approaches are described fully in chapter 4. It is

the purpose of the work contained within this thesis to use various neural

network architectures to investigate two aspects of the process of Fourier

fringe analysis. Chapter 4 describes the use of backpropagation networks to

detect phase discontinuities to assist the phase unwrapping process.
Chapter 5 addresses the problem of fringe optimisation. This is a process

which is still in its infancy and, to date, has not been extensively researched.
The reason for this lack of research is mainly due to the fact that, until recent

years, it has not been possible to have complete control over the quality of

the fringe pattern during the measurement process. With the arrival of

adaptive interferometry it has become possible to have much greater control

over a fringe pattern, but the quality of such patterns has still largely been

based on the opinion of a human operator. It has been postulated, therefore,

that if this stage of the analysis were to be automated, its solution would be

an ideal problem for some form of neurocomputing system.

37

Figure 3.6: Training set for float glass classification example.

! RI Na Mg Al Si K Ca Ba Fe Float
1.52101 13.64 4.49 1.1 71.78 0.06 8.75 0 0 1
1.51761 13.89 3.6 1.36 72.73 0.48 7.83 0 0 1
1.51618 13.53 3.55 1.54 72.99 0.39 7.78 0 0 1
1.51596 12.79 3.61 1.62 72.97 0.64 8.07 0 0.26 1
1.51756 13.15 3.61 1.05 73.24 0.57 8.24 0 0 1
1.51571 12.72 3.46 1.56 73.2 0.67 8.09 0 0.24 1
1.51763 12.8 3.66 1.27 73.01 0.6 8.56 0 0 1
1.51763 12.61 3.59 1.31 73.29 0.58 8.5 0 0 1
1.51761 12.81 3.54 1.23 73.24 0.58 8.39 0 0 1
1.51911 13.9 3.73 1.18 72.12 0.06 8.89 0 0 1
1.5175 12.82 3.55 1.49 72.75 0.54 8.52 0 0.19 1
1.51966 14.77 3.75 0.29 72.02 0.03 9 0 0 1
1.5172 13.38 3.5 1.15 72.85 0.5 8.43 0 0 1
1.51764 12.98 3.54 1.21 73 0.65 8.53 0 0 1
1.51768 12.56 3.52 1.43 73.15 0.57 8.54 0 0 1
1.51768 12.65 3.56 1.3 73.08 0.61 8.69 0 0.14 1
1.51753 12.57 3.47 1.38 73.39 0.6 8.55 0 0.06 1
1.51783 12.69 3.54 1.34 72.95 0.57 8.75 0 0 1
1.51909 13.89 3.53 1.32 71.81 0.51 8.78 0.11 0 1
1.52213 14.21 3.82 0.47 71.77 0.11 9.57 0 0 1
1.51793 12.79 3.5 1.12 73.03 0.64 8.77 0 0 1
1.5221 13.73 3.84 0.72 71.76 0.17 9.74 0 0 1
1.51786 12.73 3.43 1.19 72.95 0.62 8.76 0 0.3 1
1.52667 13.99 3.7 0.71 71.57 0.02 9.82 0 0.1 1
1.52223 13.21 3.77 0.79 71.99 0.13 10.02 0 0 1
1.5232 13.72 3.72 0.51 71.75 0.09 10.06 0 0.16 1
1.51837 13.14 2.84 1.28 72.85 0.55 9.07 0 0 1
1.51778 13.21 2.81 1.29 72.98 0.51 9.02 0 0.09 1
1.51824 12.87 3.48 1.29 72.95 0.6 8.43 0 0 1
1.51754 13.48 3.74 1.17 72.99 0.59 8.03 0 0 1
1.51977 13.81 3.58 1.32 71.72 0.12 8.67 0.69 0 1
1.52227 14.17 3.81 0.78 71.35 0 9.69 0 0 1
1.52172 13.48 3.74 0.9 72.01 0.18 9.61 0 0.07 1
1.52152 13.05 3.65 0.87 72.32 0.19 9.85 0 0.17 1
1.523 13.31 3.58 0.82 71.99 0.12 10.17 0 0.03 1 0
1.51574 14.86 3.67 1.74 71.87 0.16 7.36 0 0.12 0
1.51631 13.34 3.57 1.57 72.87 0.61 7.89 0 0 0
1.5159 13.02 3.58 1.51 73.12 0.69 7.96 0 0 0
1.51627 13 3.58 1.54 72.83 0.61 8.04 0 0 0
1.5159 12.82 3.52 1.9 72.86 0.69 7.97 0 0 0

1.51592 12.86 3.52 2.12 72.66 0.69 7.97 0 0 0
1.51594 13.09 3.52 1.55 72.87 0.68 8.05 0 0.09 0

1.51625 13.36 3.58 1.49 72.72 0.45 8.21 0 0 0
1.51645 13.4 3.49 1.52 72.65 0.67 8.08 0 0.1 0
1.5164 12.55 3.48 1.87 73.23 0.63 8.08 0 0.09 0

1.51588 13.12 3.41 1.58 73.26 0.07 8.39 0 0.19 0
1.5159 13.24 3.34 1.47 73.1 0.39 8.22 0 0 0
1.5186 13.36 3.43 1.43 72.26 0.51 8.6 0 0 0

1.51689 12.67 2.88 1.71 73.21 0.73 8.54 0 0 0

1.51811 12.96 2.96 1.43 72.92 0.6 8.79 0.14 0 0

1.5182 12.62 2.76 0.83 73.81 0.35 9.42 0 0.2 0

1.52725 13.8 3.15 0.66 70.57 0.08 11.64 0 0 0

1.53125 10.73 0 2.1 69.81 0.58 13.3 3.15 0.28 0

1.52222 14.43 0 1 72.67 0.1 11.52 0 0.08 0

1.51818 13.72 0 0.56 74.45 0 10.99 0 0 0

1.52777 12.64 0 0.67 72.02 0.06 14.4 0 0 0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

38

1.51892 13.46 3.83 1.26 72.55 0.57 8.21 0 0.14 0 1
1.51829 13.24 3.9 1.41 72.33 0.55 8.31 0 0.1 0 1
1.51673 13.3 3.64 1.53 72.53 0.65 8.03 0 0.29 0 1
1.51844 13.25 3.76 1.32 72.4 0.58 8.42 0 0 0 1
1.51687 13.23 3.54 1.48 72.84 0.56 8.1 0 0 0 1
1.51707 13.48 3.48 1.71 72.52 0.62 7.99 0 0 0 1
1.51667 12.94 3.61 1.26 72.75 0.56 8.6 0 0 0 1
1.52068 13.55 2.09 1.67 72.18 0.53 9.57 0.27 0.17 0 1
1.52614 13.7 0 1.36 71.24 0.19 13.44 0 0.1 0 1
1.51813 13.43 3.98 1.18 72.49 0.58 8.15 0 0 0 1
1.51789 13.19 3.9 1.3 72.33 0.55 8.44 0 0.28 0 1
1.51806 13 3.8 1.08 73.07 0.56 8.38 0 0.12 0 1
1.51674 12.79 3.52 1.54 73.36 0.66 7.9 0 0 0 1
1.51851 13.2 3.63 1.07 72.83 0.57 8.41 0.09 0.17 0 1
1.51662 12.85 3.51 1.44 73.01 0.68 8.23 0.06 0.25 0 1
1.51839 12.85 3.67 1.24 72.57 0.62 8.68 0 0.35 0 1
1.5161 13.33 3.53 1.34 72.67 0.56 8.33 0 0 1 0
1.51643 12.16 3.52 1.35 72.89 0.57 8.53 0 0 1 0
1.51779 13.64 3.65 0.65 73 0.06 8.93 0 0 1 0
1.5161 13.42 3.4 1.22 72.69 0.59 8.32 0 0 1 0
1.51646 13.04 3.4 1.26 73.01 0.52 8.58 0 0 1 0
1.52121 14.03 3.76 0.58 71.79 0.11 9.65 0 0 1 0
1.51796 13.5 3.36 1.63 71.94 0.57 8.81 0 0.09 1 0
1.52211 14.19 3.78 0.91 71.36 0.23 9.14 0 0.37 1 0
1.51514 14.01 2.68 3.5 69.89 1.68 5.87 2.2 0 0 1
1.52151 11.03 1.71 1.56 73.44 0.58 11.62 0 0 0 1
1.51666 12.86 0 1.83 73.88 0.97 10.17 0 0 0 1
1.51316 13.02 0 3.04 70.48 6.21 6.96 0 0 0 1
1.51321 13 0 3.02 70.7 6.21 6.93 0 0 0 1
1.52043 13.38 0 1.4 72.25 0.33 12.5 0 0 0 1
1.51905 14 2.39 1.56 72.37 0 9.57 0 0 0 1
1.51829 14.46 2.24 1.62 72.38 0 9.26 0 0 0 1

39

References

1. J. M. Zurada. Introduction to Artificial Neural Systems. West, 1992.
2. W. S. McCulloch & W. Pitts. A logical calculus of the ideas immanent

in nervous activity. Bulletin of Mathematical Biophysics, 5(1943)115
3. D. O. Hebb. The Organization of Behavior. Wiley, New York, 1949.
4. F. Rosenblatt. Principles of Neurodynamics, Perceptrons and the

Theory of Brain Mechanisms. Spartan Books, New York, 1962.
5. B. Widrow & M. Hoff. "Adaptive switching circuits", 1960 IRE

WESCON Convention Record, 4(1960) 96-104.
6. M. Minsky & S. Papert. Perceptrons: An Introduction to

Computational Geometry. MIT Press, 1969.
7. K. Fukushima. Neocognitron: A hierarchical neural network capable

of visual pattern recognition. Neural Networks 1(1988)119-130.
8. T. Kohonen. Self Organisation and Associative Memory. Springer

Verlag, Heidelberg, 1977
9. J. A. Anderson, J. W. Silverstein, S. A. Ritz & R. S. Jones. Distinctive

features, categorical perception and probability learning: some
applications of a neural model. Psychological Review,
84(1977)413-51

10. G. A. Carpenter & S. Grossberg. A massively parallel architecture for
a self-organising neural pattern recognition machine. Computer
Vision, Graphics and Image Processing, 37(1987)54-115

11. S. Grossberg. Adaptive pattern classification and universal
recoding, Biological Cybernetics 23(1976)121-143,187-202.

12. J. J. Hopfield. Neural networks and physical systems with emergent
collective properties. Proc. Nat. Acad. Sci. USA 79(1982)2554-8.

13. J. L. McClelland & D. E. Rumelhart. Distributed memory and the
representation of general and specific information. Journal of
Experimental Psychology 114(1985)159-188

14. NeuralWorks Professional II Plus Reference Guide. NeuralWare
Inc. 1993.

15. J. Loncelle, N. Derycke & F. F. Soulie. Co-operation of GBP and LVQ
networks for optical character recognition. Int. Joint Conf. on Neural
Networks 3(1992)694-99

16. H. Mills, D. R. Burton & M. J. Lalor. Applying backpropagation neural
networks to fringe analysis. Optics and Lasers in Engineering
23(1995), 331-341.

17. M. Takeda. Phase unwrapping by neural network. Proc. FRINGE
'93.

18. D. J. Tipper, D. R. Burton & M. J. Lalor. A neural network approach to
the phase unwrapping process in fringe analysis, Nondestructive
Testing and Evaluation 12(1996)391-400.

19. D. F. Specht. A general regression neural network. IEEE
Transactions on Neural Networks, 2(1991)6,568-76

40

Chapter 4: Phase unwrapping

41

Chapter 4: Phase Unwrapping.

4.1 Introduction

When constructing a map of surface contours using an interferometric fringe

pattern, it is desirable to know not only the amplitude of the waveform, but

also its phase value. The height information in the fringe pattern is related to

the phase values of the reflected light. It is the mathematical calculation of
the phase values of an image, which leads to the process known as phase

unwrapping. In chapter 2, the concept of a cosinusoidal fringe pattern was

introduced whose intensity at any given point can be described by the

equation

I(x, Y)=a(x, Y)+b(x, Y)cos[4(x, Y)]

where

a(x, y)= additive noise - offset term

b(x, y = multiplicative noise - amplitude term

C x, y)=ýc+Om

Oc = carrier phase

4m = modulation phase

As described in chapter 2, if a fringe pattern is subjected to either phase

stepping or FFT techniques, the final phase values will be calculated as an

arctangent function:

Using the phase stepping technique, phase is calculated by

J (lt2 - (", r2 I)

Joß)
(x, y) = arctan 1 (0) -

42

whereas the FFT will give phase as

0 (x, y) = arctan
Im[c(x, y)]
Re[c(x, y)]

where Im = imaginary component of c(x, y)
Re = real component of c(x, y)

Due to the arctangent function used in this calculation, phase values will
invariably be returned which are "wrapped" modulo 2n. It is, therefore,
necessary to "unwrap" the phase: that is to re-create a continuous phase
distribution. Figure 4.1 shows a continuous one-dimensional phase
distribution and how t hat same distribution appears when it is wrapped
modulo 2ir.

E

Figure 4.1: A1 -D phase distribution and how it appears when wrapped
modulo 2n.

In a two-dimensional image, conventional computer mapping of wrapped

phase data causes bands of contour lines where 2n phase jumps occur. An

example of this is shown in figure 4.2. It can be argued that the most reliable

43

method of reconstructing the phase data is to unwrap solely "by hand", as the
human brain can recognise what the unwrapped phase distribution should
look like. However, due to the mathematical complexity of the problem, the
time taken would be extremely impractical.

Many algorithms have been proposed to deal with the phase unwrapping

problem. The earliest of these is now known an "Schafer's algorithm"[1] and
involves a pixel-by-pixel approach of comparing adjacent phase values.
Researchers in this field now regard this as the "classical" point-to-point

phase unwrapping algorithm. The theory of Schafer's algorithm can be

explained thus: The first phase value in a row (or column) is recorded. The

phase value of it's immediate neighbour is then recorded and compared with

the previous value. If the difference between the two values is in the region

of 2n, the value is updated by adding or subtracting 2n, depending on the

sign of the difference. This is the simplest form of phase unwrapping and is

adequate if the phase distribution contains very little noise. If significant

noise is present in the distribution, any errors are easily propagated through

the final unwrapped phase map. Figure 4.3 shows the effect of a noise spike

on Schafer's algorithm. Figure 4.3(a) shows a noise-free distribution and

4.3(c) how it appears when unwrapped by this method. Figure 4.3(b) shows

the same distribution, but with the introduction of a "spot noise" spike. The

algorithm will treat the noise as a phase wrap and update the remaining

44

phase values accordingly. The error is propagated through the entire
unwrapped distribution and the final result will be inaccurate.

300

250

200

150

100

50

0

(a) Noise free 1-D wrapped phase distribution.

300

250

200

150

100

50

0

(b)Wrapped phase distribution with single noise spike.

5

0

5

-10

-15

-20

-25

-30

-35

-40

(c) Noise-free distribution unwrapped using Schafer's algorithm

45

0

-10

-15

-20

-25

-30

-35

(d) Noisy distribution unwrapped using Schafer's algorithm

Figure 4.3: Phase distributions unwrapped by Schafer's algorithm

Other algorithms have been proposed to deal with the problem of noise in

wrapped phase distribution, many of which employ analyses based on

regional rather than global data.

Carter[2] explains that phase data can't be correctly unwrapped over a two-

dimensional domain which includes zeroes in the field amplitude as the

phase is singular at these points. Unwrapping in one dimension and plotting

a contour map causes dark bands to trail out behind each zero along the row.

This also applies to columns. The only way to avoid this result is to unwrap

locally. Figure 4.4 shows a rectangular array of sampled two-dimensional

phase data represented by an array of numbered squares. The comers of

each square represent the spatial location of nearest neighbour phase

samples over the 2-D plane. The small numbers indicate the original values

of the phase data. Contour lines occur at 5.94,6.28 and 0.34. These are

shown interpolated through the grid. Unwrapping begins at square zero,

whose value is 5.84. The points at the other corners of the square are tested

to see by how much they differ from 5.84. If the difference is greater than it,

then 2n phase jumps are likely to exist between some of the values along the

path bounding the square. To remove these phase jumps, 271 must be added

to or subtracted from the points until the values are within it of the local

phase reference.

46

rg; Im
62

51 52 53 54 55 56 7 58 59 624} 6.39)
61

41 42 43 44 45 46 47 48 49 638)
60

3 31 32 33 34 35 36 7 38 39
1, R7 r% r

6.37)

59

20 21 22 23 24 25 26 28 ?9 636)
58

10 11 12 13 14 15 16 1 18 19 6 35)

57

0 1 2 34 5 6 I S 9
6.34E

56

5.94 contour

/

6.28 contour

z

0.34 contour

z

Figure 4.4: 2-dimensional phase data

To improve on the accuracy of phase unwrapping, Huntley[3] describes an

algorithm, which is relatively noise-immune. The essence of the approach is

to ensure that the final unwrapped phase distribution is completely
independent of the path by which the process is carried out. This is achieved
by placing "cut lines" in the phase map, which act as barriers to unwrapping.
Generally, the source of a discontinuity in the phase map will be at one end

of a cut line, while the other end of the cut is attached to a discontinuity

source of an opposite sign, or to the edge of the phase map. Discontinuity

sources tend to occur naturally in pairs of opposite sign, but some isolated

sources can occur near the phase map boundary. Cuts are represented by

two arrays of flags, one each for a vertical and horizontal cut, and once the

cut lines have been constructed, unwrapping can be carried out in any order.

Computation time varies with both signal to noise ratio and on the length of

cuts and is apparently comparable to the time taken with a "conventional"

algorithm

Huntley and Saldner [4] proposed a "temporal" phase unwrapping algorithm.

Most algorithms search the 2-D spatial domain for 2n discontinuities; only

one map is required, but errors can propagate outward from high noise

regions, significantly corrupting the unwrapped image. The proposed

47

alternative involved unwrapping in one dimension along the time axis. Each

pixel's phase value is measured as a function of time and unwrapping is

carried out along the time axis for each pixel independently of all the others.
Regions with poor signal-to-noise ratios and boundaries don't adversely

affect the good data points. A set of 2-D phase maps is assembled to form a
3-D phase distribution, where 4(m, n, t) is used to denote the phase at a pixel
(m, n) in the tth phase map. Unwrapping can occur along any path, provided
that no noise, discontinuities or major faults are present. The phase needs to

be sampled at a sufficiently high spatial and temporal frequency. In practice,

noise and discontinuities will always be present, so phase errors will
invariably occur. In a 3-D map, these regions are orientated along the t axis

and, provided that the boundaries don't change with time, they can be

avoided by unwrapping in a direction parallel to the time axis. Although many

intermediate phase maps are required for this method, the approach is

simple and robust. Phase errors remain in regions of low signal-to-noise

ratio. The method is particularly suitable to applications where the phase

map builds up slowly and where phase changes rather than absolute phase

values are important.

Ghiglia et al. [5] used a method employing cellular automata. Cellular

automata can best be described as a series of discrete, simple mathematical

processes, whose results, when combined result in a more complex whole.

A cellular automaton is based on a discrete lattice of identical sites. Each

site can be in any one of k states and evolves according to a simple function

of its neighbouring sites. Experiments suggest that the patterns generated in

the evolution of cellular automata from initially random states fall into four

general classes:

1. Evolution to a homogeneous state,

2. Evolution to simple, separated periodic structures,

3. Evolution to chaotic, aperiodic patterns and

4. Evolution to complex patterns of localised structures.

48

This method "... promise[s] that this simple computation can be done in an
unbiased, non-directional manner". The algorithm is based on a "strength-of-

vote" rule. A point in the phase map is identified and its phase value is

compared with its immediate neighbours. The strength of each neighbouring

point's vote is defined as equal to the integral number of 271 rad necessary to

wrap the respective phase differences. The integer strengths of vote are
accumulated and the point changed by 2n in a direction appropriate to the

accumulated vote strength.

As with most algorithmic approaches, problems arise when path
inconsistencies occur, whether these are noise induced, natural or aliasing
induced. Generally, when a path hits an inconsistent point, it carries this

inconsistency to neighbouring phase values and generates discontinuities.

These normally have to be dealt with by post-filtering operations, which may

corrupt some of the phase data. If a natural dislocation is present, it cannot

simply be removed by additions of 2n. Also, removal of natural dislocations

may have an adverse effect on the phase value. If an aliasing induced

dislocation occurs, it is impossible to distinguish from a natural dislocation

without a priori knowledge. Under these conditions, correct phase

unwrapping is not possible. The cellular automata method makes

allowances for this and "... offer[s] promise of other means of powerful and

parallel computations"[5].

A novel approach to the unwrapping problem was proposed by Gierloff[6].

His method differs from the classical point-to-point algorithm by defining

regions which are free from discontinuities. The method is much less

susceptible to noise and does not propagate errors through the analysis.

The philosophy behind this approach is to make a small number of decisions

based on a much larger amount of analysis. The algorithm categorises

points into regions by determining their relationships to neighbouring points,

which have already been classified. A point is classified as belonging to a

particular region if it is within certain tolerances. For simple images, regions

can be classified by a simple raster-type scan, but for more complex images,

49

more intricate computation is required. Scanning of simple patterns can lead
to "dead" spots at the edges of the image which cause calculation to cease
before the region is completely defined. This can cause a larger number of
regions than necessary to be defined. The method is somewhat
computationally expensive, however, even for relatively consistent data.

Once all the regions have been defined, each is compared with its immediate

neighbours to ascertain whether a phase wrap exists between them. The

phase wraps are identified, relationships between regions are defined and
ones with no phase ambiguities are combined to form larger regions. The

new regions are further compared to determine any necessary phase shifts.
The edge between two adjacent regions is traced and the edge points are

compared. Figure 4.5 shows a comparison of unwrapping techniques.

Figure 4.5(a) shows an original phase profile and (b) shows the

corresponding wrapped phase profile. Figure 4.5(c) shows the phase
distribution as unwrapped using Gierloffs regional method, and (d) shows the

same phase distribution when unwrapped using Schafer's algorithm. The

benefit of the regional analysis can clearly be seen. The regional analysis

has contained any prominent errors where the point-to-point algorithm has

propagated these errors through the analysis, resulting in a wildly inaccurate

final phase distribution.

Bone[7] uses a slightly more complex method, which uses local phase

information to mask out parts of the field, which cause inconsistencies in the

unwrapping. This method uses what is described as residue analysis of path

dependence. This is shown schematically in figure 4.6.

i0

ftý

i,

(a) Original phase profile

S.
-

-So

/

e-0i a

(b) Wrapped phase profile

(c) Unwrapped by regional (d) Unwrapped by Schafer's

analysis algorithm

Figure 4.5: Gierloff's regional phase unwrapping algorithm

,.. Soo

51

V

r

ýi
ah

.J 1ý "ý �ý 'Qjs ýý

., ý

qýýs oiý ý A'

ý-R

-"is cam

ýR

Figure 4.6: Residue analysis of path dependence.

Beginning at a point P and traversing the square in the direction shown, the
number of discontinuities crossed along a should be the same as the number
crossed along b. In mathematical terms, the unwrapping error is the sum of
a and b, thus:

A=E0
(x(k), y(k)) -0

(x(k
-1), y(k -1))

2/r

The unwrapping error, or residue, for a small square will be zero. For any
large path, the unwrapping error is simply the sum of the residues enclosed
by the path. The next stage of the algorithm is similar to that previously
described by Huntley, as branch cuts are constructed joining groups of

residues so that the sum of all the residues joined is zero. This allows the

final result of the unwrapping process to be completely free of
inconsistencies providing that unwrapping never crosses a branch cut.

Bone also proposes an algorithm, which, rather than relying on branch cuts

joining the residues, utilises a mask. A bit-map mask is constructed which is

overlaid on the phase field to prevent the unwrapping algorithm from

following any path which could lead to inconsistencies. This simplifies the

process as only local information is used. It is then possible to calculate

further differences from the locally unwrapped phase. The phase is

unwrapped clockwise around a given point (i, j) in a clockwise manner, as

shown in figure 4.7.

i-)

[i. j+1) [i+1, j+1j

00
P-1 4) r., 7

00 0
[L"i-11

0

Figure 4.7: Unwrapping in a clockwise manner.

Once the mask has been defined, the phase in the regions defined by the

mask has to be unwrapped. Unwrapping is carried out using a standard
recursive flood fill algorithm.

Brown[8] describes a method for unwrapping phase distributions developed

at the Ford Motor Company as part of a proprietary Computer Aided

Holography (CAH) system. The philosophy behind the system was to make
it easy for an operator to create binary masks to guide the unwrapping

process, to automate the mask creation as much as possible, to use an

algorithm which could process an arbitrarily complex structure, to achieve

processing time of the order of minutes and to use 2-D interpolation to fill any

small bad spot regions. The stages of the CAH process with which the work

is concerned are:

" Calculation of the 2n phase change map,

" Creation of the binary bad spot mask,

" Setting of "seed points" in the unwrapped pixel mask,

" Unwrapping of the phase map using the mask, seed point and rectilinear

path algorithm and

" Removal of bad spots.

Stephenson et. al. describe a technique which uses data validation routines

to ascertain the faults present in a wrapped phase distribution[9]. The

9

image of interest is divided into tiles, each of which is subjected to the
following tests:

9 Perimeter test: Schafer's algorithm is applied around the perimeter of
each region. If a continuous phase wrap is present in the region, there
should be an equal number of wraps in each direction around the

perimeter.

" Tile modulation test: This is carried out to check for low-signal modulation
in the image, a frequent cause of apparent phase noise.

" Wrap continuity test: This checks for spot noise or wrap bifurcations. If a

point is found to be a wrap, its neighbours are tested to ascertain whether
they are also wraps.

" Template matching test: For a particular region, templates are

constructed showing all likely positions of wraps, which are dependent on

the position of the fringes in the original image. A good region will have a

perfect match with one wrap position template.

When the validation tests have been carried out on the regions, each tile is

then assigned to one of three categories:

1. Cleanly unwrapped tiles with no detected problems

2. Tiles with a minor problem that could easily be remedied

3. Tiles with one or more serious defects

This series of simple tests increased the robustness of the unwrapping

algorithm.

There are obviously drawbacks associated with all of these algorithmic

methods, the most prominent being those of time and computational

complexity. It is also evident that there is no "generic" phase unwrapper.

54

There will always be complex wrapped phase distributions which an
algorithm will fail to unwrap adequately. The modern digital computer is

extremely adept at performing complex mathematical calculations very
quickly, but is not as competent at tasks at which the human brain excels,
such as pattern recognition. If it is presumed that the basic problem of phase
unwrapping can be considered as a kind of pattern recognition problem, then
it can be postulated that a parallel processing structure such as the brain is
better suited to its solution. An experienced human operator will be able to
decide which data are noise spikes or other discontinuities and which are
phase wraps with far better accuracy than can be achieved by the point-by-

point analysis by a computer. With a human operator, part of the analysis is

likely to be based on intuition, rather than on mathematics alone. This gives

rise to an interesting question: does a machine exist which can be "taught"

what is a phase wrap and what is a noise spike?

The depth of research into Neural Networks (NNs) has already been

discussed in chapter 3. It has been shown that this particular computing

paradigm is, by its very nature, ideally suited to recognition problems. The

idea of using NNs for pattern recognition would suggest that the potential

exists for a suitably trained network to act as the basis for a robust phase

unwrapping system.

Kendall and Hall[10] have carried out work which, although not directly

related to the phase unwrapping problem, describes the use of NNs for

various problems in image processing, including edge detection and texture

classification. For edge detection, a multilayer perceptron with a 2x2-pixel

window is scanned across the image. The NN is trained on an image of

shaded circles with added Gaussian noise and well defined edges. Testing

on a more "natural" image (i. e. one with less prominent edges) showed the

technique to be faster and more accurate than a conventional Laplacian

operator.

The remainder of this chapter deals with research carried out into the use of

neural networks for phase unwrapping.
ýi

4.2 Phase unwrapping by neural network.

To date little research has been published which deals with this particular
approach to the problem. The only work of which the author is aware is that
of Takeda [11]. This approach uses a large network, which performs a single
analysis of an entire image. Consider a wrapped phase distribution as

shown in figure 4.1. At any pixel i, the phase value can be represented by 4;.

If the offset phase value which must be added at the ith pixel to unwrap ýi is

represented by f;, the unwrapping problem can be mapped onto a Hopfield

network by the function:

E=E {[(4 i-1 + 27tfi-1) - (0i + 2nfi)]2 + [(Oi+1 + 2nfi+1) - (4i + 2nfi)]2}

Each image is analysed with a network consisting of five neurons per pixel.
This assumes that a maximum number of five wraps is going to be

encountered in the image. This may well be the case for a fringe pattern

subjected to the FFT method with frequency shifting, but if frequency shifting

is not used or the fringe pattern is subjected to the Phase Stepping method,

the total number of wraps is likely to be far in excess of five. With such a

large network, both large training sets and long training times are likely to be

required. Also, the volume of data involved is such calculations will be very

large. If a CCD camera is used whose array utilises 512x512 pixels, the

resulting image has 262,144 points of data. If five neurons per pixel are

used, the network will have to contain in the region of 1.25 million neurons.

Due to the large number of neurons and, therefore, the high processing times

that would be required, it was thought that an approach may be possible

using a NN to assist in the regional unwrapping of phase images.

The approach outlined in this thesis involves the use of small networks,

which are used to analyse one small region of the wrapped phase distribution

at a time and effectively build up an entire unwrapped phase map from a

56

large number of simpler calculations. It was felt that it would be beneficial to

attempt to reduce the complexity of the approach to the problem using a NN.
Previous algorithmic solutions have been most efficient when reliant on a
regional approach, thus limiting error propagation through the entire image.
If, however, a NN solution is investigated which continues to use a global
method of analysis, some risk of error propagation is likely to be

reintroduced. The previously described NN approach appears to be

reasonably robust, however, the assumptions which are made will greatly

reduce its adaptability. Although it would appear impossible to produce a
"generic" phase unwrapper capable of reconstructing every phase distribution

it encounters, it may well be possible to create an extremely robust

unwrapper if certain points are borne in mind. These are:

1. Parallel processing of an image will produce better results than a point-to-

point algorithm.

2. Regional analysis will cause less error propagation than global analysis.

3. Wraps are likely to occur in any direction.

4. The number of wraps will only be reduced if Fourier analysis with

frequency shifting is used.

5. Generally, the number of wraps is limited by the number of fringes

present in the original image and the resolution of the wrapped phase
image, therefore an unwrapper should be able to analyse any given

number of wraps.

The previously described NN unwrapper[11] took into account only one of the

above points, therefore an approach was formulated which addressed all 5.

The use of a NN addresses point number 1, as by their nature NNs use a

parallel architecture. A system was, therefore, required which not only

employed a parallel processing paradigm, but also relied on local analyses of

phase data, took into account wraps which occurred in every direction and

was not limited to the number of wraps it was capable of detecting. The remit

of this chapter is to describe a possible solution to the phase unwrapping

problem which satisfies all of these criteria.
57

Initial experimentation

The first problem investigated was that of one-dimensional phase
unwrapping. This is the simplest method encountered and involves

unwrapping phase distributions in a single line of pixels. An example of this
has been shown in figure 4.1. Although this was not entirely representative
of the problem as a whole, it was thought that it was a good starting point
from which to evaluate the validity of using a neural network to unwrap a
phase distribution.

A standard image is 512 by 512 pixels. It was therefore decided to work with
512 data points or fractions of this. Experimentation began with a simple

representation of the problem: a single line of 64 phase values containing 4

wraps. The first task was to train a neural network to recognise the positions

of the four wraps in the distribution.

A neural network was constructed using the minimum configuration of one

input neuron for each value and one out output neuron for each

corresponding response. The resulting network consisted of 64 input

neurons, 64 output neurons and a single hidden layer of 64 neurons. The

network architecture was backpropagation with a delta learning rule and

sigmoid transfer function. A complete explanation of this architecture is given

in chapter 3. Training data consisted of 70 sets of 64 phase values, each

containing 4 wraps at various positions. The first training sets were

constructed from simulated data; that is data were not taken from real

wrapped phase distributions, but created artificially to avoid the introduction

of noise or other extraneous data at this early stage in the experimentation. A

sample of the simulated data used for the initial training set is shown in

appendix 1. The first training exercise consisted of randomly presenting the

network with 60 training vectors. The behaviour of the network throughout

the training period was observed and, when training was complete, the

network was tested. Again, the testing procedure is discussed in detail in

chapter 3. A test file, again using simulated data was presented to the

58

network. The desired and actual outputs from the network were
automatically written to a results file which was then analysed to ascertain
how the outputs varied.

During training, the RMS error of the network remained high. Inspection of
the results file showed that the network was attempting to guess the position
of the wraps, but appeared to be unsure as to their exact positions. The

results suggested that either not enough training data were present in the
training file, or problems were arising with the actual presentation of the data
to the network. An attempt was made to rectify the problem by addition of
further data sets to the training file, bringing the total number of training

vectors up to 100. The network was initialised and re-trained using the

extended training set. When training was complete, the network was tested.
It appeared that the addition of further training data had failed to have any

noticeable effect on the results. During training, the RMS error still failed to

converge and the network still appeared to be unsure of the exact position of

the wraps, as shown in figure 4.8.

As the number of training data was having no effect, it was thought that the

problem may have been in the presentation of the existing data. As

described in Chapter 3, when using the delta learning rule, it is important that

the input data set is well randomised. The NeuralWorks Reference Guide

[12] states that 'Well ordered or structured presentation of the training set

often leads to a failure to converge" .
The cumulative-delta learning rule

goes some way to preventing this type of problem. This learning rule

accumulates weight changes over several presentations and applies this

cumulative result at once, giving a pseudo-random presentation of the data.

Changing the learning rule to cumulative-delta appeared to have little

beneficial effect on the results. The training period was extended to

investigate whether the network was simply being under-trained.

19

.n

Wrapped pna=. ý d =;, iIcion

-n

Network outputs

0

Figure 4.8: Wraps erroneously detected by initial network.

In order to ascertain whether the RMS error would converge given a longer

training period, the total number of presentations of data before cessation of
training was increased. Again, the behaviour of the network during the

training period was closely observed and, when training was complete, the

network was tested as previously described. Increasing the number of

presentations to 10,000 had no effect on the RMS error of the network, which

still failed to reach its convergence criterion. The results for the increased

training were even more vague than those previously described, as the

bands of indecision displayed in the results file were much wider, indicating

that the opposite effect to that anticipated had been achieved and that the

network may have been over-trained. The results are shown in figure 4.9.

Due to the limited success of the experimentation at this point, it was decided

to concentrate on a much simpler approach to the problem. Instead of

60

beginning by attempting to unwrap entire rows or columns of phase data, a

network was configured to analyse a much smaller region of phase data,

dealing with only a single wrap. The philosophy behind the approach was to

create a network that would have a small input "window" which could be

convolved with an image to detect the presence of phase wraps. It was
thought that if a relatively simple network was used, it would be possible to

use more complex learning strategies which would make the approach much

more computationally efficient. At this stage, experimentation was still being

carried out to ascertain whether a NN approach was suitable for wrap

detection and not to attempt to perform a complete and successful phase

unwrapping process.

*n

-n

0

Figure 4.9: Network outputs showing bands of indecision.

The first network utilising the simpler approach

Wrapped phase distribution

Network outputs

consisted of a

backpropagation architecture, employing the cumulative-delta learning rule

and sigmoid transfer function. This configuration was employed as

backpropagation networks have been proved to be a reliable method of

recognition in previous experiments. The use of a cumulative-delta rule was

61

again used to ensure satisfactory random presentation of the training data.
The physical configuration of the network relied on the minimum number of
neurons per pixel to attempt to keep the initial computational complexity to a
minimum. The number of pixels to be analysed was reduced to six. This

was thought to be around the minimum number of pixels which it would be

possible to analyse and detect the presence of a phase wrap without risking

reducing the number to a point where the network was acting as a very
computationally expensive point-to-point algorithm. The input layer

consisted of six neurons, each corresponding to a single pixel, and both the
hidden and output layers each contained six neurons. A schematic diagram

of the network is shown in figure 4.10. The network was designed to

recognise the position of a single wrap in a six-pixel region of a phase
distribution and respond by firing a single neuron in the corresponding

position in the output layer. The training set for the network was constructed

using artificial data and consisted of 100 vectors, each of 6 phase values with

no more than one phase wrap occurring at a point within that vector. A

number of "null" examples were also included, that is, vectors containing no

phase wraps.

Output response

Output layer

Hidden layer

Input layer

Input stimulus

Figure 4.10: Schematic diagram of the 6-input network.

02

The data was simulated for the first training set in order to ensure no noise
was present in the initial training set. Nominal phase values showing a step

of plus or minus 2n were used and no noise or false wraps were present.
The first training set was constructed as described in chapter 3. As the

network contained six input and six output neurons, each training vector

contained twelve values, the first six being phase values and the remaining

six being either a zero or a one depending on the position of the wrap. An

example of the training data for the six input network is shown in appendix 1.

The network was trained and tested as previously described, with its

behaviour being closely monitored throughout the training process. Random

presentation of the training data caused the network's RMS error to decrease

almost to its convergence criterion and the weight histogram showed the

spread of weights across the network to approximate a Gaussian distribution.

After 10,000 presentations, although the set convergence criterion had not

been reached, training was stopped and the network was tested. The test

set was again constructed of artificial data and presented to the network only

once. The results of the test showed that the network had accurately

identified approximately 75% of the phase wraps. In the correct cases, when

the desired output was one, the actual output value was in the region of 0.90

to 0.97 and when the desired output was zero, the actual output was

approximately 0.02 to 0.05. These values were improved by further training.

It was found that by 20,000 presentations of training data, the RMS error

value had converged, but to a point slightly in excess of the set convergence

criterion. To allow for this, the threshold was raised to 0.005. This was to

ensure that training ceased at a point before over-training could occur.

When unwrapping is carried out on a real wrapped phase distribution, it is

highly unlikely that the wrap density will be uniform. An ideal and an actual

wrapped phase distribution are shown in one dimension in figure 4.11. To

allow for this variation, a training set containing data with non-uniform wrap

densities was constructed to train the network further. Again, all training data

were simulated and the same network architecture and experimental

63

procedures were adhered to. The results shown were comparable to those
of the previous experiment, with a success rate of approximately 75% being
achieved.

300

250

200

150

100

0 5

0

Figure 4.11(a): An ideal 1-D wrapped phase distribution.

300

250

200

150

100

50

0

Figure 4.11(b): A wrapped phase distribution containing spot noise.

In both cases, when identification of a phase wrap was unsuccessful, one of

three things had occurred:

1. An output neuron directly adjacent to the wrap had fired.

2. An output neuron fired when no wraps were present.

3. An output neuron had failed to fire when the test set showed a wrap to be

present at the very end of the pixel "windo s",

The first two of these phenomena can easily be explained in terms of bad

data or incomplete training. However, the third occurrence poses an

altogether different problem. It appeared that the training data was trying to

teach the network to respond to a discontinuity which was not actually

64

present. As wrap detection necessarily involves comparison of two adjacent
phase values, it is, therefore, impossible to detect a wrap occurring directly

on the edge of a pixel window. Consider the wrapped phase distribution

shown in figure 4.12. As the six pixel window is moved along the distribution
from left to right, it encounters the wrap, which moves left in relation to the

window. As the wrap reaches the furthest left pixel of the window, it
becomes "invisible" to the window, as there is no further pixel to its left for

comparison. Because of this "disappearance" of the wrap when the edge of
the window is reached, it was necessary to adjust the training data to allow
for this by removing references to phase wraps which occurred under these

circumstances. Using the same network architecture and methods as

previously described, the network was re-trained and tested. Analysis of the

results showed a dramatic improvement, with phase wraps being correctly

identified on approximately 95% of occasions.

+77

_n

Figure 4.12: A single phase wrap.

Comparison of training methods

The next experiment was to compare methods of training. So far, the

networks had been trained using entirely artificial, noise-free data. In order to

investigate how the network would behave when presented with more

realistic data, a new training set was constructed.

üý

The training set consisted of data in the same format as previously
described, but this time taken from real wrapped phase distributions. The
distributions were very low-noise and were of the type shown in figure 4.13.
This sample phase distribution is the result of projecting a cosinusoidal fringe

pattern onto a flat, matt white surface and subjecting that fringe pattern to
Fourier analysis. In this image, all the phase wraps occurred in the same
direction. A single line of phase values was taken at various points in the
image and the data from these lines adapted to train the network. Each data

set was examined and the positions of any phase wraps were identified.

Desired output values were added to each training vector showing where in

the data set the wraps occurred. An example of the training data is shown in

appendix 1.

Figure 4.13: 2-D phase distribution used for training data.

4.2.1 Trimming the hidden layer.

So far, all experiments had been conducted using a network consisting of the

same number of hidden neurons as input and output neurons. If a network is

too large for the amount of data with which it is presented, it can become

"confused" and give multiple answers for a single problem. With this

phenomenon in mind, the number of hidden neurons was trimmed to leave a

total of two and the network was retrained. A relatively short training session

66

was tried initially. After 1000 presentations of the training set, no effect on
RMS error or weight distribution was noticed and the results file showed little

more than random data. The network was retrained with 10,000

presentations, but there was no noticeable difference in the RMS error graph.
The weight histogram showed more of a tendency towards a Gaussian

distribution, but there seemed to be a large number of weights with a value of

-8. When the training was complete, it appeared that the two hidden neurons

were "locked on", i. e. their values were both at a maximum. Inspection of the

training file showed a very poor response. Only around a tenth of the phase

wraps had been correctly identified. It was noteworthy that the only wraps

which had been correctly spotted were those which occurred at position

number five. The number of hidden neurons was increased one by one and
the network retrained for each additional neuron. As the number of hidden

neurons increased, so did the network's ability to identify phase wraps until

the accuracy previously described was repeated when six hidden neurons

were used.

In order to investigate the possibility of improving accuracy by adding more

hidden neurons, a new experiment was carried out using a single hidden

layer of twelve units. The network was trained as previously described. The

RMS error graph showed very erratic changes during the training period and

on completion of the training, ten of the twelve hidden neurons were "locked

on". Inspection of the results file showed that again, approximately one tenth

of the phase wraps were being correctly identified. However, in this case, no

noticeable pattern of which wraps were being identified emerged. Training

was continued, with hidden neurons being disabled one by one, until the

original configuration was arrived at. This layout of six input, six hidden and

six output neurons showed the greatest ability to correctly identify the

positions of wraps in a phase distribution.

Further experimentation was carried out with hidden layer configurations. A

network with two separate hidden layers, each containing six neurons, was

constructed. The network was trained in the same way as previously

67

described, its behaviour monitored and, after training, tested and the desired
and actual outputs compared. During training, the RMS error remained as
for the previous experiment, but the a slightly larger spread of connection
weights was evident from the weight histogram. When training was complete
and the network fully tested, the results file was analysed and showed that
only approximately 50% of wraps were being correctly identified. The initial

conclusion to be drawn from this use of a second hidden layer is that too

many processing elements within the network can adversely effect its

performance. The NeuralWorks Reference Guide[12] explains that if too

many processing elements are employed in a relatively simple network,
some of the information may be "lost" as values are spread throughout the

network.

4.3 Experiments with unsupervised learning

Although the experiments with supervised learning as previously described

proved successful, experiments were also carried out with unsupervised
learning in order to compare the two techniques. As discussed in chapter 3,

unsupervised learning uses only a set of input values and the network is left

to calculate its own outputs. For this series of experiments, the same training

data were used as for the previous experiments. Due to its success in

supervised learning cases, phase data taken from real images were used.

4.3.1 Learning Vector Quantisation (LVQ)

An LVQ network was configured with six input neurons, six output neurons

and a Kohonen layer containing six neurons. The existing training data was

presented to the network randomly 10,000 times. Initially, the weight

histogram showed weights present with only minimum and maximum values

and the RMS error changed apparently randomly. However, after

approximately 2000 presentations, the spread of weights began to show the

68

beginnings of a Gaussian distribution and the RMS error value settled and
began to fall. At 8010 presentations, the convergence criterion was met and
training ceased.

Initial analysis of the results file proved promising. Approximately 50% of the
phase wraps were correctly identified. One major problem was noted with
this configuration, however. The network had difficulty in identifying the
situation when no phase wraps were present. In this case, whenever the
network encountered a vector with no wraps, the fifth output neuron fired,
apparently identifying a wrap which did not exist.

Experimentation was again carried out with the number of hidden neurons in

an attempt to improve on the wrap detection rate. By the nature of the LVQ

network it is not possible to have fewer hidden neurons than input neurons

and the number of neurons in the Kohonen layer must be a multiple of the

number in the input layer. With twelve neurons in the Kohonen layer, the

convergence criterion was met after only one presentation of the training

data.

Analysis of the results file showed the output data as apparently random,
identification of wrap positions being by chance. The network was returned

to its original state, initialised and retrained. The convergence criterion was

met after only 20 presentations of data. The results file yielded the same

data as for the previous experiment. Initialising and retraining the network on

further occasions showed that convergence criterion was met after fewer

than 20 presentations of data, and each time, the results appeared to be

completely random.

4.3.2 Hopfield networks: the classical approach

Initial experimentation with a Hopfield network gave unsatisfactory results. A

network was configured to work with the same data in an attempt to solve the

same wrap detection problem consisting of six input, six hidden and six

69

output neurons. Figure 4.14 shows the Hopfield network described in this

section. When training commenced, the RMS error immediately exceeded
the upper limit of the graph and all the processing elements locked "on". The

network remained in this state, so training was terminated and the network

was tested. This caused all the processing elements to lock "off". The

results file showed that when a wrap was present at any point, all the output

neurons fired. However, when no wraps were present in the input data field,

no output neurons fired. The network appeared to be able to tell that a wrap

was present in the data field, but could not identify its position. The network

was effectively operating as a logical "OR" gate.

4.4 Comparison of techniques

The above description of experimentation using both supervised and

unsupervised techniques shows that the two approaches yielded quite

different results. Supervised learning appeared to show more potential for

the detection of wraps in a phase distribution. The use of the

70

Figure 4.14: 6-input Hopfield network.

backpropagation paradigm gave the best results for the 1-D phase wrap
detection problem.

Appraisal of one-dimensional phase unwrapping

So far, experimentation has shown that a small, backpropagation neural

network is suited to the task of identifying the position of phase wraps in a

one dimensional wrapped phase distribution. To facilitate a full unwrapped

phase distribution, it was necessary to extend the experimental work to

include the updating of phase values to achieve the desired end result.
Although the network described performed satisfactorily when a simple
binary output was required, it was thought that training the network to update
the phase values when necessary would be unnecessarily complex. It was,

therefore, decided to rely on a standard method of programming to perform

the actual addition and subtraction of 2n required to produce the final

unwrapped phase distribution. The fully trained and tested wrap detection

network was FlashCoded into standard C and the following procedure

implemented to unwrap a one-dimensional phase distribution.

1. The six-pixel window was aligned with the first six pixels of the phase

distribution.

2. The phase values were presented to the network which reported the

position of any phase wraps.
3. If a wrap was present within the window, the corresponding values of the

original phase distribution were updated accordingly.

4. The wrap detection window was indexed by one pixel and the procedure

repeated.
This was continued until the complete phase distribution had been analysed.

The code for this operation is shown in appendix 2.

71

Comparison with Schafer's Algorithm.

Two 1-D phase distributions were used for this experiment, one consisting of
noise-free data and one containing several spot noise spikes. The two
distributions were taken from real phase images which were the result of a
fringe pattern which had been subjected to a phase-stepping algorithm. The
two distributions are shown in figure 4.15.

Each of the two wrapped phase distributions was unwrapped using the two
methods. Figure 4.15(b) shows the result of distribution 4.15(a) after
unwrapping using Schafer's Algorithm and 4.15(c) the result of unwrapping
by the backpropagation network. In this case, as the wrapped phase
distribution is free of noise, the results are the same. The task is a

straightforward one with no risk of error propagation in the final result.

The difference in the two methods is shown more clearly in figure 4.16.

Here, the wrapped phase distribution contains several prominent spot-noise

spikes which are likely to cause errors in the final result. Figure 4.16(b)

shows the result of unwrapping using Schafer's algorithm. Here, the

algorithm has treated the noise spikes as phase wraps and updated the

phase values by 27t in each case. The result is that errors are propagated

through the unwrapped phase distribution, meaning that instead of a smooth

distribution like the previous examples, several steps are present. Figure

4.16(c), however, shows the same phase distribution when unwrapped using

the backpropagation network. Here, the noise spikes have been effectively

ignored and the correct unwrapped phase distribution had largely been

retained. The noise spikes can then be filtered out by some post-processing

operation.

Considering the relative success of the approaches described above, it was

decided to further investigate the use of backpropagation neural networks to

perform a complete, two-dimensional phase unwrapping operation.

72

300

250

200

150

100

50

0

Figure 4.15(a) Wrapped phase distribution

5

0

-6

-10

-15

-20

-25

-30

-35

-40

Figure 4.15(b) Distribution unwrapped using Schafer's algorithm

5

0

-5

-10

-15

-20

-25

-30

-35
40

Figure 4.15(c) Distribution unwrapped by neural network

300

250

200

150

100

50

0

Figure 4.16(a) Wrapped phase distribution with spot noise

73

0

-6
-10

-15

-20

-25

-30

-35

Figure 4.16(b) Distribution unwrapped using Schafer's algorithm.

0

-10

-15

-20

-25

-30

Figure 4.16(c) Distribution unwrapped by neural network.

Here, the signal to noise ratio in the wrapped phase distribution can be

defined by

SNR = 20 log10 (YN)B

where S is signal and N is noise values of the distribution.

The SNR decreases from 48.165dB for the distribution shown in figure

4.15(a) to 42.144dB for the distribution shown in figure 4.16(a).

4.5 Phase unwrapping in two dimensions

A two-dimensional wrapped phase distribution must be thought of as more

than just a series of lines. It could be tempting at this point in the

experimentation to simply extend the previously described technique to

74

unwrap a series of rows. Although this may well work on relatively simple,
noise-free phase distributions, it does not take into account fully the
interconnectivity of the rows. The technique needs to be extended further,
from a simple 1-D line input to a system capable of analysing two-
dimensional regions of an image.

4.5.1 Initial experimentation

Experimentation was carried out into how the success of the earlier 1-D

unwrapping networks could be transformed into 2-D systems and maintain
their accuracy. Initial experiments concentrated on use of an nxn square
"window" which could perform regional unwrapping and be convolved with an
image to produce a complete result. The need was to optimise the size of

the window used and, consequently, the size of the neural network employed

to address the problem. Consider a wrapped phase distribution defined by a

standard image of 512 x 512 pixels. There are two extremes associated with

analysis of a distribution of this size. It would be possible to attempt to

analyse an entire image with a single, large network. This problem has been

addressed by Takeda[11] and is described earlier in this chapter. There are

a number of drawbacks associated with this approach. A 512 x 512 pixel

image contains 262,144 pixels. To analyse the entire image in one pass will

require use of a network with at least 262,144 input neurons. With a network

of this size comes the associated problems of training. The training set will

require large amounts of data. If 100 vectors are used, a total of 26,214,400

input values alone will be required. Each image used in the training set will

have to be individually analysed to provide desired output responses for the

network. If it is assumed that one output response is required for each input

stimulus, a total number of data in excess of 52 million will required for the

training set. Coupled to the size of the set is training time. Not only will the

analysis of the training images to provide the necessary output responses be

time consuming, the amount of time required to perform the actual training of

the network will be exceedingly high. At the opposite end of the scale to this

is the use of a very small network to analyse small regions of the image. If,

in order to reduce training set sizes and, consequently, training time a very

75

small "window" of pixels is used, the risk arises of returning to the original
problem associated with phase unwrapping. If only a few pixels are analysed
at any one time, the danger occurs of data being so localised that the

network behaves in the same way as a highly computationally complex
version of a simple point-to-point algorithm, with local errors being

propagated through the final result. It was thought that an optimum solution
to the phase unwrapping problem may lie between these two extreme cases.
Investigation was carried out into neural network based regional phase map

analysis.

4.5.2 Unwrapping by regions

For the purpose of this work, the images used were ITEX and Targa format,

that is, images consisting of 262,144 pixels, arranged in a square of 512 x
512. This thesis concentrates on the unwrapping of phase images of this

size and format.

As previously described, if a single "tile" of 512 x 512 phase values is used,

the result will be one of extreme computational complexity. However, if a

region-based unwrapper is configured where the region of interest is very

small, then the original problem is encountered; a highly complex point-to-

point unwrapper is achieved.

The smallest viable tile

If a tile of 4 pixels is used, that is, a2x2 matrix, the point-to-point problem

will undoubtedly occur. Simply comparing two adjacent values, even in two

directions is no advance on the original point-to-point algorithm. The

smallest tile that would be a viable basis for a neural network based

unwrapper is, therefore a 9-pixel region, i. e., a3x3 pixel matrix.

76

Network configuration

Following the previous successes of the backpropagation paradigm for phase

unwrapping, the same network type was used. The network was configured

to analyse a 3x3 pixel matrix, so consisted of 9 input neurons. Following

previous work, the network would be designed to produce a "high" output at a

wrap position, so the number of output neurons was the same as the number

of input neurons. For initial experimentation, the same number of hidden

neurons was again used. Learning rules and transfer functions were used

following the successes of previous experiments.

The first network was, therefore, configured as follows

"9 input neurons

"9 hidden neurons

99 output neurons

" Sigmoid transfer function

" Normalised-cumulative-delta learning rule

Figure 4.17 shows a schematic diagram of the network used for this

experiment.

77

Figure 4.17: The 9 input tile unwrapping network

Training the network

Earlier experiments have also shown that networks achieve better results

when trained with "real" data. Training data was taken from 3x3 pixel regions

of real phase maps. The first phase maps had a high signal to noise ratio, as

shown in figure 4.18. The phase map shown in this diagram is the result of

performing an FFT analysis on straight fringes projected onto a flat, matt

white surface. The data were chosen from random points within the image.

Each set of data was analysed manually to ascertain where a wrap occurred

and output values added to each set of data accordingly. Where no wrap

occurred, the desired output value was left as zero, with a1 being inserted

where a phase wrap was present. Each training vector was thus formed. An

example of selected training vectors is shown in appendix 1.

78

.,,. r ..,.: ,_.,; ý .,. E .:.., _.,.., . .=- -ý-,
_ y,

Figure 4.18: Low noise wrapped phase distribution

With the training data complete, it was possible to train the first network. The

initial limit was set at 10,000 presentations and the network set to train.

Training continued for the whole session, with the RMS error failing to reach
the specified convergence criterion. The values did converge after

approximately 8,000 presentations, but to a value slightly above the

convergence criterion (CC). The distribution of weights throughout the

network was approximately Gaussian, according to the weight histogram.

When the network had been fully trained, it was tested. The test data were

taken from the same images as used for the training data, but from different

areas of those images. This was to avoid using the same values for both

training and testing the network. Again, if the network is tested using the

training data, this simply proves that it has learned the patterns presented to

it in that data and is not representative of how the network will perform.

79

4.5.3 Results

The results from presentation of the test data to the network are shown in

appendix 1. For a clean, low-noise, real image, the network appeared to be

producing an accuracy of 100%. Where the desired output expected a
1.0000, the network gave 0.959 and where a low output (0.000) was
required, the highest value given by the network was 0.018.

While the above results appeared to show the network to be 100% accurate
in its recognition of the position of various phase wraps, it must be borne in

mind that these results had been achieved using only low-noise, high quality
images. As previously described, most "real world" wrapped phase
distributions are far from clean and will invariably contain significant noise.
To test the network further, a second test set was created. This used the

original data extraction program to take phase data from a noisier phase

map. The phase map used for this experiment is shown in figure 4.19.

Using the equation described in section 4.4, the signal to noise ratio of the

image was calculated as 36.124dB. Here, the noise value was calculated

using the Fourier transform of the original image. The central peak of the

FFT was isolated and classified as signal, the rest of the data being taken as

noise. This method of calculation can be somewhat arbitrary, as the size of

the filter used to isolate the peak in the FFT is not always clearly defined.

Several regions of spot noise can be seen in this image. Conventional point-

to-point unwrapping algorithms can easily be confused by this kind of noise

and, although achieving high accuracies on the initial test data, the tile

unwrapper had not been trained to deal with noise of this kind. A test file of

25 vectors was constructed as shown in appendix 1.

80

Figure 4.19: A noisy wrapped phase distribution

When presented with the new test data, the network gave the results shown
in appendix 1. Again, all desired high outputs were greater than 0.95 and low

outputs less than 0.02. The network appeared to be "ignoring" the spot noise

present in the test file and giving an accurate diagnosis of phase wrap

position.

As the results given by the initial wrap detector appeared good, the network

was Flash Coded to produce a fully functional unwrapper. As with previous

work, the Flash Code function of the NeuralWorks package provided network

simulation code to perform the wrap detection. Further code was required to

turn this into a useable phase unwrapping system.

The initial unwrapping code was designed to test the viability of the Flash

Coded network by unwrapping a single tile. The program read a series of

phase values from an image, presented them to the network and wrote the

network outputs to an array. The positions of the values in the array

correspond to the positions of the phase wraps in the region of interest. The

phase values were then updated by ±2n at the points specified by the neural

network.

81

The results of the initial experiment show that it is theoretically possible to
use a "tile" system such as this as the basis for phase unwrapping. The

unwrapping of an entire 512x512 pixel wrapped phase distribution is,
however, much more complex. The results from a number of tiles must be

combined to give a complete unwrapped phase distribution. The next
problem to be addressed was how to combine the wrap detector tile with a
complete wrapped phase distribution.

The size of the tile for the initial experimentation has been defined above as

a 3x3 pixel square. This size was arrived at for reasons of computational

complexity. If a large tile was used (the maximum tile size being equal to that

of the image - 512x512 or 262,144 pixels), the network needed would be

extremely complex. If, however, the smallest possible tile of 2x2 pixels was

used, the result would be an extremely complex point-to-point unwrapping

algorithm. In the latter case, the same problems as encountered with

Schafer's algorithm would arise and the entire object of the research would

have been somewhat defeated The use of a tile unwrapper still poses a

number of problems.

The connectivity problem

Consider a portion of an image as shown in figure 4.20. If a 3x3 pixel tile is

positioned with tile pixel a overlapping image pixel x, it will correctly unwrap

its allotted section. If the window is then repositioned at image pixel x+3,

again, a satisfactory unwrap of the new tile is likely to occur. Although two

successful tile unwrapping operations may well have been carried out, it is

also likely that the problem of a "missed wrap" may occur. If a phase wrap is

present vertically in the image between pixels x+2 and x+3, no calculation will

have been made to detect its presence. The most sensible method of

allowing for this would appear to be to convolve the tile and the image in a

similar manner to the approach taken with the six pixel line unwrapper in the

initial experimentation.

82

x, y x+1 ,y x+2, y x+3, y

x, y+1 x+1 y+l x+2, y+1 x+3, y+1

x, y+2 x+1 , y+2 x+2, y+2 x+3, y+2

x, y+3 x+1, y+3 x+2, y+3 x+3, y+3

Figure 4.20: Tile convolution.

Tile convolution

Figure 4.21 shows how the input tile and the input layer of the network are

related. Each tile element has a corresponding single input neuron

The tile was convolved with a 512x512 wrapped phase distribution, which

yielded an intermediate image showing the position of the wraps. The first

image used to test the system is shown in figure 4.22 and the output from the

wrap detector in figure 4.23. Calculation of signal to noise ratio using the

equation described in section 4.4 yielded a value of 38.622dB Conventional

code was used to perform the 271 phase shifts required and the result of the

unwrapping procedure is shown in figure 4.24. In order to produce the final

code for the unwrapping system, the "C" code generated by the NeuralWorks

package was translated into IDL (Interactive Data Language).

8?

bq)llt layer

Figure 4.21: Tile network input configuration.

Figure 4.22: 2-D wrapped phase distribution with added noise

84

Figure 4.24: Unwrapped phase distribution.

85

Figure 4.23: Output of tile wrap detector.

References

1. Schafer and Oppenheim. "Digital Signal Processing", Prentice-Hall,
1975.

2. W. H. Carter. On unwrapping two-dimensional phase data in contour
maps. Optics Communications 94(1992)1-7

3. J. M. Huntley. Noise-immune phase unwrapping algorithm. Applied
Optics, 25,10(1986)1653-1660

4. J. M. Huntley & H. Saldner. Temporal phase unwrapping algorithm for
automated interferogram analysis. Applied Optics, 32,17(1993)3047-
3052

5. D. C. Ghiglia, G. A. Mastin & L. A. Romero. Cellular automata method for
phase unwrapping. J. Opt. Soc. Am. 4,1(1987)267-280

6. J. J. Gierloff. Phase unwrapping by regions. Proc. SPIE 818(1987)2-9
7. D. J. Bone. Fourier fringe analysis: the two-dimensional phase

unwrapping problem. Applied Optics 30,25(1991)3627-3632
8. G. M. Brown. Practical phase unwrapping. Proc. SPIE 1553(1991)204-

212
9. P. Stephenson, D. R. Burton & M. J. Lalor. Data validation techniques in a

tiled phase unwrapping algorithm. Optical Engineering 33(1994)11,
3703-3708.

10. G. D. Kendall & T. J. Hall. Performing fundamental image processing
operations using quantised neural networks. Proc. FRINGE '93.

11. M. Takeda. Phase unwrapping by neural network. Proc. FRINGE '93.
12. NeuralWorks Professional II Plus Reference Guide. NeuralWare Inc.

1993

86

Chapter 5: Fringe optimisation

87

5 Fringe Optimisation

5.1 Introduction: What is fringe optimisation?

While the problem of classical optimisation is well documented, the need for
the optimisation of projected fringe patterns has not been the subject of
extensive research. Previous chapters have discussed the need for and
implications of fringe analysis as a measurement tool. During a
measurement operation a fringe pattern is projected onto an object's surface,
the returned image is processed and a result is given. The result can
generally be classified as "good" or "bad" - The analysis gives an acceptable
result, or the analysis fails to work or it works badly. This leads to three

possible questions:

For any given surface, is there a fringe pattern that produces a

good result?

9 How can the quality of that result be defined?

" How can such a fringe pattern be found?

Until recently, this was a problem that was difficult to address as it was not

possible to have accurate control over the characteristics of a fringe pattern

on-line. With the development of the twin-fibre adaptive interferometer[1],

however, dynamic fringe pattern optimisation is now feasible. Consider a

conventional fringe analysis system as shown in figure 5.1. The system has

three major components: a projection device, an image capture device and a

digital computer. The projection device usually consists of an interferometer

or grating to produce a fringe pattern that is projected onto the object's

surface. The fringe pattern is viewed through a CCD camera, which is

connected to a frame store, and all analysis is carried out by a digital

computer. This type of system is adequate for analysis of fringe patterns

88

and has, for several years, been the accepted method. Its main drawback,
however, is the inability of the user to have control over the pattern which is
projected. All gratings provide a fixed fringe pattern and the adjustment of
most interferometers is an extremely labour intensive task. If the system is

required to analyse a number of objects whose shapes vary considerably, a
fixed fringe pattern may not be suitable. It was with this in mind that the
twin-fibre adaptive interferometer was developed[1]. Consider the example
as shown in figure 5.2. Here a surface is shown onto which fringe patterns
have been projected. Figure 5.2(a) shows a fringe pattern which is likely to

produce a good final result. However, the fringe pattern shown in figure
5.2(b) is less satisfactory. The fringe spacing is very small, the fringe

contrast is very low and the overall intensity of the image is very low. These

criteria will mean that a successful measurement is less likely.

Figure 5.3 shows a schematic diagram of the interferometer. The light is

supplied by a 15mW helium-neon gas laser, which is launched into an

optical fibre. The optical fibre is split to provide two coherent light sources

which, if closely spaced, behave in a similar manner to Young's experiment

to provide an interference fringe pattern. The adaptive nature of the

interferometer is reliant upon how the fibres are mounted. One fibre end is

mounted in a fixed position inside the interferometer, while the other is

mounted on a translating stage. Figure 5.4 shows the internal arrangement

of the interferometer. If the position of the movable fibre is varied, it

becomes possible to change both the spacing and the orientation of the

fringes. The position of the translating stage is governed by a pair of

MotionMaster positional controllers, manufactured by the Klinger

Corporation. The controllers provide a means of accurately positioning the

fibre in two dimensions. If the computer that performs the analysis of the

fringe pattern controls the position of the fibres, it then becomes possible to

achieve a "closed loop" system, where the fringe pattern is adjusted to suit

the object to be measured before measurement actually takes place. Figure

5.5 shows a schematic diagram of the "closed loop" system. The fringe

pattern is provided by the twin-fibre interferometer, with the fibres being

89

positioned by the computer. The fringe pattern is viewed by the CCD

camera and the image relayed to the computer's frame store. Here it is

possible to make a decision regarding the quality of that fringe pattern and, if

it is not satisfactory, it can be adjusted before any analysis takes place. This

leads on to the question of how it is possible to produce an optimum fringe

pattern for a given surface.

Frnge projection device

Object

Figure 5.1: A conventional fringe analysis system

qr

M1

yd

yid

- ""

,
flvf/`r

/1

.

/J'I'

ß°1e
`

4,

Figure 5.2(a): An acceptable fringe pattern

90

An experienced operator can look at a fringe pattern and decide whether or

not it will be suitable to perform a measurement. A cursory analysis of how

many fringes are present, how widely they are spaced or how bright the

image is will give an indication of its suitability. A decision such as this is

most often based on intuition and experience of the operator, not detailed

mathematical analysis. As with many processes which rely on a human

operator for input, the result will not necessarily be consistent. Two different

operators may perceive the same situation slightly differently, which will

inevitably lead to inconsistencies in analysis. Also, many factors may

contribute to an operator perceiving the same situation differently on

separate occasions.

Now that reliable technology exists to adjust the attributes of a fringe pattern

accurately, it would appear desirable to construct a system that could

perform this task automatically. It is on this premise that experimentation

has been conducted into fringe optimisation.

91

Figure 5.2(b): An unacceptable fringe pattern.

al ftl)re

Lý`cr
Bt-du ec tion, II Ie,

ý11
al cotipil

1\11(1-o tra1LLlatioui stake /-ý

/"/" \\
EI--* *i

Friii es, pi*ojected

Figure 5.3: Schematic diagram of the adaptive interferometer

MotonMaster
positional controller

Figure 5.4: The adaptive interferometer internal arrangement.

92

Optical fibres

Object

Figure 5.5: The "closed loop" system

How can a fringe pattern be defined?

A number of parameters can be used to define the quality a fringe pattern in

some sense. These are:

" Number of fringes

" Fringe spacing

" Bandwidth (min/max spacing)

" Orientation

" Average intensity

" Contrast/visibility

" Noise level

9 Other periodic features present in the image.

Again, this can be viewed as a problem of recognition, which leads to the

question: can a neural network be trained to recognise a good or a bad

fringe pattern?

93

5.2 Experimental work:

5.2.1 Initial optimisation experiments

Initial experimentation involved the use of small neural networks to solve a

simple, classical optimisation problem. This experiment attempted to locate

the minimum value of a cosinusoidal function.

Experiments with unsupervised learning

For this experiment, a Learning Vector Quantisation (LVQ) network was

used. A network was configured with 10 input, 10 hidden and 10 output

neurons. Figure 5.6 shows a schematic diagram of the network.

94

Figure 5.6: Neural network for detecting minima of a cosine function.

A training set was constructed using simulated data containing no noise or
false minima. The completed training set contained 38 training vectors.
When LVQ networks are used, the network specifies its own number of
presentations of data, which is related to the number of vectors present in

the training set. The network learned for 1710 presentations and when
training ceased, the network was tested using a set of test data of the same

size as the training set. The results obtained from the test set are given in.

The minima were being correctly identified on approximately 60% of

occasions.

Most of the incorrect identifications occurred when "false" minima were

present in the data. Consider the graphs shown in figure 5.7. Figure 5.7(a)

shows a cosine function and the network's response. The minimum of the

function is correctly identified. However, if a function is introduced as in

figure 5.7(b), the network shows a tendency to become confused, as the

response confirms. The false minimum in the function tends to draw the

output away from the actual minimum value.

95

Cosine function

I

Network output

0

Figure 5.7(a): The network's response to a cosine function

Cosine function with
false niinirnurn

I

Network output

0

Figure 5.7(b): False minima in the signal

96

Experiments with supervised learning

A backpropagation network was configured, having 10 input, 10 hidden and
10 output neurons and the training data presented to it. Figure 5.8 shows
the network, which was trained using the same data set as previously
described. Training for 10,000 presentations caused the RMS error to drop

gently and smoothly but not reach its convergence criterion. The weight
distribution approximated a Gaussian distribution and the results file showed

a slightly better response than for the LVQ network. The high output values

were not as high as the LVQ, but 75-80% of them were on target. Further

training was initiated, and the network was left to train for 50,000 passes.

After this extended training period, the RMS error reached a point slightly

higher than the specified convergence criterion. The weight histogram

approximated a Gaussian distribution, but showed a disproportionately large

number of weights at the extreme ends of the graph. The results file showed

that the high values were approximately 0.997, low values were

approximately 0.004 and were on target 85% the time.

97

Figure 5.8: Cosine function minimum detector network.

Comparison of the two methods shows that the neural network approach to
the optimisation problem yields some satisfactory results and that
backpropagation networks are best suited to solving simple minimum
location problems.

Considering the relative success of the neural networks is solving simple
minimisation problems, it was decided to expand the scope of
experimentation to include the problem specified in the original brief of this
thesis.

5.2.2 Neural networks for fringe optimisation

Calculation of parameters

The parameters by which a fringe pattern can be defined have been stated

in section 5.1. The ones that are directly measurable are:

" Mean intensity

" Contrast/visibility

" Number of fringes

" Fringe orientation

Mean intensity and fringe contrast/visibility are functions of the amount of

light reflected from the surface that reaches the CCD array. Fringe number

and orientation are the two parameters that are directly influenced by the

position of the fibres in the adaptive interferometer. It is the latter two

parameters which are most important in closing the loop, as they can be

controlled directly by the computer which is performing the analysis. To fully

automate the process, the camera would require a lens that can be operated

automatically. To produce a completely "closed loop" system, a lens

allowing automatic control of both focus and aperture would be desirable.

98

These parameters can be calculated thus:

Mean intensity:

For n pixels, the intensity value I at each pixel is recorded and the mean

calculated by the following equation:

(I1 +12+13+... In)/n

Contrast and visibility

Contrast and visibility are calculated in similar ways, both involving a

relationship between minimum and maximum intensity:

Contrast = (Imax - Imin) / Imax

Visibility = (Imax - Imin) / (Imax + Imin)

To ascertain which of these values would be best to use for the analysis,

both were calculated for a known, good fringe pattern. The fringe pattern

used for the calculation was a pattern as shown in figure 5.9, having 64

fringes and a high signal-to-noise ratio

For a series of camera apertures, the maximum and minimum intensity

values were recorded for the same fringe pattern, which is shown at its

brightest (aperture=f2.8) in figure 5.9. From these values, the contrast and

visibility were both calculated for each aperture. The results are shown in

figure 5.10

99

PAM

Impoi WOO

. . , . -- .w . .. - G gM: MºiwyWY'q'ýalnsr. n. - . morm walo 0 o .,

'ý'hMýM, +(ii-: Yr.:. v-. wY? +. . rý nMw.

. . - .,,

--... ru-. _Y; aY":.. w, uw'ý! M"/Wgs ti. 'ý

ý. ý'MMS. a.. ýJ! q'glý... y..,. l... / -. --... ý ...:....: . '...... .. - ý. e .:., .. ý.. _ 't..: _..., b.... MFMýKý, ý"f

ýYMwW., N"ýR1, "nwR... vo..,. r, .. J. > :....... ._ .. -.. -. _... _a. «w..... asiý

Figure 5.9: Highest intensity image

f-stop I max Amin Contrast Visibility

2.8 240 140 0.5833 0.4118
4 175 75 0.5714 0.4000
5.6 135 65 0.5185 0.3500
8 105 60 0.4286 0.2727

11 90 60 0.3333 0.2500

Figure 5.10: C&V vs. aperture.

The table shows how contrast and visibility vary with camera aperture. It can

be seen from the results that calculating contrast gives a range of values

approximately 1.5 times that of visibility. This suggests that contrast would

be a better value to use, particularly if the values of Imax and Imin are close

together.

Fringe number:

Simply calculating the number of peaks and troughs across a fringe pattern

is not an accurate enough representation of the number of fringes present.

100

This method will not allow for any localised maxima and minima. A better

method for calculating this parameter is by mean subtraction. Firstly, the

mean intensity value across a fringe pattern is calculated. This value is

subtracted from each individual intensity value, leaving an intensity

distribution containing both positive and negative values. The number of
times the distribution crosses zero is then calculated, the number of zero

crossings being twice the number of fringes. The spacing of the fringes can

easily be changed using an adaptive interferometer, as previously
described. Figure 5.11 shows an intensity profile across a cosinusoidal

fringe pattern. The illumination is uniform across the whole image and signal

to noise ratio is high. In this case, the mean subtraction method will give a

value for the number of fringes present in the image.

Figure 5.11: Typical intensity profile.

Fringe orientation:

Another parameter, which is easily controllable using adaptive

interferometry, is fringe orientation, also referred to as tilt. A similar analysis

as for fringe number is carried out at various orientations throughout the

fringe pattern. The frequency of fringes in a particular direction will give an

indication of their orientation.

101

5.2.3 Experimental methods 1

It was proposed that a neural network be configured to analyse these four

parameters which would give an output dependent on the quality of the

pattern. The output from the network would then be used in conjunction with
the control system of an adaptive interferometer to adjust the fringe pattern

until it was optimised.

Separate networks for each parameter

The first method proposed to solve the problem was to use a separate,
discrete neural network for each parameter. The idea involved training each

network to recognise the validity of a separate parameter and then

combining the outputs from the array of networks to produce the final result.

A schematic diagram of this layout is shown in figure 5.12.

_ fl JPUL 11v- vi i ... i

Output neurons

Figure 5.12: Multiple network configuration

102

For the purpose of training the networks, the image was split into separate
regions of interest (ROls). For the separate ROls to retain the same aspect
ratio as the original, image, it was necessary to keep to a "square" pattern.
The smallest number of square ROls was, therefore, four. Initial

experimentation began by dividing the image into four ROls, each having a
size of 256x256 pixels. From this configuration, four contrast values could
be calculated for each fringe pattern. It was also decided to take into

account values at the centre of the fringe pattern, i. e. the brightest point in
the image. This would lessen the effect on the data of any darkening or
other aberrations at the edges of the image, which may have been caused
by the lens or CCD camera. Thus, a fifth ROI was established at the centre

of the image. This region was the same 256x256 pixel square as the

previously described regions and was equidistant from all four edges of the

image. Figure 5.13 shows the relative positions of the five regions.

ýi

_. _ _ý

Figure 5.13: Five regions for data acquisition

Contrast

The first experiment used a backpropagation network to determine the

contrast of a fringe pattern.

1O

Data acquisition

To calculate contrast, an intensity profile was recorded for each region. The

profile was take vertically through the centre of the ROl. Figure 5.14 shows

a typical intensity profile of 256 pixels. From this profile it was possible to

calculate the maximum and minimum intensity values for the region.
Contrast could then be calculated from the equation

C=(Imax-Imin)/Imax

Application of this equation to each ROI resulted in a total of five values of

contrast for each image. To complete the training set, supervised learning

techniques required an output value. For this experiment it was decided to

label regions whose contrast value was greater than or equal to 0.500 as

"good" and those less than 0.500 as "bad". This could be simply

represented by a high, or 1.000, value for each good image and a low, or

0.000, for each bad image. Fifty images of varying contrast were used to

construct the training set.

Figure 5.14: 256 pixel intensity profile.

104

Contrast network configuration

A backpropagation network was initially configured to analyse the contrast
data. The configuration stemmed from earlier successes with
backpropagation networks and consisted of the following

95 input neurons

"5 hidden neurons

"1 output neuron

" Sigmoid transfer function

9 Normalised-cumulative-delta learning rule

The learning rule was selected to improve training by increasing the

likelihood of random data presentation. Figure 5.15 shows the network.

105

Figure 5.15: Contrast optimisation network.

Training the network

The training limit was set to 10,000 presentations and the network left to
train. Initial behaviour of the network appeared to show that training was
progressing badly. The RMS error graph showed no convergence and the

spread of weights throughout the network appeared random, as was the
initial state. Before attempting to rectify the training problem, it was
necessary to ascertain how badly the network had actually trained. First, the

network was tested using the same data as for the training set. This was
done to test if the network had learned to recognise any of the specific data

in that set. It appeared that the network had actually learned to recognise

most of the data with which it had been presented. To test the network
further, it was necessary to test using different data from the training set. A

test set was constructed in the same manner as the training set and the

presented to the network. The results showed that, although the RMS error

and weight distribution pointed to poor training, the network was recognising

the difference between good and bad contrast values on 93% of occasions.

In each case, the wrongly categorised values were low desired outputs,

which were considered by the network to be high.

Number of fringes

Experimentation was carried out to investigate the number of fringes in an

image. The first network was a backpropagation network configured to

analyse the number of fringes in each region of interest as previously

defined. The network utilised 5 input, 5 hidden and 1 output neuron. The

training data was taken from the same images as for the previous

parameters.

106

Collecting the training data.

Previous experimentation has shown that better results can be achieved if a
neural network is trained using real rather than simulated data. With this in

mind, it was necessary to collect a number of representative data from real
images in order to train the network. The image was divided into four

regions and the number of fringes in each region counted. Firstly, an
intensity profile was recorded across each of the regions. The average
intensity value was calculated for each profile and this value was then

subtracted from each value in that profile. The number of zero crossings

was calculated and divided by two to give the total number of fringes in the

region. The fringe number was calculated in this manner to avoid the effects

of localised maxima and minima at the peaks and troughs of the intensity

profiles. Intensity profiles were recorded for four regions in thirty images

containing straight fringes of varying period. This enabled a set of 30

training vectors, each containing four fringe number values to be

constructed. To complete the training vectors, the corresponding fringe

number was added to present to the single output neuron.

Training the network

The training limit was set at 50,000 presentations and the network was left to

train. At the end of the training period, the distribution of weights appeared

to be very poor, as every weight was either high or low with no intermediate

values present. The network was tested, but results were poor, with all

outputs showing a value of 0.4285, regardless of input.

The hidden layer was pruned to investigate the gradual removal of hidden

neurons. One by one, hidden neurons were removed and each time the

network was trained with the same data. The results for the pruning exercise

were as shown in figure 5.16.

107

No of hidden
neurons

Effect

5 All outputs reading 0.5243

4 All outputs reading 0.5364

3 All input weights high, all hidden weights
low, all outputs reading 0.5364

2 All weights high, all outputs reading 0.5364

Figure 5.16: Effect of pruning hidden neurons.

As the removal of hidden neurons was having no positive effect on the
results, experimentation with multiple hidden layers was conducted. The
hidden layer was returned to its original state and a second hidden layer was

cloned from it. This was connected between the existing hidden and output
layers. Training commenced using the same data as for the previous

experiments and continued for 50,000 presentations. During the entire
training period, the RMS error remained steady at approximately 0.5 and

when training was complete, the network showed a reasonable spread of

weight values. However, after testing and analysing the results file, the

same phenomenon appeared to be occurring. All the output values were
identical, regardless of the input.

Although backpropagation networks had been both simple to implement and

reliable in their results for the earlier wrap detection problem, this initial

experimentation showed them to be less suited to the problem of

optimisation of this parameter. It was therefore decided to investigate the

use of an alternative network type for this analysis.

The same problem of optimising fringe number was tackled using a General

Regression Network (GRN), the theory of which has already been discussed

in chapter 3. In order to make use of the existing training and test data, the

network was configured to have five input neurons and one output neuron.

The network does not contain a conventional hidden layer, but two

108

intermediate layers. These are the pattern and summation layers. The
smallest default values for these intermediate stages given by NeuralWorks
were 50 pattern and 2 summation neurons. The network, shown
schematically in figure 5.17, was configured with the following parameters:

5 input neurons

50 pattern neurons

2 summation neurons
1 output neuron
Euclidean summation function

Tau = 1000.00

Reset factor = 0.0000

Radius of influence = 0.050

Sigma scale = 1.0000

Sigma exponent = 0.5000

The initial network was trained as for previous experiments. During training,

the RMS error appeared as shown in figure 5.18. The graph showed this

throughout the duration of the training session. After 50,000 presentations

109

Figure 5.17: Fringe number GRN.

of the training data, training ceased, although there appeared to be an
unusually large number of high weights. In spite of the weight distribution
and unusual behaviour of the RMS error, the results showed an accuracy of
96.9%.

Mean intensity

Calculation of mean intensity followed the method shown previously in the

calculation of fringe number. The same ROls were used for collection of
data and a single intensity profile taken across the centre of each. The

standard mathematical method for mean calculation was employed, i. e. the

sum of all values was calculated which was then divided by the number of

values. The result of this was five mean intensity values for each image. As

an ideal fringe pattern should contain equal regions of light and dark pixels,

with intensity ranging from 0 to 255, it follows that the average intensity

value for the image should be of the order of 127. A training set was created

with low intensity values being assigned a low (0) value and high intensity

values being assigned high (1) values. An intensity value that fell into the

"good" region was assigned a value of 0.5. The network outputs were

scaled to values between 0 and +1. Consultation of the NeuralWare

reference guide [2] and results obtained from previous experimentation have

shown that backpropagation networks function best when outputs are

confined to this region. A backpropagation network was constructed as

shown in figure 5.19 for analysis of this parameter. The network was set to

train for 50,000 presentations. During the training process, the RMS error

graph appeared to remain high, refusing to reach its convergence criterion

Figure 5.18: RMS error graph.

before all 50,000 passes were complete. The weight spread approximated a
Gaussian distribution, but showed high values for extreme low and high

weights. After training, the network was tested, again using different data
from that used in the training set. The results file shows that the network
achieved correct results on 81% of occasions. While this value is

reasonably high, it does not compare favourably with the results given by

previous experiments, which have been showing success rates in the region
of 90-95%.

Fringe orientation

Two methods for determining the fringe orientation were considered.

1. Cross-profiles.

In each of the regions of interest, both horizontal and vertical intensity

profiles were recorded. Figure 5.20 shows the directions in which the

111

Figure 5.19: Backpropagation network for mean intensity analysis

profiles were recorded. The profiles were then compared to give an
indication of the orientation of the fringes in that particular region of interest.
The result from this method is five values for orientation.

Figure 5.20: Cross-profiles

2. Fan-out profiles

A series of intensity profiles was recorded throughout the whole image in the

directions shown in figure 5.21. The number of fringes in each direction was

counted as previously described and the counts compared. The result from

this method is five fringe counts, one for each direction shown in the

diagram. This also provided the same number of inputs as for the previously

described parameters.

11:

NB Profiles were also recorded in the c entre ROI

Figure 5.21: Fan-out profiles

From the variation in number of fringes with direction, it is possible to

determine the orientation of the fringes in the pattern of interest. The

problem remained of how to quantify the output of the network to determine

the actual orientation of the fringes. Using a network of this size would

cause problems in determining exactly how far from the horizontal the

fringes were, so the task of defining simply whether the fringes were

horizontal or not was initially addressed. The most complex output that the

network would be asked to give was in which direction the fringes were tilted.

The first experiment used the following system:

1. Determine fringe counts in each direction of the "fan-out" profiles

2. If fringes are horizontal, assign a zero to the desired output.

3. If fringes tilt anticlockwise, assign -1 to the desired output.

4. If fringes tilt clockwise, assign +1 to the desired output.

11ý

A general regression network was configured to test this theory. Figure 5.22
shows the network used for this experiment.

The training parameters were as described for previous networks. The

network was trained for 10,000 presentations and tested. The network

outputs for this experiment gave unsatisfactory results. Instead of showing

the required directions, all outputs were in the same region, showing low

values, all of which were positive. Again, previous experimentation was

referred to. As described earlier, best results are achieved if the network

outputs are between 0 and +1. In order to achieve better results with the

orientation network, the training data were re-scaled to try and improve

training. Instead of using values between -1 and +1 for the desired outputs,

the values were re-scaled to be in the region 0 to +1. The new outputs were

decided thus:

114

Figure 5.22: GRN for orientation analysis.

" If fringes are horizontal, assign a value of 0.5 to the desired output.

" If fringes are tilted anticlockwise, assign 0.

" If fringes are tilted clockwise, assign +1.

The network was re-trained using the re-scaled outputs. During the training

period, the spread of weights approximated a Gaussian distribution, but the
RMS error remained high and did not reach its convergence criterion. The
first results file showed a success rate of 88%. Experimentation was carried
out to reduce the number of pattern neurons to ascertain the effect on

successful training. The default value set by the NeuralWorks package was
51 and the results for this are described above. The minimum number of

pattern neurons allowed by the package is 10, so a network employing this

minimum configuration was trained. The number of pattern neurons was

gradually increased; the results were as shown in figure 5.23. It can be seen

that increasing the number of pattern neurons gradually decreases the

accuracy of the network until 14 are used, when accuracy increases to 88%

and remains constant at this value. It follows from this that the minimum

number of pattern neurons required to achieve maximum accuracy is 14.

Number of pattern

neurons

Network overall

percentage accuracy (%)

10 84

13 84

14 88

15 88

20 88

25 88

51 88

Figure 5.23: Effect of varying number OT pattern nein ui i, -).

115

5.2.4 Experimental methods 2

The use of multiple networks to address the optimisation problem is

extremely flexible, as, if it is necessary, each parameter's network can be re-
trained separately. However, the need for extra processing to combine all of
the network outputs adds a further level of complexity to the overall system.
It was decided to follow a different approach to the problem by using a
single, larger network to analyse all parameters simultaneously. Figure

5.24 shows a schematic diagram of the new "global" network.

Contrast inputs

T Tý Fringe number inputs
Intensity inputs

Global optimisation network

0 Input neurons
" Output neurons

Figure 5.24: The "global" optimisation network

Data acquisition

Orientation inputs

i

The data was acquired in a similar manner to those experiments already

described. The image was split into four regions and intensity profiles read

in the centre of each region and a fifth intensity profile was read from the

centre of the image, where it was likely to be brightest. From these five

profiles, the three parameters mean intensity, number of fringes and visibility

116

could be calculated as described earlier in section 5.2.2
. Instead of using

four separate training sets, a larger, single data set was acquired. The net
result of the data acquisition exercise was a set of data that could easily be

turned into training vectors for a number of different paradigms. Each image

yielded 20 input values, 5 for each parameter. An output response for each

parameter in each training vector was added according to the user's decision

on image quality to complete the training set
training set is shown in appendix 3.

Experiments with backpropagation

An example of a global

Initial experimentation with a "global" optimisation network employed the

backpropagation paradigm. As previously described, there are four

parameters that can easily be measured and controlled. These are:

" Mean intensity (Im)

" Fringe contrast (V)

" Fringe number (N)

" Orientation (T)

It has been calculated previously that the optimum parameters for a fringe

pattern are,

Im = 127

V>_0.7

N= 64

T=0.5 (horizontal)

117

The tolerance bands for these parameters, as seen by the network, are

100<_Im<_150

55<_N<_65

0.4 <_ T <_ 0.6

0.5<_V<_ 1

The acquisition of data for the global network was carried out in a similar

manner as previously described. However, instead of collecting data for

individual parameters, all data was collected simultaneously. The result of

the data acquisition exercise was a set of 5 data per parameter, giving a

total of 20 data values for each training vector. Instead of a single output,

the network provided 4 outputs, one corresponding to each parameter. An

example of a training set of this type is shown in appendix 3. The network

used for this experimentation is shown in figure 5.25. The backpropagation

network consisted of a single input neuron for each data value and 20

hidden neurons.

118
Figure 5.25: Global optimisation network.

The network was initially trained for 20,000 presentations. The RMS error
remained high throughout training and the weight histogram showed a
tendency towards overtraining. The results file showed limited success at
this initial attempt. With the possible tendency towards overtraining,
experimentation with fewer hidden neurons was carried out. Training and
testing with 19 hidden neurons produced the following results. As before,
the "success rate" of the exercise is given. This is shown as a percentage of
the number of network outputs that match the desired outputs.

Im = 40%

N= 65%

T= 100%

V=95%

This translated to an overall success rate of 75%.

The high result for the fringe orientation is noteworthy. This is probably due

to the fact that this parameter has the most "definite" output and that it is

relatively easy for the network to learn three definite "states". The contrast

result was also promising, with errors tending towards "loud"values. Im and N

values were less satisfactory. The network appeared to be confused as to

the validity of some of the N values. The parameter causing most concern

was that of Im, as, according to the results file as all Im values were passed

as "good". In an attempt to remedy these problems, new training data were

taken from real images. The existing network was then trained for 20,000

presentations. Along with the new training data, experimentation was

carried out with further reductions in the number of hidden neurons. The

results of this experimentation are shown in figure 5.26.

119

Experiment Im % N% T% C% Overall %
Original data & network
20,000 passes

40 65 100 95 75

Im re-scaled to 0<_ lm s1
20,000 passes

91 57 100 98 87

Im re-scaled,

50,000 passes

97 86 100 95 95

Original data, 18 hidden

neurons, 20,000 passes

42 45 100 98 71

Im re-scaled, 18 hidden,

20,000 passes

94 45 100 89 82

t-igure o. /-e: Kesults tor training the global network.
The results show that the best success rate was achieved with the original

network with the I, values re-scaled to lie in the region 0<I, <_ 1. Best

results were also achieved when training was extended to 50,000 data

presentations.

5.2.5 Comparison of the two methods

Experimentation has shown that it is possible to use a neural network to

make decisions regarding the quality of a fringe pattern. The two methods

described in section 5.2.2 show the relative merits of using either a separate

network for each measurable parameter or a single network to analyse all

parameters simultaneously. The basic difference in the two methods lies in

their computational complexity. The use of separate networks for each

parameter has the advantage of each network's ability to be trained or re-

trained individually. If the performance of a network for one parameter

becomes questionable, it can be re-trained singly, using a much smaller data

set. This also means that training for a single parameter will not affect the

network outputs for the other parameters. However, the necessity to

combine the network outputs to produce a final result adds an extra level of

I20

complexity to the system. The use of a "global" optimisation network, while
not as flexible when re-training is required, combines the whole analysis into
a more convenient package. The results shown in appendix 3 show that re-
training can affect the outputs for other parameters. This, however, is not
always detrimental to the system's operation. The net result of the combined
global network is a simple, single piece of code to accomplish the complete
analysis.

5.3 An operational optimisation system

When validation of the technique was complete, a system for driving the
adaptive interferometer was configured, thus producing a system as shown
in the schematic diagram in figure 5.27.

The computer was connected to both the adaptive interferometer and the

CCD camera to achieve the closed loop system previously described. The

camera was connected to a frame store within the PC to enable video frames

of the fringe patterns under analysis to be taken. From these video frames,

the above parameters were calculated. The results of these calculations

were then passed to the neural network. The output from the network was

passed to software driving the adaptive interferometer, completing the

closed loop system that enabled the fringe pattern to be optimised before

any analysis took place. The block diagram in figure 5.28 represents the

closed loop system.

121

Object

Figure 5.27: The closed-loop optimisation system

5.4 Evaluation of the optimisation system

The experiments described above have shown that it is possible to ascertain
the quality of a fringe pattern and, therefore, its suitability for measurement

of surface contour before actual measurement takes place. Two alternative

approaches to the problem have been made and compared in section 5.2.

This comparison has shown that the second approach, using a single

network to analyse all parameters simultaneously, is the most effective. The

fully trained network was FlashCoded as described earlier in the chapter.

This resulted in "C" code that replicated the trained network's behaviour.

Appendix 4 contains an example of the FlashCode for the global network.

To achieve a fully operational optimisation system, it was necessary to

embed the FlashCode into a program to perform all necessary data

manipulation. The optimisation system was designed to operate in the

following manner:

122

1. Assess status of interferometer driver motors.
2. Initialise frame store.
3. Grab live fringe pattern from CCD camera.
4. Extract vertical intensity profiles from each of the 5 ROls.
5. Extract intensity profiles from each direction for orientation calculations.
6. From the vertical intensity profiles, calculate Imean, Imax and Imin"

7. Calculate the number of fringes present in each ROI.
8. Calculate contrast using 'max and Imin"

9. Present the 20 values calculated in 4 to 8 above to the optimisation
network.

10. Analyse the output from the network and if any faults exist pass a control
signal to the interferometer drivers to index the fringes in the correct
direction or alert the user to the status of intensity and contrast.

11. Analyse the fringe pattern again to ascertain the effect of this change.

This is repeated until the network recognises a fringe pattern that conforms

to all the optimisation criteria and which will be suitable for measurement or

until a default number of iterations has been reached. For the purpose of

experimentation, this value was set to 15. A finite number of iterations was

specified, as some fringe patterns are unlikely to meet any of the

optimisation criteria. These are ones that contain faults such as excessive

noise or where the object surface does not reflect the fringe pattern. In

cases such as this, no amount of adjustment of the fringe pattern will

produce a satisfactory result.

12
_1

Figure 5.28: Block diagram of the final optimisation system.

The following figures show how the system behaves when presented with a
poor quality fringe pattern. Figure 5.29 shows the initial fringe pattern
presented to the optimisation system. The pattern was projected onto a flat,

matt white surface and the interferometer adjusted to give too many fringes.
Here, the fringe number is 85,19 more than an ideal pattern. The other

parameters were left in the "ideal" range for the purpose of this initial

demonstration.

w., M

Yw +V v

Figure 5.29: Pattern with too many fringes

Figure 5.30(a) shows the fringe pattern after the first iteration. The neural

network has analysed the image and reached its first conclusion. Figure

5.30(b) shows the output from the network for this iteration. The network has

decided that there are too many fringes in the image and moved the

124

interferometer stepper motors a finite amount to reduce the number of
fringes present in the image.

VIýVbItl-'+IPVY'ý'1N�. *-fr .. tJ. ý. Ai<, yýýW!: h/bYrw .
MýWý. 'DýF'... PV-iýw:. .. ýH/h'i. l. +rn"". +l_. ri.: ew+
N1bR. "A! e. lViv^s.. s. rH+i"'In . w.. A'ºnwT"Y,.

+Ml -'.... r-.. wre.. }gY1. "+ý. w/.. M n+w. rvvýyrw-pi-..
Syr,. ý. ". MS: ýw.. ºI. Nb.., ern"ý, ri� .. f. -MTV-... ý. ý.. -. .. __...

. -

. +. '-wtº+"w: +, a+sw, -ww4, i,.. 4.. i+r. a«.. o... w<. r'«e r'wr. +, w,.. ..., ý.. .. w ,.,... ý-, .. +. -,.. ýPp11YMYrAY! �rý"lM\iP? t., ýv u. +. -". w.. _. a

ý 4" ' v Rhsww 4w. " . ýý . yN +r

Figure 5.30(a): Fringe pattern after first iteration.

lackprop optimisation system versi,, n 1.3o.
(: urrent MotionMaster error state is: E00 NOERROR

Loop iteration number 1 **

i , 3ýping current image...

M-: ir values are: 0.411000 0.122000 0.123000 0.136000
Fringe counts are: 0.310000 0.300000 0.360000 0.430000 0.430000
Visibility values are: 0.463415 0.460526 0.458599 0.413333 0.445483
'l'ilt values are: 0.550000 0.500000 0.430000 0.480000 0.470000

Network outputs are: 0.282032 0.826404 0.367829 0.513631

Mean intensity is too low.
There are too many fringes in this image
Visibility is OK
Fringes are level

Adjusting fibres...
Current MotionMaster error state is: EJC NCERROR

r A51 ' i__-L'_,

r figure D. su(D J: NetworK outputs gor I IVVI aLIUI 1.

Figure 5.31 shows the output from the system after 7 iterations. The system

has decided that, after adjusting the interferometer 7 times, it had achieved

an "ideal" image, with the optimum number of fringes.

I25

4v. w{gyº-r... Yrew.. I�oV(bit,. r e'-: rMwý? w. = .. b. wwýwq.. s. x. -
a*. - *. cwa ýM. ýN+ +ýý"º. w'aM+ýr-. ±Iiv+r ±s.. ew+F. rý. ý.., ýý. rf. -. tºA. h+N^. +i:. f..... «.: 1'iM'. S. Nwwýr+aw.: 'I. w. S%ýb'"w. -. rrr, rý. _,... r:.. ý, +_, ý-. .,. ýýw. e. fi +v Nrý. ý. a. -a -.... wa. ý'r-. r+'. w'. ti+^e+.. W tw+m , ý... - . .. +... _ .. ý. .., - .. _,. --..,.. wem sw+.. vwYMýv - a.. . ý. -.

++r+ºwý+�ýr�. +w_. +. ýe+. saws. Sires4r i.. r. _.:, ̂ý.. -.. ýsý.: Y . ý. ,.. « _,., ýnsy+bw"ýwýý,,, ý 4F/1'. IYý+. Y'WYftMM.. 'M^'. {l'Wýý+W... M. ý. yls-... Y+. YOnr". # - . Y.. way.. .. ._ -F-.

"

f.

t'I N
ýM..

+. ý. yw. �'iN-I1Lc: -, rah'ýr'Mr. >-+o... t.. ayN'a-oy., y. ý.. _. r . -w..,. - r.. .- -ý.. --. a- *. *a. --- -. -. -
1ArI b '1P" r .., -aa*. R4!. r... ý.. a. M. vu-. r r.. - r_

.-i -r _<.. . -.. r.... Mb

ßrbý`t'W 0.... w . w-w__--... -. -.. "- -ý. r-s,. v........ -.... -....,.. ýMý4r i: AwXt°ýPt4b`4w{i'. iýo Ii9IM? N. ia^-r. s. aw. r.. ý. i..... f. r.... s......, +. w. r. 1_ I-rl-_r�. i/ rpiýºýry
{' ['. 'ýWNi: M1Vtº°wb9,. ifrM'rwlM. w9Y M.. ". ��. -. --..... _-.... ý. ---. a-r . _1"-. --'. _- --may-

ýIrIN+MMIb l. t. sna-^ýVa. *a. aw . b. s.. a.... a. -.. - .. . -- .- .au. I. ---. II. M.....
-aw.. -+.. Y. wlýi

Wa. *a. 4 s.... ., M/MS.;. b. 1#. I.. . t. w-y. er. - .. a >.... r. ý...... c.... .. c . r'. -A)a.. `r-7-^V--_____ '-

... . v. __ _. ý" -. -Ia .. a. º -. -a. -... ----- --- ýº
býbl. iýar. "w. s. y�. ne.. +bt.. wY v, .. �.., .. . 4... _......

yý,
ýýbýý ýý

I°YI"'. 'p. etý'IIýOrWs. ". /Mý.. ý'l. ".. o�Y.. ea- -a.. _,. ... a. +�. _ u. " - .. --+4IN. 10r+1. __ .
. ww.. `r^°.: Y' 'AMRybfafM'PM? rM.. 1+OYWfb+-N'... cu e-v1r.... -. -. +. w. rs-..... {. . _a. a..
ýIrýlYbýl} ff WO+ý+ArA'.. IAM+. lf. ýý.. i"ýAMI'4t. ý. +4! '.

yCý'-'-

--a. -- -i . -. -..... t (r.. -r. -a. --- . .Mf

+s.

Iný`! /býMAb1

�+wý. r. s. ýr+rl+°p+'r'. "s, r.. w--x :,., -,.... _...... ,.. ., - . -ý... W. a� a SY-.
W-3AIIY+bM4Gi w1/WýiarbMAtrs.. t�s. M.. M+ic. O, a....., r. ryý. ý. y... a.... -. a-w.. -.. --. -.... tr.....,. -..... v-.... .. -. s. ee.., N.. ýr ywbwý. a

sw.. 5w7pArNwrd+wrto - .. - , ,...,... a. _-. - M... a--
-a.. -.. Y'..., ý....,... _.. a. -*a _... -... n. e. a. -.,.. ýºrww. w+wAS: ýMyrLN

YtýMWý�
. W: r. r. lfgWýM. sn! tR r................ -.... r. -. w. -...... i a-..

_. ýr.

b.... -e+/r.. eýbwlýi a
ý1fYlfbýr, MiM. r. +b+r. 0\+.. sw.. «. eb. 'w. rls7.. yt r., ý., r.. w+.. s... a. ...,.. . _.. _. -... -...,. '.. rw. +w...,.... ý+a+: /MýM"ýFy. ý
iMMM'0. wfýewurrtývýlalwn. ýww. aý. w.. w:. ýºw+-w-..... v- -. a..,. a,... ý.

ý....

r. _...... .. a: ti .,. �w. ý. +. w.. ýs... I. ý-. brbsaiºrs"ý. ý
Mp1#haºa.

a.
J-Mýrw++yflw4 S. *Saw<w.. -... a-a. . -.. n+. -T.... ,... - .a. -..... -... ý. « .ýw. r

býYýs. ýwbe+rlA+! ' On"I. eMrKtr7s-tl..! +, e. w�.. +I. rý,. . r.... ý.... ,,... _...... -- a. a
-t

--

. +,... '.... ., _... ýr-. +. - -..... ca.. -........... ><. s ý..... +. _, w. ýrq. ý
444 #a4s.

4Yy*A
. a+he, das... +'. W>, w. w. wowlp +nw+w-aw . r+rn+w:. r-�a ., -. +. e. ýs.. r. w.:. s _________________ svw.

+. a. **br�p, *.. ý -. -n. �'M1ra�rµ+a... «. Y r4Mnnlr. u. nr. --a

".

a. _-. 4M,: y R'"Awy... b"nllrti... -fl--w t... 0
1, ýý.

y1ºý1i.. ý_ýýýý,.

Y W. `. wM/r' - .. -MPwr+ýO. '. BI^M+.... 4�b. VC. /. �r'. hT.... +w... �º1º'tlýufMýMBI. t. IY `. iºý

wýfblýfý%tIapat-a..!. �MAra.

WY

W"Mt-+. Maa.. aaf.. +' S a-4-. i.!.. w. �. Y..... +l-/M... 4.. YaM-ra.. +.. /". ryrt=aa-k. +ý. IW rºI. YrY11

,........ ý ý r....,,............ ý. ý.

Figure 5.31: The final fringe pattern.

Figure 5.32 shows a more complex image
.

Here, more than one parameter
deviated from the ideal. It can be seen that not only are there too many
fringes, but the mean intensity is too low to enable an accurate measurement

to be executed. The first reaction of the system is to try to correct the

intensity problem. The output from the neural network is shown in figure

5.33. At this stage, the lenses used with the system were not fully automatic,

so the aperture had to be corrected by the operator. When this had been

done, the system was able to continue with its optimisation procedure. The

second image presented to the network was as shown in figure 5.34. Here,

although the mean intensity was now correct, the problem of too many

fringes was still present. The system then behaved as previously described

to produce an optimised fringe pattern. Figure 5.35 shows the resultant

fringe pattern after 9 iterations. The final result is a fringe pattern that

conforms to the previously defined optimisation criteria.

126

ýIaýý! .r "M+ uL
r1 *4

" ...; s y
ýy+

Y

iýti!
ý is

iJ7.
ýr

ýrr r. l +t. " Tý,
tie 1ý, j 'ä

..
LI

ý7
`, ". Pý"" i +tj'a

ý"fý. C'C..!
".

ýý.
L, .

t*r+Mýý- -. ý ..
'.

i,.
c(ýy ,ý S" '"' -Je , -'D

"

ß.
k. »,

ý.
rt

1hM, Iy
,1fYt

ýc
l 'tim

+

T""""'1

wv-

. Ir r. I ý- 11 %. L
tý

7"

M.
MY

NYit

ýL'M+

". ý

tY

r+
"�.

M
'^: y`r

Irv iw

r"r.

'i
ry

A'rr
ý<... ý yii-4, Lw.

ýt
. =,. ýf"Tý+r w -aý f ir't

".
ý�MY

fi'

ei w
ý'ý

dui .
ý.

- .ýa1..

Figure 5.32: Two parameters deviating from the ideal.

R, ýwk, prc, p optimisation system versi(, n a
, current MotionMaster error state is: E00 NOERROR
** Loop iteration number 1 **
Snapping current image...

Mean values are: 0.411000 0.122000 0.123000 0.136000 0.145000
Fringe counts are: 0.310000 0.300000 0.360000 0.430000 0.430000
Visibility values are: 0.463415 0.460526 0.458599 0.413333 0.445483
Tilt values are: 0.550000 0.500000 0.430000 0.480000 0.470000

Network outputs are: 0.282032 0.826404 0.367829 0.513631

Mean intensity is too low.
There are too many fringes in this image

visibility is OK
Fringes are level

Adjusting fibres...
Current MotionMaster error state is: FOt NOERROR;

Figure 5.33: Network outputs for image shown in tigure 5.: 52.

127

Eýzi

Figure 5.34: Mean intensity corrected.

'ý'AIM. µM^4k. rw >..: ýaµPbýRw+nk.. pyw. v. .. 'J Mr"M7.. 1"s r"a r . -.. .: ". w' y ... '... ww"+. \r. ýl-tih..... ra. "rrrw«...
MýMv4ýa1. ýW1', ""`e. 7yr n^. AýrYa1 . rAerýý1"wh". V"+'r, ºN'. ý. ý++! ++nvM`+t . K.. oy sMrert . -N" +*rw... n. ". ".. 'wýr n++"+"ýew"w. av.. s;. +Mr. t. r: ^

. ýy. ýPfM7ýMlýi"'MMfpýirl..
r N. YMMVJWY.. PW31". NiW"+. "r V S. aTyv p Ywr4. " "W.

'
+h-. fY". w". ifr' .. 4: r'. a-qy.. a.... &. ...

rýpýll . 'ý'}inllr. ýýIYMýMM
naa+ý. fý. (ýý. Y. "". -'w..... ý"w. /. ab4 .. P. Y

,.,,. rr. >rrn. +.,,.. ý,,..,,.. ».., ",...... _. ý,. r».... "n.. r... -ý..,..., -. _.. y,:.. r.... a.. M....... Yº, r.....
IRMdwwlr+"h. ". '? MýM, ^ rdb.. v. Ywrw'. Y wnY..,, a. w,.. M. z". ". n^... n..,.. p..,. ', ", ý.. +y........ ý..: w.. aý"w,. ý.. s.. '".. ".:....,.. +..., w.... w+ý... --.. "

MWA\týp. (wM. r. r'ta4. ($.. /1L' ,. '.. i, w. \. lr. d,; e.,.. +f"""... e. Fn. r.. "... .. w., r-r\"J..,... e.. T. "9 r+eV"+"1K. M1M. -"w. p9-
"'

wlhrýl. M..
MR4'. MCMiMýý. TM'"i'M1.. +bý... wMMM. Sh.. ýr. w, n. 4"eArin. ww". iti. oK., ý^rr'r """. .. '"y.... +. +1. gr. A\. '. +s-M'T. ^. "'Ab'. "d"ýrt+r.. wý/ra. I/w.. "

4"Yný1NM71T'*^ilM. 8 . pnM++, r4. w9P.... V. ý-'*.. *ewr..... 4M..... P 4-.... w"..:. r.. w. +y. w.. -. w. n. r. nn. p.. nt. "isdS.. wý. s...
ion^. aAt r., ý+.. iH+e*f+v. +rt.. r'wý"ý. <rr.,.. war...,, w.. f .,. i'... ww... v'. ". wu'.... 4.. 9.. ".,. ,.,.. ... _#... aw

l1hMM'"a1. 'iVYMMMMi6*'4I&41. ",. n/.. YI9yb JM.. r'. ww l ". M". r . ". '+. l M' '. ..! r. I""'ý. ýM. +. wu+.. n. aM... M YAM ".

. 1ý. M. M1w I. ýNMMWt. yvMýMMq. "A%ö* "rw, vy. Yxi. r. *tn ". -"-. -. ' n. a..., M. *. »..... K-r.. 1J+1w. Y.. r". e.. ry.. Vr: "ý+r"... w"! IMlV

'1A'M1'YTV1tM. n11b! i`. v'41"IYO""N. n+MrA`Yp. M"w. r. ý.. "K. E4". l .. Y". " . «" +""" '"I. "". .. *": tr. - --.. +rýyYWM. M. Mwj+

MMM1la"Fyý'". fwýManNMY'. rrý1"ýa"w.. -.., pdn+w+. M_.... waa.. .r -- . f-.... '.

^Mý'1NS'M!, rnMAJý: vMA4+riJ'M... sriW. ýgT. ýr. ý.. dw"e--w. vw......: .. r. tisd.

-ý"...

.... -... "i.... ,... w.,. 1%' y.. a. ^r. w.... "w. Mr.
-1 b"

ýdyý,
rvýIMýf'. w. 1. yw NIVU. M. M[r-. MN+. pww,. "v., v. d-. ^ý+w .., p. a. :...., . ^1... .,. .. _^. ". d. +rs"ý. w,.. -«"r. ww+r.. ý. "rr+rº. r....

.
+ý.. Mr1, a, *'MA*4*.. 14 +.. 1ht 1aß"MWPN. '\. \}h. Mwti.. L. wSW. 41M-.. ýY.... \.. ,. ý..... dr., "-,.. . "........ we-.,. WJ . 'r". 9__. ".. --. MP --. r. +. i"N_ _.. .. O.

yP4ý
T'. ^^^ 1M! ýMi'+T. 'Jtiry\M+MwiaW WY. N'. y, ýwrwlý.. -ý"'I. v .. r1 ... " __9__. W.. W. MOr VMr'r4. MN. I'. VY"'. MnMr.. ..
MiA'M"Kw*". gawýrlM.. vla. 'r^RwRS1Y S'f". w. rt-". ". n.. u..,,. ". a....,.. -er-.. ... w. ... «y+..... w..... d'r. Lw . ýý"", wý. '+Y. Na'ý"'.. Tin+". r'^'

"ýrMýý '7ýMIrtY n'i#W a. M, C.. a. &an. r.. +_... Jtl.. I.,... "1Y.. w.. r .. -. I+:.. ý. v _. -. w. 'ýM. d"1".. ý. ý. wY. sY. "*-.. wl.

ýMM^'ýIIIýrMHN'M'Ufa. MMlM'.... 14I'. rº'Y+1 . '"Y. WoMWY. V'"°T'"wý. ý"9-_"_9_ _.. Jam.. """"" ". _" r. w r.... rM. "w +... ryP Awý». r. A"., "? 4.. d ".

rMMMýKWIMHOMIiM'".
+IN4wu11. rY"... n1w.. ý1Y. YMNSV TR' a. -... -. -.... '-'

"..

-r ryw. wn. .. + v+".. "N, w. lr .. r. r-... rý. y wr. VO. N. ºý. iVNý. ý.

AI. $ fl-I r. 4q. YwN'y. Y. Arlrbw*. I1. t.. w".. a1. +Md9M - V. h. "... .+ FSM1. r. rr. .. pi+4flJp"NM4ýI *. i$*. /y. l""M'S!. af

(M"Y4fM'b"'A 1. /M"'Yýyp. wpT"IM+t.. Mr"' �*..... j. KrK. .iW.. ý.
X. " . -.. S . -.. r *. s... w. Y.. I4 S. t. ý1.. 1#. ý.

ýMMybT'
+sto. MMwM wy+. r. wR'rsMM. M'-. 4.. 'ti.:, +., rwn+"w.... ý. *�.. q, y. +.. w1. -. -+. wl+rtwc""h+n. "rq.. +... w . rd... irsYwwwaýMº"rr"....

MMMwýr} . l. rra. ýwýl. n. v. J"xw. 'wn'+. w. ".... -.. -I"", .. '. o»rwrrww": w1" nýMMA". -A"-". +. 1+a'K. r . """"

w. a+. rtwwws -. r+s+.. -.. -. -----. w,. -' .. w.. wow.. w_. __-' ... s.... ý-. ýý+, +wwývw Y.

w'ýIr+"'+MMMtl^'\4ýe-. "w. 4. vr! rahHw+w+. +w'rrx+4e. wr+-.. " ".,,.. rnJ,. b.. xww. w,. ýºr! +rs"n Y.! w. wºM"M'ýV-a. V. r-ýP. "".

nw+w. MMMV. +arowrr"N"w"n. r+e.: rw.. w-... ar. M.. aw. ýrý^l°, ""rn,.. "M. Y r+A+". yr l+ý. wMv". "
ý'ý"YiM"+wM1ý. T'Mw"MrrM a. *ýwxiw. +w. rw"rýR... w+w". r""i". wv.. "r. -rMW%wYMT... v`"+Yr+"-". Wr"IiWMI. 'rwYMrr.. º..

M. tirewWW r. #. l.. w>.. A-... v,..... -s". «w-r+.. w"w

wlRq'+M+ýwýw. ++w W+Mý+vwuw. 'Ai'yr"a+rýw«... ýa w... +. e.......,. ü, +. +rM. w+"ý"-. '....... ý... ý........ rr. n" v. ýww. ý... w++ý+...
+ýww..... w. oý. +. w. w... w+icwa.. wwi.. n.. wca. +=w. +ww+ýº. " cwvnrýv^ý+"+- +"ß"+" w+'4°' ow pa

ýýw+ý. Vwwytiý. r Jk

Figure 5.35: Final optimised image

128

References

1. J. T. Atkinson, D. R. Burton, P. Barton & M. J. Lalor. A fibre optic

interferometer for fringe projection contouring. 2nd Int. Workshop on

Automatic Processing of Fringe Patterns, pp242-248, Akedemie Verlag,

1993.

2. NeuralWorks Professional II Plus Reference Guide. NeuralWare, Inc.,

1993.

129

Chapter 6: Discussion, conclusion and
further work

1 1%(l

Chapter 6: Discussion

This thesis has described novel approaches to two problems in fringe

analysis. The use of interference fringes as a measurement tool is widely
recognised and has developed over recent decades into a well established

science. All the stages of the process, from image capture to height

calculation, have been extensively researched and many solutions to the

problems inherent in the system have been proposed. Also, almost parallel

with regards to its timescale, the neural network has been developed as an

alternative computing tool. Over the past twenty years, neural computing

has matured as a science and its applications are increasing. It is

noteworthy that, to date, little research has been carried out to link these two

branches of science. One field in which the neural network excels over

conventional computing is that of pattern recognition. Neural networks are

particularly suited to this type of problem due to their inherently parallel

architecture and the nature of the problem. The work presented in this

thesis has attempted to marry the two fields to produce a parallel approach

to some of the more difficult problems in fringe analysis, namely phase

unwrapping and fringe pattern optimisation.

6.1 Phase unwrapping

Chapter 4 has dealt with the phase unwrapping problem. With few

exceptions, the general approach to this particular problem has been

algorithmically based. The philosophy behind the work presented here was

to treat the detection of phase discontinuities as a variation on the theme of

pattern recognition and introduce a method to solve the problem with a

parallel computing architecture. Initial experimentation attempted to solve a

much simplified version of the problem in order to investigate whether a

neural network was capable of addressing the problem with any degree of

success. The first findings of this methodology showed that the approach

appeared to be flawed in its capability of detecting multiple phase

ni

discontinuities in a given section of phase data. It is likely that in adopting
this method, one of two problems was present. The network was either
attempting to deal with too much data to reach an adequate conclusion, or
the network itself was simply too complex.

If too many data were present, it is likely that the network was being given
too many alternative answers to process. Two states are common in neural

computing when network errors fail to converge during training. If a large

and complex network is presented with a small number of training data,

training will be incomplete as the network will not have enough data from

which to gain experience. Unless the situation arises where the network

contains an extremely large number of processing elements and the training

sets are very small, this state rarely occurs. More likely is the problem of

over-training. This is a phenomenon that can be attributed to several factors

and can be common with an inexperienced user. If the network is presented

with a large number of training data and, more importantly, if the data is

presented in a highly ordered manner, the network will over-train. When this

happens, some or all of the processing elements will "lock". Here, each

element will give a single result regardless of the input that is applied to it.

Over-training also gives rise to a situation in which the network learns to

recognise only one particular training set. When this occurs, presentation of

data that differ even slightly from the original training data will give highly

erroneous results. It is for these reasons that learning rules such as the

cumulative-delta and normalised-cumulative delta were developed. These

learning rules attempt to address the problem by ensuring that data are

always presented randomly to the network. However, using these rules in

the initial experiment to ensure that the training data were applied in a

completely random manner did not improve the observed results.

If a network contains a large number of processing elements, this can also

hinder effective training. If too many hidden neurons are present in the

network, they become under used and it is possible to "lose" information.

1 32

The decision to abandon the use of the 64 input network was taken as it was
thought that this approach was far too complex for the early stage of the
experimentation. The initial idea had simply been to prove that a neural
network could be used to differentiate between phase wraps and
discontinuities caused by noise, etc., rather than to produce a fully functional

unwrapping system. Use of smaller networks showed far more promising
results. Here, the networks were only called upon to recognise a single
phase wrap in a given portion of a wrapped phase distribution. This
immediately helped to provide a solution by drastically reducing the

complexity of the problem. It also meant that the complexity of the training

data could be reduced, thus reducing training time. The simplification
immediately showed an improvement in results. With the reduction in

computational complexity, the network was able to recognise a single phase

wrap in a given section of phase data. It is interesting to note the difference

in results given for different types of training data. If the results files for

networks trained with real and simulated phase data are compared, the

networks to which data from real phase distributions has been applied show

a higher percentage accuracy. It was this discovery that forced the decision

to use data from real images for training the networks that were to make up

the final operational system. It may be argued here that training with "real"

rather than "simulated" data allows the network to have experience of noise

contained within the phase distribution. It will be able to learn when noise is

present in order to reject it. If noise free training data are presented, it is

possible that the network will become confused when presented with noisy,

"real world" data.

The convolution of the single wrap detector with a complete one-dimensional

array of wrapped phase data showed the network's effectiveness. The

comparison with Schafer's algorithm in chapter 4 is indicative of this ability.

If the results are studied closely, it can be seen that, when a relatively clean

wrapped phase distribution is used, both methods achieve a similar result.

This is a very simplistic application and most wrapped phase distributions

that are created during the fringe analysis process contain a significant

ii

amount of noise. It is when spot noise spikes are present in the wrapped
phase distribution that the neural network method excels, as subsequent
results show. When a single spot noise spike is encountered by Schafer's
algorithm, the algorithm immediately interprets the noise as an extra phase
wrap. The result of this is that an extra 2n phase shift is introduced and that
this error is propagated throughout the remaining portion of the phase
distribution. The network, however, treats the noise spike as an error and
effectively "ignores" it, ensuring that error propagation does not occur.
Further proof of the method's effectiveness is shown when a number of spot
noise spikes are present in the wrapped phase distribution. Again, Schafer's

algorithm sees the noise as additional phase wraps and compensates

accordingly. The result of this is an accumulation of errors, which are

propagated throughout the final phase distribution. The neural network

method, however, treats the multiple noise spikes as errors and again
ignores them, leading to a correctly unwrapped final result. The results

have proved that the simple network can adequately differentiate between

spikes that were present due to noise and genuine phase wraps. The

embedding of the neural network in code that performed the unwrapping

operations showed that with the network used to detect the wraps and

conventional code used to perform the necessary 2n phase shifts, this

arrangement could form the basis of a possible solution to the unwrapping

problem. The convolution process also showed that detection of

discontinuities could be hampered when the phase wrap reaches the end of

the wrap detector "window". Careful construction of the actual unwrapping

code can, however, compensate for this anomaly.

It may appear at this stage in the experimentation, that the approach is over-

simplistic and highly unrepresentative of the "real-world" situation where the

phase unwrapping process is concerned. When a fringe pattern is used to

measure a surface, the resultant image is invariably a two dimensional array

of data. Typically, these arrays contain around 250,000 values that include

varying amounts of noise and phase wraps, which do not follow easily

114

detectable straight lines. A "real-world" wrapped phase distribution will
contain clean wraps, spot noise and features such as wrap bifurcations etc..
It is highly unlikely that one will encounter a perfectly noise-free phase
distribution. At this point, it must be borne in mind that the one-dimensional
wrap detector described above is not an attempt to create a fully functional
two dimensional phase unwrapping system. The initial experimentation was
carried out only to prove whether a backpropagation neural network was
capable of detecting wraps in a phase distribution and recognising the
difference between genuine phase wraps and noise spikes. It is evident
from the results presented in this thesis that, at this level, a backpropagation

network is ideally suited to the task. Its parallel processing architecture, well

suited to recognition problems, appears to make it possible for the network
to recognise the difference between the two instances.

It is this success in recognising the difference between phase wraps and

noise that has led to the development of a two-dimensional neural network

assisted phase unwrapping system. The second stage of experimentation

showed how a square "tile" of pixels could be used to detect the presence of

phase wraps in a two dimensional wrapped phase distribution. The key

point to address here was to develop a 2-D unwrapper with an optimum tile

size. The need for this was shown by reference to the original work of both

Schafer and Takeda that was described in chapter 4. It was desired to

produce a system that could detect the presence of phase wraps in an image

without the computational complexity associated with previous solutions to

the problem. The two extremes can be described thus: the largest wrapped

phase distribution that is likely to be encountered is a 512x512-pixel image.

If one were to configure a network to analyse the entire image in a single

pass, the least number of input neurons required would be 512x512, that is,

262,144 neurons. Considering that the system would require at least the

same number of output neurons, the number of neurons would then increase

to 524,288. This figure still does not take into account any hidden neurons

that will be required for correct functionality. The training and testing data

sets will also be suitably large. Consider a training set for a network

I3S

conforming to the supervised learning model. One training vector will
require 262,144 input values and an equal number of output values. If, say,
100 training vectors are used, the training set will contain 52,428,800 values.
With networks and training sets of this size, training times will be

correspondingly long. Also, problems may be encountered as described

earlier, which involve training the network to recognise multiple wraps in a

single presentation. It would appear sensible procedure to attempt to reduce
the size and complexity of the networks to conserve both time and computing

power. At the other end of the scale, if the network is made too small, using

only, say, 2 input neurons, such a network would run the risk of behaving as

an extremely computationally expensive version of Schafer's original point-

to-point algorithm. The first "small" networks investigated were an attempt to

reduce the regional analysis to the smallest possible area without

encountering the previously described problem. It was this criterion that

gave rise to the 3x3 tile wrap detector.

Extending the system into two dimensions was a logical step to take to

address the complete phase unwrapping problem. Results of the two

dimensional unwrapping experiments showed that the networks were

capable of detecting the presence of phase discontinuities over a defined

region with similar accuracy to that produced by the single line unwrappers.

To complete the system, it was necessary to convolve the nine pixel

"window" with a complete phase distribution to provide a final unwrapped

phase distribution. The results shown in chapter 4 demonstrate the

effectiveness of this operation. The completed system demonstrated its

ability to differentiate between phase discontinuities and noise in a 512x512

array of wrapped phase data.

136

Fringe Optimisation

The problem of fringe pattern optimisation is a relatively new science. It was
not until the development of the twin-fibre adaptive interferometer described
in chapter 2 that successful automation of this process became possible.
Until the interferometer was developed, the adjustment of fringe patterns was
an extremely labour intensive task that was not suited to measurement and
inspection of surface profiles in situations where time was critical. For

example, in measurement of components with various surface profiles on
line, the adjustment of a fringe pattern was impossible in the time allotted

using a conventional interferometer or fringe projection system. Also, the

use of a human operator to determine the quality of a fringe pattern is

questionable. The decision is likely to vary from operator to operator, plus

the decisions made by the same operator under different conditions are

likely to be unreliable. Although human operators are much faster than

digital computers at recognition tasks, their concept of quality is highly

variable. It is mainly due to this inability to perform on-line optimisation that

there has been no previous research into the subject. The use of a neural

network to perform the qualitative analysis of fringe patterns arose as a

compromise between these two situations. The ideal situation is one in

which the system making decisions on quality has the parallel processing

speed to match the human brain's recognition ability but also has the

reliability and repeatability of a digital computer. The experiments described

in chapter 5 of this thesis have attempted to show that a system based on

this philosophy is possible to implement. The parameters chosen for

analysis were chosen on the basis that they could easily be both measured

and changed. Fringe number and fringe orientation were used, as these

were the parameters that could be controlled by the adaptive interferometer.

Fringe contrast and average intensity were used as these could be easily

controlled using the lens attached to the CCD camera. For the purpose of

the experiments, the lens used was a conventional 55mm Nikon item with

manual focusing and aperture setting. This obviously meant that any

117

changes that were required to intensity and visibility and, therefore, must be
made by changing lens settings, had to be made manually, by the operator.
To fully automate the system, a lens featuring autofocus and automatic
aperture setting would be desirable. Even though an operator was required
at this point, it must be stressed that this did not detract form the original
specification, as the final decision on fringe quality was ultimately made by
the neural network system.

The two approaches to the problem were variations on the same basic
theme, but relied on slightly different network configurations. The initial

experimentation involving a separate network to analyse each parameter

was carried out to prove that the theory was viable. The results given by this

experimentation showed that it appeared to be a viable proposal to follow

this route to achieve a fringe pattern optimisation system. Consider the

results achieved by the first fringe number network. Simply counting the

number of peaks and troughs is not an adequate method of determining the

number of fringes present in the image. Calculating the mean value,

subtracting this from the intensity distributions and counting the number of

times the resultant distribution crosses the zero point is a far more reliable

method. Using this method, it is possible to compensate for any false

maxima and minima that occur at the fringe peaks due to noise in the image.

The use of this piece of mathematics at the initial data acquisition stage

helps to simplify the later analysis. This simplification is important when any

neural network is used for analysis. The simpler the input data for the

network, the easier the network is to train. Experimentation has shown that

training is most successful when both input and output values lie in the

region of 0<_ x<_ 1. The two approaches can be appraised as follows. The

use of separate networks for each parameter was chosen primarily to test

the feasibility of the idea. The four parameters were chosen due to their

ease of calculation and the fact that they can easily be changed to meet the

optimisation criteria. The parameters were:

I38

1. Fringe number. This can be calculated by a simple fringe count and can
automatically be controlled by the adaptive interferometer. Adjusting the
spacing of the fibre ends changes the number of fringes present in the
image.

2. Fringe orientation. This can be calculated by ascertaining the number of
fringes at various orientations throughout the image. Again changing the
fibre spacing within the interferometer will change the orientation of the
fringes.

3. Mean intensity. This can be calculated by taking an average of the
intensity values in a given intensity profile. It can be controlled by

varying the camera aperture.

4. Fringe contrast. This is calculated by the equation

C= (Imax - Imin) / (Imax + Imin)

It can be taken as an indication of the focus of the image.

The use of separate networks was originally designed to enable the user to

re-train a network for one parameter without affecting the outputs of the

other parameters. Chapter 5 shows the results given by this approach. The

networks were capable of recognising the quality of the given patterns

according to the defined parameters. However, the outputs required further

post-processing to enable the system to adjust the fringe pattern to produce

the required result. The second stage of optimisation experiments attempted

to reduce the need for excessive post-processing of the data. The

approach, using a single network to analyse all the parameters

simultaneously was employed and showed results comparable with the

previous, separate network experiments. Re-training the network for a

single parameter did not have a great adverse effect on the outputs of the

1.19

other parameters and added to the overall performance of the optimisation
system.

It was from these results that the final optimisation system was developed.
Combination of the neural network outputs and conventional code enabled
an operational system to be constructed. While this can be thought of as a
"hybrid" system, containing both neural network and conventional code, it is

noteworthy that all the decisions required of the system are made by neural
network. The conventional code is used simply to read images from a
frame-grabber and ultimately to adjust the position of the fibres within the
interferometer.

Conclusions

The work described within this thesis has shown that it is possible to apply

neural networks to the solution of problems in fringe analysis. The two major

problems addressed, phase unwrapping and fringe optimisation, have been

thoroughly investigated and operational systems to attempt to solve these

problems have been developed.

Phase unwrapping continues to be one of the most difficult tasks inherent in

the fringe analysis process. The system described utilises a

backpropagation neural network to distinguish phase wraps from noise

present in a wrapped phase distribution Small neural networks were used

for the system to preserve its simplicity Use of large networks containing

thousands of neurons to analyse large areas or whole images were thought

to be impractical due to the number of data required for training and testing.

Using conventional code to perform the 2n phase adjustments ensured that

the networks were only required to ascertain the position of the phase wraps

in the distribution. The result was a highly robust phase unwrapping system.

As with all phase unwrapping algorithms, it will not be efficient in 100% of

cases. Certain wrapped phase distributions, by virtue of excessive noise

140

etc., will be extremely difficult to unwrap, whichever method is used.
Although the neural network based system is extremely efficient at
differentiating noise from genuine phase wraps, a "generic" phase
unwrapper has yet to be designed.

The fringe optimisation system addresses a problem fairly new to the

science of fringe analysis. The work described in this thesis has shown that
it is possible to produce a "closed" loop system that optimises the quality of

a fringe pattern before analysis takes place. The work has been carried out

using the minimum number of parameters required to calculate fringe pattern

quality, but it can be concluded that a neural network can be employed to

satisfactorily analyses these parameters. The system has been designed as

a "hybrid" system to ensure that analysis can be carried out adequately.

The data is both pre- and post-processed using conventional code. Pre-

processing is carried out to ensure that the networks can easily understand

the data presented to them. It was found that the networks operated most

satisfactorily when all the input data were in the same range. Also, a degree

of post-processing is required to enable the fringe pattern to be fully

optimised. The translation stages used to carry the optical fibres within the

interferometer are operated by a controller which relies on "C" code to send

the necessary instructions. It was these considerations which led to the

development of a hybrid system for optimisation. Combining conventional

code and neural networks in this way made it possible to "close the loop" in

the fringe analysis process.

141

Further work

It must be stated that the aim of this work was merely to ascertain whether
neural networks are a viable tool for addressing the stated problems in fringe
analysis. In neither case has a complete solution to those problems been

offered. Rather, the work has proved that neural networks can form a basis
from which reliable solutions can be obtained. This has been successfully
shown with the use of backpropagation and general regression networks as

a basis for solutions to the problems of phase unwrapping and fringe pattern

optimisation. Only small networks have been employed throughout the

project in order to keep training data manageable and training times low.

The nine-neuron phase unwrapping tile was used as this was the smallest

possible tile that could be used without returning to a variation on a point-to-

point algorithm. The reasoning behind this approach was partly due to the

hardware and software capabilities of the computing systems economically

viable at the beginning of the project. It has already been stated that the

work described herein was carried out using a machine containing a 486

processor with a clock speed of 66MHz, 16MB RAM and DOS-based neural

network simulation software. Training becomes difficult with such a system

when a large number of neurons are used and large training sets become

unmanageable. Although this does not directly rule out using larger tiles

than 3x3, it certainly will make training networks for tiles greater than 10x10

extremely difficult. Future investigation into an optimum tile size for regional

phase unwrapping may be possible. Considering the pace at which

development takes place in the computing world, the constraints applied at

the beginning of the project are no longer a problem. The use of a machine

containing a Pentium III processor with 600MHz clock speed and 128MB

RAM would make further experimentation much easier. With a significant

(almost ten-fold) increase in processing speed, training times will be

drastically reduced. This will, of course, negate some of the concerns

voiced early in the project. It must also be borne in mind the systems used

here are all single-processor systems Advances in hardware technology

142

now also mean that multi-processor systems using genuine hardware-based
parallel processing are becoming more widely available. More advanced
versions of neural network simulation software also need to be investigated.

Although small regions of an image have been analysed for the reasons
already stated, larger regions are likely to provide more error-free results.
Further investigation needs to be carried out into increasing the size of the
tile model to produce a regional analysis system similar to those described in

chapter four, but utilising a more parallel approach. Similarly, it may be

possible to investigate the use of a neural network based approach to
techniques such as the data validation procedure described in chapter four.
Here, edges of regions could be processed to phase wrap continuity and

assigning regions to be processed before a much simplified unwrap takes

place.

Many algorithms already proposed to deal with the unwrapping problem may

be compatible with a parallel approach. Although completely re-working a

proven solution may be unnecessary and impractical, the application of

neural network techniques to regional or temporal methods may be feasible.

A number of neural network architectures were investigated for purposes of

solving the phase unwrapping problem. However, backpropagation

networks proved to be the most suitable for the task. This has shown that it

is possible to achieve a solution using systems not adherent to formal rules

or logic. An extension of this finding may suggest that investigation be

carried out into methods of a similar nature. While a number of alternative

supervised learning networks are available, it may be feasible to look into

the benefit using alternative systems. Certain alternative neural network

architectures exist, such as self-organising networks, Fuzzy ART (Adaptive

Resonance Theory), etc. Non-neural network based computing paradigms

not reliant on absolute logic also exist. One such paradigm such as this is

Fuzzy Logic where, instead of simply using binary criteria, a series of

intermediate states, depending on system input, are also used. The benefit

1-l

of Genetic Algorithms may also be investigated. Another alternative
paradigm, the GA begins with an algorithm that may provide a solution to a
problem which evolves over to produce an optimum solution.

Many of the arguments outlined above can also be applied to the second
problem, namely that of fringe pattern optimisation. Alongside the criteria of
reducing the size of the training sets and training time for the optimisation
networks, both of which can be addressed as previously described, the
decisions regarding optimisation parameters were based on those most
readily measurable and their ability to be adjusted automatically. At this

stage of the project, the adjustment of both lens aperture and focus, which

relate to mean image intensity and fringe visibility, are still carried out by the

operator. A very simple improvement in the system would be to substitute
the lens with one that can be operated fully automatically. This would mean

that the current system would then become fully "closed loop", meaning that

all adjustment to the necessary fringe pattern parameters could be

performed by the computer.

Further work could build alternative methods of pre-processing optimisation

parameters. As already stated, experimentation has been carried out on

parameters that are easily adjustable and directly measurable from an

interference fringe pattern. More parameters can be investigated, such as

fringe spacing, bandwidth and noise level. Fringe spacing and bandwidth

(or minimum and maximum spacing) can be calculated in a similar way to

how the fringe number was calculated as described in chapter 5. Noise level

is a much more involved calculation. The systematic analysis of noise in an

image has already been described in chapter 4, the calculations being

related to the level of noise at which the neural network phase unwrapping

system is efficient. Noise in a fringe pattern can be calculated from that

fringe pattern's Fourier transform, however, the original specification of the

optimisation system was to ascertain the image's suitability for measurement

before the process takes place. As the Fourier transform is an integral part

of the measurement process, this method of calculation introduces further

144

computational complexity into the process. As described above,
specifications of computer hardware have significantly improved since the
beginning of the project, making the introduction of extra computation less
important. Also, with the improvement of parallel hardware, it may also be

possible to reduce computation time further by use of such systems. In both

areas of research covered in this thesis, it would appear that the use of
parallel hardware may be the next stage of investigation. Both the phase
unwrapping and fringe pattern optimisation systems described used a
software based neural network simulation package to achieve a solution.
Now that the idea of neural networks applied to these problems has been

proved to be a viable solution, investigation of hardware based parallel

processing systems would be a logical following step. Software analysis

may still be carried forward using alternative paradigms such as fuzzy logic

or genetic algorithms.

The work in this thesis has proved that neural networks are able to provide a

viable solution to problems within the field of Fourier fringe analysis. To

achieve a measurement system, it is necessary to design a specification for

a complete measurement tool. A hybrid system that combines some of the

elements of conventional Fourier fringe analysis with the neural network

techniques already described above may be a suitable approach to the

problem. The final solution should include an adaptive interferometer to

project a fringe pattern on the surface to be measured, a neural network

based optimisation system to analyse the resultant fringe pattern and feed

the results of this operation back to the adaptive interferometer, conventional

Fourier fringe analysis software to perform the phase calculations required

for a measurement and a neural network based phase unwrapper to

complete the process. While this is the most desirable situation at present.

future work may also include the use of neural networks to assist in the main

body of the measurement software.

14 5

Having proved the suitability of neural networks to assist in the Fourier fringe

analysis process it is considered that further investigation of this paradigm is

extremely feasible.

14

Appendix 1

Phase Unwrapping
Training and test data

l4,

1. Training file for 6-input wrap detector network - simulated data

The following file uses simulated data for training a 6-input line unwrapping
network. The first six values of each vector are those presented to the input
layer of the network, whereas the last six are the desired output values
presented to the output layer.

Training file for edge_6. nna using real data from
SIMULATED FRINGES.

3.141593 2.932769 2.722865 2.510879 2.295950 2.077394 000000
1.854724 1.627636 1.395989 1.159768 0.919060 0.674012 000000
0.424816 0.171687 -0.085152 -0.345478 -0.609068 -0.875706 000000
-1.145179 -1.417276 -1.691783 -1.968480 -2.247139 -2.527518 000000
-2.809359 -3.092389 2.906866 2.622335 2.337511 2.052702 001000
1.768203 1.484292 1.201220 0.919197 0.638390 0.358916 000000
0.080841 -0.195821 -0.471105 -0.745085 -1.017874 -1.289613 000000
-1.560460 -1.830589 -2.100177 -2.369397 -2.638419 -2.907402 000000

-2.907402 3.106697 2.837378 2.567713 2.297608 2.026985 010000
1.755783 1.483956 1.211474 0.938323 0.664502 0.390023 000000
0.114913 -0.160789 -0.437033 -0.750426 -0.990889 -1.268349 000000

-1.546047 -1.823892 -2.101789 -2.379642 -2.657361 -2.934859 000000

-2.379642 -2.657361 -2.934859 3.071124 2.794281 2.517851 000100
2.241868 1.966353 1.691311 1.416733 1.142595 0.868864 000000
0.595495 0.322438 0.049638 -0.222964 -0.495426 -0.767806 000000

-1.040160 -1.312541 -1.584994 -1.857564 -2.130289 -2.403199 000000

-2.676323 -2.949683 3.059893 2.786022 2.511886 2.237485 001000
1.962825 1.687917 1.412777 1.137427 0.861891 0.586198 000000
0.310380 0.034473 -0.241488 -0.517465 -0.793422 -1.069325 000000

-1.345140 -1.620839 -1.896397 -2.171793 -2.447012 -2.722046 000000

-2.996886 3.011651 2.737190 2.462910 2.188799 1.914843 010000
1.641027 1.367332 1.093741 0.820232 0.546786 0.273383 000000
0.000000 -0.273383 -0.546786 -0.820232 -1.093740 -1.367332 000000

-1.641027-1.914843-2.188799-2.462910-2.737190-3.011651
000000

-1.914843 -2.188799 -2.462910 -2.737190 -3.011651 2.996886 000001
2.722046 2.447012 2.171793 1.896397 1.620839 1.345140 000000
1.069325 0.793422 0.517465 0.241488 -0.034473 -0.310380 000000

-0.586198 -0.861891 -1.137427 -1.412777 -1.687917 -1.962825 000000

-2.237485 -2.511886 -2.786022 -3.059893 2.949683 2.676324 000010

2.403199 2.130288 1.857564 1.584994 1.312541 1.040160 000000

0.767807 0.495426 0.222964 -0.049638 -0.322438 -0.595495 000000

-0.868864 -1.142595 -1.416733 -1.691311 -1.966353 -2.241868 000000

-2.517851 -2.794281 -3.071124 2.934859 2.657361 2.379642 000100

2.101789 1.823892 1.546047 1.268349 0.990889 0.713758 000000

0.437033 0.160789 -0.114913 -0.390023 -0.664502 -0.938323 000000

-1.211474 -1.483956 -1.755783 -2.026985 -2.297608 -2.567713 000000

-2.837378 -3.106697 2.907402 2.638419 2.369397 2.100177 0010 00000

1.830589 1.560460 1.289613 1.017874 0.745085 0.471105 00000000

0.195821 -0.080841 -0.358916 -0.638390 -0.919197 -1.201220

148

2. Training file for 6-input wrap detector network - real data

The following values are as described in appendix 1.1, but gathered from
data taken from real wrapped phase distributions.

! Training data for 6-input wrap detector
! Compiled from REAL DATA

3.1416 -2.8274 -2.5130 -2.1991 -1.8849 -1.5708 010000
2.82743.1416-2.8274-2.5130-2.1991 -1.884900 1 000
2.5130 2.8274 3.1416 -2.8274 -2.5130 -2.1991 000100
2.1991 2.5130 2.8274 3.1416 -2.8274 -2.5130 000010
1.8849 2.1991 2.51302.82743.1416-2.827400000 1
1.5708 1.8849 2.1991 2.5130 2.8274 3.1416 000000
1.2256 1.5708 1.8849 2.1991 2.51302.8274000000
3.1416 -2.7489 -2.3562 -1.9635 -1.5708 -1.1781 010000
2.7489 3.1416 -2.7489 -2.3562 -1.9635 -1.5708 001000
2.3562 2.7489 3.1416 -2.7489 -2.3562 -1.9635 000100
1.9635 2.3562 2.7482 3.1416 -2.7489 -2.3562 000010
1.5708 1.9635 2.3562 2.7489 3.1416 -2.7489 000001
1.1781 1.5708 1.9635 2.3562 2.7489 3.1416 000000
0.7854 1.1781 1.5708 1.9635 2.3562 2.7489 000000
-8.3723 -7.5633 -6.6345 -5.4542 -4.4520 -3.0987 000000
8.0164 -8.8100 -7.4566 -6.0909 -5.0246 -4.3358 010000
7.5243 8.3981 -8.3412 -7.8906 -6.1415 -5.0742 001000
6.9022 7.1000 8.6110 -8.7063 -7.5500 -6.4306 000100
5.0305 6.3101 7.0925 8.1111 -8.6516 -7.0001 000010
4.0097 5.3399 6.1701 7.1134 8.2205 -8.6673 000001
3.0987 4.7634 5.2367 6.6721 7.1762 8.0045 000000

-12.9222 -10.7000 -8.2468 -6.0704 -4.2928 -2.9205 000000
12.6505 -12.0456 -10.6453 -8.3456 -6.5634 -4.5623 010000
10.4638 12.3924 -12.3041 -10.1111 -8.7777 -6.4532 001000
8.0986 10.6534 12.3625 -12.0121 -10.5553 -8.6664 000100
6.5876 8.7106 10.5269 12.1710 -12.1957 -10.1822 000010
4.1969 6.6100 8.1007 10.1212 12.6520-12.1069000001
2.8888 4.8511 6.1098 8.2495 10.1597 12.0948 000000

-50.6734 -45.6914 -40.9163 -35.3945 -30.0153 -25.8421 000000
50.1842 -50.3701 -45.4801 -40.0348 -35.2905 -30.9191 010000
45.4678 50.3460 -50.9987 -45.6457 -40.6345 -35.2134 001000
40.6450 45.2343 50.6534 -50.6354 -45.3645 -40.3450 000100
35.9995 40.0202 45.8516 50.6764 -50.0519 -45.2052 000010
30.2052 35.4343 40.9086 45.4611 50.6123 -50.9153 000001
25.6506 30.7101 35.0933 40.6640 45.7007 50.7170 000000

-18.6459 -15.3452 -12.8967 -9.2397 -6.4793 -3.5910 000000
18.1969 -18.1958 -15.1939 -12.1966 -9.1985 -6.1944 010000
15.6505 18.6110 -18.7063 -15.5531 -12.9003 -9.2220 001000
12.2220 15.7382 18.7382 -18.7382 -15.8181 -12.9911 000100
9.5672 12.4637 15.9090 18.9090 -18.1334 -15.9911 000010
6.0333 9.9045 12.1334 15.9045 18.5531 -18.0000 000001
3.3708 6.1275 9.1098 12.2495 15.2996 18.6577 000000

149

3. Test file for 6-input wrap detector network - real data

Test data is presented to the network in the same manner as training data, but must vary from the original training set:

! Test data for 6-input unwrapper
! Compiled from REAL DATA

-8.3723 -7.5633 -6.6345 -5.4542 -4.4520 -3.0987 000000
8.0164 -8.8100 -7.4566 -6.0909 -5.0246 -4.3358 010000
7.5243 8.3981 -8.3412 -7.8906 -6.1415 -5.0742 001000
6.9022 7.1000 8.6110 -8.7063 -7.5500 -6.4306 000100
5.0305 6.3101 7.0925 8.1111 -8.6516 -7.0001 000010
4.0097 5.3399 6.1701 7.1134 8.2205 -8.6673 000001
3.0987 4.7634 5.2367 6.6721 7.1762 8.0045 000000
-12.9222 -10.7000 -8.2468 -6.0704 -4.2928 -2.9205 000000
12.6505 -12.0456 -10.6453 -8.3456 -6.5634 -4.5623 010000
10.4638 12.3924 -12.3041 -10.1111 -8.7777 -6.4532 001000
8.0986 10.6534 12.3625 -12.0121 -10.5553 -8.6664 000100
6.5876 8.7106 10.5269 12.1710 -12.1957 -10.1822 000010
4.1969 6.6100 8.1007 10.1212 12.6520-12.106900000 1
2.8888 4.8511 6.1098 8.2495 10.1597 12.0948 000000
-50.6734 -45.6914 -40.9163 -35.3945 -30.0153 -25.8421 000000
50.1842 -50.3701 -45.4801 -40.0348 -35.2905 -30.9191 010000
45.4678 50.3460 -50.9987 -45.6457 -40.6345 -35.2134 001000
40.6450 45.2343 50.6534 -50.6354 -45.3645 -40.3450 000100
35.9995 40.0202 45.8516 50.6764 -50.0519 -45.2052 000010
30.2052 35.4343 40.9086 45.4611 50.6123 -50.9153 000001
25.6506 30.7101 35.0933 40.6640 45.7007 50.7170 000000

-18.6459 -15.3452 -12.8967 -9.2397 -6.4793 -3.5910 000000
18.1969 -18.1958 -15.1939 -12.1966 -9.1985 -6.1944 010000
15.6505 18.6110 -18.7063 -15.5531 -12.9003 -9.2220 001000
12.2220 15.7382 18.7382 -18.7382 -15.8181 -12.9911 000100
9.5672 12.4637 15.9090 18.9090 -18.1334 -15.9911 000010
6.0333 9.9045 12.1334 15.9045 18.5531 -18.0000 000001
3.3708 6.1275 9.1098 12.2495 15.2996 18.6577 000000
0.0000 3.0550 6.6742 9.0963 12.6523 15.1212 000000

-15.6409 -12.5634 -9.9074 -3.9071 -3.5507 0000000

-125.3616 -124.5508 -123.3408 -122.2881 -121.5761 -120.9055 000000
125.5665 -125.3421 -124.3358 -123.6723 -122.6577 -121.6723 010000
124.8745 125.4532 -125.1047 -124.3846 -123.2649 -122.6206 001000
123.5347 124.3693 125.3693 -125.6734 -124.3748 -123.6751 000100
122.8981 123.3616 124.9999 125.0451 -125.5611 -124.9575 000010
121.8582 122.6374 123.6110 124 124.5508 -125.5443 000001
119.9022 120.8981 121.6374 122.6577 123.7063 124 000000

-117.1701 -116.9022 -115.3616 -114.8981 -113.7063-112.6110000000
50.2525 51.2525 52.2525 -52.2525 -51.2525 -50.2525 000100
99.5876 101.5876 -101.5876 -99.5876 -97.5876 -95.5876 001000
22.3652 24.3971 26.3601 29.5897 -28.3481 -26.3467 000010

-40.4534 -39.6781 -37.1345 -34.8734 -33.7384 -30.2134 000000

1 5l)

4. Training file for 3x3 tile network

The following data are examples of training vectors for a 3x3 tile network.
The first 9 values are presented to the input layer of the network and the
remaining values presented to the output layer as desired outputs. The
ampersands present inform NeuralWorks that the line is a continuation of a
single training vector. Only a small representation of a training set is shown
here for clarity. A complete training set will typically contain 70 to 100
vectors, each containing 18 values.

!6
!1
0.171687 0.171687 0.171687
& -0.085152 -0.085152 -0.085152
& -0.345478 -0.345478 -0.345478
& 000
& 000
& 000

!2

-3.092389 -3.092389 -3.092389
& 2.906866 2.906866 2.906866
& 2.622335 2.622335 2.622335
&111
& 000
& 000

!3

-2.809359 -2.809359 -2.809359
& -3.092389 -3.092389 -3.092389
& 2.906866 2.906866 2.906866
&111
&111
&000

14
-2.527518 -2.527518 -2.527518
& -2.809359 -2.809359 -2.809359
& -3.092389 -3.092389 -3.092389
&000
&000
&000

i5

-3.092389 -3.092389 -3.092389
& 2.906866 2.906866 2.906866
& 2.622335 2.622335 2.622335
&111
&000
&000

-2.809359 -2.809359 -2.809359
& -3.092389 -3.092389 -3.092389
& 2.906866 2.906866 2.906866
&111
&111
&000
!7

-2.809359 -2.809359 -2.809359
& -3.092389 -3.092389 -3.092389
& 2.906866 2.906866 2.906866
&111
&111
&000

!8

-2.809359 -2.809359 -2.809359
& -3.092389 -3.092389 -3.092389
& 2.906866 2.906866 2.906866
&111
&111
&000

i9

-2.809359 -3.092389 -2.809359
& -3.092389 2.906866 -3.092389
& 2.906866 2.622335 2.906866
&111
&101
&000

! 10

-3.092389 -3.092389 -2.809359
& 2.906866 2.906866 -3.092389
& 2.622335 2.622335 2.906866
&111
&001
&000

151

5. Test file for 3x3 tile network

Shown below is a section of a typical test file for a 9-input network as
described previously:

3.141607 3.141607 3.141607
& 3.141607 3.141607 3.141607
& 2.944487 2.944487 2.944487
&000
&000
&000

2.747367 2.747367 2.747367
& 2.550247 2.550247 2.550247
& 2.550247 2.550247 2.550247
&000
&000
&000

0.899367 0.899367 0.899367
& 0.677607 0.677607 0.677607
& 0.677607 0.677607 0.677607
&000
&000
&000

0.234087 0.234087 0.234087
& 0.012327 0.012327 0.012327
& 0.012327 0.012327 0.012327
&000
&000
&000

0.012327 0.012327 0.012327
& 0.012327 0.012327 0.012327
& -0.209433 -0.209433 -0.209433
&000
&000
&000

-0.874713 -0.874713 -0.874713 & -1.096473 -1.096473 -1.096473 & -1.096473 -1.096473 -1.096473 &000
&000
&000

-1.811033 -1.811033 -1.811033
& -2.032793 -2.032793 -2.032793
& -2.032793 -2.032793 -2.032793
&000
&000
&000

-2.279193 -2.279193 -2.279193
& -2.279193 -2.279193 -2.279193
& 2.944487 2.944487 2.944487
&000
&000
&111

-2.279193 -2.279193 -2.279193
& 2.944487 2.944487 2.944487
& 2.944487 2.944487 2.944487
&000
&111
&000

2.944487 2.944487 2.944487
& 2.944487 2.944487 2.944487
& 2.722727 2.722727 2.722727
&000
&000
&000

0.012327 0.012327 0.012327
& -0.209433 -0.209433 -0.209433
& -0.209433 -0.209433 -0.209433
&000
&000
&000

2.476327 2.476327 2.476327
& 2.229927 2.229927 2.229927
& 2.229927 2.229927 2.229927
&000
&000
&000

152

6. Results file for 6-input wrap detector

Shown below is a section of a typical results file for the 6-input wrap detector
network. Each line shows 12 values, the first six being the desired output for a given test vector, the remaining values being the network's actual outputs.

Date: Tue Apr 7 17: 04: 09 1995
Result File: real

_tes.
nnr Input File: real tes. nna

Network: Orig inal edge detector _
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000183 0.001781 0.003427 0.000078
0.001112 0.001717
0.000000 0.000000 0.000000 1.000000 0.000000
0.000000 0.037535 0.045618 0.200727 0.730302
0.093005 0.069129
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000297 0.005755 0.007189 0.000181
0.001588 0.000708
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000199 0.002337 0.003006 0.000077
0.001212 0.002002
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000778 0.000516 0.000400 0.003123
0.008278 0.012993
0.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.007939 0.919821 0.044496 0.015709
0.007932 0.007844
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000263 0.004397 0.005232 0.000136
0.001451 0.001049
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000201 0.002340 0.002970 0.000079
0.001223 0.002027
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000774 0.000487 0.000419 0.003158
0.008260 0.012865
0.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.007937 0.919756 0.044451 0.015696

0.007923 0.007838
0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000221 0.002953 0.003790 0.000096
0.001283 0.001535
0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000213 0.002208 0.002638 0.000093

0.001329 0.002190
0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000887 0.000357 0.000595 0.003895

0.010437 0.016609
0.000000 0.000000 0.000000 1.000000 0.000000

0.000000 0.039308 0.051813 0.185710 0.729952

0.098647 0.075479
0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000467 0.015770 0.017736 0.000460

0.002170 0.000240

153

Appendix 2

Phase unwrapping code

154

Code for unwrapping 1-D phase distributions using the six input
network

/*nwcallI I. c*/
/*(c) DJT 1995*/

#include <stdio. h>
#include <math. h>

/*Declare variables*/

int i, offset;
float Yin[6], Yout[6], Xout[20], buf, diff;
float inpixels[256], outpixels[256], check, pixold[6]={0,0,0,0,0,0};
float unwrap=0.0, Ywrap[256], pi=3.1415927, phi[256];
FILE *invals, *outvals;
char name[20];

/*Main program*/

main()
{

/* Open input file and scan values...
printf("\nSpecify input file... "),
scanf("%s", &name);
invals=fopen(name, "r");
for(i=0; i<256; i++)

{
fscanf(inval s, "%f\n", &buf);
inpixels[i]=buf;

}
fclose(invals);

for(i=0; i<256; i++)
phi[i]=(0.0246399*inpixels[i])-3.1415927;

for(offset=0; offset<251; offset++)
{
for (i=0; i<6; i++)
Yin[i]=phi [offset+i];

/* Following code generated by NeuralWorks Professional II Plus*/

/* Generating code for PE 0 in layer 3 */
Xout[8] = (float)(. 24440868) + (float)(1.1412765) * Yin[0] -

(float)(-0.075542443) * Yin[l] + (float)(-1.584056 3) * Yin[2] -
(float)(1.6389939) * Yin[3] + (float)(-. 16028091) * Yin[4] +

(float)(-. 94976723) * Yin[5],
Xout[8] = 1.0 / (1.0 + exp(-Xout[8])):

15.5

/* Generating code for PE I in layer 3 */
Xout[9] = (float)(. 10932224) + (float)(. 67197585) * Yin[O] + (float)(26122794) * Yin[1]+ (float)(-1.7042081) * Yin[2]

(float)(-. 37387753) * Yin[3] + (float)(. 55939311) * Yin[4] -- (float)(. 91165 006) * Yin[5];
Xout[9] = 1.0 / (1.0 + exp(-Xout[9]));

/* Generating code for PE 2 in layer 3 */
Xout[10] _ (float)(. 50727248) + (float)(1.2653984) * Yin[O] +

(float)(. 47456065) * Yin[1] + (float)(. 23860323) * Yin[2] +
(float)(-. 23652704) * Yin[3] + (float)(-. 5585525) * Yin[4] +
(float)(-. 96953464) * Yin[5];

Xout[10] = 1.0 / (1.0 + exp(-Xout[10]));

/* Generating code for PE 3 in layer 3 */
Xout[11]= (float)(. 523 89967) + (float)(-. 47292721) * Yin[0] +

(float)(2.0644493) * Yin[1] + (float)(. 15990584) * Yin[2] +
(float)(-. 1451918) * Yin[3] + (float)(-. 46502253) * Yin[4] +
(float)(-. 852943 84) * Yin[5];

Xout[11]=1.0 / (1.0 + exp(-Xout[11]));

/* Generating code for PE 4 in layer 3 */
Xout[12] = (float)(. 58212614) + (float)(1.1654203) * Yin[O] +

(float)(. 22101815) * Yin[l] + (float)(-. 27567723) * Yin[2] +
(float)(-. 39259917) * Yin[3] + (float)(-1.4805681) * Yin[4] +
(float)(. 23438235) * Yin[5];

Xout[12] = 1.0 / (1.0 + exp(-Xout[12]));

/* Generating code for PE 5 in layer 3 */
Xout[13] = (float)(. 68133008) + (float)(1.0202456) * Yin[0] +

(float)(. 22769448) * Yin[I] + (float)(-. 10406712) * Yin[2] +
(float)(-1.4373332) * Yin[3] + (float)(1.2467792) * Yin[4] +
(float)(-. 75219929) * Yin[5];

Xout [13]=1.0 / (1.0 + exp(-Xout [13]));

/* Generating code for PE 0 in layer 4 */
Yout[0] = (float)(-3.6656587) + (float)(-. 96997684) * Xout[8] +

(float)(-1.0610986) * Xout[9] + (float)(-1.030337) * Xout[1O] +
(float)(-1.0052155) * Xout[11] + (float)(-. 93514925) * Xout[12] +
(float)(-. 98882818) * Xout[13];

Yout[O] = 1.0 / (1.0 + exp(-Yout[0]));

/* Generating code for PE 1 in layer 4 */
Yout[1]= (float)(-2.9236183) + (float)(-2.4284985) * Xout[8] +

(float)(-1.6994104) * Xout[9] + (float)(-1.6407439) * Xout[10] +

(float)(5.9125438) * Xout[11]+ (float)(-1.879591) * Xout[12

(float)(- 1.647258) * Xout[13];
Yout [1]=1.0 / (1.0 + exp(-Yout [1])):

Iits

/* Generating code for PE 2 in layer 4 */
Yout[2] _ (float)(2.7719913) + (float)(-2.5445874) * Xout[8]

(float)(-3.8594689) * Xout[9] + (float)(-1.3257178) * Xout[10]
(float)(-5.6907859) * Xout[11] + (float)(-1.7482276) * Xout[1

-1] +
(float)(-2.1713367) * Xout[13];

Yout[2] = 1.0 / (1.0 + exp(-Yout[2]));

/* Generating code for PE 3 in layer 4 */
Yout[3] = (float)(-3.3216081) + (float)(4.3592968) * Xout[8] +

(float)(1.9537264) * Xout[9] + (float)(-1.6712166) * Xout[IO] +
(float)(-1.9428953) * Xout[11]+ (float)(-1.5179806) * Xout[12] +
(float)(-2.3145306) * Xout[13];

Yout[3] = 1.0 / (1.0 + exp(-Yout[3]));

/* Generating code for PE 4 in layer 4 */
Yout[4] = (float)(-3.2834849) + (float)(-2.3915703) * Xout[8] +

(float)(2.311928) * Xout[9] + (float)(-1.4123503) * Xout[10] +
(float)(-1.6932757) * Xout[11] + (float)(-1.9878503) * Xout[l2] +
(float)(3.4246485) * Xout[13];

Yout[4] = 1.0 / (1.0 + exp(-Yout[4]));

/* Generating code for PE 5 in layer 4 */
Yout[5] = (float)(-2.8727694) + (float)(-2.0236669) * Xout[8] +

(float)(1.8336757) * Xout[9] + (float)(-1.1584884) * Xout[10] +
(float)(-1.6798445) * Xout[11]+ (float)(3.1066597) * Xout[12] +
(float)(-1.5766689) * Xout[13];

Yout[5] = 1.0 / (1.0 + exp(-Yout[5]));

check=pixold[1]-Yout[O];
igcheck>O. 7)

Yout[O]=pixold[1];

for(i=0; i<6; i++)
{
buf Yout[i];
outpixels[offset+i]=buf;
}

for(i=0; i<6; i++)

pixold[i]=Yout[i];

/*Once network has detected wraps, update where necessary by 2 pi*/

for(i=0; i<256; i++)
{
dill outpixels[i]-outpixels[i+ 1
itldif0.80)

{

157

unwrap=unwrap+2*pi;

Ywrap[i]=phi [i]-unwrap;

printf("%f %f %An", phi[i], outpixels[i], Ywrap[i]);

printf("\nSpecify output filename... ");
scanf("%s", name);
outvals=fopen(name, "w");
for(i=0; i<256; i++)

fprintf(outvals, "%f\n", Ywrap[i]);
fclose(outvals);

1S

Appendix 3

Fringe Optimisation
Training and test data

Global optimisation network training data
2. Global optimisation network test data

159

Training set for global optimisation network

The training set is presented to the network as described in Appendix

! GLOBAL_L. nna
! Training file for global optimisation network.

0.127 0.640 0.000 0.750 &0-110
&0000 0? 00 0 7nn0 00Un7: (ý

0.075 0.850 0.000 0.600
&-1 100

0.130 0.600 -1.000 0.590
&00-10

0.168 0.630 0.000 0.444
&1 00-1

0.127 0.640 0.000 0.250
&000-1

0.127 0.640 -1.000 0.750
&00-10

0.127 0.640 1.000 0.750
&0010

0.127 0.640 -1.000 0.250
&00-1-1

0.127 0.640 1.000 0.250
&00 1 -1

0.127 0.800 0.000 0.750
&0100

0.12 7 0,400 0.000 0.750
&0-100

0.127 0.800 0.000 0.250
&010-1

0.127 0.400 0.000 0.250
&0-10-1

0.127 0.800 1.000 0.750
&0110

0.127 0.800 -1.000 0.750
&0 1-10

0.127 0.400 -1.000 0.750
&0-1 -10

0.12 7 0.400 1.000 0.750

0.127 0.800 1.000 0.250 &1 100
&011-1

0.200 0.400 0.000 0.7-50
0.127 0.800 -1.000 0.250 &1 -1 00
&0 1 -1 -1 0.200 0.400 1.000 0.750

&1-110
0.127 0.400 -1.000 0.250
&0-1-1-1 0.200 0.400 -1.000 0.750

&1-1-10
0.127 0.400 1.000 0.250
&0-11-1 0.075 0.700 1.000 0.7-50

&-111()
0.200 0.640 0.000 0.750
& 10 00 0.075 0.700 -1.000 0.750

&-11-10
0.075 0.640 0.000 0.750
&-1000 0.075 0.400 1.000 0.750

&-1-110
0.200 0.640 0.000 0.250
& 10 0 -1 0.075 0.400 -1.000 0.750

&-1-1-10
0.075 0.640 0.000 0.250
&-100-1 0.2000.7001.0000. _50

&111-1
0.200 0.640 1.000 0.750
& 10 10 0.200 0.700 -1.000 0.2 50

&11-1-1
0.200 0.640 -1.000 0.750
& 10 -10 0.200 0.400 1.000 O. 250

&1 -1 1 -1
0.075 0.640 1.000 0.750
&-10 10 0.200 0.400 -1.000 0.251

&1 -1 -1 -1
0.075 0.640 -1.000 0.750
&-10-10 0.127 0.640 0.000 0.750

&0000

0.200 0.640 1.000 0.250
& 10 1 -1

0.125 0.620 0.000 0-600
&0000

0.200 0.640 -1.000 0.250
&10 -1 -1

0.130 0.650 0.000 0.550
&0000

0.075 0.640 1.000 0.250
&-10 1 -1

0.140 0.600 0.000 0.70()
&01100

0.075 0.640 -1.000 0.250
& -1 0 -1 -1

160

Test results for global optimisation network

The test set is as described in Appendix 1.

Date: Tue Sep 5 10: 17: 38 1995
Result File: global_ r. nnr Input File: global_r. nna
Network: Global optimisation network Mid

0.000000 0.000000 0.000000
0.016848 0.000000 0.000000

-1.000000 1.000000 0.000000
0.016848 0.000000 0.000000
0.000000 0.000000 -1.000000
0.016848 0.000000 0.000000
1.000000 0.000000 0.000000
0.016848 0.000000 0.000000
0.000000 0.000000 0.000000
0.016848 0.000000 0.000000
0.000000 0.000000 -1.000000
0.016848 0.000000 0.000000
0.000000 0.000000 1.000000
0.014323 0.525409 0.000000
0.000000 0.000000 -1.000000
0.016848 0.000000 0.000000
0.000000 0.000000 1.000000
0.014264 0.677121 0.000000
0.000000 1.000000 0.000000
0.016848 0.000000 0.000000
0.000000 -1.000000 0.000000
0.016848 0.000000 0.000000
0.000000 1.000000 0.000000
0.016848 0.000000 0.000000
0.000000 -1.000000 0.000000
0.016848 0.000000 0.000000
0.000000 1.000000 1.000000
0.016829 0.000000 0.000000
0.000000 1.000000 -1.000000
0.016848 0.000000 0.000000
0.000000 -1.000000 -1.000000
0.016848 0.000000 0.000000
0.000000 -1.000000 1.000000
0.014264 0.677121 0.000000
0.000000 1.000000 1.000000
0.014264 0.676704 0.000000
0.000000 1.000000 -1.000000
0.016848 0.000000 0.000000
0.000000 -1.000000 -1.000000
0.016848 0.000000 0.000000
0.000000 -1.000000 1.000000
0.014264 0.677121 0.000000
1.000000 0.000000 0.000000
0.016848 0.000000 0.000000

-1.000000 0.000000 0.000000
0.016848 0.000000 0.000000
1.000000 0.000000 0.000000
0.016848 0.000000 0.000000

-1.00(X)00 0.00000O 0.000000
0.016848 0.000(00 0.000000

0.000000 0.001

0.000000 0.0014')5

0.000000 0.00 143 5

-1.000000 0.00 143 5

-1.000000 0.00 143 5

0.000000 0.00143 5

0.000000 0.00482 5

-1.000000 0.00143 5

-1.000000 0.004975

0.000000 0.001415

0.000000 0.001415

-1.000000 0.001435

15 -1.000000 0.00 14

0.000000 0.001447

0.000000 0.00143 5

0.000000 0.00143

0.000000 0.004975

-1.000000 0.004975

-1.000000 0.00143 5

-1.000000 0.00143 5

-1.000000 0.004975

0.000000 0.001415

0.000000 0.00141

-1.000000 0.00143 5

-1.000000 0001435

161

Appendix 4

Code

102

6. Final optimisation system

/* Global optimisation network version 4.30 */
/* (c) DJT 18/6/96 */

#include <stdio. h>
#include <math. h>
#include <itexvsp. h>
#include <gaoi. h>
#include <string. h>

/* ITEX variables */

int v_pixarray[512], loop counter, loop max=10;
long int v_pixval[512], vtotal, v_count;
float v_mean, v_number, v_shift[512];
float index, tilt_value, scaled_mean, scaled_count, v_product;
float mean_val[5], fringe_number[5], vis_val[5], tilt[5];
float list[512], temp, visibility, contrast;
int out, in, count, a, gaoi, i;
float Yin[20], Yout[4];
char name[20];
FILE *fp;

/* mm2000 variables */

int mmadd=0x300;
char response[80];

main()

print«"\nBackprop optimisation system version 4.30. ");
loop_counter=0;
load_cng"\\vi\\lib\\vsp. cnf');
initsys();
vfg_init(;
gaoi=gaoi_create(VFG, 0, I, 0,0,512,512,0,8, NONE);

mmsend(" 1 VA200,1 AC 100\r", mm_add);
mmsend(" I TB\r", mm_add);
mmread(response, mm_add);
prints \nCurrent MotionMaster error state is. %s", response),
do
{
printg"\n* * Loop iteration number ° öd. 1oop_counter+ 1);

printf("\nSnapping current image... ");

vfg_snap(gaoi, CAMERA),

I (i

/* top left
vfg_rvline(gaoi, 128,0,256, v_pixarray),
calculations(;
mean_val[O]=scaled

_mean; fringe_number[O]=scaled_count;
vis_val[O]=visibility;

/* top right */

vfg_rvline(gaoi, 3 84,0,256, v_pixarray);
calculations();
mean

_val[
1]=scaled_mean;

fringe_number[1]=scaled_count;
vi s_val [I] =vi sib il ity;

/* bottom left */
vfg_rvline(gaoi, 128,256,256, v_pixarray);
calculations();
mean_val[2]=scaled_mean;
fringe_number[2]=scaled_count;
vis_val[2]=visibility;

/* bottom right */
vfg_rvl ine(gaoi, 3 84,256,256, v_pixarray);
calculations(
mean

_val[3
]=scaled_mean;

fringe_number[3]=scaled_count;
vis_val[3]=visibility;

/* centre */
vfg_rvline(gaoi, 256,128,256, v_pixarray),
calculations(;
mean_val[4]=scaled_mean,
fringe_number[4]=scaled_count;
vis_val[4]=visibility;

/* tilt pass 2 */
tilt[2]=fringe_number[4].

/* tilt pass 0 */
vfg_rhline(gaoi, 128,3 84,256, v_pixarray),
calculations(;
tilt [0]=scaled_count;

/* tilt pass 1
vfg_rline(gaoi, 75,203,256,384, v pixanay);
calculations();
tilt[I]=scaled_count,.

/* tilt pass 3 */

164

vfg_rline(gaoi, 256,3 84,43 7,203, v_pixarray);
calculations(;
tilt[3]=scaled_count;

/* tilt pass 4 */
vfg_rhline(gaoi, 256,384,256, v pixarray);
calculations();
tilt [4]=scaled_count;

printf("\n\n Mean values are:
for(i=0; i<5; i++)

printf("%f ", mean_val[i]);
printf("\n Fringe counts are: ");
for(i=0; i<5; i++)

printf("%f ", fringe_number[i]);
printf("\n Visibility values are: ");
for(i=0; i<5; i++)

printf("%f ", vis_val[i]);
printf("\n Tilt values are:
for(i=0; i<5; i++)

printf("%f ", tilt[i]);

for(i=0; i<5; i++)
{
Yin[i]=mean_val[i];
Yin[i+5]=fringe_number[i];
Yin[i+10]=vis_val[i];
Yin[i+15]=tilt[i];
}

flashcode();

print«"\n\n");
if(Yout[O]<0.3)

print«"\nMean intensity is too low. ");

else if(Yout[O]>0.75)

printf("\nMean intensity is too high. ");

else
printfl"\nMean intensity is OK. ");

if(Yout[1]>0.7)
print«"\nThere are too many fringes in this image. ")-.

else if(Yout[1]<0.3)
print f("\nThere are not enough fringes in this image. ")

else
printg"\nNumber of fringes is OK. ");

if(Yout[2]<0.35)

printg"\nVisibility is too low. "),
else

printg"\nVisibility is OK. ")-.

LIVERPOOL JOHN k,,, uORES UNIVEýSIT
SERV CES LEARNING

if(Yout[3]<0.3)

printf("\nFringes tilt anticlockwise.
else if(Yout[3]>0.7)

printf("\nFringes tilt clockwise. ");
else

printf("\nFringes are level. ");
printf("\n\n");

if(Yout[1]>O. 7)
call_mm2000_axis1();

loop_counter++;
}

while(Yout[1]>O. 7&&loop_counter<loop_max);

calculations()
{
calc_means();
fringe_countso;

scaled mean=v_ mean/ 1000;
scaled count=_number/ 100;
}

calc_means()
{
v_total=0;
for(a=0; a<256; a++)

v_total+=vp ixarray [a] ;
v_mean=v_total/256;
}

fringe_counts()
{
for(a=0; a<256; a++)

v_shift[a]=v_pixarray[a]-v_mean;
v_count=0;
for(a=0; a<256; a++)

{
v_product=vshi ft[a] *v_shift[a+1];
if(v_product<0.0)

v_count++;
}

v number=v count/2;

for(a=O, a<256; a++)
list [a] =vp ix array [a]

for(out=0; out<25 6; out++)
for(in=out+ 1; in<256, in++)

166

if(list[out]>list[in])
{
temp=list[in];
list[in]=list[out];
list[out]=temp;
}

visibility=(list[255]-list[O])/(list[255]+list[0]);
}

flashcode()
{
/* Tue Mar 12 12: 59: 54 1996 (glnet4l4. c)
/* Recall-Only Run-time for <gl400>
/* Control Strategy is: <backprop> */

float Xout[36], Xsum[36]; /* work arrays
long ICmpT; /* temp for comparisons */

/* '' * WARNING: Code generated assuming Recall =0*** */

/* Read and scale input into network */

/* Generating code for PE 0 in layer 3 */
Xsum[22] = (float)(0.51291823) + (float)(1.1200382) * Yin[0] +

(float)(0.75770199) * Yin[1] + (float)(0.94658583) * Yin[2] +
(float)(0.74116755) * Yin[3] + (float)(0.86861163) * Yin[4] +
(float)(-0.11502891) * Yin[5] + (float)(-0.55039108) * Yin[6] +
(float)(-0.42057505) * Yin[7] + (float)(-0.43457967) * Yin[8] +
(float)(-0.63996595) * Yin[9];

Xsum[22] += (float)(0.52264649) * Yin[10] + (float)(0.12820528) * Yin[11]
+ (float)(0.59060228) * Yin[12] + (float)(0.085514538) * Yin[13] +
(float)(-0.066451773) * Yin[14] + (float)(0.59558135) * Yin[15] +
(float)(-0.38854396) * Yin[16] + (float)(-0.60187453) * Yin[17] +
(float)(-0.32544455) * Yin[18] + (float)(-0.5333479) * Yin[19];

/* Generating code for PE 1 in layer 3 */
Xsum[23] = (float)(0.41995716) + (float)(0.31209549) * Yin[0] +

(float)(-0.042181447) * Yin[I] + (float)(0.17271914) * Yin[2] +
(float)(0.052135143) * Yin[3] + (float)(0.10904433) * Yin[4] +
(float)(-0.27623224) * Yin[5] + (float)(-0.57313389) * Yin[6] +
(float)(-0.61444414) * Yin[7] + (float)(-0.5735063) * Yin[8] +
(float)(-0.48885798) * Yin[9];

Xsum[23] += (float)(-0.3 7919202) * Yin[10] + (float)(-0.165482 3) * Yin[11]

+ (float)(-0.16504616) * Yin[12] + (float)(-0.13199218) * Yin[13]

(float)(-0.083629504) * Yin[14] + (float)(-0.39430356) * Yin[15] ±
(float)(-0.57887322) * Yin[16] + (float)(-0.5 394156) * Yin[17] +

(float)(-0.45572984) * Yin[18] + (float)(-0.47956526) * Yin[19].

167

/* Generating code for PE 2 in layer 3 */
Xsum[24] = (float)(-0.19887754) + (float)(0.36199242) * Yin[O]

(float)(0.22469084) * Yin[1] + (float)(0.12849589) * Yin[2] + (float)(0.1453943) * Yin[3] + (float)(0.25397474) * Yin[4] + (float)(0.058965519) * Yin[5] + (float)(0.099251397) * Yin[6] + (float)(0.17505574) * Yin[7] + (float)(0.075894788) * Yin[8] + (float)(0.26560712) * Yin[9];
Xsum[24] += (float)(-0.69191957) * Yin[10] + (float)(-0.13290976) * Yin[11]

+ (float)(-0.34417331) * Yin[12] + (float)(-0.53462374) * Yin[13] +
(float)(-0.25832948) * Yin[14] + (float)(0.11986393) * Yin[15] +
(float)(-0.048770867) * Yin[16] + (float)(0.07210812) * Yin[17] +
(float)(0.23395152) * Yin[18] + (float)(-0.13973524) * Yin[19];

/* Generating code for PE 3 in layer 3 */
Xsum[25] = (float)(-0.81400353) + (float)(-0.91880965) * Yin[0] +

(float)(-0.64511019) * Yin[I] + (float)(-0.77062106) * Yin[2] +
(float)(-0.623357) * Yin[3] + (float)(-0.67265278) * Yin[4] +
(float)(0.30170408) * Yin[5] + (float)(0.65375519) * Yin[6] +
(float)(0.47448733) * Yin[7] + (float)(0.60599393) * Yin[8] +
(float)(0.40640268) * Yin[9];

Xsum[25] += (float)(0.29200983) * Yin[10] + (float)(0.41514421) * Yin[11]
+ (float)(0.1017247) * Yin[12] + (float)(0.28909576) * Yin[13] +

(float)(0.492726) * Yin[14] + (float)(0.024698786) * Yin[15] +
(float)(0.13 35 63 7) * Yin[16] + (float)(0.795 08 5 79) * Yin[17] +
(float)(0.63817501) * Yin[18] + (float)(0.64715672) * Yin[19];

/* Generating code for PE 4 in layer 3 */
Xsum[26] = (float)(-0.7262122) + (float)(-0.43169123) * Yin[O] +

(float)(-0.11978691) * Yin[1]+ (float)(-0.084116541) * Yin[2] +
(float)(-0.35286617) * Yin[3] + (float)(-0.14322607) * Yin[4] +
(float)(0.79265034) * Yin[5] + (float)(1.0748861) * Yin[6] +
(float)(0.86745197) * Yin[7] + (float)(0.51031208) * Yin[8] +
(float)(0.73114151) * Yin[9];

Xsum[26] += (float)(-0.77761388) * Yin[10] + (float)(-0.25369096) * Yin[11]
+ (float)(-0.443621 1) * Yin[12] + (float)(-0.62311947) * Yin[13] +
(float)(-0.057868429) * Yin[14] + (float)(0.25251833) * Yin[15] +
(float)(0.68171388) * Yin[16] + (float)(0.64202815) * Yin[17] +
(float)(0.76848215) * Yin[18] + (float)(0.38853914) * Yin[19];

/* Generating code for PE 5 in layer 3 */
Xsum[27] = (float)(-0.077568538) + (float)(0.25395143) * Yin[0] +

(float)(0.3 964766) * Yin[I] + (float)(0.040671058) * Yin[2] +
(float)(-0.016429115) * Yin[3] + (float)(0.086688489) * Yin[4] +
(float)(-0.47465959) * Yin[5] + (float)(-0.52561438) * Yin[6] +
(float)(-0.18413264) * Yin[7] + (float)(-0.45139271) * Yin[8] -
(float)(-0.20107581) * Yin[9]

Xsum[27] += (float)(-0.39822865) * Yin[10] + (float)(-0.28633997) * Yin[111

+ (float)(0.1 15711) * Yin[12] + (float)(0.0018749614) * Yin[13] +
(float)(-0.2547664) * Yin[14] + (float)(-0.21335608) * Yin[15] +

(float)(-0.53907776) * Yin[16] + (float)(-0.25679442) * Yin[17] -+

168

(float)(-0.29961729) * Yin[18] + (float)(-0.55880654) * Yin[19],

/* Generating code for PE 6 in layer 3 */
Xsum[28] = (float)(0.22698164) + (float)(-0.30818063) * Yin[0] - (float)(-0.063706584) * Yin[l] + (float)(-0.21834689) * Yin[2] +

(float)(-0.41436657) * Yin[3] + (float)(-0.13816226) * Yin[4] +
(float)(-0.6952529) * Yin[5] + (float)(-0.61804426) * Yin[6] +
(float)(-0.475234) * Yin[7] + (float)(-0.021478163) * Yin[8] +
(float)(-0.46860024) * Yin[9];

Xsum[28] += (float)(0.34855863) * Yin[10] + (float)(-0.20231442) * Yin[11]
+ (float)(-0.17604984) * Yin[12] + (float)(0.22505289) * Yin[13] +
(float)(0.29778031) * Yin[14] + (float)(-0.50480717) * Yin[15] +
(float)(-0.30938923) * Yin[16] + (float)(-0.53164971) * Yin[17] +
(float)(-0.20265885) * Yin[18] + (float)(-0.3119747) * Yin[19];

/* Generating code for PE 7 in layer 3 */
Xsum[29] = (float)(-0.12704676) + (float)(1.4800271) * Yin[0] +

(float)(1.2682054) * Yin[l] + (float)(1.0784848) * Yin[2] +
(float)(0.95180172) * Yin[3] + (float)(1.3675277) * Yin[4] +
(float)(0.32492545) * Yin[5] + (float)(-0.11640698) * Yin[6] +
(float)(-0.2024758) * Yin[7] + (float)(-0.52650571) * Yin[8] +
(float)(-0.099969789) * Yin[9];

Xsum[29] += (float)(-0.47220179) * Yin[10] + (float)(-0.28866726) * Yin[11]
+ (float)(0.2041236) * Yin[12] + (float)(-0.54379195) * Yin[13] +
(float)(-0.57043999) * Yin[14] + (float)(0.54553699) * Yin[15] +
(float)(0.079543613) * Yin[16] + (float)(-0.030147526) * Yin[17] +
(float)(-0.43671697) * Yin[18] + (float)(-0.21133904) * Yin[19];

/* Generating code for PE 8 in layer 3 */
Xsum[30] = (float)(-1.1289997) + (float)(-1.7301096) * Yin[O] +

(float)(-1.2706949) * Yin[l] + (float)(-1.5117877) * Yin[2] +
(float)(-1.3128918) * Yin[3] + (float)(-1.4757698) * Yin[4] +
(float)(0.65220791) * Yin[5] + (float)(1.7428278) * Yin[6] +
(float)(0.61475885) * Yin[7] + (float)(1.2227138) * Yin[8] +
(float)(1.0847834) * Yin[9];

Xsum[30] += (float)(-1.5691651) * Yin[10] + (float)(-0.85616481) * Yin[11]

+ (float)(-1.73 83 595) * Yin[12] + (float)(-1.1450688) * Yin[13] +
(float)(-0.40118957) * Yin[14] + (float)(-0.58298486) * Yin[15] +
(float)(0.99605548) * Yin[16] + (float)(0.77839392) * Yin[17] +
(float)(0.60149568) * Yin[18] + (float)(1.1602714) * Yin[19];

/* Generating code for PE 9 in layer 3 */
Xsum[31]= (float)(0.096551582) + (float)(-0.050478779) * Yin[0]

(float)(0.057656057) * Yin[l] + (float)(-0.03250061) * Yin[2] +

(float)(-0.036905576) * Yin[3] + (float)(-0.2051387) * Yin[4]

(float)(-0.41296607) * Yin[5] + (float)(-0.50270027) * Yin[6] +

(float)(-0.41660067) * Yin[7] + (float)(-0.16561231) * Yin[8] +

(float)(-0.30192643) * Yin[9];
Xsum[31] += (float)(-0.10400457) * Yin[10] + (float)(-0.51148754) * Yin[I 1]

+ (float)(-0.3807762) * Yin[12] + (float)(-0.069051974) * Yin[13]

169

(float)(0.022478757) * Yin[14] + (float)(-0.27212459) * Yin[15] + (float)(-0.072177403) *Yin[16] + (float)(-0.13238665) * Yin[17] + (float)(-0.18513454) * Yin[18] + (float)(-0.22440013) * Yin[19],

/* Generating code for PE 0 in layer 3 */
Xout[22] = 1.0 / (1.0 + exp(-Xsum[22]));

/* Generating code for PE 1 in layer 3 */
Xout[23] = 1.0 / (1.0 + exp(-Xsum[23]));

/* Generating code for PE 2 in layer 3 */
Xout[24] = 1.0 / (1.0 + exp(-Xsum[24]));

/* Generating code for PE 3 in layer 3 */
Xout[25] = 1.0 / (1.0 + exp(-Xsum[25]));

/* Generating code for PE 4 in layer 3 */
Xout[26] = 1.0 /0

.0+ exp(-Xsum[26]));

/* Generating code for PE 5 in layer 3 */
Xout[27] = 1.0 / (1.0 + exp(-Xsum[27]));

/* Generating code for PE 6 in layer 3 */
Xout[28] = 1.0 / (1.0 + exp(-Xsum[28]));

/* Generating code for PE 7 in layer 3 */
Xout[29] = 1.0 / (1.0 + exp(-Xsum[29]));

/* Generating code for PE 8 in layer 3 */
Xout[30] = 1.0 / (1.0 + exp(-Xsum[30]));

/* Generating code for PE 9 in layer 3 */
Xout[31]=1.0 / (1.0 + exp(-Xsum[31]));

/* Generating code for PE 0 in layer 4 */
Xsum[32] = (float)(-0.65057516) + (float)(1.0928892) * Xout[22] +

(float)(0.33727017) * Xout[23] + (float)(0.38339254) * Xout[24] +
(float)(-1.1274824) * Xout[25] + (float)(-0.40105018) * Xout[26] +
(float)(0.34875277) * Xout[27] + (float)(-0.48891786) * Xout[28] +
(float)(1.5872207) * Xout[29] + (float)(-2.3664045) * Xout[30] +
(float)(-0.15500106) * Xout[31];

Yout[0] = 1.0 / (1.0 + exp(-Xsum[32]));

/* Generating code for PE 1 in layer 4 */
Xsum[33] = (float)(0.078558519) + (float)(-0.67272425) * Xout[2'] +

(float)(-0.98405063) * Xout[23] + (float)(0.24272983) * Xout[24] +
(float)(1.1989859) * Xout[25] + (float)(1.5565525) * Xout[26] +
(float)(-0.72113997) * Xout[27] + (float)(-0.97956073) * Xout[28] +
(float)(-0.15540032) * Xout[29] + (float)(1.4880245) * Xout[30]
(float)(-0.64811188) * Xout[31],

170

Yout[1]=1.0 / (1.0 + exp(-Xsum[3 3]));

/* Generating code for PE 2 in layer 4 */
Xsum[34] = (float)(-0.18949994) + (float)(0.82227021) * Xout[22] +

(float)(-0.47706285) * Xout[23] + (float)(-0.37742797) * Xout[24] +
(float)(-0.16749881) * Xout[25] + (float)(-0.31269461) * Xout[26] +
(float)(-0.28799385) * Xout[27] + (float)(-0.069637783) * Xout[28] +
(float)(0.62282759) * Xout[29] + (float)(-2.2626534) * Xout[30] +
(float)(-0.10584904) * Xout[31];

Yout[2] = 1.0 / (1.0 + exp(-Xsum[34]));

/* Generating code for PE 3 in layer 4 */
Xsum[35] = (float)(0.07574404) + (float)(-0.067089461) * Xout[22] +

(float)(-0.016239651) * Xout[23] + (float)(-0.12841272) * Xout[24] +
(float)(0.47594422) * Xout[25] + (float)(-0.1223451) * Xout[26] +
(float)(0.023014756) * Xout[27] + (float)(0.32377771) * Xout[28] +
(float)(-0.6264416) * Xout[29] + (float)(0.050953642) * Xout[30] +
(float)(-0.23612306) * Xout[31];

Yout[3] = 1.0 / (1.0 + exp(-Xsum[35]));

printf("\n\nNetwork outputs are: ");
for(i=0; i<4; i++)

printf("%f ", Yout[i]);

call
_mm2000_axis

1()
{
printf("\nAdj u sting fibres... ");

mmsend(" 1 TB\r", mm_add);
mmread(response, mm_add);
printg"\nCurrent MotionMaster error state is: %s\n", response),

strcmp(response, "EOO NO ERROR");
if(! strcmp)

{
printg"\nMotionMaster error. Aborting... ");

Yout[1]=0.5;

}
mmsend(" 1 PR 1000\r", mm_add);

171

Appendix 5: Published works

172

A NEURAL NETWORK APPROACH TO THE PHASE
UNWRAPPING PROBLEM IN FRINGE ANALYSIS

D. J. TIPPER*, D. R. BURTON and M. J. LALOR
Coherent and Electro-optics Research Group

Liverpool John Moores University, School of Engineering and
Technology Management, Byrom Street, Liverpool, 13 3AF

This paper presents a novel approach to the phase unwrapping problem by employing a back-pro agaticxi
neural network to detect the presence of phase wraps in an image. The philosophy behind the approach
is to keep the analysis simple by using a small nctwork consisting only of six input, six hidden anti
six output neurons. Each input neuron is assigned to one pixel and this input "window" is convolved
with an image to analyse only six pixels at a time. The unwrapped phase distribution is reconstructed
from this series of analyses. It is shown that after training for approximately two hours, the network can
successfully unwrap a one-dimensional phase distribution in 0.5 seconds and that chic met od could pmve
to be the basis for a robust two dimensional phase unwrapper.

INTRODUCTION

The aim of this work is to investigate the use of neural network techniques to assist in

the phase unwrapping of fringe images. The phase unwrapping problem occurs due to
the mathematical processes involved in the calculation of the phase values of an image.
To produce a fringe image, two mutually coherent light beams are made to cross. At

the point where the beams cross, interference fringes are produced whose intensity

profile is sinusoidal. The intensity of illumination at any given point, I(x, y), is

expressed as:
I(x, y) = a(x, y) + b(x, y) cos 10(x, y)]

Where

a(x, y) = additive noise - offset term
b(x, y) = multiplicative noise - amplitude term

7(x,
y) = Tc

+
Tm

carrier phase
ý, ý = modulation phase

If a surface is illuminated with a cosinusoidal fringe pattern. variations in intensity

across that surface are observed. If the value of the modulation phase is known. it

17,

is possible to reconstruct a map of the surface [1). To find the modulation phase, it is desirable to eliminate the amplitude and offset terms. To make the analysis of such fringe patterns possible, they are subject to either phase stepping [2] or Fast Fourier Transform (FFT) [3] techniques.
Phase stepping involves measuring the intensity values of several fringe patterns where the phase value of each one is shifted by a known amount. Typically, four images are used whose phase values differ by intervals of x/2.
From equation (1), the intensity values are given by

I(0) (x, y) = a(x, y) + b(x, y) cos [(x, y)]
I(r/2) (x, y) = a(x, y) + b(x, y) cos [O(x, y) + iriZ]
I(n) (x, y) = a(x, y) + b(x, y) cos [O(x, y) + ir]
I(3, /2) (x, y) = a(x, y) + b(x, y) cos [O(x, y) + 31rC2]

The intensity equations can be solved simultaneously to give

tano(x, y) = (I(, r/2) - 1(31r/2)1/11(0) - I(n) }

The phase value at any point x, y is, therefore, given by

0 (x, y) = arctan { I(x/2) - 1(3r/2) 1 /{ I(0) - 1(ir) 1

The FFT was developed as a fringe analysis tool by Takeda et al. 141 and involves

the use of a single, modulated phase map. Using this approach an ICI' algorithm is

applied to the image and the result is filtered and inverse transformed to return an
image with real and imaginary parts.

When the intensity profile of a fringe pattern is described by

Iýx, Y) = a(x, y) + b(x, Y)co [(x, Y)1

the equation can be re-written to allow for tilting of wavefronts on non-uniform

surface as

1(x, y} = a(x, y) + c(x, y) exp (29ci . fa. x) + c* (x, y) exp (-21ri. fo . x)

where

c(x, y) = [b(x, y)/2]exp { iO(x, Y) }

and c*(x, y) is the complex conjugate of c(x, y)

If the Fourier transform of the equation is taken, the equation becomes

I(f. Y)=A(f, y)+C(f-fo, Y)+C*(f+ fa, y)

174

where the capital letters represent the Fourier spectra and f represents the spatial
frequency in the x direction. The Fourier spectra are separated by a carrier frequency
f0. C(f - fo, y) can be isolated by means of a filter and the inverse FFI' can be taken.
giving

f(x, y) = arctan { Im[c(x, y)] }/{ Re[c (x, y)] }

where Im = imaginary component of c (x, y)
Re = real component of c (x, y)

The Phase Unwrapping Problem

Both the phase stepping and FFT methods give the phase values for an image as
an arctangent function. The mathematical nature of this function causes the final
phase values to be returned wrapped modulo 27r. This phenomenon is explained in
Figure 1. To accurately reproduce a map of the object's surface, the phase values
must be reconstructed, or unwrapped. When real wrapped phase distributions contain
noise, it becomes difficult for the unwrapper to distinguish between noise and genuine
phase wraps. This is especially the case when using classical algorithmic unwrappers.

To date, many algorithms for the unwrapping of phase values have been

proposed, the earliest being "Schafer's Algorithm" 15]. This involves comparison of
adjacent pixel values. A large number of decisions must be made and any errors
can be propagated throughout the entire image. Numerous algorithms have expanded
on the basis idea, the most robust utilising regional rather than global analysis [6,7,8].
However, no unwrapper is completely noise-immune.

6

Figare 1AI -D phase distribution and how it appears when wrapped modulo 2x

175

NEURAL COMPUTING

Background

Throughout history, many theories have been proposed to explain the operation of
the human brain. It is only since the nineteenth century, however, that any real insight into its operation has been gained. The fundamental element of the nervous
system is the neuron. The average brain contains approximately five billion neurons,
all of which have five specific functions: they receive signals from neighbouring
neurons, integrate these signals, give rise to nerve pulses, conduct these pulses and
transmit them to other neurons. It is from an idea for a mathematical model of the
neuron first postulated by McCulloch and Pitts [9] in the 1940s that the concept of
the neural network originates. The neural network is a computing paradigm which
differs from conventional computing as it "learns through experience", rather than
utilising an algorithmic approach. Each processing element of a neural network
mimics the operation of a biological neuron by behaving as a simple thresholding
device. When a large number of neurons are connected together, a large number of
simple calculations can be combined to achieve a more complex result. A network
consists of a layer input neurons, a layer of output neurons and one or more layers
of "hidden" neurons, so called because their input and output values are not known
by the user. 'T'hree types of learning are associated with neural networks.: supervised,
unsupervised and reinforcement. Supervised learning involves presenting the network
with an input stimulus and an expected response, whereas unsupervised learning only
makes use of an input stimulus and leaves the network to calculate its own output.
Reinforcement learning falls between these two methods as the network is only told

whether a response to a given stimulus is "good" or "bad". During training, the

connection strengths, or "weights" between layers are adapted so that selected output
neurons produce a value, or "fire", in response to a given stimulus. The network is

effectively taught to recognise a series of input values. The principles of the neural

network are discussed in more detail in other works [10,11,121.

Neural Computing as an Aid to Phase Unwrapping

Although digital computers are fast when complex arithmetic calculations are

required, they are notoriously inadequate for such tasks as pattern recognition when

compared to the human brain. Numerous works have dealt with the use of neural

networks for pattern recognition, e. g. 1 13,14,151. If the need to detect wraps in a

phase distribution can be considered a problem of recognition, this leads to an

interesting question: Can a neural network be "taught" to recognise a phase wrap?

The idea of using a neural network for the processing of phase data has been explored

by Takeda [16], who used a Hopfield recurrent neural network [17J. Little information

is available regarding the implementation of this method, but the system uses a

network which consists of a large number of neurons with correspondingly large

numbers of training data and high training times. The approach described in this

paper is simpler in that instead of using a large network to process an entire image.

170

a much smaller network is used to process sections of the phase map, effectivei}
building up an image from a large number of smaller sets of inputs.

EXPERIMENTAL WORK

All experimentation was carried out using the neural network package "NeuralWorks
Professional 11 Plus" [18]. This was implemented on a standard 486 DX2/66 personal
computer. A 6x 1 "window" of pixels was convolved with the original image, each
pixel being assigned to one input neuron. The network consisted of six input, six
hidden and six output neurons. This configuration was the minimum number of input
and output neurons, an output neuron being trained to fire when a wrap was present
at the corresponding input neuron. This configuration was the smallest possible before
the system began behaving like a conventional point-to-point unwrapping algorithm.
A diagram of the network is shown in Figure 2.

The network was trained using both real and simulated data, which were grouped
into training "sets". These were ASCII files which contained the phase values of a
number of different fringe patterns. The simulated data were noise free and showed a
maximum of one wrap per training set. It is unlikely that, in a genuine wrapped
phase distribution, two wraps will be encountered whose separation is less than six
pixels. The real data consisted of phase values calculated by the FFT method from

fringe patterns projected onto a flat, white surface. Each training set consisted of one
hundred groups of data, or "training vectors", which were randomly presented to the

network twenty thousand times. Experiments were conducted using both supervised

and unsupervised learning. Kohonen [191 and Hopfield networks were used for

unsupervised learning. To ascertain the viability of using supervised learning, a
backpropagation network was used which employed a normalised-cumulative-delta
learning rule and sigmoid transfer function. This configuration was used as previous

experience has shown it to be the most suitable for this type of application. At

each presentation, the Root Mean Square (RMS) error between the desired and actual

output was calculated by the package. When the RMS error reached its convergence

criterion, which is an effective zero set by the user (in this case 0.01), the training

was recognised as complete. To test the network, different data from the training data

were presented to the network and the outputs from these data were compared with

output layer

Hdden layer

Input layer

H Pb« s

Figure 2 Configuration of the six-input phase umvrapping neural network.

177

the desired output. The test data were taken from fringe patterns projected onto the curved surface of a lens. When training and testing were complete. the NeuralWorks
package converted the network into "C" code. The final output from the package was aC program which behaved with the same characteristics as the fully trained network. To perform the complete unwrapping operation, the C code from the package was incorporated into a program which read values of pixels, presented them to the
network code and performed the necessary phase adjustments.

EXPERIMENTAL RESULTS

Unsupervised Learning

Training continued to 20,000 presentations when this method was used. Testing
showed that wraps were correctly identified on approximately 50% of occasions. Due
to this low success rate, a suitable unwrapping system could not be designed using this
type of network.

Supervised Learning

After approximately 8,500 random presentations of data, the network's convergence
criterion was reached and training ceased. This was the case for both real and
simulated data. Testing showed that phase wraps could be correctly identified on
approximately 95% of occasions when training had taken place with real data and on
approximately 80% of occasions with simulated data. Any inaccuracies involved the
firing of an output neuron adjacent to the desired output neuron. Figure 3 shows three
wrapped phase distributions. Figure 3(a) is noise-free and shows six wraps, Figure 3(b)

contains four wraps and one single noise spike and Figure 3(c) shows five wraps
and a number of noise spikes. Figure 4 shows the phase distributions unwrapped by
Schafer's algorithm. In Figure 4(a), the distribution is unwrapped successfully, but

Figures 4(b) and 4(c) show how the introduction of noise makes the final result

unacceptable as the algorithm treats the noise spikes as wraps. In attempting to

unwrap the noise, the errors are propagated throughout the final unwrapped phase

4

3

2

1

ß

-1

2

178

(a) Noise-free wrapped phase distribution.

a

3

.Z

(b) Wrapped phase distribution; single noise spike

4

3

2

1

D

-1

-2
3

Figure 3 Wrapped phase distributions.

5

0

-10

-15

-20

-25

-30

-35
40

(a)

0

-5

-10

-15

-20

-25

, 35

(b)

179

(c) Noisy wrapped phase distribution.

10

0

-40

-20

130

40

-50

-®0
(c)

Figure 4 Phase distributions unwrapped using cchafer'c algcrithm.

distribution. Figure 5 shows how the same distributions were unwrapped using the
neural network method. Figure 5(a) shows that the same result is achieved with the
noise-free distribution. Figures 5(b) and 5(c), however show the benefit of the neural
network method. In each case, the noise spike is effectively ignored and unwrapping
continues correctly. Training times were of the order of two hours and, with a fully
trained network, a one-dimensional array of 256 pixels was successfully unwrapped
in approximately 0.5 seconds.

5

0

-10

-15

-20

-25

-30

-35

-40

(a)

0

-to

-15

-20

-25

-30
(b)

180

5

0

-5

-10

-15

-20

-25

-30
(c)

Figure 5 Phase distributions unwrappczzi using the neural network nxthod.

FURTHER WORK

An image is more than a series of lines. In a line, a pixel has only two immediate
neighbours. In a real image, howcvcr, a pixel borders four others, meaning a network
must be able to analyse twice the number of neighbouring pixels. Investigation into
expansion of the wrap detector to a square "tile" is currently being carried out. This
will need to take into account the relative vertical and horizontal positions of
neighbouring pixels in a 2-D phase map. If a square "window" of pixels is convolved
with the wrapped phase map, an analysis can be built up, a small portion at a time.

CONCLUSIONS

This paper has shown that an artificial neural network using supervised learning
techniques can be successfully trained to identify the occurrence of wraps in a
wrapped phase distribution. With a fully trained back-propagation network. one-
dimensional wrapped phase distributions can be successfully unwrapped in
approximately 0.5s. Best results were achieved when the networks were trained using
data taken from real phase distributions. By combining the network with conventional
code, one-dimensional phase distributions can be successfully unwrapped. Because of
the success of the I -D unwrapping experiments, it is felt that the potential exists to

extend the concept further to unwrap complete two-dimensional wrapped phase
distributions.

References

I. D. R. Burton and M. J. Lalor, "The precision measurement of engineering form by computer analysis o(
optically generaled contours". Proc SPIE 1010, Hamburg (1988)-

2 P. Hariharan, "Basics of Interferometry", Academic Press (1992).
3. J. Cooley and J. Tukey, "An algorithm for the machine calculation of complex Fourier seneg",

Mathematics of Computation, 9.297-301 (1965).
4. M. Takeda, H.]na and H. Kobayashi, "Montier transform method of fringe-palem analysis for computer

based topography and interferornetry. "
,J

Opt. Soc. Am., 72,1 (1982).

181

5. R. W. Schafer and A. V. Oppenheim, "Digital Signal Pnrce%sing", Prentice-Hall (1975). 6.1. Huntley. "Noise-immune phase unwrapping algorithm", Applied Optics, 29,25 (1989). 7. J. Gierloff, "Phase unwrapping by regions", Proc. SPIE, 8,2-9 (1987).
8. D. C. Ghiglia, G_ A. Maslin and L A. Romero, "Cellular automata method for phase unwrapping", J. Opt

Soc. Am., 4,1 (1987).
9. W_ S. McCulloch and W. Pins, "A logical calculus of the ideas immanent in nervous activity. ", Bulletur

of Mathematical Biophysics, 5,1 l5 (1943).
10. G. E_ Hinton and J. A. Anderson, "Parallel Models of Associative Memory", Eribaum 1991.
1l. 1. L. McClelland and D. E. Runtelbart, "Distributed memory and the representation of general and

specific information"J. Exp. Psy. (Gen)., 114,159-188 (1985).
12. J. M. Zurada, "Introduction to Artificial Neural Systems", West, 1992-
13. J. Y. Shen, Y. X. Zhang and C. C. Mu, "Optical pattern recognition system based on a winner-take-all

model of a neural network", Optical Engineering, 32,5,1053 1056 (1993).
14.1. Guyon, P. Albrecht, Y. LeCun, J. Denker and W. Hubbard, "Design of a neural network character

recognizer for a touch terminal", Pattern Recognition, 24,2,105-119 (1991)_
15. J. Loncel e, N. Derycke and F. F. Soulie, "Co-operation of GBP and LVQ networks for optical

character recognition", Int_ Joint Conf. on Neural Networks, 3,694409 (1992).
16. M. Takeda, "Phase unwrapping by neural network", Proc. FRINGE '93, Akademie Verlag, 1993.
17. J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities",

Proc. Nat. Acad. Sci. USA., 79.8 (1982).
18. NeuralWorks Professional 11 Plus Reference Guide. NeuralWare, Inc., Pittsburgh, USA, 1991.
19. T. Kohonen, "Associative Memory, a System Theoretical Approach. ", Springer Verlag, 1977.

182

Fringe pattern optimisation using a backProPagation
neural network.

DJ Tipper, DR Burton &MJ Lalor

Liverpool John Moores University, School of Engineering and Technology Management, Byrom Street, Liverpool, L "AF, UK.

Abstract. This paper describes a svstem for the optimisation of fringe patterns for surface measurement. The fringe patterns are generated using a twin-fibre adaptive interferometer. A backpropagation neural network is used to anale se values for the
mean intensity, number of fringes, visibility and angle of fringe tilt of the image and
make a decision as to whether the pattern is suitable for measurement according to
these parameters. The output of the network is then fed back to the interferometer and
the fibre position adjusted until an optimum fringe pattern is produced.

1. Introduction

1.1 Adaptive interferometry & Fringe Optimisation

Fringe optimisation can be defined as the selection of the best fringe pattern for any given
surface. Consider a conventional fringe analysis system. Straight fringes are projected
onto an object's surface, the image is viewed through a CCD camera and that image is
analysed by a digital computer. If the object has a complex or irregular surface, the
reflected fringes can be extremely difficult to measure accurately. The technology now
exists, however, to create "adaptive" fringes. Using a twin-fibre adaptive interferometer

or an LCD projection panel, it is possible to have control over both the spacing and the
angle of tilt of the projected fringes. The use of this type of equipment would make it

possible to configure a system in which the projected fringes can be adapted to suit the

shape of the object to be measured. In an adaptive interferometry system. a set of fringes
is projected onto a surface, the image is viewed through a CCD camera and before any
measurement is carried out, the fringe pattern is optimised .

The computer essentially
decides whether the fringe pattern it sees will be suitable to measure the surface in

question and if not the pattern is changed by the adaptive interferometer until it is suitable
for measurement.

1.2 Artificial Neural Networks

The Artificial Neural Network (ANN) is a computing paradigm which has no algorithm

as such, but "learns through experience". Originally developed from an idea for a

mathematical model of a biological neuron [1], the ANN consists of a number of

processing elements, or "neurons", each one acting as a simple thresholding device.

When a large number of neurons are connected together, a large number of simple

181

calculations can be combined to produce a more complex overall result. Each nemork
consists of a layer of input neurons and a layer of output neurons, vv hich are linked by an
intermediate layer of "hidden" neurons, so called because their input and output values
are not seen by the user.

In order for an ANN to function correctly, it must first be "trained". There are
three types of leaning normally associated with ANNs: supervised, unsupervised and
reinforcement learning. With supervised learning, a set of input stimuli and
corresponding output stimuli are presented to the network, so that it learns the correct
response to each possible input. Unsupervised leaning involves presentation of only the
input stimulus, so the ANN is left to calculate its own output. Reinforcement learnin,
falls somewhere between these two categories as the network is only taught whether a
particular input is "good" or "bad". The networks described in this paper make use of'
supervised learning. To train an ANN using supervised learning, a set of input values is
applied to the input layer and corresponding output values to the output layer. The
connection strengths, or "weights", between the layers are adapted so that selected
output neurons will produce an output, or "fire", in response to a given stimulus. It'
training is successful, the network should be able to interpolate an output state from input
data that is not a member of the training set.

The principles of the ANN are discussed in more detail in other works [2]
Much research has been carried out into the use of ANNs for pattern recognition

problems, e. g. [3]. If fringe optimisation is considered as a pattern recognition problem, it
follows that it may be possible to "teach" an ANN to recognise the best possible fringe

pattern for measurement of a given surface.

2. Experimental Procedure

The problem originally encountered was how to define the quality of a fringe pattern.
Parameters which could easily qualitatively define a fringe image were decided to be:

* Intensity
* Number of fringes
* Tilt
* Contrast/visibility

These parameters could be calculated from intensity values at key points in a given fringe

image.

In order to provide suitable training data for the network, intensity values were taken

from five regions in each image. Each image was divided into four equal region',

Intensity profiles were recorded for each of the four re(Yions plus a titth profile xti as

recorded in the centre of the image where it was brightest- From these array's of intensity

values, it was possible to calculate mean intensity, number of fringes and visibilit` for

each region. Visibility was calculated according to the equation

184

V= Imax - Imin

Imax + Imin

In order to determine the direction of tilt of the fringe pattern, five intensity profiles vA ere
also recorded as shown in figure 1.

, import a: \\ffigl. bmp}

Figure 1: Directions of intensity profiles for tilt calculation

The ANN used for this application was configured using the NeuraIN orks
Professional II Plus package running on a standard 486 DX2/66 stand-alone PC. A
Backpropagation network using a sigmoid transfer function and Normalised-Cumulative-
Delta learning rule was used whose architecture consisted of 20 input, 10 hidden and 4
output neurons. Each parameter was assigned five input neurons and one output neuron.
The training set and test set each contained 120 training vectors, the training set being
presented randomly to the network 50,000 times. When training was complete the test
set was presented to the network and its results recorded.

When the network was fully trained and tested, it was converted into "C" code by
the NeuralWorks package. The final output from the package was aC program which
behaved with the same characteristics as the trained network. To perform the complete
optimisation operation, a series of values were read from a fringe image, presented to the
network code and the output incorporated into code to drive the interferometer.

3. Experimental Results

The results given by the network for the test set were compared with the desired results
and number of matches were noted. This was converted to a percentage to give a value
for the accuracy of the network. These values are given in table 1.

Table 1:

Parameter % accuracy

Mean intensity 97
Fringe number 86
Tilt 97
Visibility 95

TOTAL 94

185

4. Conclusions

The experimental work has shown that backpropagation ANN s are suitable for
determining the quality of fringe patterns for adaptive interferometry applications.

5. References

[1] McCulloch WS and Pitts W 1943 Bulletin of Mathematical Riophi
. sic. s 5 115

[2] Hinton GE and Anderson JA 1981 Parallel Model. of : -lssociatii'c' . 11L'moi_i-
(Erlbaum)
McClelland JL and Rumelhart DE 1985 J Exp. (Gen) 114 159-188
Zurada JM 1992 Introduction to Artificial Neural Sy-. slems (West)

[3] Shen J Y, Zhang YX and Mu GG 1993 Optical I; 'ngineerirng 32.1051-1056
Guyon I, Albrecht P, LeCun Y, Denker J and Hubbard W 1991 Patter,,
Recognition 24 105-119
Loncelle J, Derycke N and Soulie JJ 1992 Jul. Joint ('onf on Neural 1Vt'Ik'orks
3 694-699

186

