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Application of Neural Networks to Problems in Fringe Analysis 
Abstract of Thesis 

This thesis describes the use of neural networks to address two problems 
which occur during the process of fringe analysis. 

Phase Unwrapping 

Due to the phase unwrapping problem being essentially one of recognition 
(i. e. What is a phase wrap and what is noise? ), it was thought that a neural 
network would be ideally suited to the task of recognising the position of 
phase wraps in an image. Initial experimentation involved the use of small 
networks, typically containing less than 20 neurons for the unwrapping of 
simple phase distributions in one dimension. It was shown that 
backpropagation neural networks were capable of distinguishing phase 
wraps from noise spikes, so the idea was extended to use larger networks to 
process two dimensional "tiles" for the unwrapping of entire images. 
Experimentation with both supervised and unsupervised learning was carried 
out and the results showed that, again, backpropagation networks proved to 
be the most reliable. 

It was successfully shown that a backpropagation neural network can form 
the basis of a reliable and robust phase unwrapping system. 

Fringe optimisation. 

Little work has been carried out in the field of optimisation of fringe patterns, 
as the process was largely impossible until the invention of the adaptive 
interferometer. The interferometer used twin optical fibres to produce a 
fringe pattern. If the relative position of the fibres is varied, this can vary 
characteristics of the fringe pattern, namely fringe spacing and orientation. 
The use of neural networks to optimise a fringe pattern before analysis takes 
place has been investigated. If the fringe pattern is optimised before 
measurement takes place, the suitability of that pattern for any given surface 
will be ensured. Neural networks were trained to analyse the parameters 
which are easily controllable, i. e. mean intensity, visibility, fringe number and 
fringe orientation. Two methods were investigated: 

(a) The use of a separate network for each parameter, the outputs from each 
one being combined to produce a final decision. 

(b) The use of a single network to analyse the pattern "globally". 

Again, experiments were carried out using both supervised and 
unsupervised learning. The most accurate results were achieved using a 
General Regression Network for global analysis. The final result was a 
"closed loop" system, whereby the fringe pattern could be successfully 
optimised before mathematical analysis took place. 
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Chapter 1: Introduction 



Chapter 1: Introduction. 

Metrology is defined simply as "the science of measuring"[1 ]. While not a 

new science, its use is becoming more widespread in modern industry. The 

accurate measurement of engineering components is becoming increasingly 

important. In today's marketplace, companies are under pressure to 

produce better and more reliable components in order to have the advantage 

over their competitors. To be successful, manufacturers need to ensure that 

products comply with their specifications, which, as manufacturing 

technology improves, are becoming increasingly exacting. Modern designs 

are extremely complex and parts are manufactured to high tolerances. For 

example, the design of the combustion chamber within a motor vehicle 

cylinder head is far more involved than, say, thirty years ago. In the past, 

the combustion chamber was designed simply as a place for fuel to be 

compressed and ignited. Today, with ever-increasing demands for 

performance and fuel economy, the way in which the fuel-air mixture burns is 

important, so combustion chambers are designed to optimise the path of the 

flame-front during ignition. To achieve this, the curvature of the chamber 

must be measured extremely accurately. A number of methods exist which 

can accomplish this task, including both contact and non-contact techniques. 

This thesis is primarily concerned with a non-contact method of 

measurement, which uses some form of "structured light", usually a pattern 

of interference fringes, to generate the information about an engineering 

component. The extraction of this information is often referred to as fringe 

analysis. 

Fringe analysis has been a recognised technique for many years. For 

example, it enables surface profiles of objects to be measured with extreme 

accuracy without use of intrusive, tactile probes that may themselves affect 

the result of the measurement process. Chapter 2 describes in detail the 

process of fringe generation. Whichever method of fringe generation is 

I 



used, e. g. holographic, moire, speckle etc., the net result is always the 

same. A set of fringes is produced, usually referred to as interferograms. 

Until the digital computer became a widely available tool, fringe analysis was 

an extremely labour intensive task. The process generally involved manual 

location of the fringes in an image and numbering of their position. This 

changed, however, as the cost of computers decreased and their power 

increased. Much effort has been made in making fringe analysis a viable 

metrological process by increasing its accuracy and speed. This thesis 

attempts to address two of the problems that arise during the process of 

fringe analysis. Chapter 4 introduces a novel approach to the problem of 

phase unwrapping. Whether the Fourier transform or the phase stepping 

method is used, the mathematics involved in the analysis lead to a 

distribution of phase values that are "wrapped" modulo 27C. This is explained 

in detail in chapter 4. In order to produce an accurate height map of the 

measured surface, the phase map must be reconstructed to give a 

continuous distribution. It is this stage of the process that is usually the most 

difficult to address. A number of algorithms have been developed to solve 

the phase unwrapping problem. These are discussed in detail in chapter 4. 

Even though the subject has been researched extensively, there is still no 

"generic" phase unwrapper. Most algorithms are not robust enough to cope 

with complex, noisy images. Some of the simpler algorithms have difficulty 

in differentiating between noise and genuine phase wraps, the result being 

errors that are propagated throughout the final unwrapped phase 

distribution. It was thought that a new approach to the phase unwrapping 

problem was needed, so this thesis describes a method using neural 

networks, a method into which little research has been carried out in this 

application. 

The thesis also outlines an approach to a further problem: that of fringe 

optimisation. Until recently, it was not possible to have great control over 

the quality of the projected fringe pattern. With the development of the 

adaptive interferometer, which is described in detail in chapter 2, it has 



become possible to have a greater degree of control over such factors as 
fringe spacing and orientation. With this adaptability comes the prospect of 

optimising the fringe pattern to ensure a good result will be achieved before 

the measurement process takes place. Again, this is a subject into which 
little research has been carried out. The second part of this thesis describes 

an approach that utilises a neural network to analyse the quality of a fringe 

pattern to ascertain whether it conforms to a series of optimisation criteria. 

References: 

1. Chambers Scientific and Technical Dictionary, 1996 
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Chapter 2: Fringe analysis techniques 

2.1 Interference 

The phenomenon of interference is an important basis to the science of 
fringe analysis. Consider two waves that can be described 

u, = U, e ̀o' 

and 

U2 = Uie' 0Z 

where u= spatial complex amplitude and 

U= amplitude 

= phase. 

When these two waves overlap each other in space, electromagnetic wave 

theory states that the resulting field is given by the summation of the 

complex amplitude terms, thus: 

u=u, +u2 

The observable quantity is, however, not amplitude but intensity, which is 

given by 

I=I ri 2 

The observed intensity of the overlapping waves is, therefore, given by 
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I= lu, +u2Ia 

= U12 + U22 + 2U1U2 cos(o 
1- 

02) 

=1I +12 +2 I1I2 cosAO 

where 

oý_ý, -12 

The two waves interfere and A4 = ý, - 42 is referred to as the interference 

term. Also, when 

0ý _ (2n + 1)it for n=0,1,2,... 

cosA = -1 and I reaches its minimum. In this case, the two waves interfere 

destructively as they are in antiphase. The two waves interfere 

constructively when they are in phase. This occurs when 

$=2nn forn=0,1,2,... 

when cosA4 =1 and I reaches its maximum. 

For two waves of equal intensity, i. e. where I1 = 12 =1o the intensity equation 

becomes 

1=21, (1+cos0o 

0o 

=4locos' 2 
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where the intensity varies between 0 and 4I0. 

The result of this interference is a fringe pattern of the type shown in figure 
2.1. 
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Figure 2.1: Cosinusoidal interference fringe pattern 

A fringe pattern such as this can be a useful measurement tool. Consider 

the structured light system as shown in figure 2.2. 



The plane surface is illuminated by a fringe pattern whose intensity profile is 

sinusoidal, the fringes having a period x. If the angle of illumination is 6;, the 
fringes on the surface will have a period, y, given by 

x 
cos8, 

If the fringe pattern is observed with an angle of 6v, the period of the 

observed fringe pattern, z, is given by 

z=ycosov 

Substituting for y in the above equation, the period of the observed fringe 

pattern can be described by the equation 

xcosc,, 
cosei 

Consider the situation shown in figure 2.3. If the position of the surface 

moves a distance dh, a change in the viewed position of the light, dz, will 

occur. This change will be equivalent to a phase shift of dý. This phase 

shift is given by 

do= IT 

The distance dz can be calculated thus: 

a=dhtanO 

b=dhtanOv 
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Figure 2.3 

Adding the above equations gives 

a+b= dh(tan0, +tan9,, ) 

However, 

dz = (a + b)cos 8, 

=dh(tan9, +tan8,, )cos8,, 

Substituting gives 

do= 
(2fr dh(tan B; + tan 0,, cos B,, 

.Y 
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If the image is viewed with the lens normal to the plane of the surface, Ov 

becomes zero, reducing the above equation to 

do 
(27t dh sin 9; 

x 

This shows that the height at any point on the surface of an object is 

proportional to the phase of the structured light reflected from the object. It 

is this principle which makes the science of fringe analysis possible. 

There are a number of ways in which a fringe pattern can be generated. 

2.2 Interferometry 

Interferometers are measurement instruments in which interference can be 

observed and generally consist of 

"a light source 

" an element for splitting the light into two or more partial waves 

" separate propagation paths for each of the partial waves 

" an element for superposing the partial waves 

"a detector to observe the interference pattern 

Generally, interferometers are divided into two groups, depending on how 

they split the light. 

2.2.1 Wavefront division 

There are a number of wavefront dividing interferometers, including the 

Fresnel biprism, Lloyd's mirror and Michelson's stellar interferometer. 

Undoubtedly the best known of this type of interferometer is the apparatus 



used by Young in the earliest of interference experiments. In 1801, Young 

experimented with the system shown schematically in figure 2.4(a). The 

wavefront incident on the screen S1 is divided by the two small holes P1 and 
P2. Spherical wavefronts emerge from the holes and will interfere, with the 

interference being observed on the second screen, S2. The path length 

difference s of the light reaching a point x can be calculated as shown in 

figure 2.4(b). If the distance z is much greater than distance D, the distance 

s can by approximated by 

Dx 
S 

z 

The phase difference then becomes 

2ýc 
Ao 

2 

2irD 
=x Az 

If this is inserted into the general expression for the resulting intensity 

distribution, the intensity becomes 

I(x)=21 1+cos 27c Dx 
z 

Interference fringes occur which are parallel to the y axis with a spatial 

period of 

A: 
D 

which decreases as the distance D increases. This explanation assumes 

that the ideal case holds, where the light waves from P, and P2 are coherent. 
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However, this case becomes more difficult to fulfil as D increases. The 

contrast of the fringes on SI is a measure of the degree of coherence. 

Figure 2.4(a): Young's experiment 

Subsequently, the pinholes were replaced by slits to produce straighter 

fringes. 

x 

I 

Y_ 

Figure 2.4(b) 

2.2.2 Amplitude division 

Here, the amplitude of the incident light is divided. This is usually done with 

the aid of a beam splitter. This is normally a transparent plate coated with a 

partially reflecting film, allowing part of the light to be transmitted and part to 

1, 



be reflected. A commonly used amplitude division instrument is the 

Michelson interferometer, a schematic diagram of which is shown in figure 

2.5. The light passes through the beamsplitter and the reflected and 

transmitted partial waves propagate to the mirrors M1 and M2. From here 

they are reflected back and recombined to form an interference fringe 

pattern at the detector D. The path difference between the two partial waves 

can be varied by moving one of the mirrors. Movement of a mirror through a 

distance x gives a path difference of 2x and a phase difference of 

0o_ 
12x IJ 

The resultant intensity distribution is given by 

I(x)=21 1+cos 
4; cx 

11 AA 

rý 

Figure 2.5: The Michelson Interferometer 

M2 
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2.3 Fringe analysis techniques 

For many years, the analysis of interferograms was a laborious job. Until 
fairly recently, analysis was very much a labour-intensive operation, whereby 
an operator would manually number fringes and locate positions. However, 

as the power of computers and image processing equipment has increased 

and its cost decreased, automatic fringe analysis has become a major area 
for research. 

There are two generally recognised techniques for the mathematical 

analysis of fringe patterns; phase stepping and Fourier fringe analysis. 

2.3.1 Phase stepping 

Phase stepping relies on the use of multiple fringe images. Intensity values 

of several images are recorded where the phase value of each one is shifted 

by a known amount. Because the intensity equation (1) contains three 

unknowns, at least three images are required to solve that equation. If four 

images are used with phase intervals of i/2, equation (1) dictates that the 

intensity values are given by: 

I(0)(x, Y) = a(x, y) + b(x, Y)cos[ (x, Y)] 

I(n/2)(x, Y) = a(x, y) + b(x, y)cos[o(x, y) + it/2] 

I(n)(x, Y) = a(x, y) + b(x, y)cos[o(x, y) + n] 

I(3n/2)(x, Y) = a(x, y) + b(x, Y)cos[4 (x, Y) + 3n/2] 

The above equations can then be solved simultaneously to give 

tan 0 (x, y) = 
I" -')_ I(32r ) 

I(O)-I(ir) 

The phase, 0, at any point (x, y) is, therefore, given by 
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_arctan 
1`21-1`3r/I1 

(x, y)- 
1(0)-1(ßz) J 

Recently, further developments have been made in this field, utilising 5,6 

and 7 step algorithms[1 ]. 

2.3.2 Fourier fringe analysis 

The use of the Fourier transform for the analysis of fringe patterns was 
pioneered in the early 1980s by Takeda et. al. [2] and requires only one 
image. A number of steps are involved in the calculation, thus: 

1. An image of a fringe pattern is taken. 

2. A two-dimensional Fourier transform is performed on the image. 

3. The result is filtered in the Fourier plane to remove the d. c. term 
(a(x, y)), which eventually allows the term b(x, y) to be eliminated. 

4. The remaining peak may be shifted to the origin. This step can be 

omitted, as discussed by Burton et. a/. [3]. 

5. An inverse Fourier transform is performed on the data. 

6. The inverse transform yields a phase distribution, which is wrapped 

modulo 2ir. This step is explained in detail in chapter 4. 

7. The phase map is unwrapped to give a continuous phase 

distribution. 

8. The unwrapped phase values are proportional to height. 
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Mathematically, the process can be described thus: 

A fringe pattern, as explained earlier in this chapter, can be described by 

I(x, y) = a(x, y) + b(x, y)cos[4(x, y)] 

where I(x, y) = intensity at a point (x, y), 

a(x, y) is the dc offset term, caused by effects such as background 

illumination, 

b(x, y) = signal amplitude and 
4(x, y) = signal phase. 

2.4 Problems encountered in fringe analysis 

Although the phenomenon of interference fringes is one which has been 

long recognised, the use of automatic fringe analysis as a metrology tool is a 

more recent development. Its development as a science has only been 

feasible since the development of the modern digital computer. This is due 

to the complexity and scale of the calculations involved. 

Even though much research has been done in the past fifteen years into the 

subject, a number of problems still recur at points during the analysis of 

fringe patterns. Two such problems are the subject of this thesis: phase 

unwrapping and fringe optimisation. In spite of this research in the field of 

fringe pattern analysis, the two problems addressed here do not have a 

generic solution. 

Phase unwrapping still continues to be the most complex part of the fringe 

analysis process. As shown in the equations above, both Fourier techniques 

and phase stepping cause the value of phase to be calculated as a tangent 

function. As the calculation of height is dependent on phase, it is desirable 

to compute the inverse of the tangent function to retrieve the necessary 
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phase values. Due to the nature of the tangent function, as shown in figure 
2.4, if its inverse is calculated, the resulting values will be "wrapped" 
between the values of -n and +n. This means that, instead of achieving a 
smooth phase distribution, the result will resemble a "sawtooth" waveform, 
with values lying only in the region of -n and +n. It is, therefore, necessary 
to "unwrap" the resulting phase distribution, that is remove the 2a phase 
discontinuities. Due to the amount of noise that is invariably present in a 
wrapped phase distribution, the achievement of a correctly unwrapped 
phase map can be problematic. This thesis attempts to outline a novel 
approach to the problem that deals with excessive amounts of noise in a 
phase distribution and still achieves an acceptable result. 

Fringe optimisation is a relatively new field of research. Since the 

development of the adaptive interferometer, it has been possible to have 

automatic control of various parameters of a projected fringe pattern and, 

therefore, control its suitability for measurement of a given surface. The 

approach to the problem outlined in this thesis involves a method whereby 

an interference fringe pattern is analysed to ascertain its quality before 

measurement of an object takes place. The information gained from the 

analysis is then fed back to the machine controlling the fringe pattern to 

automatically adjust that pattern until it is seen as suitable for the 

measurement required. The problems of phase unwrapping and fringe 

optimisation are discussed in detail in chapters 4 and 5 respectively. 

18 
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Figure 2.6: The tangent function. 

19 



References. 

1. P. Hariharan; "Basics of Interferometry", Academic Press (1992) 
2. M. Takeda, H. Ina and K. Kobayashi; "Fourier transform method of fringe 

pattern analysis for computer based topography and interferometry. " J. 
Opt. Soc. Am. 72(1982)1 

3. D. R. Burton and M. J. Lalor; "Multichannel Fourier fringe analysis for 3-D 
surface measurement" Proc. FRINGE '93, Akedemie Verlag (1993)37-44 

-I () 



Chapter3: Neural networks 

21 



Chapter 3: Neural Networks. 

3.1 Introduction 

Since the construction of the first digital computer shortly after the Second 
World War, the field of computing has developed at a phenomenal rate. It is 

said that the average Personal Computer of 1999 has more computing power 
than was available in the entire world in 1946. Today, computers are an 
integral part of everyday life. From microwave ovens to power stations, the 
list of computer controlled systems appears endless. This apparent level of 

power seems to have given the modern digital computer some kind of 

mystique. While there are some latter-day luddites who view the "computer 

age" with degrees of scepticism, many see the digital computer as some kind 

of panacea that is capable of solving mankind's problems with ease. The 

reality is, however, somewhat different. While it is true that modern 

machines are indeed powerful, they are far from the hyper-intelligent 

creatures that science fiction writers would have one believe. It is fair to say 

that the digital computer is exceptionally good at simple mathematics. Its 

strength lies in the fact that the average processor can perform millions of 

calculations per second. In comparison, the human brain is extremely slow. 

The switching speed of a neuron is approximately one million times slower 

than that of a computer gate [1]. However, with their capacity for parallel 

processing, humans are far more efficient at more complex tasks such as 

pattern recognition and speech understanding. Hence the neural network 

was conceived in attempt to create machines which mimic the massively 

parallel action of the computer known as the human brain. 

The concept of the neural network originated in the early 1940s, when 

McCulloch and Pitts first attempted to model the operation of the biological 

neuron [2]. Figure 3.1 shows a schematic diagram of a biological neuron. 

Signals from other neurons are delivered to it by a collection of axons. 

Unless the collective influence of all its inputs reaches a threshold level, the 

neuron remains dormant. When this threshold level is reached, the neuron 
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delivers an output in the form of an electrochemical pulse. The pulse 
proceeds from the cell body, down the axon and into its branches, where the 
dendrites of the following neuron are influenced over narrow gaps known as 
synapses. When this process occurs, the neuron is said to fire. Simulated 

neurons model this behaviour by acting as thresholding devices. 

Y'Y 
Synapses 

Figure 3.1: Schematic diagram of a biological neuron 

Figure 3.2 shows a schematic diagram of a simulated neuron or processing 

element. Each processing element is essentially a node connected to other 

nodes via links resembling axon-synapse-dendrite connections. Each link is 

associated with a weight. This weight acts like a synapse to determine the 

strength of one node's influence on another. This influence is a product of 

the influencing neuron's output value and the connecting link's weight. Many 

input paths are combined into an overall influence by an activation function, 

usually a simple summation. The combined input is then modified by a 

transfer function and this output is passed to an output path which is 

connected to further input paths of other nodes in the network. It is this 

series of interconnected nodes which is given the term neural network. 
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Figure 3.2: A simulated neuron, or processing element 

It is tempting at this point to use the common term Artificial Neural Network. 
However, to use this terminology would be somewhat misleading as much of 

a real biological neuron's character is not actually modelled - the simulated 

neuron simply adds the weighted sum of its inputs. Also, use of the term 

artificial in this context implies that an attempt is being made to reproduce a 

system which behaves in an identical way to a human brain. The 

methodology in this work is to use a computing paradigm which developed 

from methods to mathematically model the brain's mode of operation, rather 

than to mimic its behaviour accurately. An average adult brain contains 

something of the order of 1014 neurons. A neural network contains a fraction 

of this number. Even large networks rarely employ more than a few 

thousand neurons. Also, the author does not wish to reinforce popular 

misconceptions about this particular science. Popular works of fiction often 

portray robots with human characteristics operated by neural network. This 

may make exciting science fiction, but the reality is somewhat different. 

Today's neural networks are far from sentient beings; they are simply 

alternative computing paradigms with no more power than the average 

desktop PC. Where this science may take us in the distant future remains 

to be seen, but in 1999, the neural network is simply an alternative 
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computing tool. During the years of research into the subject, a number of 
alternative terms for the paradigm have been coined, some of which have 

attempted to dispel the myth of replicating a human brain. These include 

" Neurocomputing 

" Network computation 

9 Connectionism 

" Layered adaptive systems 

" Self-organising networks 

" Neuromorphic systems 

" Parallel distributed processing 

It cannot be over-emphasised that the "simulated neuron" is designed to be 

similar to a biological neuron only in its function as a thresholding device 

which, when networked, is able to perform parallel tasks. The modern neural 

network is not an attempt to reproduce an accurate copy of a fully functional 

human brain. 

3.2 A history of neural computing 

The McCulloch-Pitts model is an accurate mathematical definition of the 

neuron, but uses several simplifications. Only binary states are allowed; it 

operates under a discrete time assumption and synchronous operation of all 

neurons in a larger network is assumed. Figure 3.3 shows a schematic 

diagram of the model. The inputs xi for i=1,2,..., n are 0 or 1 depending on the 

presence or absence of an input impulse at time t. If the neuron's output is 

denoted by y, then the firing rule for the model is given by: 

ykf1 =1 if E w; xit >= T 

0 if E w; x; t <T 

where t is an integer and denotes the discrete time instant and wi is the 

multiplicative weight connecting the ith input with the neuron. This assumes 

25 



a unity delay between t and t+1 and that w; =+1 for excitatory connections and 
wi=-1 for inhibitory connections. T is the neuron's threshold value, which 
needs to be exceeded by the weighted sum of the signals to fire. Although 
this model is extremely simplistic, it has the potential to perform basic logic 

operations. At the time of its conception, however, its actual implementation 

was not technologically feasible. Before the arrival of solid state electronics, 
the neural model was difficult to construct with the vacuum valves which were 
the only components available to scientists. Although not widely used on its 

own technical merit, it was from this model that the science of the neural 
network evolved. 

X1 

11 

tv 

V 

X71 

Figure 3.3: The McCulloch-Pitts model 

A learning scheme for updating neural connections was first proposed by 

Donald Hebb[3] in 1949, which is now commonly referred to as the Hebbian 

learning rule. His idea stated that information could be stored in connections 

between neurons. The learning rule states that a connection weight on an 

input path to a processing element is incremented if both the input is high 

and the desired output is high. The biological equivalent of this rule says that 

a neural pathway is strengthened when activation on each side of the 

synapse is correlated. 
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The first recognised "learning machine" and precursor to many modern 
neural network models was Rosenblatt's Perceptron[4]. The perceptron 
consisted of neuron-like elements with trainable multiplicative weights, an 
adder and a threshold function. Figure 3.4 shows a schematic diagram of the 

perceptron used as a pattern classification system. The system was able to 

identify both abstract and geometric patterns. The perceptron was highly 

flexible as its performance was only degraded after damage to some of its 

component parts. It was also able to successfully classify patterns when 

noise was present in the input. The original aim of the perceptron was 

pattern recognition. Its primary optical stimuli were provided by an array of 
400 photocells, corresponding to the light-sensitive cells of the retina. The 

photocells were randomly connected to associator units which received the 

electrical impulses from the photocells. If the input from the photocells 

exceeded a certain threshold value, the associator units produced an output. 

At this stage, extremely early in the history of neural computing, the 

perceptron was somewhat crude and had many limitations. The main 

drawback of the perceptron was its inability to solve problems which are not 

linearly separable at the output layer. It is this linearity that caused the 

perceptron to be incapable of performing the basic logical function of 

exclusive-OR (XOR). The 1960s saw much research into machine learning. 

Another important early device was ADALINE (ADAptive LINEar combiner), 

developed by Widrow and Hoff[5]. The Widrow-Hoff learning rule minimised 

the summed square error between desired and actual output during training. 

The ADALINE was the first neural computing system to be applied to a real- 

world problem. Widrow used the adaptive linear element algorithm to 

develop adaptive filters to eliminate echoes on telephone lines. ADALINE 

and its extension MADALINE (Multiple ADALINEs), which was essentially a 

two-layer adaline, had numerous practical applications, including pattern 

recognition, weather forecasting and adaptive control. This era was one of 

great optimism in the field of machine learning. However, lack of sufficient 

computing power led to a gradual slowing down of research in this area. 

Another blow was dealt with the publishing of Minsky and Papert's book 

Perceptrons in 1969[6]. The work cast severe doubts on the suitability of 
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Perceptron-type networks to solve significant problems. The book provided 
an involved mathematical analysis of an abstract version of the perceptron 
and consequently highlighted its shortcomings. 

1,1 

Phot 

Figure 3.4: The perceptron as a pattern recognition tool 

Among the conclusions that Minsky and Papert drew was that the perceptron 

was not capable of processing inputs that were visually non-local. It was this 

which conveyed to much of the scientific community that the neural network 

was far too limited in its scope to be of any real use as a computing paradigm 

and therefore was not worthy of extensive research programmes. This, 

coupled with the death of Frank Rosenblatt in 1971, saw a dramatic reduction 

in the amount of research in the field. 

From the late 1960s to the early 1980s, some research was carried out into 

neural computing by a small number of researchers, namely Fukushima[7], 

Kohonen[8], Anderson[9], Carpenter[10] and Grossberg[11 ]. With the arrival 

of the 1980s came a renewed interest in the field, possibly due to the more 

powerful computers which were becoming available. The new enthusiasm 

for neural networks was headed by Hopfield and his seminal works on 

recurrent neural network architecture for associative memories. In his 1982 
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work[12], the first paper in this field to be presented to the American National 
Academy of Sciences since the 1960s, Hopfield described a new neural 
computing system which he called the "Hopfield model", or "cross-bar 

associative network". The model was a neurocomputing system which 
consisted of interconnected elements that sought an energy minimum and 
was based on research into the olfactory system of the garden slug! The 

model represented neural operation as a thresholding process and memory 
by information store in the connections between processing elements. In the 

early 1980s, much neural network research was carried out by McClelland 

and Rumelhart[13]. They too were keen to keep the science a respectable 
distance from popular misconceptions and use the term Parallel Distributed 

Processing. Their introduction of new learning rules and other concepts 

removed the barrier to network training that had existed in the 1960s by 

solving the non-linearity problem. The major shortcomings of neural 

computing that so hindered progress twenty years previously had finally been 

addressed, making the neural network a viable computing tool once more. 

It was this work which fired the new enthusiasm for neural computing. Since 

the early 1980s, interest and funding in the field has increased dramatically, 

making it possible for a new generation of researchers to continue the work 

started with McCulloch and Pitts' simple neural model more than half a 

century ago. 

3.3 Neural network operation 

The difference between neural computing and conventional computing has 

already been stated. It is their ability to "learn through experience" that sets 

neural networks apart from traditional computing methods. Whereas an 

expert system relies on a series of rules to assimilate its knowledge, a neural 

network will generate its own rules by learning from a set of examples shown 

to it. This is achieved by use of a learning rule which adapts connections 

between processing elements in response to the example inputs and 
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(depending on the type of network used) desired outputs. There are 
generally three types of learning associated with neural networks- 

9 Supervised learning: For each input stimulus, a corresponding desired 
response is presented to the network, which configures its internal 
connections to achieve the correct input/output mapping. 

Unsupervised learning: Only input stimuli are presented to the network, 
which organises its internal connections in a way that hidden processing 
elements respond strongly to closely related groups of input stimuli. 

9 Reinforcement learning: This falls between the two above types. An 

input stimulus is presented to the network, but the network is only told 

whether its response is "good" or "bad". 

There are two distinct phases in neural network operation: learning and 

recall. During the learning process, the network weights are modified in 

response to the applied training data. Training is similar for networks 

employing both supervised and unsupervised learning. When supervised 
learning is used, the network must be shown a series of inputs and 

corresponding outputs. The training sets for this method must therefore 

contain input stimuli and desired responses. If the desired outputs are 

different from the input stimuli, the network is hetero-associative, whereas if 

the each desired output is equal to its input stimulus for all the training 

vectors, the network is referred to as auto-associative. When unsupervised 

learning takes place, the training vectors contain only input stimuli. During 

learning, the most important feature of a neural network is its learning rule. 

This rule specifies how the connection weights are adapted in response to 

learning examples. In order to complete effective training, a number of 

different training examples are usually presented to the network several 

thousand times. 
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The recall process is the way in which the network responds to an input 
stimulus after training. Generally, during recall, only input stimuli are 
presented to the network. 

3.3.1 The activation function 

Each neuron consists of a processing element with input connections and a 
single output. A schematic diagram of a neuron has already been shown in 
figure 3.2. The output from any one neuron is generally given by the 
equation 

o=f(wtx) 

or 

o=f(Ew; x; ) 

where w is the weight vector and is defined as 

W= WW It 

and x is the input vector and can be defined by the equation 

X=[ Xl X2 ... Xn It 

The vectors described here are column vectors and the superscript t 

indicates a transposition. The function 

f(wtx) 

is referred to as the activation function and its domain is the set of activation 

values net, which is defined as the scalar product of the weight and input 

vectors 

net = wt x 
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The activation function is generally referred to as 

f (net) 

3.3.2 The backpropagation paradigm 

The backpropagation algorithm largely overcomes the problems associated 

with perceptron type networks. If an erroneous response is provided by the 

network, the error is propagated backwards to the previous layer of 

processing elements. The process continues until the error reaches the input 

layer. A typical backpropagation network consists of one input layer, one 

output layer and at least one hidden layer. Theoretically, there is no upper 
limit on the number of layers used, but most classification problems can be 

adequately solved using three or fewer hidden layers. Each layer of 

processing elements is fully connected to the succeeding layer. For a given 
input stimulus i and a desired output response d, the algorithm operates 

thus: 

" The input i is presented to the input layer. 

" The input is propagated through the network to obtain an output response 

o at the output layer. 

" As the information is propagated through the network, all the summed 

inputs and output states are set. 

" The scaled local error for each processing element in the output layer and 

delta weights is calculated. 

" All the weights in the network are updated by adding the delta weights to 

the corresponding previous weights. 

The network also employs a "bias" neuron. This is connected to all neurons 

in the hidden and output layers. The bias neuron provides a constant input of 

+1 to the entire network. 
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3.3.3 General Regression Networks 

Another network employed in this experimentation is the General Regression 
Network (GRN). The GRN is a general purpose paradigm developed by 
Specht [19]. It uses a standard statistical formula for calculating the mean, Y, 

of a scalar random variable y given a measurement X of a vector random 

variable x. The variable x corresponds to the array of network inputs and y to 

the array of network outputs. When more than one input neuron is present, 
the formula is applied to each neuron. The calculation of the mean value 

requires knowledge of the probability density functions (pdf) of x and y. 
Which are approximated from the training vectors. The advantages of GRN 

are 

" They learn quickly 

" They converge to an optimum regression surface, as the number of 

samples becomes large 

" They can be used effectively with sparse data 

" They can handle non-stationary data, that is, data whose first derivative is 

not zero. 

3.4 Neural networks for experimentation 

3.4.1 Neural network configuration 

The neural networks considered in this thesis were configured, trained and 

implemented using the software package NeuralWorks Professional II Plus, 

produced by NeuralWare, Inc. [14]. The package is commercially widely 

available and runs on a conventional computer. The machine used to carry 

out the experimentation described here was an IBM compatible 486 DX2/66 

stand-alone PC. NeuralWorks Professional II Plus is a comprehensive multi- 

paradigm neural network development system. The package enables the 

user to design, build, train, test and implement a variety of types of neural 
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network. According to NeuralWare, Inc., the developers of the package, 
typical uses of NeuralWorks include 

" Financial analysis 

9 Signal processing 

" Automation and robotics 

" Marketing analysis 

" Medical diagnostics 

" Classification 

" Pattern recognition 

9 Process control 

" Optimisation 

Network performance can be monitored by a number of instruments and 

networks can be optimised using a large number of mathematical functions 

and learning rules. 

3.4.2 Training the networks 

As described in section 3.2, in order to function correctly, a neural network 

must be trained. During the learning process, a training set is applied to the 

network. A training set contains a number of training vectors. For 

supervised learning, each vector consists of both input and output values, 

therefore, for a network with n input neurons and m output neurons, each 

training vector will comprise n+m data. The position of each value in the 

vector corresponds to the position of the neuron in the network associated 

with that value. Consider the network shown in figure 3.5. This is a 

backpropagation neural network trained to classify float glass. The network 

consists of nine inputs, each corresponding to a separate input parameter. 

The input parameters are, in order, refractive index of the glass and the 

percentage content of each of the following chemicals: sodium, magnesium, 

aluminium, silicon, potassium, calcium, barium and iron. The network has 
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only one output neuron. When the glass is classified as float, the output 

neuron fires, or produces a "high" output. If the opposite is the case, the 

neuron remains dormant, giving a "low" value. The training set for the 

network is shown in figure 3.6. The set comprises 102 training vectors, each 

of which contains ten values. The first nine values are the parameters 
described above and the tenth value indicates whether the sample is float 

glass. A 1.0 corresponds to "yes" and a value of 0.0 corresponds to "no". As 

training progresses, each training vector is presented to the network. 
Although training sets typically consist of one to two hundred vectors, training 

can continue for several thousand presentations as the training vectors are 

presented more than once. How the data is presented to the network is 

dependent on which learning rule is used. This is an essential characteristic 

of the network, whichever type of learning is used. As learning progresses, 

the parameters which govern the learning rule may change. The long-term 

control of these learning parameters is referred to as the learning schedule. 
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3.4.3 The delta learning rule and its variations 

One of the most widely used learning rules in the science of neural 
computing is the delta learning rule. The simplest form of the delta rule is 
based on reducing the error between the actual and desired outputs of the 

network by modifying incoming connection weights. The rule is valid only for 

networks employing supervised learning and having continuous activation 
functions. The learning signal for the rule, referred to as the delta, is defined 

by the equation 

r=ldi -f (Wti x)]f (Wtj x) 

The term f' (wt; x) is the derivative of the activation function f(net) calculated 
for net = wt; x. 

If a network's training set is ordered, problems may arise which cannot be 

solved by use of the delta rule in its simplest form. If data are applied to the 

network in an ordered manner, there is a significant risk that the RMS error 

will show oscillatory behaviour and fail to converge. Best results are 

achieved if the training vectors are presented to the network randomly. To 

ensure that this occurs, variations on the theme of the delta rule have been 

devised. The cumulative-delta rule was an attempt to alleviate the problem 

of structured data presentation by accumulating weight changes over several 

presentations and applying the changes all at once. The normalised- 

cumulative-delta rule is an extension of the cumulative-delta rule in that the 

value of the accumulation is linked to the size of the training set. This 

method assures that data are presented to the network randomly. The 

problem of poor training due to structured data presentation is therefore 

considerably reduced. 

The use of neural networks to solve pattern recognition problems has been 

extensively researched during the past fifteen years[15]. Since the 

resurgence of interest in the subject, its applications appear to have gone 

from strength to strength. During this same period, fringe analysis has 
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become well established as a science. It is noteworthy that very little 

research has been done to combine the two fields. With the number of 
problems in fringe analysis which can be thought of as a type of pattern 
recognition, the use of conventional algorithmic approaches seems to be 

preferred. Some research, however, has been furthered. Mills et. al. 
Describe the use of backpropagation networks to address a number of 
problems in the fringe analysis process[16], while both Takeda[17] and the 

author[18] have attempted to specifically address the problem of phase 

unwrapping. The latter two approaches are described fully in chapter 4. It is 

the purpose of the work contained within this thesis to use various neural 

network architectures to investigate two aspects of the process of Fourier 

fringe analysis. Chapter 4 describes the use of backpropagation networks to 

detect phase discontinuities to assist the phase unwrapping process. 
Chapter 5 addresses the problem of fringe optimisation. This is a process 

which is still in its infancy and, to date, has not been extensively researched. 
The reason for this lack of research is mainly due to the fact that, until recent 

years, it has not been possible to have complete control over the quality of 

the fringe pattern during the measurement process. With the arrival of 

adaptive interferometry it has become possible to have much greater control 

over a fringe pattern, but the quality of such patterns has still largely been 

based on the opinion of a human operator. It has been postulated, therefore, 

that if this stage of the analysis were to be automated, its solution would be 

an ideal problem for some form of neurocomputing system. 
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Figure 3.6: Training set for float glass classification example. 

! RI Na Mg Al Si K Ca Ba Fe Float 
1.52101 13.64 4.49 1.1 71.78 0.06 8.75 0 0 1 
1.51761 13.89 3.6 1.36 72.73 0.48 7.83 0 0 1 
1.51618 13.53 3.55 1.54 72.99 0.39 7.78 0 0 1 
1.51596 12.79 3.61 1.62 72.97 0.64 8.07 0 0.26 1 
1.51756 13.15 3.61 1.05 73.24 0.57 8.24 0 0 1 
1.51571 12.72 3.46 1.56 73.2 0.67 8.09 0 0.24 1 
1.51763 12.8 3.66 1.27 73.01 0.6 8.56 0 0 1 
1.51763 12.61 3.59 1.31 73.29 0.58 8.5 0 0 1 
1.51761 12.81 3.54 1.23 73.24 0.58 8.39 0 0 1 
1.51911 13.9 3.73 1.18 72.12 0.06 8.89 0 0 1 
1.5175 12.82 3.55 1.49 72.75 0.54 8.52 0 0.19 1 
1.51966 14.77 3.75 0.29 72.02 0.03 9 0 0 1 
1.5172 13.38 3.5 1.15 72.85 0.5 8.43 0 0 1 
1.51764 12.98 3.54 1.21 73 0.65 8.53 0 0 1 
1.51768 12.56 3.52 1.43 73.15 0.57 8.54 0 0 1 
1.51768 12.65 3.56 1.3 73.08 0.61 8.69 0 0.14 1 
1.51753 12.57 3.47 1.38 73.39 0.6 8.55 0 0.06 1 
1.51783 12.69 3.54 1.34 72.95 0.57 8.75 0 0 1 
1.51909 13.89 3.53 1.32 71.81 0.51 8.78 0.11 0 1 
1.52213 14.21 3.82 0.47 71.77 0.11 9.57 0 0 1 
1.51793 12.79 3.5 1.12 73.03 0.64 8.77 0 0 1 
1.5221 13.73 3.84 0.72 71.76 0.17 9.74 0 0 1 
1.51786 12.73 3.43 1.19 72.95 0.62 8.76 0 0.3 1 
1.52667 13.99 3.7 0.71 71.57 0.02 9.82 0 0.1 1 
1.52223 13.21 3.77 0.79 71.99 0.13 10.02 0 0 1 
1.5232 13.72 3.72 0.51 71.75 0.09 10.06 0 0.16 1 
1.51837 13.14 2.84 1.28 72.85 0.55 9.07 0 0 1 
1.51778 13.21 2.81 1.29 72.98 0.51 9.02 0 0.09 1 
1.51824 12.87 3.48 1.29 72.95 0.6 8.43 0 0 1 
1.51754 13.48 3.74 1.17 72.99 0.59 8.03 0 0 1 
1.51977 13.81 3.58 1.32 71.72 0.12 8.67 0.69 0 1 
1.52227 14.17 3.81 0.78 71.35 0 9.69 0 0 1 
1.52172 13.48 3.74 0.9 72.01 0.18 9.61 0 0.07 1 
1.52152 13.05 3.65 0.87 72.32 0.19 9.85 0 0.17 1 
1.523 13.31 3.58 0.82 71.99 0.12 10.17 0 0.03 1 0 
1.51574 14.86 3.67 1.74 71.87 0.16 7.36 0 0.12 0 
1.51631 13.34 3.57 1.57 72.87 0.61 7.89 0 0 0 
1.5159 13.02 3.58 1.51 73.12 0.69 7.96 0 0 0 
1.51627 13 3.58 1.54 72.83 0.61 8.04 0 0 0 
1.5159 12.82 3.52 1.9 72.86 0.69 7.97 0 0 0 

1.51592 12.86 3.52 2.12 72.66 0.69 7.97 0 0 0 
1.51594 13.09 3.52 1.55 72.87 0.68 8.05 0 0.09 0 

1.51625 13.36 3.58 1.49 72.72 0.45 8.21 0 0 0 
1.51645 13.4 3.49 1.52 72.65 0.67 8.08 0 0.1 0 
1.5164 12.55 3.48 1.87 73.23 0.63 8.08 0 0.09 0 

1.51588 13.12 3.41 1.58 73.26 0.07 8.39 0 0.19 0 
1.5159 13.24 3.34 1.47 73.1 0.39 8.22 0 0 0 
1.5186 13.36 3.43 1.43 72.26 0.51 8.6 0 0 0 

1.51689 12.67 2.88 1.71 73.21 0.73 8.54 0 0 0 

1.51811 12.96 2.96 1.43 72.92 0.6 8.79 0.14 0 0 

1.5182 12.62 2.76 0.83 73.81 0.35 9.42 0 0.2 0 

1.52725 13.8 3.15 0.66 70.57 0.08 11.64 0 0 0 

1.53125 10.73 0 2.1 69.81 0.58 13.3 3.15 0.28 0 

1.52222 14.43 0 1 72.67 0.1 11.52 0 0.08 0 

1.51818 13.72 0 0.56 74.45 0 10.99 0 0 0 

1.52777 12.64 0 0.67 72.02 0.06 14.4 0 0 0 
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1.51892 13.46 3.83 1.26 72.55 0.57 8.21 0 0.14 0 1 
1.51829 13.24 3.9 1.41 72.33 0.55 8.31 0 0.1 0 1 
1.51673 13.3 3.64 1.53 72.53 0.65 8.03 0 0.29 0 1 
1.51844 13.25 3.76 1.32 72.4 0.58 8.42 0 0 0 1 
1.51687 13.23 3.54 1.48 72.84 0.56 8.1 0 0 0 1 
1.51707 13.48 3.48 1.71 72.52 0.62 7.99 0 0 0 1 
1.51667 12.94 3.61 1.26 72.75 0.56 8.6 0 0 0 1 
1.52068 13.55 2.09 1.67 72.18 0.53 9.57 0.27 0.17 0 1 
1.52614 13.7 0 1.36 71.24 0.19 13.44 0 0.1 0 1 
1.51813 13.43 3.98 1.18 72.49 0.58 8.15 0 0 0 1 
1.51789 13.19 3.9 1.3 72.33 0.55 8.44 0 0.28 0 1 
1.51806 13 3.8 1.08 73.07 0.56 8.38 0 0.12 0 1 
1.51674 12.79 3.52 1.54 73.36 0.66 7.9 0 0 0 1 
1.51851 13.2 3.63 1.07 72.83 0.57 8.41 0.09 0.17 0 1 
1.51662 12.85 3.51 1.44 73.01 0.68 8.23 0.06 0.25 0 1 
1.51839 12.85 3.67 1.24 72.57 0.62 8.68 0 0.35 0 1 
1.5161 13.33 3.53 1.34 72.67 0.56 8.33 0 0 1 0 
1.51643 12.16 3.52 1.35 72.89 0.57 8.53 0 0 1 0 
1.51779 13.64 3.65 0.65 73 0.06 8.93 0 0 1 0 
1.5161 13.42 3.4 1.22 72.69 0.59 8.32 0 0 1 0 
1.51646 13.04 3.4 1.26 73.01 0.52 8.58 0 0 1 0 
1.52121 14.03 3.76 0.58 71.79 0.11 9.65 0 0 1 0 
1.51796 13.5 3.36 1.63 71.94 0.57 8.81 0 0.09 1 0 
1.52211 14.19 3.78 0.91 71.36 0.23 9.14 0 0.37 1 0 
1.51514 14.01 2.68 3.5 69.89 1.68 5.87 2.2 0 0 1 
1.52151 11.03 1.71 1.56 73.44 0.58 11.62 0 0 0 1 
1.51666 12.86 0 1.83 73.88 0.97 10.17 0 0 0 1 
1.51316 13.02 0 3.04 70.48 6.21 6.96 0 0 0 1 
1.51321 13 0 3.02 70.7 6.21 6.93 0 0 0 1 
1.52043 13.38 0 1.4 72.25 0.33 12.5 0 0 0 1 
1.51905 14 2.39 1.56 72.37 0 9.57 0 0 0 1 
1.51829 14.46 2.24 1.62 72.38 0 9.26 0 0 0 1 
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Chapter 4: Phase Unwrapping. 

4.1 Introduction 

When constructing a map of surface contours using an interferometric fringe 

pattern, it is desirable to know not only the amplitude of the waveform, but 

also its phase value. The height information in the fringe pattern is related to 

the phase values of the reflected light. It is the mathematical calculation of 
the phase values of an image, which leads to the process known as phase 

unwrapping. In chapter 2, the concept of a cosinusoidal fringe pattern was 

introduced whose intensity at any given point can be described by the 

equation 

I(x, Y)=a(x, Y)+b(x, Y)cos[4(x, Y)] 

where 

a( x, y )= additive noise - offset term 

b( x, y = multiplicative noise - amplitude term 

C x, y)=ýc+Om 

Oc = carrier phase 

4m = modulation phase 

As described in chapter 2, if a fringe pattern is subjected to either phase 

stepping or FFT techniques, the final phase values will be calculated as an 

arctangent function: 

Using the phase stepping technique, phase is calculated by 

J (lt2 - (", r2 I) 

Joß) 
(x, y) = arctan 1 (0) - 
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whereas the FFT will give phase as 

0 (x, y) = arctan 
Im[c(x, y)] 
Re[c(x, y)] 

where Im = imaginary component of c(x, y ) 
Re = real component of c(x, y ) 

Due to the arctangent function used in this calculation, phase values will 
invariably be returned which are "wrapped" modulo 2n. It is, therefore, 
necessary to "unwrap" the phase: that is to re-create a continuous phase 
distribution. Figure 4.1 shows a continuous one-dimensional phase 
distribution and how t hat same distribution appears when it is wrapped 
modulo 2ir. 

E 

Figure 4.1: A1 -D phase distribution and how it appears when wrapped 
modulo 2n. 

In a two-dimensional image, conventional computer mapping of wrapped 

phase data causes bands of contour lines where 2n phase jumps occur. An 

example of this is shown in figure 4.2. It can be argued that the most reliable 
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method of reconstructing the phase data is to unwrap solely "by hand", as the 
human brain can recognise what the unwrapped phase distribution should 
look like. However, due to the mathematical complexity of the problem, the 
time taken would be extremely impractical. 

Many algorithms have been proposed to deal with the phase unwrapping 

problem. The earliest of these is now known an "Schafer's algorithm"[1 ] and 
involves a pixel-by-pixel approach of comparing adjacent phase values. 
Researchers in this field now regard this as the "classical" point-to-point 

phase unwrapping algorithm. The theory of Schafer's algorithm can be 

explained thus: The first phase value in a row (or column) is recorded. The 

phase value of it's immediate neighbour is then recorded and compared with 

the previous value. If the difference between the two values is in the region 

of 2n, the value is updated by adding or subtracting 2n, depending on the 

sign of the difference. This is the simplest form of phase unwrapping and is 

adequate if the phase distribution contains very little noise. If significant 

noise is present in the distribution, any errors are easily propagated through 

the final unwrapped phase map. Figure 4.3 shows the effect of a noise spike 

on Schafer's algorithm. Figure 4.3(a) shows a noise-free distribution and 

4.3(c) how it appears when unwrapped by this method. Figure 4.3(b) shows 

the same distribution, but with the introduction of a "spot noise" spike. The 

algorithm will treat the noise as a phase wrap and update the remaining 
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phase values accordingly. The error is propagated through the entire 
unwrapped distribution and the final result will be inaccurate. 
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(a) Noise free 1-D wrapped phase distribution. 
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(b)Wrapped phase distribution with single noise spike. 
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(c) Noise-free distribution unwrapped using Schafer's algorithm 
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(d) Noisy distribution unwrapped using Schafer's algorithm 

Figure 4.3: Phase distributions unwrapped by Schafer's algorithm 

Other algorithms have been proposed to deal with the problem of noise in 

wrapped phase distribution, many of which employ analyses based on 

regional rather than global data. 

Carter[2] explains that phase data can't be correctly unwrapped over a two- 

dimensional domain which includes zeroes in the field amplitude as the 

phase is singular at these points. Unwrapping in one dimension and plotting 

a contour map causes dark bands to trail out behind each zero along the row. 

This also applies to columns. The only way to avoid this result is to unwrap 

locally. Figure 4.4 shows a rectangular array of sampled two-dimensional 

phase data represented by an array of numbered squares. The comers of 

each square represent the spatial location of nearest neighbour phase 

samples over the 2-D plane. The small numbers indicate the original values 

of the phase data. Contour lines occur at 5.94,6.28 and 0.34. These are 

shown interpolated through the grid. Unwrapping begins at square zero, 

whose value is 5.84. The points at the other corners of the square are tested 

to see by how much they differ from 5.84. If the difference is greater than it, 

then 2n phase jumps are likely to exist between some of the values along the 

path bounding the square. To remove these phase jumps, 271 must be added 

to or subtracted from the points until the values are within it of the local 

phase reference. 
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Figure 4.4: 2-dimensional phase data 

To improve on the accuracy of phase unwrapping, Huntley[3] describes an 

algorithm, which is relatively noise-immune. The essence of the approach is 

to ensure that the final unwrapped phase distribution is completely 
independent of the path by which the process is carried out. This is achieved 
by placing "cut lines" in the phase map, which act as barriers to unwrapping. 
Generally, the source of a discontinuity in the phase map will be at one end 

of a cut line, while the other end of the cut is attached to a discontinuity 

source of an opposite sign, or to the edge of the phase map. Discontinuity 

sources tend to occur naturally in pairs of opposite sign, but some isolated 

sources can occur near the phase map boundary. Cuts are represented by 

two arrays of flags, one each for a vertical and horizontal cut, and once the 

cut lines have been constructed, unwrapping can be carried out in any order. 

Computation time varies with both signal to noise ratio and on the length of 

cuts and is apparently comparable to the time taken with a "conventional" 

algorithm 

Huntley and Saldner [4] proposed a "temporal" phase unwrapping algorithm. 

Most algorithms search the 2-D spatial domain for 2n discontinuities; only 

one map is required, but errors can propagate outward from high noise 

regions, significantly corrupting the unwrapped image. The proposed 
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alternative involved unwrapping in one dimension along the time axis. Each 

pixel's phase value is measured as a function of time and unwrapping is 

carried out along the time axis for each pixel independently of all the others. 
Regions with poor signal-to-noise ratios and boundaries don't adversely 

affect the good data points. A set of 2-D phase maps is assembled to form a 
3-D phase distribution, where 4(m, n, t) is used to denote the phase at a pixel 
(m, n) in the tth phase map. Unwrapping can occur along any path, provided 
that no noise, discontinuities or major faults are present. The phase needs to 

be sampled at a sufficiently high spatial and temporal frequency. In practice, 

noise and discontinuities will always be present, so phase errors will 
invariably occur. In a 3-D map, these regions are orientated along the t axis 

and, provided that the boundaries don't change with time, they can be 

avoided by unwrapping in a direction parallel to the time axis. Although many 

intermediate phase maps are required for this method, the approach is 

simple and robust. Phase errors remain in regions of low signal-to-noise 

ratio. The method is particularly suitable to applications where the phase 

map builds up slowly and where phase changes rather than absolute phase 

values are important. 

Ghiglia et al. [5] used a method employing cellular automata. Cellular 

automata can best be described as a series of discrete, simple mathematical 

processes, whose results, when combined result in a more complex whole. 

A cellular automaton is based on a discrete lattice of identical sites. Each 

site can be in any one of k states and evolves according to a simple function 

of its neighbouring sites. Experiments suggest that the patterns generated in 

the evolution of cellular automata from initially random states fall into four 

general classes: 

1. Evolution to a homogeneous state, 

2. Evolution to simple, separated periodic structures, 

3. Evolution to chaotic, aperiodic patterns and 

4. Evolution to complex patterns of localised structures. 
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This method "... promise[s] that this simple computation can be done in an 
unbiased, non-directional manner". The algorithm is based on a "strength-of- 

vote" rule. A point in the phase map is identified and its phase value is 

compared with its immediate neighbours. The strength of each neighbouring 

point's vote is defined as equal to the integral number of 271 rad necessary to 

wrap the respective phase differences. The integer strengths of vote are 
accumulated and the point changed by 2n in a direction appropriate to the 

accumulated vote strength. 

As with most algorithmic approaches, problems arise when path 
inconsistencies occur, whether these are noise induced, natural or aliasing 
induced. Generally, when a path hits an inconsistent point, it carries this 

inconsistency to neighbouring phase values and generates discontinuities. 

These normally have to be dealt with by post-filtering operations, which may 

corrupt some of the phase data. If a natural dislocation is present, it cannot 

simply be removed by additions of 2n. Also, removal of natural dislocations 

may have an adverse effect on the phase value. If an aliasing induced 

dislocation occurs, it is impossible to distinguish from a natural dislocation 

without a priori knowledge. Under these conditions, correct phase 

unwrapping is not possible. The cellular automata method makes 

allowances for this and "... offer[s] promise of other means of powerful and 

parallel computations"[5]. 

A novel approach to the unwrapping problem was proposed by Gierloff[6]. 

His method differs from the classical point-to-point algorithm by defining 

regions which are free from discontinuities. The method is much less 

susceptible to noise and does not propagate errors through the analysis. 

The philosophy behind this approach is to make a small number of decisions 

based on a much larger amount of analysis. The algorithm categorises 

points into regions by determining their relationships to neighbouring points, 

which have already been classified. A point is classified as belonging to a 

particular region if it is within certain tolerances. For simple images, regions 

can be classified by a simple raster-type scan, but for more complex images, 
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more intricate computation is required. Scanning of simple patterns can lead 
to "dead" spots at the edges of the image which cause calculation to cease 
before the region is completely defined. This can cause a larger number of 
regions than necessary to be defined. The method is somewhat 
computationally expensive, however, even for relatively consistent data. 

Once all the regions have been defined, each is compared with its immediate 

neighbours to ascertain whether a phase wrap exists between them. The 

phase wraps are identified, relationships between regions are defined and 
ones with no phase ambiguities are combined to form larger regions. The 

new regions are further compared to determine any necessary phase shifts. 
The edge between two adjacent regions is traced and the edge points are 

compared. Figure 4.5 shows a comparison of unwrapping techniques. 

Figure 4.5(a) shows an original phase profile and (b) shows the 

corresponding wrapped phase profile. Figure 4.5(c) shows the phase 
distribution as unwrapped using Gierloffs regional method, and (d) shows the 

same phase distribution when unwrapped using Schafer's algorithm. The 

benefit of the regional analysis can clearly be seen. The regional analysis 

has contained any prominent errors where the point-to-point algorithm has 

propagated these errors through the analysis, resulting in a wildly inaccurate 

final phase distribution. 

Bone[7] uses a slightly more complex method, which uses local phase 

information to mask out parts of the field, which cause inconsistencies in the 

unwrapping. This method uses what is described as residue analysis of path 

dependence. This is shown schematically in figure 4.6. 
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Figure 4.5: Gierloff's regional phase unwrapping algorithm 
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Figure 4.6: Residue analysis of path dependence. 



Beginning at a point P and traversing the square in the direction shown, the 
number of discontinuities crossed along a should be the same as the number 
crossed along b. In mathematical terms, the unwrapping error is the sum of 
a and b, thus: 

A=E0 
(x(k), y(k)) -0 

(x(k 
-1), y(k -1)) 

2/r 

The unwrapping error, or residue, for a small square will be zero. For any 
large path, the unwrapping error is simply the sum of the residues enclosed 
by the path. The next stage of the algorithm is similar to that previously 
described by Huntley, as branch cuts are constructed joining groups of 

residues so that the sum of all the residues joined is zero. This allows the 

final result of the unwrapping process to be completely free of 
inconsistencies providing that unwrapping never crosses a branch cut. 

Bone also proposes an algorithm, which, rather than relying on branch cuts 

joining the residues, utilises a mask. A bit-map mask is constructed which is 

overlaid on the phase field to prevent the unwrapping algorithm from 

following any path which could lead to inconsistencies. This simplifies the 

process as only local information is used. It is then possible to calculate 

further differences from the locally unwrapped phase. The phase is 

unwrapped clockwise around a given point (i, j) in a clockwise manner, as 

shown in figure 4.7. 
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Figure 4.7: Unwrapping in a clockwise manner. 

Once the mask has been defined, the phase in the regions defined by the 

mask has to be unwrapped. Unwrapping is carried out using a standard 
recursive flood fill algorithm. 

Brown[8] describes a method for unwrapping phase distributions developed 

at the Ford Motor Company as part of a proprietary Computer Aided 

Holography (CAH) system. The philosophy behind the system was to make 
it easy for an operator to create binary masks to guide the unwrapping 

process, to automate the mask creation as much as possible, to use an 

algorithm which could process an arbitrarily complex structure, to achieve 

processing time of the order of minutes and to use 2-D interpolation to fill any 

small bad spot regions. The stages of the CAH process with which the work 

is concerned are: 

" Calculation of the 2n phase change map, 

" Creation of the binary bad spot mask, 

" Setting of "seed points" in the unwrapped pixel mask, 

" Unwrapping of the phase map using the mask, seed point and rectilinear 

path algorithm and 

" Removal of bad spots. 

Stephenson et. al. describe a technique which uses data validation routines 

to ascertain the faults present in a wrapped phase distribution[9]. The 
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image of interest is divided into tiles, each of which is subjected to the 
following tests: 

9 Perimeter test: Schafer's algorithm is applied around the perimeter of 
each region. If a continuous phase wrap is present in the region, there 
should be an equal number of wraps in each direction around the 

perimeter. 

" Tile modulation test: This is carried out to check for low-signal modulation 
in the image, a frequent cause of apparent phase noise. 

" Wrap continuity test: This checks for spot noise or wrap bifurcations. If a 

point is found to be a wrap, its neighbours are tested to ascertain whether 
they are also wraps. 

" Template matching test: For a particular region, templates are 

constructed showing all likely positions of wraps, which are dependent on 

the position of the fringes in the original image. A good region will have a 

perfect match with one wrap position template. 

When the validation tests have been carried out on the regions, each tile is 

then assigned to one of three categories: 

1. Cleanly unwrapped tiles with no detected problems 

2. Tiles with a minor problem that could easily be remedied 

3. Tiles with one or more serious defects 

This series of simple tests increased the robustness of the unwrapping 

algorithm. 

There are obviously drawbacks associated with all of these algorithmic 

methods, the most prominent being those of time and computational 

complexity. It is also evident that there is no "generic" phase unwrapper. 
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There will always be complex wrapped phase distributions which an 
algorithm will fail to unwrap adequately. The modern digital computer is 

extremely adept at performing complex mathematical calculations very 
quickly, but is not as competent at tasks at which the human brain excels, 
such as pattern recognition. If it is presumed that the basic problem of phase 
unwrapping can be considered as a kind of pattern recognition problem, then 
it can be postulated that a parallel processing structure such as the brain is 
better suited to its solution. An experienced human operator will be able to 
decide which data are noise spikes or other discontinuities and which are 
phase wraps with far better accuracy than can be achieved by the point-by- 

point analysis by a computer. With a human operator, part of the analysis is 

likely to be based on intuition, rather than on mathematics alone. This gives 

rise to an interesting question: does a machine exist which can be "taught" 

what is a phase wrap and what is a noise spike? 

The depth of research into Neural Networks (NNs) has already been 

discussed in chapter 3. It has been shown that this particular computing 

paradigm is, by its very nature, ideally suited to recognition problems. The 

idea of using NNs for pattern recognition would suggest that the potential 

exists for a suitably trained network to act as the basis for a robust phase 

unwrapping system. 

Kendall and Hall[10] have carried out work which, although not directly 

related to the phase unwrapping problem, describes the use of NNs for 

various problems in image processing, including edge detection and texture 

classification. For edge detection, a multilayer perceptron with a 2x2-pixel 

window is scanned across the image. The NN is trained on an image of 

shaded circles with added Gaussian noise and well defined edges. Testing 

on a more "natural" image (i. e. one with less prominent edges) showed the 

technique to be faster and more accurate than a conventional Laplacian 

operator. 

The remainder of this chapter deals with research carried out into the use of 

neural networks for phase unwrapping. 
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4.2 Phase unwrapping by neural network. 

To date little research has been published which deals with this particular 
approach to the problem. The only work of which the author is aware is that 
of Takeda [11]. This approach uses a large network, which performs a single 
analysis of an entire image. Consider a wrapped phase distribution as 

shown in figure 4.1. At any pixel i, the phase value can be represented by 4;. 

If the offset phase value which must be added at the ith pixel to unwrap ýi is 

represented by f;, the unwrapping problem can be mapped onto a Hopfield 

network by the function: 

E=E {[(4 i-1 + 27tfi-1) - (0i + 2nfi)]2 + [(Oi+1 + 2nfi+1) - (4i + 2nfi)]2} 

Each image is analysed with a network consisting of five neurons per pixel. 
This assumes that a maximum number of five wraps is going to be 

encountered in the image. This may well be the case for a fringe pattern 

subjected to the FFT method with frequency shifting, but if frequency shifting 

is not used or the fringe pattern is subjected to the Phase Stepping method, 

the total number of wraps is likely to be far in excess of five. With such a 

large network, both large training sets and long training times are likely to be 

required. Also, the volume of data involved is such calculations will be very 

large. If a CCD camera is used whose array utilises 512x512 pixels, the 

resulting image has 262,144 points of data. If five neurons per pixel are 

used, the network will have to contain in the region of 1.25 million neurons. 

Due to the large number of neurons and, therefore, the high processing times 

that would be required, it was thought that an approach may be possible 

using a NN to assist in the regional unwrapping of phase images. 

The approach outlined in this thesis involves the use of small networks, 

which are used to analyse one small region of the wrapped phase distribution 

at a time and effectively build up an entire unwrapped phase map from a 
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large number of simpler calculations. It was felt that it would be beneficial to 

attempt to reduce the complexity of the approach to the problem using a NN. 
Previous algorithmic solutions have been most efficient when reliant on a 
regional approach, thus limiting error propagation through the entire image. 
If, however, a NN solution is investigated which continues to use a global 
method of analysis, some risk of error propagation is likely to be 

reintroduced. The previously described NN approach appears to be 

reasonably robust, however, the assumptions which are made will greatly 

reduce its adaptability. Although it would appear impossible to produce a 
"generic" phase unwrapper capable of reconstructing every phase distribution 

it encounters, it may well be possible to create an extremely robust 

unwrapper if certain points are borne in mind. These are: 

1. Parallel processing of an image will produce better results than a point-to- 

point algorithm. 

2. Regional analysis will cause less error propagation than global analysis. 

3. Wraps are likely to occur in any direction. 

4. The number of wraps will only be reduced if Fourier analysis with 

frequency shifting is used. 

5. Generally, the number of wraps is limited by the number of fringes 

present in the original image and the resolution of the wrapped phase 
image, therefore an unwrapper should be able to analyse any given 

number of wraps. 

The previously described NN unwrapper[11 ] took into account only one of the 

above points, therefore an approach was formulated which addressed all 5. 

The use of a NN addresses point number 1, as by their nature NNs use a 

parallel architecture. A system was, therefore, required which not only 

employed a parallel processing paradigm, but also relied on local analyses of 

phase data, took into account wraps which occurred in every direction and 

was not limited to the number of wraps it was capable of detecting. The remit 

of this chapter is to describe a possible solution to the phase unwrapping 

problem which satisfies all of these criteria. 
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Initial experimentation 

The first problem investigated was that of one-dimensional phase 
unwrapping. This is the simplest method encountered and involves 

unwrapping phase distributions in a single line of pixels. An example of this 
has been shown in figure 4.1. Although this was not entirely representative 
of the problem as a whole, it was thought that it was a good starting point 
from which to evaluate the validity of using a neural network to unwrap a 
phase distribution. 

A standard image is 512 by 512 pixels. It was therefore decided to work with 
512 data points or fractions of this. Experimentation began with a simple 

representation of the problem: a single line of 64 phase values containing 4 

wraps. The first task was to train a neural network to recognise the positions 

of the four wraps in the distribution. 

A neural network was constructed using the minimum configuration of one 

input neuron for each value and one out output neuron for each 

corresponding response. The resulting network consisted of 64 input 

neurons, 64 output neurons and a single hidden layer of 64 neurons. The 

network architecture was backpropagation with a delta learning rule and 

sigmoid transfer function. A complete explanation of this architecture is given 

in chapter 3. Training data consisted of 70 sets of 64 phase values, each 

containing 4 wraps at various positions. The first training sets were 

constructed from simulated data; that is data were not taken from real 

wrapped phase distributions, but created artificially to avoid the introduction 

of noise or other extraneous data at this early stage in the experimentation. A 

sample of the simulated data used for the initial training set is shown in 

appendix 1. The first training exercise consisted of randomly presenting the 

network with 60 training vectors. The behaviour of the network throughout 

the training period was observed and, when training was complete, the 

network was tested. Again, the testing procedure is discussed in detail in 

chapter 3. A test file, again using simulated data was presented to the 

58 



network. The desired and actual outputs from the network were 
automatically written to a results file which was then analysed to ascertain 
how the outputs varied. 

During training, the RMS error of the network remained high. Inspection of 
the results file showed that the network was attempting to guess the position 
of the wraps, but appeared to be unsure as to their exact positions. The 

results suggested that either not enough training data were present in the 
training file, or problems were arising with the actual presentation of the data 
to the network. An attempt was made to rectify the problem by addition of 
further data sets to the training file, bringing the total number of training 

vectors up to 100. The network was initialised and re-trained using the 

extended training set. When training was complete, the network was tested. 
It appeared that the addition of further training data had failed to have any 

noticeable effect on the results. During training, the RMS error still failed to 

converge and the network still appeared to be unsure of the exact position of 

the wraps, as shown in figure 4.8. 

As the number of training data was having no effect, it was thought that the 

problem may have been in the presentation of the existing data. As 

described in Chapter 3, when using the delta learning rule, it is important that 

the input data set is well randomised. The NeuralWorks Reference Guide 

[12] states that 'Well ordered or structured presentation of the training set 

often leads to a failure to converge" . 
The cumulative-delta learning rule 

goes some way to preventing this type of problem. This learning rule 

accumulates weight changes over several presentations and applies this 

cumulative result at once, giving a pseudo-random presentation of the data. 

Changing the learning rule to cumulative-delta appeared to have little 

beneficial effect on the results. The training period was extended to 

investigate whether the network was simply being under-trained. 
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Figure 4.8: Wraps erroneously detected by initial network. 

In order to ascertain whether the RMS error would converge given a longer 

training period, the total number of presentations of data before cessation of 
training was increased. Again, the behaviour of the network during the 

training period was closely observed and, when training was complete, the 

network was tested as previously described. Increasing the number of 

presentations to 10,000 had no effect on the RMS error of the network, which 

still failed to reach its convergence criterion. The results for the increased 

training were even more vague than those previously described, as the 

bands of indecision displayed in the results file were much wider, indicating 

that the opposite effect to that anticipated had been achieved and that the 

network may have been over-trained. The results are shown in figure 4.9. 

Due to the limited success of the experimentation at this point, it was decided 

to concentrate on a much simpler approach to the problem. Instead of 
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beginning by attempting to unwrap entire rows or columns of phase data, a 

network was configured to analyse a much smaller region of phase data, 

dealing with only a single wrap. The philosophy behind the approach was to 

create a network that would have a small input "window" which could be 

convolved with an image to detect the presence of phase wraps. It was 
thought that if a relatively simple network was used, it would be possible to 

use more complex learning strategies which would make the approach much 

more computationally efficient. At this stage, experimentation was still being 

carried out to ascertain whether a NN approach was suitable for wrap 

detection and not to attempt to perform a complete and successful phase 

unwrapping process. 

*n 

-n 

0 

Figure 4.9: Network outputs showing bands of indecision. 

The first network utilising the simpler approach 

Wrapped phase distribution 

Network outputs 

consisted of a 

backpropagation architecture, employing the cumulative-delta learning rule 

and sigmoid transfer function. This configuration was employed as 

backpropagation networks have been proved to be a reliable method of 

recognition in previous experiments. The use of a cumulative-delta rule was 
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again used to ensure satisfactory random presentation of the training data. 
The physical configuration of the network relied on the minimum number of 
neurons per pixel to attempt to keep the initial computational complexity to a 
minimum. The number of pixels to be analysed was reduced to six. This 

was thought to be around the minimum number of pixels which it would be 

possible to analyse and detect the presence of a phase wrap without risking 

reducing the number to a point where the network was acting as a very 
computationally expensive point-to-point algorithm. The input layer 

consisted of six neurons, each corresponding to a single pixel, and both the 
hidden and output layers each contained six neurons. A schematic diagram 

of the network is shown in figure 4.10. The network was designed to 

recognise the position of a single wrap in a six-pixel region of a phase 
distribution and respond by firing a single neuron in the corresponding 

position in the output layer. The training set for the network was constructed 

using artificial data and consisted of 100 vectors, each of 6 phase values with 

no more than one phase wrap occurring at a point within that vector. A 

number of "null" examples were also included, that is, vectors containing no 

phase wraps. 

Output response 

Output layer 

Hidden layer 

Input layer 

Input stimulus 

Figure 4.10: Schematic diagram of the 6-input network. 
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The data was simulated for the first training set in order to ensure no noise 
was present in the initial training set. Nominal phase values showing a step 

of plus or minus 2n were used and no noise or false wraps were present. 
The first training set was constructed as described in chapter 3. As the 

network contained six input and six output neurons, each training vector 

contained twelve values, the first six being phase values and the remaining 

six being either a zero or a one depending on the position of the wrap. An 

example of the training data for the six input network is shown in appendix 1. 

The network was trained and tested as previously described, with its 

behaviour being closely monitored throughout the training process. Random 

presentation of the training data caused the network's RMS error to decrease 

almost to its convergence criterion and the weight histogram showed the 

spread of weights across the network to approximate a Gaussian distribution. 

After 10,000 presentations, although the set convergence criterion had not 

been reached, training was stopped and the network was tested. The test 

set was again constructed of artificial data and presented to the network only 

once. The results of the test showed that the network had accurately 

identified approximately 75% of the phase wraps. In the correct cases, when 

the desired output was one, the actual output value was in the region of 0.90 

to 0.97 and when the desired output was zero, the actual output was 

approximately 0.02 to 0.05. These values were improved by further training. 

It was found that by 20,000 presentations of training data, the RMS error 

value had converged, but to a point slightly in excess of the set convergence 

criterion. To allow for this, the threshold was raised to 0.005. This was to 

ensure that training ceased at a point before over-training could occur. 

When unwrapping is carried out on a real wrapped phase distribution, it is 

highly unlikely that the wrap density will be uniform. An ideal and an actual 

wrapped phase distribution are shown in one dimension in figure 4.11. To 

allow for this variation, a training set containing data with non-uniform wrap 

densities was constructed to train the network further. Again, all training data 

were simulated and the same network architecture and experimental 
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procedures were adhered to. The results shown were comparable to those 
of the previous experiment, with a success rate of approximately 75% being 
achieved. 
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Figure 4.11(a): An ideal 1-D wrapped phase distribution. 
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Figure 4.11(b): A wrapped phase distribution containing spot noise. 

In both cases, when identification of a phase wrap was unsuccessful, one of 

three things had occurred: 

1. An output neuron directly adjacent to the wrap had fired. 

2. An output neuron fired when no wraps were present. 

3. An output neuron had failed to fire when the test set showed a wrap to be 

present at the very end of the pixel "windo s", 

The first two of these phenomena can easily be explained in terms of bad 

data or incomplete training. However, the third occurrence poses an 

altogether different problem. It appeared that the training data was trying to 

teach the network to respond to a discontinuity which was not actually 
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present. As wrap detection necessarily involves comparison of two adjacent 
phase values, it is, therefore, impossible to detect a wrap occurring directly 

on the edge of a pixel window. Consider the wrapped phase distribution 

shown in figure 4.12. As the six pixel window is moved along the distribution 
from left to right, it encounters the wrap, which moves left in relation to the 

window. As the wrap reaches the furthest left pixel of the window, it 
becomes "invisible" to the window, as there is no further pixel to its left for 

comparison. Because of this "disappearance" of the wrap when the edge of 
the window is reached, it was necessary to adjust the training data to allow 
for this by removing references to phase wraps which occurred under these 

circumstances. Using the same network architecture and methods as 

previously described, the network was re-trained and tested. Analysis of the 

results showed a dramatic improvement, with phase wraps being correctly 

identified on approximately 95% of occasions. 
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Figure 4.12: A single phase wrap. 

Comparison of training methods 

The next experiment was to compare methods of training. So far, the 

networks had been trained using entirely artificial, noise-free data. In order to 

investigate how the network would behave when presented with more 

realistic data, a new training set was constructed. 
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The training set consisted of data in the same format as previously 
described, but this time taken from real wrapped phase distributions. The 
distributions were very low-noise and were of the type shown in figure 4.13. 
This sample phase distribution is the result of projecting a cosinusoidal fringe 

pattern onto a flat, matt white surface and subjecting that fringe pattern to 
Fourier analysis. In this image, all the phase wraps occurred in the same 
direction. A single line of phase values was taken at various points in the 
image and the data from these lines adapted to train the network. Each data 

set was examined and the positions of any phase wraps were identified. 

Desired output values were added to each training vector showing where in 

the data set the wraps occurred. An example of the training data is shown in 

appendix 1. 

Figure 4.13: 2-D phase distribution used for training data. 

4.2.1 Trimming the hidden layer. 

So far, all experiments had been conducted using a network consisting of the 

same number of hidden neurons as input and output neurons. If a network is 

too large for the amount of data with which it is presented, it can become 

"confused" and give multiple answers for a single problem. With this 

phenomenon in mind, the number of hidden neurons was trimmed to leave a 

total of two and the network was retrained. A relatively short training session 
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was tried initially. After 1000 presentations of the training set, no effect on 
RMS error or weight distribution was noticed and the results file showed little 

more than random data. The network was retrained with 10,000 

presentations, but there was no noticeable difference in the RMS error graph. 
The weight histogram showed more of a tendency towards a Gaussian 

distribution, but there seemed to be a large number of weights with a value of 

-8. When the training was complete, it appeared that the two hidden neurons 

were "locked on", i. e. their values were both at a maximum. Inspection of the 

training file showed a very poor response. Only around a tenth of the phase 

wraps had been correctly identified. It was noteworthy that the only wraps 

which had been correctly spotted were those which occurred at position 

number five. The number of hidden neurons was increased one by one and 
the network retrained for each additional neuron. As the number of hidden 

neurons increased, so did the network's ability to identify phase wraps until 

the accuracy previously described was repeated when six hidden neurons 

were used. 

In order to investigate the possibility of improving accuracy by adding more 

hidden neurons, a new experiment was carried out using a single hidden 

layer of twelve units. The network was trained as previously described. The 

RMS error graph showed very erratic changes during the training period and 

on completion of the training, ten of the twelve hidden neurons were "locked 

on". Inspection of the results file showed that again, approximately one tenth 

of the phase wraps were being correctly identified. However, in this case, no 

noticeable pattern of which wraps were being identified emerged. Training 

was continued, with hidden neurons being disabled one by one, until the 

original configuration was arrived at. This layout of six input, six hidden and 

six output neurons showed the greatest ability to correctly identify the 

positions of wraps in a phase distribution. 

Further experimentation was carried out with hidden layer configurations. A 

network with two separate hidden layers, each containing six neurons, was 

constructed. The network was trained in the same way as previously 
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described, its behaviour monitored and, after training, tested and the desired 
and actual outputs compared. During training, the RMS error remained as 
for the previous experiment, but the a slightly larger spread of connection 
weights was evident from the weight histogram. When training was complete 
and the network fully tested, the results file was analysed and showed that 
only approximately 50% of wraps were being correctly identified. The initial 

conclusion to be drawn from this use of a second hidden layer is that too 

many processing elements within the network can adversely effect its 

performance. The NeuralWorks Reference Guide[12] explains that if too 

many processing elements are employed in a relatively simple network, 
some of the information may be "lost" as values are spread throughout the 

network. 

4.3 Experiments with unsupervised learning 

Although the experiments with supervised learning as previously described 

proved successful, experiments were also carried out with unsupervised 
learning in order to compare the two techniques. As discussed in chapter 3, 

unsupervised learning uses only a set of input values and the network is left 

to calculate its own outputs. For this series of experiments, the same training 

data were used as for the previous experiments. Due to its success in 

supervised learning cases, phase data taken from real images were used. 

4.3.1 Learning Vector Quantisation (LVQ) 

An LVQ network was configured with six input neurons, six output neurons 

and a Kohonen layer containing six neurons. The existing training data was 

presented to the network randomly 10,000 times. Initially, the weight 

histogram showed weights present with only minimum and maximum values 

and the RMS error changed apparently randomly. However, after 

approximately 2000 presentations, the spread of weights began to show the 
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beginnings of a Gaussian distribution and the RMS error value settled and 
began to fall. At 8010 presentations, the convergence criterion was met and 
training ceased. 

Initial analysis of the results file proved promising. Approximately 50% of the 
phase wraps were correctly identified. One major problem was noted with 
this configuration, however. The network had difficulty in identifying the 
situation when no phase wraps were present. In this case, whenever the 
network encountered a vector with no wraps, the fifth output neuron fired, 
apparently identifying a wrap which did not exist. 

Experimentation was again carried out with the number of hidden neurons in 

an attempt to improve on the wrap detection rate. By the nature of the LVQ 

network it is not possible to have fewer hidden neurons than input neurons 

and the number of neurons in the Kohonen layer must be a multiple of the 

number in the input layer. With twelve neurons in the Kohonen layer, the 

convergence criterion was met after only one presentation of the training 

data. 

Analysis of the results file showed the output data as apparently random, 
identification of wrap positions being by chance. The network was returned 

to its original state, initialised and retrained. The convergence criterion was 

met after only 20 presentations of data. The results file yielded the same 

data as for the previous experiment. Initialising and retraining the network on 

further occasions showed that convergence criterion was met after fewer 

than 20 presentations of data, and each time, the results appeared to be 

completely random. 

4.3.2 Hopfield networks: the classical approach 

Initial experimentation with a Hopfield network gave unsatisfactory results. A 

network was configured to work with the same data in an attempt to solve the 

same wrap detection problem consisting of six input, six hidden and six 
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output neurons. Figure 4.14 shows the Hopfield network described in this 

section. When training commenced, the RMS error immediately exceeded 
the upper limit of the graph and all the processing elements locked "on". The 

network remained in this state, so training was terminated and the network 

was tested. This caused all the processing elements to lock "off". The 

results file showed that when a wrap was present at any point, all the output 

neurons fired. However, when no wraps were present in the input data field, 

no output neurons fired. The network appeared to be able to tell that a wrap 

was present in the data field, but could not identify its position. The network 

was effectively operating as a logical "OR" gate. 

4.4 Comparison of techniques 

The above description of experimentation using both supervised and 

unsupervised techniques shows that the two approaches yielded quite 

different results. Supervised learning appeared to show more potential for 

the detection of wraps in a phase distribution. The use of the 

70 

Figure 4.14: 6-input Hopfield network. 



backpropagation paradigm gave the best results for the 1-D phase wrap 
detection problem. 

Appraisal of one-dimensional phase unwrapping 

So far, experimentation has shown that a small, backpropagation neural 

network is suited to the task of identifying the position of phase wraps in a 

one dimensional wrapped phase distribution. To facilitate a full unwrapped 

phase distribution, it was necessary to extend the experimental work to 

include the updating of phase values to achieve the desired end result. 
Although the network described performed satisfactorily when a simple 
binary output was required, it was thought that training the network to update 
the phase values when necessary would be unnecessarily complex. It was, 

therefore, decided to rely on a standard method of programming to perform 

the actual addition and subtraction of 2n required to produce the final 

unwrapped phase distribution. The fully trained and tested wrap detection 

network was FlashCoded into standard C and the following procedure 

implemented to unwrap a one-dimensional phase distribution. 

1. The six-pixel window was aligned with the first six pixels of the phase 

distribution. 

2. The phase values were presented to the network which reported the 

position of any phase wraps. 
3. If a wrap was present within the window, the corresponding values of the 

original phase distribution were updated accordingly. 

4. The wrap detection window was indexed by one pixel and the procedure 

repeated. 
This was continued until the complete phase distribution had been analysed. 

The code for this operation is shown in appendix 2. 
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Comparison with Schafer's Algorithm. 

Two 1-D phase distributions were used for this experiment, one consisting of 
noise-free data and one containing several spot noise spikes. The two 
distributions were taken from real phase images which were the result of a 
fringe pattern which had been subjected to a phase-stepping algorithm. The 
two distributions are shown in figure 4.15. 

Each of the two wrapped phase distributions was unwrapped using the two 
methods. Figure 4.15(b) shows the result of distribution 4.15(a) after 
unwrapping using Schafer's Algorithm and 4.15(c) the result of unwrapping 
by the backpropagation network. In this case, as the wrapped phase 
distribution is free of noise, the results are the same. The task is a 

straightforward one with no risk of error propagation in the final result. 

The difference in the two methods is shown more clearly in figure 4.16. 

Here, the wrapped phase distribution contains several prominent spot-noise 

spikes which are likely to cause errors in the final result. Figure 4.16(b) 

shows the result of unwrapping using Schafer's algorithm. Here, the 

algorithm has treated the noise spikes as phase wraps and updated the 

phase values by 27t in each case. The result is that errors are propagated 

through the unwrapped phase distribution, meaning that instead of a smooth 

distribution like the previous examples, several steps are present. Figure 

4.16(c), however, shows the same phase distribution when unwrapped using 

the backpropagation network. Here, the noise spikes have been effectively 

ignored and the correct unwrapped phase distribution had largely been 

retained. The noise spikes can then be filtered out by some post-processing 

operation. 

Considering the relative success of the approaches described above, it was 

decided to further investigate the use of backpropagation neural networks to 

perform a complete, two-dimensional phase unwrapping operation. 
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Figure 4.15(a) Wrapped phase distribution 
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Figure 4.15(b) Distribution unwrapped using Schafer's algorithm 
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Figure 4.15(c) Distribution unwrapped by neural network 
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Figure 4.16(a) Wrapped phase distribution with spot noise 
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Figure 4.16(b) Distribution unwrapped using Schafer's algorithm. 
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Figure 4.16(c) Distribution unwrapped by neural network. 

Here, the signal to noise ratio in the wrapped phase distribution can be 

defined by 

SNR = 20 log10 (YN)B 

where S is signal and N is noise values of the distribution. 

The SNR decreases from 48.165dB for the distribution shown in figure 

4.15(a) to 42.144dB for the distribution shown in figure 4.16(a). 

4.5 Phase unwrapping in two dimensions 

A two-dimensional wrapped phase distribution must be thought of as more 

than just a series of lines. It could be tempting at this point in the 

experimentation to simply extend the previously described technique to 
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unwrap a series of rows. Although this may well work on relatively simple, 
noise-free phase distributions, it does not take into account fully the 
interconnectivity of the rows. The technique needs to be extended further, 
from a simple 1-D line input to a system capable of analysing two- 
dimensional regions of an image. 

4.5.1 Initial experimentation 

Experimentation was carried out into how the success of the earlier 1-D 

unwrapping networks could be transformed into 2-D systems and maintain 
their accuracy. Initial experiments concentrated on use of an nxn square 
"window" which could perform regional unwrapping and be convolved with an 
image to produce a complete result. The need was to optimise the size of 

the window used and, consequently, the size of the neural network employed 

to address the problem. Consider a wrapped phase distribution defined by a 

standard image of 512 x 512 pixels. There are two extremes associated with 

analysis of a distribution of this size. It would be possible to attempt to 

analyse an entire image with a single, large network. This problem has been 

addressed by Takeda[11 ] and is described earlier in this chapter. There are 

a number of drawbacks associated with this approach. A 512 x 512 pixel 

image contains 262,144 pixels. To analyse the entire image in one pass will 

require use of a network with at least 262,144 input neurons. With a network 

of this size comes the associated problems of training. The training set will 

require large amounts of data. If 100 vectors are used, a total of 26,214,400 

input values alone will be required. Each image used in the training set will 

have to be individually analysed to provide desired output responses for the 

network. If it is assumed that one output response is required for each input 

stimulus, a total number of data in excess of 52 million will required for the 

training set. Coupled to the size of the set is training time. Not only will the 

analysis of the training images to provide the necessary output responses be 

time consuming, the amount of time required to perform the actual training of 

the network will be exceedingly high. At the opposite end of the scale to this 

is the use of a very small network to analyse small regions of the image. If, 

in order to reduce training set sizes and, consequently, training time a very 
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small "window" of pixels is used, the risk arises of returning to the original 
problem associated with phase unwrapping. If only a few pixels are analysed 
at any one time, the danger occurs of data being so localised that the 

network behaves in the same way as a highly computationally complex 
version of a simple point-to-point algorithm, with local errors being 

propagated through the final result. It was thought that an optimum solution 
to the phase unwrapping problem may lie between these two extreme cases. 
Investigation was carried out into neural network based regional phase map 

analysis. 

4.5.2 Unwrapping by regions 

For the purpose of this work, the images used were ITEX and Targa format, 

that is, images consisting of 262,144 pixels, arranged in a square of 512 x 
512. This thesis concentrates on the unwrapping of phase images of this 

size and format. 

As previously described, if a single "tile" of 512 x 512 phase values is used, 

the result will be one of extreme computational complexity. However, if a 

region-based unwrapper is configured where the region of interest is very 

small, then the original problem is encountered; a highly complex point-to- 

point unwrapper is achieved. 

The smallest viable tile 

If a tile of 4 pixels is used, that is, a2x2 matrix, the point-to-point problem 

will undoubtedly occur. Simply comparing two adjacent values, even in two 

directions is no advance on the original point-to-point algorithm. The 

smallest tile that would be a viable basis for a neural network based 

unwrapper is, therefore a 9-pixel region, i. e., a3x3 pixel matrix. 
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Network configuration 

Following the previous successes of the backpropagation paradigm for phase 

unwrapping, the same network type was used. The network was configured 

to analyse a 3x3 pixel matrix, so consisted of 9 input neurons. Following 

previous work, the network would be designed to produce a "high" output at a 

wrap position, so the number of output neurons was the same as the number 

of input neurons. For initial experimentation, the same number of hidden 

neurons was again used. Learning rules and transfer functions were used 

following the successes of previous experiments. 

The first network was, therefore, configured as follows 

"9 input neurons 

"9 hidden neurons 

99 output neurons 

" Sigmoid transfer function 

" Normalised-cumulative-delta learning rule 

Figure 4.17 shows a schematic diagram of the network used for this 

experiment. 
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Figure 4.17: The 9 input tile unwrapping network 

Training the network 

Earlier experiments have also shown that networks achieve better results 

when trained with "real" data. Training data was taken from 3x3 pixel regions 

of real phase maps. The first phase maps had a high signal to noise ratio, as 

shown in figure 4.18. The phase map shown in this diagram is the result of 

performing an FFT analysis on straight fringes projected onto a flat, matt 

white surface. The data were chosen from random points within the image. 

Each set of data was analysed manually to ascertain where a wrap occurred 

and output values added to each set of data accordingly. Where no wrap 

occurred, the desired output value was left as zero, with a1 being inserted 

where a phase wrap was present. Each training vector was thus formed. An 

example of selected training vectors is shown in appendix 1. 
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Figure 4.18: Low noise wrapped phase distribution 

With the training data complete, it was possible to train the first network. The 

initial limit was set at 10,000 presentations and the network set to train. 

Training continued for the whole session, with the RMS error failing to reach 
the specified convergence criterion. The values did converge after 

approximately 8,000 presentations, but to a value slightly above the 

convergence criterion (CC). The distribution of weights throughout the 

network was approximately Gaussian, according to the weight histogram. 

When the network had been fully trained, it was tested. The test data were 

taken from the same images as used for the training data, but from different 

areas of those images. This was to avoid using the same values for both 

training and testing the network. Again, if the network is tested using the 

training data, this simply proves that it has learned the patterns presented to 

it in that data and is not representative of how the network will perform. 

79 



4.5.3 Results 

The results from presentation of the test data to the network are shown in 

appendix 1. For a clean, low-noise, real image, the network appeared to be 

producing an accuracy of 100%. Where the desired output expected a 
1.0000, the network gave 0.959 and where a low output (0.000) was 
required, the highest value given by the network was 0.018. 

While the above results appeared to show the network to be 100% accurate 
in its recognition of the position of various phase wraps, it must be borne in 

mind that these results had been achieved using only low-noise, high quality 
images. As previously described, most "real world" wrapped phase 
distributions are far from clean and will invariably contain significant noise. 
To test the network further, a second test set was created. This used the 

original data extraction program to take phase data from a noisier phase 

map. The phase map used for this experiment is shown in figure 4.19. 

Using the equation described in section 4.4, the signal to noise ratio of the 

image was calculated as 36.124dB. Here, the noise value was calculated 

using the Fourier transform of the original image. The central peak of the 

FFT was isolated and classified as signal, the rest of the data being taken as 

noise. This method of calculation can be somewhat arbitrary, as the size of 

the filter used to isolate the peak in the FFT is not always clearly defined. 

Several regions of spot noise can be seen in this image. Conventional point- 

to-point unwrapping algorithms can easily be confused by this kind of noise 

and, although achieving high accuracies on the initial test data, the tile 

unwrapper had not been trained to deal with noise of this kind. A test file of 

25 vectors was constructed as shown in appendix 1. 
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Figure 4.19: A noisy wrapped phase distribution 

When presented with the new test data, the network gave the results shown 
in appendix 1. Again, all desired high outputs were greater than 0.95 and low 

outputs less than 0.02. The network appeared to be "ignoring" the spot noise 

present in the test file and giving an accurate diagnosis of phase wrap 

position. 

As the results given by the initial wrap detector appeared good, the network 

was Flash Coded to produce a fully functional unwrapper. As with previous 

work, the Flash Code function of the NeuralWorks package provided network 

simulation code to perform the wrap detection. Further code was required to 

turn this into a useable phase unwrapping system. 

The initial unwrapping code was designed to test the viability of the Flash 

Coded network by unwrapping a single tile. The program read a series of 

phase values from an image, presented them to the network and wrote the 

network outputs to an array. The positions of the values in the array 

correspond to the positions of the phase wraps in the region of interest. The 

phase values were then updated by ±2n at the points specified by the neural 

network. 
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The results of the initial experiment show that it is theoretically possible to 
use a "tile" system such as this as the basis for phase unwrapping. The 

unwrapping of an entire 512x512 pixel wrapped phase distribution is, 
however, much more complex. The results from a number of tiles must be 

combined to give a complete unwrapped phase distribution. The next 
problem to be addressed was how to combine the wrap detector tile with a 
complete wrapped phase distribution. 

The size of the tile for the initial experimentation has been defined above as 

a 3x3 pixel square. This size was arrived at for reasons of computational 

complexity. If a large tile was used (the maximum tile size being equal to that 

of the image - 512x512 or 262,144 pixels), the network needed would be 

extremely complex. If, however, the smallest possible tile of 2x2 pixels was 

used, the result would be an extremely complex point-to-point unwrapping 

algorithm. In the latter case, the same problems as encountered with 

Schafer's algorithm would arise and the entire object of the research would 

have been somewhat defeated The use of a tile unwrapper still poses a 

number of problems. 

The connectivity problem 

Consider a portion of an image as shown in figure 4.20. If a 3x3 pixel tile is 

positioned with tile pixel a overlapping image pixel x, it will correctly unwrap 

its allotted section. If the window is then repositioned at image pixel x+3, 

again, a satisfactory unwrap of the new tile is likely to occur. Although two 

successful tile unwrapping operations may well have been carried out, it is 

also likely that the problem of a "missed wrap" may occur. If a phase wrap is 

present vertically in the image between pixels x+2 and x+3, no calculation will 

have been made to detect its presence. The most sensible method of 

allowing for this would appear to be to convolve the tile and the image in a 

similar manner to the approach taken with the six pixel line unwrapper in the 

initial experimentation. 
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Figure 4.20: Tile convolution. 

Tile convolution 

Figure 4.21 shows how the input tile and the input layer of the network are 

related. Each tile element has a corresponding single input neuron 

The tile was convolved with a 512x512 wrapped phase distribution, which 

yielded an intermediate image showing the position of the wraps. The first 

image used to test the system is shown in figure 4.22 and the output from the 

wrap detector in figure 4.23. Calculation of signal to noise ratio using the 

equation described in section 4.4 yielded a value of 38.622dB Conventional 

code was used to perform the 271 phase shifts required and the result of the 

unwrapping procedure is shown in figure 4.24. In order to produce the final 

code for the unwrapping system, the "C" code generated by the NeuralWorks 

package was translated into IDL (Interactive Data Language). 
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Figure 4.21: Tile network input configuration. 

Figure 4.22: 2-D wrapped phase distribution with added noise 
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Figure 4.24: Unwrapped phase distribution. 
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Figure 4.23: Output of tile wrap detector. 
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Chapter 5: Fringe optimisation 
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5 Fringe Optimisation 

5.1 Introduction: What is fringe optimisation? 

While the problem of classical optimisation is well documented, the need for 
the optimisation of projected fringe patterns has not been the subject of 
extensive research. Previous chapters have discussed the need for and 
implications of fringe analysis as a measurement tool. During a 
measurement operation a fringe pattern is projected onto an object's surface, 
the returned image is processed and a result is given. The result can 
generally be classified as "good" or "bad" - The analysis gives an acceptable 
result, or the analysis fails to work or it works badly. This leads to three 

possible questions: 

For any given surface, is there a fringe pattern that produces a 

good result? 

9 How can the quality of that result be defined? 

" How can such a fringe pattern be found? 

Until recently, this was a problem that was difficult to address as it was not 

possible to have accurate control over the characteristics of a fringe pattern 

on-line. With the development of the twin-fibre adaptive interferometer[1], 

however, dynamic fringe pattern optimisation is now feasible. Consider a 

conventional fringe analysis system as shown in figure 5.1. The system has 

three major components: a projection device, an image capture device and a 

digital computer. The projection device usually consists of an interferometer 

or grating to produce a fringe pattern that is projected onto the object's 

surface. The fringe pattern is viewed through a CCD camera, which is 

connected to a frame store, and all analysis is carried out by a digital 

computer. This type of system is adequate for analysis of fringe patterns 

88 



and has, for several years, been the accepted method. Its main drawback, 
however, is the inability of the user to have control over the pattern which is 
projected. All gratings provide a fixed fringe pattern and the adjustment of 
most interferometers is an extremely labour intensive task. If the system is 

required to analyse a number of objects whose shapes vary considerably, a 
fixed fringe pattern may not be suitable. It was with this in mind that the 
twin-fibre adaptive interferometer was developed[1 ]. Consider the example 
as shown in figure 5.2. Here a surface is shown onto which fringe patterns 
have been projected. Figure 5.2(a) shows a fringe pattern which is likely to 

produce a good final result. However, the fringe pattern shown in figure 
5.2(b) is less satisfactory. The fringe spacing is very small, the fringe 

contrast is very low and the overall intensity of the image is very low. These 

criteria will mean that a successful measurement is less likely. 

Figure 5.3 shows a schematic diagram of the interferometer. The light is 

supplied by a 15mW helium-neon gas laser, which is launched into an 

optical fibre. The optical fibre is split to provide two coherent light sources 

which, if closely spaced, behave in a similar manner to Young's experiment 

to provide an interference fringe pattern. The adaptive nature of the 

interferometer is reliant upon how the fibres are mounted. One fibre end is 

mounted in a fixed position inside the interferometer, while the other is 

mounted on a translating stage. Figure 5.4 shows the internal arrangement 

of the interferometer. If the position of the movable fibre is varied, it 

becomes possible to change both the spacing and the orientation of the 

fringes. The position of the translating stage is governed by a pair of 

MotionMaster positional controllers, manufactured by the Klinger 

Corporation. The controllers provide a means of accurately positioning the 

fibre in two dimensions. If the computer that performs the analysis of the 

fringe pattern controls the position of the fibres, it then becomes possible to 

achieve a "closed loop" system, where the fringe pattern is adjusted to suit 

the object to be measured before measurement actually takes place. Figure 

5.5 shows a schematic diagram of the "closed loop" system. The fringe 

pattern is provided by the twin-fibre interferometer, with the fibres being 
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positioned by the computer. The fringe pattern is viewed by the CCD 

camera and the image relayed to the computer's frame store. Here it is 

possible to make a decision regarding the quality of that fringe pattern and, if 

it is not satisfactory, it can be adjusted before any analysis takes place. This 

leads on to the question of how it is possible to produce an optimum fringe 

pattern for a given surface. 

Frnge projection device 

Object 

Figure 5.1: A conventional fringe analysis system 
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Figure 5.2(a): An acceptable fringe pattern 
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An experienced operator can look at a fringe pattern and decide whether or 

not it will be suitable to perform a measurement. A cursory analysis of how 

many fringes are present, how widely they are spaced or how bright the 

image is will give an indication of its suitability. A decision such as this is 

most often based on intuition and experience of the operator, not detailed 

mathematical analysis. As with many processes which rely on a human 

operator for input, the result will not necessarily be consistent. Two different 

operators may perceive the same situation slightly differently, which will 

inevitably lead to inconsistencies in analysis. Also, many factors may 

contribute to an operator perceiving the same situation differently on 

separate occasions. 

Now that reliable technology exists to adjust the attributes of a fringe pattern 

accurately, it would appear desirable to construct a system that could 

perform this task automatically. It is on this premise that experimentation 

has been conducted into fringe optimisation. 
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Figure 5.2(b): An unacceptable fringe pattern. 
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Figure 5.4: The adaptive interferometer internal arrangement. 

92 

Optical fibres 



Object 

Figure 5.5: The "closed loop" system 

How can a fringe pattern be defined? 

A number of parameters can be used to define the quality a fringe pattern in 

some sense. These are: 

" Number of fringes 

" Fringe spacing 

" Bandwidth (min/max spacing) 

" Orientation 

" Average intensity 

" Contrast/visibility 

" Noise level 

9 Other periodic features present in the image. 

Again, this can be viewed as a problem of recognition, which leads to the 

question: can a neural network be trained to recognise a good or a bad 

fringe pattern? 
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5.2 Experimental work: 

5.2.1 Initial optimisation experiments 

Initial experimentation involved the use of small neural networks to solve a 

simple, classical optimisation problem. This experiment attempted to locate 

the minimum value of a cosinusoidal function. 

Experiments with unsupervised learning 

For this experiment, a Learning Vector Quantisation (LVQ) network was 

used. A network was configured with 10 input, 10 hidden and 10 output 

neurons. Figure 5.6 shows a schematic diagram of the network. 
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Figure 5.6: Neural network for detecting minima of a cosine function. 



A training set was constructed using simulated data containing no noise or 
false minima. The completed training set contained 38 training vectors. 
When LVQ networks are used, the network specifies its own number of 
presentations of data, which is related to the number of vectors present in 

the training set. The network learned for 1710 presentations and when 
training ceased, the network was tested using a set of test data of the same 

size as the training set. The results obtained from the test set are given in. 

The minima were being correctly identified on approximately 60% of 

occasions. 

Most of the incorrect identifications occurred when "false" minima were 

present in the data. Consider the graphs shown in figure 5.7. Figure 5.7(a) 

shows a cosine function and the network's response. The minimum of the 

function is correctly identified. However, if a function is introduced as in 

figure 5.7(b), the network shows a tendency to become confused, as the 

response confirms. The false minimum in the function tends to draw the 

output away from the actual minimum value. 
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Cosine function 

I 

Network output 
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Figure 5.7(a): The network's response to a cosine function 
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Figure 5.7(b): False minima in the signal 
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Experiments with supervised learning 

A backpropagation network was configured, having 10 input, 10 hidden and 
10 output neurons and the training data presented to it. Figure 5.8 shows 
the network, which was trained using the same data set as previously 
described. Training for 10,000 presentations caused the RMS error to drop 

gently and smoothly but not reach its convergence criterion. The weight 
distribution approximated a Gaussian distribution and the results file showed 

a slightly better response than for the LVQ network. The high output values 

were not as high as the LVQ, but 75-80% of them were on target. Further 

training was initiated, and the network was left to train for 50,000 passes. 

After this extended training period, the RMS error reached a point slightly 

higher than the specified convergence criterion. The weight histogram 

approximated a Gaussian distribution, but showed a disproportionately large 

number of weights at the extreme ends of the graph. The results file showed 

that the high values were approximately 0.997, low values were 

approximately 0.004 and were on target 85% the time. 
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Figure 5.8: Cosine function minimum detector network. 



Comparison of the two methods shows that the neural network approach to 
the optimisation problem yields some satisfactory results and that 
backpropagation networks are best suited to solving simple minimum 
location problems. 

Considering the relative success of the neural networks is solving simple 
minimisation problems, it was decided to expand the scope of 
experimentation to include the problem specified in the original brief of this 
thesis. 

5.2.2 Neural networks for fringe optimisation 

Calculation of parameters 

The parameters by which a fringe pattern can be defined have been stated 

in section 5.1. The ones that are directly measurable are: 

" Mean intensity 

" Contrast/visibility 

" Number of fringes 

" Fringe orientation 

Mean intensity and fringe contrast/visibility are functions of the amount of 

light reflected from the surface that reaches the CCD array. Fringe number 

and orientation are the two parameters that are directly influenced by the 

position of the fibres in the adaptive interferometer. It is the latter two 

parameters which are most important in closing the loop, as they can be 

controlled directly by the computer which is performing the analysis. To fully 

automate the process, the camera would require a lens that can be operated 

automatically. To produce a completely "closed loop" system, a lens 

allowing automatic control of both focus and aperture would be desirable. 
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These parameters can be calculated thus: 

Mean intensity: 

For n pixels, the intensity value I at each pixel is recorded and the mean 

calculated by the following equation: 

(I1 +12+13+... In)/n 

Contrast and visibility 

Contrast and visibility are calculated in similar ways, both involving a 

relationship between minimum and maximum intensity: 

Contrast = (Imax - Imin) / Imax 

Visibility = (Imax - Imin) / (Imax + Imin) 

To ascertain which of these values would be best to use for the analysis, 

both were calculated for a known, good fringe pattern. The fringe pattern 

used for the calculation was a pattern as shown in figure 5.9, having 64 

fringes and a high signal-to-noise ratio 

For a series of camera apertures, the maximum and minimum intensity 

values were recorded for the same fringe pattern, which is shown at its 

brightest (aperture=f2.8) in figure 5.9. From these values, the contrast and 

visibility were both calculated for each aperture. The results are shown in 

figure 5.10 
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Figure 5.9: Highest intensity image 

f-stop I max Amin Contrast Visibility 

2.8 240 140 0.5833 0.4118 
4 175 75 0.5714 0.4000 
5.6 135 65 0.5185 0.3500 
8 105 60 0.4286 0.2727 

11 90 60 0.3333 0.2500 

Figure 5.10: C&V vs. aperture. 

The table shows how contrast and visibility vary with camera aperture. It can 

be seen from the results that calculating contrast gives a range of values 

approximately 1.5 times that of visibility. This suggests that contrast would 

be a better value to use, particularly if the values of Imax and Imin are close 

together. 

Fringe number: 

Simply calculating the number of peaks and troughs across a fringe pattern 

is not an accurate enough representation of the number of fringes present. 
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This method will not allow for any localised maxima and minima. A better 

method for calculating this parameter is by mean subtraction. Firstly, the 

mean intensity value across a fringe pattern is calculated. This value is 

subtracted from each individual intensity value, leaving an intensity 

distribution containing both positive and negative values. The number of 
times the distribution crosses zero is then calculated, the number of zero 

crossings being twice the number of fringes. The spacing of the fringes can 

easily be changed using an adaptive interferometer, as previously 
described. Figure 5.11 shows an intensity profile across a cosinusoidal 

fringe pattern. The illumination is uniform across the whole image and signal 

to noise ratio is high. In this case, the mean subtraction method will give a 

value for the number of fringes present in the image. 

Figure 5.11: Typical intensity profile. 

Fringe orientation: 

Another parameter, which is easily controllable using adaptive 

interferometry, is fringe orientation, also referred to as tilt. A similar analysis 

as for fringe number is carried out at various orientations throughout the 

fringe pattern. The frequency of fringes in a particular direction will give an 

indication of their orientation. 
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5.2.3 Experimental methods 1 

It was proposed that a neural network be configured to analyse these four 

parameters which would give an output dependent on the quality of the 

pattern. The output from the network would then be used in conjunction with 
the control system of an adaptive interferometer to adjust the fringe pattern 

until it was optimised. 

Separate networks for each parameter 

The first method proposed to solve the problem was to use a separate, 
discrete neural network for each parameter. The idea involved training each 

network to recognise the validity of a separate parameter and then 

combining the outputs from the array of networks to produce the final result. 

A schematic diagram of this layout is shown in figure 5.12. 

_ fl JPUL 11v- vi i ... i 

Output neurons 

Figure 5.12: Multiple network configuration 
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For the purpose of training the networks, the image was split into separate 
regions of interest (ROls). For the separate ROls to retain the same aspect 
ratio as the original, image, it was necessary to keep to a "square" pattern. 
The smallest number of square ROls was, therefore, four. Initial 

experimentation began by dividing the image into four ROls, each having a 
size of 256x256 pixels. From this configuration, four contrast values could 
be calculated for each fringe pattern. It was also decided to take into 

account values at the centre of the fringe pattern, i. e. the brightest point in 
the image. This would lessen the effect on the data of any darkening or 
other aberrations at the edges of the image, which may have been caused 
by the lens or CCD camera. Thus, a fifth ROI was established at the centre 

of the image. This region was the same 256x256 pixel square as the 

previously described regions and was equidistant from all four edges of the 

image. Figure 5.13 shows the relative positions of the five regions. 

ýi 

_. _ _ý 

Figure 5.13: Five regions for data acquisition 

Contrast 

The first experiment used a backpropagation network to determine the 

contrast of a fringe pattern. 
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Data acquisition 

To calculate contrast, an intensity profile was recorded for each region. The 

profile was take vertically through the centre of the ROl. Figure 5.14 shows 

a typical intensity profile of 256 pixels. From this profile it was possible to 

calculate the maximum and minimum intensity values for the region. 
Contrast could then be calculated from the equation 

C=(Imax-Imin)/Imax 

Application of this equation to each ROI resulted in a total of five values of 

contrast for each image. To complete the training set, supervised learning 

techniques required an output value. For this experiment it was decided to 

label regions whose contrast value was greater than or equal to 0.500 as 

"good" and those less than 0.500 as "bad". This could be simply 

represented by a high, or 1.000, value for each good image and a low, or 

0.000, for each bad image. Fifty images of varying contrast were used to 

construct the training set. 

Figure 5.14: 256 pixel intensity profile. 
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Contrast network configuration 

A backpropagation network was initially configured to analyse the contrast 
data. The configuration stemmed from earlier successes with 
backpropagation networks and consisted of the following 

95 input neurons 

"5 hidden neurons 

"1 output neuron 

" Sigmoid transfer function 

9 Normalised-cumulative-delta learning rule 

The learning rule was selected to improve training by increasing the 

likelihood of random data presentation. Figure 5.15 shows the network. 
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Figure 5.15: Contrast optimisation network. 



Training the network 

The training limit was set to 10,000 presentations and the network left to 
train. Initial behaviour of the network appeared to show that training was 
progressing badly. The RMS error graph showed no convergence and the 

spread of weights throughout the network appeared random, as was the 
initial state. Before attempting to rectify the training problem, it was 
necessary to ascertain how badly the network had actually trained. First, the 

network was tested using the same data as for the training set. This was 
done to test if the network had learned to recognise any of the specific data 

in that set. It appeared that the network had actually learned to recognise 

most of the data with which it had been presented. To test the network 
further, it was necessary to test using different data from the training set. A 

test set was constructed in the same manner as the training set and the 

presented to the network. The results showed that, although the RMS error 

and weight distribution pointed to poor training, the network was recognising 

the difference between good and bad contrast values on 93% of occasions. 

In each case, the wrongly categorised values were low desired outputs, 

which were considered by the network to be high. 

Number of fringes 

Experimentation was carried out to investigate the number of fringes in an 

image. The first network was a backpropagation network configured to 

analyse the number of fringes in each region of interest as previously 

defined. The network utilised 5 input, 5 hidden and 1 output neuron. The 

training data was taken from the same images as for the previous 

parameters. 
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Collecting the training data. 

Previous experimentation has shown that better results can be achieved if a 
neural network is trained using real rather than simulated data. With this in 

mind, it was necessary to collect a number of representative data from real 
images in order to train the network. The image was divided into four 

regions and the number of fringes in each region counted. Firstly, an 
intensity profile was recorded across each of the regions. The average 
intensity value was calculated for each profile and this value was then 

subtracted from each value in that profile. The number of zero crossings 

was calculated and divided by two to give the total number of fringes in the 

region. The fringe number was calculated in this manner to avoid the effects 

of localised maxima and minima at the peaks and troughs of the intensity 

profiles. Intensity profiles were recorded for four regions in thirty images 

containing straight fringes of varying period. This enabled a set of 30 

training vectors, each containing four fringe number values to be 

constructed. To complete the training vectors, the corresponding fringe 

number was added to present to the single output neuron. 

Training the network 

The training limit was set at 50,000 presentations and the network was left to 

train. At the end of the training period, the distribution of weights appeared 

to be very poor, as every weight was either high or low with no intermediate 

values present. The network was tested, but results were poor, with all 

outputs showing a value of 0.4285, regardless of input. 

The hidden layer was pruned to investigate the gradual removal of hidden 

neurons. One by one, hidden neurons were removed and each time the 

network was trained with the same data. The results for the pruning exercise 

were as shown in figure 5.16. 
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No of hidden 
neurons 

Effect 

5 All outputs reading 0.5243 

4 All outputs reading 0.5364 

3 All input weights high, all hidden weights 
low, all outputs reading 0.5364 

2 All weights high, all outputs reading 0.5364 

Figure 5.16: Effect of pruning hidden neurons. 

As the removal of hidden neurons was having no positive effect on the 
results, experimentation with multiple hidden layers was conducted. The 
hidden layer was returned to its original state and a second hidden layer was 

cloned from it. This was connected between the existing hidden and output 
layers. Training commenced using the same data as for the previous 

experiments and continued for 50,000 presentations. During the entire 
training period, the RMS error remained steady at approximately 0.5 and 

when training was complete, the network showed a reasonable spread of 

weight values. However, after testing and analysing the results file, the 

same phenomenon appeared to be occurring. All the output values were 
identical, regardless of the input. 

Although backpropagation networks had been both simple to implement and 

reliable in their results for the earlier wrap detection problem, this initial 

experimentation showed them to be less suited to the problem of 

optimisation of this parameter. It was therefore decided to investigate the 

use of an alternative network type for this analysis. 

The same problem of optimising fringe number was tackled using a General 

Regression Network (GRN), the theory of which has already been discussed 

in chapter 3. In order to make use of the existing training and test data, the 

network was configured to have five input neurons and one output neuron. 

The network does not contain a conventional hidden layer, but two 

108 



intermediate layers. These are the pattern and summation layers. The 
smallest default values for these intermediate stages given by NeuralWorks 
were 50 pattern and 2 summation neurons. The network, shown 
schematically in figure 5.17, was configured with the following parameters: 

5 input neurons 

50 pattern neurons 

2 summation neurons 
1 output neuron 
Euclidean summation function 

Tau = 1000.00 

Reset factor = 0.0000 

Radius of influence = 0.050 

Sigma scale = 1.0000 

Sigma exponent = 0.5000 

The initial network was trained as for previous experiments. During training, 

the RMS error appeared as shown in figure 5.18. The graph showed this 

throughout the duration of the training session. After 50,000 presentations 
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Figure 5.17: Fringe number GRN. 



of the training data, training ceased, although there appeared to be an 
unusually large number of high weights. In spite of the weight distribution 
and unusual behaviour of the RMS error, the results showed an accuracy of 
96.9%. 

Mean intensity 

Calculation of mean intensity followed the method shown previously in the 

calculation of fringe number. The same ROls were used for collection of 
data and a single intensity profile taken across the centre of each. The 

standard mathematical method for mean calculation was employed, i. e. the 

sum of all values was calculated which was then divided by the number of 

values. The result of this was five mean intensity values for each image. As 

an ideal fringe pattern should contain equal regions of light and dark pixels, 

with intensity ranging from 0 to 255, it follows that the average intensity 

value for the image should be of the order of 127. A training set was created 

with low intensity values being assigned a low (0) value and high intensity 

values being assigned high (1) values. An intensity value that fell into the 

"good" region was assigned a value of 0.5. The network outputs were 

scaled to values between 0 and +1. Consultation of the NeuralWare 

reference guide [2] and results obtained from previous experimentation have 

shown that backpropagation networks function best when outputs are 

confined to this region. A backpropagation network was constructed as 

shown in figure 5.19 for analysis of this parameter. The network was set to 

train for 50,000 presentations. During the training process, the RMS error 

graph appeared to remain high, refusing to reach its convergence criterion 

Figure 5.18: RMS error graph. 



before all 50,000 passes were complete. The weight spread approximated a 
Gaussian distribution, but showed high values for extreme low and high 

weights. After training, the network was tested, again using different data 
from that used in the training set. The results file shows that the network 
achieved correct results on 81% of occasions. While this value is 

reasonably high, it does not compare favourably with the results given by 

previous experiments, which have been showing success rates in the region 
of 90-95%. 

Fringe orientation 

Two methods for determining the fringe orientation were considered. 

1. Cross-profiles. 

In each of the regions of interest, both horizontal and vertical intensity 

profiles were recorded. Figure 5.20 shows the directions in which the 
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Figure 5.19: Backpropagation network for mean intensity analysis 



profiles were recorded. The profiles were then compared to give an 
indication of the orientation of the fringes in that particular region of interest. 
The result from this method is five values for orientation. 

Figure 5.20: Cross-profiles 

2. Fan-out profiles 

A series of intensity profiles was recorded throughout the whole image in the 

directions shown in figure 5.21. The number of fringes in each direction was 

counted as previously described and the counts compared. The result from 

this method is five fringe counts, one for each direction shown in the 

diagram. This also provided the same number of inputs as for the previously 

described parameters. 

11: 

NB Profiles were also recorded in the c entre ROI 



Figure 5.21: Fan-out profiles 

From the variation in number of fringes with direction, it is possible to 

determine the orientation of the fringes in the pattern of interest. The 

problem remained of how to quantify the output of the network to determine 

the actual orientation of the fringes. Using a network of this size would 

cause problems in determining exactly how far from the horizontal the 

fringes were, so the task of defining simply whether the fringes were 

horizontal or not was initially addressed. The most complex output that the 

network would be asked to give was in which direction the fringes were tilted. 

The first experiment used the following system: 

1. Determine fringe counts in each direction of the "fan-out" profiles 

2. If fringes are horizontal, assign a zero to the desired output. 

3. If fringes tilt anticlockwise, assign -1 to the desired output. 

4. If fringes tilt clockwise, assign +1 to the desired output. 
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A general regression network was configured to test this theory. Figure 5.22 
shows the network used for this experiment. 

The training parameters were as described for previous networks. The 

network was trained for 10,000 presentations and tested. The network 

outputs for this experiment gave unsatisfactory results. Instead of showing 

the required directions, all outputs were in the same region, showing low 

values, all of which were positive. Again, previous experimentation was 

referred to. As described earlier, best results are achieved if the network 

outputs are between 0 and +1. In order to achieve better results with the 

orientation network, the training data were re-scaled to try and improve 

training. Instead of using values between -1 and +1 for the desired outputs, 

the values were re-scaled to be in the region 0 to +1. The new outputs were 

decided thus: 
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Figure 5.22: GRN for orientation analysis. 



" If fringes are horizontal, assign a value of 0.5 to the desired output. 

" If fringes are tilted anticlockwise, assign 0. 

" If fringes are tilted clockwise, assign +1. 

The network was re-trained using the re-scaled outputs. During the training 

period, the spread of weights approximated a Gaussian distribution, but the 
RMS error remained high and did not reach its convergence criterion. The 
first results file showed a success rate of 88%. Experimentation was carried 
out to reduce the number of pattern neurons to ascertain the effect on 

successful training. The default value set by the NeuralWorks package was 
51 and the results for this are described above. The minimum number of 

pattern neurons allowed by the package is 10, so a network employing this 

minimum configuration was trained. The number of pattern neurons was 

gradually increased; the results were as shown in figure 5.23. It can be seen 

that increasing the number of pattern neurons gradually decreases the 

accuracy of the network until 14 are used, when accuracy increases to 88% 

and remains constant at this value. It follows from this that the minimum 

number of pattern neurons required to achieve maximum accuracy is 14. 

Number of pattern 

neurons 

Network overall 

percentage accuracy (%) 

10 84 

13 84 

14 88 

15 88 

20 88 

25 88 

51 88 

Figure 5.23: Effect of varying number OT pattern nein ui i, -). 
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5.2.4 Experimental methods 2 

The use of multiple networks to address the optimisation problem is 

extremely flexible, as, if it is necessary, each parameter's network can be re- 
trained separately. However, the need for extra processing to combine all of 
the network outputs adds a further level of complexity to the overall system. 
It was decided to follow a different approach to the problem by using a 
single, larger network to analyse all parameters simultaneously. Figure 

5.24 shows a schematic diagram of the new "global" network. 

Contrast inputs 

T Tý Fringe number inputs 
Intensity inputs 

Global optimisation network 

0 Input neurons 
" Output neurons 

Figure 5.24: The "global" optimisation network 

Data acquisition 

Orientation inputs 

i 

The data was acquired in a similar manner to those experiments already 

described. The image was split into four regions and intensity profiles read 

in the centre of each region and a fifth intensity profile was read from the 

centre of the image, where it was likely to be brightest. From these five 

profiles, the three parameters mean intensity, number of fringes and visibility 

116 



could be calculated as described earlier in section 5.2.2 
. Instead of using 

four separate training sets, a larger, single data set was acquired. The net 
result of the data acquisition exercise was a set of data that could easily be 

turned into training vectors for a number of different paradigms. Each image 

yielded 20 input values, 5 for each parameter. An output response for each 

parameter in each training vector was added according to the user's decision 

on image quality to complete the training set 
training set is shown in appendix 3. 

Experiments with backpropagation 

An example of a global 

Initial experimentation with a "global" optimisation network employed the 

backpropagation paradigm. As previously described, there are four 

parameters that can easily be measured and controlled. These are: 

" Mean intensity (Im) 

" Fringe contrast (V) 

" Fringe number (N) 

" Orientation (T) 

It has been calculated previously that the optimum parameters for a fringe 

pattern are, 

Im = 127 

V>_0.7 

N= 64 

T=0.5 (horizontal) 
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The tolerance bands for these parameters, as seen by the network, are 

100<_Im<_150 

55<_N<_65 

0.4 <_ T <_ 0.6 

0.5<_V<_ 1 

The acquisition of data for the global network was carried out in a similar 

manner as previously described. However, instead of collecting data for 

individual parameters, all data was collected simultaneously. The result of 

the data acquisition exercise was a set of 5 data per parameter, giving a 

total of 20 data values for each training vector. Instead of a single output, 

the network provided 4 outputs, one corresponding to each parameter. An 

example of a training set of this type is shown in appendix 3. The network 

used for this experimentation is shown in figure 5.25. The backpropagation 

network consisted of a single input neuron for each data value and 20 

hidden neurons. 
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The network was initially trained for 20,000 presentations. The RMS error 
remained high throughout training and the weight histogram showed a 
tendency towards overtraining. The results file showed limited success at 
this initial attempt. With the possible tendency towards overtraining, 
experimentation with fewer hidden neurons was carried out. Training and 
testing with 19 hidden neurons produced the following results. As before, 
the "success rate" of the exercise is given. This is shown as a percentage of 
the number of network outputs that match the desired outputs. 

Im = 40% 

N= 65% 

T= 100% 

V=95% 

This translated to an overall success rate of 75%. 

The high result for the fringe orientation is noteworthy. This is probably due 

to the fact that this parameter has the most "definite" output and that it is 

relatively easy for the network to learn three definite "states". The contrast 

result was also promising, with errors tending towards "loud"values. Im and N 

values were less satisfactory. The network appeared to be confused as to 

the validity of some of the N values. The parameter causing most concern 

was that of Im, as, according to the results file as all Im values were passed 

as "good". In an attempt to remedy these problems, new training data were 

taken from real images. The existing network was then trained for 20,000 

presentations. Along with the new training data, experimentation was 

carried out with further reductions in the number of hidden neurons. The 

results of this experimentation are shown in figure 5.26. 
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Experiment Im % N% T% C% Overall % 
Original data & network 
20,000 passes 

40 65 100 95 75 

Im re-scaled to 0<_ lm s1 
20,000 passes 

91 57 100 98 87 

Im re-scaled, 

50,000 passes 

97 86 100 95 95 

Original data, 18 hidden 

neurons, 20,000 passes 

42 45 100 98 71 

Im re-scaled, 18 hidden, 

20,000 passes 

94 45 100 89 82 

t-igure o. /-e: Kesults tor training the global network. 
The results show that the best success rate was achieved with the original 

network with the I, values re-scaled to lie in the region 0<I, <_ 1. Best 

results were also achieved when training was extended to 50,000 data 

presentations. 

5.2.5 Comparison of the two methods 

Experimentation has shown that it is possible to use a neural network to 

make decisions regarding the quality of a fringe pattern. The two methods 

described in section 5.2.2 show the relative merits of using either a separate 

network for each measurable parameter or a single network to analyse all 

parameters simultaneously. The basic difference in the two methods lies in 

their computational complexity. The use of separate networks for each 

parameter has the advantage of each network's ability to be trained or re- 

trained individually. If the performance of a network for one parameter 

becomes questionable, it can be re-trained singly, using a much smaller data 

set. This also means that training for a single parameter will not affect the 

network outputs for the other parameters. However, the necessity to 

combine the network outputs to produce a final result adds an extra level of 
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complexity to the system. The use of a "global" optimisation network, while 
not as flexible when re-training is required, combines the whole analysis into 
a more convenient package. The results shown in appendix 3 show that re- 
training can affect the outputs for other parameters. This, however, is not 
always detrimental to the system's operation. The net result of the combined 
global network is a simple, single piece of code to accomplish the complete 
analysis. 

5.3 An operational optimisation system 

When validation of the technique was complete, a system for driving the 
adaptive interferometer was configured, thus producing a system as shown 
in the schematic diagram in figure 5.27. 

The computer was connected to both the adaptive interferometer and the 

CCD camera to achieve the closed loop system previously described. The 

camera was connected to a frame store within the PC to enable video frames 

of the fringe patterns under analysis to be taken. From these video frames, 

the above parameters were calculated. The results of these calculations 

were then passed to the neural network. The output from the network was 

passed to software driving the adaptive interferometer, completing the 

closed loop system that enabled the fringe pattern to be optimised before 

any analysis took place. The block diagram in figure 5.28 represents the 

closed loop system. 
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Object 

Figure 5.27: The closed-loop optimisation system 

5.4 Evaluation of the optimisation system 

The experiments described above have shown that it is possible to ascertain 
the quality of a fringe pattern and, therefore, its suitability for measurement 

of surface contour before actual measurement takes place. Two alternative 

approaches to the problem have been made and compared in section 5.2. 

This comparison has shown that the second approach, using a single 

network to analyse all parameters simultaneously, is the most effective. The 

fully trained network was FlashCoded as described earlier in the chapter. 

This resulted in "C" code that replicated the trained network's behaviour. 

Appendix 4 contains an example of the FlashCode for the global network. 

To achieve a fully operational optimisation system, it was necessary to 

embed the FlashCode into a program to perform all necessary data 

manipulation. The optimisation system was designed to operate in the 

following manner: 
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1. Assess status of interferometer driver motors. 
2. Initialise frame store. 
3. Grab live fringe pattern from CCD camera. 
4. Extract vertical intensity profiles from each of the 5 ROls. 
5. Extract intensity profiles from each direction for orientation calculations. 
6. From the vertical intensity profiles, calculate Imean, Imax and Imin" 

7. Calculate the number of fringes present in each ROI. 
8. Calculate contrast using 'max and Imin" 

9. Present the 20 values calculated in 4 to 8 above to the optimisation 
network. 

10. Analyse the output from the network and if any faults exist pass a control 
signal to the interferometer drivers to index the fringes in the correct 
direction or alert the user to the status of intensity and contrast. 

11. Analyse the fringe pattern again to ascertain the effect of this change. 

This is repeated until the network recognises a fringe pattern that conforms 

to all the optimisation criteria and which will be suitable for measurement or 

until a default number of iterations has been reached. For the purpose of 

experimentation, this value was set to 15. A finite number of iterations was 

specified, as some fringe patterns are unlikely to meet any of the 

optimisation criteria. These are ones that contain faults such as excessive 

noise or where the object surface does not reflect the fringe pattern. In 

cases such as this, no amount of adjustment of the fringe pattern will 

produce a satisfactory result. 

12 
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Figure 5.28: Block diagram of the final optimisation system. 

The following figures show how the system behaves when presented with a 
poor quality fringe pattern. Figure 5.29 shows the initial fringe pattern 
presented to the optimisation system. The pattern was projected onto a flat, 

matt white surface and the interferometer adjusted to give too many fringes. 
Here, the fringe number is 85,19 more than an ideal pattern. The other 

parameters were left in the "ideal" range for the purpose of this initial 

demonstration. 

w., M 

Yw +V v 

Figure 5.29: Pattern with too many fringes 

Figure 5.30(a) shows the fringe pattern after the first iteration. The neural 

network has analysed the image and reached its first conclusion. Figure 

5.30(b) shows the output from the network for this iteration. The network has 

decided that there are too many fringes in the image and moved the 
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interferometer stepper motors a finite amount to reduce the number of 
fringes present in the image. 

VIýVbItl-'+IPVY'ý'1N�. *-fr .. tJ. ý. Ai<, yýýW!: h/bYrw . 
MýWý. 'DýF'... PV-iýw:. .. ýH/h'i. l. +rn"". +l_. ri.: ew+ 
N1bR. "A! e. lViv^s.. s. rH+i"'In . w.. A'ºnwT"Y,. 

+Ml -'.... r-.. wre.. }gY1. "+ý. w/.. M n+w. rvvýyrw-pi-.. 
Syr,. ý. ". MS: ýw.. ºI. Nb.., ern"ý, ri� .. f. -MTV-... ý. ý.. -. .. __... 

. - 

. +. '-wtº+"w: +, a+sw, -ww4, i,.. 4.. i+r. a«.. o... w<. r'«e r'wr. +, w,.. ..., .......... ý.. .. w ,.,... ý-, .. +. -,.. ýPp11YMYrAY! �rý"lM\iP? t., ýv u. +. -". w.. .... ... _. a ..... ..... 

ý 4" ' v Rhsww 4w. " . ýý . yN +r 

Figure 5.30(a): Fringe pattern after first iteration. 

lackprop optimisation system versi,, n 1.3o. 
(: urrent MotionMaster error state is: E00 NOERROR 

Loop iteration number 1 ** 

i , 3ýping current image... 

M-: ir values are: 0.411000 0.122000 0.123000 0.136000 
Fringe counts are: 0.310000 0.300000 0.360000 0.430000 0.430000 
Visibility values are: 0.463415 0.460526 0.458599 0.413333 0.445483 
'l'ilt values are: 0.550000 0.500000 0.430000 0.480000 0.470000 

Network outputs are: 0.282032 0.826404 0.367829 0.513631 

Mean intensity is too low. 
There are too many fringes in this image 
Visibility is OK 
Fringes are level 

Adjusting fibres... 
Current MotionMaster error state is: EJC NCERROR 

r A51 ' i__-L'_, 

r figure D. su(D J: NetworK outputs gor I IVVI aLIUI 1. 

Figure 5.31 shows the output from the system after 7 iterations. The system 

has decided that, after adjusting the interferometer 7 times, it had achieved 

an "ideal" image, with the optimum number of fringes. 
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Figure 5.31: The final fringe pattern. 

Figure 5.32 shows a more complex image 
. 

Here, more than one parameter 
deviated from the ideal. It can be seen that not only are there too many 
fringes, but the mean intensity is too low to enable an accurate measurement 

to be executed. The first reaction of the system is to try to correct the 

intensity problem. The output from the neural network is shown in figure 

5.33. At this stage, the lenses used with the system were not fully automatic, 

so the aperture had to be corrected by the operator. When this had been 

done, the system was able to continue with its optimisation procedure. The 

second image presented to the network was as shown in figure 5.34. Here, 

although the mean intensity was now correct, the problem of too many 

fringes was still present. The system then behaved as previously described 

to produce an optimised fringe pattern. Figure 5.35 shows the resultant 

fringe pattern after 9 iterations. The final result is a fringe pattern that 

conforms to the previously defined optimisation criteria. 
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Figure 5.32: Two parameters deviating from the ideal. 

R, ýwk, prc, p optimisation system versi(, n a 
, current MotionMaster error state is: E00 NOERROR 
** Loop iteration number 1 ** 
Snapping current image... 

Mean values are: 0.411000 0.122000 0.123000 0.136000 0.145000 
Fringe counts are: 0.310000 0.300000 0.360000 0.430000 0.430000 
Visibility values are: 0.463415 0.460526 0.458599 0.413333 0.445483 
Tilt values are: 0.550000 0.500000 0.430000 0.480000 0.470000 

Network outputs are: 0.282032 0.826404 0.367829 0.513631 

Mean intensity is too low. 
There are too many fringes in this image 

visibility is OK 
Fringes are level 

Adjusting fibres... 
Current MotionMaster error state is: FOt NOERROR; 

Figure 5.33: Network outputs for image shown in tigure 5.: 52. 
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Figure 5.34: Mean intensity corrected. 
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Chapter 6: Discussion 

This thesis has described novel approaches to two problems in fringe 

analysis. The use of interference fringes as a measurement tool is widely 
recognised and has developed over recent decades into a well established 

science. All the stages of the process, from image capture to height 

calculation, have been extensively researched and many solutions to the 

problems inherent in the system have been proposed. Also, almost parallel 

with regards to its timescale, the neural network has been developed as an 

alternative computing tool. Over the past twenty years, neural computing 

has matured as a science and its applications are increasing. It is 

noteworthy that, to date, little research has been carried out to link these two 

branches of science. One field in which the neural network excels over 

conventional computing is that of pattern recognition. Neural networks are 

particularly suited to this type of problem due to their inherently parallel 

architecture and the nature of the problem. The work presented in this 

thesis has attempted to marry the two fields to produce a parallel approach 

to some of the more difficult problems in fringe analysis, namely phase 

unwrapping and fringe pattern optimisation. 

6.1 Phase unwrapping 

Chapter 4 has dealt with the phase unwrapping problem. With few 

exceptions, the general approach to this particular problem has been 

algorithmically based. The philosophy behind the work presented here was 

to treat the detection of phase discontinuities as a variation on the theme of 

pattern recognition and introduce a method to solve the problem with a 

parallel computing architecture. Initial experimentation attempted to solve a 

much simplified version of the problem in order to investigate whether a 

neural network was capable of addressing the problem with any degree of 

success. The first findings of this methodology showed that the approach 

appeared to be flawed in its capability of detecting multiple phase 
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discontinuities in a given section of phase data. It is likely that in adopting 
this method, one of two problems was present. The network was either 
attempting to deal with too much data to reach an adequate conclusion, or 
the network itself was simply too complex. 

If too many data were present, it is likely that the network was being given 
too many alternative answers to process. Two states are common in neural 

computing when network errors fail to converge during training. If a large 

and complex network is presented with a small number of training data, 

training will be incomplete as the network will not have enough data from 

which to gain experience. Unless the situation arises where the network 

contains an extremely large number of processing elements and the training 

sets are very small, this state rarely occurs. More likely is the problem of 

over-training. This is a phenomenon that can be attributed to several factors 

and can be common with an inexperienced user. If the network is presented 

with a large number of training data and, more importantly, if the data is 

presented in a highly ordered manner, the network will over-train. When this 

happens, some or all of the processing elements will "lock". Here, each 

element will give a single result regardless of the input that is applied to it. 

Over-training also gives rise to a situation in which the network learns to 

recognise only one particular training set. When this occurs, presentation of 

data that differ even slightly from the original training data will give highly 

erroneous results. It is for these reasons that learning rules such as the 

cumulative-delta and normalised-cumulative delta were developed. These 

learning rules attempt to address the problem by ensuring that data are 

always presented randomly to the network. However, using these rules in 

the initial experiment to ensure that the training data were applied in a 

completely random manner did not improve the observed results. 

If a network contains a large number of processing elements, this can also 

hinder effective training. If too many hidden neurons are present in the 

network, they become under used and it is possible to "lose" information. 
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The decision to abandon the use of the 64 input network was taken as it was 
thought that this approach was far too complex for the early stage of the 
experimentation. The initial idea had simply been to prove that a neural 
network could be used to differentiate between phase wraps and 
discontinuities caused by noise, etc., rather than to produce a fully functional 

unwrapping system. Use of smaller networks showed far more promising 
results. Here, the networks were only called upon to recognise a single 
phase wrap in a given portion of a wrapped phase distribution. This 
immediately helped to provide a solution by drastically reducing the 

complexity of the problem. It also meant that the complexity of the training 

data could be reduced, thus reducing training time. The simplification 
immediately showed an improvement in results. With the reduction in 

computational complexity, the network was able to recognise a single phase 

wrap in a given section of phase data. It is interesting to note the difference 

in results given for different types of training data. If the results files for 

networks trained with real and simulated phase data are compared, the 

networks to which data from real phase distributions has been applied show 

a higher percentage accuracy. It was this discovery that forced the decision 

to use data from real images for training the networks that were to make up 

the final operational system. It may be argued here that training with "real" 

rather than "simulated" data allows the network to have experience of noise 

contained within the phase distribution. It will be able to learn when noise is 

present in order to reject it. If noise free training data are presented, it is 

possible that the network will become confused when presented with noisy, 

"real world" data. 

The convolution of the single wrap detector with a complete one-dimensional 

array of wrapped phase data showed the network's effectiveness. The 

comparison with Schafer's algorithm in chapter 4 is indicative of this ability. 

If the results are studied closely, it can be seen that, when a relatively clean 

wrapped phase distribution is used, both methods achieve a similar result. 

This is a very simplistic application and most wrapped phase distributions 

that are created during the fringe analysis process contain a significant 
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amount of noise. It is when spot noise spikes are present in the wrapped 
phase distribution that the neural network method excels, as subsequent 
results show. When a single spot noise spike is encountered by Schafer's 
algorithm, the algorithm immediately interprets the noise as an extra phase 
wrap. The result of this is that an extra 2n phase shift is introduced and that 
this error is propagated throughout the remaining portion of the phase 
distribution. The network, however, treats the noise spike as an error and 
effectively "ignores" it, ensuring that error propagation does not occur. 
Further proof of the method's effectiveness is shown when a number of spot 
noise spikes are present in the wrapped phase distribution. Again, Schafer's 

algorithm sees the noise as additional phase wraps and compensates 

accordingly. The result of this is an accumulation of errors, which are 

propagated throughout the final phase distribution. The neural network 

method, however, treats the multiple noise spikes as errors and again 
ignores them, leading to a correctly unwrapped final result. The results 

have proved that the simple network can adequately differentiate between 

spikes that were present due to noise and genuine phase wraps. The 

embedding of the neural network in code that performed the unwrapping 

operations showed that with the network used to detect the wraps and 

conventional code used to perform the necessary 2n phase shifts, this 

arrangement could form the basis of a possible solution to the unwrapping 

problem. The convolution process also showed that detection of 

discontinuities could be hampered when the phase wrap reaches the end of 

the wrap detector "window". Careful construction of the actual unwrapping 

code can, however, compensate for this anomaly. 

It may appear at this stage in the experimentation, that the approach is over- 

simplistic and highly unrepresentative of the "real-world" situation where the 

phase unwrapping process is concerned. When a fringe pattern is used to 

measure a surface, the resultant image is invariably a two dimensional array 

of data. Typically, these arrays contain around 250,000 values that include 

varying amounts of noise and phase wraps, which do not follow easily 
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detectable straight lines. A "real-world" wrapped phase distribution will 
contain clean wraps, spot noise and features such as wrap bifurcations etc.. 
It is highly unlikely that one will encounter a perfectly noise-free phase 
distribution. At this point, it must be borne in mind that the one-dimensional 
wrap detector described above is not an attempt to create a fully functional 
two dimensional phase unwrapping system. The initial experimentation was 
carried out only to prove whether a backpropagation neural network was 
capable of detecting wraps in a phase distribution and recognising the 
difference between genuine phase wraps and noise spikes. It is evident 
from the results presented in this thesis that, at this level, a backpropagation 

network is ideally suited to the task. Its parallel processing architecture, well 

suited to recognition problems, appears to make it possible for the network 
to recognise the difference between the two instances. 

It is this success in recognising the difference between phase wraps and 

noise that has led to the development of a two-dimensional neural network 

assisted phase unwrapping system. The second stage of experimentation 

showed how a square "tile" of pixels could be used to detect the presence of 

phase wraps in a two dimensional wrapped phase distribution. The key 

point to address here was to develop a 2-D unwrapper with an optimum tile 

size. The need for this was shown by reference to the original work of both 

Schafer and Takeda that was described in chapter 4. It was desired to 

produce a system that could detect the presence of phase wraps in an image 

without the computational complexity associated with previous solutions to 

the problem. The two extremes can be described thus: the largest wrapped 

phase distribution that is likely to be encountered is a 512x512-pixel image. 

If one were to configure a network to analyse the entire image in a single 

pass, the least number of input neurons required would be 512x512, that is, 

262,144 neurons. Considering that the system would require at least the 

same number of output neurons, the number of neurons would then increase 

to 524,288. This figure still does not take into account any hidden neurons 

that will be required for correct functionality. The training and testing data 

sets will also be suitably large. Consider a training set for a network 
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conforming to the supervised learning model. One training vector will 
require 262,144 input values and an equal number of output values. If, say, 
100 training vectors are used, the training set will contain 52,428,800 values. 
With networks and training sets of this size, training times will be 

correspondingly long. Also, problems may be encountered as described 

earlier, which involve training the network to recognise multiple wraps in a 

single presentation. It would appear sensible procedure to attempt to reduce 
the size and complexity of the networks to conserve both time and computing 

power. At the other end of the scale, if the network is made too small, using 

only, say, 2 input neurons, such a network would run the risk of behaving as 

an extremely computationally expensive version of Schafer's original point- 

to-point algorithm. The first "small" networks investigated were an attempt to 

reduce the regional analysis to the smallest possible area without 

encountering the previously described problem. It was this criterion that 

gave rise to the 3x3 tile wrap detector. 

Extending the system into two dimensions was a logical step to take to 

address the complete phase unwrapping problem. Results of the two 

dimensional unwrapping experiments showed that the networks were 

capable of detecting the presence of phase discontinuities over a defined 

region with similar accuracy to that produced by the single line unwrappers. 

To complete the system, it was necessary to convolve the nine pixel 

"window" with a complete phase distribution to provide a final unwrapped 

phase distribution. The results shown in chapter 4 demonstrate the 

effectiveness of this operation. The completed system demonstrated its 

ability to differentiate between phase discontinuities and noise in a 512x512 

array of wrapped phase data. 
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Fringe Optimisation 

The problem of fringe pattern optimisation is a relatively new science. It was 
not until the development of the twin-fibre adaptive interferometer described 
in chapter 2 that successful automation of this process became possible. 
Until the interferometer was developed, the adjustment of fringe patterns was 
an extremely labour intensive task that was not suited to measurement and 
inspection of surface profiles in situations where time was critical. For 

example, in measurement of components with various surface profiles on 
line, the adjustment of a fringe pattern was impossible in the time allotted 

using a conventional interferometer or fringe projection system. Also, the 

use of a human operator to determine the quality of a fringe pattern is 

questionable. The decision is likely to vary from operator to operator, plus 

the decisions made by the same operator under different conditions are 

likely to be unreliable. Although human operators are much faster than 

digital computers at recognition tasks, their concept of quality is highly 

variable. It is mainly due to this inability to perform on-line optimisation that 

there has been no previous research into the subject. The use of a neural 

network to perform the qualitative analysis of fringe patterns arose as a 

compromise between these two situations. The ideal situation is one in 

which the system making decisions on quality has the parallel processing 

speed to match the human brain's recognition ability but also has the 

reliability and repeatability of a digital computer. The experiments described 

in chapter 5 of this thesis have attempted to show that a system based on 

this philosophy is possible to implement. The parameters chosen for 

analysis were chosen on the basis that they could easily be both measured 

and changed. Fringe number and fringe orientation were used, as these 

were the parameters that could be controlled by the adaptive interferometer. 

Fringe contrast and average intensity were used as these could be easily 

controlled using the lens attached to the CCD camera. For the purpose of 

the experiments, the lens used was a conventional 55mm Nikon item with 

manual focusing and aperture setting. This obviously meant that any 
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changes that were required to intensity and visibility and, therefore, must be 
made by changing lens settings, had to be made manually, by the operator. 
To fully automate the system, a lens featuring autofocus and automatic 
aperture setting would be desirable. Even though an operator was required 
at this point, it must be stressed that this did not detract form the original 
specification, as the final decision on fringe quality was ultimately made by 
the neural network system. 

The two approaches to the problem were variations on the same basic 
theme, but relied on slightly different network configurations. The initial 

experimentation involving a separate network to analyse each parameter 

was carried out to prove that the theory was viable. The results given by this 

experimentation showed that it appeared to be a viable proposal to follow 

this route to achieve a fringe pattern optimisation system. Consider the 

results achieved by the first fringe number network. Simply counting the 

number of peaks and troughs is not an adequate method of determining the 

number of fringes present in the image. Calculating the mean value, 

subtracting this from the intensity distributions and counting the number of 

times the resultant distribution crosses the zero point is a far more reliable 

method. Using this method, it is possible to compensate for any false 

maxima and minima that occur at the fringe peaks due to noise in the image. 

The use of this piece of mathematics at the initial data acquisition stage 

helps to simplify the later analysis. This simplification is important when any 

neural network is used for analysis. The simpler the input data for the 

network, the easier the network is to train. Experimentation has shown that 

training is most successful when both input and output values lie in the 

region of 0<_ x<_ 1. The two approaches can be appraised as follows. The 

use of separate networks for each parameter was chosen primarily to test 

the feasibility of the idea. The four parameters were chosen due to their 

ease of calculation and the fact that they can easily be changed to meet the 

optimisation criteria. The parameters were: 
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1. Fringe number. This can be calculated by a simple fringe count and can 
automatically be controlled by the adaptive interferometer. Adjusting the 
spacing of the fibre ends changes the number of fringes present in the 
image. 

2. Fringe orientation. This can be calculated by ascertaining the number of 
fringes at various orientations throughout the image. Again changing the 
fibre spacing within the interferometer will change the orientation of the 
fringes. 

3. Mean intensity. This can be calculated by taking an average of the 
intensity values in a given intensity profile. It can be controlled by 

varying the camera aperture. 

4. Fringe contrast. This is calculated by the equation 

C= (Imax - Imin) / (Imax + Imin) 

It can be taken as an indication of the focus of the image. 

The use of separate networks was originally designed to enable the user to 

re-train a network for one parameter without affecting the outputs of the 

other parameters. Chapter 5 shows the results given by this approach. The 

networks were capable of recognising the quality of the given patterns 

according to the defined parameters. However, the outputs required further 

post-processing to enable the system to adjust the fringe pattern to produce 

the required result. The second stage of optimisation experiments attempted 

to reduce the need for excessive post-processing of the data. The 

approach, using a single network to analyse all the parameters 

simultaneously was employed and showed results comparable with the 

previous, separate network experiments. Re-training the network for a 

single parameter did not have a great adverse effect on the outputs of the 
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other parameters and added to the overall performance of the optimisation 
system. 

It was from these results that the final optimisation system was developed. 
Combination of the neural network outputs and conventional code enabled 
an operational system to be constructed. While this can be thought of as a 
"hybrid" system, containing both neural network and conventional code, it is 

noteworthy that all the decisions required of the system are made by neural 
network. The conventional code is used simply to read images from a 
frame-grabber and ultimately to adjust the position of the fibres within the 
interferometer. 

Conclusions 

The work described within this thesis has shown that it is possible to apply 

neural networks to the solution of problems in fringe analysis. The two major 

problems addressed, phase unwrapping and fringe optimisation, have been 

thoroughly investigated and operational systems to attempt to solve these 

problems have been developed. 

Phase unwrapping continues to be one of the most difficult tasks inherent in 

the fringe analysis process. The system described utilises a 

backpropagation neural network to distinguish phase wraps from noise 

present in a wrapped phase distribution Small neural networks were used 

for the system to preserve its simplicity Use of large networks containing 

thousands of neurons to analyse large areas or whole images were thought 

to be impractical due to the number of data required for training and testing. 

Using conventional code to perform the 2n phase adjustments ensured that 

the networks were only required to ascertain the position of the phase wraps 

in the distribution. The result was a highly robust phase unwrapping system. 

As with all phase unwrapping algorithms, it will not be efficient in 100% of 

cases. Certain wrapped phase distributions, by virtue of excessive noise 
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etc., will be extremely difficult to unwrap, whichever method is used. 
Although the neural network based system is extremely efficient at 
differentiating noise from genuine phase wraps, a "generic" phase 
unwrapper has yet to be designed. 

The fringe optimisation system addresses a problem fairly new to the 

science of fringe analysis. The work described in this thesis has shown that 
it is possible to produce a "closed" loop system that optimises the quality of 

a fringe pattern before analysis takes place. The work has been carried out 

using the minimum number of parameters required to calculate fringe pattern 

quality, but it can be concluded that a neural network can be employed to 

satisfactorily analyses these parameters. The system has been designed as 

a "hybrid" system to ensure that analysis can be carried out adequately. 

The data is both pre- and post-processed using conventional code. Pre- 

processing is carried out to ensure that the networks can easily understand 

the data presented to them. It was found that the networks operated most 

satisfactorily when all the input data were in the same range. Also, a degree 

of post-processing is required to enable the fringe pattern to be fully 

optimised. The translation stages used to carry the optical fibres within the 

interferometer are operated by a controller which relies on "C" code to send 

the necessary instructions. It was these considerations which led to the 

development of a hybrid system for optimisation. Combining conventional 

code and neural networks in this way made it possible to "close the loop" in 

the fringe analysis process. 
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Further work 

It must be stated that the aim of this work was merely to ascertain whether 
neural networks are a viable tool for addressing the stated problems in fringe 
analysis. In neither case has a complete solution to those problems been 

offered. Rather, the work has proved that neural networks can form a basis 
from which reliable solutions can be obtained. This has been successfully 
shown with the use of backpropagation and general regression networks as 

a basis for solutions to the problems of phase unwrapping and fringe pattern 

optimisation. Only small networks have been employed throughout the 

project in order to keep training data manageable and training times low. 

The nine-neuron phase unwrapping tile was used as this was the smallest 

possible tile that could be used without returning to a variation on a point-to- 

point algorithm. The reasoning behind this approach was partly due to the 

hardware and software capabilities of the computing systems economically 

viable at the beginning of the project. It has already been stated that the 

work described herein was carried out using a machine containing a 486 

processor with a clock speed of 66MHz, 16MB RAM and DOS-based neural 

network simulation software. Training becomes difficult with such a system 

when a large number of neurons are used and large training sets become 

unmanageable. Although this does not directly rule out using larger tiles 

than 3x3, it certainly will make training networks for tiles greater than 10x10 

extremely difficult. Future investigation into an optimum tile size for regional 

phase unwrapping may be possible. Considering the pace at which 

development takes place in the computing world, the constraints applied at 

the beginning of the project are no longer a problem. The use of a machine 

containing a Pentium III processor with 600MHz clock speed and 128MB 

RAM would make further experimentation much easier. With a significant 

(almost ten-fold) increase in processing speed, training times will be 

drastically reduced. This will, of course, negate some of the concerns 

voiced early in the project. It must also be borne in mind the systems used 

here are all single-processor systems Advances in hardware technology 
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now also mean that multi-processor systems using genuine hardware-based 
parallel processing are becoming more widely available. More advanced 
versions of neural network simulation software also need to be investigated. 

Although small regions of an image have been analysed for the reasons 
already stated, larger regions are likely to provide more error-free results. 
Further investigation needs to be carried out into increasing the size of the 
tile model to produce a regional analysis system similar to those described in 

chapter four, but utilising a more parallel approach. Similarly, it may be 

possible to investigate the use of a neural network based approach to 
techniques such as the data validation procedure described in chapter four. 
Here, edges of regions could be processed to phase wrap continuity and 

assigning regions to be processed before a much simplified unwrap takes 

place. 

Many algorithms already proposed to deal with the unwrapping problem may 

be compatible with a parallel approach. Although completely re-working a 

proven solution may be unnecessary and impractical, the application of 

neural network techniques to regional or temporal methods may be feasible. 

A number of neural network architectures were investigated for purposes of 

solving the phase unwrapping problem. However, backpropagation 

networks proved to be the most suitable for the task. This has shown that it 

is possible to achieve a solution using systems not adherent to formal rules 

or logic. An extension of this finding may suggest that investigation be 

carried out into methods of a similar nature. While a number of alternative 

supervised learning networks are available, it may be feasible to look into 

the benefit using alternative systems. Certain alternative neural network 

architectures exist, such as self-organising networks, Fuzzy ART (Adaptive 

Resonance Theory), etc. Non-neural network based computing paradigms 

not reliant on absolute logic also exist. One such paradigm such as this is 

Fuzzy Logic where, instead of simply using binary criteria, a series of 

intermediate states, depending on system input, are also used. The benefit 
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of Genetic Algorithms may also be investigated. Another alternative 
paradigm, the GA begins with an algorithm that may provide a solution to a 
problem which evolves over to produce an optimum solution. 

Many of the arguments outlined above can also be applied to the second 
problem, namely that of fringe pattern optimisation. Alongside the criteria of 
reducing the size of the training sets and training time for the optimisation 
networks, both of which can be addressed as previously described, the 
decisions regarding optimisation parameters were based on those most 
readily measurable and their ability to be adjusted automatically. At this 

stage of the project, the adjustment of both lens aperture and focus, which 

relate to mean image intensity and fringe visibility, are still carried out by the 

operator. A very simple improvement in the system would be to substitute 
the lens with one that can be operated fully automatically. This would mean 

that the current system would then become fully "closed loop", meaning that 

all adjustment to the necessary fringe pattern parameters could be 

performed by the computer. 

Further work could build alternative methods of pre-processing optimisation 

parameters. As already stated, experimentation has been carried out on 

parameters that are easily adjustable and directly measurable from an 

interference fringe pattern. More parameters can be investigated, such as 

fringe spacing, bandwidth and noise level. Fringe spacing and bandwidth 

(or minimum and maximum spacing) can be calculated in a similar way to 

how the fringe number was calculated as described in chapter 5. Noise level 

is a much more involved calculation. The systematic analysis of noise in an 

image has already been described in chapter 4, the calculations being 

related to the level of noise at which the neural network phase unwrapping 

system is efficient. Noise in a fringe pattern can be calculated from that 

fringe pattern's Fourier transform, however, the original specification of the 

optimisation system was to ascertain the image's suitability for measurement 

before the process takes place. As the Fourier transform is an integral part 

of the measurement process, this method of calculation introduces further 
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computational complexity into the process. As described above, 
specifications of computer hardware have significantly improved since the 
beginning of the project, making the introduction of extra computation less 
important. Also, with the improvement of parallel hardware, it may also be 

possible to reduce computation time further by use of such systems. In both 

areas of research covered in this thesis, it would appear that the use of 
parallel hardware may be the next stage of investigation. Both the phase 
unwrapping and fringe pattern optimisation systems described used a 
software based neural network simulation package to achieve a solution. 
Now that the idea of neural networks applied to these problems has been 

proved to be a viable solution, investigation of hardware based parallel 

processing systems would be a logical following step. Software analysis 

may still be carried forward using alternative paradigms such as fuzzy logic 

or genetic algorithms. 

The work in this thesis has proved that neural networks are able to provide a 

viable solution to problems within the field of Fourier fringe analysis. To 

achieve a measurement system, it is necessary to design a specification for 

a complete measurement tool. A hybrid system that combines some of the 

elements of conventional Fourier fringe analysis with the neural network 

techniques already described above may be a suitable approach to the 

problem. The final solution should include an adaptive interferometer to 

project a fringe pattern on the surface to be measured, a neural network 

based optimisation system to analyse the resultant fringe pattern and feed 

the results of this operation back to the adaptive interferometer, conventional 

Fourier fringe analysis software to perform the phase calculations required 

for a measurement and a neural network based phase unwrapper to 

complete the process. While this is the most desirable situation at present. 

future work may also include the use of neural networks to assist in the main 

body of the measurement software. 
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Having proved the suitability of neural networks to assist in the Fourier fringe 

analysis process it is considered that further investigation of this paradigm is 

extremely feasible. 
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Appendix 1 

Phase Unwrapping 
Training and test data 
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1. Training file for 6-input wrap detector network - simulated data 

The following file uses simulated data for training a 6-input line unwrapping 
network. The first six values of each vector are those presented to the input 
layer of the network, whereas the last six are the desired output values 
presented to the output layer. 

Training file for edge_6. nna using real data from 
SIMULATED FRINGES. 

3.141593 2.932769 2.722865 2.510879 2.295950 2.077394 000000 
1.854724 1.627636 1.395989 1.159768 0.919060 0.674012 000000 
0.424816 0.171687 -0.085152 -0.345478 -0.609068 -0.875706 000000 
-1.145179 -1.417276 -1.691783 -1.968480 -2.247139 -2.527518 000000 
-2.809359 -3.092389 2.906866 2.622335 2.337511 2.052702 001000 
1.768203 1.484292 1.201220 0.919197 0.638390 0.358916 000000 
0.080841 -0.195821 -0.471105 -0.745085 -1.017874 -1.289613 000000 
-1.560460 -1.830589 -2.100177 -2.369397 -2.638419 -2.907402 000000 

-2.907402 3.106697 2.837378 2.567713 2.297608 2.026985 010000 
1.755783 1.483956 1.211474 0.938323 0.664502 0.390023 000000 
0.114913 -0.160789 -0.437033 -0.750426 -0.990889 -1.268349 000000 

-1.546047 -1.823892 -2.101789 -2.379642 -2.657361 -2.934859 000000 

-2.379642 -2.657361 -2.934859 3.071124 2.794281 2.517851 000100 
2.241868 1.966353 1.691311 1.416733 1.142595 0.868864 000000 
0.595495 0.322438 0.049638 -0.222964 -0.495426 -0.767806 000000 

-1.040160 -1.312541 -1.584994 -1.857564 -2.130289 -2.403199 000000 

-2.676323 -2.949683 3.059893 2.786022 2.511886 2.237485 001000 
1.962825 1.687917 1.412777 1.137427 0.861891 0.586198 000000 
0.310380 0.034473 -0.241488 -0.517465 -0.793422 -1.069325 000000 

-1.345140 -1.620839 -1.896397 -2.171793 -2.447012 -2.722046 000000 

-2.996886 3.011651 2.737190 2.462910 2.188799 1.914843 010000 
1.641027 1.367332 1.093741 0.820232 0.546786 0.273383 000000 
0.000000 -0.273383 -0.546786 -0.820232 -1.093740 -1.367332 000000 

-1.641027-1.914843-2.188799-2.462910-2.737190-3.011651 
000000 

-1.914843 -2.188799 -2.462910 -2.737190 -3.011651 2.996886 000001 
2.722046 2.447012 2.171793 1.896397 1.620839 1.345140 000000 
1.069325 0.793422 0.517465 0.241488 -0.034473 -0.310380 000000 

-0.586198 -0.861891 -1.137427 -1.412777 -1.687917 -1.962825 000000 

-2.237485 -2.511886 -2.786022 -3.059893 2.949683 2.676324 000010 

2.403199 2.130288 1.857564 1.584994 1.312541 1.040160 000000 

0.767807 0.495426 0.222964 -0.049638 -0.322438 -0.595495 000000 

-0.868864 -1.142595 -1.416733 -1.691311 -1.966353 -2.241868 000000 

-2.517851 -2.794281 -3.071124 2.934859 2.657361 2.379642 000100 

2.101789 1.823892 1.546047 1.268349 0.990889 0.713758 000000 

0.437033 0.160789 -0.114913 -0.390023 -0.664502 -0.938323 000000 

-1.211474 -1.483956 -1.755783 -2.026985 -2.297608 -2.567713 000000 

-2.837378 -3.106697 2.907402 2.638419 2.369397 2.100177 0010 00000 

1.830589 1.560460 1.289613 1.017874 0.745085 0.471105 00000000 

0.195821 -0.080841 -0.358916 -0.638390 -0.919197 -1.201220 
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2. Training file for 6-input wrap detector network - real data 

The following values are as described in appendix 1.1, but gathered from 
data taken from real wrapped phase distributions. 

! Training data for 6-input wrap detector 
! Compiled from REAL DATA 

3.1416 -2.8274 -2.5130 -2.1991 -1.8849 -1.5708 010000 
2.82743.1416-2.8274-2.5130-2.1991 -1.884900 1 000 
2.5130 2.8274 3.1416 -2.8274 -2.5130 -2.1991 000100 
2.1991 2.5130 2.8274 3.1416 -2.8274 -2.5130 000010 
1.8849 2.1991 2.51302.82743.1416-2.827400000 1 
1.5708 1.8849 2.1991 2.5130 2.8274 3.1416 000000 
1.2256 1.5708 1.8849 2.1991 2.51302.8274000000 
3.1416 -2.7489 -2.3562 -1.9635 -1.5708 -1.1781 010000 
2.7489 3.1416 -2.7489 -2.3562 -1.9635 -1.5708 001000 
2.3562 2.7489 3.1416 -2.7489 -2.3562 -1.9635 000100 
1.9635 2.3562 2.7482 3.1416 -2.7489 -2.3562 000010 
1.5708 1.9635 2.3562 2.7489 3.1416 -2.7489 000001 
1.1781 1.5708 1.9635 2.3562 2.7489 3.1416 000000 
0.7854 1.1781 1.5708 1.9635 2.3562 2.7489 000000 
-8.3723 -7.5633 -6.6345 -5.4542 -4.4520 -3.0987 000000 
8.0164 -8.8100 -7.4566 -6.0909 -5.0246 -4.3358 010000 
7.5243 8.3981 -8.3412 -7.8906 -6.1415 -5.0742 001000 
6.9022 7.1000 8.6110 -8.7063 -7.5500 -6.4306 000100 
5.0305 6.3101 7.0925 8.1111 -8.6516 -7.0001 000010 
4.0097 5.3399 6.1701 7.1134 8.2205 -8.6673 000001 
3.0987 4.7634 5.2367 6.6721 7.1762 8.0045 000000 

-12.9222 -10.7000 -8.2468 -6.0704 -4.2928 -2.9205 000000 
12.6505 -12.0456 -10.6453 -8.3456 -6.5634 -4.5623 010000 
10.4638 12.3924 -12.3041 -10.1111 -8.7777 -6.4532 001000 
8.0986 10.6534 12.3625 -12.0121 -10.5553 -8.6664 000100 
6.5876 8.7106 10.5269 12.1710 -12.1957 -10.1822 000010 
4.1969 6.6100 8.1007 10.1212 12.6520-12.1069000001 
2.8888 4.8511 6.1098 8.2495 10.1597 12.0948 000000 

-50.6734 -45.6914 -40.9163 -35.3945 -30.0153 -25.8421 000000 
50.1842 -50.3701 -45.4801 -40.0348 -35.2905 -30.9191 010000 
45.4678 50.3460 -50.9987 -45.6457 -40.6345 -35.2134 001000 
40.6450 45.2343 50.6534 -50.6354 -45.3645 -40.3450 000100 
35.9995 40.0202 45.8516 50.6764 -50.0519 -45.2052 000010 
30.2052 35.4343 40.9086 45.4611 50.6123 -50.9153 000001 
25.6506 30.7101 35.0933 40.6640 45.7007 50.7170 000000 

-18.6459 -15.3452 -12.8967 -9.2397 -6.4793 -3.5910 000000 
18.1969 -18.1958 -15.1939 -12.1966 -9.1985 -6.1944 010000 
15.6505 18.6110 -18.7063 -15.5531 -12.9003 -9.2220 001000 
12.2220 15.7382 18.7382 -18.7382 -15.8181 -12.9911 000100 
9.5672 12.4637 15.9090 18.9090 -18.1334 -15.9911 000010 
6.0333 9.9045 12.1334 15.9045 18.5531 -18.0000 000001 
3.3708 6.1275 9.1098 12.2495 15.2996 18.6577 000000 
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3. Test file for 6-input wrap detector network - real data 

Test data is presented to the network in the same manner as training data, but must vary from the original training set: 

! Test data for 6-input unwrapper 
! Compiled from REAL DATA 

-8.3723 -7.5633 -6.6345 -5.4542 -4.4520 -3.0987 000000 
8.0164 -8.8100 -7.4566 -6.0909 -5.0246 -4.3358 010000 
7.5243 8.3981 -8.3412 -7.8906 -6.1415 -5.0742 001000 
6.9022 7.1000 8.6110 -8.7063 -7.5500 -6.4306 000100 
5.0305 6.3101 7.0925 8.1111 -8.6516 -7.0001 000010 
4.0097 5.3399 6.1701 7.1134 8.2205 -8.6673 000001 
3.0987 4.7634 5.2367 6.6721 7.1762 8.0045 000000 
-12.9222 -10.7000 -8.2468 -6.0704 -4.2928 -2.9205 000000 
12.6505 -12.0456 -10.6453 -8.3456 -6.5634 -4.5623 010000 
10.4638 12.3924 -12.3041 -10.1111 -8.7777 -6.4532 001000 
8.0986 10.6534 12.3625 -12.0121 -10.5553 -8.6664 000100 
6.5876 8.7106 10.5269 12.1710 -12.1957 -10.1822 000010 
4.1969 6.6100 8.1007 10.1212 12.6520-12.106900000 1 
2.8888 4.8511 6.1098 8.2495 10.1597 12.0948 000000 
-50.6734 -45.6914 -40.9163 -35.3945 -30.0153 -25.8421 000000 
50.1842 -50.3701 -45.4801 -40.0348 -35.2905 -30.9191 010000 
45.4678 50.3460 -50.9987 -45.6457 -40.6345 -35.2134 001000 
40.6450 45.2343 50.6534 -50.6354 -45.3645 -40.3450 000100 
35.9995 40.0202 45.8516 50.6764 -50.0519 -45.2052 000010 
30.2052 35.4343 40.9086 45.4611 50.6123 -50.9153 000001 
25.6506 30.7101 35.0933 40.6640 45.7007 50.7170 000000 

-18.6459 -15.3452 -12.8967 -9.2397 -6.4793 -3.5910 000000 
18.1969 -18.1958 -15.1939 -12.1966 -9.1985 -6.1944 010000 
15.6505 18.6110 -18.7063 -15.5531 -12.9003 -9.2220 001000 
12.2220 15.7382 18.7382 -18.7382 -15.8181 -12.9911 000100 
9.5672 12.4637 15.9090 18.9090 -18.1334 -15.9911 000010 
6.0333 9.9045 12.1334 15.9045 18.5531 -18.0000 000001 
3.3708 6.1275 9.1098 12.2495 15.2996 18.6577 000000 
0.0000 3.0550 6.6742 9.0963 12.6523 15.1212 000000 

-15.6409 -12.5634 -9.9074 -3.9071 -3.5507 0000000 

-125.3616 -124.5508 -123.3408 -122.2881 -121.5761 -120.9055 000000 
125.5665 -125.3421 -124.3358 -123.6723 -122.6577 -121.6723 010000 
124.8745 125.4532 -125.1047 -124.3846 -123.2649 -122.6206 001000 
123.5347 124.3693 125.3693 -125.6734 -124.3748 -123.6751 000100 
122.8981 123.3616 124.9999 125.0451 -125.5611 -124.9575 000010 
121.8582 122.6374 123.6110 124 124.5508 -125.5443 000001 
119.9022 120.8981 121.6374 122.6577 123.7063 124 000000 

-117.1701 -116.9022 -115.3616 -114.8981 -113.7063-112.6110000000 
50.2525 51.2525 52.2525 -52.2525 -51.2525 -50.2525 000100 
99.5876 101.5876 -101.5876 -99.5876 -97.5876 -95.5876 001000 
22.3652 24.3971 26.3601 29.5897 -28.3481 -26.3467 000010 

-40.4534 -39.6781 -37.1345 -34.8734 -33.7384 -30.2134 000000 
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4. Training file for 3x3 tile network 

The following data are examples of training vectors for a 3x3 tile network. 
The first 9 values are presented to the input layer of the network and the 
remaining values presented to the output layer as desired outputs. The 
ampersands present inform NeuralWorks that the line is a continuation of a 
single training vector. Only a small representation of a training set is shown 
here for clarity. A complete training set will typically contain 70 to 100 
vectors, each containing 18 values. 

!6 
!1 
0.171687 0.171687 0.171687 
& -0.085152 -0.085152 -0.085152 
& -0.345478 -0.345478 -0.345478 
& 000 
& 000 
& 000 

!2 

-3.092389 -3.092389 -3.092389 
& 2.906866 2.906866 2.906866 
& 2.622335 2.622335 2.622335 
&111 
& 000 
& 000 

!3 

-2.809359 -2.809359 -2.809359 
& -3.092389 -3.092389 -3.092389 
& 2.906866 2.906866 2.906866 
&111 
&111 
&000 

14 
-2.527518 -2.527518 -2.527518 
& -2.809359 -2.809359 -2.809359 
& -3.092389 -3.092389 -3.092389 
&000 
&000 
&000 

i5 

-3.092389 -3.092389 -3.092389 
& 2.906866 2.906866 2.906866 
& 2.622335 2.622335 2.622335 
&111 
&000 
&000 

-2.809359 -2.809359 -2.809359 
& -3.092389 -3.092389 -3.092389 
& 2.906866 2.906866 2.906866 
&111 
&111 
&000 
!7 

-2.809359 -2.809359 -2.809359 
& -3.092389 -3.092389 -3.092389 
& 2.906866 2.906866 2.906866 
&111 
&111 
&000 

!8 

-2.809359 -2.809359 -2.809359 
& -3.092389 -3.092389 -3.092389 
& 2.906866 2.906866 2.906866 
&111 
&111 
&000 

i9 

-2.809359 -3.092389 -2.809359 
& -3.092389 2.906866 -3.092389 
& 2.906866 2.622335 2.906866 
&111 
&101 
&000 

! 10 

-3.092389 -3.092389 -2.809359 
& 2.906866 2.906866 -3.092389 
& 2.622335 2.622335 2.906866 
&111 
&001 
&000 
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5. Test file for 3x3 tile network 

Shown below is a section of a typical test file for a 9-input network as 
described previously: 

3.141607 3.141607 3.141607 
& 3.141607 3.141607 3.141607 
& 2.944487 2.944487 2.944487 
&000 
&000 
&000 

2.747367 2.747367 2.747367 
& 2.550247 2.550247 2.550247 
& 2.550247 2.550247 2.550247 
&000 
&000 
&000 

0.899367 0.899367 0.899367 
& 0.677607 0.677607 0.677607 
& 0.677607 0.677607 0.677607 
&000 
&000 
&000 

0.234087 0.234087 0.234087 
& 0.012327 0.012327 0.012327 
& 0.012327 0.012327 0.012327 
&000 
&000 
&000 

0.012327 0.012327 0.012327 
& 0.012327 0.012327 0.012327 
& -0.209433 -0.209433 -0.209433 
&000 
&000 
&000 

-0.874713 -0.874713 -0.874713 & -1.096473 -1.096473 -1.096473 & -1.096473 -1.096473 -1.096473 &000 
&000 
&000 

-1.811033 -1.811033 -1.811033 
& -2.032793 -2.032793 -2.032793 
& -2.032793 -2.032793 -2.032793 
&000 
&000 
&000 

-2.279193 -2.279193 -2.279193 
& -2.279193 -2.279193 -2.279193 
& 2.944487 2.944487 2.944487 
&000 
&000 
&111 

-2.279193 -2.279193 -2.279193 
& 2.944487 2.944487 2.944487 
& 2.944487 2.944487 2.944487 
&000 
&111 
&000 

2.944487 2.944487 2.944487 
& 2.944487 2.944487 2.944487 
& 2.722727 2.722727 2.722727 
&000 
&000 
&000 

0.012327 0.012327 0.012327 
& -0.209433 -0.209433 -0.209433 
& -0.209433 -0.209433 -0.209433 
&000 
&000 
&000 

2.476327 2.476327 2.476327 
& 2.229927 2.229927 2.229927 
& 2.229927 2.229927 2.229927 
&000 
&000 
&000 
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6. Results file for 6-input wrap detector 

Shown below is a section of a typical results file for the 6-input wrap detector 
network. Each line shows 12 values, the first six being the desired output for a given test vector, the remaining values being the network's actual outputs. 

Date: Tue Apr 7 17: 04: 09 1995 
Result File: real 

_tes. 
nnr Input File: real tes. nna 

Network: Orig inal edge detector _ 
0.000000 0.000000 0.000000 0.000000 0.000000 
0.000000 0.000183 0.001781 0.003427 0.000078 
0.001112 0.001717 
0.000000 0.000000 0.000000 1.000000 0.000000 
0.000000 0.037535 0.045618 0.200727 0.730302 
0.093005 0.069129 
0.000000 0.000000 0.000000 0.000000 0.000000 
0.000000 0.000297 0.005755 0.007189 0.000181 
0.001588 0.000708 
0.000000 0.000000 0.000000 0.000000 0.000000 
0.000000 0.000199 0.002337 0.003006 0.000077 
0.001212 0.002002 
0.000000 0.000000 0.000000 0.000000 0.000000 
0.000000 0.000778 0.000516 0.000400 0.003123 
0.008278 0.012993 
0.000000 1.000000 0.000000 0.000000 0.000000 
0.000000 0.007939 0.919821 0.044496 0.015709 
0.007932 0.007844 
0.000000 0.000000 0.000000 0.000000 0.000000 
0.000000 0.000263 0.004397 0.005232 0.000136 
0.001451 0.001049 
0.000000 0.000000 0.000000 0.000000 0.000000 
0.000000 0.000201 0.002340 0.002970 0.000079 
0.001223 0.002027 
0.000000 0.000000 0.000000 0.000000 0.000000 
0.000000 0.000774 0.000487 0.000419 0.003158 
0.008260 0.012865 
0.000000 1.000000 0.000000 0.000000 0.000000 
0.000000 0.007937 0.919756 0.044451 0.015696 

0.007923 0.007838 
0.000000 0.000000 0.000000 0.000000 0.000000 

0.000000 0.000221 0.002953 0.003790 0.000096 
0.001283 0.001535 
0.000000 0.000000 0.000000 0.000000 0.000000 

0.000000 0.000213 0.002208 0.002638 0.000093 

0.001329 0.002190 
0.000000 0.000000 0.000000 0.000000 0.000000 

0.000000 0.000887 0.000357 0.000595 0.003895 

0.010437 0.016609 
0.000000 0.000000 0.000000 1.000000 0.000000 

0.000000 0.039308 0.051813 0.185710 0.729952 

0.098647 0.075479 
0.000000 0.000000 0.000000 0.000000 0.000000 

0.000000 0.000467 0.015770 0.017736 0.000460 

0.002170 0.000240 
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Appendix 2 

Phase unwrapping code 
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Code for unwrapping 1-D phase distributions using the six input 
network 

/*nwcallI I. c*/ 
/*(c) DJT 1995*/ 

#include <stdio. h> 
#include <math. h> 

/*Declare variables*/ 

int i, offset; 
float Yin[6], Yout[6], Xout[20], buf, diff; 
float inpixels[256], outpixels[256], check, pixold[6]={0,0,0,0,0,0}; 
float unwrap=0.0, Ywrap[256], pi=3.1415927, phi[256]; 
FILE *invals, *outvals; 
char name[20]; 

/*Main program*/ 

main() 
{ 

/* Open input file and scan values... 
printf("\nSpecify input file... "), 
scanf("%s", &name); 
invals=fopen(name, "r"); 
for(i=0; i<256; i++) 

{ 
fscanf(inval s, "%f\n", &buf); 
inpixels[i]=buf; 

} 
fclose(invals); 

for(i=0; i<256; i++) 
phi[i]=(0.0246399*inpixels[i])-3.1415927; 

for(offset=0; offset<251; offset++) 
{ 
for (i=0; i<6; i++) 
Yin[i]=phi [offset+i]; 

/* Following code generated by NeuralWorks Professional II Plus*/ 

/* Generating code for PE 0 in layer 3 */ 
Xout[8] = (float)(. 24440868) + (float)(1.1412765) * Yin[0] - 

(float)(-0.075542443) * Yin[l] + (float)(-1.584056 3) * Yin[2] - 
(float)(1.6389939) * Yin[3] + (float)(-. 16028091) * Yin[4] + 

(float)(-. 94976723) * Yin[5], 
Xout[8] = 1.0 / (1.0 + exp( -Xout[8] )): 
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/* Generating code for PE I in layer 3 */ 
Xout[9] = (float)(. 10932224) + (float)(. 67197585) * Yin[O] + (float)( 26122794) * Yin[ 1]+ (float)(-1.7042081) * Yin[2] 

(float)(-. 37387753) * Yin[3] + (float)(. 55939311) * Yin[4] -- (float)(. 91165 006) * Yin[ 5 ]; 
Xout[9] = 1.0 / (1.0 + exp( -Xout[9] )); 

/* Generating code for PE 2 in layer 3 */ 
Xout[ 10] _ (float)(. 50727248) + (float)(1.2653984) * Yin[O] + 

(float)(. 47456065) * Yin[1] + (float)(. 23860323) * Yin[2] + 
(float)(-. 23652704) * Yin[3] + (float)(-. 5585525) * Yin[4] + 
(float)(-. 96953464) * Yin[5]; 

Xout[ 10] = 1.0 / (1.0 + exp( -Xout[ 10] )); 

/* Generating code for PE 3 in layer 3 */ 
Xout[ 11 ]= (float)(. 523 89967) + (float)(-. 47292721) * Yin[0] + 

(float)(2.0644493) * Yin[1] + (float)(. 15990584) * Yin[2] + 
(float)(-. 1451918) * Yin[3] + (float)(-. 46502253) * Yin[4] + 
(float)(-. 852943 84) * Yin[5]; 

Xout[ 11]=1.0 / (1.0 + exp( -Xout[ 11 ] )); 

/* Generating code for PE 4 in layer 3 */ 
Xout[12] = (float)(. 58212614) + (float)(1.1654203) * Yin[O] + 

(float)(. 22101815) * Yin[l] + (float)(-. 27567723) * Yin[2] + 
(float)(-. 39259917) * Yin[3] + (float)(-1.4805681) * Yin[4] + 
(float)(. 23438235) * Yin[5]; 

Xout[12] = 1.0 / (1.0 + exp( -Xout[12] )); 

/* Generating code for PE 5 in layer 3 */ 
Xout[13] = (float)(. 68133008) + (float)(1.0202456) * Yin[0] + 

(float)(. 22769448) * Yin[I] + (float)(-. 10406712) * Yin[2] + 
(float)(-1.4373332) * Yin[3] + (float)(1.2467792) * Yin[4] + 
(float)(-. 75219929) * Yin[5]; 

Xout [ 13 ]=1.0 / (1.0 + exp( -Xout [ 13 ] )); 

/* Generating code for PE 0 in layer 4 */ 
Yout[0] = (float)(-3.6656587) + (float)(-. 96997684) * Xout[8] + 

(float)(-1.0610986) * Xout[9] + (float)(-1.030337) * Xout[1O] + 
(float)(-1.0052155) * Xout[11] + (float)(-. 93514925) * Xout[12] + 
(float)(-. 98882818) * Xout[13]; 

Yout[O] = 1.0 / (1.0 + exp( -Yout[0] )); 

/* Generating code for PE 1 in layer 4 */ 
Yout[ 1]= (float)(-2.9236183) + (float)(-2.4284985) * Xout[8] + 

(float)(-1.6994104) * Xout[9] + (float)(-1.6407439) * Xout[10] + 

(float)(5.9125438) * Xout[ 11 ]+ (float)(-1.879591) * Xout[ 12 

(float)(- 1.647258) * Xout[13]; 
Yout [1]=1.0 / (1.0 + exp( -Yout [1] )): 
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/* Generating code for PE 2 in layer 4 */ 
Yout[2] _ (float)(2.7719913) + (float)(-2.5445874) * Xout[8] 

(float)(-3.8594689) * Xout[9] + (float)(-1.3257178) * Xout[10] 
(float)(-5.6907859) * Xout[11] + (float)(-1.7482276) * Xout[1 

-1] + 
(float)(-2.1713367) * Xout[13]; 

Yout[2] = 1.0 / (1.0 + exp( -Yout[2] )); 

/* Generating code for PE 3 in layer 4 */ 
Yout[3] = (float)(-3.3216081) + (float)(4.3592968) * Xout[8] + 

(float)(1.9537264) * Xout[9] + (float)(-1.6712166) * Xout[IO] + 
(float)(-1.9428953) * Xout[ 11 ]+ (float)(-1.5179806) * Xout[ 12] + 
(float)(-2.3145306) * Xout[13]; 

Yout[3] = 1.0 / (1.0 + exp( -Yout[3] )); 

/* Generating code for PE 4 in layer 4 */ 
Yout[4] = (float)(-3.2834849) + (float)(-2.3915703) * Xout[8] + 

(float)(2.311928) * Xout[9] + (float)(-1.4123503) * Xout[ 10] + 
(float)(-1.6932757) * Xout[11] + (float)(-1.9878503) * Xout[l2] + 
(float)(3.4246485) * Xout[13]; 

Yout[4] = 1.0 / (1.0 + exp( -Yout[4] )); 

/* Generating code for PE 5 in layer 4 */ 
Yout[5] = (float)(-2.8727694) + (float)(-2.0236669) * Xout[8] + 

(float)(1.8336757) * Xout[9] + (float)(-1.1584884) * Xout[10] + 
(float)(-1.6798445) * Xout[ 11 ]+ (float)(3.1066597) * Xout[ 12] + 
(float)(-1.5766689) * Xout[13]; 

Yout[5] = 1.0 / (1.0 + exp( -Yout[5] )); 

check=pixold[ 1 ]-Yout[O]; 
igcheck>O. 7) 

Yout[O]=pixold[ 1 ]; 

for(i=0; i<6; i++) 
{ 
buf Yout[i]; 
outpixels[offset+i]=buf; 
} 

for(i=0; i<6; i++) 

pixold[i]=Yout[i]; 

/*Once network has detected wraps, update where necessary by 2 pi*/ 

for(i=0; i<256; i++) 
{ 
dill outpixels[i]-outpixels[i+ 1 
itldif0.80) 

{ 
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unwrap=unwrap+2*pi; 

Ywrap[i]=phi [i]-unwrap; 

printf("%f %f %An", phi[i], outpixels[i], Ywrap[i]); 

printf("\nSpecify output filename... "); 
scanf("%s", name); 
outvals=fopen(name, "w"); 
for(i=0; i<256; i++) 

fprintf(outvals, "%f\n", Ywrap[i]); 
fclose(outvals); 
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Appendix 3 

Fringe Optimisation 
Training and test data 

Global optimisation network training data 
2. Global optimisation network test data 
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Training set for global optimisation network 

The training set is presented to the network as described in Appendix 

! GLOBAL_L. nna 
! Training file for global optimisation network. 

0.127 0.640 0.000 0.750 &0-110 
&0000 0? 00 0 7nn0 00Un7: (ý 

0.075 0.850 0.000 0.600 
&-1 100 

0.130 0.600 -1.000 0.590 
&00-10 

0.168 0.630 0.000 0.444 
&1 00-1 

0.127 0.640 0.000 0.250 
&000-1 

0.127 0.640 -1.000 0.750 
&00-10 

0.127 0.640 1.000 0.750 
&0010 

0.127 0.640 -1.000 0.250 
&00-1-1 

0.127 0.640 1.000 0.250 
&00 1 -1 

0.127 0.800 0.000 0.750 
&0100 

0.12 7 0,400 0.000 0.750 
&0-100 

0.127 0.800 0.000 0.250 
&010-1 

0.127 0.400 0.000 0.250 
&0-10-1 

0.127 0.800 1.000 0.750 
&0110 

0.127 0.800 -1.000 0.750 
&0 1-10 

0.127 0.400 -1.000 0.750 
&0-1 -10 

0.12 7 0.400 1.000 0.750 

0.127 0.800 1.000 0.250 &1 100 
&011-1 

0.200 0.400 0.000 0.7-50 
0.127 0.800 -1.000 0.250 &1 -1 00 
&0 1 -1 -1 0.200 0.400 1.000 0.750 

&1-110 
0.127 0.400 -1.000 0.250 
&0-1-1-1 0.200 0.400 -1.000 0.750 

&1-1-10 
0.127 0.400 1.000 0.250 
&0-11-1 0.075 0.700 1.000 0.7-50 

&-111() 
0.200 0.640 0.000 0.750 
& 10 00 0.075 0.700 -1.000 0.750 

&-11-10 
0.075 0.640 0.000 0.750 
&-1000 0.075 0.400 1.000 0.750 

&-1-110 
0.200 0.640 0.000 0.250 
& 10 0 -1 0.075 0.400 -1.000 0.750 

&-1-1-10 
0.075 0.640 0.000 0.250 
&-100-1 0.2000.7001.0000. _50 

&111-1 
0.200 0.640 1.000 0.750 
& 10 10 0.200 0.700 -1.000 0.2 50 

&11-1-1 
0.200 0.640 -1.000 0.750 
& 10 -10 0.200 0.400 1.000 O. 250 

&1 -1 1 -1 
0.075 0.640 1.000 0.750 
&-10 10 0.200 0.400 -1.000 0.251 

&1 -1 -1 -1 
0.075 0.640 -1.000 0.750 
&-10-10 0.127 0.640 0.000 0.750 

&0000 

0.200 0.640 1.000 0.250 
& 10 1 -1 

0.125 0.620 0.000 0-600 
&0000 

0.200 0.640 -1.000 0.250 
&10 -1 -1 

0.130 0.650 0.000 0.550 
&0000 

0.075 0.640 1.000 0.250 
&-10 1 -1 

0.140 0.600 0.000 0.70() 
&01100 

0.075 0.640 -1.000 0.250 
& -1 0 -1 -1 
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Test results for global optimisation network 

The test set is as described in Appendix 1. 

Date: Tue Sep 5 10: 17: 38 1995 
Result File: global_ r. nnr Input File: global_r. nna 
Network: Global optimisation network Mid 

0.000000 0.000000 0.000000 
0.016848 0.000000 0.000000 

-1.000000 1.000000 0.000000 
0.016848 0.000000 0.000000 
0.000000 0.000000 -1.000000 
0.016848 0.000000 0.000000 
1.000000 0.000000 0.000000 
0.016848 0.000000 0.000000 
0.000000 0.000000 0.000000 
0.016848 0.000000 0.000000 
0.000000 0.000000 -1.000000 
0.016848 0.000000 0.000000 
0.000000 0.000000 1.000000 
0.014323 0.525409 0.000000 
0.000000 0.000000 -1.000000 
0.016848 0.000000 0.000000 
0.000000 0.000000 1.000000 
0.014264 0.677121 0.000000 
0.000000 1.000000 0.000000 
0.016848 0.000000 0.000000 
0.000000 -1.000000 0.000000 
0.016848 0.000000 0.000000 
0.000000 1.000000 0.000000 
0.016848 0.000000 0.000000 
0.000000 -1.000000 0.000000 
0.016848 0.000000 0.000000 
0.000000 1.000000 1.000000 
0.016829 0.000000 0.000000 
0.000000 1.000000 -1.000000 
0.016848 0.000000 0.000000 
0.000000 -1.000000 -1.000000 
0.016848 0.000000 0.000000 
0.000000 -1.000000 1.000000 
0.014264 0.677121 0.000000 
0.000000 1.000000 1.000000 
0.014264 0.676704 0.000000 
0.000000 1.000000 -1.000000 
0.016848 0.000000 0.000000 
0.000000 -1.000000 -1.000000 
0.016848 0.000000 0.000000 
0.000000 -1.000000 1.000000 
0.014264 0.677121 0.000000 
1.000000 0.000000 0.000000 
0.016848 0.000000 0.000000 

-1.000000 0.000000 0.000000 
0.016848 0.000000 0.000000 
1.000000 0.000000 0.000000 
0.016848 0.000000 0.000000 

-1.00(X)00 0.00000O 0.000000 
0.016848 0.000(00 0.000000 

0.000000 0.001 

0.000000 0.0014')5 

0.000000 0.00 143 5 

-1.000000 0.00 143 5 

-1.000000 0.00 143 5 

0.000000 0.00143 5 

0.000000 0.00482 5 

-1.000000 0.00143 5 

-1.000000 0.004975 

0.000000 0.001415 

0.000000 0.001415 

-1.000000 0.001435 

15 -1.000000 0.00 14 

0.000000 0.001447 

0.000000 0.00143 5 

0.000000 0.00143 

0.000000 0.004975 

-1.000000 0.004975 

-1.000000 0.00143 5 

-1.000000 0.00143 5 

-1.000000 0.004975 

0.000000 0.001415 

0.000000 0.00141 

-1.000000 0.00143 5 

-1.000000 0001435 
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Appendix 4 

Code 
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6. Final optimisation system 

/* Global optimisation network version 4.30 */ 
/* (c) DJT 18/6/96 */ 

#include <stdio. h> 
#include <math. h> 
#include <itexvsp. h> 
#include <gaoi. h> 
#include <string. h> 

/* ITEX variables */ 

int v_pixarray[512], loop counter, loop max=10; 
long int v_pixval[512], vtotal, v_count; 
float v_mean, v_number, v_shift[512]; 
float index, tilt_value, scaled_mean, scaled_count, v_product; 
float mean_val[5], fringe_number[5], vis_val[5], tilt[5]; 
float list[512], temp, visibility, contrast; 
int out, in, count, a, gaoi, i; 
float Yin[20], Yout[4]; 
char name[20]; 
FILE *fp; 

/* mm2000 variables */ 

int mmadd=0x300; 
char response[80]; 

main() 

print«"\nBackprop optimisation system version 4.30. "); 
loop_counter=0; 
load_cng"\\vi\\lib\\vsp. cnf' ); 
initsys(); 
vfg_init(; 
gaoi=gaoi_create(VFG, 0, I, 0,0,512,512,0,8, NONE); 

mmsend(" 1 VA200,1 AC 100\r", mm_add); 
mmsend(" I TB\r", mm_add); 
mmread(response, mm_add); 
prints \nCurrent MotionMaster error state is. %s", response), 
do 
{ 
printg"\n* * Loop iteration number ° öd. 1oop_counter+ 1); 

printf("\nSnapping current image... "); 

vfg_snap(gaoi, CAMERA), 

I (i 



/* top left 
vfg_rvline(gaoi, 128,0,256, v_pixarray), 
calculations(; 
mean_val[O]=scaled 

_mean; fringe_number[O]=scaled_count; 
vis_val[O]=visibility; 

/* top right */ 

vfg_rvline(gaoi, 3 84,0,256, v_pixarray); 
calculations(); 
mean 

_val[ 
1 ]=scaled_mean; 

fringe_number[ 1 ]=scaled_count; 
vi s_val [I] =vi sib il ity; 

/* bottom left */ 
vfg_rvline(gaoi, 128,256,256, v_pixarray); 
calculations(); 
mean_val[2]=scaled_mean; 
fringe_number[2]=scaled_count; 
vis_val[2]=visibility; 

/* bottom right */ 
vfg_rvl ine(gaoi, 3 84,256,256, v_pixarray); 
calculations( 
mean 

_val[3 
]=scaled_mean; 

fringe_number[3 ]=scaled_count; 
vis_val[3]=visibility; 

/* centre */ 
vfg_rvline(gaoi, 256,128,256, v_pixarray), 
calculations(; 
mean_val[4]=scaled_mean, 
fringe_number[4]=scaled_count; 
vis_val[4]=visibility; 

/* tilt pass 2 */ 
tilt[2]=fringe_number[4]. 

/* tilt pass 0 */ 
vfg_rhline(gaoi, 128,3 84,256, v_pixarray), 
calculations(; 
tilt [0]=scaled_count; 

/* tilt pass 1 
vfg_rline(gaoi, 75,203,256,384, v pixanay); 
calculations(); 
tilt[ I ]=scaled_count,. 

/* tilt pass 3 */ 
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vfg_rline(gaoi, 256,3 84,43 7,203, v_pixarray); 
calculations(; 
tilt[3 ]=scaled_count; 

/* tilt pass 4 */ 
vfg_rhline(gaoi, 256,384,256, v pixarray); 
calculations(); 
tilt [4]=scaled_count; 

printf("\n\n Mean values are: 
for(i=0; i<5; i++) 

printf("%f ", mean_val[i]); 
printf("\n Fringe counts are: "); 
for(i=0; i<5; i++) 

printf("%f ", fringe_number[i]); 
printf("\n Visibility values are: "); 
for(i=0; i<5; i++) 

printf("%f ", vis_val[i]); 
printf("\n Tilt values are: 
for(i=0; i<5; i++) 

printf("%f ", tilt[i]); 

for(i=0; i<5; i++) 
{ 
Yin[i]=mean_val[i]; 
Yin[i+5 ]=fringe_number[i]; 
Yin[i+10]=vis_val[i]; 
Yin[i+15]=tilt[i]; 
} 

flashcode(); 

print«"\n\n"); 
if(Yout[O]<0.3) 

print«"\nMean intensity is too low. "); 

else if(Yout[O]>0.75) 

printf("\nMean intensity is too high. "); 

else 
printfl"\nMean intensity is OK. "); 

if(Yout[ 1 ]>0.7) 
print«"\nThere are too many fringes in this image. ")-. 

else if(Yout[1]<0.3) 
print f("\nThere are not enough fringes in this image. ") 

else 
printg"\nNumber of fringes is OK. "); 

if(Yout[2]<0.35) 

printg"\nVisibility is too low. "), 
else 

printg"\nVisibility is OK. ")-. 

LIVERPOOL JOHN k,,, uORES UNIVEýSIT 
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if(Yout[3]<0.3) 

printf("\nFringes tilt anticlockwise. 
else if(Yout[3]>0.7) 

printf("\nFringes tilt clockwise. "); 
else 

printf("\nFringes are level. "); 
printf("\n\n"); 

if(Yout[ 1 ]>O. 7) 
call_mm2000_axis1(); 

loop_counter++; 
} 

while(Yout[ 1 ]>O. 7&&loop_counter<loop_max); 

calculations() 
{ 
calc_means(); 
fringe_countso; 

scaled mean=v_ mean/ 1000; 
scaled count=_number/ 100; 
} 

calc_means() 
{ 
v_total=0; 
for(a=0; a<256; a++) 

v_total+=vp ixarray [ a] ; 
v_mean=v_total/256; 
} 

fringe_counts() 
{ 
for(a=0; a<256; a++) 

v_shift[a]=v_pixarray[a]-v_mean; 
v_count=0; 
for(a=0; a<256; a++) 

{ 
v_product=vshi ft[a] *v_shift[a+1 ]; 
if(v_product<0.0) 

v_count++; 
} 

v number=v count/2; 

for(a=O, a<256; a++) 
list [ a] =vp ix array [ a] 

for(out=0; out<25 6; out++) 
for(in=out+ 1; in<256, in++) 
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if(list[out]>list[in]) 
{ 
temp=list[in]; 
list[in]=list[out]; 
list[out]=temp; 
} 

visibility=(list[255]-list[O])/(list[255]+list[0]); 
} 

flashcode() 
{ 
/* Tue Mar 12 12: 59: 54 1996 (glnet4l4. c) 
/* Recall-Only Run-time for <gl400> 
/* Control Strategy is: <backprop> */ 

float Xout[36], Xsum[36]; /* work arrays 
long ICmpT; /* temp for comparisons */ 

/* '' * WARNING: Code generated assuming Recall =0*** */ 

/* Read and scale input into network */ 

/* Generating code for PE 0 in layer 3 */ 
Xsum[22] = (float)(0.51291823) + (float)(1.1200382) * Yin[0] + 

(float)(0.75770199) * Yin[1] + (float)(0.94658583) * Yin[2] + 
(float)(0.74116755) * Yin[3] + (float)(0.86861163) * Yin[4] + 
(float)(-0.11502891) * Yin[5] + (float)(-0.55039108) * Yin[6] + 
(float)(-0.42057505) * Yin[7] + (float)(-0.43457967) * Yin[8] + 
(float)(-0.63996595) * Yin[9]; 

Xsum[22] += (float)(0.52264649) * Yin[ 10] + (float)(0.12820528) * Yin[ 11 ] 
+ (float)(0.59060228) * Yin[12] + (float)(0.085514538) * Yin[13] + 
(float)(-0.066451773) * Yin[14] + (float)(0.59558135) * Yin[15] + 
(float)(-0.38854396) * Yin[16] + (float)(-0.60187453) * Yin[17] + 
(float)(-0.32544455) * Yin[18] + (float)(-0.5333479) * Yin[19]; 

/* Generating code for PE 1 in layer 3 */ 
Xsum[23] = (float)(0.41995716) + (float)(0.31209549) * Yin[0] + 

(float)(-0.042181447) * Yin[ I] + (float)(0.17271914) * Yin[2] + 
(float)(0.052135143) * Yin[3] + (float)(0.10904433) * Yin[4] + 
(float)(-0.27623224) * Yin[5] + (float)(-0.57313389) * Yin[6] + 
(float)(-0.61444414) * Yin[7] + (float)(-0.5735063) * Yin[8] + 
(float)(-0.48885798) * Yin[9]; 

Xsum[23 ] += (float)(-0.3 7919202) * Yin[ 10] + (float)(-0.165482 3) * Yin[ 11 ] 

+ (float)(-0.16504616) * Yin[ 12] + (float)(-0.13199218) * Yin[ 13] 

(float)(-0.083629504) * Yin[14] + (float)(-0.39430356) * Yin[15] ± 
(float)(-0.57887322) * Yin[16] + (float)(-0.5 394156) * Yin[17] + 

(float)(-0.45572984) * Yin[18] + (float)(-0.47956526) * Yin[19]. 
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/* Generating code for PE 2 in layer 3 */ 
Xsum[24] = (float)(-0.19887754) + (float)(0.36199242) * Yin[O] 

(float)(0.22469084) * Yin[1] + (float)(0.12849589) * Yin[2] + (float)(0.1453943) * Yin[3] + (float)(0.25397474) * Yin[4] + (float)(0.058965519) * Yin[5] + (float)(0.099251397) * Yin[6] + (float)(0.17505574) * Yin[7] + (float)(0.075894788) * Yin[8] + (float)(0.26560712) * Yin[9]; 
Xsum[24] += (float)(-0.69191957) * Yin[10] + (float)(-0.13290976) * Yin[ 11] 

+ (float)(-0.34417331) * Yin[12] + (float)(-0.53462374) * Yin[13] + 
(float)(-0.25832948) * Yin[14] + (float)(0.11986393) * Yin[15] + 
(float)(-0.048770867) * Yin[16] + (float)(0.07210812) * Yin[17] + 
(float)(0.23395152) * Yin[18] + (float)(-0.13973524) * Yin[19]; 

/* Generating code for PE 3 in layer 3 */ 
Xsum[25] = (float)(-0.81400353) + (float)(-0.91880965) * Yin[0] + 

(float)(-0.64511019) * Yin[I] + (float)(-0.77062106) * Yin[2] + 
(float)(-0.623357) * Yin[3] + (float)(-0.67265278) * Yin[4] + 
(float)(0.30170408) * Yin[5] + (float)(0.65375519) * Yin[6] + 
(float)(0.47448733) * Yin[7] + (float)(0.60599393) * Yin[8] + 
(float)(0.40640268) * Yin[9]; 

Xsum[25] += (float)(0.29200983) * Yin[ 10] + (float)(0.41514421) * Yin[ 11 ] 
+ (float)(0.1017247) * Yin[ 12] + (float)(0.28909576) * Yin[ 13] + 

(float)(0.492726) * Yin[ 14] + (float)(0.024698786) * Yin[ 15] + 
(float)(0.13 35 63 7) * Yin[16] + (float)(0.795 08 5 79) * Yin[17] + 
(float)(0.63817501) * Yin[18] + (float)(0.64715672) * Yin[ 19]; 

/* Generating code for PE 4 in layer 3 */ 
Xsum[26] = (float)(-0.7262122) + (float)(-0.43169123) * Yin[O] + 

(float)(-0.11978691) * Yin[ 1]+ (float)(-0.084116541) * Yin[2] + 
(float)(-0.35286617) * Yin[3] + (float)(-0.14322607) * Yin[4] + 
(float)(0.79265034) * Yin[5] + (float)(1.0748861) * Yin[6] + 
(float)(0.86745197) * Yin[7] + (float)(0.51031208) * Yin[8] + 
(float)(0.73114151) * Yin[9]; 

Xsum[26] += (float)(-0.77761388) * Yin[10] + (float)(-0.25369096) * Yin[ 11 ] 
+ (float)(-0.443621 1) * Yin[12] + (float)(-0.62311947) * Yin[13] + 
(float)(-0.057868429) * Yin[14] + (float)(0.25251833) * Yin[15] + 
(float)(0.68171388) * Yin[16] + (float)(0.64202815) * Yin[17] + 
(float)(0.76848215) * Yin[18] + (float)(0.38853914) * Yin[19]; 

/* Generating code for PE 5 in layer 3 */ 
Xsum[27] = (float)(-0.077568538) + (float)(0.25395143) * Yin[0] + 

(float)(0.3 964766) * Yin[I] + (float)(0.040671058) * Yin[2] + 
(float)(-0.016429115) * Yin[3] + (float)(0.086688489) * Yin[4] + 
(float)(-0.47465959) * Yin[5] + (float)(-0.52561438) * Yin[6] + 
(float)(-0.18413264) * Yin[7] + (float)(-0.45139271) * Yin[8] - 
(float)(-0.20107581) * Yin[9] 

Xsum[27] += (float)(-0.39822865) * Yin[10] + (float)(-0.28633997) * Yin[ 111 

+ (float)(0.1 15711) * Yin[12] + (float)(0.0018749614) * Yin[13] + 
(float)(-0.2547664) * Yin[14] + (float)(-0.21335608) * Yin[ 15] + 

(float)(-0.53907776) * Yin[16] + (float)(-0.25679442) * Yin[ 17] -+ 
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(float)(-0.29961729) * Yin[18] + (float)(-0.55880654) * Yin[19], 

/* Generating code for PE 6 in layer 3 */ 
Xsum[28] = (float)(0.22698164) + (float)(-0.30818063) * Yin[0] - (float)(-0.063706584) * Yin[l] + (float)(-0.21834689) * Yin[2] + 

(float)(-0.41436657) * Yin[3] + (float)(-0.13816226) * Yin[4] + 
(float)(-0.6952529) * Yin[5] + (float)(-0.61804426) * Yin[6] + 
(float)(-0.475234) * Yin[7] + (float)(-0.021478163) * Yin[8] + 
(float)(-0.46860024) * Yin[9]; 

Xsum[28] += (float)(0.34855863) * Yin[10] + (float)(-0.20231442) * Yin[ 11 ] 
+ (float)(-0.17604984) * Yin[ 12] + (float)(0.22505289) * Yin[ 13] + 
(float)(0.29778031) * Yin[14] + (float)(-0.50480717) * Yin[15] + 
(float)(-0.30938923) * Yin[16] + (float)(-0.53164971) * Yin[17] + 
(float)(-0.20265885) * Yin[18] + (float)(-0.3119747) * Yin[ 19]; 

/* Generating code for PE 7 in layer 3 */ 
Xsum[29] = (float)(-0.12704676) + (float)(1.4800271) * Yin[0] + 

(float)(1.2682054) * Yin[l] + (float)(1.0784848) * Yin[2] + 
(float)(0.95180172) * Yin[3] + (float)(1.3675277) * Yin[4] + 
(float)(0.32492545) * Yin[5] + (float)(-0.11640698) * Yin[6] + 
(float)(-0.2024758) * Yin[7] + (float)(-0.52650571) * Yin[8] + 
(float)(-0.099969789) * Yin[9]; 

Xsum[29] += (float)(-0.47220179) * Yin[10] + (float)(-0.28866726) * Yin[ 11 ] 
+ (float)(0.2041236) * Yin[12] + (float)(-0.54379195) * Yin[13] + 
(float)(-0.57043999) * Yin[14] + (float)(0.54553699) * Yin[15] + 
(float)(0.079543613) * Yin[16] + (float)(-0.030147526) * Yin[17] + 
(float)(-0.43671697) * Yin[18] + (float)(-0.21133904) * Yin[ 19]; 

/* Generating code for PE 8 in layer 3 */ 
Xsum[30] = (float)(-1.1289997) + (float)(-1.7301096) * Yin[O] + 

(float)(-1.2706949) * Yin[l] + (float)(-1.5117877) * Yin[2] + 
(float)(-1.3128918) * Yin[3] + (float)(-1.4757698) * Yin[4] + 
(float)(0.65220791) * Yin[5] + (float)(1.7428278) * Yin[6] + 
(float)(0.61475885) * Yin[7] + (float)(1.2227138) * Yin[8] + 
(float)(1.0847834) * Yin[9]; 

Xsum[30] += (float)(-1.5691651) * Yin[10] + (float)(-0.85616481) * Yin[ 11 ] 

+ (float)(-1.73 83 595) * Yin[12] + (float)(-1.1450688) * Yin[13] + 
(float)(-0.40118957) * Yin[14] + (float)(-0.58298486) * Yin[15] + 
(float)(0.99605548) * Yin[16] + (float)(0.77839392) * Yin[17] + 
(float)(0.60149568) * Yin[ 18] + (float)(1.1602714) * Yin[ 19]; 

/* Generating code for PE 9 in layer 3 */ 
Xsum[31 ]= (float)(0.096551582) + (float)(-0.050478779) * Yin[0] 

(float)(0.057656057) * Yin[l] + (float)(-0.03250061) * Yin[2] + 

(float)(-0.036905576) * Yin[3] + (float)(-0.2051387) * Yin[4] 

(float)(-0.41296607) * Yin[5] + (float)(-0.50270027) * Yin[6] + 

(float)(-0.41660067) * Yin[7] + (float)(-0.16561231) * Yin[8] + 

(float)(-0.30192643) * Yin[9]; 
Xsum[31 ] += (float)(-0.10400457) * Yin[ 10] + (float)(-0.51148754) * Yin[ I 1] 

+ (float)(-0.3807762) * Yin[12] + (float)(-0.069051974) * Yin[ 13] 
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(float)(0.022478757) * Yin[14] + (float)(-0.27212459) * Yin[15] + (float)(-0.072177403) *Yin[ 16] + (float)(-0.13238665) * Yin[17] + (float)(-0.18513454) * Yin[18] + (float)(-0.22440013) * Yin[19], 

/* Generating code for PE 0 in layer 3 */ 
Xout[22] = 1.0 / (1.0 + exp( -Xsum[22] )); 

/* Generating code for PE 1 in layer 3 */ 
Xout[23] = 1.0 / (1.0 + exp( -Xsum[23] )); 

/* Generating code for PE 2 in layer 3 */ 
Xout[24] = 1.0 / (1.0 + exp( -Xsum[24] )); 

/* Generating code for PE 3 in layer 3 */ 
Xout[25] = 1.0 / (1.0 + exp( -Xsum[25] )); 

/* Generating code for PE 4 in layer 3 */ 
Xout[26] = 1.0 /0 

.0+ exp( -Xsum[26] )); 

/* Generating code for PE 5 in layer 3 */ 
Xout[27] = 1.0 / (1.0 + exp( -Xsum[27] )); 

/* Generating code for PE 6 in layer 3 */ 
Xout[28] = 1.0 / (1.0 + exp( -Xsum[28] )); 

/* Generating code for PE 7 in layer 3 */ 
Xout[29] = 1.0 / (1.0 + exp( -Xsum[29] )); 

/* Generating code for PE 8 in layer 3 */ 
Xout[30] = 1.0 / (1.0 + exp( -Xsum[30] )); 

/* Generating code for PE 9 in layer 3 */ 
Xout[31 ]=1.0 / (1.0 + exp( -Xsum[31 ] )); 

/* Generating code for PE 0 in layer 4 */ 
Xsum[32] = (float)(-0.65057516) + (float)(1.0928892) * Xout[22] + 

(float)(0.33727017) * Xout[23] + (float)(0.38339254) * Xout[24] + 
(float)(-1.1274824) * Xout[25] + (float)(-0.40105018) * Xout[26] + 
(float)(0.34875277) * Xout[27] + (float)(-0.48891786) * Xout[28] + 
(float)(1.5872207) * Xout[29] + (float)(-2.3664045) * Xout[30] + 
(float)(-0.15500106) * Xout[31 ]; 

Yout[0] = 1.0 / (1.0 + exp( -Xsum[32] )); 

/* Generating code for PE 1 in layer 4 */ 
Xsum[33] = (float)(0.078558519) + (float)(-0.67272425) * Xout[2'] + 

(float)(-0.98405063) * Xout[23] + (float)(0.24272983) * Xout[24] + 
(float)(1.1989859) * Xout[25] + (float)(1.5565525) * Xout[26] + 
(float)(-0.72113997) * Xout[27] + (float)(-0.97956073) * Xout[28] + 
(float)(-0.15540032) * Xout[29] + (float)(1.4880245) * Xout[30] 
(float)(-0.64811188) * Xout[31 ], 
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Yout[ 1]=1.0 / (1.0 + exp( -Xsum[3 3] )); 

/* Generating code for PE 2 in layer 4 */ 
Xsum[34] = (float)(-0.18949994) + (float)(0.82227021) * Xout[22] + 

(float)(-0.47706285) * Xout[23] + (float)(-0.37742797) * Xout[24] + 
(float)(-0.16749881) * Xout[25] + (float)(-0.31269461) * Xout[26] + 
(float)(-0.28799385) * Xout[27] + (float)(-0.069637783) * Xout[28] + 
(float)(0.62282759) * Xout[29] + (float)(-2.2626534) * Xout[30] + 
(float)(-0.10584904) * Xout[31]; 

Yout[2] = 1.0 / (1.0 + exp( -Xsum[34] )); 

/* Generating code for PE 3 in layer 4 */ 
Xsum[35] = (float)(0.07574404) + (float)(-0.067089461) * Xout[22] + 

(float)(-0.016239651) * Xout[23] + (float)(-0.12841272) * Xout[24] + 
(float)(0.47594422) * Xout[25] + (float)(-0.1223451) * Xout[26] + 
(float)(0.023014756) * Xout[27] + (float)(0.32377771) * Xout[28] + 
(float)(-0.6264416) * Xout[29] + (float)(0.050953642) * Xout[30] + 
(float)(-0.23612306) * Xout[31 ]; 

Yout[3] = 1.0 / (1.0 + exp( -Xsum[35] )); 

printf("\n\nNetwork outputs are: "); 
for(i=0; i<4; i++) 

printf("%f ", Yout[i]); 

call 
_mm2000_axis 

1() 
{ 
printf("\nAdj u sting fibres... "); 

mmsend(" 1 TB\r", mm_add); 
mmread(response, mm_add); 
printg"\nCurrent MotionMaster error state is: %s\n", response), 

strcmp(response, "EOO NO ERROR"); 
if(! strcmp) 

{ 
printg"\nMotionMaster error. Aborting... "); 

Yout[ 1 ]=0.5; 

} 
mmsend(" 1 PR 1000\r", mm_add); 
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A NEURAL NETWORK APPROACH TO THE PHASE 
UNWRAPPING PROBLEM IN FRINGE ANALYSIS 

D. J. TIPPER*, D. R. BURTON and M. J. LALOR 
Coherent and Electro-optics Research Group 

Liverpool John Moores University, School of Engineering and 
Technology Management, Byrom Street, Liverpool, 13 3AF 

This paper presents a novel approach to the phase unwrapping problem by employing a back-pro agaticxi 
neural network to detect the presence of phase wraps in an image. The philosophy behind the approach 
is to keep the analysis simple by using a small nctwork consisting only of six input, six hidden anti 
six output neurons. Each input neuron is assigned to one pixel and this input "window" is convolved 
with an image to analyse only six pixels at a time. The unwrapped phase distribution is reconstructed 
from this series of analyses. It is shown that after training for approximately two hours, the network can 
successfully unwrap a one-dimensional phase distribution in 0.5 seconds and that chic met od could pmve 
to be the basis for a robust two dimensional phase unwrapper. 

INTRODUCTION 

The aim of this work is to investigate the use of neural network techniques to assist in 

the phase unwrapping of fringe images. The phase unwrapping problem occurs due to 
the mathematical processes involved in the calculation of the phase values of an image. 
To produce a fringe image, two mutually coherent light beams are made to cross. At 

the point where the beams cross, interference fringes are produced whose intensity 

profile is sinusoidal. The intensity of illumination at any given point, I(x, y), is 

expressed as: 
I(x, y) = a(x, y) + b(x, y) cos 10(x, y)] 

Where 

a(x, y) = additive noise - offset term 
b(x, y) = multiplicative noise - amplitude term 

7(x, 
y) = Tc 

+ 
Tm 

carrier phase 
ý, ý = modulation phase 

If a surface is illuminated with a cosinusoidal fringe pattern. variations in intensity 

across that surface are observed. If the value of the modulation phase is known. it 
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is possible to reconstruct a map of the surface [1). To find the modulation phase, it is desirable to eliminate the amplitude and offset terms. To make the analysis of such fringe patterns possible, they are subject to either phase stepping [2] or Fast Fourier Transform (FFT) [3] techniques. 
Phase stepping involves measuring the intensity values of several fringe patterns where the phase value of each one is shifted by a known amount. Typically, four images are used whose phase values differ by intervals of x/2. 
From equation (1), the intensity values are given by 

I(0) (x, y) = a(x, y) + b(x, y) cos [ (x, y)] 
I(r/2) (x, y) = a(x, y) + b(x, y) cos [O(x, y) + iriZ] 
I(n) (x, y) = a(x, y) + b(x, y) cos [O(x, y) + ir] 
I(3, /2) (x, y) = a(x, y) + b(x, y) cos [O(x, y) + 31rC2] 

The intensity equations can be solved simultaneously to give 

tano(x, y) = (I(, r/2) - 1(31r/2)1/11(0) - I(n) } 

The phase value at any point x, y is, therefore, given by 

0 (x, y) = arctan { I(x/2) - 1(3r/2) 1 /{ I(0) - 1(ir) 1 

The FFT was developed as a fringe analysis tool by Takeda et al. 141 and involves 

the use of a single, modulated phase map. Using this approach an ICI' algorithm is 

applied to the image and the result is filtered and inverse transformed to return an 
image with real and imaginary parts. 

When the intensity profile of a fringe pattern is described by 

Iýx, Y) = a(x, y) + b(x, Y)co [ (x, Y)1 

the equation can be re-written to allow for tilting of wavefronts on non-uniform 

surface as 

1(x, y} = a(x, y) + c(x, y) exp (29ci . fa. x) + c* (x, y) exp (-21ri. fo . x) 

where 

c(x, y) = [b(x, y)/2]exp { iO(x, Y) } 

and c*(x, y) is the complex conjugate of c(x, y) 

If the Fourier transform of the equation is taken, the equation becomes 

I(f. Y)=A(f, y)+C(f-fo, Y)+C*(f+ fa, y) 
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where the capital letters represent the Fourier spectra and f represents the spatial 
frequency in the x direction. The Fourier spectra are separated by a carrier frequency 
f0. C(f - fo, y) can be isolated by means of a filter and the inverse FFI' can be taken. 
giving 

f(x, y) = arctan { Im[c(x, y)] }/{ Re[c (x, y)] } 

where Im = imaginary component of c (x, y) 
Re = real component of c (x, y) 

The Phase Unwrapping Problem 

Both the phase stepping and FFT methods give the phase values for an image as 
an arctangent function. The mathematical nature of this function causes the final 
phase values to be returned wrapped modulo 27r. This phenomenon is explained in 
Figure 1. To accurately reproduce a map of the object's surface, the phase values 
must be reconstructed, or unwrapped. When real wrapped phase distributions contain 
noise, it becomes difficult for the unwrapper to distinguish between noise and genuine 
phase wraps. This is especially the case when using classical algorithmic unwrappers. 

To date, many algorithms for the unwrapping of phase values have been 

proposed, the earliest being "Schafer's Algorithm" 15]. This involves comparison of 
adjacent pixel values. A large number of decisions must be made and any errors 
can be propagated throughout the entire image. Numerous algorithms have expanded 
on the basis idea, the most robust utilising regional rather than global analysis [6,7,8]. 
However, no unwrapper is completely noise-immune. 

6 

Figare 1AI -D phase distribution and how it appears when wrapped modulo 2x 
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NEURAL COMPUTING 

Background 

Throughout history, many theories have been proposed to explain the operation of 
the human brain. It is only since the nineteenth century, however, that any real insight into its operation has been gained. The fundamental element of the nervous 
system is the neuron. The average brain contains approximately five billion neurons, 
all of which have five specific functions: they receive signals from neighbouring 
neurons, integrate these signals, give rise to nerve pulses, conduct these pulses and 
transmit them to other neurons. It is from an idea for a mathematical model of the 
neuron first postulated by McCulloch and Pitts [9] in the 1940s that the concept of 
the neural network originates. The neural network is a computing paradigm which 
differs from conventional computing as it "learns through experience", rather than 
utilising an algorithmic approach. Each processing element of a neural network 
mimics the operation of a biological neuron by behaving as a simple thresholding 
device. When a large number of neurons are connected together, a large number of 
simple calculations can be combined to achieve a more complex result. A network 
consists of a layer input neurons, a layer of output neurons and one or more layers 
of "hidden" neurons, so called because their input and output values are not known 
by the user. 'T'hree types of learning are associated with neural networks.: supervised, 
unsupervised and reinforcement. Supervised learning involves presenting the network 
with an input stimulus and an expected response, whereas unsupervised learning only 
makes use of an input stimulus and leaves the network to calculate its own output. 
Reinforcement learning falls between these two methods as the network is only told 

whether a response to a given stimulus is "good" or "bad". During training, the 

connection strengths, or "weights" between layers are adapted so that selected output 
neurons produce a value, or "fire", in response to a given stimulus. The network is 

effectively taught to recognise a series of input values. The principles of the neural 

network are discussed in more detail in other works [ 10,11,121. 

Neural Computing as an Aid to Phase Unwrapping 

Although digital computers are fast when complex arithmetic calculations are 

required, they are notoriously inadequate for such tasks as pattern recognition when 

compared to the human brain. Numerous works have dealt with the use of neural 

networks for pattern recognition, e. g. 1 13,14,151. If the need to detect wraps in a 

phase distribution can be considered a problem of recognition, this leads to an 

interesting question: Can a neural network be "taught" to recognise a phase wrap? 

The idea of using a neural network for the processing of phase data has been explored 

by Takeda [16], who used a Hopfield recurrent neural network [17J. Little information 

is available regarding the implementation of this method, but the system uses a 

network which consists of a large number of neurons with correspondingly large 

numbers of training data and high training times. The approach described in this 

paper is simpler in that instead of using a large network to process an entire image. 
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a much smaller network is used to process sections of the phase map, effectivei} 
building up an image from a large number of smaller sets of inputs. 

EXPERIMENTAL WORK 

All experimentation was carried out using the neural network package "NeuralWorks 
Professional 11 Plus" [ 18]. This was implemented on a standard 486 DX2/66 personal 
computer. A 6x 1 "window" of pixels was convolved with the original image, each 
pixel being assigned to one input neuron. The network consisted of six input, six 
hidden and six output neurons. This configuration was the minimum number of input 
and output neurons, an output neuron being trained to fire when a wrap was present 
at the corresponding input neuron. This configuration was the smallest possible before 
the system began behaving like a conventional point-to-point unwrapping algorithm. 
A diagram of the network is shown in Figure 2. 

The network was trained using both real and simulated data, which were grouped 
into training "sets". These were ASCII files which contained the phase values of a 
number of different fringe patterns. The simulated data were noise free and showed a 
maximum of one wrap per training set. It is unlikely that, in a genuine wrapped 
phase distribution, two wraps will be encountered whose separation is less than six 
pixels. The real data consisted of phase values calculated by the FFT method from 

fringe patterns projected onto a flat, white surface. Each training set consisted of one 
hundred groups of data, or "training vectors", which were randomly presented to the 

network twenty thousand times. Experiments were conducted using both supervised 

and unsupervised learning. Kohonen [191 and Hopfield networks were used for 

unsupervised learning. To ascertain the viability of using supervised learning, a 
backpropagation network was used which employed a normalised-cumulative-delta 
learning rule and sigmoid transfer function. This configuration was used as previous 

experience has shown it to be the most suitable for this type of application. At 

each presentation, the Root Mean Square (RMS) error between the desired and actual 

output was calculated by the package. When the RMS error reached its convergence 

criterion, which is an effective zero set by the user (in this case 0.01), the training 

was recognised as complete. To test the network, different data from the training data 

were presented to the network and the outputs from these data were compared with 

output layer 

Hdden layer 

Input layer 

H Pb« s 

Figure 2 Configuration of the six-input phase umvrapping neural network. 
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the desired output. The test data were taken from fringe patterns projected onto the curved surface of a lens. When training and testing were complete. the NeuralWorks 
package converted the network into "C" code. The final output from the package was aC program which behaved with the same characteristics as the fully trained network. To perform the complete unwrapping operation, the C code from the package was incorporated into a program which read values of pixels, presented them to the 
network code and performed the necessary phase adjustments. 

EXPERIMENTAL RESULTS 

Unsupervised Learning 

Training continued to 20,000 presentations when this method was used. Testing 
showed that wraps were correctly identified on approximately 50% of occasions. Due 
to this low success rate, a suitable unwrapping system could not be designed using this 
type of network. 

Supervised Learning 

After approximately 8,500 random presentations of data, the network's convergence 
criterion was reached and training ceased. This was the case for both real and 
simulated data. Testing showed that phase wraps could be correctly identified on 
approximately 95% of occasions when training had taken place with real data and on 
approximately 80% of occasions with simulated data. Any inaccuracies involved the 
firing of an output neuron adjacent to the desired output neuron. Figure 3 shows three 
wrapped phase distributions. Figure 3(a) is noise-free and shows six wraps, Figure 3(b) 

contains four wraps and one single noise spike and Figure 3(c) shows five wraps 
and a number of noise spikes. Figure 4 shows the phase distributions unwrapped by 
Schafer's algorithm. In Figure 4(a), the distribution is unwrapped successfully, but 

Figures 4(b) and 4(c) show how the introduction of noise makes the final result 

unacceptable as the algorithm treats the noise spikes as wraps. In attempting to 

unwrap the noise, the errors are propagated throughout the final unwrapped phase 

4 

3 

2 

1 

ß 

-1 

2 

178 

(a) Noise-free wrapped phase distribution. 
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(b) Wrapped phase distribution; single noise spike 
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Figure 3 Wrapped phase distributions. 
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(c) Noisy wrapped phase distribution. 
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Figure 4 Phase distributions unwrapped using cchafer'c algcrithm. 

distribution. Figure 5 shows how the same distributions were unwrapped using the 
neural network method. Figure 5(a) shows that the same result is achieved with the 
noise-free distribution. Figures 5(b) and 5(c), however show the benefit of the neural 
network method. In each case, the noise spike is effectively ignored and unwrapping 
continues correctly. Training times were of the order of two hours and, with a fully 
trained network, a one-dimensional array of 256 pixels was successfully unwrapped 
in approximately 0.5 seconds. 
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Figure 5 Phase distributions unwrappczzi using the neural network nxthod. 

FURTHER WORK 

An image is more than a series of lines. In a line, a pixel has only two immediate 
neighbours. In a real image, howcvcr, a pixel borders four others, meaning a network 
must be able to analyse twice the number of neighbouring pixels. Investigation into 
expansion of the wrap detector to a square "tile" is currently being carried out. This 
will need to take into account the relative vertical and horizontal positions of 
neighbouring pixels in a 2-D phase map. If a square "window" of pixels is convolved 
with the wrapped phase map, an analysis can be built up, a small portion at a time. 

CONCLUSIONS 

This paper has shown that an artificial neural network using supervised learning 
techniques can be successfully trained to identify the occurrence of wraps in a 
wrapped phase distribution. With a fully trained back-propagation network. one- 
dimensional wrapped phase distributions can be successfully unwrapped in 
approximately 0.5s. Best results were achieved when the networks were trained using 
data taken from real phase distributions. By combining the network with conventional 
code, one-dimensional phase distributions can be successfully unwrapped. Because of 
the success of the I -D unwrapping experiments, it is felt that the potential exists to 

extend the concept further to unwrap complete two-dimensional wrapped phase 
distributions. 
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Fringe pattern optimisation using a backProPagation 
neural network. 

DJ Tipper, DR Burton &MJ Lalor 

Liverpool John Moores University, School of Engineering and Technology Management, Byrom Street, Liverpool, L "AF, UK. 

Abstract. This paper describes a svstem for the optimisation of fringe patterns for surface measurement. The fringe patterns are generated using a twin-fibre adaptive interferometer. A backpropagation neural network is used to anale se values for the 
mean intensity, number of fringes, visibility and angle of fringe tilt of the image and 
make a decision as to whether the pattern is suitable for measurement according to 
these parameters. The output of the network is then fed back to the interferometer and 
the fibre position adjusted until an optimum fringe pattern is produced. 

1. Introduction 

1.1 Adaptive interferometry & Fringe Optimisation 

Fringe optimisation can be defined as the selection of the best fringe pattern for any given 
surface. Consider a conventional fringe analysis system. Straight fringes are projected 
onto an object's surface, the image is viewed through a CCD camera and that image is 
analysed by a digital computer. If the object has a complex or irregular surface, the 
reflected fringes can be extremely difficult to measure accurately. The technology now 
exists, however, to create "adaptive" fringes. Using a twin-fibre adaptive interferometer 

or an LCD projection panel, it is possible to have control over both the spacing and the 
angle of tilt of the projected fringes. The use of this type of equipment would make it 

possible to configure a system in which the projected fringes can be adapted to suit the 

shape of the object to be measured. In an adaptive interferometry system. a set of fringes 
is projected onto a surface, the image is viewed through a CCD camera and before any 
measurement is carried out, the fringe pattern is optimised . 

The computer essentially 
decides whether the fringe pattern it sees will be suitable to measure the surface in 

question and if not the pattern is changed by the adaptive interferometer until it is suitable 
for measurement. 

1.2 Artificial Neural Networks 

The Artificial Neural Network (ANN) is a computing paradigm which has no algorithm 

as such, but "learns through experience". Originally developed from an idea for a 

mathematical model of a biological neuron [1], the ANN consists of a number of 

processing elements, or "neurons", each one acting as a simple thresholding device. 

When a large number of neurons are connected together, a large number of simple 
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calculations can be combined to produce a more complex overall result. Each nemork 
consists of a layer of input neurons and a layer of output neurons, vv hich are linked by an 
intermediate layer of "hidden" neurons, so called because their input and output values 
are not seen by the user. 

In order for an ANN to function correctly, it must first be "trained". There are 
three types of leaning normally associated with ANNs: supervised, unsupervised and 
reinforcement learning. With supervised learning, a set of input stimuli and 
corresponding output stimuli are presented to the network, so that it learns the correct 
response to each possible input. Unsupervised leaning involves presentation of only the 
input stimulus, so the ANN is left to calculate its own output. Reinforcement learnin, 
falls somewhere between these two categories as the network is only taught whether a 
particular input is "good" or "bad". The networks described in this paper make use of' 
supervised learning. To train an ANN using supervised learning, a set of input values is 
applied to the input layer and corresponding output values to the output layer. The 
connection strengths, or "weights", between the layers are adapted so that selected 
output neurons will produce an output, or "fire", in response to a given stimulus. It' 
training is successful, the network should be able to interpolate an output state from input 
data that is not a member of the training set. 

The principles of the ANN are discussed in more detail in other works [2] 
Much research has been carried out into the use of ANNs for pattern recognition 

problems, e. g. [3]. If fringe optimisation is considered as a pattern recognition problem, it 
follows that it may be possible to "teach" an ANN to recognise the best possible fringe 

pattern for measurement of a given surface. 

2. Experimental Procedure 

The problem originally encountered was how to define the quality of a fringe pattern. 
Parameters which could easily qualitatively define a fringe image were decided to be: 

* Intensity 
* Number of fringes 
* Tilt 
* Contrast/visibility 

These parameters could be calculated from intensity values at key points in a given fringe 

image. 

In order to provide suitable training data for the network, intensity values were taken 

from five regions in each image. Each image was divided into four equal region', 

Intensity profiles were recorded for each of the four re(Yions plus a titth profile xti as 

recorded in the centre of the image where it was brightest- From these array's of intensity 

values, it was possible to calculate mean intensity, number of fringes and visibilit` for 

each region. Visibility was calculated according to the equation 
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V= Imax - Imin 

Imax + Imin 

In order to determine the direction of tilt of the fringe pattern, five intensity profiles vA ere 
also recorded as shown in figure 1. 

, import a: \\ffigl. bmp} 

Figure 1: Directions of intensity profiles for tilt calculation 

The ANN used for this application was configured using the NeuraIN orks 
Professional II Plus package running on a standard 486 DX2/66 stand-alone PC. A 
Backpropagation network using a sigmoid transfer function and Normalised-Cumulative- 
Delta learning rule was used whose architecture consisted of 20 input, 10 hidden and 4 
output neurons. Each parameter was assigned five input neurons and one output neuron. 
The training set and test set each contained 120 training vectors, the training set being 
presented randomly to the network 50,000 times. When training was complete the test 
set was presented to the network and its results recorded. 

When the network was fully trained and tested, it was converted into "C" code by 
the NeuralWorks package. The final output from the package was aC program which 
behaved with the same characteristics as the trained network. To perform the complete 
optimisation operation, a series of values were read from a fringe image, presented to the 
network code and the output incorporated into code to drive the interferometer. 

3. Experimental Results 

The results given by the network for the test set were compared with the desired results 
and number of matches were noted. This was converted to a percentage to give a value 
for the accuracy of the network. These values are given in table 1. 

Table 1: 

Parameter % accuracy 

Mean intensity 97 
Fringe number 86 
Tilt 97 
Visibility 95 

TOTAL 94 
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4. Conclusions 

The experimental work has shown that backpropagation ANN s are suitable for 
determining the quality of fringe patterns for adaptive interferometry applications. 
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