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When bumblebees gather nectar, it is generally believed that foragers
optimize the energy costs and gains of collecting nectar in a manner which
maximizes fitness. The current study investigated the foraging behaviour of

nectar gathering bumblebees and whether they maximized one of two
currencies:

1. Rate of net energy gain (RNEG), where RNEG = (energy gains - costs) /
Wme.
2. Net energy efficiency (NEE), where NEE = (energy gains - costs) / costs.

Bumblebees were trained to gather nectar from a non-depleting artificial
flower patch at which energy gains could be accurately controlled and
recorded. Energy gains were combined with time budgets and time / activity /
laboratory (TAL) estimates of energy costs, enabling the NEE and RNEG of
foraging bees to be estimated. Computer simulations of the optimum
behaviour of the same bees when maximizing RNEG and NEE, were then
compared to the observed behaviour of the bees. It was found that NEE and
RNEG model predictions of behaviour differed significantly to the observed
behaviour. It was, therefore, clear that the foragers did not maximize RNEG
whilst gathering nectar. However, unlike the RNEG model. NEE model
predictions of the bumblebees behaviour required accurate estimates of
energy costs. As the data available for TAL estimates of energy costs were
limited, based largely on studies of honeybee energetics, it was unclear
whether TAL estimated costs were reliable. As a result, it was possible that
the variation between the observed foraging behaviour and NEE model
predictions was due to errors in TAL estimates of costs.

To provide a more accurate measure of the bumblebees energy expenditure,
a protocol was developed to enable the doubly labelled water technique to be
applied to bumblebees. This resulted in alterations to the standard DLW
analytical and methodological procedures. The developed protocol was
validated by simultaneous DLW and infra-red open circuit CO, respirometry
measures of the energy expenditure of 16 bumblebees during tethered flight
Comparison between DLW and respirometry estimates did not significantly

differ from one another. Due to the low variation between DLW and infra-red
calorimetry measures of energy expenditure, it was possible to use the DLW

technique to measure the energy costs of bumblebees whilst foraging in a
field situation.

Results from field DLW measures of the bumblebees energy costs revealed
significant errors in TAL estimates. TAL estimates were then removed from
the NEE model and replaced by the costs required for the model to predict
the observed behaviour of the bees. These costs were significantly different
from DLW measured costs, thus showing that the bumblebees were not
maximizing NEE whilst foraging for nectar. A significant correlation was,
nowever, observed between the mass of foragers and volume of nectar



collected. It is, therefore possible that bumblebees follow a simple nectar
volume threshold rule, possibly in an attempt to maintain a constant water
balance.
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Introduction



1.0.0 General Introduction

Organisms evolve towards phenotypes best adapted to survive and
reproduce within the ecosystem in which they are situated (Darwin, 1859).
Selective pressures should, therefore, result in phenotypes which optimize
their foraging behaviour in a manner which maximizes the probability of the
individual successfully reproducing (Cody, 1974; Charnov, 1976; Lewontin
1978, Maynard-Smith, 1978; McNeill, 1982; Pyke, 1984; McNamara &
Houston, 1986; Stearns, 1986; Krebs & Davies, 1991: Owen-Smith, 1994). In

other words:

“Foraging behaviour has been shaped by natural selection, so that foraging
strategies which maximize fitness will exist in nature, and these foraging
strategies will be optimal with respect to criteria that may be evaluated

independently of a knowledge of the fitness of the animals” (Pyke, Pulliam &

Charnov, 1977).

The form in which optima! foraging behaviour may express itself is highly

variable, depending largely on the life history of the species and the short
term energy requirements of the individual or social group (Krebs, Stephen’'s

& Sutherland, 1983). It is, however, possible to describe optimal foraging in

terms of three major elements:

1) The time taken to search for, collect and handle the food (time).

2) The energy expended during searching for, and collecting food (energy

costs).

3) The energy gained from the food (energy gains).



Optimal foraging theory (OFT) would, therefore, suggest that an organism
should employ a strategy in which the combination of time and costs resuits

IN the highest net gains to the individual or social group.

This simplistic explanation of optimal foraging theory has, however, been
criticized as inadequate (Heindrich, 1983; Hobbs, 1990; Ward, 1992) and

even, “a complete waste of time” (Pierce & Ollason, 1987). In particular

Pierce and Ollason highlighted 6 main areas' in the basic assumptions of

OFT they considered invalidated its use.

1. The inability to determine what natural selection maximizes

Pierce and Ollason pointed out that many of the behavioural traits of an
individual are inter-connected, with many organisms combining foraging with
searching for a mate and predator avoidance efc. They argued that as
different activities are not independent, natural selection will act on the
~verall behaviour of the individual, resulting in no single activity being
maximized. This was illustrated by Houston & McNamara's (1985) model of
prey choice, in which forager's minimized their risk of starvation by selecting
prey with minimal quality variation over prey with potentially greater gains,
but also greater quality variability. In this case, the organism would forgo
maximum gains in order to minimize the chances of starvation. This,
however, does not necessarily infer that the organisms are not foraging in an
optimal manner. Instead, the risk of starvation could be viewed as another
selective pressure acting on OFT, possibly resulting in an animal considering
starvation risk as a foraging cost (non-fuel cost), as much as energy

expended by foragers when walking or flying (Seeley, 1986, Nonacs & Dill,

Pierce and Ollason discussed eight areas of perceived inadequacy in OFT, however, the
last two points are discussed within points 1 to 6.



1990). Therefore, if foraging costs included the non-fuel cost of starvation
risk, collecting a low energy source food with a reduced starvation risk may in
fact be optimal, irrespective of whether energy gains are maximized. Thus,
although individual activities are not independent, the overall foraging

behaviour can still be described as optimal.

2. Variability in environmental conditions reduces the likelihood of

optimal foraging behaviour evolving

As environmental conditions are variable, Pierce and Ollason argued that an
animal’s behavioural foraging traits would have to continually change to
remain optimal, making it unlikely that optimal foraging behaviour would
evolve. However, many animals are mobile, and actively seek out particular
environments (Krebs, 1985). As a result, even in a highly dynamic
environment, it is possible for an animal to relocate to a niche which it has
optimally evolved to exploit (Pyke, 1984). Also, similar foraging strategies
have been reported in animals of unrelated lineage within the same
environment (Stearns & Schmid-Hempel, 1987). As similar foraging

behaviour has evolved independently, it would tend to indicate that this

behaviour is adaptive, if not optimal (Stearns & Schmid-Hempel, 1987)

3. Optimal strategies may not occur in nature
Pierce & QOllason also argued that even if natural selection did tend towards

phenotypes which foraged in an optimal manner, optimal behaviour may not

be realized due to three factors:

1) Optimal strategies may not yet have evolved.



i) Animals may have an imperfect knowledge of their foraging environment,

thus, making it impossible to forage in an optimal manner.

iii) The genetic variation of the animal may not occur in the direction

necessary to permit evolution of optimal foraging behaviour.

Although such arguments highlight reason why optimal foraging may not
occur, they do not invalidate the use of OFT to investigate the behavioural
traits of an animal. OFT may even be useful in identifying species which do
not forage in an optimally manner and provide an explanation for why this is
so (Stearns, 1987). A good example of this is the ideal free distribution (IFD)
theory (Fretwell & Lucas, 1970). IFD is an optimal foraging model which
predicts an equilibrium distribution of foragers among patchy recourses. The
model makes two assumptions, i) the forager has perfect knowledge of the
gains it will derive from collecting any given unit of food, and ii) foragers can
move freely between patches (Harper, 1982; Abrahams; 1986). Providing
that these assumptions hold true, the model predicts that at equilibrium, the
ratio of the foragers between forage sites should equal the ratio of the

resources between those sites, i.e.

N, R
N, R, X

where N, and N, equal the numbers of foragers at forage sites 1 and 2
‘espectively, and R, and R, equal the amounts or rates of food availability at
those sites. This distribution should, therefore, result in the foragers
maximizing the food they receive (Pulliam & Carcaco, 1984). However, when
this model was tested, large systematic deviations were observed from the

predicted (Abrahams, 1986). These deviations were characterized by an



under-use of the more profitable foraging sites and an overuse of the less
profitable foraging sites. As a result Gray and Kennedy (1994) investigated
errors in the IFD model using a further perception limited model (PLM). Here
it was assumed that the IFD model was correct, but the assumption that
foragers had perfect knowledge of food gains was false. Using the
augmented model, it was subsequently possible to successfully test the
predictions of the IFD model on nectar foraging bumblebees (Dreisig, 19995).
Therefore, when using an OFT model, it was possible to identify a limitation
in an assumption (perfect knowledge), correct it, and use the corrected model
to successfully re-test the models assumptions. Although it may not always
be possible to correct errors in OFT models, it sh;)uld be possible to identify
these errors and reject the model. Thus, Pierce and Ollason’s comments do

not invalidate the basis of OFT.
4. The existence of optimal strategies is untestable

’ierce and Ollason asserted that a major limitation of OFT is the inability to
identify a priori the function of a given foraging strategy by an animal. As a
result, an apparently optimal behaviour of an animal may simply be a function
of another strategy, for which the animal is not optimally adapted (Pierce &
Ollason, 1987). It is possible that this situation may occur, however, the true

function of a behavoural trait can be tested through a range of manipulative

experiments combined with linear behavioural models (Belovsky, 1994). It

should, therefore, normally be possible to determine the function of any given

behavioural trait of an organism (Stearns & Schmid-Hempel, 1987).



5. Functional hypotheses are untestable

As OFT models represent a simplification of nature (Cody, 1974), Pierce and

Ollason suggested that reality is distorted as it is simplified. It was also
argued that assumptions of the types and occurrence of food, and the range
of possible behaviour by an animal, must be validated to enable OFT
hypothesis to be tested. However, as many food types and behavioural traits
do not have defined boundaries (McNeill, 1982), Pierce and Ollason argued
‘hat it is not possible to test basic assumptions relating to these elements
within optimal foraging models. This could possibly result in OFT models
which predict the correct foraging behaviour of an animal whilst the
underlying assdmptions regarding food types and range of behavioural traits
are incorrect (Pierce & Ollason, 1987). If this assumption was true it would

be impossible to test the overall validity of any optimal foraging models.

Although it may be reasonable to assume that assumptions and
simplifications result in errors in OFT model predictions, the degree of such
errors have been testable in previous studies and invalid assumptions
rejected or altered (Schmid-Hempel, Kacelnik & Houston, 1985; Stearns &
Schmid-Hempel, 1987; Seeley, 1986). However, any study for which basic

assumptions, such as energy expenditure, cannot be tested should be viewed

critically.
6. Optimal foraging models have not been tested

Pierce and Ollason suggested that many OFT models test for optimal
behaviour using experimental conditions which violate the model in question.
In particular, Pierce and Ollason pointed to the general assumption that

foragers optimize a single behavioural trait, when in fact observed behaviour



IS being Influenced by multiple parameters (e.g. Pulliam, 1974; Charnov,

1976, Oaten, 1977). This may have been true of early OFT studies, however,
more recently models have tended to consider numerous variables when
attempting to predict foraging behaviour (e.g. Schmid-Hempel et al., 1985;
Engen & Stenseth, 1986; Ydenberg & Houston, 1986).

Pierce and Ollason also observed that most OFT studies seek agreement
between observed foraging behaviour and OFT model predictions. This, they
argued, is an incorrect approach, as hypothesis can only be disproved.
Although it is reasonable to assume that a hypothesis can be rejected with
more certainty than it can be confirmed (Popper, 1934), confirmation can still

be of value (Stearns & Schmid-Hempel, 1987). It should also be noted that
only after a number of independent confirmations is an OFT hypothesis
generally excepted. Confirmation, can in certain circumstances, also be of
benefit, as it is also possible to incorrectly reject a hypothesis e.g. it Is

possible that type I statistical errors will falsely reject 1 in 20 studies.

Although OFT has many limitations, and must be applied and interpretéd with
caution, there is now a large body of literature in which significant
relationships have been observed between linear OFT model predictions and
observed foraging behaviour (Table 1.0.1). It would, therefore, appear
reasonable to assume that despite limitations, OFT is still a valid approach of

investigating the foraging rules and strategies employed by animals.



Table 1.0.1. A summary of available linear programming diet model (LP) results. The

number of cases refers to the number of independent attempts to validate LP predictions.
The r* refers to the correlation coefficient reported in the study or computed from the data,

where NA refers to an inability to compute the 2

from the published data. Comments on

studies general findings are also presented. (Modified from Belovsky, 1994)

Study Species No. of Conclusion
Ccases.
Belovsky 1981  A. alces 2 NA  Energy maximizing
Belovsky 1984a Microtus pennsylvanicus, 3 0.95 Energy maximizing
Tragelaphus strepsiceros
Belovsky 1984b Castor canadensis 1 NA  Energy maximizing
Belovsky 1986a Dissosteira carolina, Circottetix 19 0.83 Energy
undulatus, Melanoplus sanguinipes maximizing, except
M. femurrubrum, Microtus for during the rut
pennsylvanicus, Spermophilus when efficiency =
columbianus, Sylvilagus nutalli, time minimizing
Marmota flaviventris, Antilocapra
americana, QOvis canadensis,
Odocoileus virginianus, O.
hernionus, Cervus canadensis, Bison
bison
Belovsky 1986b Data on mammalian herbivores from 28 0.86 Energy maximizing
the literature
Belovsky 1987a Human hunter-gathers (data where 5 0.99 Energy maximizing
parameters are available from
specific studies) (data combined
from numerous studies)
60 0.93 Energy maximizing
Belovsky 1987b Microtus pennsylvanicus 6 0.76 Energy maximizing
Belovsky 1987¢c  Odocoileus virginianus 1 NA Energy maximizing
Belovsky & Equuscaballus, Ovis aries, Bos 4 0.98 Energy maximizing
Slade 1987 taurus
Belovsky 1990  Molothrus ater 1 NA  Energy maximizing
Belovsky 1991  Rangifer tarandus 8 0.96 Energy maximizing
Edwards 1993  Marmota flaviventris 12 0.69 Energy maximizing
Doucet & Castor canadensis 10 0.57 Energy maximizing
Fryxell 1993
Karasov 1985  Ammospermophilus leucerus 1 NA  No result because
of missing
constraint
?gg—:én-Smith Tragelaphus strepsiceros 3 0.99 Energy maximizing
Ritchie 1988 Spermophilus columbianus 132 0.94 Energy maximizing
Ritchie & S. Columbianus 20 0.93 Energy maximizing
Belovsky 1990
Schmid- Apis mellifera 13 NA  Energy efficiency
Hempel et al.,
1985
Schmitz 1990  Odocoileus virginianus 6 0.99 Energy maximizing
Spalinger 1980 O. hemionus 1 NA  No result because
of missing
constraint
Vulink & Drost  Bos taurus 14 NA  Energy maximizing

1991



Ine group of organisms for which many of the problems encountered in
optimal foraging studies do not apply are the eusocial Apoidea super family,
in particular the honeybee’s (Apini: Apis) and bumblebee’s (Bombini: e.g.
Bombus)?. Not only are honey and bumblebee’'s central place forager's
(bound permanently to their hive), but the haploid / diploid nature of their life
history (Figure 1.0.1) produces worker caste forager's which are infertile
(Heinrich, 1979; Seeley, 1985; Winston, 1991). As the workers are infertile,
they do not mate, and restrict their behaviour to hive duties or foraging tasks
(Heinrich, 1979, Makela, Rowell, Sames & W.ilson, 1993). Temporal
polytheism also results in any non-foraging tasks, such as hive duties and
colony defense, being performed by non-foraging caste workers (Heinrich,
1979; Seeley, 1985; Winston, 1991). As a result, forager's perform only
foraging tasks, making the collection of optimal foraging behaviour data
particularly easy compared to data collection on organisms which combine

foraging with mating or defensive behaviour (Dukas & Real, 1991).

Testing linear foraging models, using observations of foraging behaviour, is
also helped by the relatively simple food the forager's collect;, consisting of
nectar (sugar and water) for carbohydrates, and pollen for protein (Sladen,
1912, Von Frisch, 1967). As polytheism restricts an individual forager to
collecting only nectar or pollen, estimates of foraging gains may be easily
observed. Bee's may also be trained to artificial flower patches (Von Frisch,
1967), so that volume and sugar content of nectar collected during a foraging

trip (gains) may be controlled (Schmid-Hempel et al., 1985; Seeley, 1986;
Woif & Shmid-Hempel, 1990).

? The term bumblebee refers to Bombus spp unless otherwise stated. Individual species of
Bombus will be given were necessary.
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Figure 1.0.1 Haploid / Diploid relationship between the production of

workers, drones and queens from queen laid eggs (altered from Winston
(1991)).
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When a queen lays an egg, she can produce offspring with two distinct
genotypes: 1) Haploid (unfertilized) offspring with only one set of genes
derived from the queen; these offspring will develop into males, otherwise
referred to as drones. 2) Diploid (fertilized) offspring, with genes derived from
both the queen and one of the drones with which the queen has mated.
Diploid offspring are all female and may develop into either worker castes or
subordinate queens. The factors determining whether workers or queens are
produced is related to the cell size the egg is laid in, and the food the
developing larvae are fed on (Winston, 1991).
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Due to the relative ease with which the behaviour of honey and bumblebees
can be observed and quantified, their optimal foraging strategies have been
widely studied (e.g. Heinrich, 1976a; Pyke, 1978; Laverty, 1980; Pyke, 1980;
Real, 1981; Heinrich, 1983; Willmer, 1983; Hodges, 1985; Schmid-Hempel et
al., 1985: Seeley, 1986; Willmer, 1986; Cartar & Dill, 1990a; Cartar & Dill,
1990b; Wolf & Schmid-Hempel, 1990; Cartar, 1991; Greggers & Menzel,
1993: Seeley, 1994; Willmer, Bataw, & Hughes, 1994; Dreisig, 1995).

1.0.1 Intra-patch nectar foraging behaviour of honey and bumblebees

Honey and bumblebees collect nectar from flowering plants. The foraging

cycle involves the bee leaving the hive and flying to a nearby flower “patch’,
usually within a 9 km radius of the hive (Seeley, 1985). Once at the patch,
the bee lands on a suitable flower and searches for nectar. When located,
the bee draws up the nectar, storing it in an enlarged section of the
esophagus called the crop or honey stomach. Once the nectar has been

collected, the bee flies to a subsequent flower and collects another “parcel” of

nectar. This continues until :

1) The bee's crop is full.
1) NO nectar remains in the patch.

1) Some form of foraging strategy results in the bee leaving the patch before

the crop is full.

Iv) The bee is disturbed.

Once the forager has returned to the hive, the bee unloads the collected

nectar and typically commences another foraging cycle.
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It should, however, be pointed out that sugar content and volume of nectar
produced by flowers within the patch are highly variable (Dukas & Real,
1993a), even within plants of the same species located in the same area
(Heinrich, 1979a; Pleasants & Zimmerman, 1979; Teuber & Barnes, 1979,
Willmer, 1983; Zimmerman, 1981, 1983: Willmer, 1986; Real & Rathcke,
1988; Willmer, 1988; Creswell, 1990; Waser & Mitchel, 1990; Dukas & Real,
1993a). Foraging bees would, therefore, benefit from the ability to identify
and forage at nectar rich flowers. It appears that both honey and
bumblebees have evolved (or co-evolved with flowering plants) a number of

traits which enable them to do just this (e.g. Roberts, 1979; Corbet, Kerslake,
Brown & Morland, 1984), including:

1) Direct assessment. Where the forager lands on a flower, and uses her

glossa to directly determine nectar content by probing the umbel (Pyke,
1978).

2) Visual stimuli. It has also been reported that foragers may be able to
visually estimate the nectar content of a flower without the need to land and
probe the umbel (Thorp, Briggs, Estes & Ericson, 1975; Kevan, 1976). The
visual stimuli used by the forager appears to be the ultraviolet (UV)
absorption patterns of some nectars (Thorpe et al., 1975). As honey and

bumblebees are capable of visualizing light at UV wavelengths (Weiss,

Soraci & McCoy, 1943), it has been argued that a forager can estimate the

quantity of nectar contained within a flower from the UV patterns on and

within the umbel (Thorpe et al., 1975).

3) Pheromone Marking. There is now growing evidence that bees can, to

some degree, mark individual flowers with pheromones, indicating that they

are either rewarding (Nunez, 1967; Ferguson & Free, 1979; Cameron 1981;
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Marden, 1984; Giurfa & Nunez, 1992), or non rewarding (Frankie & Vinson,
1977; Free & Williams, 1983; Wetherwax, 1986; Schmitt & Bertsch, 1990).

As a result it may be possible for bees to avoid landing on non rewarding

flowers and concentrate their foraging effort on more rewarding plants.

4) Scent discrimination. It has also been suggested that bees can

discriminate between nectar rich and nectar poor flowers by the scent of
nectar (Heinrich, 1979a). In particular, odors released from volatile products
of yeast metabolism within nectar (Crane, 1975; Williams, Hollands &

Tucknott, 1981) may indicate nectar presence or absence.

5) Age selectibn. Foragers may also be able to distinguish between flowers
of different ages via traits such as petal quality and colour (Gori, 1983). A
good example of age selection was reported by Willmer et al. (1994), who
observed five species of Bombus spp foraging preferentially to younger

‘lowers of the raspberry plant (Rubus idaeus).

Although their have been many suggestions as to how honey and
bumblebees may select nectar rich flowers, it is unlikely that any one of the
above strategies are used in isolation, instead it is more likely that bees use a

range cues combined with past experience to determine which flowers will be

the most profitable (Corbet et al., 1984).

Although foragers may use some, or all, of the above stimuli to detect nectar
rich flowers, bees also have to optimally allocate foraging time and effort
within the patch to best maximize fitness. For this reason, bees appear to
search for nectar in a systematic manner (Dreisig, 1995) tending to
preferentially forage to larger flowers (Wilson & Price, 1977, Thomson,

Maddison & Plowright, 1982; Bell, 1985; Andersson, 1988; Schmid-Hempel &
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Speiser, 1988) and restrict their inter-flower flight distance and orientation
(Dreisig, 1985). The distance which a bee flies, when traveling to a
subsequent flower, appears largely dependent on the previous experience of
the forager (Dukas & Real, 1993a). It has been observed that bees will
decrease their inter-flower flight distance when previously encountered
nectar rewards were high (Heinrich, 1979b; Dukas & Real, 1993a). Also
when previously encountered nectar rewards were low, foragers generally
increase inter-flower distances, "ignoring" many flowers in the process
(Dreisig, 1995). It has also been reported that increased inter-flower flight
distance is accompanied by an increase in the random probing of previously
unvisted flowers by the forager (Heinrich, 1979b). Previous experience also
seems to affect the direction in which the inter-flower flights occur. Bees tend

to leave flowers in the same direction in which they arrive, if the encountered

nectar rewards are low. However, if nectar rewards are high, bees tend to
change orientation (Pyke, 1978; Heinrich, 1979b). The combined effect of
decreasing inter-flower flight distance and alteration in flight direction results
In restricting foraging to a small patch of nectar rich flowers. If the quality of
this patch decreases, the resultant increase in inter-flower flight distance and

flight direction consistency will result in the forager moving to alternative sites

where nectar rewards may be higher (Heinrich, 1978b). As individual flowers

'n a patch vary greatly in their nectar content (as discussed previously), bees

which alter inter-flower flight distances and direction based solely on the
experience of the last flower visit would display highly variable and inefficient
foraging behaviour (Dukas & Real, 1993a). As a result it would appear that
bees are capable of integrating the experience of up to 3 previous flower
visits when determining what the subsequent inter-flower flight distance and
direction should be (Dukas & Real, 1993b). The ability of bees to integrate
past experience from more than 3 flowers appears to be limited due to the

inability of the bee to memorize more information (Heinrich, 1976a; Laverty,
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1980; Woodward & Laverty, 1992, Greggers & Menzel, 1993; Dukas & Real,
1993b).

Also associated with limited memory is the bees ability to learn and memorize
how to efficiently handle nectar once a flower has been located. ldeally, a
bee would forage to the flowers within a patch which provided the richest
source of nectar, irrespective of the plant's species or morphology. However,
this does not appear to be the case, with bees restricting themselves to
foraging at between 1 to 3 plant species only (Heinrich, 1976a; Laverty, 1980,
Woodward & Laverty, 1992, Greggers & Menzel, 1993). This action appears
to be largely due to the limited memory of honey and bumblebees, which
restricts the ability of bees to memorize the skills necessary to handle nectar
from large numbers of varying flower types efficiently (Dukas & Real, 1991;
Dukas & Real, 1993a; Dukas & Real, 1993b; Greggers & Menzel, 1993). It
has also been suggested that the skills learnt when handling one species of
flower may ‘"interfere" with handling skills learnt from other species
(Woodward & Laverty, 1992; Dukas, 1995) which again would result in honey

and bumblebees limiting the number of flower species they could efficiently

forage at.

Also, it has been reported that honey and bumblebees often develop foraging
‘routes”, or "traplines", repeatedly visi