Busia, L, Schaffner, CM, Rothman, JM and Aureli, F

Do Fruit Nutrients Affect Subgrouping Patterns in Wild Spider Monkeys (Ateles geoffroyi)?

http://researchonline.ljmu.ac.uk/5157/

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk
International Journal of Primatology

Do fruit nutrients affect subgrouping patterns in wild spider monkeys (Ateles geoffroyi)?

---Manuscript Draft---

<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th>IJOP-D-16-00119R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>Do fruit nutrients affect subgrouping patterns in wild spider monkeys (Ateles geoffroyi)?</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Original Article</td>
</tr>
<tr>
<td>Keywords:</td>
<td>fission-fusion dynamics; feeding competition; food abundance; nutrient quality; Ateles</td>
</tr>
<tr>
<td>Corresponding Author:</td>
<td>Laura Busia</td>
</tr>
<tr>
<td></td>
<td>Universidad Veracruzana</td>
</tr>
<tr>
<td></td>
<td>Xalapa, VER MEXICO</td>
</tr>
<tr>
<td>Corresponding Author Secondary Information:</td>
<td></td>
</tr>
<tr>
<td>Corresponding Author's Institution:</td>
<td>Universidad Veracruzana</td>
</tr>
<tr>
<td>Corresponding Author's Secondary Institution:</td>
<td></td>
</tr>
<tr>
<td>First Author:</td>
<td>Laura Busia</td>
</tr>
<tr>
<td>First Author Secondary Information:</td>
<td></td>
</tr>
<tr>
<td>Order of Authors:</td>
<td>Laura Busia</td>
</tr>
<tr>
<td></td>
<td>Colleen M. Schaffner</td>
</tr>
<tr>
<td></td>
<td>Jessica M. Rothman</td>
</tr>
<tr>
<td></td>
<td>Filippo Aureli</td>
</tr>
<tr>
<td>Order of Authors Secondary Information:</td>
<td></td>
</tr>
<tr>
<td>Manuscript Region of Origin:</td>
<td>MEXICO</td>
</tr>
<tr>
<td>Funding Information:</td>
<td></td>
</tr>
</tbody>
</table>

Abstract:

One of the main costs of group living is feeding competition. Fission-fusion dynamics are thought to be a strategy to avoid overt competition for food resources. We tested whether food abundance and quality affected such dynamics in a species characterized by a high degree of fission-fusion dynamics. We collected data on 22 adult and subadult spider monkeys (Ateles geoffroyi) living in a large community in the protected area of Otoch Ma’ax Yetel Kooh, Yucatan, Mexico. We recorded subgroup size and fission events as well as fruit abundance during 12 months and carried out nutritional analyses on the fruit species that the study subjects consumed most. We found no effect of fruit abundance or nutritional quality of recently visited food patches on individual fission decisions, but the amount of protein in the food patches visited over the course of the day was a good predictor of subgroup size. While the absence of support for a relationship between fruit characteristics and fission decisions may be due to the short temporal scale of the analysis, our findings relating subgroup size to the amount of protein in the visited food patches over the course of the day may be explained by individual spider monkeys attempting to obtain sufficient protein intake from their fruit-based diet.
Do fruit nutrients affect subgrouping patterns in wild spider monkeys (Ateles geoffroyi)?

Laura Busia¹, Colleen M. Schaffner¹, Jessica M. Rothman², Filippo Aureli¹,³

¹Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, Veracruz, Mexico
²Department of Anthropology, Hunter College of the City University of New York, New York, NY, USA
³Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moore University, Liverpool, UK
Abstract

One of the main costs of group living is feeding competition. Fission-fusion dynamics are thought to be a strategy to avoid overt competition for food resources. We tested whether food abundance and quality affected such dynamics in a species characterized by a high degree of fission-fusion dynamics. We collected data on 22 adult and subadult spider monkeys (Ateles geoffroyi) living in a large community in the protected area of Otoch Ma’ax Yetel Kooh, Yucatan, Mexico. We recorded subgroup size and fission events as well as fruit abundance during 12 months and carried out nutritional analyses on the fruit species that the study subjects consumed most. We found no effect of fruit abundance or nutritional quality of recently visited food patches on individual fission decisions, but the amount of protein in the food patches visited over the course of the day was a good predictor of subgroup size. While the absence of support for a relationship between fruit characteristics and fission decisions may be due to the short temporal scale of the analysis, our findings relating subgroup size to the amount of protein in the visited food patches over the course of the day may be explained by individual spider monkeys attempting to obtain sufficient protein intake from their fruit-based diet.

Keywords: fission-fusion dynamics, feeding competition, food abundance, nutrient quality, Ateles
Introduction

Feeding competition is widely acknowledged to be one of the main costs of group living in primates (Chapman 1990; Chapman and Chapman 2000; Janson and Goldsmith 1995; Janson and van Schaik 1988; Koenig 2002; Krause and Ruxton 2002; Terborgh and Janson 1986; Wrangham 1980). When group members compete with each other, an increase in group size usually leads to a decrease in individual foraging efficiency (Janson 1988; Janson and Goldsmith 1995; van Schaik and van Hooff 1983; Williamson and Dunbar 1999). According to socioecological theory, food abundance and its associated costs (e.g. travel length) may be the limiting factor for group size (Chapman et al. 1995; Chapman and Chapman 2000; Milton 1984). For example, food abundance affects male chimpanzee (*Pan troglodytes*) association (i.e. being in the same subgroup) if no receptive female is present (Anderson et al. 2002). An increase in red colobus monkey (*P. rufomitratus*) group size occurred at different spatial scales in relation to the increased availability of important food species (Gogarten et al. 2015). Furthermore, food abundance may influence primate abundance. For example, the abundance of food species affects primate density at a small spatial scale (red colobus monkeys, *Procolobus tephrosceles*, Chapman and Chapman 1999; Southern Bornean gibbon, *Hylobates albibarbis*, Hamard et al. 2010). Seasonality in food abundance affects primate biomass in New and Old World monkeys (Hanya et al., 2011).

Fission-fusion dynamics are one strategy to offset the cost of feeding competition. Species with a high degree of fission–fusion dynamics live in communities characterized by large temporal variation in interindividual cohesion, subgroup composition and subgroup size (Aureli et al. 2008; Kummer 1971). Studies of several species show a relationship between fission-fusion dynamics and feeding competition.
For example, chimpanzee subgroups are smaller during the season with low fruit abundance than during the season with high fruit abundance (e.g. Basabose 2004; Chancellor et al. 2012; Itoh and Nishida 2007). Similarly, the mean subgroup size of spider monkeys is larger when food is more abundant (Asensio et al. 2009; Chapman et al. 1995; Klein and Klein 1977; Smith-Aguilar et al. 2016; Symington 1988) and before than after hurricanes that depleted the fruit supply for several months (Schaffner et al. 2012). Food abundance is also the main factor affecting grouping patterns of other primate (Sumatran orangutans, Pongo abelii, van Schaik 1999) and non-primate species (bottlenose dolphins, Tursiops truncatus, Heithaus and Dill 2002; spotted hyaenas, Crocuta crocuta, Smith et al. 2008). A reduction in chimpanzee community size, likely resulting in reduced feeding competition among community members, affects fission-fusion dynamics, with an increase in subgroup size and duration (Boesch and Boesch-Achermann 2000; Lehmann and Boesch 2004).

The relationship between food abundance and primate group or subgroup size is not always straightforward (e.g. red colobus monkey, P. badius, Gillespie and Chapman 2001; chimpanzees, Pan troglodytes, Anderson et al. 2002; Hashimoto et al. 2001; Hashimoto et al. 2003; Newton-Fisher et al. 2000; Pennant’s red colobus, P. pennantii, and black and white colobus monkeys, Colobus guereza, Onderdonk and Chapman 2000; blue monkeys, Cercopithecus mitis, Worman and Chapman 2006), suggesting that abundance might not be the only food-related factor in determining primate abundance and group size. For example, food nutritional quality affects density and group size of some primate species (black and white colobus monkeys, red colobus monkeys, Piliocolobus trephosceles, Chapman et al. 2004; Fashing et al. 2007; Japanese macaques, Macaca fuscata, Hanya et al. 2006; Hanya and Chapman 2013). Another example of the importance of a food-related factor other than abundance is given by the
extraordinary large group size of a group of black-and-white colobus monkeys. The
typical group size is 2-20 individuals, but in an area with much higher leaf quality the
group reached up to 300 individuals (Fimbel et al. 2001).

The definition of food quality varies depending on the species’ diet and its
digestive capabilities. For example, for highly folivorous primates food quality may be
defined as the balance between structural fibers and protein of mature leaves in a habitat
(Wasserman and Chapman 2003, Chapman et al. 2004; Fashing et al. 2007, but see
Chapman et al. 2012; Johnson et al. 2015), whereas for highly frugivorous Atelines the
total energy intake is often considered as a food quality index (Rosenberger and Strier
1989; Strier 1992; Di Fiore and Rodman 2001). Several studies of spider monkey diet
support this view as individuals select fruits rich in lipids and nonstructural
carbohydrates, which can quickly be metabolized into energy (Castellanos 1995; Dew
2005; Di Fiore et al. 2008). However, Peruvian spider monkeys (A. chamek) maintain a
stable protein intake while energy intake varies depending on the composition of food
items (Felton et al. 2009a). There is thus no consensus whether it is energy or protein
that has the dominant influence on spider monkey food choice and therefore may have
the strongest influence on their subgrouping patterns.

The temporal scale used to measure food abundance and quality might also play
a role in subgroup size changes. For example, a monthly scale may not provide
sufficiently precise information about the relationship between food abundance and
quality and subgroup size because fissioning reduces within-group feeding competition
at a specific moment, and thus a shorter temporal scale is recommended (Asensio et al.
2009). Thus, it is plausible that feeding competition depends not only on food
abundance but also on food nutritional quality and on the temporal scale used.
Spider monkeys represent an excellent candidate species to investigate the role of fruit abundance and quality on fission decisions for two main reasons. First, spider monkeys’ high degree of fission–fusion dynamics provides the opportunity to evaluate the effects of fruit abundance and quality on individual association, as subgroup size changes frequently throughout the day (Chapman 1990; Fedigan and Baxter 1984). Second, spider monkeys are mainly frugivorous, as fruits constitute a large component of their diet (mean: 77%; range: 55-90%, Di Fiore et al. 2008), making a plausible estimation of food abundance easier.

Our aim was to evaluate the role of feeding competition on grouping patterns of spider monkeys, measuring fruit abundance and nutritional quality on a short temporal scale. We evaluated fruit nutritional quality in two ways: non-protein energy (NPE) (i.e. energy (kcal) obtained from lipids and non-structural carbohydrates) and protein in grams. If fissions are a strategy to avoid within-group feeding competition, we predicted that fruit abundance and quality would affect individual association with other community members. We tested this scenario using two approaches. First, we examined whether the characteristics (i.e. fruit abundance and nutritional quality) of recently visited food patches affected individual fission decisions. We predicted more fission events when fruit abundance and quality were lower. Second, we examined whether the characteristics of the visited food patches affected mean daily subgroup size. We expected that a reduction in fruit abundance would lead to a smaller mean daily subgroup size. We predicted that a lower NPE in visited food patches was associated with a smaller mean daily subgroup size. We similarly predicted that lower protein in visited food patches was associated with a smaller mean daily subgroup size.

Methods
Field site and study subjects

The field site is located in the forest surrounding the Punta Laguna lake, within the natural protected area of Otoch Ma'ax Yetel Kooh, Yucatan Peninsula, Mexico (20°38’ N, 87°38’ W). The natural protected area measures 5367 ha and includes a mosaic of old-growth, semi-evergreen medium forest, with trees up to 25 m in height, and 30–50-year-old successional forest (Ramos-Fernandez and Ayala-Orozco 2003).

We studied 22 individuals of a well-habituated community of Geoffroy’s spider monkeys living in the protected area (6 adult males, 10 adult females, 1 subadult male, 5 subadult females, for age classification see Shimooka et al. 2008). These subjects have been part of a continuous long-term project since 1997 and each monkey was individually recognized by unique facial features and differences in fur coloration.

Data collection

We observed monkeys in 4- or 8-hour shifts throughout the daylight hours. The first author and 2 or 3 field assistants followed subgroups about 5.5 hours a day for 129 days, for a total observation time of about 700 hours. From October 2013 to September 2014, we updated the subgroup membership continuously by identifying each member of the subgroup initially encountered each day and recording all membership changes due to fission and fusion events. We followed the first subgroup met during the day. After a fission event, we followed the subgroup including individuals for which we had fewer focal samples. Subgroup membership was established following a chain rule based on inter-individual distances (Croft et al. 2008). We considered an individual part of the followed subgroup if it was <30 m from any subgroup member; the critical distance of 30 m was empirically established at the study site (Ramos-Fernandez 2005).

We recorded fission events when one or more individuals were not seen within 30 m of
a subgroup member for 30 min. We recorded fusion events when one or more
individuals came within 30 m from any member of the followed subgroup (Rebecchini
et al. 2011). We chose the interval of 30 min for recording a fission based on an analysis
of data on subgroup membership changes collected independently from this study.

To assess food abundance, we collected data on the fruit phenology of the food
patch (i.e. one or more trees of the same species) where subgroup members were
observed feeding for longer than 5 minutes. We estimated fruit abundance using a
logarithmic scale: 1-10 items, 11-100 items; 101-1000 items and 1001-10000 items

To determine food quality we collected fruit samples of the most consumed tree
species, i.e. those consumed for at least 20% of the time the followed subgroup spent
foraging during the first 15 days of each month, from the same food patches where we
observed the monkeys feed a few days earlier. We counted the number of fruits and
extracted the seeds for all species but figs, as spider monkeys extracted seeds before
ingesting fruits most of the time. We weighed the mass and dried the pulp with a Nesco
dehydrator (American Harvest FD-80) at less than 60°C on the same day of sample
collection to obtain a minimum of 20 g of dry fruit matter. Considering the potential
alteration of nutritional content due to over drying (Hosamani and Desai 2013) and
potential differences between species in the duration of the process, we weighed
samples every three hours during fruit drying. We considered a sample dried when the
weight was equal to the previously measured weight. We put dried samples in a plastic
bag containing the relevant information including date, area of collection, fruit species,
and a unique alphanumeric code and we stored them in a dark box containing silica to
prevent potential damage from humidity. Before analyses, we milled dried samples to
1mm particle size using a Wiley mill (Rothman et al. 2012).
Nutritional analysis

We determined protein, nonstructural carbohydrates and lipid concentrations of fruits in the Nutritional Ecology Laboratory of Hunter College at the City University of New York, according to standard methods (Rothman et al. 2012). We obtained the quantity of nitrogen through combustion, and we multiplied nitrogen by 6.25 to estimate the crude protein concentration. We used this conversion factor to conform with other studies and as a crude measure, although some of this crude protein may not be digestible (Rothman et al., 2008), as it could be bound to fiber or a component of secondary compounds (Milton and Dintzis 1981; Conklin Brittain et al. 1999; Rothman et al. 2012). We obtained the quantity of lipid through petroleum ether extraction using an ANKOM XT15 Fat Analyzer (ANKOM, Macedon, NY). We determined the neutral detergent fiber (NDF) through the detergent method (van Soest et al. 1991) without sodium sulfite and with α amylase using an A200 fiber analyzer (ANKOM, Macedon, NY). We estimated ash by burning the sample at 550C. We estimated the total nonstructural carbohydrates (TNC) by subtracting NDF, lipid, crude protein and ash from 100% (NRC 2003; Rothman et al. 2012).

Data analyses

To test our predictions we ran a generalized linear mixed model (GLMM) and a linear mixed model (LMM) using the “lme4” and “nlme” packages (Bates et al. 2014; Pinheiro et al. 2014) in R (version 3.1.2 R-Core Team, 2014). We set an alpha level of 0.05 for all tests. In the GLMM the occurrence of fission within half an hour of the beginning of a foraging event was considered as the dependent variable (binomial: yes or no). Fission events that did not occur within a half hour of the beginning of a
foraging event were excluded from the analyses. We considered a foraging event to take place when at least 75% of subgroup members fed on a food patch. We examined 142 foraging events, 46 followed by fission within half an hour and 96 without fission. The biomass of the food patch was estimated by multiplying the dried mass of each fruit (calculated by dividing the dry mass of the sample by the number of items in the sample) by a value representing the fruit abundance of each visited patch. For each category of fruit abundance we used the following values: 5 for the category 1-10 items, 50 for the category 11-100 items, 500 for the category 101-1000 items and 5000 for the category 1001-10000 items. We considered the biomass as indicator of food abundance, and we included it as an independent variable. We also included the amount of protein (measured in g) for each food patch as an independent variable. As we knew the number of fruits analyzed, we estimated the grams of protein present in each fruit and multiplied it by the value representing the fruit abundance of the food patch. Finally, we considered the non-protein energy of the food patch as an independent variable. We calculated the non-protein energy (NPE) by summing the energy obtained from total nonstructural carbohydrates (TNC, i.e. TNC amount multiplied by 4) and the energy obtained from lipid (i.e. lipid amount multiplied by 9). We assumed little to no fiber fermentation as spider monkeys have a rapid transit time and an unspecialized gut (Milton 1981).

In the LMMs we considered the mean daily subgroup size as the dependent variable. The mean daily subgroup size was calculated based on all subgroup sizes lasting at least one hour during the observations of each day. We included the mean daily amounts of biomass, protein amounts, and NPE calculated considering each food patch visited over the course of the daily observations as independent variables.
To test for multicollinearity, we used the Variance Inflation Factor (VIF) and all variables had VIF < 10 (O’Brien 2007). For all the models we included the month as a random factor and compared them with the null models (Forstmeier and Schielzeth 2011) using a likelihood ratio test with the function “anova” (Dobson and Barlett 2008).

Results

There were 1-3 most consumed fruit species (i.e. those fruit species consumed for at least 20% of the time the followed subgroup spent foraging) per month (Table 1). Brosimum alicastrum and Ficus cotinifolia were the most consumed fruit species in 4 months each. Manikara zapota, Ficus ovalis and other Ficus species were also important for the spider monkey diet, as they were recorded as the most consumed fruit species for 3 months each.

The GLMM with the occurrence of fission within half an hour of the beginning of a foraging event as the dependent variable was not statistically different from the null model (N=142, $\chi^2=2.01$, p=0.57). In the LMM only the daily protein content was significantly associated with the daily subgroup size (Table 2). The mean daily subgroup size was larger when the mean protein content of the food patches visited during the day was higher (Figure 1).
Discussion

We found no support for the prediction that fruit abundance and quality in the visited patch affected the likelihood of fissioning within half an hour. By contrast, we found partial support for the predictions on the factors affecting the mean daily subgroup size. Whereas biomass and non-protein energy had no significant effect, the protein amount was positively associated with subgroup size: the mean daily subgroup was larger when the amount of protein in the food patches visited in the day was higher.

A lack of evidence for a relationship between food abundance and fission decisions was also found in the same spider monkey species when fruit abundance and patch size were compared before and after fission events (Asensio et al. 2009). A possible explanation for the lack of support for our first prediction is that fission decisions are not taken based on fruit availability and quality in a given food patch, but they depend on an individual’s overall nutritional state. Several studies demonstrate the importance of an individual’s nutritional state and nutritional balancing on its behavior. For example, nutritional state is the most important factor predicting the likelihood that an individual initiates a group movement in three species of macaques (Tonkean macaques, M. tonkeana, rhesus macaques, M. mulatta and Japanese macaques, M. fuscata yakui, Sueur et al. 2013); the same possibly happens in geladas (Theropithecus gelada), as pregnant females ‘decide’ the direction of group movements more often than other group members (Dunbar 1985). This likely occurs because following the individual with the greatest nutritional needs allows other group members to also meet their nutritional needs (Sueur et al. 2010). In addition, nutrient balancing between protein and non-protein energy affects patch departure in black and white colobus monkeys (Colobus guereza, Johnson et al. 2015). Groups foraged longer and more frequently when the ratio between protein and non-protein energy was constant,
highlighting the importance of a nutrient balancing strategy for group decisions. Thus, it is possible that spider monkeys base their fission decision depending on their nutritional states. In order to test this hypothesis, data on complete dietary intake of each individual and nutritional composition of all eaten items will be needed.

Our findings showed that daily fruit abundance, measured by the biomass of the food patches visited during the day, was not associated with the mean daily subgroup size. By contrast, the mean daily subgroup size was associated with a measure of food quality: the amount of protein estimated in the food patches visited over the course of the day.

We found that spider monkey subgrouping patterns are related to the amount of protein in the visited food patches over the course of the day, supporting the important role of protein found in an earlier study (Felton et al. 2009a). Felton et al. (2009a) suggested that protein has a leveraging effect in spider monkeys whereby the amount of non-protein energy consumed is affected by the digestible protein content of the diet,
similar to humans (Simpson & Raubenheimer 2005). In their study, spider monkeys maintained a constant amount of protein in their diet while non-protein energy fluctuated, regardless of the available food. This finding suggests protein could be a key nutritional factor influencing spider monkey foraging (Felton et al. 2009a,b). However, at least three issues make us exercise caution in the interpretation of our results. First, we never observed patch depletion. Spider monkeys left a food patch when many fruits were still present, and monkeys ate fruits from the same patch during the following days, implying that foraging on the patch was still an efficient strategy. Thus, it is likely that they did not adjust subgroup size depending on the daily protein abundance.

Second, spider monkeys are mainly frugivorous, but their diet includes young leaves (Di Fiore et al. 2008; unpublished data). Even if leaves typically contain higher concentrations of secondary compounds, such as tannins, and fiber than fruits (Janson and Chapman 1999), it is plausible that individuals can eat leaves to fulfill their protein needs (Milton 1979). Thus, based on our study we cannot know whether leaves are important only in cases of fruit scarcity, as shown in other studies (Schaffner et al. 2012; Wallace 2005), or if they serve a critical role in providing protein year round.

Also, we cannot know whether the consumption of fruit, and subsequently the protein obtained through fruit pulp, is the preferred option to fulfill an individual’s protein needs, and whether individuals would prefer to reduce their subgroup size to obtain protein from fruits if fruits are available instead of feeding on leaves without fissioning.

Third, we used the amount of crude protein, not available protein to estimate protein intake. The measurement of crude protein is limited because it estimates any nitrogenous compound in a plant as digestible protein, but we know that some nitrogen is contained within secondary compounds like alkaloids, bound to fiber and/or secondary compounds (i.e. Milton and Dintzis, 1981; Conklin-Brittain et al., 1999;
Rothman et al. 2008; Felton et al., 2009b; Wallis et al., 2012). Consequently the amount of protein that is actually digested is likely to be less than the amount of crude protein in the fruits measured in this study. Although we found a positive relationship between crude protein amount and daily subgroup size, it may therefore be possible that the relationship between available protein and daily subgroup size is different.

Given that the high degree of frugivory of spider monkeys is often interpreted in relation to the importance to obtain energy from lipid and carbohydrates from fruits (Di Fiore and Rodman 2001; Rosenberger and Strier 1989; Strier 1992), we predicted that non-protein energy would be a key factor affecting the mean daily subgroup size. However, we found no such effect. One possible reason for this unexpected result is that although spider monkeys may fission (i.e. decrease their subgroup size) to maximize energy availability per individual, they may fusion (i.e. increase their subgroup size) for other reasons, such as predation risk (van Schaik et al. 1983). Similarly, in chimpanzees large subgroups do not always occur when food is abundant (Hashimoto et al. 2003; Newton-Fisher et al. 2000). Another possible reason is that protein may represent a key factor in feeding competition, and thus individuals regulate their grouping patterns to balance nutrient intake and obtain a constant protein supply (cf. Felton et al. 2009a; Johnson et al. 2015), which would be an interesting avenue of research to pursue.

In summary, our findings only partially explain fission-fusion dynamics as a function of food characteristics. Neither abundance nor quality of a food patch affected the likelihood of individuals to fission at the scale of single foraging events. However, mean daily subgroup size was associated with the amount of protein in visited patches. There is evidence that primate density and group size depend on the availability of food resources at longer temporal scales, such as seasonal and monthly (e.g. Asensio et al. 2009; Chapman and Chapman 1999; Hanya and Chapman 2013; Hanya et al. 2006).
may be possible therefore that food availability and food quality affect subgrouping patterns at longer temporal scales, but not at the level of single fission events. Indeed, a study on the same spider monkey community found an increase in individual gregariousness during seasons of high fruit abundance (Smith-Aguilar et al., 2016).

Short-term fission decisions instead may be the result of other factors, such as the physiological state based on individual nutritional state (Sueur et al. 2013), the presence of fertile mates (Anderson et al. 2002) and the quality of social relationships between community members (Busia et al. in prep).

Acknowledgements

We thank Anthony R. Denice for his outstanding contribution in data collection, Augusto Canul, Eulogio Canul, Juan Canul and Macedonio Canul for their valuable assistance during fieldwork and tree climbers Octaviano “Tavo” Ciau Dzul and Benito Yam Cocom for their essential assistance during fruit sample collection. We are deeply grateful to Joanna M. Setchell, Annika Felton and a anonymous reviewer for valuable comments on previous versions of the manuscript. We are grateful to Sandra Smith for her overall support and to Gabriel Ramos-Fernandez and Laura G. Vick for sharing the management of the long-term project. We are also indebted to Chester Zoo and The National Geographic Society for financially supporting the long-term project, the Primate Society of Great Britain for a research grant and the Consejo Nacional por la Ciencia y la Tecnología (CONACyT) for LB’s PhD studentship (CVU n° 490429) and for equipment (n°I0101/152/2014 C-133/2014). We conducted this research with permission from CONANP and SEMARNAT (SGPA/DGVS/00910/13, SGPA/DGVS/02716/14 and SGPA-DGGFS-712-2801-14).
Conflict of Interest: The authors declare that they have no conflict of interest.

Reference

17

...

Smith, J. E., Kolowski, J. M., Graham, S. E. D., Holekamp, K. E. (2008). Social and
ecological determinants of fission–fusion dynamics in the spotted hyena. Animal
Behavior, 76, 619–636

Smith-Aguilar, S. E., Ramos-Fernández, G., & Getz, W. M. (2016). Seasonal changes in
socio-spatial structure in a group of free-living spider monkeys (Ateles geoffroyi). PLoS
One, 11, e0157228

requirements imply a non-linear emergence of leaders in animal groups. PLoS
Computational Biology, 6, e1000917.

leadership using nutrient requirements and dominance rank of group members.
Behavioral Ecology and Sociobiology, 67, 457-470

Symington, M. M. (1988). Food competition and foraging party size in the black spider
monkey (Ateles paniscus chamek). Behaviour, 105, 117–134

Fig. 1: Mean (±SE) amount of protein in the food patches visited during the day depending on three classes of mean daily subgroup size of spider monkeys in the protected area of Otoch Ma’ax Yetel Kooh, Mexico, October 2013 – September 2014.
Do fruit nutrients affect subgrouping patterns in wild spider monkeys (Ateles geoffroyi)?

Laura Busia¹, Colleen M. Schaffner¹, Jessica M. Rothman², Filippo Aureli¹,³

¹Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, Veracruz, Mexico
²Department of Anthropology, Hunter College of the City University of New York, New York, NY, USA
³Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moore University, Liverpool, UK

Table 1: Nutritional composition of the fruits eaten most frequently by spider monkeys in the protected area of Otoch Ma’ax Yetel Kooh, Mexico, October 2013 – September 2014.

<table>
<thead>
<tr>
<th>Month</th>
<th>Species</th>
<th>NDF</th>
<th>Crude Protein</th>
<th>Lipid</th>
<th>TNC</th>
<th>NPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>October</td>
<td>Ficus ovalis</td>
<td>60.1</td>
<td>11.2</td>
<td>6.0</td>
<td>15.1</td>
<td>114.4</td>
</tr>
<tr>
<td></td>
<td>Spondias mombim</td>
<td>17.9</td>
<td>4.6</td>
<td>3.9</td>
<td>70.6</td>
<td>317.5</td>
</tr>
<tr>
<td>November</td>
<td>Brosimium alicastrum</td>
<td>58.4</td>
<td>23.0</td>
<td>7.6</td>
<td>3.0</td>
<td>80.4</td>
</tr>
<tr>
<td></td>
<td>Other Ficus sp.</td>
<td>56.7</td>
<td>8.7</td>
<td>5.6</td>
<td>21.1</td>
<td>134.8</td>
</tr>
<tr>
<td>December</td>
<td>Brosimium alicastrum</td>
<td>37.5</td>
<td>20.8</td>
<td>7.6</td>
<td>3.0</td>
<td>80.4</td>
</tr>
<tr>
<td></td>
<td>Other Ficus sp.</td>
<td>59.1</td>
<td>9.7</td>
<td>7.1</td>
<td>16.3</td>
<td>129.1</td>
</tr>
<tr>
<td>January</td>
<td>Diospyros cuneata</td>
<td>43.8</td>
<td>4.4</td>
<td>2.4</td>
<td>33.1</td>
<td>154.0</td>
</tr>
<tr>
<td></td>
<td>Ficus cotinifolia</td>
<td>50.2</td>
<td>6.4</td>
<td>5.0</td>
<td>33.5</td>
<td>179.0</td>
</tr>
<tr>
<td>February</td>
<td>Ficus cotinifolia</td>
<td>53.0</td>
<td>6.8</td>
<td>3.3</td>
<td>31.1</td>
<td>154.1</td>
</tr>
<tr>
<td></td>
<td>Ficus ovalis</td>
<td>61.3</td>
<td>7.8</td>
<td>3.7</td>
<td>19.4</td>
<td>110.9</td>
</tr>
</tbody>
</table>
Other Ficus sp. | 49.2 | 6.5 | 6.9 | 30.5 | 184.1
---|---|---|---|---|---
March | Guazuma ulmifolia | 62.1 | 6.0 | 3.6 | 22.1 | 120.8
| Manikara zapota | 42.6 | 3.0 | 7.2 | 44.8 | 244.0
| Sideroxylon foetidissimum | 24.4 | 13.0 | 10.3 | 37.3 | 241.9
April | Ficus cotinifolia | 44.3 | 5.7 | 5.0 | 39.7 | 203.8
| Manikara zapota | 48.6 | 3.7 | 5.7 | 37.9 | 202.9
May | Enterolobium cyclocarpum | 24.2 | 15.5 | 1.7 | 55.2 | 236.1
| Manikara zapota | 36.9 | 2.3 | 4.7 | 53.2 | 255.1
June | Ficus cotinifolia | 43.4 | 5.8 | 5.8 | 40.0 | 212.2
| Ficus ovalis | 46.8 | 7.4 | 6.4 | 30.3 | 178.8
August | Brosimium alicastrum | 19.9 | 9.0 | 3.1 | 62.9 | 279.5
September | Brosimium alicastrum | 33.2 | 14.3 | 3.3 | 41.9 | 197.3
| Spondias mombin | 20.1 | 5.6 | 3.3 | 67.3 | 298.9

NDF=neutral detergent fibers; TNC=total nonstructural carbohydrates; NPE=non-protein energy. All nutrients are expressed as % of dry matter, apart from NPE that is expressed in kcal per 100 g of dry matter.

In July the most consumed fruit species was Talisia olivaeformis, a fruit containing a small portion of aqueous pulp. To obtain 20 grams of dry matter, we would have depleted the fruit patches used by the monkeys. Thus, we preferred not to collect the fruit samples, excluding July from the analyses.

Table 2: Results of linear mixed model testing the influence of biomass, protein content and non-protein energy (NPE) of a food patch on the daily subgroup size of spider monkeys in the protected area of Otoch Ma’ax Yetel Kooh, Mexico, October 2013 – September 2014.

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>SE</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>3.869</td>
<td>0.358</td>
<td>10.806</td>
<td><0.001</td>
</tr>
<tr>
<td>Biomass</td>
<td><-0.001</td>
<td><-0.001</td>
<td>-0.426</td>
<td>0.672</td>
</tr>
<tr>
<td>Protein content</td>
<td>0.005</td>
<td>0.002</td>
<td>3.061</td>
<td>0.003</td>
</tr>
<tr>
<td>NPE</td>
<td><-0.001</td>
<td><-0.001</td>
<td>-0.354</td>
<td>0.724</td>
</tr>
</tbody>
</table>

The model was statistically different from the null model (likelihood ratio test: N= 68, χ²=19.9, P=0.012)