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Abstract 

The aim of this work was to use resources coming from the field of signal and image 

processing to make progress solving real problems of surface texture characterisation. 

A measurement apparatus like a microscope gives a representation of a surface 

textures that can be seen as an image. This is actually an image representing the relief 

of the surface texture. From the image processing point of view, this problem takes 

the form of texture analysis. The introduction of the problem as one of texture 

analysis is presented as well as the proposed solution: a wavelet based method for 

texture characterisation. Actually, more than a simple wavelet transform, an entire 

original characterisation method is described. 

A new tool based on the frequency normalisation of the well-known wavelet 

transform has been designed for the purpose of this study and is introduced, explained 

and illustrated in this thesis. This tool allows the drawing of a real space-frequency 

map of any image and especially textured images. From this representation, which can 

be compared to music notation, simple parameters are calculated. They give 

information about texture features on several scales and can be compared to hybrid 

parameters commonly used in surface roughness characterisation. Finally, these 

parameters are used to feed a decision-making system. 

In order to come back to the first motivation of the study, this analysis strategy is 

applied to real engineered surface characterisation problems. The first application is 

the discrimination of surface textures, which superficially have similar characteristics 

according to some standard parameters. The second application is the monitoring of a 

grinding process. 
A new approach to the problem of surface texture analysis is introduced. The 

principle of this new approach, well known in image processing, is not to give an 

absolute measure of the characteristics of a surface, but to classify textures relative to 

each other in a space where the distance between them indicates their similarity. 
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1. Surface texture, Measurement and Characterisation 

1.1 Presentation 

1.1.1 Introduction to surface texture 

An excellent introduction of the surface texture problem was given by G. G. Thomas 
[THO 1] : "Surface texture measurement occupies a somewhat anomalous position in the 

science of metrology. Whilst dimensions, shapes and metallurgical structures of engineering 

components can be unambiguously specified in terms of length or mass, the property of 

surface texture is mainly qualitative. A quantitative index can only be assigned indirectly by 

reference to instrumentation operating in accordance with geometric parameters. Surface 

texture, surface finish or surface roughness (these terms tend to be used synonymously) is not, 
in the present state of the art, a characteristic that can be exactly described and measured. 
The assessment of the finish of the earliest metalwork was qualitative and related essentially to 

its reflectivity. The development of more refined production techniques, more exacting design 

requirements and more precise measuring methods, coupled with the desire to obtain better 

comprehension of the relationship between surface properties and surface functions, 

stimulated the search for quantitative methods of assessment. Ever since Schmaltz [SCHM 1] 

gave, for the first time, a numerical designation to the conception of roughness, the definition 

of roughness has been a source of controversy and difficulty. There is no doubt that 

measurement and control of surface finish is one of the most complex problems of modern 

metrology. " 

The surface of an engineering component is a thin layer with properties that differ from those 

in the interior of the body. These properties are seldom homogeneous throughout the 

microdomain in question and they contribute to the functional behaviour of the component. In 

addition to its geometrical characteristics such as accuracy of shape, waviness and roughness, 

the surface will have chemical characteristics such as chemical composition and a potential for 

chemical reactions, and physical characteristics such as structure or grain, hardness and stress. 
We shall only be concerned here with the surface geometry. 
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Control of surface texture is generally instituted not with a view to seeking superlative 
finishing of components, but to secure a surface texture of known type and roughness value, 

which experience has proved to be that most suitable to give long life, fatigue resistance, 

maximum efficiency and functional interchangeability at lowest cost; together with attendant 

benefits such as reduction of vibration, wear and power consumption. 
British Standard [BS 1134/1] defines surface textures as those irregularities with regular or 

irregular spacing which, recurring many times across the surface, tend to form on it a pattern 

or texture on the surface. This texture may contain the following components [BS 1134/1], 

[PD 7306]: 

9 Roughness (Primary texture). The irregularities in the surface texture, which result from 

the inherent action of the production process. These are deemed to include traverse feed 

marks and the irregularities within them. 

" Waviness (Secondary texture). That component of surface texture upon which roughness is 

superimposed. Waviness may result, from such factors as machine or work deflections, 

vibrations, chatter, heat treatment or warping strains. 

9 Form (error of form). That long wavelength component of surface upon which both 

roughness and waviness are superimposed. 

" Lay. The direction of the predominant surface pattern, ordinarily determined by the 

production method used. 

Then, it can be said according to British Standard [PD 7306] that roughness, is produced only 

by the method of manufacture (i. e. the process rather than the machine), whereas waviness 

results from the characteristics of an individual machine and error of form from defects in the 

machine or its setting. It follows that, in the majority of cases, roughness, waviness and error 

of form will be present together on any surface. Furthermore, most common machining 

processes produce surface textures that include directional characteristics known as lay. It can 

be seen below, Figure 1-1 and Figure 1-2, an illustration of these components of surface 

texture. It is to be pointed out that the different components are not scaled. 
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Figure 1-1 Roughness. Waviness and error of Form of a surface texture 

Roughness 

Waviness 

Figure 1-2 Roughness spacing, Waviness Spacing and Lay of a surface texture 
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Different lay types are produced depending upon the process employed. The more common 

types are shown below. Table 1-1. with their designation symbols: 



In surface texture measurement is of great importance. When measurement is performed along 

a straight line, a profile of the surface roughness is then obtained and its aspect can be 

completely different according to the direction of the measurement with the lay. Measurement 

rules exist in order to get results that can be compared. Hence, according to British Standard 

[PD 7306], for machining processes that produce parallel, circular or radial lays the direction 

of measurement should be across the lay and this is usually obvious by visual inspection. 

Where the surface has a multidirectional lay or an intermediate lay, measurements should be 

taken in several directions and the maximum roughness accepted as the value for the surface. 

Crossed lay should be traced at 45 degrees, which averages the effects of the two directions. 

Surfaces devoid of lay (e. g. sand blasted) will have the same value regardless of the direction 

of measurement. 

1.1.2 The importance of surface texture 

In the majority of cases, engineers trouble to specify and measure surface texture 

because the surface being measured will come into contact with some other surface and by 

controlling the texture it is hoped to control the nature of this contact and thus the performance 

of the component. There are, of course, many non-contacting situations in which texture is 

important; these concern its influence on corrosion, specular reflection, etc; but, in the main, 

any action is initiated from the belief that the parameter being measured affects, or even 

controls, the nature of static and sliding contact between solids. 
Fatigue of metals and machine members, friction, wear, hydraulic resistance, strength of 

pressed joints, corrosion, precision of measurements, quality of contacts and other properties 

essentially depend upon surface irregularities from the manufacturing processes. 

Simultaneously with the creation of surface irregularities other properties of surface layers 

appear, such as skin hardness, micro-hardness, residual stresses, density of dislocations, 

deformation of the lattice, etc. These properties affect fatigue resistance, wear resistance and 

other important characteristics of engineering components more intensively. 
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Therefore, to improve the quality of products, it is vital that we quantitatively evaluate and 

classify surface properties and develop methods of determining numerical `values of their 

characteristics based upon the required functional properties. 

1.1.3 Motivation for the Research and Structure of the Thesis 

Once a surface is machined the first task that takes place in the control process is the 

measurement. In this first chapter, a review of the main measurement methods is presented. It 

goes from fingernail testing, which is one of the most wide spread methods due to its high 

reliability cost ratio, to the Atomic Force Microscope, which allows nanometric measurements 

of surface roughness. The data coming from the measurement are then processed, in order to 

try to give a description of the surface texture of the machined sample. A non-exhaustive list 

of the most used characterisation parameters is presented. These standard characterisation 

parameters, even if not completely reliable for describing the complex structure of a texture, 

are nevertheless very widely used in industry. One of the main problems with characterisation 

in mechanical applications is to be able to associate a parameter to functionality. Some 

parameters that were designed in that sense are also presented. 

Hence, the problem of functionality appears, and behind this problem all the problems linked 

to surface texture characterisation. The aim of this thesis is to use resources coming from the 

field of signal and image processing to make a step forward towards solving the real problem 

of surface characterisation. Indeed, a measurement apparatus like a microscope gives a 

representation of a surface textures that can be seen like an image. This is actually the image 

representing the relief of the surface texture. From the image processing point of view, this 

problem takes the form of texture analysis. This introduction of the problem as a problem of 

texture analysis is presented in chapter 2 as well as the proposed solution: a wavelet based 

method for texture characterisation. 

In chapter 3 the concept of wavelet transform is introduced as a mathematical tool, trying 

nevertheless to keep clear the practical aspect. Hence, the use of wavelets for surface texture 

analysis is justified mainly by their multiscale analysis properties. 
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In chapter 4, a new tool based on the wavelet transform, the Frequency Normalised Wavelet 

Transform (FNWT) is introduced. This tool, which has been developed exclusively for this 

study, allows a real space-frequency representation of any signal or image and especially 

texture images. Actually, rather than just a simple wavelet based characterisation method, a 

whole characterisation strategy was designed to answer the problem. This strategy is 

thoroughly detailed in chapter 5. Indeed, from the space-frequency representation offered by 

the FNWT, simple parameters are calculated. They give information about texture features on 

several scales and can be compared to hybrid parameters commonly used in surface roughness 

characterisation. Finally, these parameters are used to feed a decision-making system. 

In order to come back to the first motivation of the study and for assessing the characterisation 

strategy efficiency, in chapter 6, this system is applied to real engineered surface 

characterisation problems. The first application is the discrimination of surface textures 

presenting the same characteristics according to some standard parameters. The second 

problem is the monitoring of a grinding process. A general conclusion and a view for further 

developments of the technique finally conclude the thesis in chapter 7. 
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1.2 Surface texture measurement methods 

1.2.1 Measurement methods used in industry 

1.2.1.1 Tactile testing 

I 

Tactile testing assesses surface roughness by non-geometrical means, based on 
functional aspect of roughness [THO 1]. The best-known method of comparing an unknown 

surface with a calibrated surface is by running the fingernail across both surfaces, applying the 

same pressure at the same speed of traverse. With a rather crude and primitive method of 

assessment, we are able in some cases of irregular textures, to differentiate between surfaces 

whose roughness average values differ by only 0.25 µm. This is amazing when one reflects 

that the radius of curvature of the average finger nail is approximately 100 times as large as 

the radius of a roughness measurement stylus. 

1.2.1.2 Stylus tracer instruments 

The stylus tracer instrument is a contact measuring method. It consists of a sharply 

pointed stylus, the excursions of which, as it is traversed across the irregularities of the 

surface, are magnified and recorded on a strip chart or displayed on a meter. Stylus 

instruments, even if among the first roughness measurements tools are still widely used. Their 

interest is to associate simplicity with reliability. The stylus is generally a pyramidal or conical 

diamond with a flat or rounded tip. A Talystep instrument can have a very good precision with 

a very large magnification using an extremely small diamond (0.1 µm). When a rounded tip is 

used the theoretical condition for full penetration into the scratches is that the radius of 

curvature of the bottom of the scratch should be wider than that of the stylus. With a flat- 

tipped stylus, on the hand, the theoretical limiting condition is simply that the scratch should 

be wider than the flat. In practice these distinctions tend to be over-ridden by elastic effects 

and by residual roughness of the tip itself. 

The fundamental requirements of the stylus technique are high magnifications 

(105,5x 105 times) and very light operating force. 
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An illustration of the stylus trace instrument can be seen below, Figure 1-3: 

Transducer 

Stylus 

Skid I/II Output Signal 

n 
Stylus Arm 

'V 
Sample 

I Figure 1-3 Roughness contact measurement by stylus tracer instrument 

For roughness measurement with a stylus instrument, the use of a skid is sometimes required. 
The skid is an element fixed to the stylus arm that rests on the surface of the test specimen. 
The skid follows the general profile by moving over the crests of small asperities without 

responding to every single one. Hence, using a skid, the sample profile is measured as the 

relative displacement of the skid and the stylus. Obviously, measurements performed in 

parallel both with and without a skid do not give generally the same results. 

Another important stylus parameter is the force it exerts on the surface (static measurement 

stress). This is also known as the tip bearing force. It must ensure that the tip and the surface 

to be measured remain in permanent contact, but without damaging the surface. For soft 

material, the static stress must be very small to prevent the surface from being marked by the 

diamond. These stresses can be quite considerable depending on the stylus tip. Hence, 

considering a rounded shape stylus with a tip radius from 2 to 10 pm, the static stress ranges 

form 0.7 to 16 mN respectively [STOUT 1]. 
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Despite all the precautions that are taken during the measurement with a stylus instrument, 

damaging the surface is unavoidable. The damage is correlated with the sample softness. 

Hence, when soft materials are being measured, non-contact techniques are preferable. 
Of the techniques used for the transducer -mechanical, pneumatic, optical lever and 

electronics- the last named has proved to be the most popular. The degree of precision and the 

measurement field obtainable are a function of the principle adopted to read the vertical 

movement of the sensor, and depend on the manufacturer. In theory, with such an instrument, 

nanometric details (1 nm) can be perceived. Some instruments [TAY 1] can offer a nanometric 

resolution throughout a 10 mm range. According to the technology that is used, this type of 

instruments can offer both high sensitivity and wide measurement range [CHU 1] [ZAH 1]. 

1.2.1.3 Optical interferometers 

The principle involves bringing together two waves fronts originating both from a 

reference surface and from the surface to be studied. White light interferometers, for instance 

those made by Veeco and Zygo, have a beam splitter and a flat reference surface inside the 

objective. A white light beam passes through a filter (usually red) and a microscope objective 

to the sample surface. The beam splitter reflects part of the incident beam to the reference 

surface. The reference surface in the mirau interferometer is mounted on a piezoelectric 

transducer (PZT), so that during the measurement a voltage can be applied to the PZT to move 

it at a constant velocity. The two beams, after reflection from the sample surface and the 

reference surface, recombine and form interference fringes that are a pattern of dark and light 

bands [CAB 1], [CAB 2], [WYA 1]. These fringes lead to the surface profile by using data 

processing. The structure of an interference microscope can be seen below in Figure 1-4. 
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intensity data 

detector array 

light sou 
neutral density filter 

aperture stop 

field stop 

Figure 1-4 The white licht optical intcrfcromctcr from ICAB 1 

When white light is used as the source in an interference microscope, as shown in Figure 1-4, 

the modulation. or visibility of the fringes drops off rapidly from its maximum at minimum 

Optical Path Difference (OPD). Figure 1-5 shows a typical intensity signal obtained from a 

detector in the image plane of the interferometer as the OPD is varied through focus. If the 

modulation signal is extracted from the intensity signal as the OPD is varied through focus and 

its peak is detected. a measurement of relative surface height at that point can be made. If this 

procedure is then carried out for each point, a three-dimensional surface can be obtained. This 

is the principle behind white light interferumetry. 

beamsplitter 

PZT transducer 

microscope objective 

mirau interferometer 
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U 

10 
ºr 

0 
Optical Path Difference 

Figure 1-5 Interference signal produced when a white light source is used 

An optical measurement has the advantage of being non-contact and thus avoiding any surface 

damage compared to the contact measurement method. This is an advantage especially when 

measuring soft surfaces. The vertical resolution can be as low as 0.1 nm and a height of 

several millimetres can be measured. The lateral resolution, which depends on the 

magnification of the objective, is typically in the micron range. Depending upon their 

measurement modes (i. e. Phase Shifting Interferometry (PSI) and Vertical Scanning 

Interferometry (VSI)) these instruments can be used to examine the surface roughness of a 

very smooth surface, like the magnetic disks and sliders used in hard disk drives as well as 

magnetic tapes with different types of magnetic coating [VEE 1]. 

In Phase Shifting Interferometry (PSI) mode, a mechanical translation system precisely alters 

the optical path length of the test and reference beams in a series of shifts. Each optical path 

change causes a lateral shift in the fringe pattern. The shifted fringes are periodically recorded 

(as a "frame") by a detector inside the interferometer, producing a series of interferograms. 

Computerised calculations combine the interferograms to determine the surface of height 

profile. 
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In Vertical Scanning Interferometry (VSI) mode, the surface is profiled by scanning vertically 

downward so that each point on the surface produces an interference signal. At evenly spaced 

intervals during the scan, "frames" of interference data imaged by the video camera are 

captured and processed. Using a series of advanced computer algorithms, the system locates 

the peak of the interference signal for each point on the surface and processes them in parallel 

to determine the surface height profile [RST 1]. 

This white light technique differs from conventional microscopic interferometers in which 

depth accuracy is limited by the aperture. The entire image field is viewed at one time without 

the need for scanning the surface in both x and y directions. However, a common problem is 

the vast amount of data, which generally increases the acquisition and analysis time. Many 

different techniques have been used with these profilers to speed up the analysis, including 

Fourier and phase-shifting methods. [CAB 1] [CAB 2]. 

An illustration of the white light optical interferometer, which was used for measuring the 

different surface textures that are presented in this these, that is the RST by WYKO can be 

seen below, Figure 1-6: 
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lt should he pointed out that all the surface textures that are presented in this thesis were 

obtained by measuring engineered samples using a white light optical interferometer nun- 

contact measurement method. To be more precise, the apparatus that was used was the RST 

plus by WYKO (now VEECO). Hence all the textures, or texture profiles, presented in this 

thesis are actually 3-dimentional, or extracted from 3-dimentional. measurements of different 

samples rou2hness. 
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1.2.1.4 Laser scanning confocal microscopy 

Laser scanning confocal microscopy is a quite recent optical microscope technique. In 

this type of microscope a laser scans the surface point by point [SHOT 1]. In the confocal 

microscope all structures being out of focus are suppressed at image formation. This is 

achieved because of the object not being illuminated and imaged as a whole at the same time, 

but at one point after the other. As shown Figure 1-7, this is obtained by the arrangement of 

diaphragms which, at optically conjugated points of the path of rays, act as a point source and 

as a point detector respectively. Rays, which are out-of-focus, are suppressed by the detection 

pinhole. The depth of the focal plane is, besides the wavelength of light, determined in 

particular by the numerical aperture of the objective used and the diameter of the diaphragm. 

At a wider detection pinhole the confocal effect can be reduced. The vertical resolution is 

0.1 gm for a measurement field of about 10 gm. 
Compared to traditional microscopy, confocal microscopy with laser scanning has two main 

advantages. First, both spatial and axial resolutions are increased. Secondly, perfectly 

superposable images can be obtained of successive horizontal slices of the surface. Series of 

optical cross-sections are obtained and then reconstruction can be performed [LEI 1] [HAM 1] 

[WIL 1] [MAT 1] [SHEP 1] [SAW 1] [FAIN 1]. 
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1.2.1.5 Atomic force microscope 

First described in 1986 (BIN 21, the Atomic Force Microscope (AFM) can image 

surfaces hoth in air and under liquids at a resolution of' nanometers. The Atomic Force 

Microscope provides non-destructive measurements with the best vertical and horizontal 

resolution available today. 
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The basic objective of the operation of the AFM is to measure the forces (at the atomic level) 

between a sharp probing tip (which is attached to a cantilever spring) and a sample surface. 
Images are taken by scanning the sample relative to the probing tip and measuring the 

deflection of the cantilever as a function of lateral position. 
There are two major techniques in AFM. One is DC mode AFM or contact mode AFM, and 

another is AC mode AFM or dynamic mode AFM. 

In its contact mode, the AFM lightly touches a tip at the end of a 50 - 300 micrometer long 

leaf spring (the cantilever) to the sample. As the tip is scanned over the sample, a detector 

measures the vertical deflection of the cantilever, yielding the precise height of the sample at 

local points. The deflections of the cantilever are monitored by a laser beam reflected off the 

cantilever and into a position-sensitive detector. 

In its non-contact mode (of distances greater than 10A between the tip and the sample surface) 

surface topography is measured by oscillating the cantilever very near its resonant frequency; 

Van der Waals electrostatic, magnetic or capillary forces produce images of topography. This 

oscillation provides the feedback for the system. The oscillation amplitude decreases when the 

tip contacts the sample surface. The feedback signal maintains the cantilever oscillation at a 

constant level as the tip 'taps' along the sample surface. 

Because its operation does not require a current between the sample surface and the tip, the 

AFM can move into potential regions inaccessible to the Scanning Tunnelling Microscope 

(STM) [BIN 1]or image fragile samples which would be damaged irreparably by the STM 

tunnelling current [ODE 1]. 
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1.2.2 Other measurement methods 

1.2.2.1 Capacitance method 

The basic principle is that a capacitor should be formed between the sample to be 

measured and a thin electrode placed near the surface. This thin electrode (with a thickness of 

approximately 0.3 gm) is made in such a way that only the local electric field in the immediate 

vicinity has any influence on it. The electrode is moved over the surface perpendicularly to its 

plane, the whole behaving like a runner, so that the average distance between the electrode and 

the surface is practically constant. The spatial resolution depends on how the surface adjacent 

to the electrode affects the capacitance value. As the electric field is not only due to the 

surface facing it, the height measurement is balanced by heights near the electrode. 

The apparatus would appear to give results that are consistent with those of classic profile 

instruments for measurements within the roughness average range from 0.1 to 3 tm 

[STOUT 1]. 

1.2.2.2 Ultrasound method 

Ultrasound back scattering can be a means of measuring the surface topography of 

machined surfaces. The system is based on a transducer that sends out a pulsed ultrasound 

signal and collects its echo, reflected off the surface [BLES 1]. The transducer can send out a 

signal at a frequency between 1 and 30 MHz, adapted to the fluid that carries the sound wave 

(5 to 30 MHz for a liquid medium, 1 to 5 MHz for air). The surface profile is deduced from 

the time the signal takes to travel between the transducer and the surface under study. The 

ultrasound signal is sensitive to several factors such as ultrasound frequency, coupling 

medium, angle of incidence, diaphragm aperture and distance from the surface. In these 

conditions, the scale of the roughness studied is from 1 to 40 µm. 
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The disadvantages of this method include complex image analysis and the fact the ultrasound 

transducer generally needs to be in direct contact with the test object or must have a suitable 

coupling medium between it and the object's surface (e. g. water). For this reason the 

technique tends not to be versatile and is usually designed with a specific application in mind. 

1.2.2.3 Laser optical profilometry 

This optical profilometer uses a wide aperture objective that focuses a laser beam onto 

the surface to be studied. The light scattered back by the surface is collimated on a photo 

detector that receives a maximum signal when the surface is at the focal point. A servo-control 

system controls the position of the objective until the signal reaches a maximum. The size of 

the focal spot is 0.5 gm (for a digital objective aperture N. A. = 0.85) [ARR 1]. The simplicity 

of the system is attractive, but it is rather slow, as each measurement point requires the beam 

to be focused, so the objective needs to be moved. 

1.2.2.4 White light optical profilometer 

This optical profilometer works on white light but is based on a similar principal to the 

one above. The main advantage is that it does not require any of the mechanical parts used to 

re-focus the beam to be moved. The light scattered back by the surface is received by two 

photo detectors, which are symmetrical with regard to a separating cube. One can show 

[GOR 1] that measuring the ratio between the light intensity received by both photo detectors, 

a value of the surface height can be computed. The depth of the field and the lateral resolution 

depend on which lens is used. Tests carried out show a linearity range of a few tenths of a 

micrometer, but great difficulty finding the exact position of the focusing point. With such a 

system roughness in the range from 0.1 to 20 gm can be measured. 
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1.2.2.5 Profilometer using a compact disc pick-up head 

This principle for measuring relief uses the pick-up head of a compact disc [SAY 1]. 

The focusing lens of the laser beam is mounted on a motorised system so that the beam can be 

re-focused according to local surface topography. Beam diameter and hence the spatial 

resolution, is comparable to that obtained with a classical contact profilometer. The motor 

displaces the optical instrument that focuses the beams; the signal delivered by a photo 

detector controls the movement. The vertical resolution seems to be equal to 1 gm, spatial 

resolution from 1 to 2 µm (beam diameter) and the measurement scale of 1 mm can be 

increased to several millimetres by adding stepping motors. The roughness values go from 0.2 

to 0.6 gm however, profile distortion can be obtained at such a resolution. 

1.2.2.6 Profilometer for form measurement 

This system allows real time sample control and form defect measurement up to 4 µm, 

and gives some information on roughness [LEE 1]. A laser lights the surface and the'light 

reflected by the surface is focused onto a linear array of photo diodes by triangulation; the 

spots formed on the surface moves according to the surface defects and the general form of the 

sample. The lateral resolution depends on the step of the photo diode linear array. 

Roughness is evaluated by assuming a Gaussian distribution of the asperities. The intensity 

distribution on the diode linear array near the specular reflection is also taken to be Gaussian. 

Using the results of the Beckmann theory [BECK 1], it is found that the variation of the 

intensity of the specular reflection is directly proportional to the standard deviation of surface 

asperity distribution. The roughness analysed ranges from 10 to 0.1 W. 
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1.2.2.7 Methods using diffraction 

The principles of the methods using diffraction are based on the fact that 

electromagnetic radiations are scattered by a rough surface [BECK 1] [HIN 1]. These methods 

use an optical device for the Fourier transform of the surface based on a set of lenses that 

produce a coherent light source point. From there a lens forms a parallel beam which strikes 

the sample and after scattering crosses another lens that behaves like a one-dimensional 

transform. An array of photo diodes receives the diffraction pattern. This apparatus is simple 

and measurement is rapid, but its main drawback is that it gives only the power spectrum of 

the surface, that is, a magnitude, which is difficult to link to the general surface roughness 

characteristics measured by some standard parameters. The measurable roughness varies from 

0.005 to 2 gin. 

1.2.2.8 Speckle techniques 

The coherent nature of laser light leads to the appearance of the phenomenon of 

speckle, that is, the grainy appearance of a scattering surface when illuminated by coherent 

light. The speckle arises due to the interference that occurs between the light rays as they are 

scattered by different points on the surface. The resultant amplitude at any point in space is 

due to a set of vectors with random phase differences. The amplitude has a value that varies 

between zero and a maximum value determined by the magnitudes and phases of the 

individual amplitudes. As the point in space is varied the resultant amplitude and hence the 

intensity will have a different value. It is this random intensity variation that is the speckle 

effect. The speckle effect occurs only when the surface is optically rough, i. e. its height 

variation is of the order of, or greater than, the wavelength of the illuminating beam. The size 

of the speckles is governed by the wavelength of light used and the aperture of the viewing 

system. These profilers offer excellent vertical resolution but the range has been a limitation. 

They are only suitable for continuous surfaces since discontinuous surfaces can introduce a 

phase shift of 21t. Actually, different techniques based on the speckle effect have been used to 

measure surface roughness. The speckle measurement method can be divided into two sub- 

methods that offer both different precision and measurement scales. 
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A method using correlation between surface roughness and size of laser spot [FUJ 1] allows 

measurement of roughness from 0.02 to 0.07 gm. 

The analysis of interference between two speckle figures [LEG 1] [TRIB 1] allows 

measurement in real time over a much wider scale than the previous one, above 1 to 30 gm. 

One can notice that as well as these methods, investigation of speckle in polychromatic light 

[PAR 1] can also be used. 

1.2.2.9 Measurement by laser triangulation method 

This system uses the triangulation method, by focusing a laser spot 6 µm in diameter 

on the surface to be studied [ZAH 1] [ZAH 2]. Laser is focused on the object to be analysed 

and the light reflected by the surface is focused on a photo detector. When the object is 

moved, the height variations encountered along the surface are expressed as a displacement of 

the spot on the photo diode. The position of the spot on the detector is converted into an 

electric signal that is proportional to the height of each point on the scanned profile. This 

apparatus can offer a lateral resolution of 6 µm and a vertical resolution of 10 µm. This is 

suitable for measuring form analysis of curved surfaces as well as analysis of soft surfaces. 

1.3 Standard characterisation parameters 

As seen before with measurement methods, depending on the apparatus that is used the 

sampling can be performed either along a straight line or directly on the whole surface. When 

measuring a profile from a machined surface, the problem is to reduce a two-dimensional 

problem (i. e. 2D, two dimensions of space x and y and the height) in character to one- 

dimensional metrology (i. e. 1D, one dimension of space x and the height). This is done by 

confining individual measurements to profiles of plane sections taken through the surface. 

After measurement, parameters should be calculated in order to quantify the surface aspect 

characteristics. Some commonly used parameters called standards parameters provide 

numerical expression of roughness. 
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These parameters give an idea of the geometrical characteristics of a surface, but they are not 

directly correlated with any functionality. This means that surfaces with the same set of 

parameters can have a mechanical or chemical behaviour totally different and vice versa. 
Furthermore, these parameters, even if widely used in industry present the inconvenient of not 

being very stable. Indeed, it was proved that those parameters can notably vary when 

measured on different samples exhibiting the same surface texture [THOM 1], [THOM 2]. 

Most of the time these standard parameters refer to the measure of 1D profiles of surface 

relief. An extension of most of them in 2D is generally straightforward. Nevertheless, the fact 

of considering a surface instead of a relief imposes the consideration of topological problems 

that lead to the calculation of some purely 3D parameters [STOUT 1] 

Profile characterisation parameters widely used by industry [TAY 1] are of three types: 

" Amplitude Parameters. They are measures of the vertical characteristics of the 

surface deviations. 

" Spacing Parameters. They are measures of the horizontal characteristics of the 

surface deviations. 

" Hybrid Parameters. They are some combination of both. 

In profile measurement, a profile is taken from the total surface for evaluation. The profile is 

divided into sample lengths, which are long enough to include a statistically reliable amount of 

data, yet short enough to exclude undesired data from the measurement. From each primary 

profile, a mean line is determined by fitting a least square line of nominal form through the 

primary profile. Prior to any parameter calculation, the measured profiles can be filtered using 

predefined filters that are defined in international standards. Hence, theoretically using these 

filters, the three main components of surface texture, namely the roughness, the waviness and 

the form can be separated. For each of those relief components, a letter is attributed to their 

characterisation parameters: R for roughness, W for waviness and P for the form (i. e. Primary 

profile). For parameters referring to a surface, the letter S is used. For an exhaustive 

presentation of characterisation conditions and parameters, the reader can refer to [WHI 1]. 
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Let f (x; ) be the digital representation of a surface texture profile. This function is centred 

(i. e. the mean line of the real profile within the sampling length is taken as a reference). f (X, ) 

is aM sample, or tap, digital function (i. e. iE [1, M ]). The standard parameters are defined 

according to this digital representation of the centred profile f (x; ) . 

1.3.1 Amplitude parameters 

Parameters for characterising the amplitude property of surfaces are specified here. 

They can be classified into four categories, dispersion, extreme, asymmetry of the height 

distribution and peakedness of the height distribution. 

1.3.1.1 Average Roughness Ra 

Ra is the universally recognised, and most used, international parameter of roughness. 

It is the arithmetic mean of the absolute departure of the roughness profile from the mean line. 

Table 1.2 Average Roughness Ra 

Ra =1If (xi)I 

The surface equivalent of Ra can be straightforwardly calculated and is called Sa [STOUT 1]. 

As an illustration of Ra, one can see Table 1-3, the average roughness that can be obtained by 

classical machining processes: 
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The parameter Ra can also be referred to using the designation of roughness grade numbers 

[BS 308], especially in older drawings. Equivalence between the grade number and Ra is 

given below Table 1-4: 
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Table 1-4 Grade Numbers 

Roughness values Ra 
m in 

Roughness Grade Numbers 

50 2000 N12 
25 1000 N11 

12.5 500 N10 
8.3 250 N9 
3.2 125 N8 
1.6 64 N7 
0.8 32 N6 
0.4 16 N5 
0.2 8 N4 
0.1 4 N3 
0.05 2 N2 
0.025 1 Ni 

1.3.1.2 Root-Mean-Square Deviation Rq 

This is a dispersion parameter defined as the root-mean-square value of the profile 

departures within the sampling area: 

Table 1-5 Root-Mean-Square Deviation Rq 

1 
Rq = 

Rq is sometimes reterrea to as KMS. Its surface equivalent is called Sq [S'1'UU'I I]. 

1.3.1.3 Ten-point height Rz 

The ten-point height, Rz, also known as the ISO 10 point height parameter 

[ISO 4287/1-1984], is a quantity that averages the peak-to valley values. The five highest 

peaks and five deepest valleys are conveniently measured from an arbitrary baseline drawn 

parallel to the centreline of the chosen sampling length. 

Table 1-6 Ten-point height Rz 

SSV 

Z f(xj)-ýf(x, ) 
Rz = '=1 i=I 
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Where f and f are the five highest profile summits and lowest profile valleys respectively. 

Its surface equivalent is called Sz [STOUT 1]. 

1.3.1.4 The extreme points of the profile 

A few parameters describe the extreme points of the profile within the sampling length. 

There are: 

" Ry or Rt is the maximum peak to valley height of the profile in the assessment 

length. 

" Rv is the maximum depth of the profile below the mean line within the sampling 

length. 

" Rp is the maximum height of the profile above the mean line within the sampling 
length. 

Corresponding surface parameters are called Sy or St, Sv and Sp respectively. 

1.3.1.5 Skewness of Topography Height Distribution Rsk 

Skewness is a parameter that describes the shape of the amplitude (height) distribution 

function of the surface texture within the sampling length. Skewness is a measure of the 

symmetry of the profile about the mean line. It will distinguish between asymmetrical profiles 

of the same Ra or Rq. For a Gaussian surface, which has a symmetrical shape for the surface 

height distribution, the skewness is zero. For an asymmetric distribution of surface heights, the 

skewness may be negative if the distribution has a longer tail at the lower side of the mean 

plane or positive if the distribution has a longer tail at the upper side of the mean plane. This 

parameter can give some indication of the existence of "spiky" features. An illustration of the 

skewness parameter can be seen below, Table 1-7. 
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Rq is the Root-Mean-Square Deviation parameters. The equivalent surface parameter is called 

Ssk [STOUT 1]. 

1.3.1.6 Kurtosis of Topography Height Distribution Rku 

This is a measure of the peakedness or sharpness of the surface height distribution. 

This parameter characterises the spread of the height distribution. A Gaussian distributed 

surface with a standard deviation of one has a kurtosis value of 3. A centrally distributed 

surface has a kurtosis value larger than 3 whereas the kurtosis of a well spread distribution is 

smaller than 3. By a combination of the skewness and the kurtosis, it may be possible to 

identify surfaces that have a relatively flat top and deep valleys. An illustration of the kurtosis 

parameter can be seen below, Table 1-8. 
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I Table 1-8 Kurtosis of Topography Height Distribution Rku 

Kurtosis >3 
Amplitude 

Distribution 
Curves 

Kurtosis =3 (Gaussian) 

Kurtosis <3 

M 

Rku =14f4 (xý 
M Rq ;., 

Rq is the Root-Mean-Square Deviation parameter. The equivalent surface parameter is called 

Sku [STOUT 1]. 

1.3.2 Spatial parameters 

The spatial property is the most difficult to be described by parameters, because of random 

and multi-wavelength components of surfaces. Basically it is important to know what spatial 

properties need to be characterised. Some of the major spatial properties are listed below: 

" Density of summits and valleys 

" Randomness, periodicity and/or determinacy 

" Spatial autocorrelation 

" Wavelengths of predominate components 

" Homogeneity 

" Isotropy and Anisotropy 

Spatial parameters associated with surfaces have different definitions than those associated 

with profiles [STOUT 1]. The spatial parameters shown below are the most common profile 

parameters. 
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1.3.2.1 Mean spacing between profile peaks at the mean line Rsm 

The parameter Rsm is the mean spacing between profile peaks at the mean line, 

measured within the sampling length. A profile peak is the highest point of the profile between 

an upwards and downwards crossing of the mean line. So, if XSi is the distance between the ih 

line crossings, and n is their total number within the sampling length, then the expression of 
Rsm is presented in Table 1-9. 

1.3.2.2 High spot count HSC 

The high spot count (HSC) is the number of complete profile peaks within the 

assessment length projecting above the mean line, or a line parallel with the mean line. This 

line can be set at a selected depth below the highest peak or a selected distance above or below 

the mean line. An illustration of the high spot count parameter is given below Table 1-10. 
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1.3.2.3 Peak count Pc 

The peak count (Pc) is the number of local peaks that project through a selectable band 

centred about the mean line. The count is determined only over the assessment length though 

the results are given in peaks per cm. The peak count obtained from assessment lengths of less 

than 1 cm is obtained by using a multiplication factor. The parameter should, therefore, be 

measured over the greatest length possible. An illustration of the peak count parameter is 

given below Table 1-11. 
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1.3.3 Hybrid parameters 

The hybrid property is a combination of amplitude and spacing. Any changes that 

occur in either amplitude or spacing may have an effect on the hybrid property. Generally 

speaking the sampling interval has significant influence on the hybrid parameters. Extension 

of these parameters can be found for surface characterisation [STOUT 1]. Below are some of 

the most common hybrid parameters. 

1.3.3.1 Root-mean-square slope of the profile Rdq 

Rdq is the root-mean-square slope of the profile within the sampling length. It is 

sensitive to the sampling interval. Rdq is defined below, Table 1-12: 

The profile parameter Rdq has got an equivalent surface parameter Sdq [STOUT 1]. 
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1.3.3.2 Average wavelength R2. q 

The average wavelength (Rtq) is a measure of the spacing between local peaks and 

valleys, taking into account their relative amplitudes and individual spatial frequencies. Being 

a hybrid parameter determined from both amplitude and spacing information, it is, for some 

applications, more useful than a parameter based solely on amplitude spacing. R4 is defined 

below: 

1.3.3.3 Material Ratio Rmr(tp) 

Material ratio (Rmr or tp) is the length of bearing surface expressed as a percentage of 

the evaluation length In at a depth c below the highest peak. Rmr (tp %) is the ratio at the 

depth c. An illustration of the material ratio parameter is given below Table 1-14: 

One can see below, Table 1-15, the parameter Rmr (tp %) for each of the levels as for the 

parameter HSC. The material ratio or Abbott-Firestone curve shows how the ratio varies with 

level: 
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1.4 Functional Parameters 

In engineering applications, many surfaces are manufactured to have specific 
functional properties such as bearing, scaling and lubricant retention capabilities. Depending 

on the functional requirements, these surfaces may be designed to possess specific topographic 

features that are beneficial to the intended application. The above-mentioned parameters give 

general descriptions of surface topography. However, it is sometimes more efficient and 

effective to use specially designed functional parameters to describe the particular 

characteristics of a surface that are important for a specific functional application. Since there 

is a wide range of functional requirements from contacting (such as wear, friction, 

lubrification, sealing tightness, contact rigidity, contact stress, loaded area and thermal 

conductivity etc) to non-contact (such as optical lenses, surface protecting and surface 

painting) applications, a set of functional parameters can only describe a few categories of 

applications. Therefore, as has been stated earlier, it is impossible to propose a functional 

parameter set to meet all functional requirements. Thus in this section, some functional 

parameters dealing with load bearing, running in and fluid retention properties are discussed. 
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1.4.1.1 Functional Parameters for Highly Stresses Surfaces Rpk, Rk, Rvk, Mn, iMr2 

The parameters Rpk, Rk, Rvk, Mrl and Mr2 are specifically designed for the control of 

the potential wear in cylinder bores in the automotive manufacturing industry. It attempts to 

describe in numeric terms the form of the material ratio curve. The description of these 

parameters is the following: 

" Rpk Reduced Peak Height - the top portion of the surface that will quickly be worn 

away when the engine begins to run. 

" Rk Hernel Roughness Depth - the long term running surface that will influence the 

performance and life of the cylinder. (The depth of the Roughness Core Profile). 

9 RvkTrough Depth - the oil retaining capability of the deep troughs that have been 

machined into the surface. 

" Mrl Material ratio corresponding to the upper limit of the roughness core. 

" Mr2 Material ratio corresponding to the lower limit of the roughness core. 

An illustration of these parameters is given below, Table 1-16: 

The filter used in Rk is a specific filter described in [DIN 4776] (ISO 13 565 Part 1). The 

equivalent surface parameters are called Sk, Spk, Svk, Sri and Sr2 [STOUT 1] 
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1.4.1.2 Functional Parameters for Characterising Bearing and Fluid retention 

Properties 

It is considered here that a good method of characterising functional properties is to 

use indexes rather than absolute physical quantities. This makes it easier to realise intelligent 

control of manufacturing processes and functional properties of surfaces. For example, it is 

more easily understood that a functional property is good if an index is large or small than if a 

physical quantity is given by a value, say 5 µm or 1 µm. 

From this point, it is possible to extract some functional indexes [STOUT 1]: 

" Surface Bearing Index (Sbi) This is the ratio of the root-mean-square 

deviation over the surface height at 5% bearing area. A larger surface bearing index 

indicates a good bearing property. For a Gaussian surface, the surface bearing index is 

about 0.61. Theoretically, this index is larger than zero. For a wide range of engineering 

surfaces, this index is between 0.3 and 2. When a surface goes from unworn to worn, this 

index increases. 

" Core Fluid Retention Index (Sci) This is the ratio of the void volume of the unit 

sampling area at the core zone over the root-mean-square deviation. A larger Sci indicates 

a good fluid retention in the core zone. For a Gaussian surface, this index is about 1.56. 

When a surface goes from unworn to worn, this index decreases. 

"_ Valley Fluid Retention Index (Svi) This is the ratio of the void volume of the unit 

sampling area at the valley zone over the root-mean-square deviation. A larger Svi 

indicates a good fluid retention in the valley zone. For a Gaussian surface, this index is 

about 0.11. 

In spite of all the efforts of many researchers in the field of surface roughness characterisation, 

problems are still not completely solved. For this reason the aim of the thesis is to focus on the 

problem using resources coming from the field of signal processing to make a step forward 

towards solving real problem of surface characterisation. 
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Table of symbols 

n Number of scales 

m Number of orientation angles 

v Normalised frequency 

Ra or Sa Parameter of roughness 
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z Distance 

p(z) Exponential decay of the ACF 
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2. Textures, Wavelets and surface texture characterisation 

2.1 Introduction 

2.1.1 Texture in image processing 

The problem of engineered surface characterisation belongs to a bigger family of 

problems known as texture analysis. This problem is considered as a challenging task and 

it has kept researchers busy for many years. An explanation for such an interest in texture 

analysis is that the number of potential applications is very large. One can mention for 

example medical imaging, remote sensing, industrial inspection, document segmentation, 

content based image search and shape from texture [RAN 1]. Numerous techniques for 

texture analysis have then been developed following basically three approaches, statistical 

methods, spectral analysis and structural methods [CHIAN 1] [LIV 1] [DUS 1]. 

From the image processing point of view, statistical methods are designed to identify, in a 

texture image, areas with different grey level distribution. Statistical laws are then applied 

to localise these areas, to study their spatial distribution, their frequency of apparition and 

so on. On a digital image texture some simple parameters like the mean grey level value or 

the variance can easily be calculated. An extension of these two parameters is to calculate 

the moments of the image, the mean value being the moment of order one and the variance 

the moment of order two. The calculation of the moments is based on the histogram of the 

image. Hence, some other statistical parameters can be mentioned like the surface of the 

histogram, the skewness or moment of order three, the kurtosis, the energy, the entropy etc. 

Another very popular approach in image processing is to directly analyse the image 

calculating for example the cooccurence matrix that exploits local correlations of image 

pixels on a fixed scale [HAR 1]. 2-dimensional statistical parameters can also be calculated 

directly from the image. There are for instance the angular second moment, the contrast, 

the homogeneity, the uniformity, the autocorrelation, the entropy and the second moments 

difference [COC 1]. 

Nevertheless, it has been said that an approach only statistical cannot be enough to reveal 

all the properties of textured images especially when these images are structured [DUS 1]. 
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Indeed, in that case, properties come from several regions and can't be treated pixel by 

pixel. 

Spectral analysis methods look at the properties of Fourier spectrum, hereby capturing 

global information about the energy distribution across scales [GON 1]. To avoid the 

difficult problem of the phase interpretation, very often only the modulus of the spectrum 

is studied. A frequently used technique for analysing textures is the power spectral density. 

The power spectral density is in fact the Fourier transform of the autocorrelation function. 

The study of the spectrum periodicity can also give good information on the texture 

properties [MAT 1]. Also, the expression of the Fourier spectrum can be expressed in polar 

coordinates and it offers then information on the spectral orientation properties of the 

texture. 

Structural methods make a description using texture primitives and syntactic rules. An 

example that can be given it the section length. A section is a set of points or pixels that are 

next to each other and that have the same grey level in a given direction. Most of the time 

sections are studied in 4 directions representing what is called the 8-neighbourhood. The 

section length parameters are written in a matrix from which information on the sections 

distribution can be evaluated like for instance random structure or spots. Some parameters 

can also be extracted from these matrices like the short run length emphasis, the long run 

length emphasis, the grey level distribution and the run length distribution. 

An approach that has also given very good results is the calculation of fractals attributes. 

Indeed, a surface even not fractal can have fractal attributes. Hence, some fractal 

parameters can be calculated like the fractal dimension, the generalised fractal dimension 

and the multifractal spectrum. The fact is that textures from the same family often have the 

same fractal dimension. Good results have been obtained using this method [PENT 1]. 

When the fractal dimension is not effective enough to characterise textures, a parameter 

called lacunarity can then be added [LEV 1]. 

For a more general review on texture analysis from the image processing point of view, 

one can see [REED 11 and [TUC 1]. 

2.1.2 Surface texture 
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When measuring a surface the result can be understood as an image where the grey 

levels correspond to the surface relief. This means for example that the deeper a valley, the 

darker the corresponding pixel, the higher a peak, the brighter the corresponding area in 

the image. It can then easily be understood that the techniques mentioned before have been 

used in the context of rough surface texture characterisation. 

In engineering, the characterisation of surface topography has two main objectives. The 

first is to characterise the surface topography with different analysis techniques, such as 

statistical, mathematical and functional approaches, which provides a guideline for 

fundamentally understanding and interpreting the properties of surface topography. The 

second objective is to represent the surface topography with parameters and hence, to 

control the manufacturing process and the functional performance of surfaces [STOUT 1]. 

Due to the evolution of the measurements techniques, the characterisation, which was first 

performed on profiles, moved to surfaces next. Hence some parameters that were designed 

for profile characterisation could be straightforwardly ported to surface whereas some 

other parameters could only be defined for surfaces. It is proposed here to make a quick 

review of the techniques that have been used so far. For a more systematic review of the 

issues of characterisation, one can refer to [STOUT 1] for a presentation of the modern 

measurement methods, the problems linked to measurement and the presentation of 

characterisation parameters from a surface, [THOM 2] for an extensive bibliography on the 

characterisation techniques and also [WHI 4] for all the aspects of surface metrology and 

characterisation. 

Since statistical methods are the best tool for processing random data, it is seen as a natural 

and meaningful method of analysis for surfaces. The first problem that occurs is that if one 

considers the height distribution as a random process, it is non-stationary. This means that 

the evaluation of the random process depends on the size of the measurement [SAY 1]. 

Indeed, the variance of the height distribution of a surface structure is related to the length 

of sample used. In other words, a sample of finite length taken from a surface texture will 

never, however long, completely represent its properties. Real surfaces can then not be 

considered as stationary random processes. A further general property of real surface 

textures is that their energy increases rapidly with increasing wavelength. 
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This suggests that the apparent roughness must be related in some way to the length of the 

sample or to the measured bandwidth. This is a fact that should be kept in mind when 

characterising surface textures. 

From the earliest studies of surface topography it has been appreciated that no single 

numerical parameter could adequately describe surface geometry. The two simplest and 

still most widely used roughness parameters are those presented in the first chapters of this 

thesis and that can be called vertical descriptors [THOM 2]. They are for example Ra 

(i. e. Parameter of roughness), Rq (i. e. Root-mean-square deviation), Rsk (i. e. Skewness) 

and Rku (i. e. Kurtosis, peakedness or sharpness). These four parameters actually are 

homogeneous to the first four moments and that they are the first step for the statistical 

description of a surface. For a more precise description of these parameters, the reader 

should refer to chapter 1 of the present thesis. 

The theory of random process analysis is now well established in the field of metrology 

research but has yet to make impact in industry. This difficulty in penetration is nowadays 

mainly due to the interpretation of the various parameters that can be generated. This 

explains the popularity of the four previously mentioned parameters. Indeed, their 

interpretation is rather simple for rough surfaces. Many investigators have tried to 

formulate statistical rules to describe the geometric properties of surfaces. Basically the 

problem is that surfaces can be random, deterministic or usually a complex mixture of both 

[WHI 4]. For the statistical description of a profile, the well-known Abbott-Firestone 

bearing area curve [ABB 1], which is, in fact, the integral of the height probability density 

function, is the conventional statistical approach for representing random events. The 

derivative of this curve then gives the probability distribution function. For a machined 

surface, it is convenient to describe the probability distribution function as a bell-shaped 

curve or Gaussian distribution [GRE 1]. A justification of this statement is that surfaces are 

formed by many independent effects and irrespective of the form of distribution governing 

each individual effect the overall result is subject to the central limit theorem and hence 

will produce a cumulative effect that follows a Gaussian form. Indeed, in practice many 

surfaces can be modelled with the Gaussian distribution [THOM 2] [GRE 1] [NAY 1] 

[WHI 31 [GRE 2]. In some other cases, the probability distribution function can also be 

considered as the summation of two Gaussian distributions [THOM 1]. 
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Actually, some other statistical distributions are acceptable: beta, Cauchy, Weibull, cubic, 

exponential, polynomial, Rayleigh, rectangular [THOM 1] [THOM 2] [ADL 1] [WHI 2] 

[MCC 1]. It is extremely convenient to adopt such a model because by doing so, the whole 

surface distribution properties can then be completely described by a few parameters like 

for instance the first moments. For example, the two first moments are only needed to 

entirely describe a random process following a Gaussian probability distribution. 

A major breakthrough in recent years in the characterisation of surfaces has been the use of 

some of the mathematical tools used in communication theory. Those used in random 

process analysis have been most prominent. In particular the autocorrelation function 

(ACF), or autocovariance function in its non-normalised form, has been especially 

important. This has been the most popular way of representing spatial variation. It 

undoubtedly contains useful spatial information, but unfortunately no simple mean of 

extracting it has been found so far. The aim of the autocorrelation function is to measure 

how a profile is self-similar between points at different distances. In other words, the 

autocorrelation function describes the general dependence of the values of the data at one 

position on the values at another position. It is recognised that the ACF is a very useful 

tool for processing random signals. It provides basic information about the spatial relation 

and dependence of the data. Hence it is used for surface topographic assessment. It is also 

a good method to indicate randomness and directionality of surface features. It was first 

used successfully for characterising surface profiles [WHI 1]. Generally speaking the 

correlation between two points of the same profile decreases with the distance between 

these points. The form of this decay can provide some information on the spatial 

distribution of the roughness. If, for example, the surface contains an inherent periodicity 

of wavelength X, as might be introduced by particular machining processes, then the 

autocorrelation function will display a series of maxima equally distributed [ARN 1]. It has 

been suggested that the simple exponential decay expression p(r) = exp(-r/ Q) is a 

sufficiently good fit for many surfaces that approach randomness like for example ground 

or superfinished surfaces. What is called the correlation length is generally defined as that 

value of r for which 00=0-1. Even if the autocorrelation function is not strictly 

exponential, the value of the correlation length can provide some rudimentary information 

on the shape of the curve and thus on the spatial distribution of the surface heights 

[WIL 1]. 
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Even if for profile characterisation the decay gives some good information on the surface 

properties, this can also be misleading sometimes as many different structures of surfaces, 

e. g. worn and an unworn part, can have a profile ACF with a similar decaying shape 

[THOM 2]. The profile ACF is now mainly used as a qualitative tool for topography 

characterisation. In the U. S. standard [B46.1], the profile ACF has been formally 

introduced to characterise engineering surfaces. 

Correspondingly, in order to characterise the directionality of surfaces, the cross- 

correlation function (CCF) was proposed to calculate the direction of surface features 

[PEK 1] [KUB 1] [BOU 1]. The CCF is obtained by two parallel profiles. The position of 

the maximum value of the CCF is regarded as a phase shift of the two profiles. The 

direction is then calculated from the multiple phase shifts obtained from the multiple 

parallel profiles. The efficiency of the method relies on the structure of the surfaces and 

directional angles of surface features with respect to the x and y coordinates. For a complex 

surface and a small angle of directionality, the method is less effective [STOUT 1] 

A more systematic technique that takes into account the properties of the two previous 

profile analysis statistical methods is the autocorrelation function applied to the whole 

surface. This can also be called the areal autocorrelation function in order to mark the 

difference with the autocorrelation function applied to a profile. This ACF calculated on a 

surface presents decays that can be studied in all the directions. Hence, it gives information 

on the surface properties along different orientations, but it also can indicate the main 

orientations of a surface textures. The ACF applied to a surface has the same definition as 

the one applied to a profile. From the numerical point of view, when a digital 

representation of the surface height is available, it can be simply calculated by Fourier 

inverting the square of the surface texture spectrum [THO 1]. The properties of the ACF 

applied to surfaces have not been fully investigated and applied to characterising 

engineering surfaces, but properties can nevertheless be extracted. Indeed, the properties 

mentioned for the profile ACF are still applicable for the surface or areal ACF. Hence, the 

ACF generally presents a decay that varies with the direction. The slope of the decay can 

then be used to characterise the surface texture. Indeed, it is known that, in general, 

surfaces contain deterministic and random components whose wavelength values spread 

over a wide range. 
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The dependence of data points in different directions might be not the same. Therefore the 

decay proper of the ACF might be different in different directions. For isotropic surfaces, 

the decay around all directions is similar. For anisotropic surfaces, it has a faster decay 

across the lay direction, and it has a slower decay along the lay direction [STOUT 1]. 

Furthermore, this information can be used to extract the main directions of a surface. This 

last point can be explained by some properties of the Fourier transform that is closely 

linked to the ACF. Indeed, for an isotropic random surface, the energy of the Fourier 

transform modulus is approximately evenly distributed around the origin of the frequency 

axes whereas for anisotropic surfaces, the main energy is concentrated on the direction 

perpendicular to the lay. These properties are developed further in the chapter five of this 

thesis to calculate the main orientation of a surface texture as well as its "homogeneity". It 

should be pointed out that texture orientation detection problems can be investigated by 

methods using some other tools than the Fourier transform. Hence, techniques based, for 

instance, on the Hough transform seem to be efficient [CHA 1]. 

Through the link between the ACF and the Fourier transform a natural evolution of the 

characterisation techniques can be made. The study of the Fourier transform spectrum of 

either a surface or a profile can give a large quantity of information. The first approach that 

can be mentioned is the spectral moment analysis [NAY 1] [NAY 2] [SAY 2] [DEV 2]. 

The theory of spectral moments suggests that all the relevant characteristics of a random 

Gaussian surface, such as the mean square height, mean square slope, the average length 

contour per unit area and the average density of maxima and minima per unit area, can be 

obtained from the spectral moments which are derived in relation to the power spectrum of 

the random surface. In other words the dominant characteristics of the surface topography 

can be represented by the spectral moments [STOUT 1]. Indeed, the spectrum of a surface 

texture function can be analysed on its own. Spectral analysis is a powerful tool to 

condense information represented in the time and the space domain into the frequency 

domain, and then enhance the information to detail individual frequency or wavelength 

values. Its reveals the contributions of different wavelength components. In addition, it is 

more convenient to define and to separate the form the waviness and the roughness 

components of a surface texture. 
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In engineering surface topography characterisation, spectral analysis is mainly concerned 

with the power spectral density (PSD). Extensive work has been carried out for profiles 

power spectral density [THOM 1] [THOM 2] [BEN 1] and it is even recommended as a 

characterisation method by some U. S. standards [B46.1]. Obviously the power spectral 

density has also been studied for surfaces [WAL 1] and it has given good results for 

separating and characterising surface textures components [SHE 1] [SHE 2] [SHE 3] 

[LIN 1]. For the representation of the anisotropy and the directionality of surfaces, both 

methods, autocorrelation function and power spectral density give good results, but things 

tend to be more distinguishable when using the PSD. 

Time Series Analysis has also been used to study surface textures [WAT 1] [WAT 1] 

[DEV 1]. The principle of the method is that a current data point can be represented by a 

combination of its previous data points and a residual noise in one of the three principal 

time series models that are the Auto Regressive Moving Average (ARMA), the Auto 

Regressive (AR) and the Moving Average (MA) [THO 1]. The process of the time series 

analysis is to fit the random data into one of the three models with given orders. This non- 

trivial approach can give some good results, but this is not simple to apply and the 

coefficients that are calculated by this method are difficult to interpret in terms of surface 

properties for instance. 

Another interesting and efficient approach that has the same drawbacks as the time series 

analysis method is fractal analysis. The idea behind fractal analysis is that by its structure a 

texture is scale-independent. This means that to build a texture, the same pattern is 

repeated at several scales. This approach is based on the notion specified by Mandelbrot 

[MAN 1]. That suggests that a surface texture does not necessarily follows the regular law 

of Euclidean geometry and can have for example a dimension other than an integer. This is 

called the fractal dimension. For a one-dimensional representation the fractal dimension is 

between one and two, for a two-dimensional representation the fractal dimension is 

between two and three and so on. It has been proved that engineering surfaces are fractal. 

Nevertheless, one reminds the reader from the previous section that a surface does not need 

to be fractal to have fractal attributes. It is then possible to describe them by only using two 

parameters which are the fractal dimension and topothesy. 
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These parameters are intrinsic properties of the surface. They are independent of the range 

of wavelengths measured and thus are independent of filtering. A problem that occurs is 

that the numerical value of these parameters depends on the method that is used to 

calculate them [RUS 1]. Nevertheless, fractal analysis has been applied to surface 

characterisation [THOM 3] [GAN 1] [THOM 4]. Despite many advantages of using fractal 

analysis to characterise surface topography, this technique is still restricted to academia. 

Fractal parameters lack straightforward physical meanings and have not been directly 

linked with any functional application [STOUT 1]. 

As a conclusion of this review, it has been seen in this section that there is no single 

technique that can be used to entirely characterise texture. Indeed, each technique can be 

effective in different applications. A weakness shared by most of these texture analysis 

schemes, in both fields i. e. image processing and mechanical engineering is that the image 

is analysed at one single scale; a limitation that can be lifted by employing a multiscale 

representation of the textures such as the one offered by the wavelet transform. On the 

other hand, the characterisation techniques reported before are especially useful for space 

stationary signals. This can be a drawback when analysing non-stationary signals, which is 

the case very often with surface textures. An effective way to analyse such non-stationary 

signals is to use space-frequency methods. Some space-frequency methods of interest for 

surface characterisation can be mentioned. Hence, the Wigner distribution functions and 

ambiguity functions as well as the Gabor transform have been investigated [WHI 4]. 

Because of the extensive interest in space-frequency or time-frequency methods especially 

in signal processing, it can be seen from that point that the wavelet transform is then a 

natural and logical extension of these methods. 
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2.2 Wavelets in textures? 

The use of wavelets for texture analysis can be justified by simple arguments. First, 

a biological justification for using wavelets can be exhibited. In image processing, the best 

tool known so far is the human eye. Indeed, texture discrimination is one of the natural 

tasks that can be performed by a human eye. The textural aspect of an image can give us 

information on object orientation, on the perspective and on the difference between objects 

[BAL 1]. It can even give us 3D information from 2D representation [CLE 1] [CLE 2]. 

Hence, the first idea that can be developed in computer vision is then to be able to mimic 

the human eye. Now, correlations between the mammalian visual system and the wavelet 

transform have been shown [MAL 3]. Hence, psycho-visual studies indicate that the 

human visual system processes images in a multiscale way. Furthermore, the visual cortex 

can be modelled as a set of independent channels, each with a particular orientation and 

spatial frequency tuning [DAUG 2] [BEC 1]. Thus, some cells of the visual cortex have the 

behaviour of a Gaussian window modulated by a sinusoidal wave (i. e. A Gabor function) 

[DAUG 1]. 

Another theoretical justification for using wavelets can also be mentioned. In the field of 

texture analysis, a strong theory was introduced with the aim of unifying the different 

existing theories: this was known as Texton theory [JULE 1]. Now, it has been shown that 

Texton decomposition can be interpreted as a wavelet decomposition [MAL 2]. To link 

this argument with the previous one, it also can be asserted that the Texton theory is 

strongly connected to the properties of the human visual system [DUS 1]. 

A technical argument for the use of wavelets for general texture characterisation is that 

some results obtained by wavelet transform suggest that this approach should perform 

better than most traditional single resolution techniques like cooccurrence matrices, local 

linear transform, and the like [UNS 1]. 

From the particular field of surface texture, some other arguments will be presented next. 

They justify the use of wavelets in a field of mechanical engineers interest. 
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Starting from these justifications, many multiresolution texture analysis techniques, 

especially based on wavelet transform, have been developed. Hence, despite their lack of 

translation invariance because of sub-sampling in their decomposition process [MAL 1], 

many techniques based on the Discrete Wavelet Dyadic Multiresolution Pyramid have 

been studied for texture analysis. Fortunately, the problem of translation invariance can 

simply be set around using two simple techniques. The first one is to average the results 

obtained by the Discrete Wavelet Dyadic Multiresolution Pyramid algorithm for all the 

translated configurations the input signal [SIEB 1]. When this solution is retained, the 

computer time needed is then highly increased. Another strategy far more popular is to 

solve the problem of translation invariance by avoiding the sub-sampling part of the dyadic 

decomposition algorithm. The drawback of this solution, which requires the use of wavelet 

filter banks, is the great redundancy of the results. 

Obviously, systems requiring Gabor functions, also referred to as Morlet's wavelets, have 

not been forgotten and take also the form of a filter bank where both scale and orientation 

of the textures are investigated [TURN 1] [BOV 1]. The main idea of these methods is to 

try to identify a wavelet signature for each particular texture [LAIN 1]. A very general 

method that has been adopted by many researchers is to decompose an image into different 

scales and orientations. Hence, from a single image one can obtain nxm sub images where 

n is the number of scales and m the number of orientations chosen for the experiment. 
In a wavelet based analysis scheme, several options can be chosen [SCHE 1]. First, the 

choice of the wavelet (e. g. Haar [HAAR 1], Morlet [GRO 1], Daubechies [DAUB 1], 

Coiflet, Battle-Lemarie [BAT 1], [LEM 1], Symlet, Mexican hat [MARR 1]... ) will often 

be determined by the type of image that is analysed and the wavelet space-frequency 

localisation that is needed. Discussions on the best wavelet to use for a given texture 

characterisation problem can be found in the literature [MOJ 1]. Some other theoretical 

properties like the orthogonality or the orientation properties can also be of importance. 

Also, the type of decomposition needs to be considered depending on whether one 

emphasises the compactness or the translation invariance of the wavelet representation. 
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Once the wavelet scanning strategy is decided there arises the choice of the parameters to 

characterise the wavelet-filtered images or subscale images. A classical choice is to 

consider some general parameters. One can mention for instance classical parameters like, 

energy, entropy, fractal dimension and height distribution. The hypothesis is that these 

parameters should be relatively constant for a given nature of texture. A more targeted 

strategy is to calculate numerous parameters and then to retain some of them according to 

their analysis capabilities for a given task. This method is referred to as the Floating 

Forward Feature Selection scheme (FFFS) in the literature [PUD 1] [JAIN 1]. 

The last step of the general texture analysis scheme is then the choice of a clustering 

method, linear or algorithmic, supervised or unsupervised. 

Having made these choices, numerous papers present very good results for the 

classification of different types of textures and especially from the well-known book of 

textures by Brodatz [BROD 1] or from the MIT VisTex library [VT 1]. Experimentation 

on a given number of textures generally give good results, up to 100% in some cases 

[CHAN 1] [WOU 1] [LIV 1] [LIU 1]. Many papers can be found showing different 

strategies of classification using either Continuous Wavelet Transforms [TURN 1] 

[CART 1] [GROS 2] or Discrete Wavelet Transforms [GROS 1]. 

Recently, some other strategy mixing probability and wavelet transform have been 

proposed [SIM 11. Even if this technique has not been applied so far to problems of surface 

texture characterisation one can imagine that by mixing wavelets and autocorrelation 

functions, some good results can be obtained. Following the same principle, techniques 

mixing wavelet transforms and fractals can also be applied [MAR 1]. 

In fact, because engineering surfaces enter the category of textures, they can be processed 

using the same methods previously described. Hence, the wavelet approach will allow both 

a quantitative and qualitative analysis of surface textures. 
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2.3 Engineered surface analysis under different scales 

In the previous paragraph, we considered the texture concept as a whole. We now 

focus more on textures obtained by machining a surface. Firstly consider that 2D images 

(i. e. two dimensions of space x and y and grey levels) related to the surface-aspect of the 

machined surfaces are available. These images can come either from a measurement 
instrument that gives a texture corresponding to a measure of the relief of the surface or 

from a simple camera that only grabs a surface aspect depending on the lighting. 

Practically, for this thesis such images were obtained by measuring the roughness of 

mechanical samples using a white light interferometer, the RST plus by VEECO. 

The first theoretical argument that can be presented for the use of wavelet transforms for 

characterising surface textures is that as mentioned in the previous section, surface 

roughness textures present non-stationary properties. Therefore, space-frequency 

techniques seem to be a natural extension of the tools that have already been used for 

surface texture characterisation [WHI 4]. 

A more practical argument, which will be illustrated further, is that it is possible to realise 

all the tasks of filtering, which are already used in mechanical engineering to separate 

waviness and roughness in respect of the chosen cut-off [STOUT I] [WHI 4], using the 

very strong frame of wavelet analysis. In fact, since the first idea of the wavelet transform, 

the use of wavelets has been increasing exponentially. Hence, from both points of view 

theoretical and practical many researchers have worked to give what is now a powerful, 

stable and relatively easy-to-use tool. 

Wavelets have already been applied successfully as a tool for analysing engineered 

surfaces profiles [LEE 1]. It is possible to show that wavelets are closely connected with 

some fundamental well-known concepts of surface textures analysis. Indeed, one can show 

some simple illustrations of the idea of studying engineering surfaces under different 

scales. It was pointed out in chapter 1 that engineered surfaces are composed of a large 

number of scale lengths of roughness that are superimposed on each other. Three kinds of 

wavelengths are commonly identified: 
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*The Roughness (short wavelengths) 

" The Waviness (medium wavelengths) 

9 The Form (long wavelengths) 

The idea of multiscale analysis is then clear. A lot of work has been done to find the 

optimum cut-off frequencies of some filters to separate those three wavelengths. Using the 

Wavelet Transform directly as a filter bank, we can easily split surface textures into 

different parts. The principle of the technique is to perform a wavelet transform only 

keeping the details of the investigated scale (i. e. roughness or small scale, waviness or 

medium scale, form or long scale). This operation can be seen as an interpolation of the 

signal using a wavelet as an interpolation function. This kind of process has been studied 

both in 1D and 2D [CHEN 1] and has proven its efficiency, in particular for in-process 

monitoring by wavelet analysis [CHEN 21. This approach actually simply exploits the fact 

that in some manufacturing processes high frequencies, which can be detected by in- 

process wavelet monitoring, are generated when a tool is excessively worn or on the point 

of failure. 

But we can have more than just three scales, the wavelet transform can offer a multiscale 

representation of a signal. Hence, one can see in Figure 2-1 the decomposition of a surface 

texture profile under 7 different scales using the Daubechies wavelet of order 20. In 

Figure 2-1, v is the normalised frequency that indicates the filters frequency support 

(i. e. the pass band). The original profile was measured on a surface representing a casting 

process. It should be pointed out that the different profiles presented below are not scaled. 
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Figure 2-1 Multiscale decomposition of a surface texture profile under 7 different scales using the 
Daubechies wavelet of order 20 

Because Daubechies wavelet filters are orthogonal, the summation of the 7 sub-scales 

signals gives the input signal. Furthermore, it is now possible using this simple summation 

technique to come back to the concepts of roughness waviness and form widely used by 

engineers. 
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One can see below, in Figure 2-2, an arbitrary decomposition of a surface texture profile 

into three frequency components, which are the form, the waviness and the roughness, 

using Daubechies wavelet of order 20. It should be pointed out that the different profiles 

presented below are not scaled. 

Original profile 

Scale 0+ Scale 1 

Ivl E[0,15.625x10-3[ 

Scale 2+ Scale 3+ Scale 4 

Ivl e[ 15.625 X 10-3,0.125[ 

Scale 5+ Scale 6 

IVIE [0.125,0.5[ 

Figure 2-2 Multiscale decomposition of a surface texture profile under 3 different components (form 
waviness and roughness) using the Daubechies wavelet of order 20 

It was pointed out that extending this formalism to two-dimensional surface analysis opens 

a new field for the characterisation of the 2D multiscale analysis and the detection of 2D 

motifs of surface roughness [LEE 1]. Hence, the same kind of decomposition process can 

be performed in 2D (i. e. 2 dimensions of space x and y and one grey level) using images 

instead of profiles. We saw in, chapter 1 that 2D images of surface roughness could be 

measured precisely using for instance optical surface measurement systems. Thus, the 

same multiscale decomposition can be done in 2D. One can see below, in Figure 2-3, 

Figure 2-4 and Figure 2-5 the arbitrary decomposition into form, waviness and roughness 

of surface textures obtained respectively by three different machining processes i. e. 

casting, grinding and vertical milling using Daubechies wavelet of order 20. The 

Roughness average of each component (i. e. form, waviness and roughness) is also 

indicated in order to illustrate the roughness scale. The surface textures were measured 

with the RST using the magnification x1.2, thus the measured area was a3 millimetres 

square. For the characteristics of the RST concerning measured areas and magnification 

one can refer to the applications in chapter 6. 
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Hence, the wavelet toolbox allows with ease the decomposition of surfaces into form, 

waviness and roughness components well appreciated by mechanical engineers. 

Furthermore, such a multiscale decomposition brings both qualitative and quantitative 

information that was hidden before. For characterisation purpose, the Roughness average 

parameter Ra can be divided into three new parameters characterising the form the 

waviness and the roughness that are called Pa, Wa and Ra respectively in the literature 

[TAY 1]. Hence, wavelet orthogonal filters can successfully replace those standard filters 

that are commonly used in surface texture characterisation [STOUT 1] and then give a 

solid theoretical base for the standardisation of these filters. 

Starting from these multiscale representation considerations, wavelets have also been used 

for surface characterisation for some particular engineering applications especially for 

medical applications [JIAN 1]. Significant work has been done in this field [JIAN 2] and in 

more general applications related with surface textures [CHEN 1] [CHEN 2] [WOLF 1]. A 

very popular field for using wavelets is industrial inspection. Indeed, they are well suited 

to detect defects like scratches on a uniform texture [JAS 1] [WOLF 1]. The fact is for this 

special task the image that is processed often comes from a CCD camera and not from a 

measurement. This is mainly explained by the cost, the speed and the size of the different 

instruments. 

Some techniques using a lifting wavelet representation for extraction of different 

components of a surface have been recently proposed. Using such a method, different 

frequency components of the surface can be separated, extracted and then reconstructed 

according to the intended requirements of functional analysis [JIAN 3]. 

As the field of wavelets in increasing their applications in mechanical engineering are 

increasing as well. For an overview of what has been done, the reader can see [LIV 1]. 

Hence, as a conclusion, by positioning the study from the theoretical point of view and by 

showing examples of a rather intuitive way of using wavelets for surface texture 

characterisation, the first steps have been taken to justify pushing the investigation further. 
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In mechanical engineering, wavelets have been used more for analysing surface textures 

rather than characterising them. Hence, there are no parameters obtained from a wavelet 

analysis that are proposed as it is usualy done using other techniques [STOUT 1]. Hence, 

the multiscale approach seems logical and tempting, but it is extremely difficult to find 

references proposing both the wavelet approach and the characterisation parameters linked 

to it. The problem may come from the fact that too many parameters exist for 

characterising surface textures and it is difficult to make a clever choice to retain some of 

them. Nevertheless, this problem is presently investigated and included in some research 

projects [WWW 3]. 

Now, more than an elegant theoretical tool, wavelet analysis can provide the way to 

effectively characterise the surface texture while keeping the understanding close to the 

mechanical engineers, who are supposed to use this tool. Wavelets can then be both 

extremely effective and easy to understand. Wavelet analysis seems to be the logical 

bridge between the systematic texture computer processing and the users in mechanics. It 

is the aim of this thesis to make a step forward to back up this last point by first proposing 

a new tool based on the wavelet transform (i. e. the Frequency Normalised Wavelet 

Transform) and then by proposing parameters that can be both directly used and 

understood by practitioners and used for interfacing with a computer for a task of 

automatic texture classification. 

Before doing so a more precise introduction of wavelets in the context of signal and image 

analysis is needed. This is done in the next chapter. Then, it will then be possible to present 

new surface texture analysis tools capable of characterising texture better than simple 

wavelet filtering. 
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Table of symbols 

a Scaling parameter 
b Translation parameter 

f (t) and g(t) Physical complex function depending on the time 

1' Set of complex numbers 
IR Set of real numbers 
W(a, b) Wavelet Transform 

Va, b (t) Mother wavelet 

L2(l) Set of square integrable functions 

coo Pulsation 

0 Directionality parameter 

_ 
cos(9) sin(6) 

RB 
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[lie 0 

Anisotropic diagonal positive definite matrix 

h(n), h (n) Digital low-pass mirror filters 

g(n) ,g 
(n) Digital high-pass mirror filters 

H(z), N(z) Z transforms of the filters h(n) and h (n) 

G(z) , G(z) Z transforms of the filters g(n) and k (n) 
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3. The Wavelet Transform 

3.1 A History 

The name "wavelet" (i. e. Ondelette, small wave) was introduced in the early 

eighties by Jean Morlet, a French engineer geophysicist who was working for an Oil 

Company [MUR 1] [WOU 1]. He had many problems in studying rapidly changing 

frequency seismic signals using the windowed Fourier transform or short time Fourier 

transform introduced by Gabor [GABO 1]. The principle of this transform is the projection 

of the signal onto a basis that is composed of windowed complex sinusoidal functions. The 

choice of the window is important; Gabor introduced the Gaussian function as a window. 

The transform using this particular window is also known as the Gabor function. This 

window is the best choice to optimise the space-frequency localisation parameter of the 

transform according to Heisenberg's Uncertainty Principle. With this tool, two main 

problems occur. First of all, because of the use of a single window, the resolution of the 

analysis is the same in the entire space frequency plane. This means that the ambiguity in 

localisation for both the high frequency part and the low frequency part of a signal is the 

same. The second, and not the least, problem is that this basis is not orthogonal. Therefore, 

problems occur when reconstructing the signal after decomposition. Hence, a perfect 

reconstruction is not possible. 

To overcome at least one of these problems, Morlet proposed in 1983 a new method 

known as Wavelet Transform (WT) [GOU 1] [GRO 1] [GRO 2] [GRO 3] and [GRO 4]. 

The idea is that instead of using a unique frequency window, to use a frequency window 

that can be both dilated (or shrunk) and translated. This tool then offers a multiresolution 

space frequency representation of signals. 

Since Jean Morlet and especially after a mathematical basis provided by Alex Grossmann, 

wavelet transform has been studied by many scientists in order to develop the concept. 

Among the numerous steps that were taken, one can point out essential results obtained by 

Ingrid Daubechies who introduced families of orthonormal wavelets with compact support 

[DAUB 1], and also the expression of the wavelet decomposition process in a 

comprehensive mathematical framework by Stephane Mallat [MAL 2]. 
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Today, wavelets are well established in science and the number of applications has been 

growing rapidly [RUS 1] and [COHE 1]. Indeed, many fields have found an interest in 

using wavelets (e. g. mathematics, quantum mechanics, signal and image processing, 

biological sciences... ). A real wavelet dictionary exists (e. g. Haar [HAAR 1], Morlet 

[GRO 1], Daubechies [DAUB 1], Coiflet, Battle-Lemarie [BAT 1] [LEM 1], Symlet, 

Mexican hat [MARR 1], DOG [ANT 1]... ) that can provide users with suitable analysis 

tools. 

In this thesis it is proposed to divide wavelets into two categories. The first is the 

Continuous Wavelet Transform (CWT) and more especially Morlet's wavelet also referred 

to as the Gabor function and the Mexican hat wavelet. The second category is the Discrete 

Wavelet Transform (DWT) and more especially Daubechies' wavelets. These two wavelet 

categories that will be used in our applications are presented next focussing mainly on the 

signal processing point of view. For a more theoretical description of wavelet theory, one 

can to refer to [DAUB 3] [MEYE 1] [MEYE 2] [MEYE 3] [MAL 4]. 

For a detailed scientific introduction of wavelets in history, one can refer to [MEYE 3] and 

[COH 1] and for a simplified version, one can refer to [STRA 1]. 
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3.2 The Continuous Wavelet Transform 

3.2.1 1D Continuous Wavelet Transform 

Let f (t) EC be a complex function with teR. Let W(a, b) be the Continuous 

Wavelet Transform (CWT) of the function f (t). W(a, b) is the projection of the function 

f (t) onto the vectors yia, b (t) E ý' , which is a vector from a basis of functions such as 

{ yia b (t)/a, bE 2) with a#0. This can be expressed [ANT 3]: 

W (a, b) =< I (t), VQ, b (t) >= ff(t)VIab(t)dt (3-1) 

"a is the scaling parameter (i. e. a1 plays the role of a frequency [DAUB 2]) 

"b is the translation parameter 

" tVQ j, (t) is the complex conjugate of yia, b (t) 

The complex functionyi(t) E LZ (IR) is called the "mother" wavelet. Hence, the function 

basis is derived from this unique function by squeezing and dilating using the scaling 

parameter a and translating using a translation parameter b: 

V(t 
ab 

Va, a(t) =1 ýj -al (3-2) 

Combining equations ( 3-1) and ( 3-2 ), one obtains the general form of the wavelet 

decomposition W(a, b): 

W(a, b)=< f(t), iVa. b(t)>= 
1 

f(t)Yf(t-b)dt (3-3) 
l aI a 
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If one defines, under existence condition, the convolution product of two functions f(t) and 

g(t) by f (t) * g(t) =ff (z)g(t -r)dz , then, it can be pointed out that the calculation of 

W(a, b) is equivalent to a convolution. Hence, one can say from the signal processing point 

of view that W(a, b) is simply obtained by filtering the signal f(t) using what we call a 

wavelet filter: 

W (a, b) =1 Vý(-1 b) * f(b) 
, a, a 

(3-4) 

The wavelet filter is a band-pass filter with both cut-off frequency and bandwidth 

depending on the scaling parameter a. One can see in Figure 3-1 an illustration of the 

Continuous Wavelet Transform (CWT) viewed as a wavelet filtering: 

f(t) 
1 

1V(-1b) ýaý a 
W(a, t) 

Figure 3-1 Continuous Wavelet Transform seen as a filtering process 

To be acceptable as a wavelet, the mother wavelet should satisfy several properties 

[ANT 2]: 

1) The mother wavelet V(t) and its Fourier Transform `'(v) =f yi(t)e-21i"dt should be 

square integrable (i. e. yi(t) E LZ (1R )). 

2) The wavelet has to be oscillating. This condition can be written as a zero mean 

condition: 

'ý`(0) =fV (t)dt =0 (3-5) 

3) The Wavelet V(t) should be well localised both in the time (or space) domain and in 

the frequency domain. From a signal processing point of view, we require a function 

that allows good band-pass filtering, both in time (space) and in frequency. 
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4) 41(t) may also be required to have a certain number n of vanishing moments such as: 

f tnVf (t)dt = 0, n=0,1,... N (3-6) 

This property improves the efficiency of 41(t) at detecting singularities in the signal. 

As an illustration, one can show equations of two well-known analysing wavelets that are 

called Morlet's wavelet [GRO 1] and the Mexican hat wavelet [MARR 1]. 

Morlet's wavelet is a complex wavelet defined by [MUR 1]: 
r2 wo Z t2 

Vf (t) = e'w°`e -e2e2 
(3-7) 

10o 
2 

t2 

The correction term e2e2 in ( 3-7 ) is present to satisfy the equation ( 3-5 ). In practice 

the pulsation cvo is chosen such as this correcting term is negligible (i. e. (00> 5.5). 

The Mexican Hat wavelet, which is actually the Laplacian (i. e. second derivative) of a 

Gaussian function, is a real wavelet defined by [MUR 1]: 
t2 

yi(t) _ (1-t2)e 2 (3-8) 

One can see below, on the left-hand side of Figure 3-2 and Figure 3-3, Morlet's wavelet 

and the Mexican Hat wavelet for two different values of the scaling parameter a. The 

modulus of their centred Fourier transform is represented on the right-hand side of the 

figures. Because Morlet's wavelet is a complex function, only its real part is represented, 

which explains the symmetry of its spectrum. If one represents the spectrum of the whole 

Morlet's wavelet, the negative frequency part of spectrum that is presented in Figure 3-2 

would disappear. 
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Morlet's wavelet with a<1 

Morlet's wavelet with a>1 

Real part of Morlet's wavelet and its centred Fourier transform for two different values of 
Figure 3-2 

the scaling parameter a 
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Mexican hat wavelet with a<I 

t 

V 
0 

Mexican hat wavelet with a>1 

t 

V 
0 

Mexican hat wavelet and its centred Fourier transform for two different values of the 
Figure 3-3 

scaling parameter a 

3.2.2 2D Continuous Wavelet Transform 

The Continuous Wavelet Transform can easily be ported to two dimensions 

[ANT 2] and even more [ANT 3] and [MUR 1]. Applying wavelet transform in 2D implies 

both slightly modifying the definition of the translation parameter b and introducing a 

parameter of directionality 0, especially for anisotropic wavelets. Indeed, the translation 

parameter b becomes a two-dimensional translation vector b= [bx, by, r (i. e. bER 2). Also, 

one introduces a parameter of directionality 0E [0,2jr[, which indicates the direction along 

which one applies the analysis wavelet. Hence, for an image, one will be able to 

independently focus on the scales of the details, their position and their orientation. 
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This means that the 2D Continuous Wavelet Transform W(a, b, O) is a function of four 

variables. In order to obtain a graphically manageable tool, it is the use in practice of 
limiting representations to special sections of the 4D parameter space. Hence, two such 

meaningful sections are the (a, 0) representation other parameters being fixed and the 

(b = 
[b1, by Y) 

representation other parameters being fixed. Other choices are possible in 

principle, but they seem unnatural and of little interest. 

One notices that the pair (a', 0) plays the role of spatial frequency expressed in polar 

coordinates, exactly as, in 1D a-' plays the role of a frequency [DAUB 2], whereas the pair 

(b = 
[b,,, by t) defines the position in the image plane. 

Hence, in 2D, the mother wavelet 1V(r) E L2 (JR 2) is squeezed and dilated, scaled and 

rotated in order to build the analysis wavelet y'a. eb(r) E LZ (IR 2): 

Va, O, br)= 
1 

V(1 RBLr-bl) 
aa 

aER, * is the scaling parameter 

0bE IR 2 is the translation vector 

00E [0,21r[ is the rotation angle 

F cos(9) sin(6) 
" RB = is the rotation matrix L-sin(g) cos(h) 

(3-9) 

The conditions of acceptability of the mother wavelet in 2D follow the conditions 

expressed in 1D [ANT 21, [ANT 3]. Hence, the 2D Continuous Wavelet Transform 

W (a, b, 6) of an image f (r) e «, with tE IR 2, can then be expressed as follow: 

W(a, b, 0)=<. f(r), 1JIQ, O, n(r)>= 
f ff(r)jtab (r)d 2r (3-10) 

87 



Injecting equation (3-9 ) in equation (3-10 ) yields: 

W (a, b, O) =äfff (r)vf(ä RB[r-b])d2r (3-11) 

Finally, the Continuous Wavelet Transform W (a, b, 9) of an image or a 2D signal f (r) can 

simply be obtained by filtering this signal by a wavelet filter: 

W(a, b, e)= 
1 

Vß(-1 Ro[b])*f(b) (3-12) 
aa 

The wavelet filter is a band-pass filter with both cut-off frequency and bandwidth 

depending on the scaling parameter a. Its orientation depends on the angle of rotation 0. 

Another parameter called the anisotropic parameter E can be added in order to give 

anisotropy to the analysis wavelet. This parameter can be useful when using symmetric 

wavelets like the Mexican hat. Indeed, without adding this anisotropic parameter, the 

Mexican hat detects singularities of the image in all directions [MARR 1]. For angular 

selectivity one will rather choose a continuous wavelet such as Morlet's wavelet. 

As an illustration, the expression of both Morlet's and Mexican hat wavelet can be 

rewritten in 2D. Hence, Morlet's wavelet is expressed as follows: 

rEr koBko rEr (3.13 ) 
of (r) = e'k°re 2- e2e2 

Where ko e IR 2 is the wave vector of the plane wave (i. e. spatial frequency), E is a 2x2 

anisotropic diagonal positive definite matrix such as E =011E 1 
o, 

with E >_ 1 and B is the 

inverse of E such as B= E'. 
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As previously in 1D, the second term in equation ( 3-13 ) is to satisfy the admissibility 

condition `'(0) =f gi(r)d Zr = 0. If Ik0I is chosen large enough, typically IkoI ? 5.5 this 

correction term is numerically negligible. If one drops it and takes E=I the unity matrix, 

one gets: 

rZ 

1Výrý = eik°re 2 (3-14) 

Which is refered to in the literature under the name of Gabor function [DAUG 1] an 

[DAUG 2]. 

Figure 3-4 shows an illustration of Morlet's wavelet for two different values of the scaling 

parameter a and with ko = [5.5, Of. Again, because Morlet's wavelet is a complex 

function, only its real part is represented, which explains the symmetry of its spectrum. If 

one represents the spectrum of the whole Morlet's wavelet, the negative frequency part of 

the spectrum would disappear. 
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Morlet's wavelet with a<1 

74 

41 0 

Morlet's wavelet with a>1 

x" t 

Real part of Morlet's'ýavelet and its centred Fourier transform for two different values of Figure 3-4 
the scaling parameter u 

Morlet's wavelet can he modified using different orientation values of both the wave 

vector ko and the parameter of anisotropy f;. Figure 3-5 shows Morlet's wavelet in two 

different coil fiLurations. 
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Morlet's wavelet with a<1. k� = 
E5.5. Of', 0 =7r/4 and e=1 

\` 
0 

" 

Morlet's wavelet with a<1, k� = [5.5, Of ,0= is/4 and r= 10 

ý1 

. +ýiýi ýFC. (y 

'A 

Real part of Morlet's wavelet and its centred Fourier transform for two different 
Figure 3 

orientation and anysotropy configurations 

The Mexican hat wavelet is expressed as follows: 

Ft 

w(r)=(2-rEr' 2 
(3-15) 

E being the same as above. It should be noted that even if F#- I it does not really matter 

because the Mexican hat wavelet, even when anisotropic, behaves as a second order 

operator in all directions. Figure 3-6 shows an illustration of the Mexican hat wavelet for 

two different values of the scaling parameter a. 
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Mexican hat wavelet with a<I 

0 

I 

1 

w(1 

i 

'lot 

0 

0 

Figure 3-6 
Mexican hat wavelet and its centred Fourier transform for two different values of the 
Scaling parameter u 

Mexican hat wavelet with a>I 

92 



The Mexican hat wavelet. like Morlet's wavelet can he modified using different 

orientation values of both the wave vector k� and the parameter of anisotropy i:. Hence, one 

can see the Mexican hat wavelet in two different configurations. 

Mexican hat wavelet with a<1,6 = 7r/4 and E= 10 

i 4 

Mexican hat wavelet with a<1,0 = -ir/3 and e =10 

I%lk 0 

Figure 3-7 
Mexican hat v, aýelet and its centred Fourier transform for two different orientation and 
anisotropy configurations 
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3.3 The Discrete Wavelet Transform 

3.3.1 Signal processing approach and implementation of the Discrete Wavelet 

Transform 

The Discrete Wavelet Transform (DWT) will be introduced here only from the 

signal processing point of view. One will focus more on the implementation rather than on 

the theory. For a more theoretical approach the reader can refer to the appendix 2 of this 

thesis. 

One can prove that the Discrete Wavelet Transform decomposition process can be simply 

performed by filtering and sub-sampling [MAL 2]. The reconstruction of the signal can 

then be performed symmetrically by over-sampling and filtering. For the whole Discrete 

Wavelet Transform process (i. e. decomposition and reconstruction) only four digital filters 

are needed. Because of their properties, these filters are called Quadrature Mirror Filters 

(QMF). From the signal processing point of view, one will only emphasise here on the four 

different QMF filters. These four digital filters are called g (n) ,h (n), g(n) and h(n). 

h(n) and h(n) are two digital low-pass mirror filters whereas g(n) and g(n) are two 

digital high-pass mirror filters. In order to get all the details about these QMF filters one 

can refer to appendix 1 and appendix 2. Because of the symmetrical properties of these 

filters, all the characteristics of the other digital filters can easily be deduced from the 

characteristics of h(n) . 

It can be demonstrated that h(n) and h (n) are two digital mirror low-pass filters with an 

impulse response such that h (n) = h(-n). In practice, assuming that h(n) and h (n) are 

two N tap filters, the previous equality yields: 

(3-16) VnE [0, """, N-1], h(n) 
= h(N-1-n) 
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If h(n) is symmetric, which can be the case if h(n) is a Finite Impulse Response (FIR) 

filter [HAM 1], then one simply gets the equality: 

VnE [0, -"-, N-1], h(n) =h(n) (3-17) 

Both relations ( 3-16) and ( 3-17 ) are also verified if working with the N tap linear digital 

high-pass mirror filters g(n) and g(n) : 

Vne[0, """, N-1], g(n)=g(N-1-n) (3-18) 

If g(n) is symmetric: 

doE [0, 
""", N-1], g(n) = g(n) (3-19) 

As mentioned before, the filters g(n) and h(n) are known as Quadrature Mirror Filters 

and we can find in the literature [MAL 2] that a simple relation links these two filters: 

8(n) = (-1)'-" h(1- n) (3-20) 

In practice, the relation, which is explained in Appendix 1 that is used, is the following: 

VnE [0, """, N-1], g(n)=(-1)N-1-nh(N-1-n) (3-21) 

Let H(z), G(z), H(z) and d(z) be respectively the Z Transform of the filters h(n), 

g(n), hi(n) and k(n): 

+- N-1 

Vne [0, """, N-1], H(z)= ýh(n)z-" or H(z)=Zh(n)z-" 
n=- n=0 (3-22) 

z= e'w, with wE [0,21r [ 
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One can see below as a summary all the relations linking the expressions of the four filters 

both in the spatial and in the frequency domain using the Z Transform: 

h (n) = h(N -1- n), (--> H(z) = z-("-')H(z-') (3-23) 

k (n) = g(N -1-n) tý G(z) = z-(N-»G(z-') (3-24) 

g(n) = (-1)"-1-"h(N -1-n) t--* G(z) = z-(N-I)G(-z-i) (3-25) 

3.3.2 Implementation of the Discrete Wavelet Transform 

In this section, the algorithm that is commonly used to implement the Discrete 

Wavelet Transform [NRC 1] is described. In the present case, the wavelet, which is 

involved, is the Daubechies compactly supported wavelet family [DAUB 1]. The aim of 

this algorithm is to transform aN sample digital signal into another N sample digital signal 

is called the Discrete Wavelet Transform (DWT). 

This algorithm can be seen, explained and understood by various different approaches. It is 

proposed to focus mainly on a signal processing approach. This means that the Discrete 

Wavelet Transform is viewed as a set of low-pass, high-pass and band-pass filters with 

both different cut-off frequencies and bandwidths (i. e. a filter bank). 

Theoretically, this algorithm is based on a multiresolution principle known as Dyadic 

Pyramidal Decomposition, which was previously theoretically described. Practically, the 

result of the Discrete Wavelet Transform algorithm is simply the juxtaposition signals that 

are obtained by filtering the input signal by different band-pass filters and by sub- 

sampling. 

One can see below, Figure 3-8, an illustration of the kind of filters that are used in the 

algorithm performing the dyadic DWT decomposition. Both filters F5 and F4 have the 

same width. The filter F3 is twice as wide as the filter F4. The filter F2 is twice as wide as 

the filter F3, and F1 is twice as wide as the filter F2. 
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Figure 3-8 Modulus of the filters used by the dyadic Digital Wavelet Transform decomposition 
algorithm 

In order to illustrate the whole DWT algorithm, lets consider a 32 tap digital signal. 

Because of the fact that 32 = 2, the DWT of this signal will consist of the juxtaposition of 

5 signals obtained by filtering the input signal by the 5 wavelet filters that are represented 

in Figure 3-8. 

According to Shannon/Nyquist sampling theorem, the filtered signals can be sub-sampled 

at different rates because the limit sampling frequency must be at least twice the maximum 

frequency of the signal to be sampled. Then, five different signals containing information 

of different parts of the Fourier spectrum of the input signal are obtained. In order to obtain 

the output signal of the process (i. e. the Discrete Wavelet Transform) a simple signal 

juxtaposition of the previous five filtered and sub-sampled signals is performed. 

Theoretically, there is no loss of information and the inverse transform can be performed to 

re-obtain the input signal. 

Figure 3-9 represents every operation performed by the Discrete Wavelet Transform 

algorithm viewed as a filter bank. I(n) is the Input signal, 0(n) is the Output signal (i. e. the 

Discrete Wavelet Transform). The operation that is performed is 0(n) = DWT { 1(n) }. 
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1 

I(n) 

0 32 
II 

O(n)=DWT { I(n) } 

Figure 3-9 The Discrete Wavelet Transform viewed as a filter bank 

It is apparent that due to the sub-sampling process in the decomposition algorithm, the 

Discrete Wavelet Transform is not Shift Invariant (i. e. translation invariant). This means 

that a translation of the input signal will not cause the same translation for the output signal 

(i. e. the DWT). This lack of Shift Invariance can cause some inconveniences for 

processing the signal [MAL 3]. A solution to overcome this drawback is not to sub-sample 

the signal. In that case the DWT is less compact and redundant. 

Another solution, which is computer time consuming, is to average the different DWT 

obtainable by shifting the input signal [SIEB 1]. 
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3.3.3 Implementation of the Discrete Wavelet Transform in 2D. 

The Implementation of the Discrete Wavelet Transform as described in 1D can be 

ported to the 2D case in a straightforward manner. Nevertheless, a few important issues 

should be discussed concerning the utilisation of the DWT in 2D. 

For an image (i. e. a 2D signal), the Discrete Wavelet Transform algorithm is exactly the 

same, but it is applied independently to the columns and then to the rows (or vice versa) of 

the image. One can prove that this way of implementing is theoretically rigorous [MAL 2]. 

Two methods are available to carry out this task, they are called Standard, and Non 

Standard Decomposition [BEYL 1] and [FOUR 1]. 

The decomposition that is used in this thesis is the so-called Standard Decomposition. To 

obtain the Standard Decomposition of an image, one first applies the one-dimensional 

Discrete Wavelet Transform to each row of pixel values. Next, one treats these 

transformed rows as if they were themselves an image, and apply the one-dimensional 
DWT to each column. 

One can see below, in Figure 3-10, an illustration of the Standard Decomposition of a 

16x16 pixel image. Because of the fact that 16 = 24 and the DWT decomposition algorithm 

is applied independently to the rows and then to the columns of the image, the DWT is 

composed of the juxtaposition of 4x4 = 16 sub-images. 

Hence, the Discrete Wavelet Transform of a 128x128 pixel image would generate a DWT 

composed of the juxtaposition of 49 sub-images. This would correspond to 7 wavelet 

filters independently applied along the rows and down the columns. 
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Transform rows 

Transform 
columns 

Figure 3-10 Standard decomposition of an image 

It can be pointed out that according to the algorithm that is used, the Discrete Wavelet 

Transform is orientation selective. This means that an extra importance is given to the 

horizontal and vertical directions in the image. This orientation selectivity can first be seen 

as a problem, but one can point out two facts: 

First, the human visual system is direction selective too and along the same orientations 

(i. e. horizontal and vertical) [MAL 1]. Even if human visual system cannot really see 

roughness, it is sensitive to texture and for texture discrimination it is still a reference that 

has not been overcome yet. 

Secondly one will see later that it is possible to gather together some parts of the Discrete 

Wavelet Transform sub-images in order to get a wavelet filter bank, which is less direction 

sensitive. 

In order to illustrate better the wavelet filters used by the DWT algorithm, one considers 

now as an example a 32x32 pixel image. Hence, one can see below, Figure 3-11, the 

"map" of the Standard Decomposition process as the wavelet coefficients (i. e. DWT sub- 

images) appear in the spatial domain. 
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Each of the 25 DWT sub-images is numbered from 0 to 24. They are also positioned along 

both axes x and y from 0 to 4. Finally, the number of pixels of each sub-image in x and y is 

indicated. Image sizes run from 2x2 pixels for the smallest one up to 16x16 pixels for the 

biggest one. Hence, the size of the DWT is the same as the size of the decomposed image 

that is 32x32 pixels. 
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Spatial map of the DWT sub-images obtained from a 32x32 pixel image using Standard 
Figure 3-11 Decomposition 

We can also see below, in Figure 3-12, an illustration of the centred frequency "map" of 

the filters that are used in such a decomposition in the frequency domain using the 

Standard Decomposition process. 
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Representation of the map of the filters that are used by the DWT algorithm in the Figure 3-12 
normalised centred frequency domain using Standard Decomposition 
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Hence, performing a DWT on a 32x32 pixel images, 25 wavelet filters are needed for the 

wavelet filter bank. These filters correspond to the filter maps presented previously in 

Figure 3-11 and Figure 3-12. 
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When using a Daubechies' wavelet of order 20 the filters that are used can be seen below, 

in Figure 3-13. where the dark parts represent "1" (i. e. hand-pass part) and the white parts 

represent IF (i. e. the rejection part). 
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Both types of wavelet transforms that were introduced in this chapter, i. e. namely the 

Continuous Wavelet Transform and the Discrete Wavelet Transform, will be used next for 

analysing surface roughness by drawing a space-frequency map of those particular texture 

images. 

Indeed, when applying straightforwardly the wavelet filters that were introduced in this 

chapter to surface textures images, one gets the results that were presented in the previous 

chapter. As it was said before, this approach to the problem has already been explored. 

Because the aim of this study is not to simply split surface textures into sub-scales but 

rather to extract texture features for characterisation purposes, the next step will then be to 

customise the "classical" wavelet transform. Hence, the aim of the next chapter will be to 

introduce a new original tool for signal analysis: The Frequency Normalised Wavelet 

Transform (FNWT). The aim of this new tool, based on the wavelet transform, is to draw a 

real space-frequency map of the signal. Texture characterisation will then be extracted 

from that space-frequency map. 
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Table of symbols 

IR Set of real numbers 

Set of complex numbers 

m(t) Real baseband signal depending on the time 

M (v) Fourier transform of m(t) 

v Frequency 

m+ (t) Pre-envelope of m(t) 

M+(v) Fourier transforms of m+(t) 

m_ (t) Complex conjugate of m+ (t) 

M_(v) Fourier transforms of m- (t) 

m(t) Hilbert transform of m(t) 

i Complex number of module one and phase 7r/2. 

s(t) Single-Sideband Modulated signal with a pilot carrier 

S(v) Fourier transform of s(t) 

5(v) Dirac distribution 

b(t) Ideal real band-pass filter 

B(v) Fourier transform of b(t) 

g(t) Signal f (t) filtered by b(t) 

G(v) Fourier transform of g(t) 

W(a, t) Wavelet transform of the signal f (t) 

a Wavelet scale parameter 

ye(t) Mother wavelet 

0 Orientation angle 
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4 Wavelet Frequency Normalisation 

4.1 Introduction 

This chapter introduces a new mathematical tool, the Frequency Normalised Wavelet 

Transform (FNWT), which allows a simpler representation of either the time frequency or 

space frequency features of a signal. This extension of the well-known wavelet transform 

allows a normalised representation of the singularities of a signal at any scale. 

In signal processing both concepts, multiscale analysis and singularity detection are closely 

linked with the wavelet transform. In a few words, its principle consists of finding the 

features of an image that are the closest to a function that can be dilated and shrunk which 
is called a wavelet. 
According to the chosen view of the problem, the wavelet transform can be interpreted in 

different ways. From the signal processing point of view, a wavelet transform can simply 

be considered as a band-pass filtering with adjustable cut-off frequency and bandwidth. 

Hence, applying a wavelet to a signal consists on scanning a part of its spectrum and 

localising the presence of a significant frequency component. 

For the Frequency Normalised Wavelet Transform, the idea is to consider the wavelet- 

filtered signal as a Single-Sideband Modulated signal (SSM). Hence, one can perform a 

demodulation. As a result, the detection of the singularities is performed in the baseband, 

which considerably simplifies their detection. Even if the operation is not trivial, the 

Frequency Normalised Wavelet Transform is reversible which indicates that there is no 

loss of information. 
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4.2 Single-Sideband Modulation (SSM) and Band-pass filtering 

4.2.1 Theoretical approach 

4.2.1.1 Single-Sideband Modulation (SSM) 

The Single-Sideband Modulation (SSM) is an Amplitude Modulation (AM) of a signal 
for which just half of the modulated signal is retained [HAY 1]. The principal advantage of 

this modulation is that the transmission bandwidth is the same as the message bandwidth 

(i. e. the bandwidth of the signal that is to be transmitted. ). The principal disadvantage of a 

SSM system is its cost and complexity. Another problem of the SSM can be found when 

demodulating. Indeed, for synchronous demodulation (i. e. using a product-based 

demodulator), a sine wave of the correct carrier frequency and of the correct phase should 

be available. For a classical transmission system a highly stable oscillator is needed but 

another solution is to use a pilot carrier that is transmitted with the signal. This last case of 

Single-Sideband Modulation (SSM) with a pilot carrier is described below. 

The way of describing a Single-Sideband Modulated signal in the time domain is 

simplified using the concept of pre-envelope or analytic signal [GABO 1]. Hence, let m(t) 

be a baseband real signal (i. e. Vt E R, m(t) E R), with a compact frequency support'. 

This means that Vlvl 0 [0, vß,, I the Fourier transform M (v) of m(t) equals zero. The pre- 

envelope m+ (t) of m(t) is defined by: 

m+ (t) = m(t) + im(t) with m+ (t) EC (4-1) 

Where, m(t) is the Hilbert transform of m(t) such as: 

m(t) =1f 'n- ýZ)dz 
ý-t-z 

i the complex number of module one and phase 7r12. 

1 Mathematically, the support of a function is the range on which the function is not equal to zero. 

(4-2) 
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The Fourier transform of m+ (t) vanishes for all negative frequencies. Thus, if M+ (v) and 

M (v) are respectively the Fourier transforms of m+ (t) and m(t) then: 

2M (v), if v>0 
M+ (v) =M (0), if v=0 (4-3) 

0, ifv<0 

Let m_ (t) denote the complex conjugate of m+ (t) , that is: 

m_ (t) = m(t) - ih(t) with m_ (t) E '' (4-4) 

Symmetrically, the Fourier transform M_ (v) of m_ (t) vanishes for all positive frequencies 

as shown by: 

0, ifv>0 
M_ (v) =M (0), if v=0 (4-5) 

2M (v), if v<0 

A Single-Sideband Modulated signal is obtained by transmitting only the upper sideband 

of the signal to be transmitted. In addition, if s(t) is a Single-Sideband Modulated signal 

with a pilot carrier, it can be expressed as follows: 

S(t) = 

4e (m+ 
(t)e2inv, ' + m- (t)e-2iirvt 

)+ Ac (e2brvt 
+ e-2invr) (4-6) 

J2 

eirmýr + e-2«výr 
" A, cos(2i7rvt) = A, is the carrier 2 

If the elements in equation (4-6 ) are gathered together by frequency, it yields: 

S(t)_ ý ým+(t)+2»21Tct+ 4, (m_(t)+2» 2i2 ,l (4.7) 

Then, using the properties of the convolution, S(v) 
, the Fourier transform of s(t) can be 

written: 

S(v)= ` (M+(v-v, )+28(v-v, ))+ 
4` (M_(v+v, )+26(v+v, )) (4-8) 

8(v) is the Dirac distribution. 
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The module of S(v) is illustrated below, Figure 4-1: 

IS(V)I 
s(v +v') (v -v") 

v 
-VC -VM -Vý O Vc VC +VM 

M_(v+vý) M+(v-v, ) 

Figure 4-1 Module of the Single-Sideband Modulated signal m(t) 

4.2.1.2 Band-pass filtering 

Let f (t) be a real signal such as VtER, f (t) e R. Now, let b(t) be an ideal real 

band-pass filter. This means that B(v), the Fourier transform of b(t) equals one within its 

support i. e. IvI E [v,, v. +VM ] and vanishes elsewhere: 

B(v)_ 
1, if IvI E [vC"vc +vM ] 

0, elsewhere 
(4-9) 

The fact of considering a perfect band-pass filter does not affect the generality of the 

demonstration because there is no strong condition imposed on the filtered signal f (t). 

Let g(i)be the result of the filtering and G(v) its Fourier transform: 

9 (t) =f (t) * b(t) (4-10) 

G(V) = F(V)B(V) (4-11) 

Hence, after filtering the support of G(v) is at least the support of B(v) : 

G(v) _ 
F(v), if IvI E [vC, vC +vM (4-12) 

1 0, elsewhere 
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Finally, comparing both equations (4-8) and (4-12 ) one can write that: 

If VvE [vC, vC+vM], F(v)= 
4` (M+(v-v,, )+28(v-v, )) (4-13) 

And 

If VvE [-vC-vM, 
-vC], F(v) = 

4(M-(v 
+Vc) +28 (v+vc)) (4-14) 

It can then be said that the band-pass filtering can be considered as a Single-Sideband 

Modulation. Even if both conditions ( 4-13 ) and (4-14 ) seem to be quite restrictive, 

especially concerning both terms 6(v -va) and 8 (v + v, ) in practice, with both regular 

signals and filters attenuating enough out of their passing band (especially for the low 

frequencies), they are generally satisfied. This is especially the case for those wavelet 

filters whose properties are strong enough to allow these equivalencies. 

4.2.1.3 Application of the equivalence between SSM and band-pass filtering 

Once the equivalence between Single-Sideband Modulation and band-pass filtering 

is demonstrated the next step that appears clearly is the demodulation of the band-pass 

filtered signals. Actually, the aim of this new approach is the frequency normalisation of 

the band-pass filtered signals, and more especially the frequency normalisation of the 

wavelet filtered signals. Indeed, considering the wavelet transform as a SSM process 

means that a demodulation can be performed. Then, whatever the scale (i. e. the frequency 

range) investigated by a wavelet filter, the interpretation of the result can always be carried 

out in low frequencies (i. e. baseband). This is what we called the Frequency Normalised 

Wavelet Transform (FNWT). One can see below in Figure 4-2, an illustration of the 

system allowing the Wavelet Frequency Normalisation process: 

f (t) 
1V (t) W(a, t) jr- SSM 

Wavelet Filter 

Scale a 

Figure 4-2 Wavelet Frequency Normalisation process 

Demodulator 
m(t) 
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If W(a, t) is the wavelet transform of the signal f (t) at scale a, ti(t) being the "mother" 

wavelet, by only retaining the real parts of the different functions, it can be written that: 

W(a, t)= 
1 

V'(-1 t)*f(t), W(a, t)E (4-15) ýaý a 

From equation ( 4-15 ) it can then be seen that the wavelet transform is expressed as a 

wavelet filtering operation. If one now considers the adjunction of the SSM demodulation 

(i. e. the envelope detector) it can then be written that: 

m(t)=IW(a, t)I *g(t), m(t)E-= R (4-16) 

Where g(t) is for instance a Gaussian low-pass filter whose cut-off frequency depends on 

the scaling parameter a. Finally, mixing equations (4-15 ) and (4-16 ), one obtains: 

M(t) =1 1V(- 
1 

t) * 
.f 

(t) *S (t) 
, m(t)r= L (4-17) IQI a 

Hence, m(t), which was introduced as a baseband signal to be modulated, represents now 

the frequency normalised wavelet transform of the signal f (t) at the scale a. Both central 

frequency and bandwidth of wavelet band-pass filters depend on the scale a. Hence, 

performing a wavelet transform, the results are spread along the frequency axis. The 

adjunction of a SSM demodulator allows the results to be obtained in baseband. The 

wavelet transform is then frequency normalised. 

The first problem that occurs is that the concept of a carrier signal for band-pass filtered 

signals is not evident. Now, it is known that for most of the demodulators (i. e. the coherent 

demodulators) both frequency and carrier phase should be known in order to perform a 

correct demodulation. Fortunately, for Single-Sideband Modulation with a pilot carrier the 

carrier is not always needed. Indeed, the demodulation can be performed using a simple 

envelope detector instead of a coherent detector if the modulation index is small. This 

explains the fact that for demonstration purpose, a SSM with a pilot carrier was considered. 
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In practise, with applications involving wavelet filters (i. e. filters with close to optimum 

space frequency localisation properties) and physical signals, these two conditions of 

presence of the carrier and small modulation index are satisfied. Therefore, this allows us 

to perform efficient wavelet demodulation by using a simple envelope detector. 

Nevertheless, it is practically possible to extract a carrier signal from a band-pass-filtered 

signal especially using a digital Phase Locked Loop [BEST 1]. A coherent detection can 

then be applied in order to demodulate the signal. 

Actually, this last point is most important when considering the Inverse Frequency 

Normalised Wavelet Transform (IFNWT). The carrier being known, the baseband signal 

m(t) can be re-modulated in order to re-obtain the original band-pass filtered signal. 

Theoretically there is no loss of information. Hence, the Frequency Normalised Wavelet 

Transform is a reversible operator. 

4.2.2 Illustration and application in 1D 

4.2.2.1 Envelope detector 

The demodulation process applied to three different wavelets, two continuous, 

namely Morlet's wavelet (i. e. extension of a Gabor function) and the Mexican hat wavelet 

as well as Daubechies' discrete wavelet of order 20 (i. e. 20 coefficients) is illustrated 

below. 

First presented, the results obtained demodulating a simple Dirac distribution. Because of 

the fact that the Fourier transform is the Dirac distribution is one it is then possible to 

assess the capability of the FNWT to spatially localise a peak. This can be done on any 

scale. 

One can see Figure 4-3 the results obtained using the three wavelets mentioned above. The 

spatial representation of the functions used are presented on the left hand side of the figure 

while their corresponding centred Fourier transform modulus can be seen on the right hand 

side. Only real parts of the signals are presented. This explains the parity of the modulus of 

the Fourier transforms. The three wavelet filters are centred at a normalised frequency of 

0.1875. A simple low-pass Gaussian demodulator has been used to perform the FNWT. 

117 



The horizontal scale is not important. It only represents the number of samples for each 

signal (i. e. 128). 

Spatial representation Fourier transform 

Dirac 

distribution 

Morlet's 

wavelet 

filtering 

Gaussian 

demodulation 

Spatial representation Fourier transform 
Mexican hat 

wavelet 

-4 filtering 
ebobe ,oo .o .o .ýb .o 

Gaussian 

demodulation 

Spatial representation Fourier transform 
Daubechies' 

wavelet 20 

filtering 

Gaussian 

demodulation 

Figure 4-3 Wavelet filtered Dirac distribution demodulated by Gaussian demodulation 

For the given scale (i. e. centre normalised frequency of 0.1875) the Dirac distribution is 

perfectly detected by the three demodulated wavelets. Indeed, one can see that in each 

case, the demodulated wavelet presents a peak at the location of the Dirac distribution 

maximum. 
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It can be pointed out that the chosen scale is not optimum to localise a Dirac peak. Indeed, 

considering both the fact that the Fourier transform of a Dirac distribution is 1 and 

recalling Heisenberg's uncertainty principle, such a peak would be better spatially 

localised using the smallest scale available. In this illustration, the localisation of the Dirac 

distribution can simply be obtained by applying a maximum detector. 

A double Dirac distribution is now analysed allowing an estimation of the accuracy of the 

method. The first peak amplitude is 1 while the second peak amplitude is 0.5. The three 

same wavelets as before are used at the same scale with the same Gaussian demodulator. 

The results can be seen below, Figure 4-4. 

First, one can see that both peaks are detected. Then, it appears that the system based on 

the Mexican hat wavelet allows a better spatial discrimination of the peaks. This comes 

from the fact that the Mexican hat wavelet is among the best spatially localised wavelets. 

The results would have been even better taken at smaller scale or even using Haar's 

wavelet. 

Furthermore, at that given scale, both continuous wavelets exhibit their linearity. Indeed, 

both Gaussian shaped curves allowing the detection of the two Dirac peaks are respectively 

of amplitude 1 and 0.5. This is not the case for the discrete wavelet that is less sensitive to 

the Dirac peaks at this scale. Performing the same analysis with the dyadic scale just under 

than in the present case (i. e. the most sensitive for the high frequencies) would give the 

same linear results as using continuous wavelet transforms. 
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filtering 
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Spatial representation Fourier transform 
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filtering 
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Gaussian 

demodulation 

Spatial representation Fourier transform 
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Figure 4-4 Wavelet filtered double Dirac distribution demodulated by Gaussian demodulation 

Finally, the same process is applied to a real signal. This signal is a measured profile of a 

ground silica sample. This measurement was made using a white light interferometer i. e. 

the RST plus by WYKO. The central frequency of the three-wavelet filters is 0.1875 still. 

The results are presented below, in Figure 4-5. 
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Spatial representation Fourier transform 
Real 

engineered 

surface profile 

Morlet's - 

wavelet 
filtering 

Gaussian 

demodulation 

Spatial representation Fourier transform 
Mexican hat 

wavelet 
filtering 

Gaussian 

demodulation 

Spatial representation Fourier transform 
Daubechies' 

wavelet 20 

filtering 

Gaussian 

demodulation 

Wavelet filtered real surface texture profile function demodulated by Gaussian Figure 4-5 demodulation 

With this last illustration appears the real interest of the Frequency Normalised Wavelet 

Transform. Indeed, rather than only isolating the harmonics of the analysed signal like the 

standard wavelet transform, it gives both the location of the frequencies that are under 

analyse and their magnitude. This means that the Frequency Normalised Wavelet 

Transform used at several scales offers a real space frequency map of a signal. 
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Hence, one can see, Figure 4-6, a space-frequency (i. e. space scale) representation of the 

signal analysed previously using the Frequency Normalised Wavelet Transform based on 
Daubechies' wavelet o20. 

Space 

Figure 4-6 Space scale representation of a real surface texture profile function using the FNWT based 
on Daubechies' wavelet 20 

The FNWT properties follow directly those of the wavelet that is demodulated. The more 

accurate the spatial axis of the spatial-frequency map of a signal, the less accurate its 

frequency axis and vice versa. Hence, the FNWT based on Morlet's wavelet is the best 

compromise according to Heisenberg's uncertainty principle. An illustration is given in 

Figure 4-5 by the fact that even if the central frequencies of the wavelet filters are the 

same, because of their own properties (i. e. spatial-frequency localisation), the details 

wavelets focus on are different. 
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Because of using a demodulator (i. e. envelope detector), one can notice that the FNWT 

detects and quantifies the details of a signal at any scale, but without considering their 

`sign'. Hence, a Dirac presents the same spatial-frequency map through the FNWT as the 

opposite of the same Dirac. Indeed, one can see that the details of a real function and its 

opposite are detected without distinction. An illustration of this point can be seen below, 

Figure 4-7: 
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Figure 4-7 Detection of a triple Dirac distribution 
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This problem can be solved by extracting information from the signal histogram. Indeed, 

the histogram can indicate whether an image is either positive (i. e. mainly bright) or 

negative (i. e. mainly dark) by measuring the distribution of the grey levels on each side of 

the histogram mean value. 

123 



4.2.2.2 Coherent detection 

Using envelope detection for demodulating a Single Sideband Modulated signal 

means both that the carrier is added in the modulated signal and that the modulation index 

is small. Those two assumptions were made in the previous illustrations. The fact is that 

their validity can be assessed by performing a demodulation using a coherent detector. This 

task, even if more complicated than an envelope detection, can nevertheless be performed. 

Indeed, the carrier can be extracted from the modulated signal (i. e. the band-pass-filtered 

signal) using a Phase Locked Loop [BEST 1]. Results obtained by both envelope detection 

and coherent detection on a real signal filtered by Morlet's wavelet with a normalised 

central frequency of 0.185 can be seen below in Figure 4-8: 

Envelope of the wavelet-filtered signal 

Envelope 

detection 

Coherent I-V V"", 
-ý detection 

Figure 4-8 Comparison of envelope detection and coherent detection 

On can see that even if not strictly equals, the two envelopes are rather similar. This 

indicates that the assumptions made before on both, the presence of the carrier and the 

modulation index are reasonable 

Furthermore, the act of extracting the carrier allows one to perform a coherent detection 

and also to show that the Frequency Normalised Wavelet Transform can be inverted. 

Indeed, performing a Single Sideband Modulation on the envelope signal obtained from 

the coherent detection allows the reconstruction of the original wavelet filtered signal. The 

results obtained after the SSM can be see below in Figure 4-9: 
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Figure 4-9 Reconstruction of the Frequency Normalised Wavelet Transform 

It can be seen that the reconstructed signal is close to the original wavelet-filtered signal. In 

practice, one can see that there is little loss of information by performing a Frequency 

Normalised Wavelet Transform. The previous results can be compared to those obtained 

using another demodulator based on Gaussian filters instead of perfect low-pass filters, 

Figure 4-10 and Figure 4-11: 

Envelope of the wavelet-filtered signal 

Envelope 

detection 

Coherent 

detection 

Figure 4-10 Comparison of envelope detection and coherent detection 

Wavelet-filtered signal before and after reconstruction 
Original 

wavelet- 
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Figure 4.11 Reconstruction of the Frequency Normalised Wavelet Transform 
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4.2.3 Illustration and application in 2D 

Although introduced in one-dimension (1D), the portability of the Frequency 

Normalised Wavelet Transform in two-dimension (2D) is straightforward. The properties 

of the FNWT follow those of the standard 2D-wavelet transform. Hence, in 2D, as well as 

detail localisation and quantification, their orientation can also be detected and quantified. 

Using an envelope detector for the demodulation also avoids having to develop the concept 

of a signal carrier in 2D. Nevertheless, all the considerations developed previously are still 

available in 2D. 

There is no conceptual difference between the FNWT based on Continuous Wavelet 

Transform (CWT) or based on Discrete Wavelet Transform (DWT), nevertheless because 

of some particular properties of wavelet themselves, both should be treated separately. 

Indeed, one can focus more on the orientation selectivity of the CWT while focusing more 

on the wavelet orthogonality for the DWT. 

4.2.3.1 Continuous wavelet based FNWT 

The properties of the Frequency Normalised Wavelet Transform follow those of the 

wavelet used. Considering a test image one can illustrate the edge detection capabilities, 

the orientation selectivity and the linearity of the FNWT based on Morlet's wavelet at a 

small scale along four different orientations. The results are presented below in Figure 

4-12: 
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Figure 4-12 Illustration of the properties of the FNWT based on Morlet's wavelet 

The test image consists of two patterns. The first one, on the Upper left corner is a black 

isoceles triangle. Its edges are oriented at 0, ic/2 and 7/4 radians. On can see in Figure 

4-12 that those edges are easily localised by the FNWT applied along the same orientation 

angles. Furthermore. only edges oriented along the scanned angles are detected. Because of 

the fact that the FNWT is applied exactly on the same angles as the triangle edges, one can 

notice that the amplitude of the detection is the same whatever the orientation. Those two 

last points illustrate both the FNWT orientation selectivity and its linearity. When applied 

along 0= 3n/4 the FNWT detects only the corners of the different patterns of the test 

image. 

127 



The second element of the test image is a rectangular colour stairs, with different step 

levels. Those stairs are detected for a horizontal orientation (i. e. 9= 0) while the step 

edges are detected for a vertical orientation. On can see, Figure 4-12, that there are several 

amplitude detection according to the step. Furthermore, one can see Figure 4-13 that the 

step amplitudes correspond exactly to the FNWT amplitude: 

- --Step Amplitude ;= FNWT Amplitude 

300 

200 

150 
0) L 0 100 

0 

250 

50 

123456 

Number of steps 

Figure 4-13 Illustration of the linearity of the FNWT based on Morlet's wavelet 

This illustrates the linearity of the Frequency Normalised Wavelet Transform. 

As mentioned above. most of the properties of the FNWT follow those of the demodulated 

wavelet and that is discussed in chapter 3. Indeed, Figure 4-12 shows that detection, 

linearity and orientation selectivity appears when applying a standard wavelet transform. 

Nevertheless. the results obtained by FNWT are more readable and more simply presented. 

This point is of importance especially when a post processing of the images is needed. For 

an illustration the readability of the FNWT, Figure 4-14 shows the results obtained when 

applying, the FNWT to a real image at different scales. In the present example the test 

image is a measurement of a surface texture obtained by grinding. Once again this 

measurement was performed by using a white light interferometer, the RST plus by 

WYKO. 
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On can see Figure 4-14 that the characteristics of the texture at different scales can he 

localised by both the wavelet transform and the FNWT. Nevertheless, the FNWT gives 

smoother results. Therefore. images corning from the FNWT process can he simply he 

semented using a watershed algorithm (DOUG 11. Thus, the FNWT makes the post- Z- 
processing of the images simpler. The segmentation of an image space-frequency map 

allows one to build a tree representation of the image. This tree could then he used to 

compare images like texture images. The segmentation is just a simple illustration of what 

could be done by using the FNWT as a pre-processing stage. Because of the fact that this 

tool is still news. many new research applications are still to he explored. 
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4.2.3.2 Discrete wavelet based FNWT 

In Order to mike the illustration of the discrete wavelet hased FNWT more concise. 

two types of discrete wavelet representation will he used; the unsealed or normal discrete 

wavelet transform and the scaled discrete wavelet transform. Analysing 128x 128 pixel 

images with the discrete wavelet transform produces 49 wavelet images. Hence, after 

wavelet interpolation, 49 128x 128 wavelet images are available. They correspond to the 

filtering of the original using a filter bank of 7x7 orthogonal filters. This is the normal or 

unsealed discrete wavelet transform. If gathering by scales both horizontally and vertically 

the filters of the filter hank, only 7 filters are used and one gets 7 wavelet images. This is 

the scaled discrete wavelet transform. The 7 scales run from 0 to 6. When using the 

unscaled wavelet transform, both scales in x and y should be mentioned. For the discrete 

wavelet transform scale 0 represents the big details (or low frequencies) while scale 6 

represents the fine details (or high frequencies) of the analysed signals. Results obtained 

with the unscaled FNWT at three different scales can be seen below in Figure 4-15: 

Test image 

Discrete 

Wavelet 

Transform 

Scale" 

Frequency 

Nornmalisation 

Horizontal scale 0 

Vertical scale 6 

1, 

Horizontal scale 6 

Vertical scale 6 

i 

i 

Horizontal scale 6 

Vertical scale 0 

Figure 4-15 Illustration of the properties of the unsealed FNWT based on I)aubechies' 12 wavelet 
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Figure 4-15 shows that edges of the test image are perfectly detected by both, the normal 

wavelet transform and the FNWT. Once again, the readability of the results obtained by the 

FNWT is Netter. This is even more obvious when applying, the scaled wavelet transform to 

the Saale test image: 

Discrete Wavelet Transform 

40 
Iý 

-` 

Frequency Normalisation 

ft pL 

Scale 0 Scale I Scale 2 Scale 3 Scale 4 Scale 5 Scale 6 

Figure 4-16 Illustration of the properties of the scaled FNWT based on Daubechics' l2 wavelet 

Using the scaled wavelet transform based on Daubechies' wavelet of order 12, Figure 4-16 

shows a multiscale analysis of the test image. As the scale increases, the edges of the test 

image are more easily detected. This time, because of' the use of the scaled wavelet 

transform there is no orientation selection. One reminds from chapter 3 that this is due to 

the fact that the scaled wavelet transform is built, in the frequency domain, on square 

Concentric tilters. 

Multiscale analysis using the scaled FNWT can also be illustrated using images coming 

from real surface textures. Hence, one can see below in Figure 4-17. results obtained when 

applying scaled FNWT to an image coming from the measurement of a surface texture 

obtained by vertical milling. This measurement was performed using the RST plus by 

WYKO. 
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Figure 4-17 111ustration of the properties of the scaled FNWT based on Daubechies' 12 wavelet 

Hence. as it was the case using the FNWT based on Continuous Wavelet Transform, 

details of a real surface texture can be extracted and measured at every available scale. In 

the present case. with the dyadic wavelet decomposition, details at each octave can be 

isolated. 

To summarise, using both the orthogonality of the Daubechies wavelets and the 

quantifying properties of the Frequency Normalised Wavelet Transform, it is possible to 

extract details of a signal at any available scale. 
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4.3 Envelope detector (Technical remarks) 

Some technical remarks can be made concerning both the calculation of the absolute 

value of the function to be analysed and the envelope detection low pass filtering. First the 

calculation of the absolute value of a signal can generate some high frequencies. Hence the 

support of the frequency spectrum of the absolute value of a signal is generally wider than 

the support of the frequency spectrum of the signal itself. For instance, if one considers a 

real signal whose frequency spectrum is compactly supported. Let's call v,, the maximum 

frequency of its spectrum. The support of the spectrum of the absolute value of this signal 

is compactly supported and its maximum frequency is 2 vl. The result can be found easily 

remembering that a multiplication in the space corresponds to a convolution in the 

frequency space. 

Hence, in practice, when the signal whose absolute value is to be calculated presents a 

maximum frequency higher than the normalised frequency of 0.25 the signal should first 

be over-sampled by a factor of 2 then, the absolute value can be calculated. A half band 

anti-aliasing filter is applied and finally the signal can be sub-sampled by a factor of 2. To 

summarise, if certain frequency conditions of the analysed signal are not satisfied, the 

absolute value of this signal must be calculated using multirate filtering. 

About the envelope detection low-pass filtering, two different low-pass filters are used. 

The first one is a standard perfect low pass filter with an intra-band oscillation smaller than 

50dB. The second one is a squared Gaussian filter. The two filters offer an efficiency 

relatively equivalent. Nevertheless, the perfect low-pass filter provides a bigger precision 

but also produces a none negligible Gibb's phenomenon. This is the opposite to the 

squared Gaussian filter. According to both the signal and the applications one or the other 

can be chosen. 
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Table of symbols 

N Number of images 

na Number of orientation angles 

ns Number of scales 

np Number of characterisation parameters 

Q Number of different texture families (categories) 

M Number of images from a texture family 

Z Matrix of dimensions [PxN] containing images parameters 

P Number of characterisation sub parameters 

v Vector of dimensions [Pxl] 

L Lagrange's multiplier 
X Lagrange's multiplier parameter 

R Rank of the matrix XXT 

LR Set of real numbers 

fj(t) Real function depending on the time 

f1*(t) Complex conjugate of fj(t) 

F1(v) Fourier transform of fj(t) 

eo Textures main orientation angle 

fo Normalised frequency 

X Matrix of dimensions [N x P] and general terms xj 

Ii Mean of the variable j out of P 

u(i) Linear combination of P centred variables 

V(u) Variance of u 

T Covariance matrix of general terms tj, 

T-' Inverse of the covariance matrix T. 

uT Transpose of the column vector u 

D Within-class (pooled) covariance matrix 

E Between-class covariance matrix of general terms ej, 

Auf Function to be minimised 
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0 Number of dummies of objects to be classified 

Y Matrix of dimensions [0 x P] containing the data to be classified 

f Centred matrix Y of general term yj 

A Diagonal matrix containing eigen values 

U Passage matrix 

Yd Expression of the matrix Y in the discriminant function space 

C Matrix of dimensions [Q x P] containing the categories centres 

ck Categories centres 

Cd Expression of the categories centres matrix in the discriminant function space 

K Index of minimum distance 
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5. Characterisation of surface texture strategy and implementation 

5.1 Introduction 

This chapter describes the surface texture characterisation methods that were chosen for 

solving problems of engineered surface roughness characterisation. Analysing surface textures 

allows the extraction of parameters that describe images features. Thus, from the same texture 

family, the variability of these parameters should be limited. The chosen way of assessing the 

pertinence parameters is to use them for performing a task of texture discrimination. Hence, 

for both a given set of parameters and a given clustering method the viability will be measured 

from the discrimination efficiency. 

After describing in this chapter the texture discrimination strategy, one will find in the next 

chapter the corresponding algorithm applied to two real applications that are firstly, the 

characterisation and clustering of eight different machining process surface textures, and 

secondly the monitoring of a grinding process. 

The texture discrimination algorithms can be divided into three independent parts that are 

described independently in this chapter. 

The first part is the wavelet filtering. Two types of wavelet transform are experimented. They 

are namely the Continuous Wavelet Transform (CWT) and the Discrete Wavelet Transform 

(DWT). Both wavelet transforms are associated with a frequency normalisation process in 

order to yield a Frequency Normalised Wavelet Transform (FNWT). After frequency 

normalisation new images that give a spatial frequency representation of the textured images 

are available. 

The second part of the algorithm is the calculation of simple parameters arising from the 

frequency normalised wavelet transforms. 

Finally, the last part is the clustering. Two supervised clustering methods are applied, a 

statistical linear method, which is called Discriminant Analysis, and a non-linear clustering 

method called Cluster Analysis. 
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The texture discrimination process is described below in Figure 5-1: 

Data N 128x 128 pixel 
texture images 

Orientation IN Images 
Detection 

CWT or DWT ns scales 
na angles 

(ns x na x N) Images 

Frequency 
Normalisation 

(ns x na x N) Images 

Parameter calculation: 
np Parameters: Volume, Surface, 
Form Factor, Peaks Summation, 

Roughness 

(np x ns x na x N) Parameters 

Decision by clustering 
" Discriminating Analysis 
" Cluster Analysis 

Figure 5-1 Texture discrimination process 
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5.2 Data 

For applying the clustering algorithm, surface texture images are available. From a 

general point of view one assumes that a clustering is to be done between images coming from 

Q different texture families. Furthermore, it is assumed that M images are available for each 

family. In the present case, these M images are actually M 128x128 pixel images. The whole 

image data file consists then of QxM =N images. These N images are represented at the 

beginning of the graph above, Figure 5-1. 

For supervised clustering purpose, two sets of images for each texture family are needed, first 

the reference set or training set and the testing set. It is common practice to use 2/3 of the 

samples for training and 1/3 for testing [SCHE 1]. A problem can then be that a limited 

number of samples are available. For an optimal use of the data, it is better to have a strategy 

in which all samples are used for learning. This is achieved with the leave-one-out or deleted 

technique [FU 1] [DEV 1]. Its principle is that a classifier is built with the use of all samples 

but one, which is used for testing. This is repeated for all samples. The leave-one-out method 

comes from methods used for estimating generalisation error based on resampling. It is the 

first step of Jack-knifing [MIL 1] [LEB 1] and an extension of the so-called k-fold cross- 

validation when k equals the sample size. 

The learning strategy will be detailed for each application. 

5.3 Orientation detection 

5.3.1 Introduction 

For surface texture analysis the orientation is a parameter of prime importance. For this 

reason, detection of a texture main orientation should be one of the first tasks accomplished in 

a process of texture analysis. One here proposes a simple approach to this problem based on a 

mathematical tool widely used especially in statistics, the Principal Component Analysis 

(PCA). One proposes a method that both detects an image main orientation and measures its 

degree of isotropy. 
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5.3.2 Principal Component Analysis 

Lets assume that one wants to find the straight line that best fits a set of points. The 

problem is well known in 2D and is often called a linear regression, but this can be seen from 

a more general point of view [LEB 1]. 

A matrix Z whose dimensions are [PxN] can describe a set of points (i. e. N points is a space of 

dimension P). Now, let v be a vector of dimensions [Pxl] that is held by a straight line that 

should best fit the set of points. For convenience, the vector v should be normalised. This 

means that its modulus should be equal to one: 
P 

VTv=1týýv =1 

j=1 
(5-1) 

The vector ZTv of dimensions [Nx1] represents the inner product of every vector describing the 

set of points with the vector v. This means that the vector ZTv contains the N values of the 

projections of every vector of the set of points onto the vector v. 

On can easily prove that to adjust the straight line held by the vector v, one needs to maximise 

the quantity (ZTv )TZTv, which is the summation of the projections of every vector of the set of 

points onto v. Indeed, if the maximisation of the quantity (ZTv )TZTv is performed then a whole 

set of vectors v is found. These vectors will be respectively the P vectors that will be held by 

the P straight lines best fitting the set of points. That last point really makes sense when 

performing the maximisation of the number (ZTv )TZTv using the Lagrange's multipliers. 

Let L be Lagrange's multiplier with its parameter X. 

L=VTZZTv_)t(vTV-1) 

With VT ZZT v= (Zr v)T ZTv being the function to maximise (5-2) 

and v''v -1= 0 being the constraint 

If now the derivative of the Lagrange's multiplier is done using the matrix symbolic 

derivatives rules [DWY 1], it yields: 

aL a(VTZZTV) avTv 
(5-3) 

av a -ý av 
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And then: 
aL 

_ 2ZZTV-2), v av (5-4) 

For the optimisation process, the derivative of the Lagrange's multiplier should be equal to 

zero (i. e. 
äv 

= 0), one finally has to solve the following equations: 

ZZTV=AV (5.5) 

Finally multiplying by v yields: 

VTZZTV=)LVTV=/I (5-6) 

Hence, from equations (5-5 ) it can be seen that u is the eigenvector of the symmetrical matrix 

ZZT with the eigenvalue X. Because A is the parameter to be maximised, then according to 

equation ( 5-6 ), X is the biggest eigenvalue. 

Now, let R be the rank of the matrix ZZT. This means that the matrix ZZT has got R eigenvalues 

(i. e. %l, X2,..., XR) that are not equal to zero. They respectively correspond to R eigenvectors 

(i. e. vj, v2,..., VR). Then, because of the properties of the matrix ZZT, which is symmetrical 

defined positive, one can prove that both the R eigenvalues are positive and the R eigenvectors 

are perpendicular to each other. 

So, if ?Z> X2 >"" "> 
). R then v1 is the vector held by the straight line that best fits the set of 

points. But also v2, which is perpendicular to vj, is the vector held by the straight line that is 

respectively the second straight line to best fit the set of points and so on. 

This technique is applied to texture images. The principle is to perform the Fourier transform 

of the image and then to take its modulus. A Principal Component Analysis is applied to this 

new image. Two vectors are extracted. They give both, the main orientation of the texture and 

information on its isotropy. This last parameter will be discussed further. 
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5.3.3 Algorithm 

The algorithm of orientation detection can be both simply described and explained in a 
few points. Hence, the different steps of the algorithm are the following: 

" Calculation of the image Fourier transform modulus. 

" Quantification and threshold limitation of the image Fourier Transform modulus. Here the 

aim is to only consider the most relative important values of the Fourier transform 

modulus. A threshold level is taken under which the values of the Fourier transform 

modulus are not considered. 

9 Localisation of the relative most important values of the Fourier Transform modulus and 

construction of the set of points. Each point of the Fourier transform modulus that is over 

the threshold level is localised in the Fourier space and is set as one point in the set of 

points on which will be applied next the PCA. 

" Principal Component Analysis applied on the set of points. The PCA technique is applied 

in order to find the two straight lines that are both perpendicular and that best fit the set of 

points built before. The aim of searching two main directions is to be able to exhibit a 

percentage of confidence in the orientation that will give information on the isotropy of the 

surface. 

As a result, one gets first, the orientation of the image that is analysed, and next comparing the 

eigenvalues that come from the PCA, one can have an idea on the topology of the image (i. e. 

whether the image is isotropic or rather anisotropic). This quantity can be given in percentage 

terms in order to get more information from that orientation detection process. 
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5.3.4 Examples 

The algorithm can now he illustrated showing some results. A family of three images is 

displayed see Mow Figure 5-2, Figure 5-3, and Figure 5-4. From the left to the right, one can 

see in that order. first the original texture (or image). then the centred modulus of its Fourier 

Transform and finally the image that is used to perform the Principal Component Analysis (i. e. 

the threshold corrected Fourier transform modulus). Three calculated parameters are also 

given which are the orientation angles in anticlockwise degree from a horizontal line, the 

percentage of confidence and the number of points on which the PCA was performed. Hence, 

one can see below Figure 5-2, Figure 5-3, and Figure 5-4 an illustration of the PCA orientation 

detection algorithm applied to three test images, while Figure 5-5, Figure 5-6 and Figure 5-7 

the algorithm is applied to real surface texture images coming from three different machining 

processes. 

Oricntattion Ande: --t5 ('uniidence: 99.061% Number of points: 238 

Figure 5-2 Illustration of the PCA orientation detection applied on a test image 
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Figure 5-4 Illustration ofthe PCA orientation detection applied on a test image 
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Figure -ý 
Illustration of the PCA orientation detection applied on a real surface texture image 
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Figure 6 Illustration of the PCA orientation detection applied on a real surface texture image 
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Figure 5.7 Illustration of the PCA orientation detection applied on a real surface texture image 

When using this Principal Component Analysis method of texture orientation detection, the 

first parameter to he checked is the confidence percentage. This parameter varies from 0'/ to 

1001/ß. A value of 0% means that the texture is completely anisotropic, then the concept of 

texture orientation is meaningless. A value of 100% means that texture is completely isotropic. 

Then, both the concept of texture orientation takes all its sense and is reliable. This confidence 

parameter is then a first index parameter that can be proposed for characterising texture aspect. 

The number of points on which the PCA is performed is variable. It depends on the chosen 

threshold level. This threshold level should be adapted to the kind of images that are studied. 

If used well, it can help to minimise some artefacts coming from the quantification of the 

digital images. In the examples above, the threshold level was chosen between the maximum 

value and the mean value of the Fourier Transform modulus of the image. 

As a conclusion. one can say that this simple technique allows the quantification of two 

important parameters in texture analysis. These are the isotropy of a texture and its main 

orientation. 
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5.4 Frequency Normalised Continuous and Discrete Wavelet Transforms 

For processing purposes, images from the whole data file described in the previous 

section are filtered using a set of wavelet filters called a wavelet filter bank. Two types of 

wavelet transform are applied, the Continuous Wavelet Transform (CWT) and the Discrete 

Wavelet Transform (DWT). After frequency normalisation a spatial frequency map of the 

textured images can then be obtained. 

5.4.1 Continuous Wavelet Transform 

The Continuous Wavelet Transform is presented and detailed in chapter 3. For the 

present applications, Morlet's wavelets, also called Gabor functions in a similar configuration, 

are used. For the Continuous Wavelet Transform scanning, a choice had to be made for both 

the number of scanned scales and orientation angles. The idea is to find a suitable filter bank 

configuration in order to obtain a regular distribution of the filters in the frequency domain. 

The number of filters should also be limited in order to minimise the redundancy of 

information. Hence, a wavelet filter bank consisting of 5x4 = 20 wavelet filters was chosen. 

Hence, by using this filter bank, 5 scales and 4 angles equally distributed are checked for each 

texture image. As a result, 20 wavelet images per texture image are available for 

characterisation. The filter bank characteristics are detailed below. Illustrations of this filter 

bank can also be seen in Figure 5-8 and Figure 5-9. 

From the mathematical point of view, textures images are real functions. Therefore, even if 

complex wavelets such as Morlet's wavelets are used, only the real part of the wavelet filtered 

images are retained for analysis. This fact allows us to only consider the wavelets real parts. 

Hence, the problem is the one of filtering a signal using filters with real coefficients. This 

explains the fact that all the representations of the modulus of the wavelet filters will be 

symmetric with the origin (i. e. the normalised frequency 0). 
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Theoretically, this is simply illustrated below: 

If, fl(t) E IR fi*(t) =fl(t) 

and then 

If, F, (v) is the Fourier Transform of fi(t) 

then 

F1(v) = Fl`(-v) and I F1(v) I= IF, - (-v) I 

The modulus of the Fourier Transform of the function fl(t) is even 

As an illustration, one can see below, in Figure 5-8, the centred modulus of the Fourier 

transforms of the 20 wavelet filters that are used in the wavelet filter bank. 

Reading the figure horizontally from the left to the right, the scanning scale increases (i. e. the 

details that are focused on get bigger). Vertically, from the top to the bottom of the table, the 

scanning angle increases from 0 to 37x, /4 radians. The stopped band is in white. 
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Centred modulus of the Fourier Transform of the wavelet filters used for scanning the 
textures 

Gathering all together the modulus of the Fourier transforms of the wavelet filters used for 

scanning the textures. one can have a representation of the part of the frequency space that is 

actually scanned by the wavelet filter hank. This artificial representation can be seen below, in 

Figure 5-9. The stopped band is in white. 
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Before applying, the wavelet filter bank on a texture, its main orientation is calculated. Indeed, 

most of the textures obtained by machining present an orientation. The main texture 

orientation as well as a parameter of anisotropy are calculated previous to any processing 

using a method based on Principal Component Analysis and which was described before in 

this chapter. 

Hence. in the filter hank. which is used for scanning the textures, four orientation angles are 

checked. It H� is the main orientation angle of the analysed texture, the four scanned angles are 

the followings: 

1.9n 

7r 8(, + - rad 4 

JT 3. O+- rad 

4.0()+ rad 4 

As it was mentioned before. 5 different scales are also investigated for each angle of 

orientation. The distributing rule that is used for the scales is the following: 

scale = r` 
With (5-8) 

F=1.7 and i real number such as iE 10,41 
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For a dyadic distribution the coefficient r would be equal to 2. In order to allow a little bit 

more overlapping between the filters, I' has then been chosen smaller than 2. For a smaller IF, 

the overlapping between filters is too important. This means that for this filter bank the 

scanned scales are: 

scale = 1,1.7,2.89,4.913,8.3521 (5-9) 

From the digital signal processing point of view the normalised frequencies run from -0.5 up 

to 0.5. Due to the filter bank internal parameter one can calculates that the evolution of the 

scanned normalised frequencyfo follows the rule: 
A f0 

scale 
(s-10 

Where A is a real constant that depends on the parameters that are used for implementing the 

wavelet filters. In the present case, A= ýf3ix5'S Hence, using equation ( 5-10 ) for 
8x r 

scale E [1,1.7,2.89,4.913,8.3521], one obtains the following normalised frequencies: 

fo E [0.38,0.22,0.13,0.077,0.045]. It can then be seen that for the Continuous Wavelet 

Transform scanning, both angles and scales distribution were chosen in order the filter bank to 

scan regularly the main part of the texture spectrum for a limited number of both angles and 

scales. Another strategy can be chosen, and frequency overlapping wavelet filters can be used, 

but in that case many more characterisation parameters will be calculated and the post 

processing task will require more computation time and power. 
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5.4.2 Discrete Wavelet Transform 

The Discrete Wavelet Transform (DWT) is presented and detailed in chapter 3. For the 

present application, a compactly supported wavelet family introduced by Daubechies 

[DAUB 1] is used as well as its multiresolution dyadic pyramidal decomposition algorithm 

[MAL 1]. Actually, for the experiment two different filter banks based on the 20 tap 

Daubechies' wavelet were used. 

The first filter bank consists of the whole dyadic pyramidal wavelet decomposition of a 

128x128 pixel image allowed by the DWT standard algorithm. This means that because of the 

base 2 decomposition principle, 27x27 pixel images can be split into 7x7 = 49 sub-images. This 

task is performed using band-pass filters whose both central frequency and bandwidth are 

divided by two at each scale. This is called a dyadic decomposition. Hence considering the 

normalised right band centred frequencies the bandwidth for each scaled is the following, 

Table 5-1: 

Table 5-1 Roughness, Waviness and error of Form of a surface texture 

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 5 Scale 6 

Lower cut 7.8125 15.625 31.25 
0 0.0625 0.125 0.25 

frequency X10-3 X10-1 X10-3 
Upper Cut 7.8125 15.625 31.25 

Frequency X10-3 x 10-3 X10-3 
0.0625 0.125 0.25 0.5 

Central 3.9062 11.718 23.437 46.875 93.75 

Frequency x10'3 7 x10'3 5 x10-3 x10-3 x10"3 
0.1875 0.375 

A wavelet interpolation is performed in order to get sub-images of the same size as the 

original image (i. e. 128x128 pixels). It should be recalled that because of the properties of the 

Daubechies' wavelets these wavelet filters are orthogonal and thus, from this filter bank the 

original image can be simply obtained by adding the 49 interpolated sub-images. 
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As a conclusion. it can be said that using this filter hank means that the image is scanned 

under 7 scales emphasising two orientations: vertical and horizontal. An illustration of the 

modulus of the filters that form this filter bank can be seen below in Figure 5-10. The stopped 

hand is in white. 
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The principle of the second filter bank that is used is the same as previously. Nevertheless, this 

time the wavelet filters are gathered together by scale and orientation in order to obtain 

wavelet filters whose moduli are both concentric and symmetric. A derived effect is that there 

is almost no orientation selectivity from this new filter bank referred to as scale wavelet 

transform. Hence, instead of 49 filters only 7 orthogonal filters are needed for scanning a 

128x 12 pixel image. The 7 filters used in the scaled wavelet filter bank are shown below in 

Figure 5-11. The stopped band is in white. 

t figure 5-I 1 Centred modulus of the Fourier Transform of the scaled discrete wavelet filters used for 

scannino the textures 

The advantage of this filter bank is that it requires less computation. It is more compact 

because an image analysed with this filter bank yields only 7 sub wavelet filtered images. Due 

to the fact that this filter hank derives straightforwardly from the one previously described, the 

non-orientation selective filters are also orthogonal. It yields that the summation of the 7 sub 

images gives the original image. Both discrete wavelet filter banks will he used in the 

applications in order to scan the surface texture images. Knowing that the number of filter 

hank channels is different. the number of parameters that will be extracted from each filter 

bank will be different. 
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5.5 Wavelet Filter Banks Frequency Normalisation 

Sub images coming from the three wavelet filter banks described in the previous section 

will be frequency normalised prior to the characterisation parameter calculation process. The 

method that is used and which was introduced in chapter 4 is the Frequency Normalised 

Wavelet Transform (FNWT). Its principle is a demodulation process applied to the wavelet 

filtered images. Hence, it yields a frequency normalisation of the wavelet images. In other 

words, using such a frequency normalisation process applied with a filter bank, it is possible to 

draw a real space frequency map of a surface texture image. 

This frequency normalisation gives images that are smooth and allow a simpler 

characterisation parameter extraction. Characterisation parameters can be from a different type 

than the classical energy and entropy parameters. Indeed, the characterisation parameters can 

be thought to describe the space frequency map of an image like the notes for a music 

notation. Because the Frequency Normalised Wavelet Transform is based on a demodulation 

process, the frequency-normalised images will be referred to as image envelopes in the next 

sections. 

5.6 Parameters calculation 

At this stage of the algorithm, the frequency normalised wavelet images are available. 

Depending on the filter bank channel, the space frequency maps of the images vary from zero 

to their maximum value and they are smooth. Indeed, the bigger the scale, the smoother the 

image. The aim is then to characterise those new images that represent both quantity and 

localisation of details of the texture along the different directions and scales that scanned by 

the corresponding filter bank. To describing frequency demodulated sub images also called 

envelopes coming from the filters banks, simple parameters are proposed. They are designed 

to characterise either the quantity of image details presented in each channel, their respective 

locations, or both at the same time. A proposed list of 5 characterisation parameters that are 

calculated for each filter bank channel is the following: 
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1. Volume of the envelope (i. e. Frequency Normalised Wavelet image) 

2. Surface of the envelope 

3. Inverse of the envelope Form Factor [COST 1]. The form factor is a function of the two 

previous parameters and is expressed as follow: 
I 

3 
form factor = 

Volume 

!(5.11) 
surface2 

The form factor has no physical dimensions and then does not depend on the size of the 

form it measures. It just depends on its shape. The advantage of this method is that the 

parameter is simple and that it characterises at the same time the quantity of detected 

details, their position, their magnitude... Indeed, the form parameter is a function of all 

those parameters. 

4. Summation of the envelope peaks. This parameter is normalised by the number of peaks. It 

is called Peaks Summation. This parameter is even simpler than the form factor parameter 

and is intuitively easier to understand. It is close to the simple approaches that are used for 

characterising surface roughness. Nevertheless, it describes only the peaks of the images 

and not their position. 

5. Roughness of the envelope. This is equivalent to the parameter Ra, described chapter 1, 

and commonly used for measuring engineered surface roughness. 

It is obvious that other parameters could be envisaged and added to this list. Hence, due to the 

characteristics of the Frequency Normalised Wavelet Transform, a process based on the 

segmentation of the frequency-normalised images can be performed. This would lead to a 

study detail by detail of the space frequency map of the surface textures. Even if this 

possibility is to be explored, a more general parameter extraction strategy was chosen for the 

applications studied. 

The calculation of the fractal dimension [MAN 1] of the frequency normalised images may 

also give some good results, but this parameter has been rejected due to its quite complex 

interpretation of the type of information it gives on the details at each scale and orientation. 
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When using CWT based filter bank, another parameter was used which is the confidence 

parameter linked with the orientation. This parameter, which is described at the beginning of 

this chapter, indicates the direction homogeneity, or homogeneity index, of a surface texture. 

If needed, it is calculated on each surface texture prior to the filter bank filtering. 

Hence, to summarise the process of parameter extraction for multiscale wavelet 

decomposition, 5 parameters are calculated for the original texture image and for both each 

scale and orientation. When scanning with the CWT based filter bank, 5x5x4+5+1 = 106 

parameters are calculated (i. e. 5 parameters for 5 scales and 4 orientation angles plus 5 

parameters for the original surface texture plus the surface texture homogeneity index). When 

scanning with the standard DWT based filter bank, 5x7x7+5 = 250 parameters are calculated 

(i. e. 5 parameters for 7x7 =49 wavelet sub images plus 5 parameters for the original surface 

texture). Finally, when scanning with the scaled DWT based filter bank, 5x7 +5= 40 

parameters are calculated (i. e. 5 parameters for 7 scales plus 5 parameters for the original 

surface texture). 

Another approach can be chosen for selecting the characterisation parameters. A scheme that 

is commonly followed is to calculate a large number of parameters and then to select these that 

are the most significant for a given analysis task [WOU 1]. Hence, for instance after 

calculating a number of characterisation parameters, techniques like the so-called Floating 

Forward Feature Selection scheme (FFFS) can be used [PUD 1] and [JAIN 11. The principle 

of this scheme is to select iteratively characterisation parameters by adding them or deleting 

them from the characterisation parameter vector in order to get the best image discrimination 

for a given task. 

Starting from the whole set of characterisation parameters enunciated before, the same kind of 

approach was manually applied. Hence, it will be seen for the applications in the next chapter 

that just a part of the whole set of characterisation parameters will be retained. This set of 

parameters differs with the type of images that are to be classified. When applying such a 

parameter selection scheme, the number of parameters that is retained for a given task is then 

smaller than those mentioned before for each filter bank. 
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It can also be pointed out that from a more theoretical point of view, this characterisation 

parameter selection can be needed. Indeed, if characterisation parameters are too correlated, 

i. e. when for example two parameters measure under two different angles the same 

characteristic, and if using a linear clustering method the classification problem can then be 

none solvable. Indeed, classification methods like linear discrimination are based on matrix 

inversion and this inversion can be impossible if the matrix coefficients (i. e. characterisation 

parameters) are not independent. To avoid these problems of matrix inversibility, a parameter 

selection scheme can then be adopted. 

5.7 Decision by clustering 

Once parameters are available, the aim is to state whether those parameters are efficient 

and reliable for texture characterisation. The chosen way of assessing the parameters 

efficiency is to apply them to the task of texture discrimination. If N textures belonging to Q 

different texture families or categories are processed and if P parameters are calculated for 

each of them the aim is to see whether those parameters indicate to which texture family each 

texture belongs. Hence, this problem is the classification of N dummies or objects in Q 

categories in a space of dimension P. 

Two unsupervised clustering methods are proposed to perform this task. The first one is based 

on the linear discriminant analysis and the second one is non linear and based on the cluster 

analysis. It should be pointed out that this type of approach is not new for characterising 

surface textures. Indeed, such an approach has already been used to discriminate textures with 

different properties e. g. worn and unworn [THOM 1] [THOM 2]. 

159 



Dealing first with discriminant analysis [LEB 1] [DUD 1] [CAR 1] [TAT 1] [MANL 1]. It 

consists of calculating linear discriminating functions that best split the vector space into Q 

subspaces. Once those subspaces have been calculated, the set of points are placed inside the 

references described by the linear discrimination functions. In that new space, distances 

between subspaces centres and dummies are calculated in order to perform a clustering. This 

strategy can be compared to the calculation of Mahalanobis distances [MAH 1] between 

vectors in a space of dimension P. In theory two textures from the same texture family, will be 

separated from a distance smaller than two textures coming from two different texture 

families. 

The principle of the second technique is to set up borders between the set of points in the P 

dimension space. This is cluster analysis [LEB 1] [DUD 1]. It is mainly algorithmic and does 

not need the use of sophisticated mathematical tools. Both techniques are described in the 

following sections. 

5.7.1 Clustering by Discriminant Analysis 

5.7.1.1 Discriminant Analysis 

The aim of the discriminant analysis [LEB 1] [DUD 1] [CAR 11 is to assign a dummy or 

object, which is characterised by numerous variables, to the category it belongs to. The 

principle of the discriminant analysis is to build discriminant analysis functions that are linear 

combinations of the variables that characterise the dummies. The categories in which the 

dummies should be classified are a priori known. 

Let X, whose dimensions are [N x P] (i. e. N rows and P columns), be a matrix containing the 

data xu. This matrix X can be written in a table where each row represents a dummy and each 

column a variable (or vice versa). Hence, this is a problem of classification of N dummies in a 

vector space of dimension P. From a practical point of view, the data set X should have a 

homogenous content and should be large enough for the statistical analysis to make sense. 
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Variables 

X11 X12 . ". ... ... Xjp 

X21 X22 

Xli 

XNI XNP 

The discriminant function that is to be found is a linear function of variables xU represented in 

the matrix X. 

Let xj be the mean of the variable j out of P. 

N 

". (5-12) x' "= 
1N ý x'' 

Let u(i) be a linear combination of P centred variables for the dummy i out of N. 
P 

u(i)=luj(xÜ-xj), uj El (5-13) 
i=t 

Because of the fact that u(i) is a linear combination of centred variables, it is also centred. 

Now let V(u) be the variance of u: 
N 

V(u)= 1 Iu2(i) 
N ; _, 

(5-14) 

Developing the notation mixing both equations ( 5-13 ) and (5-14 ), this can be successively 

written: 
z 

V(u)-Ni 
Lui(xýi_xlý (5-15) 
j=l 

V(u) - uiui(xýi-xi)(x1, -xo (5.16) N 
ý_ý i=1 l=1 
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Let T, whose general term is tj, , be the covariance matrix of the data set X. The expression of 

the matrix T is the following: 

tit =Ný, (x; ý - xý)(xrr - xi) (5-17) 

Hence from both equations ( 5-16) and ( 5-17 ), swapping the summation signs one can write: 
PP 

V (u) =II ujulti, = uTTu (5-18) 
j=1 1=1 

" u: Column vector representing the coefficients of the linear combination 
giving the discriminant function 

" uT: Transpose of the column vector u. 
" T. Covariance matrix of the data set X 

Considering now the problem of dummies classification inside Q classes or Q categories, the 

matrix T can be decomposed into 2 matrices D and E: 

"D is the (pooled) within-class covariance matrix 

"E is the between-class covariance matrix 

Hence, from equation (5-18 ) it can be written [LEB 1]: 

V(u)=uTTu=uTDu+uTEu (5-19) 

Lets assume that k is the category index (i. e. kE [1, Q] ). The number of dummies in the 

Q 

category k is nk with n= nk . Hence one can demonstrate [LEB 1] that if ej, is the general 
k=t 

term of the between-class covariance matrix, its expression is the following: 

e,, =IQ 
nk(XkJ_XJ)(xl_)Fi) (5-20) 

" . x, J is the mean value of the variable j in the category k. This means that 
if Ik represents the subset of the nk indexes of the dummies belonging to 

the category k, xkj =1I xr j. nk ierk 
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The aim of the discriminant analysis is to find the linear functions that maximise the between- 

class covariance as well as they minimise the within-class covariance. These linear functions 

will be the discriminant functions. In other words the aim is to find a function u such as either 

uT Eu/uT Du is maximum or uT Du/uT Eu is minimum. 

Another way of defining the problem is to minimise the functionf(u), such as: 

f(u) - 
uT Eu 

uTTu 
(5-21) 

In equation ( 5-21 ), it can be seen that: V yEC*, f(yu) = f(u). Hence the problem of 

minimising the function f u) is the same than maximising uT Eu with the constraint UT Tu =1. 

This problem of maximisation under constraints can simply be solved using Lagrange 

multipliers. 

Let L be a Lagrange multiplier with its parameter A. The previous optimisation problem can be 

written as follows: 

L=UTEu_A(uTTu-1) (5-22) 

Deriving equation ( 5-22 ) using the matrix symbolic derivation rules [DWY 1] yields: 

aL=2Eu-2tTu=0 
au 

And finally: 

Eu=2Tu 

with uT Eu = &UTTu 

and uTTu =1 

(5-23) 

(5-24) 
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T is a covariance matrix. This means that it can generally be inverted. Hence, by inverting the 

matrix T, equation ( 5-24 )can be written: 

T'`Eu = Au (5-25) 

"A is the maximum to be found. 

0 T-` is the invert of the covariance matrix T. 

From equation ( 5-25 ), it can be seen that the column vector u is the eigen vector of the matrix 

T"'E related to the biggest eigen value A. The parameter A, quantifies the discrimination 

capability of the linear discriminant function u. The parameter A, is less than one and bigger 

than zero. The closer to unity is the parameter X, the better the discrimination. 

5.7.1.2 Clustering 

For the classification task, the matrix X is considered as being a reference set. It 

represents a panel of the dummies type that next will be classified by clustering. 
Let Y be a matrix containing the data to be classified. The matrix Y is supposed to come from 

the same experiment that gave the results contained in the matrix X. The matrix Y has got 0 

rows and P columns [0 x P]. Hence, the problem is now the classification of 0 dummies in a 

vector space of dimension P. 

The first step of the clustering algorithm is to centre the data set contained in the matrix Y. 

This is done using the mean values, xj , calculated previously on the data set X with equation 

( 5-12 ). Hence, if Y of general term Yip 
, is the centred data set Y, of general term yy, one can 

write: 

Vi E [1,0] and Vj E [1, P] 

Yij = Y.; ' xi (5-26) 
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The centred matrix f should now be expressed in the vector space in which the matrix T -E 

is diagonal. This space is the discriminant function space. The passage matrix is found by 

calculating all the eigen vectors corresponding to all the eigen values, sorted in descending 

order, of equation ( 5-25 ). 

This equation can then be rewritten: 

T-`EU=UA (5-27) 

"A is a diagonal matrix containing the eigen values. 

"U is the passage matrix from the discriminant function space to the default 

space in which the matrix X was defined first. U contains the eigen vectors 

corresponding to the eigen values in A. 

Let Yd be the expression of the matrix k in the discriminant function space. It is simply 

calculated by: 

Yd =Y U-1 (5-28) 

Where U-' is the inverse of the passage matrix U. 

If now C is the matrix containing the categories centres as defined equation (5-20 ). C is aQ 

row P column matrix [Q x P]. As it was done for Y, C can be expressed in the discriminant 

function space: 

Cd = CU-1 (5-29) 

Where Cd is the expression of the categories centres matrix in the discriminant function 

space. 
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Finally, the classification process is to assign all the vectors contained in the matrix Yd to the 

category they are the closest to. This is done by calculating in the discriminant function space 

their Euclidean distance with each category centre contained in the matrix Cd. The so-called 

Euclidean distance is actually weighted using the eigen values in order to respect the 

importance of the calculated linear discriminant functions. 

Hence, if yj are the 0 row vectors contained in the matrix Yd and Ck the Q categories 

centres, yj is assigned to the category KE [1, Q] if among the Q distances D2k: 

D2k = (ck - y; )A(ck -yJ )T , Vk c [1, Q] (5-30) 

the distance D 2K for which k equals K is the minimum. The distance D2k is linked with the 

concept of Mahalanobis distance [MAH 1] [EVE 1] [MANL 1] which takes into account the 

dispersion between classes. 

Following this process for the 0 row vectors contained in the matrix Yd leads to the 

assignment of all them to the category they are the closest to in the discriminant function 

space. 

Practically, all the eigen vectors contained in the matrix A are not used for the calculation of 

the distances. At most, min(Q, P) elements are kept. This number can actually go from 1 to 

min(Q, P) according to the significance of the calculated discriminating functions. 

As it was previously mentioned, if the parameters that are chosen for describing the dummies 

are not totally independent (i. e. too correlated), the matrix T is not inversible. In case this 

occurs a selection of the parameters should be performed prior to the calculation of the 

discriminant functions [COC 1]. A way of simplifying a data set and hence avoiding inversion 

problems with the matrix T is to perform a Singular Value Decomposition (SVD) [LEB 1] 

[CAR 1] on the matrix X before calculating the discriminating functions. Hence, keeping only 

part of the significant values of the SVD, the redundancy can be minimised. 
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5.7.2 Cluster Analysis 

For the cluster analysis, the problem is the same as in the previous section; it is to assign a 

dummy, which is characterised by numerous variables, to the category it belongs to. The same 

assumptions on the data sets that were made in the previous section are still available. In 

cluster analysis, the classification is mainly algorithmic. This means that it does not require 

any of the formalised calculations needed for the discriminant analysis. Hence, a direct 

advantage of this method is to be very fast even for classifying big data sets. Numerous 

algorithms enter under the designation of cluster analysis. The one that is described here is 

based on the so-called hill-climbing algorithm [EVE 1]. Its principle is to search for the 

optimum value of a clustering criterion by rearranging existing partitions and keeping the new 

one only if it provides an improvement. The classification can be considered as supervised in 

that sense that two data sets, namely X and Y, are used. The data set X will give information on 

both the dummies that are to be classified and the categories while Y is the data set on which 

the cluster analysis is to be performed. 

The essential steps in this algorithm are the followings: 

Step 1 

Choose the Q centres in the data set Y corresponding to the Q classes. In some similar 

algorithms, these centres can be chosen at random, but in the present case, the categories 

centres calculated on the reference data set X are chosen. The Euclidean distances between 

these centres and the data set dummies are calculated. Each dummy is assigned to the category 

whose centre is the closest to it. Hence, Q categories can be built. 

Step 2 

The Q new centres of the Q categories built before are calculated. The Euclidean distances 

between these centres and the data set dummies are calculated. Each dummy is assigned to the 

category whose new centre is the closest to it. Hence, Q new categories can be built. 
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Step 3 

Step 2 is performed again and again until either there is no change in the dummy category 

assignment or a criterion such as the within-class variance has reached a minimum or after a 
certain number of algorithm iteration. 

The clustering that is obtained depends upon the first categories centres that are chosen 

[LEB 1] [EVE 11. For this reason, the more representative the reference data set X, the better 

the clustering. Whatever the clustering result, it can be demonstrated that the within-class 

variance decreases or at least is stationary using such an algorithm [LEB 1]. 

5.8 Implementation 

Every routine used for this work that are mainly described in the present chapter were 

written using the Interactive Data Language (IDL®) by RSI (i. e. now KODAK), prototyping 

language that allows the user to built even complex procedures quite easily. IDL is ideal 

software for data analysis, visualisation, and cross-platform application development. IDL 

combines most of tools needed for many different types of project - from "quick-look, " 

interactive analysis and display to large-scale commercial programming projects. IDL is then 

"all in an easy-to-use", fully extensible environment. 

Except for the use of some libraries, the author, for the purpose of this work developed each 

function and each program. The main drawback of this language is the execution time, 

nevertheless with the modern computers the time needed for each function to be calculated 

(i. e. CWT, DWT FNWT... ) was a few seconds. All the algorithms that were written for this 

study with IDL can, most of the time, easily be transposed in C or Fortran. It should be 

pointed out that, this operation of rewriting the code would necessarily be needed if the 

algorithms were to be used either in real time or included in an industrial process. 
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The characterisation strategy that was described in this chapter will be used next on practical 

surface roughness characterisation problems. The data, in that case surface textures, were 

obtained by measuring machined samples using a white light interferometer, the RST by 

VEECO. The texture images that were obtained were scanned using wavelet filters and more 

particularly, Frequency Normalised Wavelet Filter Banks. Finally, characterisation parameters 

could be calculated on the image textures space-frequency maps. Decision-making algorithms 

were then used in order to assess the effectiveness of the characterisation methods. This 

scheme is illustrated in the next chapter. 
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Table of symbols 

SiAj Indication of scale and orienation, i`h scale and the Ih orientation angle 

Si Indication of scale, i`h scale 
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6 Applications 

6.1 Introduction 

In this chapter, the surface texture algorithm introduced in the previous chapters is 

applied to two real applications which are (i) machined surface texture characterisation 

and (ii) grinding process monitoring with characterisation of the tool wear. 

For these applications, surface roughness samples were measured using a white light 

optical interferometer, which is the Optical Surface Measurement System i. e. the RST by 

Veeco. For more details about this measurement method, the reader can refer to 

chapter 1. 

This measurement method presents several advantages. Compared to the well known 

stylus method, the white light interferometer is a non-contact measurement method. 

Hence, as the measurement varies with the size, the shape and the force on the stylus 

[THOM 1] [STOUT 1], the RST gives a very stable measurement especially with the 

types of surfaces that were to be measured in both experiments. 

The white light interferometer also gives directly a three-dimensional representation of a 

surface. A three dimensional representation is obtainable with a stylus instrument 

[SAY 1] but line by line and line registration can be made difficult by the changes, on the 

stylus, of the parameters mentioned above. It can nevertheless be pointed out that in some 

conditions such as the existence of deep valleys, details can be measured by a stylus 

technique whereas they can hardly be pictured using a technique such as a Scanning 

Electron Microscope (SEM) [THOM 2]. It is then likely that such deep valleys can have 

some "black body" properties that can disturb the optical measurement with interference 

techniques. 

Another practical advantage of the RST is that measurements are rapidly performed, 

especially when measuring quiet smooth surfaces. In the present case each measurement 

took a few seconds. 
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An Atomic Force Microscope would also have given good results, but measurements 

were practically made at quite low magnification (i. e. x1.24, x5.2) and details to he 

measured were too hing, (i. e. around Rcr = O. Kµm) to require the use of an AFM that can 

measure suhnanometric asperities I STOUT 11. 

Hence. by using the white light interferometer, the surface texture images available 

represent a measurement of samples relief. Images grey levels were directly correlated 

with a measurement in µm. An illustration of the measurement of a surface obtained by 

L1r111din, ll using' the RST can be seen below in Figure 6-1 

LY T 'w '"Id i, 1a 2.5 X 

1: - Surface Data iviode: 4'SI 

Surface Statistics: 

Ra 6k3. Ü1 tun 
Fes: 844 ?1 iun 
Rz 5.23 mu 

Rt _? 1 uni 

Set-up Parimates 

1z,, 3n::.. 3n 

$ýýlatý n .i isu 

Processed Options 

T nn Rem : re d 
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Filth: 

Narre 

[I_j 

0.0 

0.0 

U Ri 

- 3.18 
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1 00 

RR 

Figure b_ 1 A1casurement of a ground surface performed by the RST 

For hoth applications, the measured surfaces did not present any measurement difficulty. 

The measured Surfaces were smooth, clean and not rusted. Thus, measurements 

performed with the RST were very easy and repeatable. For each measurement a very 

small quantity of data was lost. Missing data were then restored by interpolation. This 

task as well as the calculation of the real height and the tilt suppression or in some cases 

the suppression Of the curvature were performed by a piece of software Vision that also 

controlled measurements performed by the RST I RST 11. 
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It should be pointed out that the data restoring process is only intended to he used with 

small areas of had pixels. This was always the case in practice. For illustrating the 

repeatability of the measurements and the restoration of the data, one can sec two 

examples below in Figure 6-2 and Figure 6-3. The top of the figures represents the 

variation of some usual statistical characterisation parameters i. e. Ra, Rq, Rz and Rt when 

measuring twice the same surface without moving the samples. The pictures in the tables 

represent the aspect of a measurement and the effect of a data restoring for the missing 

pixels. Those missing pixels appear in black in the first picture. 
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Data Restore 
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I! iu'tiation of the measurements repeatability when perR)rmed with the RST as well as the 
effect of the data restoring process for a surface obtained by linishing 
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Surface obtained by casting: 

First measwremem: Ra = 1.44µm. Rq = 1.85µm, Rz = 13.79µm, Rt = 15.31µm 

Second measurement 

Original 
Measurement 

Ra = 1.44µm, Rq = I. 85ttm. Ri = 13.83µm. Ri = 15.41 pm 

It can be seen in Figure 6-2 and Figure 6-3 that both, repeatability and measurement 

efficiency depends on the type of surface that is measured. It actually also depends on the 

maýnitýiCation that is used. 

The missing pixel effect introduces what can be called a measurement noise. This noise 

depends on the surface that is measured. For some applications this noise should he taken 

into account. As mentioned before, for the applications that are presented in this thesis, 

this noise vvas rather small. In other words, it was considered that the Signal to Noise 

Ratio (SNR) was big enough not to influence significantly the characterisation process. 
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The measured area, using the RST, depends on the magnification that is chosen. The 

following table, Table 6-1, indicates both the width and the height of the measured area 

as a function of the magnification. 

Table 6-1 Measurement area as a function of the magnification 

Magnification Width Height Unit 
1.2 5 3.7 mm 

2.5 2.5 1.9 mm 
3.7 1.7 1.2 mm 
5.2 1.2 0.9 mm 
10.3 604.4 448.9 µm 
15.5 402.9 299.3 µm 
20.6 302.9 225 µm 
41.2 151.4 112.5 µm 
61.8 101 75 µm 

Whatever the magnification, the measurement yields a 368x236 pixel digital image that 

represents the relief of the measured surface sample. 

For both applications, the problem is considered as a simple problem of texture analysis 

and discrimination. The aim of the experiment is to demonstrate that the proposed texture 

characterisation method is efficient when applied to real cases. A rather intuitive 

approach of the characterisation parameters was proposed in the previous chapters. 

Therefore, the parameters aspire to be easily understandable but not to be directly 

correlated to a given mechanical property. 
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6.2 Machining processes surface textures discrimination 

6.2.1 Introduction 

The aim of the experiment is to assess the capability of the algorithm for 

discriminating between surface textures obtained by different machining processes. In 

order to do so, 8 machining processes were chosen for analysis. There were: 
1) Casting 

2) Grinding 

3) Gritblasting 

4) Hand filing 

5) Horizontal milling 

6) Linishing 

7) Shotblasting 

8) Vertical milling 

Real Samples coming from British Standards roughness comparison specimens were 

measured in 2D using the RST plus optical interferometer by Veeco. The magnification 

x1.24 was chosen in order to get images with good texture information redundancy. All 

the measured surfaces exhibited the same arithmetic mean deviation of the surface 

roughness value Ra = 0.81tm [BS 1134]. 

Five grey scale non-overlapping 368x236 pixel images equally distributed on the 

samples' surface were taken. They represent the relief of the samples in micrometers 

(i. e. µm). The brighter the pixel the higher the corresponding point on the measured 

sample, symmetrically, the darker the deeper. Because of a problem uniquely due to the 

optical measurement of the surface roughness, only machining processes giving flat 

surface finishing could be used. It should be mentioned that the form of the surface would 

not have caused any problem to the characterisation algorithm. 
From each of these original texture images, 50 samples of 128x128 pixels were taken 

randomly. This means that 5 sets of 50 images each that are 250 images were available 

for each texture family. 
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One example of each 128x I28 pixel image texture numbered from l to 8 can be seen 

helow. Figure 6-4: 

I WS T) 

5 1lonzonta1 milling 
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2 Grinding (GRNI)) 

a! 
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6I finishing (I_SH) 
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N 

tr 

7 Shotblasting 
(S H'1') 

4. 
i4' 

.kM 

4 Hanoi filing (HFL) 

III 

K Vortical milling 
(VML) 

Figure 6-4 Samples of machined surfaces used for the experimentation 
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As studied previously the general principle of the characterisation process is to scan the 

textures with a wavelet both at different scales and along different angles of orientation. 

The system that realises this task is called a wavelet filter bank. After frequency 

normalisation, an orientation-space-frequency map of each 128x 128 pixel texture image 

is available. From these maps, parameters are extracted in order to set the analysed 

texture in a vector space of dimension equal to the number of characterisation parameters. 

This number varies according to the method that is used. 

Once all the 128xI28 pixel textures have been set in this vector space, a clustering 

process is then applied in order to classify these dummies in a texture family. Two 

supervised clustering methods are used. They are known as cluster analysis and 

discriminant analysis. As a final result, every single 128x128-pixel image should he 

classified in the texture family it belongs to. 
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The results given by the characterisation algorithm for this first application are given 

below. They are gathered first by wavelet scanning method type. This means that first are 

presented the results obtained by scanning by Continuous Wavelet Transform (CWT), 

then by scaled Discrete Wavelet Transform (DWT) and finally by standard Discrete 

Wavelet Transform. 

The effectiveness of the two clustering methods (i. e. Cluster Analysis and Discriminant 

Analysis) was assessed as well as their robustness with a reference set of limited size. 

First, the clustering methods are applied to all the available texture images using all the 

characterisation parameters. Even if this first illustration is rather artificial because of the 

fact that the same data are used both as a learning set and as a test set, it gives a good idea 

of the general efficiency of the method. 

Next, the real characterisation efficiency of the clustering methods is measured. To do so, 

two sets of data are used. The first set is the learning set and the second set is the test set. 

The addition of these two sets is called the reference set. In a general manner, because the 

number of texture images is limited (i. e. 250 images per texture), it can be seen that the 

smaller the learning set, the less the algorithm can extract the analysed textures general 

features, but also the smaller the cost of a misclassification and vice versa. Two types of 

couple learning set test set were tried. First, 1/5 of the image texture data is used for the 

learning set and 4/5 for testing the algorithm efficiency. Next, 2/5 of the data is used as a 

learning set and 3/5 as test set. 

The results are presented separately for both clustering methods. When the clustering 

efficiency is lower than 100%, the misclassification distribution percentage with the other 

textures is also indicated. Hence it is possible to better assess whether the 

misclassifications are the result of a random process or whether there is logic in the 

committed error. 

Each scanning method comes with its set of characterisation parameters. They are based 

on the five main parameters introduced in chapter 5. They are namely: Volume, Surface, 

Form Factor, Peaks Summation, Roughness. These parameters are calculated for the 

original surface textures and under different scales and orientations that vary with the 

scanning method. 
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Hence, for the CWT scanning, a whole set of 106 characterisation parameters is 

available, 40 for the scaled DWT scanning and finally 250 for the standard DWT 

scanning. Now, the experimentation shows that for every scanning method, decreasing 

the number of characterisation parameter can yield better results. 

Hence, for each scanning method, a manual parameter selection is performed and the 

most significant parameters in the sense of their discriminant properties are retained. 

Because the characterisation method was designed for general applications, this 

parameter selection allows one to customise the algorithm for a given characterisation 

task. As was mentioned before, the parameter selection also allows the suppression of 

some problems of matrix inversibility for the clustering process. The customisation was 

performed in two steps. First, the most significant parameters were retained; the main 

parameters being Volume, Surface, Form Factor, Peaks Summation, Roughness. Next, a 

selection by scale and orientation angle was performed. Indeed, each scanned scale and 

orientation angle does not necessarily contains information for all the texture 

applications. Hence, when characterising very smooth and horizontally oriented surface 

textures there is no information when scanning with a small scale vertically oriented 

wavelet. The selection of both scales and orientation angles can differ with the main 

characterisation parameter that is concerned. Indeed, for example the parameter Peaks 

Summation is more sensitive to a small quantity of information than the parameter 

Volume. Such a double characterisation parameter selection scheme is needed especially 

is the algorithm is designed for a special industrial task. Indeed, if the characterisation 

task is well defined, such as the detection of rust, there is no need for the algorithm to be 

able to detect the orientation of the surface texture. 

Hence, applying such a characterisation parameter selection scheme, the set of 

characterisation parameters goes then down to 40 for the CWT scanning, down to 14 for 

the scaled DWT scanning and down to 134 for the DWT scanning. 
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The fact is that both clustering methods, discriminant analysis and cluster analysis do not 

require the same characterisation parameters for their efficiency to be optimum. In 

practice, the clustering by cluster analysis gives better results. For this reason, the choice 

of the best parameters was made regarding the clustering performances of the cluster 

analysis method. Nevertheless, it can be pointed out that even in those conditions the 

performances of the clustering based discriminant analysis are improved by performing 

such a characterisation parameters selection. 

6.2.2 Continuous Wavelet Transform Scanning 

For the Continuous Wavelet Transform scanning, a whole set of 106 parameters is 

available. The main parameter names are: Volume, Surface, Form Factor, Peaks 

Summation, Roughness. A parameter of texture isotropy that is calculated directly on the 

texture is also added. The main parameters are calculated for 5 scales and 4 orientation 

angles. A map of those parameters can be seen below, Table 6-2. In this table, parameters 

are numbered from 1 to 106. "Texture" indicates that the parameters are calculated for the 

original surface texture. SiAj with iE [l, 5] and jE [l, 4] indicates that the parameter is 

calculated for the ith scale and the j`h orientation angle. The 100h parameter is the isotropy 

parameter. 
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Tame 6-2 Map of the characterisation parameters for the CWT scanning 

Polamt Suifiwce Form Fact Peaks Ra 

Texture 1 2 3 4 5 
S, Al 6 7 8 9 10 
S, A, 11 12 13 14 15 
S, A, 16 17 18 19 20 
S, A4 21 22 23 24 25 
S-, A, 26 27 28 29 30 
S, A, 31 32 33 34 35 
S, A. 3 36 37 38 39 40 
S, A4 41 42 43 44 45 
S3 Al 46 47 48 49 50 
S3 A, 51 52 53 54 55 
S3 A3 56 57 58 59 60 
S, A4 61 62 63 64 65 
S4 Al 66 67 68 69 70 
S4 A, 71 72 73 74 75 
S4 A3 76 77 78 79 80 
S4 A-, 81 82 83 84 85 
S5 A, 86 87 88 89 90 
S; A, 91 92 93 94 95 
Sý A3 96 97 98 99 I00 
SS A4 101 102 103 104 105 

Isotropy 106 

The clustering efficiency results obtained using the 106 characterisation parameters 

previously described applied to the whole image texture data set are shown below 

Table 6-3. 
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Clustering efficiency using the whole set of characterisation parameters for ('WT 6-1 
"`11111 

Number of Characterisation Parameters: 106 
Reference Set: 250 Learning= Set: 250 Test Set: 250 

Texture Classification efficiency (17r) Uncertainty 
Number Cluster Discriminant Cluster Discriminant 

1 98 90.4 3.2c/ 3.9.6y% 

2 94.4 93.6 5,5.6% ýIý 5, 6 l( 
() 

3 100 97.6 - I. 2.4%/% 
2.3.2% 

4 98 88 2,2%Iý 6,3.2% 
7,5.6(-/( 
2,11.6c/( 

5 91.2 69.2 2,8.8(/( 3.18.8% 
8. O. 4(7 

6 100 93 6 - 
4,1.2c/ 

. 7,5.21 
7 100 90.4 - 6,9.6(/( 

8 99.6 96.4 5 0.4% 
C/ 3,2.4 

, 5,1.2 
Mean: 97.65 Mean: 89.9 

Std Deviation: 3.22 Std Deviation: 8.96 

As it can he seen in Table 6-3 results are given by texture number (i. e. 1-Casting. 

2-Grinding, 3-Grithlastingltý 
, 

4-Hand filing, 5-Horizontal milling. 6-Linishinc. 

7-Shothlasting. 8-Vertical milling) by classification efficiency and by uncertainty. Hence, 

in Table 6-3. if one takes the example of the classification results obtained when scanning 

a surface obtained by grinding (i. e. texture number 2): 

2 94.4 5,6clc 
93.6 5,5.6% 8.0.4(/( 

When using, Cluster Analysis 94.4 /% of the scanned samples obtained by grinding are 

recognised as samples obtained by grinding (i. e. well classified). Considering the same 

cluttering process. 5.61-/c, of the scanned textures obtained by grinding are classified (i. e. 

misclassified) as textures obtained by Horizontal milling (i. e. texture number 5). 
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When using Discriminant Analysis 93.6% of the scanned samples obtained by grinding 

are recognised as samples obtained by grinding (i. e. well classified). Then, 644 of the 

scanned textures obtained by grinding are classified (i. e. misclassified) as textures 

obtained by Horizontal milling (i. e. texture number 5), and 0.4%Ic are classified as textures 

obtained by Vertical milling (i. e. texture number R). This type of result presentation will 

he used throughout this chapter. 

The algorithm is now applied to the same set of data, using the whole set of 

characterisation parameters coming from the CWT scanning, but this time the learning set 

and the test set are different. Table 6-4 the learning set contains 1/5 of the whole data set 

and the rest is for the test set. Table 6-5 the learning set contains 2/5 of the whole data set 

and the rest is for the test set. 

Clustering, efficiency using the whole set of characterisation parameters fror CWT 
Table 6-3 Table 6-4 

tie 

Number of Characterisation Parameters: 106 
Reference Set: 250 Learning= Set: 50 Test Set: 200 

Texture Classification efficiency (ýk) Uncertainty 
Number Cluster Discriminant Cluster Discriminant 

1 98 84 3.2% 3,16Y 
5,2.5 % 

97 97 5,3(/(- 8,0.5% 
3 98.5 90 1.1.5(% 1.1OýIo 

4 95 59 
?. 4.5°l( 6,41% 
6.0.5 ýIc 

% ?. 23.5 
5 76 73 2,24% 8,3 5% 

41.5% 4 
6 100 56.5 , 7,2(-/( 
7 100 94 - 6,6(/( 

8 99.5 96 0.5(/( 5 
r 3.1 Io 

, , 5,3% 
Mean: 95.5 Mean: Rl . 19 

Std Deviation: 8.06 Std Deviation: 16.42 
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_ 
Clustering efficiency using the %%hole set eil Lhuri. t: ii, cttio n n: u: ineI r, for 
SCUIi1li11`g 

Number of Characterisation Parameters: 106 
Reference Set: 250 Learning Set: 100 Test Set: 150 

Texture Classification efficiency (°h) Uncertainty 
Numher Cluster Discriminant Cluster Discriminant 

1 96.67 81.33 3,3.33% 3,18.679, 
2 93.33 90.67 5,6.67% 5,9.33% 
3 99.33 88.67 1. O. 67(7( 1,1 1.33c% 

4 99.33 46 6.0.67r/( 6,53.33% 
7,0.67ck, 
2.3.33(4 

5 92.67 73.33 2,7.33% 3,19.33(4 
8.4(4 

6 100 61.33 - 4,38,67% 

7 100 84 - 
4.0.67% 
6.15.331/( 
2,0.674 

8 100 97.33 - 3,0.67% 
5,1.33% 

Mean: 97.67 Mean: 77.83 
Std Deviation: 3.09 Std Deviation: 16.98 

The experiment shows that Voli, nie, and Form Factor seem to he at most of' the scales 

and orientation angles the most meaningful parameters when clustering by cluster 

analysis. One can see below. Table 6-6, both hold and underlined the map of the 40 

characterisation parameters that are retained for optimising the clustering by cluster 

analysis. 
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Table 6-6 
%hap of' the most si"llilicaiit characterisation parameters fur the CWT sc 
clustering by cluster analysis 

anniiu based on 

Volume Sii, itce Forma Fact Peaks Ra 
Texture 1 2 3 4 5 
Si A, 6 7 8 9 10 
St A, i 11 12 13 14 15 
Si Az 16 17 18 19 20 
S, A4 21 22 23 24 25 
S2 A, 26 27 28 29 30 
S, A, 31 32 33 34 35 
S, A; 36 37 38 39 40 
S, A4 41 42 43 44 45 
S. A, 46 47 48 49 50 
S; A, 51 52 53 54 55 
S1 A3 56 57 58 59 60 
S, A4 61 62 63 64 65 
S4 A, 66 67 68 69 70 
S4 A, 71 72 73 74 75 
S4 A 

ý, 
76 77 78 79 80 

S4 A4 81 82 83 84 85 
S; A, 86 87 88 89 90 
S; A2 91 92 93 1 94 95 
S; A3 96 97 98 99 100 
SS A4 IN 102 103 

- 
104 105 

Isotropy [ 106 - -- 

Using those 40 parameters. Table 6-7 and Table 6-8 indicate the clustering efficiency of 

the method in the same conditions as previously. It is to be pointed out that even if the 

parameters were chosen for increasing the cluster analysis efficiency, there is also an 

improvement of clustering by discriminant analysis. 
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Cable 6-7 Clustering efficiency using 40 characterisation parameters for C'\V scanning 

Number of Parameters: 40 
Reference Set: 250 Learning Set: 50 Test Set: 200 

Texture Classification efficiency (%k) Uncertainty 
Number Cluster Discriminant Cluster Discriminant 

1 100 100 - - 
2 99 94.5 5,1 Y( 5,5.5(/( 
3 99 99 1,1 Y( 1,1, /(, 

2,22.5% 
41 97.5 76 2,2.517 5,1(I% 

6,0.5c% 
5 77 72 2,23%1% 2,28 ý 
6 100 97 - 1,3(/(, 
7 100 100 - - 
8 99 100 5,1 % - 

Mean: 96.44 - ---- ------- Mean: 92.31 
Deviation: 7.9% Std Deviation: 11.51 

Table 6-8 Clustering efficiency using 40 characterisation Parameters for CWT scanning 

Number of Parameters: 40 
Reference Set: 250 Learning, Set: 100 Test Set: 150 

Texture Classification efficiency (C%, ) Uncertainty 
Number Cluster Discriminant Cluster Discriminant 

1 99.33 99.33 3.0.671'/( 3, (). 67(/( 
2 96 90.67 5,4% 5,9.33% 
3 99.33 99.33 1,0.67(/( I. 0.67/ 

2,5.33% 
4 100 89.34 6,5.33% 
5 87.33 82 2,12.67% 2,18c/ 
6 100 99,33 - 4,0.67% 
7 100 100 - - 
8 100 100 - - 

Mean: 97.75 Mean: 95 
Std Deviation: 4.42 Std Deviation: 6.83 
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6.2.3 Scaled Discrete Wavelet Transform Scanning 

The scaled Discrete Wavelet Transform is now used. The experimental principle 

is the same as before. Remembering that applying the dyadic spectral decomposition on a 

128x128-pixel image, seven scales Si with iE [1,71 are available. The main 

characterisation parameters are the same as in the previous section that means: Volume, 

Surface, Form Factor, Peaks Summation and Roughness. Those 5 parameters are 

calculated for the original texture image and for each scale. As a result one obtains a 

whole set of 40 characterisation parameters using this method. A map of those 

characterisation parameters can be seen below, Table 6-9. 

Table 6-9 Map of the characterisation parameters for the scaled DWT scanning 

Volume Surface Form Fact Peaks Ra 
Texture 1 2 3 4 5 

S1 6 7 8 9 10 
S2 11 12 13 14 15 
S3 16 17 18 19 20 
S4 21 22 23 24 25 
S5 26 27 28 29 30 
S6 31 32 33 34 35 
S7 36 37 38 39 40 

The results of the clustering efficiencies obtained using the 40 characterisation 

parameters previously described applied to the whole image texture data set are shown 

below, Table 6-10. 
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Table 6-10 
Clusterin`_ efficiency using the whole set of characterisation parameters for the scaled 

' D\\ T scanning 

Number of Characterisation Parameters: 40 
Reference Set: 250 Learning Set: 250 Test Set: 250 

Texture Classification efficiency (%) Uncertainty 
Number Cluster Discriminant Cluster Discriminant 

2,0.4%/o 
1 96.8 86 3,3.2% 3,1.2%h 

8,12.4% 
2j 98 90.8 5,2% 5,9.2% 

1,1.6°k 
3 99.2 72.8 1,0.8C/ 5,2%Ic 

8.23.6% 
2,1.2% 2,0.8e/ 

4 82.8 73.6 6,13.6% 6,21.6% 
7,2.4% 7,4% 

2cIo 1 
2,8.8% " 

5 88.4 44.8 3,2`( 3 30.4c%ý 
8, O. 8c/ý 

11.6%1 4 4,18.8% 
6 84.8 77.2 , 7,3.6% 7,4% 
7 97.6 94.4 6,2.4% 6,5.6% 

M')% 1 
8 99.6 55.6 3,0.4"/(, , 

3,29.2% 
Mean: 93.4 Mean: 74.4 

Std Deviation: 6.91 Std Deviation: 17.09 

The algorithm is now applied to the same set of data, using the whole set of 

characterisatiUf parameters coming from the scaled DW"1' Scanning. but this time the 

learning set and the test set are different. Below. Table 6-11,1/5 of the image texture data 

set was used for the learning set and 4/5 for testing the algorithm efficiency. Table 6-12, 

2/5 of the data are used as a learning set and 3/5 are used as a test set. 
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Clustering efficiency using the whole set of characterisation parameters for the scaled Table 6-11 DNVT scanning 

Numht'r pof Charnrtericntinn RirnmPterc" dfl 

Reference Set: 250 Learning Set: 50 Test Set: 200 
Texture Classification efficiency (%) Uncertainty 
Number Cluster Discriminant Cluster Discriminant 

2,0.5% 

1 95 79 3,5c/ 3,3.5% 
8.171% 
1,8.5% 

2 98 88.5 5,2% 5,0.5% 
8,2.5% 

3 99 73.5 l7 1 
r 

. 8.25(/(- 
2,1.5% 46.5% 4 62 48 6 33.5% , 7.5.5% 
7 3% 

1cl l 2,21.5% . % 32 5 59 58.5 3 3.51/( 1 
, 2.5%, 

8.16Y 8.6% 

6 79 56 4,16.5% 4,38.5% 
7,4.5% 7,5.5% 

7 95 93.5 4.3% 4.4.5% 
6.2% 6.2% 

8 96.5 40 5 3.19' 1.1091 
. 5,2.5% 3.49.5% 

Mean: 85.44 Mean: 67.19 
Std Deviation: 16.63 Std Deviation: 19.3 
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Clustering efficiency using the whole set of characterisation parameters for the scaled Fable 6-1'_ D\\; 'T scanninz 

INumoer oil nalacterlsatlon rarameters: 4u 

Reference Set: 250 Learning Set: 100 Test Set: 150 
Texture Classification efficiency (%) Uncertainty 
Number Cluster Discriminant Cluster Discriminant 

2.0.67% 
1 95.33 72.67 3,4.67% 5,13.33% 

8.13.337 
1 6.67% 

2 96.67 80.67 5,3.33% , 
5,12.67%n 
1.1.34%r 

3 98.67 40 1,1.33(/( 5.25.33(% 
8,33.33c/, 

6,29.33(/c 6,55.33% 
4 68 40.67 7,2.67°% 7,4(4 

1. l 0ý%r 
2,6.67%r 11.33° 2 , 5 81.33 39.33 3,2% 

,31.331/c 3 
K, 10% 8 x% 

6 81.33 33.33 4,18.67% 4,66.67% 
7 94 89.33 6,6% 6.10.671/( 

1,1O(% 
8 100 34.67 - 3.20% 

5,35.33(/( 
Mean: 89.42 Mean: 53.83 

Std Deviation: 11.31 Std Deviation: 22.98 

The experiment shows that Voiu, nc, and Former Factor parameters seem to he at most of 

the scales the most meaningful parameters when clustering by cluster analysis. One can 

see hclu\\. Table 6-13. both bold and underlined the map of the 14 charaeterisýitiýýn that 

are retained for optimising the clustering by cluster analysis. 
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Table 6-13 
Map of the most significant characterisation parameters for the scaled DWT scanning 
based on clustering by cluster analysis 

Volume Surface Form Fact Peaks Ra 
Texture 123 4 5 

S1 678 9 10 
S2 11 12 13 14 15 
S3 16 17 18 19 20 
S4 21 22 23 24 25 
S5 26 27 28 29 30 
S6 31 32 33 34 35 
S7 36 37 38 39 40 

Using those 14 parameters, Table 6-14 and Table 6-15 indicate the clustering efficiency 

of the method in the same conditions as previously. It is to be pointed out that even if the 

parameters were chosen for increasing the cluster analysis efficiency, there is also an 

improvement clustering by discriminant analysis. 
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Table 6-14 Clustering efficiency using 14 characterisation parameters for the scaled UW'I' , cannin- 

Number of Parameters: 14 
Reference Set: 250 Learning Set: 50 Test Set: 200 

Texture Classification efficiency (%) Uncertainty 
Number Cluster Discriminant Cluster Discriminant 

1 97.5 93 3.2.5% 6,3%Ir 
7,2% 

3,0.517( 
2 99 97.5 5,1% 5.1.514 

8.0.5C/( 
1,1.5`7r 

3 99.5 72.5 1,0.5% 2.4% 
8,22ýh 

2,8% 2,15%% 
4 70.5 60 6.20.5% 6.22% 

7.1 e% 7.3% 

2,21% 2 5.5(/( 
5 61 50 3.7% , 3,44.5% 

8.11 r%o 

6 82.5 54 5 4,13.5% 4,40.5% 
. 7,4% 7,5%Yr 

7 96 88 4.2.5°lý 6,121/( 
6,1.5% 

8 100 86 - 
2,12.5% 
3,1.5% 

Mean: 88.25 Mean: 75.19 
Deviation: 15.2 Std Deviation: 18.5 
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Table 6-15 Clustering efficiency using 14 characterisation parameters for the scaled DWT scanning 

Number of Parameters: 14 
Reference Set: 250 Learning Set: 100 Test Set: 150 

Texture Classification efficiency (%k) Uncertainty 
Number Cluster Discriminant Cluster Discriminant 

1 96.67 92 3 3.33% r 3 5.33ý% 
, 6.2.67% 

3,2% 
2 98 90.67 5,2% 5,4% 

8,3.33% 
1,3.33(4 

3 98.67 55.33 1.1.33%, 2.0.67(/( 
8,4O. 67e% 

2,6% 
7% 

4 76.67 65.33 20.67°I% 6 
3,3.33% 

, 6,22% 7,0.66 7,3.33% 
i 2.5.33(/c 1.0.67% 

88.67 59.33 3.3.33% 2,1.33% 
8.2.67% 3,38.67% 

52 Io 4 
6 85.33 47.33 4 14.67% , 

, 7,0.67% 
7 98 88 6,2% 6,12% 

1,0.67% 
8 100 79.33 - 2,6(/c 

3,14% 
Mean: 92.75 Mean: 72.17 

Std Deviation: 8.35 Std Deviation: 17.52 

197 



6.2.4 Discrete Wavelet Transform Scanning 

The standard Discrete Wavelet Transform is now used. The experimental 

principle is the same as before. The reader is reminded that applying the dyadic spectral 

decomposition on a 128x128-pixel image, seven scales are analysed both vertically and 

horizontally. Hence, gathering these scales together under the name Si, each analysed 

texture image generates 7x7 = 49 images coming from the DWT decomposition process 

(i. e. iE [1,49] fora 128x128-pixel image). 

The main characterisation parameters are the same as in the previous section that means: 

Volume, Surface, Form Factor, Peaks Summation, Roughness. Those 5 parameters are 

calculated for the original texture image and for each scale. As a result one obtains a 

whole set of 250 characterisation parameters using the DWT texture scanning method. A 

map of those characterisation parameters can be seen below, Table 6-16. The scales can 

be represented gathered by packet of 7 scales in order to better represent the parts of the 

texture spectrum that are scanned. For an illustration of the filters that are used, one will 

refer to chapter 3 in the section related with the DWT or in chapter 5. 
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"fahle 6-16 Map of the characterisation parameters for the DW1' scanning 
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Volume Surface Form Fact Peaks Ra 

1 2 3 4 5 
6 7 8 9 1() 
Il 12 13 14 15 
16 17 18 19 20 
21 22 23 24 25 
26 27 28 29 30 
31 32 33 34 35 
36 37 38 39 40 
41 42 43 44 45 
46 47 48 49 50 
51 52 53 54 55 
56 57 58 59 60 
61 62 63 64 65 
66 67 68 69 70 
71 72 73 74 75 
76 77 78 79 80 
81 82 83 84 85 
`6 87 88 89 90 
91 92 93 94 95 
96 97 98 99 1O() 
101 102 103 104 105 
1O6 1O7 108 109 110 
111 112 113 114 115 
116 117 118 119 120 
121 122 123 124 125 
126 127 128 129 130 
131 132 133 134 135 
136 137 138 139 140 
141 142 143 144 145 
146 147 148 149 150 
151 152 153 154 155 
150 157 158 159 160 
161 162 163 164 165 
166 167 168 169 17O 
171 172 173 174 175 
176 177 179 179 180 
181 182 183 184 185 
186 187 188 189 19O 
191 192 193 194 195 
196 197 198 199 200 
2O1 202 203 2O4 205 
'(16 207 208 209 210 
211 212 213 214 215 
216 217 218 219 220 
221 222 223 224 225 

226 227 228 229 23O 
231 232 233 234 235 
236 237 238 239 24O 
241 242 243 244 245 
246 247 248 249 250 
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The results of the clustering efficiencies obtained using the 250 characterisation 

parameters previously described applied to the whole image texture data set are shown 

helom. Takle 6-17. 

Clustering efficiency using the "hole set of characterisation parameters for the f)W't' 
able 6-17 

; canning, 

Number of Characterisation Parameters: 250 
Reference Set: 250 Learning, Set: 250 Test Set: 250 

Texture Classification efficiency (%) Uncertainty 
Number Cluster Discriminant Cluster Discriminant 

1 95.4 93.6 3,1.6C/ 3.6.4(/( 
2 99.6 90 5,0.4% 5,10% 

100 96.8 1,1.2% 
-,,. 

4 99.6 77.2 

i 100 75.2 

6 100 87.2 

7 100 95.6 

8 100 82 

Mean: 99.7 Mean: 87.2 
Std Deviation: 0.56 Std Deviation: 8.3 

N, L`/( 

8,0.4'/C, 2,0.4%k 
6,22.4% 
2.21.21/, - 
3,3.61-/( 

_ 
4,10% 
7,2.8% 
6.4.4% 

_ 
2.2% 

3,16ýIc% 
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The algorithm is no%\ applied to the same set of data. using the whole set of 

characterisation parameters coming from the scaled DWT Scanning, but this time the 

learning set and the test set are different. Below, in Table 6-18,1/5 of the image texture 

data set was used for the learning set and 4/5 for testing the algorithm efficiency. In 

Table o- N. 2/5 of the data are used as a learning set and 3/5 are used as test set. 

C'lusterin_ efficiency using the whole set of characterisation parameters for the DW"I' 
Table b-18 ýcalnlnC 

Number of Characterisation Parameters : 250 
Reference Set: 250 Learning Set: 50 Test Set: 200 

Texture Classific ation efficiency (%) Uncer tainty 
Numher Cluster Discriminant Cluster Discriminant 

96.5 89.5 3,3.5% 3,10.5c/ 
99.5 98 5,0.5% 5,2% 

1 1.5% 
3 100 98 - , 

2,1.5% 1 0.5% 
4 89.5 65.5 6 8.5% . 

, 6,34c% 
8,0.5% 

87 68.5 2,13% 2,31.5c7( 
4,14.5% 

6 100 83 - 7,2.5% 
7 1(X) 98.5 - 6,1.57c 
S 98.5 76 5,1.5% 3,24% 

Mean: 96.38 Mean: 84.63 
ý Std Deviation: 5 . 19 Std Deviation: 13.51 
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I-.. 
, .,, 

Clustering efficiency using the whole set of characterisation trurameter., for the I)W'I 
iliac .J1 "Can lllil 

Number of Characterisation Parameters: 250 
Reference Set: 250 Learning Set: 100 Test Set: 150 

Texture Classification efficiency (%) Uncertainty 
Number Cluster Discriminant Cluster Discriminant 

1 95.33 84 3.4.67°/ 3.161 
2 99.33 88.67 5,0.67°k 5,11.33(1( 

3 100 94 1. I. 331% 
8,4.671/( 

4 90.67 50.67 6,9.33% 6.48.67'% 
7,0.67(/( 
2,12'7 

5 98.67 70.67 2.1.33(/ 3,2(/( 
8.15.33(/r 

6 100 94 - 4,6(/( 
7 100 92 6,8(/( 
8 100 98.67 - 3,1.3 3%lc 

Mean: 98 Mean: 84.08 
Std Deviation: 3.36 Std Deviation: 15.99 

The experiment shows that Volume, Fermi Factor and Peaks seem to he at most of the 

scales the most meaningful parameters when clustering by cluster analysis. One can see 

Mow. in Table 6-20, both bold and underlined the map of the 134 characterisation 

parameters that are retained for optimising the clustering by cluster analysis. 
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Map of the characterisation parameters for the DWT scanning based on clustering by 
Table 6-20 

cluster analysis 
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Using those 134 parameters, Table 6-21 and Table 6-22 indicate the clustering efficiency 

of the method in the same conditions as previously. It is toi he pointed Out that even if the 

parameters were chosen for increasing the cluster analysis efficiency, there is also an 

improvement clustering by discriminant analysis. 

Table 6-21 Clustering efficiency using 134 characterisation parameters for the DW'r scanning 

Number of Parameters: 134 
Reference Set: 250 Learning Set: 50 Test Set: 200 

Texture Classification efficiency (%) Uncertainty 
Number Cluster Discriminant Cluster Discriminant 

1 96.5 94.5 3.3.517( 3,1.511( 
8.4, -/( 

2 99.5 98 5,0.5(/( 5.1.5c/ 
8.0.517c 

3 100 99.5 - 1.0.5(/( 
2. I0/r 

4 96.5 68.5 2.3% 5.0.51/ 
5.0.5% 6.20.5(% 

7,0.5e% 

5 90 63 2 10(/( 
2.37% 

, 8.5% 

6 100 81 - 
4.181/( 
7,1 4 

7 100 87.5 - 6.12.5(7( 
8 98 99.5 5,2% 3,0.5% 

Mean: 97.56 Mean: 86.44 
Deviation: 3.41 Std Deviation: 14.35 
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Table 6-22 Clustering efficiency using 134 characterisation parameters fin the UW"f scanning 

Number of Parameters: 134 
Reference Set: 250 Learning Set: 100 Test Set: 150 

Texture Classification efficiency (C/O Uncertainty 
Number Cluster Discriminant Cluster Discriminant 

1 98.67 86 3,1.33% 3. W/, 

2 99.33 90.67 5,0.67% 5,81-/( 
9,1.3 3 31-1f 

3 100 90.67 - 1,9.33YY1 
2,2.67(/( 

4 100 60 - 6,36.66(/c 
7.0.67% 
2,13.33(% 

5 97.33 82.67 2,2.67% 4,0.67c' 
x. 3.33(/ 

6 100 98 - 4,2(7( 
7 100 92.67 - 6.7.331/ 
8 100 100 - - 

Mean: 99.42 Mean: 87.58 
Std Deviation: 0.97 Std Deviation: 12.51 

6.2.5 Conclusions 

First of all. from a general point of view it can he seen that the three texture 

scanning methods offer good clustering efficiency especially when using the clustering 

methoei ha,, cd on cluster analysis. To be more precise, it can he seen that scanning by 

CWT and standard DWT gives better performances. This comet from the fact that the 

scaled l)WT scanning is not orientation selective and hence less efficient for texture 

analysis ww here texture orientation is a point of importance. 

It should he pointed out that the aim of the study was not to reach 10Oc// efficiency in all 

the cases bUt rather to demonstrate that with a limited amount of effort the discrimination 

alýýýýrithmsgive good results. A way of developing further the algorithm could then he toi 

adopt a more systematic parameter selection strategy [PUD II IJAIN I I. 
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In the present case a simple manual parameter selection strategy has been applied to show 

that the number of characterisation parameters is not rigid applying this method and even. 

that a quite limited number of characterisation parameters can give fairly good results. 

Hence. it can not he said that the parameter choice that was made was optimum for this 

application. It can also be noticed that even if the parameter selection was performed 

according to the cluster analysis based algorithm, performances of the discriminant 

analysis algorithm are also improved. This is a point of interest that two clustering 

methods based on totally different principles (i. e. the first one is non-linear and the 

second one is linear) have a similar behaviour with the parameter selection. An 

explanation of this point can be that the textures families are separated enough in the 

vector space generated by the characterisation parameters not to cause any clustering 

problem whatever the clustering algorithm. 

For the CWT scanning with the cluster analysis clustering method, comparing Table 6-4 

and Table 6-7 and also Table 6-5 and Table 6-8 it can he seen that the main classification 

errors occur when trying to classify textures obtained from horizontal milling 

(i. e. texture 5). Most of the time, textures from this family are mixed with textures 

obtained from a grinding process (i. e. texture 2). One can see below, Figure 6-5 examples 

of surface textures obtained by both grinding and horizontal milling. It can then he seen 

that the confusion between both textures is not due to an arithmetic hazard but rather due 

to a real similarity of the textures. 

Grinding (GRN1)) Hol-1/ )ntal milling OWL) 

1 '. 

Figure 6-5 Example of samples obtained by grinding and horizontal milling 
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Following this point. it can he seen that the confusion is made between textures 2 and 5 

classifying textures 5 wrongly. That fact is that the opposite is not true. The explanation 

is that the learning set defines for each texture a texture centre. It is then obvious that the 

texture centre attributed to texture 5 is too close to the texture set 2. 

For the scaled DWT scanning with the cluster analysis clustering method, comparing 

Table 6-11 and Table 6-14 and then Table 6-12 and Table 6-15 it can he seen that the 

main classification errors occur when trying to classify textures obtained from hand filing 

(i. e. texture 4). The fact is that this machining process is performed by hand, therefore it 

is less homogeneous. Because the scaled DWT scanning is not direction sensitive, 

mistakes are made when trying to classify texture coming from a hand filing process. 

Most of the time an error occurs it is by mixing textures obtained by hand filing and 

textures obtained by linishing (i. e. texture 6). One can see below, Figure 6-6, examples of' 

surface textures obtained by both hand filing and linishing. 

Hand filing (HFL) 

ý'i 

Linishing (LSH) 

IýIýý 

Figure 6-6 Example of samples obtained by hand filing and linishing 

Hence. for characterising a texture like hand filing, the quantity of information in every 

orientation angle channel is important to avoid the conl'Lisiun. 

The , tatidarcl DWT scanning associated with cluster analysis is the method that gives the 

best results. Indeed, one can see in Table 6-22 that an efficiency very close to IO(Y 

(i. e. 99.42 ) can he obtained. In that case. the number of' parameters is more important 

than for the other methods, but it can be said that the efficiency stays stable even ww hen 

dividing by three the number of characterisation parameters. 
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Indeed, if one keeps only the 49 parameters related to the Peaks parameter at every scale, 

an efficiency of 99.33% is obtained with a learning set of 2/5. The reason why this 

texture scanning method offers better results is that first the whole image spectrum is 

investigated and next the DWT is orientation selective due to its multiple channels. 

The main classification errors are for the same textures than for the other methods. 

First, in order to offer a comparison between this new characterisation method and the 

standard characterisation parameters and next to minimise the role played by the 

clustering algorithm, one can feed the decision-making block using the most commonly 

used standard characterisation parameters. Hence, eight standard characterisation 

parameters have been chosen for performing the texture discrimination task. The 

parameters are namely: The average roughness Ra, the root-mean-square deviation Rq, 

the ten-point height Rz, the maximum peak to valley height Rt or Ry, the maximum depth 

Rv, the maximum height Rp, the skewness Rsk and the kurtosis Rku. For a complete 

definition of those parameters, one will refer to chapter 1 of this thesis. 

Those eight parameters are used to feed a decision-making algorithm based on cluster 

analysis. The learning set is composed of 100 images while the test set is composed of 

150 images. The type of clustering method and the number of images in the learning set 

were chosen in order to give the best results. The results of this comparative test can then 

be seen below, Table 6-23. 
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Clustering efficiency using the eight standard characterisation parameters and the cluster 
Table 6-23 

uialý sis 

Numhcr ui (Ii tir ctcrisation I'uranictcrs: 8 
Reference Set: 250 Learning Set: 100 Test Set: 150 

Texture Classification efficiency (%) Uncertainty 
Number Cluster Cluster 

1 77.33 3.17.33'/,: 6.5.3417( 
3.10% 4,28.67(7(: 5,0.6710: 50 8,10,66(/(; 

67.33 3 1.24.67c 4,6(/(, 6.2c% 
3,0.67t/(, 6,30.67Y%: 

4 68 7.0.66(/ 
1.10.67c%: 2.32.66(1( : 

5 28.67 3.18.67e/. 4,66.2 
8.1.33% 

6 97.33 4,2.67% 
7 100 - 

2,25.33cß , 4,5.33(-/(-, 
g 68.67 5,0.67(/( 

Mean: 69.67 
Std Deviation: 23.36 

Hence. one can see Table 6-23 that using a discrimination hased on standard 

characterisation parameters does not give results as good as when using the wavelet 

scanning based method. The standard parameters are more applicable for human 

understanding of the texture aspect rather than for the systematic analysis of the surface 

textures. 

The advantage of the proposed wavelet based method is to only require a small set of 

simple characterisation parameters that are calculated at several scales. Hence. one tench 

toi solve in once the two problems that are first the engineers understanding and next the 

computer processing. 
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6.3 Grinding process Monitoring 

6.3.1 Introduction 

The same analysis and characterisation technique as the one previously described is 

now applied to a monitoring problem. Indeed, the aim of the present application is try to 

estimate the wear of a grinding wheel during a grinding process. 

For this experiment, eleven cylindrical samples were ground under different conditions 

(i. e. using variable wheel speed and coolant flow). As a result, the first sample was 

machined under optimum conditions (i. e. freshly dressed wheel) whereas the eleventh 

sample was machined under poor conditions (i. e. blunt wheel). The aim of this 

application is to be able to quantify the wear of the grinding wheel by measuring the 

samples, which are assumed to be representative of the wear of the wheel. The machining 

conditions such as the cutting speed and the coolant flow were changed during the 

machining in order to accelerate the wheel wear. 

This application takes all its importance considering the interest of industry for grinding 

as a surface finishing process. Indeed, grinding is a machining process that is still 

undergoing research especially by trying to design new grinding wheels with particular 

properties such as using nano-powders for machining ceramics. Furthermore, grinding is 

a very difficult machining process to monitor. Indeed, a grinding wheel is a precision tool 

with thousands of cutting points. It consists of abrasive grains held in a matrix of bond 

and separated by pores. The abrasive grains are the cutting points while the purpose of 

the bond is to hold the individual grains together. The pores (i. e. hollow spaces between 

adjacent abrasive grains and the bong) serve to provide clearance for coolant penetration 

and metal chips removed in the grinding process. 
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For grinding, the wheel is rotated at grinding speed and applied to the workpiece, the 

abrasive grains cut the material that is being ground, removing the material in small 

chips. Under the action of the forces imposed during grinding the abrasive cutting points 

are worn flat, resulting in the points becoming blunt. This causes an increase in friction, 

heat built up and the forces imposed on the wheel. The increase in grinding forces causes 

either the abrasive to fracture, exposing new cutting edges, or fractures the bond bridges 

holding the abrasive grains. In the latter case fresh abrasive grains are exposed to the 

workpiece. Hence, a grinding wheel is actually the addition of a huge quantity of 

independent cutting tools with different behaviours that can at the limit either re-sharpen 

themselves or disappear during the machining [UNI 1]. 

Another difficulty when monitoring a grinding process is the nature of the surface that is 

obtained. Indeed, grinding produces a surface finishing that is very close to a Gaussian 

distribution. As an illustration, one can see in Figure 6-7, Figure 6-8 and Figure 6-9 both 

a measurement of the type of ground surface that will be analysed and their 

corresponding distribution histogram. Hence, one can see first that the three surfaces are 

rather similar and next that their height distribution is rather close to a Gaussian curve. 

For this experimentation, the first, the sixth and the eleventh samples, which are shown in 

Figure 6-7, Figure 6-8 and Figure 6-9, are actually used as references in the monitoring 

process. They represent the surface finishing obtained by first a freshly dressed grinding 

wheel, a fairly worn out wheel and a blunt wheel. 
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Surface Measurement sample 6/11 
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Surface Measurement sample 11/11 
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Hence, the monitoring process is the following. First of all, eleven cylindrical samples 

were machined under different machining conditions. Six non-overlapping measurements 

using an Optical Measurement System (i. e. RST optical interferometer by Veeco) were 

made on each sample. The magnification x5.2 was chosen in order to get a compromise 

between the size of the measured area and the quantity of texture redundancy in each 

image. The cylindrical component of each sample was removed in order to give a 

representation of a flat surface. As a result, the size of each measured area is 1.2x0.9 mm2 

corresponding to a 368x236-pixel image representing the surface roughness. Therefore a 

set of 66 images was available for monitoring the wear. For each of these 66 measures, 

four standard characterisation parameters were calculated. There are, the Average 

Roughness parameter (Ra or Sa), the Root-Mean Square Deviation parameter (Rq or Sq), 

the Ten-point height parameter (Rz or Sz), the maximum peak to valley height parameter 

(Rt or St) [STOUT 1]. The numerical values of these parameters for the six measurements 

of each of the eleven samples can be seen below, Table 6-24, Table 6-25, Table 6-26 and 

Table 6-27. In the same tables are also indicated the mean parameter over the six 

measurements (i. e. Mean), the minimum value (i. e. Min), the maximum value (i. e. Max) 

and the standard deviation (i. e. Std). 

One also can see below, in Figure 6-10, Figure 6-11, Figure 6-12 and Figure 6-13 a 

graphical illustration of those standard characterisation parameters. Indeed, for each 

parameter, a three-column pattern represents respectively the mean value, the minimum 

value and the maximum value of the parameters over the six measurements for the eleven 

samples. Hence one can see that for the averaged characterisation parameters like Ra and 

Rq there is a diminution of the parameters values but that is too small to be satisfactory 

significant for a monitoring task. The two other standard characterisation parameters 

reflect more local characteristics of the surface and therefore cannot visibly be used for 

monitoring. 
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I" 2.... 3, , 4. � 5... 6. � 7' 8' 9"' 10111 11... 
1 1.32 1.31 1.29 1.34 1.33 1.3 1.29 1.24 1.23 1.13 1.09 
2 1.31 1.33 1.38 1.3 1.28 1.35 1.23 1.24 1.17 1.21 1 
3 1.26 1.35 1.27 1.29 1.32 1.34 1.34 1.27 1.21 1.3 1.22 
4 1.35 1.35 1.26 1.25 1.27 1.23 1.23 1.28 1.18 1.23 1.23 
5 1.33 1.23 1.38 1.34 1.34 1.28 1.32 1.25 1.22 1.19 1.18 
6 1.35 1.34 1.34 1.31 1.32 1.27 1.27 1.32 1.17 1.18 1.22 

Mean 1.32 1.32 1.32 1.31 1.31 1.30 1.28 1.27 1.20 1.21 1.19 
Min 1.26 1.23 1.26 1.25 1.27 1.23 1.23 1.24 1.17 1.13 1.09 
Max 1.35 1.35 1.38 1.34 1.34 1.35 1.34 1.32 1.23 1.30 1.23 
Std ; 0.03 0.04 0.05 0.03 0.03 0.04 0.04 0.03 0.02 0.05 0.05 

Mean, Min Max (Ra) 

1.40 

1.30 

1.20 

1.10 

1.00 

Figure 6-10 Average Roughness parameter Ru (Mean, Min, Max) 
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Table 6-25 Root-Mean Square Deviation parameter Rq 

Rq (µm) 
lu 7n rd th 5t' 6t i 7t' 8th 9ih l Ut Il ili 

11 71 -1.01 1.62 1.6 1.63 1.62 1.59 1.57 1.53 1.51 1.38 1.36 
2 1.6 1.64 1.66 1.58 1.57 1.64 1.51 1.55 1.43 1.49 1.47 
3 1.56 1.66 1.56 1.58 1.62 1.63 1.62 1.55 1.49 1.59 1.49 
4 1.63 1.66 1.53 1.55 1.56 1.52 1.53 1.58 1.44 1.51 1.5 
5 1.63 1.5 1.7 1.67 1.62 1.56 1.6 1.51 1.48 1.47 1.45 
6 1.66 1.65 1.62 1.6 1.61 1.57 1.57 1.6 1.44 1.46 1.49 

Mean 1.62 1.62 1.61 1.60 1.60 1.59 1.57 1.55 1.47 1.48 1.16 
Min 1 1.56 1.50 1.53 1.55 1.56 1.52 1.51 1.51 1.43 1.38 1.36 
Max 1.66 1.66 1.70 1.67 1.62 1.64 1.62 1.60 1.51 1.59 1.50 
Std 0.03 0.06 0.06 0.04 0.03 0.04 0.04 0.03 0.03 0.06 0.05 

Mea n, Min, Max (Rq) 

1.70 

1.60 

1.50 

1.40 

1.30 LLL L-1 

E E 

12 3 4 5 6 7 89 10 11 

Figure 6-11 Root-Mean Square Deviation parameter Rq (Mean, Min, Max) 
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Table 6-26 Ten-point height parameter R,. 

R:. (µm) 
1'' 2i� 3rd Xh 5", 6t 7i, 8t, 9th l01, rh 

1 10.74 10.41 9.99 10.36 11.19 13.05 11.69 11.93 10.63 11.14 10.65 

7 9.26 10.35 10.43 10.1 12.33 11.49 11.4 11.68 10.41 9.76 10.17 

3 9.65 10.44 9.82 9.53 11.46 12.33 11.72 9.89 10.3! 10.33 9.98 

4 10.36 10.83 9.21 10.37 10.51 11.16 13.89 II. I8 10.45 I8.77 10.29 

5 10.49 9.71 12.19 11.65 11.44 10.97 11.62 10.68 11.45 11.28 11.08 

6 10.63 15.17 8.87 10.19 12.95 11.27 11.77 11.04 12.17 10.13 10.61 

Mean 10.19 11.15 10.09 10.37 11.65 11.71 12.01 11.07 10.90 11.90 10.46 

Milt 9.26 9.71 8.87 9.53 10.51 10.97 11.40 9.89 10.31 9.76 9.98 

Max 10.74 15.17 12.19 11.65 12.95 13.05 13.88 11.93 12.17 18.77 11.08 

Std 0.54 1.83 1.07 0.64 0.79 0.74 0.84 0.67 0.68 3.12 0.36 

r1 

Mean, Min, Max (Rz) 

20.00 

18.00 

16.00 

14.00 

12.00 

10.00 

8.00 

Figure 6-12 Ten-point height parameter R, -. (Mean, Min. Max) 
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Table 6-27 Maximum peak to valley height parameter Ri 

I Rt (µm) 
2"" 3" 41fl 5... 6... 7... 8LIl 9111 1Otll (ý... 

I 12.58 12.7 11.61 11.76 11.19 13.05 11.69 11.93 10.03 11.14 10.65 

10.43 11.49 14.89 12.87 12.33 11.49 11.4 11.68 10.41 9.76 10.17 

1 11.11 12.81 13.09 10.53 11.46 12.33 11.72 9.89 10.31 10.31 9.98 

4 12.63 18.24 10.15 12.73 10.51 11.16 13.88 11.18 10.45 18.77 10.211 

5 13.64 11.91 14.13 12.66 11.44 10.97 11.62 10.68 11.45 11.28 I 1.08 

6 13.23 33.76 10.61 12.89 12.95 11.27 11.77 11.04 12.17 10.13 10.61 

Mean 12.3 16.8 12.4 12.2 11.6 11.7 12.0 1 1.1 10.9 11.9 10.5 

Min 10.4 11.5 10.2 10.5 10.5 11.0 11.4 9.9 10.3 9.8 10.0 

Max 13.6 33.8 14.9 12.9 13.0 13.1 13.9 11.9 12.2 18.8 11.1 

Std 1.1 7.9 1.8 0.9 0.8 0.7 0.8 0.7 0.7 3.1 0.4 

Mean, Min, Max (Rt) 

33.0 
31.0 
29.0 
27.0 
25.0 
23.0 
21.0 
19.0 
17.0 
15.0 
13.0 
11.0 
9.0 l Lt11 [ßd.. 1 CSI Ll_Eil, ail 

_fo 00 llll all 123456789 10 11 

Figure 6-13 Maximum peak to valley height parameter Rt (Mean. Min, Max) 

From each of those 66 images representing a measured area 50.1 2x l2 pixel image 

samples, were taken randomly. This means that 300,128xl28 pixel images, were 

available for each of the eleven samples. In other words, the whole data set contained 

3300 128x 128 pixel images 
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6.3.2 Monitoring strategy 

In the previous application, a general strategy was chosen for performing the 

texture discrimination task. Indeed, three different wavelet scanning methods were used 

and two different clustering methods. For this monitoring task, the choice was made to 

customise the previous analysis strategy. 

First of all, over the eleven samples, three samples will be used as markers. They are 

namely the first, the sixth and the eleventh sample. The monitoring task will then consist 

of classifying the whole set of data into three classes. The first class whose representative 

is the first sample is the class of the samples machined with a sharp wheel. The second 

class whose representative is the sixth sample is the class of the samples machined with a 

moderately worn out wheel. The third class whose representative is the eleventh sample 

is the class of the samples machined with a blunt wheel. 

For each of those three samples, 300 128x128 pixel images are available. Because of the 

fact that a supervised clustering method is to be used, this whole set of images must be 

split into two sets, which are the learning set and the test set. Hence, 1/3 of the images 

will be used as a learning set and 2/3 as a test set. This means that only 300 images will 

be used to classify the whole test set. An illustration of the learning set, the test set and 

the markers can be seen below, in Table 6-28. For a more detailed discussion about the 

elaboration of a leaning set and a test set, one refers the reader to Chapter 5 of this thesis. 
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r Table 6-28 Data available for the monitoring task, learning set, test set and markers 
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Once the data to be analysed are selected, there are three choices for the wavelet 

scanning. In the present application, scanning by standard Discrete Wavelet Transform 

based on Daubechies' wavelet of order 20 was chosen. This method offers a scanning of 

the whole spectrum of the functions and it is orientation selective compared to the scaled 

Discrete Wavelet Transform scanning. The main disadvantage of the method is to 

generate a large number of characterisation parameters. 

Indeed, after frequency normalisation, parameters are calculated on the space frequency 

map (i. e. the envelope) of the texture images. For each 128x128-pixel texture image, 

using the standard DWT, the scanning is performed for 7 scales both vertically and 

horizontally. As a result, the frequency map of each image consists on 49 images. If the 

original image is added, this means that parameters are calculated on 50 images. 

It is to be pointed out that this configuration of the algorithm is not optimum. The first 

reason is that the choice of the parameters was done manually referring to both the 

previous results and to experience. The second reason is that the optimality of an 

algorithm depends on the chosen criteria. In the present case the assumption was made 

that the distribution of the classification efficiency is supposed to be Gaussian around the 

chosen markers. In other words, the further a sample is from a marker the lower the 

probability that that sample will be confused with that given marker. The "ideal" 

distribution around the three markers is illustrated below, Figure 6-14. For example the 

probability of an image coming from the sample 3 to be considered as an image coming 

from sample 1 is 69% and from sample 6 is 31%. Symmetrically, the probability for an 

image coming from the sample 9 to be considered as an image coming from sample 11 is 

69% and from sample 6 is 31%. The algorithm performance is supposed to be as close to 

these curves as possible. 
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Figure 6-14 Reference distribution around the three marker, I" 6''' and I I'r' samples 

Practically. for the parameters selection, following this optimality criterion. it was noticed 

that the most significant parameters for this type of monitoring problem after wavelet 

scanning and frequency normalising were the so called Volume and Forni Factor 

parameter. at most of the scales. To be more precise a set of 88 sub parameters gives a 

good ýumpromlise between the number of parameters and the efficiency. One can see 

belo . 
Table 6-2g. appearing in hold and underlined the map of the characterisation 

parameters that were retained. 
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Table 6-29 Map of the characterisation parameters for the DWT scanning 
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For the decision process, clustering by cluster analysis was retained. Indeed, this 

clustering method generally gives the best clustering efficiency, compared to the 

discriminant analysis method. From an algorithmic point of view another advantage of 

this method is that it is very fast in performing the clustering even with samples of large 

size. 

The results obtained with the strategy previously described can be seen below, Table 6-30 

and Figure 6-15. These results should be compared with the reference distribution 

illustrated Figure 6-14. 

Table 6-30 Probability distribution around the three marker, 1g` , 6`h and 11`" samples 

Markers 
Sam le 1 Sample 6 Sample 11 

1 74 18 8 
2 51.5 38 10.5 
3 22 71.5 6.5 
4 24 67 9 
5 22.5 63.5 14 
6 3.5 78.5 18 

V) 7 25.5 49 25.5 
8 6 58 36 
9 4 28.5 67.5 
10 2.5 36.5 61 
11 11.5 3 85.5 
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Figure 6-15 Probability distribution around the three marker, I" 
, 

6"' and 11"' samples 

Gaussian fitting curves of the results presented above in Figure 6-15 can also he seen 

below. Figure 6-16. It gives a smoother representation of the data. Hence, one can see 

that even if the perfect fit is not achieved between the "ideal" distribution around the 

markers and the real distribution, the algorithm allows us to monitor efficiently the wear 

of the grinding wheel by comparison with the markers. 
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Once again. it should be pointed out that the aim was not to get optimum results but 

rather to illustrate the efficiency of the general method for this difficult task of' texture 

discrimination. Hence, the results could be improved in several ways. First. by measuring 

the samples using a lower magnification, the information redundancy in each image is 

increased. Next. by increasing the number of measurements performed on each sample 

the reference set is then bigger and more represent the general aspect of' each surface 

texture. Finally, by adopting a more systematic characterisation parameter selection 

strategy it is possible to better custom the algorithm and then to get a Netter 

discrimination power. 
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6.3.3 Conclusions 

Instead of defining an artificial index indicating the wear of the grinding wheel, 

the principle of the method is to give information on how close the machined sample is to 

several reference samples. Actually, if instead of clustering one gives the distance 

between samples, which is used by the clustering algorithm, one can easily provide such 

an index. 

From an industrial point of view the monitoring strategy for a given grinding procedure is 

to machine a set of samples without sharpening the grinding wheel. An appraiser should 

take a few samples in this set in order to estimate their quality and then the wear of the 

wheel. These samples would be the markers of the algorithm. They should be referred to 

as mentioned acceptable, quite acceptable, not acceptable. More than three markers can 

actually be used in order to monitor more accurately the wear. The monitoring can then 

be done automatically. This monitoring would actually be the last step of a entire 

automation of the grinding process. Such an industrial application of the algorithm would 

actually be more interesting when using modern wheels like the Cubic Boron Nitride 

(CBN) grinding wheel that can machine very long sample series being rarely dressed. 

As it was done for the previous application in this chapter, the same monitoring task can 

be performed using the most commonly used standard characterisation parameters. One 

reminds that the parameters are namely: The average roughness Ra, the root-mean-square 

deviation Rq, the ten-point height Rz, the maximum peak to valley height Rt or Ry, the 

maximum depth Rv, the maximum height Rp, the skewness Rsk and the kurtosis Rku. For 

a complete definition of those parameters, one will refer to chapter 1 of this thesis. 

These eight parameters are used to feed the same decision-making algorithm based on 

cluster analysis that was previously used. The learning set is composed of 100 images 

while the test set is composed of 200 images. The type of clustering method and the 

number of images in the learning set were chosen in order to give the best results. The 

monitoring results obtained around the first the sixth and the eleventh samples can be 

seen below, Table 6-31 and Figure 6-17. 
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Table 6-31 
Probability distribution around the three marker, 1$` 
characterisation parameters 

6`h and 11`x' samples using standard 

Markers 
Sample 1 Sample 6 Sample 11 

1 34.5 28.5 37 
2 56 19.5 24.5 
3 13.5 40 46.5 
4 22 23.5 54.5 
5 32 37 31 
6 24 31.5 44.5 
7 30.5 35 34.5 
8 15 23.5 61.5 
9 0.5 12.5 87 
10 22.5 29.5 48 
11 8.5 26 65.5 
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standard characterisation parameters 

One can easily see, comparing Table 6-30 and Table 6-31 or Figure 6-15 and Figure 6-17 

that the monitoring is far more efficient using the new method that was detailed and 

explained in this thesis. Furthermore, one can actually see that the monitoring cannot 

seriously be performed by using the standard characterisation parameters. The surface 

textures to be distinguished are so similar in aspect that it makes the monitoring Verv 

difficult and only a systematic method seems to be able to solve that problem. The 

wavelet scanning based method offers then the simplicity and the effectiveness that are 

needed for such a difficult texture characterisation task. 
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7. Conclusion and further development 

7.1 Extension of the problem 

The aim of the thesis was to design new methods of analysis and characterisation of 

surface roughness. For that purpose, a complete method consisting of pre-processing by 

wavelet scanning, a parameter extraction stage and a decision module was designed and 

implemented. Hence, an original frequency normalisation process was added to the well- 

known wavelet transform in order to give a real space frequency map of the images. Simple 

and easy to understand characterisation parameters, actually used for characterising the image 

space frequency maps, were proposed. Finally, these parameters fed a decision algorithm 

whose classification results assessed the reliability of the whole method. Indeed, more than a 

standard strategy consisting of providing an index or direct surface roughness characterisation 

parameters, the approach was to use an a priori knowledge in order to give an indication on 
how close the samples are from a given model. This approach is common in the field of signal 

and image processing but may still be new for mechanical engineers. 
Indeed, rather than proposing new characterisation parameters that would complete the long 

list of the parameters already existing [STOUT 1], a new approach is proposed. Hence, it is 

known that two surfaces presenting the same characterisation parameters can actually have a 

very different behaviour for a given application. On the other hand, experienced engineers 

would know that a given surface finish is suitable for a given task. With the proposed 

approach, one provides a way of measuring the distance between surface finishes. One 

assumes then that two close surfaces would be suitable for the same application. This last 

assumption is still to be proved and would be an extension of this research to be investigated. 
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The first step of the study was to set the problem of analysis and characterisation of surface 

roughness in a bigger family of problems known as texture analysis. Because of the fact that 

this approach has given good results, it is now possible to invert the principle by using the 

methods that were designed for characterising surface textures for analysing standard texture 

problems. Hence, the classical test for assessing the reliability of an algorithm designed for 

texture analysis is to test it on textures coming from the texture book by Brodatz [BROD 1]. 

The first results obtained for classifying Brodatz's textures by using the strategy designed for 

this thesis have already given satisfying results. Nevertheless, further development should be 

made in order to give quantitative results. 

A new wavelet based tool was designed for this study: the Frequency Normalised Wavelet 

Transform (FNWT). In its actual configuration, the FNWT allows us to get a real space 

frequency map of a function. As an extension of the wavelet transform, this tool can be used in 

many fields other than texture analysis. Indeed, it can be used in any study for which the space 

frequency analysis is an issue. In signal processing, the number of potential fields is 

considerable. In order to give only a few examples, one can evoke speech recognition, medical 

imaging, astronomy, satellite vision... 

From the same subject, another field of application can also be explored. Indeed, the FNWT 

was introduced in this thesis in a quite intuitive way. From the theoretical point of view, it 

would be possible to use an optimum filter corresponding to the wavelet that the FNWT is 

based on. Furthermore, as was the case for the wavelet transform, an optimum implementation 

strategy of the FNWT is still to be discovered. 

Parameters have been proposed to characterise the space frequency map resulting from the 

FNWT. In most of the applications presented in this thesis, the most efficient parameters were 

the so-called Volume and Form Factor parameters. The design of new parameters is also a 

problem that is still open. Indeed, depending on the application, it is possible to customise the 

parameters in order to get even better results than those that are presented in this thesis. The 

goal here was not to get the best classification results but to design a method both robust and 

portable. 
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Two clustering methods were proposed in this thesis. The first one is a linear clustering 

method based on Discriminant Analysis and the second one is a non-linear method called 

Cluster Analysis. In the present applications, the Cluster Analysis method yielded the best 

results. It also possesses the advantage of being faster than the Discriminant Analysis method. 

For the same type of application another clustering strategy could be designed. The idea would 

be to use simultaneously both methods. Indeed, the Discriminant Analysis method allows the 

normalisation of the data. As mentioned before, an automatic characterisation parameter 

selection based on the Singular Value Decomposition can be added [COC 1] [LEB 1] 

[CAR 1]. Hence, after normalisation a Cluster Analysis could be performed clustering 

dummies in a more standard and normalised space. 

For this problem of surface roughness characterisation, data were provided by measuring 

mechanical samples using an optical surface measurement system. Hence, images representing 

the roughness of these samples were available. The fact is that the term roughness is not only 

used by mechanical engineers. Hence, the same problem can be ported at a bigger scale using 

for instance 3D images measured by plane or by satellite. Such investigation of the roughness 

in nature is a problem of great interest. Indeed, one can give as an example the monitoring and 

modelling of surface moisture by studying surface roughness of the desert in Jordan [TAN 1] 

or characterisation of the roughness of the sea surface [TAYL 11 [GAR 1]. It would then be 

interesting to apply the strategy that was designed in this thesis to other problems on another 

scale. 

On the other hand the same strategy can be applied to surface roughness analysis and 

characterisation but by changing the data type. In other words, instead of using measures of 

the roughness of the mechanical sample it would be possible to feed the algorithm using 

simple pictures of the samples. A low cost CCD camera could easily provide such images. An 

illustration of the kind of images that is obtainable by both optical interferometer and CCD 

camera can be seen below, Figure 7-1. 
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Data Physical Surface Data 
Optical Interferometer CCD camera 

Figure 7-1 Measurement and picture of a surface tc\turc obtained by vertical milling 

Furthermore, the adjunction of a fast frame grabber connected to a computer runnin, 2 the 

characterisation algorithm would allow us to perform real time monitoring in 
. situ. Such a 

system has actually already been implemented. Indeed, a few measurements were performed 

simultaneously using a frame grabber connected to the CCD camera that is placed on the kST. 

The results obtained by using images coming from the CCD camera were comparable tu those 

obtained by using an optical surface measurement system. Therefore, this way should be 

explored further. An illustration of the double characterisation strategy can be seen below, 

Figure 7-2. 
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Data 
Optical Interferometer 

Wavelet I 
Scanning 

Parameters calculation 

Decision by clustering 

Figure 7-2 Double strategy for 2D surface roughness analysis 

Wavelet 
Scanning 

Parameters calculation 

Decision by clustering 

But it is possible to go even further. Indeed, once the parallel has been made between 

characterising surface roughness measured by an optical measurement system and 

characterising the same surface roughness but using simple pictures of these surfaces, it is 

possible after processing to compare the sets of characterisation parameters those two methods 

give. Hence, by comparing the two sets, it would be possible to solve the inverse problem. If 

successful, this means that by taking the picture of the roughness of a surface it would be 

possible to give an approximation of the measure of the roughness. This application clearly 

requires the tools developed in artificial intelligence. Indeed, because the idea of this inverse 

problem is to deduce 3D information from 2D images. This is the type of extension of the 

techniques developed in this thesis that would be the more challenging but also the more 

interesting for bringing new knowledge in science. An illustration of this inverse problem can 

be seen below, in Figure 7-3. 

Physical Surface II Data 
CCD camera 
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Physical Surface Data 
CCD camera 

Wavelet 
Scanning 

" 

D-I 

Parameters calculation 

Figure 7-3 Roughness analysis inverse problem 

As a conclusion, a whole characterisation process was presented in this thesis. It was applied 

successfully to real surface texture problems. Following the strategy presented in this thesis, 

i. e. wavelet scanning, parameter calculation and clustering, it was demonstrated that it is 

possible to answer real industrial problems like surface quality control or engineering process 

monitoring. This whole process and more particularly its wavelet scanning part seem to open 

new promising fields of research by showing the data in another perspective. Indeed, using the 

Frequency Normalised Wavelet Transform one can draw a robust space-frequency map of a 

signal that can be used for further processing. 

Therefore, the study presented in this thesis can likely be ported to many research fields. 

Examples of such fields were mentioned before. The time for a thesis was obviously not 

enough for pushing further in that sense. Nevertheless, this thesis is not the full stop of the 

investigations in that domain and the research is to be continued. 
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Table of symbols 

h(n) Digital filter 

g(n) Digital filter 

H(z) h(n) Z transform 

G(z) g(n) Z transform 

w Pulsation 

p; i`h Pole 

Z; ith Zero 

Set of the real numbers 

Lz (2) Set of the square sommable functions 

Vi Subspace of L2 (R) 

M Set of the relative numbers 

f (x) Function of x 

O(X) Scaling function 

PVV [. ] Orthogonal projection operator of a function onto the vector subspace V, 

Ai f (n) Set of discrete values depending on the projection PVC[. ] 

h (n) h(n) digital mirror filter 

g(n) g(n) digital mirror filter 

s(n) Digital signal 

OJ , 
Orthogonal complement of Vj in V j,, 

V(x) Orthogonal wavelet 

Pol [. ] Orthogonal projection operator of a function onto the vector subspace Oj 

DJ (n) Set of discrete values on the projection POS [. ] 

BV Set of the natural numbers 

N Number of digital coefficients 
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8. Appendixes 

8.1 Appendix 1: Quadrature Mirror Filters 

Let h(n) and g(n) be two real Quadrature Mirror Filters (QMF) withn r: [0, N -1] 

and H(z), G(z) be their Z transforms with z= e' ° and wE [0,2, r [. 

The term Quadrature Mirror Filter comes from the fact that in the frequency domain, both 

filters are symmetric according to co = iv / 2: 

IH (co )I 
Mirror IG (w )I 

0 7r 7r 
2 

Figure 8-1 Centred spectrum modulus of the Quadrature Mirror Filters 

If one now uses the poles and zeros representation in the Real-Imaginary plan, one can see that 

to go from h(n) to g(n) one only has to perform a transposition of both poles and zeros of 

H(z). For instance, assuming that H(z) is a low-pass filter with two complex conjugated 

poles P, and PZ , and a double zero ZO, the map of the poles and the zeros could be the 

following, Figure 8-2: 
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Hence, by transposition one can see that G(z) is a high-pass filter with all its poles and zeros 

being the complex conjugated of those from filter H(z). Then, one can write the effect of this 

transposition on both filters H(z) and G(z) . Indeed, on the zeros and poles map, one can see 

that it can be successively written: 

G(w)=H(2v-(o) (8-1) 

G(e'i') = H(e"-"O (8-2) 

G(z)=H(-z-') (8-3) 

For a question of causality of the filter G(z) one has to add a delay time proportional to the 

number of taps of h(n) . For this reason, one finally gets: 

G(Z) = Z'-"H(_Z-t) (8-4) 
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To get the coefficients of the filter g(n) knowing those from h(n) the demonstration is then 

simple using the properties of the Z Transform. It yields successively: 
N-1 

H(z) _ h(n)z-" (8-5) 
n=0 

N-I 
H(-z-') _ 

1(-1)'h(n)z" 
(8-6) 

n=0 

Changing variable such as, n: =N -1- n, yields: 
N-I 

(-1)N-'-mh(N-1-m)zN-Iz-m (8.7) 
m=0 

And finally: 
N-1 

zt-N H(-z-') _ -1) N--" h(N -1- n)z-" (8-8) 
n=0 

The relation between the two filters is finally: 

G(z) = z'-NH(_z-') (8-9) 

g(n) = (-1)N-1-n h(N -1- n) (8-l0 ) 
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8.2 Appendix 2: The Discrete Wavelet Transform 

8.2.1 Multiresolution analysis and a theoretical approach to the Discrete Wavelet 
Transform 

The Discrete Wavelet Transform (DWT) will be introduced here starting from the 

theory of multiresolution analysis. This concept will be presented following a classical 

approach [MAL 21 [JAW 11 and keeping the practical signal processing point of view as much 

as possible. For a more theoretical and general approach, one can for instance refer to 

[DAUB 11 [COH 1] [MEYE 1] [MUR 1] [IEEE 1] [MAL 1] [MAL 3]. Also, general 

development of multiresolution analysis and wavelets based on subband transforms, Filter 

Banks and more especially Quadrature Mirror Filters (QMF) can be found in [AKA 1] 

[AKA 2] [STRA 1] [VET 1] [VAID 1]. 

A multiresolution analysis of L2 (l) is defined as a sequence of closed subspaces V, of 

L2 (l) with {j X). Basically, if we consider a function f(x) E LZ (ll) the orthogonal 

projection of this function onto the different subspaces VV allows us to view f (x) under 

various scales (e. g. with a certain amount of detail). The bigger the parameter j, the more 

detailed the result of the projection onto the subspace Vi. 

Theoretically, a set of vector spaces VV, which determines a multiresolution approximation of 

L2 (IR) with {jE Z) should satisfy the following properties: 

Vf c VV,, (8.11) 

Vf (x) EVjbf (2x) EVj, 1 (8-12) 

Vf(x)EVj ý#* VkE TL, f(x+k)EVV (s-13) 

UVi is dense in LZ (ý) (8-14 ) 

nvi 
= {0} (8-15 ) 
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Following the well-known article by Stephane Mallat, [MAL 2] we can write that the 

multiresolution is defined as follows. Let Vj with {j (=- 7L } be a multiresolution 

approximation of LZ (LR). A unique function 0 (x) E L2 ( f) called a scaling function exists 

such that one can write: 

(2"20(2'x-n)) with In E 7L }is an orthonormal basis of VV with {jE Z) (8-16) 

For one type of multiresolution approximation of L2 (lR) corresponds one particular scaling 

function O(x) E LZ (lZ ). This theorem shows that the vector subspace VV can be built by dilating 

and translating a unique scaling function O(x). 

Let PVJ [. ] be the orthogonal projection operator of a function f (x) E LZ (R) onto the vector 

subspaceVV. By definition, using the inner product, we can write: 

Vf (x) E LZ (A), PVC [f (x)] E V1 such as 
+- (8-17) 

PV1[f(x)]=2j 2 
., 

<f (x), 0(2Jx-n)>0(2fx-n) 
n=- 

Equation ( 8-17 ) shows that the continuous function f (x) E L2 (l) is represented by a set of 

discrete values by projection onto the vector subspaceVV, which makes sense from an 

implementation point of view of the multiresolution algorithm. Let Alf (n) be this set of 

discrete values: 

AJf(n)=2j12 < f(x), O(2Jx-n)>, nE Z (8-18) 

We can show now that the decomposition at any resolution can be derived from the 

decomposition at higher resolution. 
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Indeed, according to equation ( 8-16) we can write that (2('+»"2Z (2'+' x- k)) , with {kE Z), 

is a basis of Vj+,, with {jE 7L ). Defining the multiresolution, it is stated equation ( 8-11 ) 

that we should have V1 c Vj+j . Hence, we can write the function 2' 0(21 x- n) C Vj using the 

basis vectors of the subspace VV+, : 

2'0(2jx-n) = 2Z'+` ý<O(2'x-n), O(2'+'x-k)> 0(2'+`x- k) (8-19 ) 

Changing the variables in the inner product one can write that the previous equation yields: 

0(2Jx-n)= k<0(2-'x), O(x-(k-2n))>0(2'+`x-k) (8-20) 

Now if the inner product of f (x) E LZ (l2) is computed with both sides of ( 8-20) we obtain: 

}(x), 0(2j x-n)>= <0(2-1x), O(x-(k-2n))x f(x), 0(21+'x-k)> (8-21) 
k=ý 

Lets assume now that both, h(n) and h (n) are two digital mirror low-pass filters with 

impulse responses such that: 

h (n) = h(-n) with: 

h(n) =<O(2-lx), O(x-n) > 

(8-22) 

(8-23) 

h (n) =< O (2-1 x), O(x + n)) > (8-24) 

Inserting ( 8-24 ) in ( 8-21 ) we finally obtain: 

< f(x), 0(2'x-n)>= 
.. 

h(2n-k) < f(x), O(2'+`x-k)> (8-25) 
k=- 

As well as: 

A' f(n)=2.2 Sh(2n-k)< f(x), O(2'+'x-k)>, with {nE 7L} (8-26) 
k=-m 
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Finally on obtains: 

A; f(n)=2'ßz 
., 

h(2n-k)Aj+If(k) (8-27) 

In practice, the resolution of any physical instrument is limited. The resolution of the digital 

signal that is to be processed is limited too. Assuming that the best resolution one can get is 

one (e. g. in that case j= 0) and keeping the same notation as previously, one can say that, for 

instance, the set of discrete values Ao f (n) is the digital signal that is to be processed. It follows 

then that the filtered digital signal A_, f (n) is the same signal as before but with half as much 

details. 

Lets now consider the following filtering and sub-sampling process below, Figure 8-3: 

n 
f (n)' -O-K) f 12 s(n) 

Filtering Sub-sampling 

Figure 8-3 Filtering and sub-sampling process 

From this process one can deduce that: 

8(n)=[f(k)*h(k)]= j: h(n-k)f(k) (8-28) 
k=- 

After filtering, by sub-sampling, one gets: 

s(n)=g(2n) (8-29) 

So finally, it yields: 

+m 
s(n) _h (2n - k) f (k) (8-30 ) 

k=-« 
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Returning to the first problem, by identification between both equations (8-27 ) and ( 8-30 ), 

one can see that multiresolution process can easily be computed step by step. This is done by 

filtering and sub-sampling the original signal by a factor of two. Each time this double task is 

performed, the quantity of details in the processed signal is divided per two. This operation is 

called a dyadic pyramid transform. 

In this decomposition algorithm, one can see that the scaling function O(x) plays a very 

important role. In fact, the whole decomposition process depends on this scaling function. 

From the mathematical point of view, without giving too many details, one can indicate that: 

" O(x) defines a basis of L2 (2) after being scaled and translated, which means, in other 

words, that (2''2O(2' x- n)) with (n, j) E 7L2 is an orthonormal basis of L2 (2 ). 

" O(x) should verify some regularity (smoothness) conditions. 

" It should be continuously differentiable and have a rapid asymptotic decay. 

" Finally, in order to obtain a convenient space-frequency analysis, O(x) is required to have 

localisation properties in both the frequency and spatial domain. 

For more details, one should refer to references indicated at the beginning of this section. 

8.2.2 The Wavelet representation 

From the multiresolution analysis of L2 (l) introduced previously, it is now possible 

to introduce the wavelet analysis. 

It was seen previously how it is possible to analyse a function (i. e. a signal) under different 

resolutions or scales by applying a simple projection (i. e. filtering) process. Hence, the 

approximation at the resolution 2'+` and 2' of a signal are equal to its orthogonal projection 

respectively onto the vector subspaces V1+1 and VV V. The difference of information between the 

two subsets is called the detail signal. The detail signal at the resolution 2' is then given by the 

orthogonal projection of the original signal on the orthogonal complement of VV in V. 

Let OJ , with {jE 7L ), be this orthogonal complement, the latter statements can be 

mathematically expressed by: 
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OO is orthogonal to Vj, (OO1Vj) (8-31) 

Oi O+ Vi = Vj+1 (8-32) 

Oi CVj+I (8-33) 

In the same manner that was previously defined the scaling function O(x) for building the 

different vector subspaces VV , we can now define a function t1(x) E LZ (JR) that by scaling and 

translating will allow us to build every vector subspace Oj. Hence wee can write: 

(2"2 yi(2' x- n)) with In EZ} is an orthonormal basis of Oj with {jE X) (8-34) 

It follows then that: 

(2"2iji(2'x-n)) with (n, j) E 7L2 is an orthonormal basis of LZ (l) (8-35) 

The function V (x) is called an orthogonal wavelet. 

Once again, following the same method as used previously, it can be seen how to compute 

efficiently the decomposition of a function onto the vector subspaces O1 and then get a 

Wavelet Transform. First by considering both ( 8-14) and ( 8-32 ) or by considering ( 8-35 ) 

one can write that: 

U Oj is dense in LZ (L R) 
i=-^e 

(8-36) 

Let POS be the orthogonal projection operator of a function f (x) E L2 (Z4) onto the vector 

subspace OO. One can write: 

bf(x)E L2(JR), POj[f(x)]E Oj and 
(8-37) 

POj [f(x)]=2j ý< f(x), tg(2'x-n)>tp(2Jx-n) 

Equation ( 8-37 ) shows that the continuous function f (x) E L2 ( l) can be represented by a 

set of discrete values by projection onto the vector subspace Oi. 
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Let DD f (n) be this set of discrete values. DD f (n) represents the details that should be added 

to the orthogonal projection of the function f (x) onto the vector subspace VV, (e. g. Alf (n) ), 

in order to obtain the projection of f (x) onto the vector subspace (e. g. (e. g. Af+, f (n) ), which 

mathematically can be expressed by: 

D3f(n)=2J/2< f(x), V(21x-n)>, with (nE 7L} (838) 

It can be now shown how to efficiently compute the details decomposition. Indeed, by 

extending equation (8-16 ), it is known that (2('+')/20(2'+'x-k)) , with Ike 7L }, is a basis of 

VV+1, with {jE 7L }. Furthermore, equation ( 8-33 ) indicates that Of c Vj+, . Hence, one can 

write the function 2' ii(2' x- n) c Of using the basis vectors of the subspace V1+, : 

2j41(21x-n)=22j+1 j<11(2'x-n), O(2'+'x-k)>O(2'+`x-k) (8-39) 
k=- 

Changing the variables in the inner product one can show that the previous equation yields: 

V/(21 . x-n)= 1<ti(2-'x), O(x-(k-2n))>0(2'+'x-k) (8-40) 
k=- 

Now, computing the inner product of f (x) E LZ (2) with both sides of equation ( 8-40 ), it can 

be written that: 

<f(x), VY(2'x-n)>= 1<V/(2-'x), 0(x-(k-2n))><f(x), 0(2'+'x-k)> (8-41) 
k=-m 

Also, assuming that both g(n) and K (n) are to digital mirror high-pass filters with an impulse 

response such that: 

k (n) = g(-n), with: (8-42) 

S(n)_<Vf(2-'x), 0(x-n)> (8-43) 

S(n) =<tp(2-'x), O(x+n)) > (8-44) 
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Inserting equation ( 8-44 ) in equation ( 8-41 ) one finally obtains: 

<f(x), V/(2'x-n)>= l g(2n-k)<f(x), O(2j+'x-k)> 
k--o, (8-45) 

, with (n, j)E X2 

As well as: 

D; f(n)=2i 2 S(2n-k)<f(x), 0(2'+'x-k)> (8-46) 
k=ý 

And finally: 

D; f(n)=2»2 ýh(2n-k)Aj 
lf(k) (8-47) 

As a conclusion of this demonstration, it can be seen that a discrete wavelet decomposition can 

be both easily and efficiently computed as a simple filtering process, which settles the parallel 

with the Continuous Wavelet Transform. The two filters that are used here, h(n) and g(n) are 

well known in the literature and are called Quadrature Mirror Filters, (QMF) [VAID 1] 

[VET 1] [STRA 1] [AKA 1]. 

Assuming that A0 f (n) is a digital signal that is to be decomposed in order to obtain its 

Discrete Wavelet Transform. To make the problem simpler, one can also assume that if N is 

the number of taps, i. e. samples or coefficients, for Ao f (n) then N=Kx 2L, (K, L) E &V 2. 

One can see below, in Figure 8-4 the two first levels of the Discrete Wavelet Transform 

decomposition of the digital signal Ao f (n) . Signals Al f(n) represent the signal at the 

resolution j, whilst signals Djf(n) represent the details of the signal at the same resolution. In 

fact, D; f (n) represent the coefficients of the Discrete Wavelet Transform at each scale. 
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A0 f (n) 2-, ýz Vi (n) 
12 D-I f (n) 

L 2-, /z h (n) 
A-, .f (n 2 2-' g (n) 2 D-2. f (n) 

n2 A-2 f (n) 

Figure 8-4 Digital signal Ao f (n) two first levels of the Discrete Wavelet Transform decomposition 

The Discrete Wavelet Transform of the original signal AO f (n) at each scale (i. e. resolution) is 

composed of the set of digital signals: D_, f (n). Table 8-1 shows the set of data that 

represents the Discrete Wavelet Transform at each scale and the number of samples of the 

corresponding digital signal: 
I 

Table 8-1 Constitution of the DWT at every scale 

Resolution jj= -1 j= -2 ... 
j= -L 

DWT at the corresponding 

resolution 
D_, f (n) D_2 f (n) ... D_, f (n) 

Number of taps of the DWT N= Kx2 L-' N= Kx2 L-2 """ N=K 

Theoretically, the decomposition can be performed until the number of samples is K. 

Practically, in most of the applications the decomposition is stopped before this point. 

Actually, after a certain stage of decomposition some problems occur. For instance, knowing 

that in practice the filtering is done using either the Fast Fourier Transform or cyclic 

convolution, it is preferable, in order to avoid border problems, that the filters support 

dimensions, i. e. the range in which the filter coefficients are not equal to zero, is smaller than 

that of the filtered signal. 
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8.2.3 Signal Reconstruction 

The wavelet basis is an orthonormal basis of L2 (2) and so the reconstruction will not 

cause any problems. Indeed, following the presentation that was given previously, the 

reconstruction problem is rather straightforward. 

First, one reminds the reader, from equation ( 8-16 ) that (2''2 O(2' x- n)) with {n c= 7L } is an 

orthonormal basis of V1, with (jE7L}, as well as ( 8-34 ), (2'/2V(2Jx - n)) with { ne ZI 

is an orthonormal basis of Oj , with {jE 7Z }, and then that, ( 8-32 ), OO ®VV = Vj+l . Hence, 

whatever is the function belonging to the vector subset Vf+, , this function can be written using 

the two bases mentioned above: 

Hence, Vf (x) E VV,., : 

f(x)=2' Z< f(x), c(2'x-n)>O(2'x-n) 
(8-48) 

+2' Z< f(x), ip(2Jx-n)>1i(2Jx-n) 

It is known from equation ( 8-13 ), that the function 0(2'+' x- n) E Vf+l , so it can be written: 

0(2j+'x-n)=2i 
., 

<O(2'+'x-n), O(2Jx-k)>O(2'x-k) 
(8-49) 

+2j <0(2f+lx-n), V(2Jx-k)>V(2'x-k) 
k=- 

Following previous examples and projecting O(2'+1x-n) onto 0(2'x-k) yields: 

<0(21+1x-n), 0(21 x-k)>=2-1-1 <O(2-1x), O(x-(n-2k))> (8-50) 

And then referring to the QMF h(n) introduced in ( 8-23 ): 

<0(2'"x-n), 0(2'x-k) >= 2'f-lh(n-2k) ( 8'51) 
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And from the same manner and projecting 0 (2'+' x- n) onto tV (2' x- k) yields: 

<0(2'+'x-n), Vi(21x-k)>=2-rß <y(2-lx), O(x-(n-2k))> (8-52) 

And then referring to the QMF g(n) introduced in ( 8-43 ): 

<0(2'+lx-n), W(2'x-k)>=2-i-1S(n-2k) (8-53) 

Inserting both equations ( 8-51 ) and ( 8-53 ) in ( 8-49 ), one gets: 

0(2'+'x-n)=2'' , 
h(n-2k)O(2Jx-k)+2'' l g(n-2k)ty(2'x-k) (8-54) 

Then, computing the inner product of each side of equation( 8-54 ) with a function 

f (z) E L2 (R) yields: 

<f (x), 0(21+`x-n) >= 
-, 

h(n-2k) <f (x), O(2jx-k) 
(8-55) 

+2'' , S(n-2k) <f(x), Vf(2ix-k)> 

In order to illustrate equation ( 8-55 ) above, from the signal processing point of view, lets 

consider the following over-sampling and filtering process, Figure 8-5, which is symmetric 

with the process previously introduced Figure 8-3: 

x(n) 12 y(n) 
h(n) f (n) 

4 P. 4 10 

Over-sampling Filtering 

I Figure 8-5 Filtering and over-sampling system 

We can deduce from this system, Figure 8-5, by over-sampling one obtains: 

Even samples: y(2n) = x(n), Odd samples: y(2n + 1) =0 (8-56) 
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Also h(n) being a linear digital filter: 

f(n) = [Y(k) * h(k)] =l h(n - k)Y(k) (8-57) 
k=- 

Hence, the expression of f (n) becomes: 

f(n)= h(n - 2k)y(2k) + h(n-(2k+1))y(2k+1) (8-58) 

Then, finally writing the different simplifications yields: 

f (n) _ h(n - 2k)x(n) 
k=- 

(8-59) 

The previous development was led using the filter h(n) but can be done following the same 

path with the filter g(n). Hence, by identification between both equations ( 8-55 ) and ( 8-59 

), one can see that the reconstruction process can be easily computed step by step by over- 

sampling by a factor two and by filtering for each branch of the decomposition process. An 

addition should then be performed in order to get back the original signal f (n). 

Assuming that Aa f (n) is aN tap digital signal that is to be reconstructed from a wavelet 

decomposition as we saw previously for the decomposition process, one can deduce from 

equation ( 8-55 ) that the system that can be used to perform this task: 

Df ( n) 
t22 g(n) Aof(n) 

D-zf (n) 12 2-1 g(n) 
A-i f (n) t2 2-1 h(n) + 

&2f (n) 12 2-ih(n) + 

Two level reconstruction of the digital signal Ao f (n) from the Discrete Wavelet 
Figure 8-6 

Transform decomposition 
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It should be pointed out that by gathering together both wavelet filtering systems described in 

Figure 8-4 and Figure 8-6, one can get a whole two level wavelet decomposition and 

reconstruction process. 
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