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ABSTRACT 39 

Impaired endothelial function is observed with ageing and with low cardiorespiratory fitness 40 

(VO2peak) whilst improvements in both are suggested to be reliant on higher-intensity exercise in 41 

the elderly. This may be due to the flow-mediated dilation (FMD) response to acute exercise of 42 

varying intensity. We examined the hypothesis that exercise-intensity alters the FMD response in 43 

healthy elderly adults, and would be modulated by VO2peak. Forty-seven elderly men were 44 

stratified into lower- (VO2peak = 24.3±2.9 ml.kg-1.min-1, n=27) and higher-fit groups (VO2peak = 45 

35.4±5.5 ml.kg-1.min-1, n=20) after a test of cycling peak power output (PPO). In randomised 46 

order, participants undertook 27 min moderate-intensity continuous (MICE; 40% PPO) or high-47 

intensity interval cycling exercise (HIIE; 70% PPO), or no-exercise control. Brachial FMD was 48 

assessed at rest, 10 and 60 min after exercise. In control, FMD reduced in both groups (P=0.05). 49 

FMD increased after MICE in both groups [increase of 0.86 % (95% CI, 0.17 to 1.56), P=0.01], 50 

and normalised after 60 min. In the lower-fit, FMD reduced after HIIE [reduction of 0.85 % 51 

(95% CI, 0.12 to 1.58), P=0.02), and remained decreased at 60 min (P=0.05). In the higher-fit 52 

FMD was unchanged immediately after HIIE and increased after 60 min [increase of 1.52 % 53 

(95% CI, 0.41 to 2.62), P<0.01], which was correlated with VO2peak (r =0.41; P<0.01). Exercise-54 

intensity alters the FMD response in elderly adults, and VO2peak modulates the FMD response 55 

following HIIE, but not MICE. The sustained decrease in FMD in the lower-fit may represent a 56 

signal for vascular adaptation or endothelial fatigue. 57 

 58 

Key Words: exercise, endothelial function, FMD, ageing, cardiorespiratory fitness 59 

  60 
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New and noteworthy 61 
 62 
This study is the first to show that moderate-intensity continuous exercise increased FMD 63 

transiently before normalisation of FMD after one hour, irrespective of cardiorespiratory fitness 64 

level in the elderly. Interestingly, we show increased FMD after high-intensity exercise in 65 

higher-fit, with a sustained reduction in FMD in lower-fit. The prolonged reduction in FMD after 66 

high-intensity exercise may be associated to future vascular adaptation but may also reflect a 67 

period of increased cardiovascular risk in lower-fit elderly.  68 

  69 
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INTRODUCTION  70 

Ageing is associated with chronic low-grade inflammation, oxidative stress and impaired nitric-71 

oxide (NO) bioavailability that contribute to endothelial dysfunction and large artery stiffness 72 

(54, 55). Endothelial dysfunction is considered an important prognostic factor and precursor to 73 

the development of atherosclerosis (22, 46), and is strongly associated with the risk of 74 

cardiovascular events (22, 57). In addition, endothelial dysfunction is suggested to contribute to 75 

other age-associated disorders including cognitive impairment and insulin resistance (60, 62, 72).  76 

As such, interventions that prevent or slow the detrimental changes in endothelial function are 77 

important in reducing cardiovascular risk and mortality associated with increasing age (56, 57).  78 

 79 

Importantly, age-associated endothelial dysfunction, measured using flow-mediated dilation 80 

(FMD) of the brachial artery (59), can be attenuated with both regular physical activity (71) and 81 

exercise training (16, 23). Results of cross-sectional studies indicate that exercise-trained older 82 

adults have preserved endothelial function (17, 40, 45, 49), and reduced cardiovascular disease 83 

risk (63), compared with those who are not habitually active. This adaptive response is 84 

commonly attributed to the repeated episodes of elevated blood flow, and consequently shear 85 

stress, during exercise that induces vascular adaptation (21). 86 

 87 

While the positive impact of chronic aerobic exercise on endothelial function is well described, 88 

the significance of the transient changes observed in endothelial function with an acute bout of 89 

exercise is less clear (15). To elucidate which forms of exercise are most likely to benefit 90 

cardiovascular health and function, recent studies have focussed on the acute FMD response and 91 

how it is modulated by factors such as exercise intensity. Some evidence suggests that the FMD 92 
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response to acute exercise may be biphasic, involving an immediate decrease, followed by a 93 

transient increase in FMD before returning to baseline levels (15). This may represent the 94 

initiation of an adaptive response, and be linked to the long-term benefit provided by exercise 95 

training on endothelial function at rest (23). This response is suggested to be exaggerated 96 

following higher-intensity exercise e.g. a larger immediate reduction followed by transient 97 

improvement in FMD (4, 11, 15, 32), and may contribute to recent observations of larger 98 

improvements in FMD following high-intensity interval exercise (HIIE) compared to moderate-99 

intensity continuous exercise (MICE) training (47, 52). We hypothesize that the bi-phasic FMD 100 

response would be further exaggerated in individuals with endothelial dysfunction, a low 101 

cardiorespiratory fitness or no training history. 102 

 103 

To date, there have been no comparisons of the FMD response to acute exercise between 104 

individuals of a higher and lower cardiorespiratory fitness. There is a strong association between 105 

a higher cardiorespiratory fitness and maintenance of FMD with aging (40). HIIE training 106 

improves cardiorespiratory fitness in healthy elderly adults to a greater extent than MICE 107 

training (28), suggesting that it may also modulate the FMD response to training. Despite this, no 108 

study has investigated the influence of a lower and higher cardiorespiratory fitness on the FMD 109 

response following acute exercise in the elderly. We therefore aimed to determine whether the 110 

effect of acute exercise on FMD differed between MICE and HIIE cycling in elderly males, 111 

when controlling for both exercise work and duration. In addition, we assessed the influence of 112 

cardiorespiratory fitness on the acute effect of exercise intensity on the FMD response between 113 

participants with higher and lower cardiorespiratory fitness. In line with previous findings in the 114 

young (4, 11), we hypothesised that acute HIIE would stimulate greater immediate reductions in 115 
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endothelial function compared to MICE, with subsequent elevation in FMD after 60-min. We 116 

also hypothesised that this overall response would be attenuated in those with a higher 117 

cardiorespiratory fitness.  118 

 119 

METHODS 120 

Research Design 121 

Participants underwent four laboratory visits, each following an overnight fast, refraining from 122 

alcohol and exercise for 24h, and caffeine for 12h, before each visit. Participants consumed a 123 

standardised snack (4 oat breakfast biscuits, 20g carbohydrate, 8g fat) 3h prior to attending the 124 

laboratory, and the macronutrient content of this snack was unlikely to influence endothelial 125 

function (24, 70). Visit 1 consisted of baseline measurements of height, body mass and estimated 126 

body composition using bio-impendence scales (BC 545N, Tanita, Australia). After 10 min of 127 

supine rest, blood pressure was measured using a manual sphygmomanometer, which was 128 

followed by a maximal cycling test to determine cardiorespiratory fitness (VO2peak) and peak 129 

power output (PPO). Experimental visits (2-4) were randomised, counter-balanced and consisted 130 

of two separate acute cycling exercise conditions (moderate-intensity continuous vs. high-131 

intensity interval) or a no-exercise control condition. Blood pressure and brachial FMD were 132 

assessed at baseline following 20 min of supine rest, and then repeated at 10- and 60-min 133 

following exercise/control. Laboratory conditions were standardised for each visit (room 134 

temperature: 23 ± 1°C) (63). To control for diurnal variation in blood pressure and vascular 135 

function, each visit was performed at the same time of day (33), and separated by 7 days. 136 

 137 
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Participants 138 

Forty-seven healthy elderly males (mean ± SD, aged 70±5 y; BMI 25.3±3.4 kg.m2) were 139 

recruited. Participants were included if they were able to exercise and were non-smokers (>12 140 

months no smoking history). Participants were excluded if they were aged >86 years, had a BMI 141 

>39, or a chronic cardiovascular or metabolic condition. During the study, participants were 142 

requested to continue to take all prescribed medication. Participants were informed of the 143 

methods and study design verbally and in writing before providing written informed consent. 144 

The study conformed to the Declaration of Helsinki and was approved by the institutional ethics 145 

committees.  146 

 147 

Maximal cardiorespiratory cycling test: A maximal incremental cardiorespiratory fitness test 148 

was performed on an electro-magnetically braked cycle ergometer (Lode Corival, Groningen, 149 

Netherlands). Following a 3 min warm up at 0 W, the test began at 20 W and then increased by 150 

10 W each min until volitional cessation. Participants were required to self-select a pedal 151 

cadence (between 60 and 90 RPM) and maintain this throughout the test. Expired respiratory 152 

gases were collected throughout the test and data were averaged every 15 s (Parvo Medics, UT, 153 

USA) for the determination of oxygen consumption (VO2; mL·kg-1·min-1). Peak VO2 was 154 

determined as the highest 15 s average over the last 60 s of maximal exercise (VO2peak). Heart 155 

rate was measured continuously using 12-lead ECG (Mortara Inc., WI, USA) and recorded, 156 

along with perceived exertion (RPE) using the 0-10 Borg scale, during the final 10 s of each 157 

stage. All participants reached the criteria for maximum effort based upon attaining >2 of the 158 

following: a peak heart rate within 10 bpm of predicted age-related maximum; RPE (>9); a fall 159 

in pedal cadence (>10 RPM); a plateau in VO2 despite an increase in workload; and a respiratory 160 
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exchange ratio >1.15. Peak power output (W) was then used to establish the exercise intensity in 161 

the subsequent test visits. 162 

 163 

Acute exercise/control protocols: Following pre-test measurements, participants performed 27 164 

min of continuous or interval cycling exercise, or no-exercise control (seated-rest). Both acute 165 

exercise protocols commenced with a 3-minute warm-up at 0 W, followed by either 24 min of:  166 

i) continuous moderate-intensity cycling at 40% PPO, or ii) high-intensity interval cycling 167 

involving 12 x 60 s bouts at 70% PPO, with each separated by 60 s at 10% PPO. Heart rate and 168 

RPE were recorded every 2 min. This design ensured the continuous and interval cycling 169 

exercise protocols were duration and work-matched. Immediately following exercise/control 170 

(<60 s), participants were moved to the supine position and asked to remain supine for post-test 171 

FMD measurements (at 10 and 60-min). Right brachial artery blood pressure was measured in 172 

triplicate using an automated device (Sphygmocor XCEL, AtCor Medical, NSW, Australia) 10-173 

min before each FMD time-point to negate any effect of cuff inflation on FMD.  174 

 175 

Brachial artery flow-mediated dilation: Brachial artery FMD was used as a measure of 176 

endothelial function (63). Measurements were performed in the supine position, on the right arm 177 

with the cuff placed distal to the olecranon process. High-resolution duplex ultrasound (T3000; 178 

Terason, Burlington, MA) with a 12-MHz multi-frequency linear array probe was used to image 179 

the brachial artery at the distal third of the upper arm and simultaneously record the longitudinal 180 

B-mode image and Doppler blood velocity trace. The angle of Doppler insonation was 60º. 181 

Images were optimised, and settings (depth, focus position and gain) were maintained between 182 

FMD assessments within each individual visit, and the location of the transducer was recorded 183 
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and marked on the skin using an indelible marker. Following a 60 s baseline recording period, 184 

the cuff was rapidly inflated to 220 mmHg and maintained for 5 min (D.E. Hokanson, Bellevue, 185 

WA).  Ultrasound recordings resumed 30 s prior to rapid cuff deflation (<2 s) and continued for 186 

3 min thereafter, in accordance with recommendations (12, 63). All ultrasound scans were 187 

performed by the same trained sonographer.  188 

 189 

Analysis of brachial artery diameter was performed using custom-designed edge-detection and 190 

wall-tracking software, which is largely independent of investigator bias. Recent papers describe 191 

the analysis approach in detail (12, 63). Briefly, from recordings of the synchronised artery 192 

diameter and blood velocity data, blood flow (the product of lumen cross- sectional area and 193 

Doppler velocity) was calculated at 30 Hz. Shear rate (an estimate of shear stress independent of 194 

viscosity) was calculated as 4 times mean blood velocity/vessel diameter. This semi-automated 195 

software possesses an intra-observer coefficient of variation (CV) of 6.7% and reduces error, 196 

with the reproducibility of diameter measurements significantly better than manual methods (64, 197 

73).  198 

 199 

Statistical analysis  200 

To differentiate the cohort on the basis of cardiorespiratory fitness, each participant was stratified 201 

into lower- (VO2 peak <27 ml.kg.min-1) and higher (VO2 peak >31 ml.kg.min-1) fitness (fit) group 202 

based on age- and sex-specific normative data (1). A three-way (fitness*protocol*time) linear 203 

mixed model (LMM) was employed to analyse changes in FMD parameters [brachial diameter, 204 

peak diameter and FMD (mm), FMD (%), time to peak, shear rate area-under-the-curve (SRauc), 205 

blood flow,] and blood pressure between the two fitness groups (low and high fitness), across 206 



Bailey et al.        Exercise intensity and FMD in elderly males  

 10

“time” (baseline, 10- and 60-min post) during each protocol (control, moderate- and high-207 

intensity exercise).  As variability in the baseline artery diameter and shear rate may influence 208 

the magnitude of the FMD response (65), these parameters were included in the analysis as 209 

covariates (2, 10). In line with recent recommendations (5-7), we also performed an additional 210 

three-way LMM analysis of logarithmically transformed absolute diameter change (difference 211 

between peak and baseline diameter as the outcome, in mm), with logarithmically transformed 212 

baseline diameter and shear rate again included as covariates, specific to each FMD test. The 213 

logged absolute diameter change was then also interpreted in the conventional manner and is 214 

presented as “adjusted FMD%” for comparative purposes as suggested (9), in line with recent 215 

reports (4, 67). This allometric approach may be more accurate for scaling changes in diameter 216 

than percentage change alone, which makes implicit assumptions about the linearity of the 217 

relationship between baseline diameter and peak diameter (8). The strength of the relationships 218 

between cardiorespiratory fitness and changes in FMD after exercise and/or control were 219 

assessed using Pearson correlation coefficient.  220 

 221 

Similarly, a three-way LMM analysis was used to detect any differences in heart rate and 222 

perceived exertion in response to the acute protocols between the two fitness groups (low- and 223 

high-fit), across time (at 2 minute intervals) during each protocol (control, moderate- and high-224 

intensity exercise). Statistically significant interactions were further investigated with multiple 225 

comparisons using the least significant difference approach (43, 51). Analyses were conducted 226 

using the Statistical Package for Social Sciences (Version 22; IBM SPSS Inc., Chicago, IL). 227 

Statistical significance was delimited at P≤0.05 and exact P values are cited (P values of “0.00” 228 
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are reported as “<0.01”). Data are presented in the text as mean (95% confidence interval, 229 

95%CI) unless otherwise stated. 230 

 231 

Results  232 

Baseline: 233 

Participant characteristics. 234 

Participant characteristics are presented in Table 1. Participant age was higher in the lower-fit 235 

compared to the higher-fit group [mean difference of 3 years (95% CI, -1 to 6), P=0.05]. 236 

Approximately one quarter of the participants were hypertensive (30% and 26% in the lower and 237 

higher fitness groups, respectively) and all hypertensive participants were taking blood-pressure 238 

controlling medication. Resting heart rate was lower in the higher-fit compared to lower-fit 239 

[mean difference 6 b.min-1 (95% CI, 2 to 10), P = 0.01], but there were no differences in resting 240 

blood pressure or anthropometric variables between lower- and higher-fit groups. 241 

Cardiorespiratory fitness. 242 

There was a mean difference of 11 ml.kg-1.min-1 (95% CI, 8 to 13, P<0.01) in VO2 peak and 50 243 

Watts (95% CI, 30 to 70, P<0.01) between higher and lower-fit groups.  244 

 245 

Heart rate and perceived exertion during the exercise protocols  246 

Heart rate responses were normalised for peak heart rate obtained during the cardiorespiratory 247 

fitness test. Heart rate was significantly higher during high-intensity exercise [mean 65 %HRpeak 248 

(95% CI, 62 to 68 %,)] compared to moderate-intensity exercise [mean 58 %HRpeak (95% CI, 55 249 

to 61%, P<0.01)], whilst both were elevated compared to control [mean 37 %HRpeak (95% CI, 34 250 

to 40), P<0.01]. There was no effect of fitness on the heart rate responses (P=0.24). RPE was 251 
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higher during the HIIE [mean RPE 4 AU (95% CI, 3 to 5)] compared to moderate-intensity 252 

exercise [mean RPE 3 AU (95% CI, 2 to 4, P <0.01)]. There was no effect of fitness on the RPE 253 

responses (P=0.58). 254 

 255 

Brachial artery flow-mediated dilation 256 

Baseline flow-mediated dilation. 257 

The coefficient of variation for baseline FMD% across the three visits in this study was 11.8±3.9 258 

%, which is similar to those previously reported (10.1-14.7%) (66, 73). There were no 259 

differences in resting (pre-exercise/control) brachial diameter, FMDmm, FMD%, or SRAUC across 260 

the three separate testing days (Table 2; P>0.05).  261 

Effect of fitness on baseline flow-mediated dilation. 262 

There was no significant difference in resting FMD% between the lower- (Table 3a) and higher-263 

fit groups (Table 3b) [mean difference of 0.2 % (95% CI, -0.8 to 0.9), P=0.82]. SRAUC was 264 

significantly higher in the lower-fit compared to the higher-fit group [mean difference of 3.2 265 

103·s-1 (95% CI, 1.3 to 6.3), P=0.04], despite no differences in baseline diameter between fitness 266 

groups [mean difference of 0.2 mm (95% CI, -0.6 to 0.8), P=0.13]. Furthermore, time to peak 267 

diameter was significantly longer in the lower-fit compared to the higher-fit group [mean 268 

difference of 10 s (95% CI, 1 to 17), P=0.02].  269 

 270 

Effect of exercise intensity on the acute flow-mediated dilation response to exercise: 271 

Baseline and recovery (10 and 60 min post) brachial FMD% and associated variables are detailed 272 

in Tables 3a and 3b for the lower- and higher-fit groups, respectively. For clarity, post-hoc P 273 
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values are reported only in the text. Delta FMD% data are summarised in Figure 1, which shows 274 

the change in FMD% from baseline during recovery (10 and 60 min post). 275 

 276 

In both fitness groups, FMD decreased by 0.74 % (95% CI, -1.34 to -0.03) after 60-min of 277 

recovery in control compared to baseline (P=0.05). There was no effect of fitness on this 278 

response. There was a significant fitness x condition x time interaction for FMD% (P=0.01). 279 

FMD% was significantly reduced compared to baseline following high-intensity exercise in the 280 

lower-fit group at both 10 min [mean reduction of 0.85 % (95% CI, 0.12 to 1.58), P=0.02) and 281 

60 min post [mean reduction of 0.72 % (95% CI, 0.02 to 1.46), P=0.05] (see Table 3a). In the 282 

higher-fit group, a negligible change in FMD% was observed 10 min after high-intensity 283 

exercise [mean difference of 0.13 % (95% CI, -0.73 to 0.98), P=0.77], however there was a 284 

significant increase in FMD % compared to baseline after 60-min of 0.84 % (95% CI, -0.12 to 285 

1.69; P=0.05) (see Figure 1). The improved FMD% response following HIIE elicited a mean 286 

difference of 1.52 % (95% CI, 0.41 to 2.62) after 60 min in the higher-fit compared to the lower-287 

fit group (P=0.01; Table 3a and 3b). In support of this difference between fitness groups, the 288 

delta change in FMD% after high-intensity exercise at 60 min was significantly correlated with 289 

VO2peak (r = 0.41; P<0.01).  Furthermore, in the higher-fit group, FMD% was elevated after 60-290 

min compared to moderate-intensity and control protocols [mean difference of 0.92% (95% CI, 291 

0.05 to 1.78, P=0.01) and 1.54% (95% CI, 0.65 to 2.42, P=0.02) (Table 3b). These changes in 292 

FMD% were also observed for absolute FMD (mm), with an increase 60-min following high-293 

intensity exercise in the higher-, but not lower-fit group (P=0.04; Table 3a and 3b). 294 

 295 



Bailey et al.        Exercise intensity and FMD in elderly males  

 14

FMD% increased significantly from baseline 10 min after moderate-intensity exercise [mean 296 

change of 0.86 % (95% CI, 0.17 to 1.56), P=0.02; Figure 1], and returned to baseline levels after 297 

60 min [mean difference to baseline of 0.30 % (95% CI, -0.59 to 0.53),] with no effect of fitness 298 

on the response [mean between fitness group difference of 0.43 % (95% CI, -0.28 to 1.13), 299 

P=0.23; r = -0.13, P=0.38]. Furthermore, the FMD% response 10-min after moderate-intensity 300 

exercise was increased compared to the high-intensity response [mean difference of 1.15 % (95% 301 

CI, 0.58 to 1.72), P<0.001] and control [mean difference of 1.23 % (95% CI, 0.72 to 1.88), 302 

P<0.001] in both fitness groups (Figure 1). In the lower-fit group, an increase in FMD% was 303 

observed 10 min after moderate-intensity exercise compared to the reduction observed after 304 

high-intensity exercise [mean difference of 1.34 % (95% CI, 0.60 to 2.09), P<0.001] and control 305 

[mean difference of 0.99% (95% CI, 0.23 to 1.75), P = 0.01] (Table 3a). 306 

 307 

We also present covariate “adjusted FMD%” values (Table 3a/b). This analysis was consistent 308 

with our initial observations in FMD%, with a significant interaction between condition, fitness 309 

and time (P=0.04). Post-hoc analysis revealed significant differences between the lower- and 310 

higher-fit groups 60-min after HIIE (P<0.01). 311 

 312 

Blood flow and shear rate responses 313 

Resting blood flow was significantly elevated 10 min following both exercise protocols 314 

compared to control (P<0.01), and was higher following high-intensity exercise compared with 315 

moderate-intensity [mean difference of 0.36 mL.s-1 (95% CI, -0.03 to 0.66), P=0.05]. There was 316 

no effect of fitness on the blood flow responses to exercise (P=0.79) (Table 3a and 3b). Shear 317 

rate demonstrated a similar pattern where it was elevated 10 min after both exercise protocols 318 
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compared with control (P=0.01), and was higher immediately after high-intensity compared to 319 

moderate-intensity exercise [mean difference of 17.38 103 s-1 (95% CI, -3.86 to 38.62), P=0.01]. 320 

There was no effect of fitness on the shear rate responses after exercise (P=0.78) (Table 3a and 321 

3b).  322 

 323 

Heart rate and blood pressure responses after exercise 324 

There was a condition x time interaction for HR, SBP and MAP (Table 3a and 3b; P<0.01). 325 

Heart rate was elevated by 9 b.min-1 (95% CI, 8 to 12) and by 13 b.min-1 (95% CI, 11 to 15) 10 326 

min after moderate-intensity and high-intensity exercise, respectively, compared to rest.  MAP 327 

was 5 mmHg (95% CI, 3 to 8) and 6 mmHg (95% CI, 3 to 9) higher 10-min after moderate- and 328 

high-intensity exercise, respectively, compared to rest.  329 

 330 

 331 
Discussion  332 

To our knowledge, this is the first study to investigate the acute effects of exercise intensity and 333 

cardiorespiratory fitness on endothelial function in healthy, elderly adults. The main findings 334 

from this study indicate that the acute effects of exercise on brachial FMD are dependent on both 335 

the intensity of exercise and cardiorespiratory fitness in the elderly. We observed an immediate 336 

increase in FMD following MICE that normalised after 60 min in both fitness groups. In 337 

contrast, FMD decreased immediately and 60 min following HIIE in the lower-fit, whereas FMD 338 

increased after 60 min in the higher-fit participants. We also observed reductions in FMD in both 339 

groups following prolonged rest in control. 340 

 341 
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The FMD response to acute exercise is suggested to be biphasic (15), with an inverse 342 

relationship between exercise-intensity and the recovery in brachial artery endothelium-343 

dependent function observed in some (11, 32) but not all studies (4, 58). We attempted to capture 344 

the time-course response by measuring FMD immediately (10 min post) and 60 min after 345 

exercise in the elderly and found an exercise intensity-dependent decrease in endothelial function 346 

immediately after high-intensity exercise, which is consistent with previous findings in young 347 

(11, 32), hypertensive (38) and peripheral arterial disease patients (34). Conversely, we found an 348 

immediate increase in endothelial function after short-term moderate-intensity exercise, which 349 

has been observed in one (32), but not all (4, 11) studies in younger individuals, and following 350 

30 min of walking exercise in healthy middle-aged adults (13). The immediate improvement in 351 

FMD after MICE of 40% PPO in this study contrasts the finding of no-change in FMD following 352 

cycling exercise at 50% HRmax in albeit, younger healthy individuals (11). This difference in 353 

findings may be due to the degree of baseline endothelial dysfunction in elderly compared to 354 

younger adults, with greater improvements in acute FMD observed after exercise in coronary 355 

artery disease patients with a lower baseline FMD (14). Moreover, the increase in FMD after 356 

moderate-intensity exercise normalised after 60 min which is similar in younger adults (32).  357 

 358 

In line with the suggested effect of higher-intensity exercise (>70% HRmax) on the bi-phasic 359 

FMD response, we observed an increase in FMD 60 min after HIIE compared to normalisation 360 

of FMD after MICE in the higher-fit elderly adults. This contrasts a report by Currie et al. 361 

(2012), who found an increased FMD after both high- and moderate-intensity exercise in 362 

coronary artery disease patients. However, unlike the study by Currie and colleagues, our 363 

exercise protocols were duration and work matched, which is important as the dose of exercise 364 
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affects FMD independent of intensity (32). Our study reports intensity-dependent, dose-matched 365 

differences in the bi-phasic FMD response in elderly adults. We provide further support that 366 

exercise intensity modulates acute endothelial function (4, 11, 18, 32), in elderly healthy adults. 367 

 368 

The rationale for assessing the acute response of endothelial function to exercise relates to the 369 

potential impact of repeated bouts of exercise on vascular adaptation (23), but whether the 370 

immediate increase or decrease in FMD after exercise in this study is important for future 371 

vascular adaptation in the elderly is unknown. Padilla et al. (2011) suggest recurring periods of 372 

exercise-induced transient endothelial impairment may represent a beneficial stimulus that 373 

contributes to longer-term improvements in vascular function and structure, a concept known as 374 

hormesis. That is, the initial challenge, e.g. acute reductions in FMD, leads to activation of 375 

beneficial adaptive processes (42). The acute exercise-intensity dependent reductions in FMD we 376 

observed in this study may be linked to the recent observation that HIIE training is likely more 377 

effective in improving conduit artery endothelial function compared to MICE (47), therefore 378 

improving FMD immediately after moderate-intensity exercise (which normalised after 60 min) 379 

may not lead to beneficial long-term vascular adaptation with training. Interestingly, we 380 

observed that cardiorespiratory fitness modulates the bi-phasic response of FMD to high-, but 381 

not moderate-intensity exercise in the elderly. The lack of a bi-phasic response in the lower fit 382 

individuals after high-intensity exercise, with sustained reductions in FMD, may be the signal 383 

required for future vascular adaptation observed following training and increases in fitness (42, 384 

61).  385 

 386 
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Our study is the first to directly assess the effect of cardiorespiratory fitness levels on acute 387 

changes in FMD following exercise in the elderly. The positive relationship between exercise 388 

training and endothelial function is well established (39, 40), whilst cardiorespiratory fitness is 389 

related to training status (36) and can be modified through changes in routine physical activity 390 

(25, 41). In support of this, acute reductions in FMD have been reported in sedentary, but not 391 

active adults after both leg-press exercise (44), and maximal running (29). Whether the 392 

similarities observed in the reduced FMD response after HIIE in the present study reflect the low 393 

overall physical activity levels or the impact of low activity on reductions in cardiorespiratory 394 

fitness is not known.  395 

 396 

The mechanisms responsible for exercise-induced, intensity-dependent changes in FMD have 397 

been proposed to include alterations in oxidative stress, inflammation, shear stress and shear 398 

pattern, blood pressure, baseline artery diameter, sympathetic nerve activity and vasoconstrictors 399 

(15). As we did not assess mechanisms of FMD changes, we can only speculate on the possible 400 

causes. We did not report any differences in blood pressure between exercise intensities so this is 401 

unlikely to be the cause of our observed differences, whilst we covariate controlled for exercise-402 

induced changes in artery diameter and shear stress. The altered FMD response between exercise 403 

intensities may be linked to NO bioavailability (50), and shear stress patterns during exercise as 404 

this is known to directly contribute to changes in FMD (20, 66, 69). Large increases in brachial 405 

antegrade shear stress occur during cycling exercise (20) and are associated with improved FMD 406 

(69), whilst increases in oscillatory shear and/or retrograde flow lead to reductions in FMD (53). 407 

Increases in oscillatory flow are observed early during cycling exercise (20), but may also be 408 

augmented in interval compared to continuous exercise in this study, due to the stop-start nature 409 
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of the high-intensity modality. This may explain the immediate improvement in FMD after 410 

MICE compared to the reduced FMD immediately following HIIE. Similarly, reductions in FMD 411 

immediately after exercise of higher-intensity, and not moderate-intensity exercise, may be due 412 

to dose-dependent increases in brachial artery blood flow and the production of reactive oxygen 413 

species (18, 30) endothelin-1 expression (27) or increased sympathetic nervous activity (26). An 414 

increase in NO bioavailability, even in the presence of large changes in reactive oxygen species, 415 

may explain the differing responses we observed in FMD after high-intensity exercise between 416 

the high- and low-fit groups. In line with this, arterial compliance is compromised in elderly 417 

adults with a lower-, but not higher- cardiorespiratory fitness during similar increases in 418 

inflammation (31). Hence, a higher fitness in elderly adults may be associated with improved 419 

anti-inflammatory mechanisms, such as BH4 synthesis (3) that preserves NO bioavailability 420 

when exposed to increases in reactive oxygen species. We acknowledge that these proposed 421 

mechanisms are speculative and should form the basis of future investigations. 422 

 423 

Our findings highlight the exercise paradox, where those who are at the greatest risk of adverse 424 

responses to acute exercise, have the most to gain from regular exercise and activity (37). Elderly 425 

individuals with low endothelial function who exhibit further reductions in FMD after higher-426 

intensity exercise may be at increased cardiovascular risk. In this study, FMD was reduced 427 

significantly 60 min after high-intensity exercise in the elderly lower-fit individuals, compared to 428 

those with a higher fitness. The acute reduction in FMD was not observed following MICE in 429 

either group or recovery time-point. Whether the acute reduction is necessary to induce vascular 430 

adaptation (see hormesis, discussed above) (42, 61) and represents a potential danger period 431 

where the vascular system may be less responsive to stress is unknown. However, higher fitness 432 
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in this study did attenuate the reduction in FMD observed following high-intensity exercise, 433 

suggesting there may be an adaptive or tolerance response with improvements in 434 

cardiorespiratory fitness.   435 

 436 

Studies investigating the acute effect of exercise intensity on endothelial function do not 437 

commonly assess FMD across the same measurement period using a non-exercise control. This 438 

study is unique in that it offers the opportunity to assess changes in FMD during extended 439 

periods of sedentary time in the elderly. We observed a reduction in brachial artery FMD after 440 

~120 min of “sedentary time’ which is not reported in younger individuals after 6 hours of 441 

prolonged sitting (48). As sitting time increases all-cause and cardiovascular mortality risk in 442 

older adults (37), the vascular effects of prolonged sitting warrants investigation. In line with 443 

recent evidence (48), we showed that reductions in FMD with sedentary time can be attenuated 444 

with short-term moderate-intensity exercise. However, we also found that high-intensity exercise 445 

in lower-fit individuals led to a similar decline in FMD to that of prolonged supine rest. This 446 

suggests that prescribing moderate-intensity in lower-fit elderly individuals might be considered 447 

before progressing to higher-intensity exercise as cardiorespiratory fitness improves. 448 

 449 

A modest association exists between cardiorespiratory fitness and basal endothelial function, 450 

independent of age and health status (39). Similarly, aerobically trained middle-aged and older 451 

adults have preserved endothelial function compared to those who are sedentary (16, 17, 40, 45, 452 

49), however in this study investigating FMD in the elderly there was no difference in resting 453 

brachial artery FMD between lower- and higher-fit groups. This may be due to normalised FMD 454 

in the higher-fit following increases in artery diameter and structural remodelling observed with 455 
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exercise training (35, 68) with a tendency for a larger arterial diameter in the higher-fit compared 456 

to the lower-fit group. It is also possible that a “ceiling” effect exists on basal FMD in the 457 

elderly, as no improvements in FMD were reported following short-term training in older, 458 

higher-fit adults despite increases in VO2peak (19).  459 

 460 

Study limitations 461 

In future studies, it would be interesting to have prolonged FMD measurements e.g. 2h-24h after 462 

exercise to establish whether the bi-phasic pattern is delayed or persistent in the lower-fit 463 

compared to higher-fit individuals, particularly after high-intensity exercise. A limitation of our 464 

study is that we did not include measures of potential mechanisms involved in the changes in 465 

FMD we observed, such as the inflammatory response to exercise. However, the study was 466 

designed to explore whether cardiorespiratory fitness had an effect on acute FMD following 467 

moderate- and high-intensity exercise that were matched for workload. Nonetheless, as 468 

individuals are now living longer, and age-associated reductions in endothelial function become 469 

a growing concern for CVD, it is necessary to investigate the effect of exercise as a potential 470 

therapy on those that would benefit the most e.g. elderly individuals of a lower cardiorespiratory 471 

fitness.  472 

 473 

Clinical relevance 474 

Ischemic events typically occur in the elderly who have known cardiovascular risk factors and/or 475 

disease. It is known that regular physical activity and exercise training throughout the lifespan 476 

has cardio-protective and vascular effects. Recently, HIIE has become popular for its potential 477 

for additional cardiovascular benefits in a shorter bouts of exercise, including the ability to 478 



Bailey et al.        Exercise intensity and FMD in elderly males  

 22

improve endothelial function (47). However, in the elderly who are of a lower fitness and/or 479 

those who already exhibit vascular dysfunction, this type of exercise may need to be treated with 480 

caution due to the potential that vascular dysfunction is transiently exacerbated. Importantly, 481 

whether the differences in the FMD response to different acute exercise intensities reported here 482 

has longer-term consequences on endothelial function and/or CV risk in healthy elderly 483 

individuals needs to be determined.  484 

 485 

Conclusions 486 

In conclusion, the present study illustrates the effect of exercise intensity on acute FMD 487 

responses in the elderly. Furthermore, we highlight the importance of cardiorespiratory fitness on 488 

the acute FMD response following high-intensity exercise. Increases in FMD after moderate-489 

intensity exercise normalised quickly. Conversely, there was prolonged benefit in FMD after 490 

high-intensity exercise in those with a higher-fitness, whereas lower-fitness individuals exhibited 491 

sustained endothelial dysfunction. This decrease in FMD may represent the signal for an 492 

adaptive vascular response and/or endothelial fatigue in untrained elderly individuals. Further 493 

studies on the acute and training effects of exercise intensity on endothelial function will be 494 

important to establish the link between changes in FMD with acute exercise and the potential for 495 

chronic adaptation with exercise training in the elderly. 496 
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Tables 732 
 733 
Table 1. Participant characteristics.  734 
Data are presented as mean±SD. Significance value P ≤0.05. CRF, cardiorespiratory fitness; BMI, body mass index; 735 
SBP, systolic blood pressure; DBP, systolic blood pressure; VO2peak, peak oxygen uptake; RER, respiratory 736 
exchange ratio 737 
 738 
Table 2. Comparison of baseline FMD indices between testing visits.  739 
Data are presented as mean±SD. Significance value P ≤0.05. FMD, flow-mediated dilation; SRauc, shear rate area-740 
under-the-curve. 741 
 742 
Table 3. Flow-mediated dilation and hemodynamic indices at rest, 10 min and 60 min 743 
following control or acute exercise in lower-fit elderly.  744 
Data are presented as mean±SD for a) lower-fit and b) higher-fit. Significance value P≤0.05. A fitness x time x 745 
condition significant interaction was observed for FMDmm (P=0.04), FMD% (P=0.01) and ‘adjusted 746 
FMD%’(P=0.04). For clarity, post-hoc P values are reported in the text only. *significantly different to baseline 747 
#significantly different to control αsignificantly different between moderate- and high-intensity. FMD; flow-mediated 748 
dilation; SRauc, shear rate area-under-the-curve; TTP, time-to-peak diameter; SBP, systolic blood pressure; DBP, 749 
diastolic blood pressure; MAP, mean arterial pressure. 750 
 751 
Figure  752 
 753 
Figure 1. Delta FMD % from baseline at a) 10-minutes post and b) 60-minutes post in 754 
control, moderate-intensity and high-intensity exercise in both lower-fit (open-bars) and 755 
higher-fit (dark bars) elderly individuals.  756 
Error bars represent SD. Significance value P ≤0.05. Post hoc analysis revealed a control 60-min ΔFMD% was 757 
significantly reduced compared to exercise (P=0.01), b ΔFMD% significantly increased 10-min after moderate-758 
intensity compared to high-intensity exercise (P=0.02), c ΔFMD% significantly improved in the higher-fit compared 759 
to the lower-fit group 60-min after high-intensity exercise (P=0.01). FMD, Flow-mediated dilation.  760 
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Table 1. 
 

All 
(n=47) 

Lower-CRF 
(n=27) 

Higher CRF 
(n=20) 

P value 
(lower vs. higher) 

Demographics 
 
Age (years) 
 

70±5 72±5 69±5 0.05 

Hypertensive (%) 
 

31 29 26 - 

Anthropometric measurements 
 
Height (m) 
 

1.74±0.08 1.72±0.08 176±0.09 0.27 

Weight (kg) 
 

76.4±11.5 76.3±12.5 76.5±10.3 0.96 

BMI (kg.m-2) 
 

25.3±3.4 25.5±3.4 24.9±3.3 0.52 

Body fat (%) 
 

24.7±5.9 25.8±6.0 23.3±5.8 0.17 

Waist:Hip ratio 
 

0.92±0.08 0.92±0.08 0.92±0.07 0.71 

Hemodynamic variables 
 
Resting heart rate 
(bpm) 

55±7 58±7 52±7 0.005 

Brachial SBP  
(mm Hg) 

125±15 124±14 126±12 0.66 

Brachial DBP 
(mm Hg) 

72±8 72±9 72±7 0.87 

Medication classification 
 
ARB / ACE inhibitors 
(%) 

23 22 19 - 

Antiplatelets (%) 
 

6 7 4 - 

Beta-blockers (%) 
 

4 7 0 - 

Calcium channel 
blockers (%) 

11 7 11 - 

Statins (%) 
 

30 40 11 - 

Cardiorespiratory fitness 
 
VO2 peak : 
Absolute (L.min-1) 

 
2.22±0.63 

 

 
1.85±0.39 

 
2.71±0.56 

 
<0.001 

Relative (mL.kg-1.min-1) 
 

29.0±6.96 24.3±2.9 35.4±5.5 <0.001 

Peak heart rate (bpm) 
Age-predicted   (%) 

151±15 
100±10 

146±15 
102±12 

156±10 
97±6 

0.02 
0.08 

RER (AU) 1.18±0.11 1.19±0.13 1.16±0.08 0.16 
Peak Power (Watts) 
 

160±40 140±30 190±40 <0.001 

 



 

Table 2. CONTROL 
 

MODERATE-
INTENSITY 

HIGH- 
INTENSITY 

P value 
(condition) 

Baseline FMD test 
Diameter (mm) 
 

4.82±0.62 4.81±0.66 4.81±0.58 0.79 

FMD (mm) 
 

0.02±0.01 0.02±0.01 0.02±0.01 0.32 

FMD (%) 
 

4.71±1.57 4.86±1.58 4.89±1.45 0.50 

FMD SRAUC (103 
s-1) 
 

13.8±5.7 13.7±7.6 14.6±7.1 0.29 



 3 a) LOW-FIT CONTROL (NO EXERCISE) MODERATE-INTENSITY 
CONTINUOUS EXERCISE 

HIGH-INTENSITY INTERVAL 
EXERCISE 

 Pre Post Post (60 min) Pre Post Post (60 min) Pre Post Post (60 min) 
Flow-mediated dilation  

Diameter (mm) 
 

4.6±0.6 4.6±0.6 4.5±0.6* 4.6±0.6 4.7±0.6*# 4.6±0.6 4.6±0.6 4.7±0.6*# 4.6±0.7 

FMD (mm) 
 

0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01 0.03±0.01*#a 0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01 

Rest blood flow 
(mL.s-1) 

1.2±0.7 1.2±0.6 0.8±0.7* 1.2±0.6 1.8±0.9* 0.8±0.6 1.2±0.7 2.1±1.4*# 0.9±0.6 

Peak blood flow 
(mL.s-1) 

4.8±2.2 4.5±2.3 4.0±2.6* 4.8±2.0 5.5±2.1*# 4.7±2.6 5.2±2.8 6.0±2.5*#a 4.9±2.8 

FMD SRAUC  
(103 s-1) 

14.1±5.9 13.4±7.4 13.3±6.5* 15.0±8.2 17.6±8.1*# 14.7±8.0 15.5±7.0 18.3±7.6*#a 15.0±7.9 

TTP diameter (s) 
 

66±27 67±35 74±36* 72±31 64±27 73±46 69±34 71±32 67±40 

FMD (%) 
 

4.7±1.6 4.4±1.7 4.1±1.6* 4.7±1.6 5.4±1.9*# 4.8±1.7 4.8±1.4 4.0±2.2*#a 4.1±1.3*a 

Adjusted FMD 
(%) 

 

4.5±1.6 4.2±1.5 4.0±4.6* 4.5±1.9 5.1±1.7*# 4.5±1.7 4.9±1.4 3.9±2.1*#a 4.2±1.2*a 

Heart rate and blood pressure 

Heart rate (bpm) 59±10 56±8 55±7 58±7 68±9* 58±6 58±8 71±13*#a 59±8 

SBP (mm Hg) 124±15 130±15 129±15 125±14 133±13* 126±15 124±12 132±14* 124±11 

DBP (mm Hg) 72±9 76±9 74±9 73±9 75±9 74±11 73±9 76±10 74±9 

MAP (mm Hg) 87±8 91±9 90±9 88±10 93±9* 89±12 88±10 93±11* 88±9 



 

3 b) HIGH-FIT CONTROL (NO-EXERCISE) MODERATE-INTENSITY 
CONTINUOUS EXERCISE 

HIGH-INTENSITY INTERVAL 
EXERCISE 

 Pre Post Post (60 min) Pre Post Post (60 min) Pre Post Post (60 min) 
Flow-mediated dilation 

Diameter (mm) 
 

5.0±0.7 4.9±0.6 5.0±0.6 5.0±0.7 5.1±0.7*# 5.0±0.6 4.9±0.5 5.1±0.6*# 5.0±0.6 

FMD (mm) 
 

0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01 0.03±0.01*#a 0.02±0.01 0.02±0.01 0.02±0.01 0.03±0.01*#a 

Rest blood flow 
(mL.s-1) 

1.1±0.9 0.9±0.6 0.7±0.6* 1.2±0.9 1.9±1.0*# 1.0±0.8 1.2±0.9 2.2±1.1*#a 1.0±0.6 

Peak blood flow 
(mL.s-1) 

5.0±2.7 4.4±2.7 3.5±1.9* 4.7±2.6 5.1±2.4*# 4.9±2.0 5.0±2.9 6.2±1.9*#a 4.7±2.2 

FMD SRAUC  
(103 s-1) 

 

10.2±5.6 10.1±5.9 9.3±5.6* 11.6±6.5 13.7±7.3*# 12.0±3.5 13.2±7.1 15.5±7.3*#a 12.7±5.2 

TTP diameter (s) 
 

57±24 61±26 69±33* 60±21 54±18 56±23 62±32 58±32 58±27 

FMD % 
 

4.8±1.6 4.4±1.0 4.1±1.3 5.1±1.5 6.1±2.5*#a 4.9±1.3 4.9±1.5 5.0±2.6 5.7±2.0*#a 

Adjusted FMD 
(%) 

 

4.6±1.4 4.4±1.1 3.8±1.6 5.0±1.6 5.9±2.0*#a 4.6±1.6 4.9±1.4 4.8±2.3 5.5±1.6*#a 

Heart rate and blood pressure 
Heart rate (bpm) 51±7 48±6 49±8 52±7 61±8* 52±6 52±7 64±7*#a 53±6 

SBP (mm Hg) 126±12 133±13 132±12 127±12 136±11* 125±13 126±10 135±12* 125±13 

DBP (mm Hg) 72±7 75±8 75±8 72±7 76±7 72±8 73±9 76±7 72±8 

MAP (mm Hg) 87±7 90±8 89±8 88±8 93±8* 86±10 87±6 94±7* 87±8 
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