
A FRAMEWORK FOR
SELF-ADAPTIVE NETWORKED APPLIANCES

By

Paul Fergus MSc., BSc., MBCS

A thesis submitted in partial fulfilment of the
requirements of Liverpool John Moores University

for the degree of Doctor of Philosophy

Networked Appliances Laboratory
School of Computing and Mathematical Sciences

December 2005

C %ý Wavii ff4 19-(9 - /997

ACKNOWLEDGEMENTS

There have been many contributing factors associated with the completion of my PhD, the

most important being all the people who have helped me. I would like to thank Professor

Madjid Merabti for giving me the opportunity to fulfil my dreams; for believing in me;

providing me with invaluable knowledge and above all for being a good friend through the

good and bad times -I am forever indebted to you Professor Merabti. I would like to thank

Dr Martin Hanneghan for his continued support and guidance throughout my PhD. I will

remember the numerous conversations we have had over the past three years with great

fondness. I would like to thank him for sharing his in-depth technical and academic
knowledge for which this thesis would not have been possible. I would also like to thank him

for being a good friend.

I would like to thank my dad who, before he died, urged me to carry on with my studies when
I wanted to quit. I would also like to thank a very special family who have recently come into

my life and supported me during the final stages of my PhD; Lorna, Sasha-Lei, Lillian and
Brian Bracegirdle. I would also like to thank the cats Kami, Smokey, Minnie, Tigger, and
Charlie, for making me laugh when I needed it.

Last, but by no means least, I would like to thank all my friends who supported me through

my studies, which include Nicholas and Annette Hodder, Neil and Dawn Beaumont, Sue and

Ken Richardson, Hilton and Rona McCabe, Shaun and Christopher Bennett, Ray Brizell and

Jenny Leavitt. I would like to extend a special thank you to Omar Abuelmatt'ti, Anirach

Mingkhwan, Gurleen Arora, Henry Chang, David Llewellyn-Jones, John Haggerty, Bob

Askwith, Arshad Mahammud, Huma Javed, Azzelarabe Taleb-bendiab, Qi Shi, Janette

Skentelbery, and Carol Oliver to name a few, for all their help and support over the years.

ii

ABSTRACT

The proliferation of home appliances and the complex functions they provide make it ever

harder for a specialist, let alone an ordinary home user, to configure and use them. Imagine

your home environment, more specifically your living room, and the devices it contains. It is

more than likely that it has a DVD player, Widescreen or Plasma TV, a surround sound

speaker system, and a HiFi. Now imagine the time you bought your DVD player and tried to

integrate it with your existing home appliance configuration. After taking the DVD player out

of the box you will have connected all the wires and tuned in your TV. This whole process

may have taken several hours and it is likely the configuration was not correct first time.

These kinds of experiences are becoming increasingly more common because devices and

their associated configurations are becoming more complex.

Now image a future environment whereby you take the DVD player out of the box, switch it

on, and it just works. You put your DVD movie into the player, press play and the video is

displayed on your TV, whilst the sound is directed to the surround sound speaker system. You

do not have to manually connect the player to any external devices and you do not have to

tune in your TV. When the DVD player is switched on it automatically communicates with all

other devices needed within the home via its wireless network interface. When the play button

is pressed all the devices are combined to form a home entertainment system and released

when the player no longer needs them.

In trying to achieve this, many challenges need to be addressed, which include service-

oriented networking; service discovery; device capability matching; dynamic service

composition; and device self-adaptation. Overcoming these challenges will allow mechanisms
to be developed that simplify the configuration and management tasks associated with next

generation networked appliances.

In this thesis we address these challenges using a new framework we have developed called

the Networked Appliance Service Utilisation Framework. Our framework allows
heterogeneous devices to be seamlessly interconnected and operated with little human

intervention. The operational functions provided by different appliances are dispersed within

the network and used to create high-level applications. Devices are interconnected using a

service-oriented middleware and discovered and combined using machine-processable
descriptions. Our framework takes into account the capabilities devices support and provides

self-adaptation mechanisms to manage device configurations automatically. We have

successfully developed a working prototype that implements an Intelligent Home

Environment, which is used to quantitatively evaluate our framework.

111

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii

ABSTRACT ... iii
TABLE OF CONTENTS .. iv

LIST OF FIGURES ... x

LIST OF TABLES .. xvi

LIST OF ACRONYMS AND TERMS ... xvii
1 Introduction ... 1

1.1 Preamble .. 1

1.2 Networked Appliances and Home Networking ... 2

1.3 Structured and Unstructured Services .. 4

1.4 Improving Service Discovery .. 6

1.5 Composing Networked Appliances Automatically ... 7

1.6 Flexible Networked Appliances and Self-Adaptation
...

8

1.7 Scope of the research ...
8

1.8 Project Requirements
...

9

1.9 Novel Contributions to Knowledge ...
10

1.9.1 Service-Oriented Networking ... 11

1.9.2 Service Discovery
... 11

1.9.3 Device Capability Matching ... 13

1.9.4 Dynamic service composition and self-adaptation 13

1.9.5 Ubiquitous Computing .. 14

1.10 Thesis Structure ... 15

2 Networked Appliances, P2P Networking and Semantics
...

18

2.1 Introduction .. 18

2.2 Networked Appliances ... 18

2.3 Interconnecting Home Networked Appliances ..
19

iv

2.3.1 Open Services Gateway Initiative (OSGi) .. 19

2.3.2 Digital Living Network Alliance (DLNA) ... 21

2.3.3 Universal Plug and Play (UPnP) ... 23

2.3.4 Home Audio/Video Interoperability (HAVi) .. 25

2.3.5 Versatile Home Network (VHN) ..
25

2.3.6 Power Line Communication (PLC) ..
26

2.3.7 ePerSpace ..
27

2.3.8 MediaNet ...
28

2.3.9 RUNES
...

28

2.3.10 Semantic HiFi
...

29

2.3.11 Future Home ...
30

2.3.12 WCAM ..
31

2.3.13 BETSY ..
31

2.4 Peer to Peer Networking .. 31

2.4.1 Napster ..
33

2.4.2 iMesh
...

34

2.4.3 Gnutella
...

34

2.4.4 FastTrack ... 34

2.4.5 Chord ...
35

2.4.6 Content-Addressable Network (CAN) ..
37

2.4.7 Pastry ...
39

2.4.8 JXTA ...
41

2.5 The Semantic Web ...
44

2.5.1 Ontology ...
46

2.5.1.1 Weakly Defined Ontology
...

47

V

2.5.1.2 Strongly Defined Ontology .. 48

2.5.1.3 Ontology Specifications ... 51

2.5.1.4 Consensus Ontologies .. 52

2.5.1.5 Ontology Evolution .. 54

2.5.2 Semantic Web Services ... 55

2.6 Summary .. 56

2.6.1 Challenges
... 60

3 Networked Appliance Service Utilisation Framework ... 62
3.1 Introduction .. 62

3.2 Framework Overview .. 62

3.3 Distributed Semantic Unstructured Services (DiSUS)
64

3.3.1 The DiSUS Protocol Requirements .. 65

3.3.2 DiSUS Overview
..

65

3.3.3 The DiSUS Protocol Design ... 66

3.4 Summary .. 72

4 Framework Secondary Services
.. 74

4.1 Introduction
.. 74

4.2 Distributed Emergent Semantics (DistrES) ... 74

4.2.1 The DistrES Algorithm Requirements
.. 76

4.2.2 The DistrES Algorithm Overview .. 78

4.2.3 The DistrES Algorithm Design ... 81

4.3 The Device Capability (DeCap) Service .. 86

4.3.1 The DeCap Service Requirements
..

87

4.3.2 The DeCap Design .. 88

4.4 Semantic Interoperability and Signature Matching (SISM) Service
.................

92

4.4.1 The SISM Service Requirements
..

93

V1

4.4.2 The SISM Service Overview ..
94

4.4.2.1 The IOPE Matching Process .. 94

4.4.2.2 The Signature Matching Process ... 96

4.4.2.3 The Extended Interface (EI) service ..
99

4.4.3 The SISM Service Design ...
101

4.5 Summary .. 111

5 Case Study: Intelligent Home Environment
...

113

5.1 Introduction ..
113

5.2 Case Study ...
113

5.2.1 Characteristics of this study ..
118

5.2.2 Using our Framework for an Intelligent Home Environment
118

5.2.3 Anomalies in this Case Study ...
120

5.2.4 Positive aspects of this Case Study ... 120

5.3 Other Application Domains ...
121

5.3.1 Emergency Installations - Ad-Hoc Integration and Service Utilisation ... 121

5.3.2 Medical Installations - Emergent Functionality
122

5.4 Summary
..

123

6 System Implementation ..
125

6.1 Introduction ..
125

6.2 Service-Oriented Architecture ...
125

6.3 Framework Services ...
125

6.3.1 The JXTA Peer-to-Peer Network ..
126

6.3.2 Secondary and Application Specific Services ..
127

6.3.3 Serialisation and Machine-Processable Semantics
128

6.3.3.1 Describing Services Semantically ..
130

6.3.3.2 Evolving ontological structures using general consensus
131

vi'

6.3.4 Dynamically composing services using ontology 131

6.3.5 Formally describing device capabilities using MAUT 131

6.3.6 Self-adaptive middleware ... 132

6.4 The Framework Prototype ... 132

6.4.1 Technical Description ... 13 5

6.4.2 Prototype Configuration .. 141

6.4.3 System Operation
.. 142

6.5 Summary .. 143

7 Evaluation ... 146
7.1 Introduction

.. 146

7.2 Service-Oriented Architecture ... 146

7.3 Semantic Discovery
... 151

7.4 Device Capability Matching .. 154

7.5 Dynamic Service Composition .. 156

7.6 Self-Adaptation .. 157

7.7 Comparison with existing Approaches .. 158

7.7.1 Universal Plug and Play .. 158

7.7.2 Open Services Gateway Initiative ... 160

7.7.3 Reconfigurable Ubiquitous Networked Embedded Systems 161

7.8 Summary .. 163

8 Conclusions and Future Work
..

165

8.1 Introduction ..
165

8.2 Thesis Summary ... 166

8.3 Contribution to knowledge
..

168

8.3.1 Service-Oriented Networking
...

168

8.3.2 Service Discovery
...

168

vi"

8.3.3 Device Capability Matching ... 169

8.3.4 Dynamic service composition and self-adaptation 169

8.3.5 Ubiquitous Computing .. 170

8.4 Further Work .. 171

8.4.1 Semantic Annotation and Processing Issues ... 172

8.4.2 Security ... 172

8.4.3 Feature Interaction
..

173

8.4.4 Service and Device Composition Issues ...
173

8.4.5 Transport Protocol Interoperability ... 173

8.5 Concluding Remarks .. 173

REFERENCES .. 176

APPENDIX A: NASUF USE CASE DIAGRAMS .. 190

APPENDIX B: NASUF CLASS DIAGRAMS
...

198

APPENDIX C: NASUF ACTIVITY DIAGRAMS .. 212

APPENDIX D: NETWORKED APPLIANCES ONTOLOGY
..........................

230

APPENDIX E: PUBICATIONS RESULTING FROM THIS THESIS 234

ix

LIST OF FIGURES

Figure 1.1 Networking home appliances ... 3

Figure 1.2 Information Space .. 5

Figure 1.3 Proposed Framework .. 9

Figure 3.1 NASUF Framework .. 63

Figure 3.2 Distributed Semantic Unstructured Services
.. 66

Figure 3.3 Start Device .. 67

Figure 3.4 Create Device Capability Model .. 68

Figure 3.5 Publish Service ... 69

Figure 3.6 Create Peer Service Advertisements .. 70

Figure 3.7 Discover Peer Service ... 71

Figure 3.8 Create Semantic Models ... 72

Figure 4.1 Evolving Knowledge Structures over Time ... 75

Figure 4.2 Statistical Pattern Extraction Engine .. 79

Figure 4.3 Semantic Interoperability ... 82

Figure 4.4 Extracting Ontological Structures .. 83

Figure 4.5 Evolving Ontological Structures
.. 84

Figure 4.6 Merging Ontological Structures ... 85

Figure 4.7 Device Capability Matching Service .. 87

Figure 4.8 Device Capability Matching ... 90

Figure 4.9 Device Capability Advertisement ... 91

Figure 4.10 Device Capability Matching Algorithm ...
92

Figure 4.11 Dynamic Service Compositions between Devices
93

Figure 4.12 IOPE Matching performed by SISM ..
94

Figure 4.13 Dynamic Service Composition using SISM ...
98

X

Figure 4.14 Extended Interfaces for the Visual Service ..
100

Figure 4.15 Process Service Request ...
101

Figure 4.16 IOPE Class Diagram ...
102

Figure 4.17 Perform Abstract Match ...
103

Figure 4.18 Atomic Process ...
104

Figure 4.19 Perform Concrete Match ..
105

Figure 4.20 Service Grounding Model ..
106

Figure 4.21 Service Interface Model ...
107

Figure 4.22 Build Signature .. . 108

Figure 4.23 Find Intermediary Service 109

Figure 4.24 Invoke Peer Service
111

Figure 5.1 Function Utilisation
115

Figure 5.2 Virtual Appliance .. .
116

Figure 5.3 Dynamic Service Composition ...
117

Figure 6.1 NASUF Framework ..
126

Figure 6.2 NASUF User Interface 133

Figure 6.3 NASUF Service Request Models 136

Figure 6.4 Joining the P2P Network using JXTA 137

Figure 6.5 Binding to Secondary Services 138

Figure 6.6 RDQL query execution 138

Figure 6.7 DistrES Networked Appliances Ontology ..
139

Figure 6.8 Extracting the Top n Classes ..
140

Figure 6.9 Reasoning over the domain ontology ...
140

Figure 6.10 Selecting the Best Service 141

Figure 7.1 Serial Service Reliability
147

xi

Figure 7.2 Parallel Service Reliability
... 148

Figure 7.3 Probability of find n in set m .. 152

Figure 7.4 Find a concept in a global ontology ... 152

Figure 7.5 Finding one or more concepts in a global ontology 152

Figure 7.6 Percentage of resource required ... 154

Figure 7.7 Calculate device capability score ... 155

Figure 7.8 Extended MAUT formula
... 155

Figure A. 1 Start Device ... 190

Figure A. 2 Connect Device to Network .. 190

Figure A. 3 Create Device Capability Model
... 191

Figure A. 4 Publish Create Device Capability Model
.. 191

Figure A. 5 Create Peer Service Advertisement ... 192

Figure A. 6 Publish Peer Service .. 192

Figure A. 7 Create Semantic Service Models
... 193

Figure A. 8 Find Core Services ... 193

Figure A. 9 Discover Peer Service
.. 194

Figure A. 10 Invoke Peer Service ... 194

Figure A. 11 Process Service Request
.. 195

Figure A. 12 Perform Semantic Interoperability .. 195

Figure A. 13 Perform Abstract Match
.. 196

Figure A. 14 Perform Concrete Match ... 196

Figure A. 15 Build Signature .. 197

Figure A. 16 Find Intermediary Service ...
197

Figure B. 1 Distributed Semantic Unstructured Services Manager 198

Figure B. 2 Peer Service
...

199

X11

Figure B. 3 Endpoint ... 199

Figure B. 4 Endpoint Listener ... 200

Figure B. 5 Service Advertisement ... 200

Figure B. 6 Service Class Advertisement ... 200

Figure B. 7 Service Specification Advertisement ... 201

Figure B. 8 Service Implementation Advertisement ... 201

Figure B. 9 Service Ontology Model .. 202

Figure B. 10 Service Model .. 202

Figure B. 11 Service Profile Model .. 203

Figure B. 12 Service Process Model .. . 203

Figure B. 13 Atomic Process 204

Figure B. 14 Parameter .. . 204

Figure B. 15 Service Grounding Model 205

Figure B. 16 Atomic Process Grounding 205

Figure B. 17 Service Input/Output Parameter .. . 206

Figure B. 18 Service Interface Model ... 207

Figure B. 19 Device Capability Model ... 208

Figure B. 20 Device Capability Service 208

Figure B. 21 Device Capability Algorithm 208

Figure B. 22 Distributed Emergent Semantics Service 209

Figure B. 23 Extraction Engine 209

Figure B. 24 Evolutionary Pattern Extraction Engine 210

Figure B. 25 DistrES Ontology 210

Figure B. 26 SISM Service 211

Figure B. 27 Abstract Matcher Algorithm
.. 211

X111

Figure B. 28 Concrete Matcher Algorithm ... 211

Figure C. 1 Start Device ... 212

Figure C. 2 Connect device to the network .. 213

Figure C. 3 Create device capability model ... 214

Figure C. 4 Create Peer Service advertisements ..
215

Figure C. 5 Publish Peer Services .. 216

Figure C. 6 Create Semantic Models ... 217

Figure C. 7 Find Core Services .. 218

Figure C. 8 Discover Peer Service ... 218

Figure C. 9 Invoke Peer Service .. 219

Figure C. 10 Process Service Request 220

Figure C. 11 Perform Semantic Interoperability .. 221

Figure C. 12 Extract ontological structures ... 221

Figure C. 13 Evolve ontological structures ..
222

Figure C. 14 Merge ontological structures ..
223

Figure C. 15 Perform Abstract Match .. 224

Figure C. 16 Perform Concrete Match ...
225

Figure C. 17 Build Signature ... 226

Figure C. 18 Find Intermediary Service .. 227

Figure C. 19 Device capability matching ..
228

Figure C. 20 Device capability matching algorithm ..
229

Figure D. 1 Household Appliance Ontology Portion ...
230

Figure D. 2 Physical Device Ontology Portion ...
230

Figure D. 3 Electronic Household Appliance Ontology Portion
...............................

231

Figure D. 4 Recording of Wave IBT Ontology Portion ...
231

xiv

Figure D. 5 Electrical Device Ontology Portion .. 232

Figure D. 6 Self-Powered Device Ontology Portion ... 232

Figure D. 7 Powered Device Ontology Portion ... 233

xv

LIST OF TABLES

Table 2.1 P2P Models .. 33

Table 4.1 Semantic Interoperability Table
... 96

Table 6.1 Scenario Parameters ... 142

xvi

LIST OF ACRONYMS AND TERMS

API Application Program Interface
Appliance A device or instrument designed to perform a specific function
CC/PP Composite Capabilities/Preferences Profile
CE Consumer Electronics
DeCap Device Capability matching service
DHWG Digital Home Working Group - Home networking middleware
DistrES Distributed Emergent Semantics - evolves semantic structures
DiSUS Distributed Semantic Unstructured Services - P2P implementation
DL Description Logics
EPG Electronic Program Guides
GENA General Event Notification Architecture
HES Home Electronic System
HTTP Protocol used to transmit and receive files
IOPE Inputs, Outputs, Preconditions and Effects
IP Internet Protocol
JAR Java Archive File - contains java resources to support the service
JVM Java Virtual Machine
JXTA Set of Peer-to-Peer Specifications
MAUT Multi-Attribute Utility Theory
Middleware Software that mediates between an application and a network
NASUF Networked Appliance Service Utilisation Framework
Networked Appliance A dedicated device with an processor and a network connection
Ontology Formal specification for representing objects and relationships
OSGi Open Services Gateway Initiative
OSI Open System Interconnection
OWL Web Ontology Language
OWL-S Web Ontology Language for Services
P2P Peer-to-Peer
PC Personal Computer
Pervasive Manifested throughout; penetrating or affecting everything
QoS Quality of Service
RDF Resource Description Framework
RDFS Resource Description Framework Schema
RDQL RDF Query Language
Reasoner Something that can find new facts from existing data
ROI Regions of Interest
RPC Remote Procedure Call
Service A unit of work done by a service provider for a service consumer
Signature A method name including its associated parameters
SSDP Simple Service Discovery Protocol
Structured Service Use third party software to register and advertise functions
SISM Semantic Interoperability and Signature Matching
SOA Service-Oriented Architecture
Vocabulary All the words of a language
Ubiquitous Being or seeming to be everywhere at the same time; omnipresent
UDP User Datagram Protocol
Unstructured Service Provides services independent of any kind of third party
UPnP Universal Plug and Play - Home networking middleware
URI Universal Resource Indicator
XML Extensible Markup Language
WSDL Web Service Description Language

xvii

Chapter 1

1 Introduction

1.1 Preamble

In recent years, with the growth of personal computer usage and the Internet, networked

computers have become more widely used in more diverse applications. As this trend

continues, we can expect ordinary everyday appliances to become part of these networks, and

networked devices will become pervasive and often invisible to the users.

As connectivity at broadband speeds becomes an integral part of our household infrastructure,

it is envisaged that every device will have a network interface that allows it to be accessed

and controlled from anywhere in the world. This idea is generating a great deal of interest and

a number of research initiatives have been proposed that include on-demand multimedia

services [France Telecom 2005], home automation through wireless sensor networks and

remote control of home appliances through immersive technologies and global

communications [Koumpis 2005]. Sound business models are being developed to realise such

applications based on market and user needs that will map the future direction of Internet and
home technologies.

We are already seeing this transition in home entertainment systems, allowing for a greater
level of sophistication in how users interact with multimedia service subscriptions and the
devices they have installed. The provision to monitor and control the home using TV sets and
set-top boxes has advanced rapidly in recent years because the TV is considered as the central

appliance within a typical home environment [Evans 2001, Marshall 2001, Bhatti 2002].

Interactive-TV and real-time communication during live broadcasts using advances in global

communications and mobile devices have become common place. The ability to pause live

TV and personalise multimedia services has given users greater control over how and when

they interact with digital entertainment. Furthermore we are seeing a convergence between

personal computing and home entertainment systems. The advent of media centre set-top
boxes allow users to connect the devices they own and access a plethora of on-line

multimedia services, via their broadband connection, such as digital radio, electronic

programme guides (EPG), on-demand Internet TV, on-line gaming, including services

associated with modem day computing such as email and instant messaging. However, this

1

said, we are at a crossroads whereby configuring and managing next generation networked
appliances and home networks will become increasingly more complex. As we will argue in

this thesis existing approaches lack scalability and sound business models to fully utilise new

technological shifts and as such alternative mechanisms are required.

In the remainder of this chapter we provide an overview of the challenges that need to be

addressed and discuss their importance. A brief introduction is provided about the research
fields considered within this thesis and all concepts relating to its construction are clearly
defined, which includes networked appliances, home networking, service-oriented

architectures, service discovery, dynamic service composition and self-adaptation. Current

techniques and research practices are described and their associated strengths and weaknesses

are highlighted. Finally we conclude this chapter by defining the scope of this thesis, the key

requirements that this thesis addresses, the novel contributions we have made and an

overview of the remaining chapters.

1.2 Networked Appliances and Home Networking

For more than a decade, home and building automation and networking have received much

consideration by homeowners, industry and academic researchers [Dutts-Roy 1999, Siuru

2000]. This includes the introduction of a wide spectrum of wired and wireless infrastructures

and network protocols such as LonWorks, CEBus, SmartHouse, VHN, HomePNA,

HomePnP, IEEE1394 (Firewire), X-10, IrDA, IEEE802.11b, Bluetooth and HyperLAN/2

[Rose 2001]. However despite the long list of advantages they provide, several challenges that

need to be considered, most notably, interoperability [Abuelma'atti 2002a, Zahariadis 2002]

and the difficulties associated with the integration of combined functionalities. In Figure 1.1 a

typical home environment is illustrated; the challenge is to combine devices from different

domains, i. e. broadcast, internet and mobile, and disperse their operational functions within

the network so that they can be used by any device within those domains.

2

Home Appliances Network

Figure 1.1 Networking home appliances

Many industry efforts have evolved to create interworking solutions, which include the Home

Electronic System (HES) [Paffenden 2001], Home Audio-Video Interoperability (HAVi)

[HAVI 2003], Universal Plug and Play (UPnP) [Miller 2001, Microsoft Corp. 2005] and it's

Intel Digital Home implementation [Intel 2003] and the Open Services Gateway Initiative

(OSGi) [Marples 2001]. Additionally, research efforts within networked appliances and

service discovery disciplines are trying to provide solutions, which define scenarios for new

and emerging network configurations [Cheng 2000, Minoh 2001]. For example, the provision

of home monitoring and control systems from within TV sets and set-top boxes has advanced

rapidly in recent years because the TV is considered the central appliance within a typical

home environment [Evans 2001, Marshall 2001, Bhatti 2002].

The main goal is to ensure user acceptance and provide flexible systems that will become

integrated within the household infrastructure. This transition mirrors the evolutionary

process undertaken within personal computing and wide area communications, whereby it is

now difficult to imagine using a computer without Internet access. Given the success of this

transition, home networking platforms aim to achieve the same level of acceptance whereby it

will be impossible to imagine home appliances without Internet access.

Many research initiatives are trying to move away from bespoke solutions by combining

embedded systems with the Internet allowing more complex solutions to be developed. The

complexity itself is a by-product of heterogeneity and the dynamic nature associated with

networks that resist any form of control. However putting complexity aside there is still a

need to promote this integration because bespoke development is too expensive and too

3

limiting for innovative applications. This is clearly a trade off between inflexible, but reliable,

and flexible but unreliable systems. The end goal must be flexibility based on sound
engineering principles that produce self-adaptive middleware frameworks that enable

heterogeneous networks, devices and services to be seamlessly interconnected.

Although there are many solutions that allow devices to be interconnected within the home

environment, diminutive advances have been made to abstract the complexity away from this

process. Technology is evermore pervasive and effectively managing it is not an easy task.

Advances made in global communications and service-oriented architectures promise to

provide a platform that realises a seamless integration between heterogeneous devices,

however few solutions have produced any convincing results. The challenge is get different

appliances built to different specifications, to work together.

1.3 Structured and Unstructured Services

Visualise a high street shopping area, which is a simple outdoor environment. The street is

full of shops, restaurants, street vendors and other people. We pop in and out from one shop to

another, buy a quick snack from a street vendor - here today gone tomorrow - and greet

people we know. All of these activities happen within our focal view. Devices within real-

world environments have to work the same way as this shopping area analogy. This provides
devices, with the ability to interact and use services in the same way people interact with

shops within real-world environments.

What emerges from this analogy for service usage is defined as an Information Space

[Mingkhwan 2002] and illustrated in Figure 1.2. Information Space is the concept of
integrating information and services from the environment a device has access to. By

considering the device as the centre of surrounding information and services we find that, in

reality, the environment that the device moves into provides services. The ability to select and

use these services to offer the maximum flexibility for the device is of paramount importance.

The need for an integrated information space requires the unification of wired and wireless

networks and their services. In particular, the challenge is to bring together services within ad
hoc networks such as Bluetooth and infrastructure networks like the Internet [Mingkhwan

2003]. Devices provide services throughout the Information Space using middleware that

interconnects infrastructure networks and ad hoc networks together.

4

1,

Information Space

Information From Nearby
Terminal

Figure 1.2 Information Space

Services within an Information Space can be described as structured and unstructured and are

defined as follows:

0 Structured Services use third party software to register and advertise functions the

peer provides, e. g., Directory, Proxy and Naming Services. These kinds of services

typically have complex structures, such as network connectivity, database access and

multimedia functions.

" Unstructured Services provide services independent of any kind of third party

intervention. This concept is based on a simple service definition, such as a kiosk that

provides quick information, a TV remote control that simply changes the channel or a

file-sharing application that exchanges digital content.

There are an increasing number of structured services available to users over the Internet and

ad hoc networks, yet unstructured services remain far behind. Internet-based structured

services like JINI [JINI Technology 2005] and UDDI [Paolucci 2002b, WebMethods 2003]

are already well defined; however they are incapable of providing services within

dynamically changing network environments. This limitation can be simplified by situating

services within the Information Space, using decentralised networking concepts

[Parameswaran 20011.

The challenge is to distribute services within the network and discover them without having to

rely on third party registries. This requires mechanisms to dynamically discover and utilise

what services are available within the devices immediate and extended environment. This is

important if we are to ensure flexibility and provide mechanisms for true zero-configuration.

5

1.4 Improving Service Discovery

Although services will become an important enabling technology several other difficulties

need to be overcome. The problem is that current service-oriented solutions ignore the fact

that the service space will become increasingly large. As such existing approaches fail to

discover services based on what a service is capable of doing. Consequently selecting the

correct service to satisfy our needs will become increasingly more important and lessons need

to be learnt from the problems experienced within the Web in terms of accurately finding

content. As such the challenge is to describe services better so that devices can reason over

what they require and what services are available.

Although several standards exist to describe and discover services, they fail to address
interoperability between open standards and the vocabularies used. Their efforts strive to

develop universally agreed vocabularies that describe services homogeneously however this is

a very difficult challenge, if not impossible. Researchers within the Semantic Web community

are trying to address this limitation by developing an alternative approach that enables

semantic interoperability between different vocabularies using machine-processable

semantics. However the major difficulties that still need to be addressed are how semantic

structures are created, distributed, managed, and evolved over time.

As such, environments need to support mechanisms that enable knowledge to emerge

whereby each device is treated as a self-governing knowledge node that is free to share and

discover ontological structures. The challenge is to enable a distributed environment that

provides the following functions:

"A mechanism that enables the representation and discovery of semantic information.

"A mechanism that captures the general consensus within responses received from

devices in terms of ontological structures.

" Algorithms that evolve and merge semantic knowledge over time.

Several research initiatives are trying to create techniques for "intelligent" information

gathering [Heflin 2000, Stephens 2001, Fensel 2002, Siebes 2002, Stephens 2003] to allow
devices to share knowledge in a distributed network analogous to the way people learn and

acquire new knowledge through communication. However mechanisms still need to be

developed that codify this human activity and provide knowledge management solutions that

distance themselves from ontology construction mechanisms based on the opinions of small

centralised ontology consortiums. Devices need to evolve their internal knowledge structures

to conceptually understand the vocabularies used within the network in order to better

discover services that are semantically described. This will allow rich ontological structures to

6

emerge over time as fragmented knowledge structures are discovered and merged by devices

within the network.

The challenge is to semantically discover and evolve ontological structures within distributed

environments based on localised ontology structures and general consensus. The key

technique needs to focus on merging information based on general consensus, found within

all responses received from the network, for a particular query. As such techniques to
determine the general consensus need to be devised, i. e. techniques based on evolutionary

programming [Langton 1996], or statistics.

1.5 Composing Networked Appliances Automatically
It is apparent that connecting networked appliances is becoming increasingly more difficult
because their associated configuration is more complex. The challenge is to automate the

process and enable devices to perform any required configuration or management themselves.
Many research initiatives are trying to address this using a number of different approaches,
which include manual, semi and automated device and service composition techniques
[Mcllraith 2001, Narayanan 2002, Chakraborty 2003, Chen 2003, Medjahed 2003, Sirin 2003,
Sycara 2003, Fujii 2004, Madhusudan 2004, Milanovic 2004]. These solutions are human-

centric where services, designed to abstract device functions as network components, are
composed via user defined interfaces.

These solutions lack scalability and it is quickly becoming apparent that alternative

mechanisms are required that allow networked appliances to be dynamically composed based

on user requirements. The goal is to create value-added operational functionality that, when
combined, produce functions that could not be performed by one device alone. These research
initiatives are firmly embedded within the Networked Appliance and Semantic Web Service

community where services can be discovered, composed and executed using service
ontologies. Although these research initiatives have produced some interesting results, there is

no one solution that truly allows devices to be dynamically composed devoid of any human

intervention. Users can discover and integrate services using workflows languages such as
BPEL4WS and WSFL, however mechanisms that allow services to be dynamically

discovered and composed in an ad hoc fashion, are far from a reality.

Alternative mechanisms need to be developed that overcome the inherent restrictive nature of

workflow standards that allow service descriptions to semantically describe what devices

require and what they provide. The challenge is to combine service technologies with

machine-processable semantics to automatically interconnect devices using high-level

semantics that loosely bind devices together. This will enable true zero-configuration,

7

whereby devices automatically integrate themselves within the environment and link together

using conceptual information about what the device does and what it needs.

1.6 Flexible Networked Appliances and Self-Adaptation

Currently, connecting and managing device configurations, is inherently a manual process,

and as highlighted in this chapter it is becoming increasingly more difficult for IT specialists

and home users alike. It is no longer acceptable to just accept this problem because we are

reaching a point whereby the effort required will surpass the need to buy networked

appliances and implement home networking solutions.

Self-adaptive mechanisms need to be developed that allow devices to automatically form

relationships with each other with little or no human interaction. For example, in the future

when you buy a DVD player and take it out of the box, it will automatically integrate itself

with existing device configurations, once it has been switch it on. When you put a movie into

the player and press play it automatically displays on your TV and outputs sound via your

surround sound speaker system. Extending this idea further the player may only process
MPEG-2 media formats. If you try to watch a movie that uses an Xvid encoding, (a format

your machine does not support) the player will try to resolve this conflict by automatically
discovering and downloading the appropriate codec or using an intermediary service to

transcode the data into MPEG-2, via its Internet connection. This will allow devices to extend

their functionality beyond what they where initially designed to do by forming relationships

with other devices and services within the network.

Such a vision provides considerable benefits to the consumer by allowing networked

appliances to be automatically integrated and evolved. However, currently devices and

middleware solutions do not provide any mechanism to achieve this. The challenge is to

develop new mechanisms capable of automatically integrating devices and managing any

conflicts within device configurations that may occur. The underlying implementation details

need to be abstracted, thus enabling all devices and services to appear homogeneous within

and across different domains.

1.7 Scope of the research
The aim of this thesis is to develop a new framework, as illustrated in Figure 1.3 that allows

the operational functions provided by different appliances to be dispersed within the network

and used to create high-level applications. The framework will use a service-oriented

middleware to discover and combine devices using machine-processable descriptions that

allow devices and functions to be selected based on application requirements. This framework

8

will take into account the capabilities devices support and provide self-adaptation
mechanisms to manage device configurations automatically.

Although security and transport protocol interoperability are important requirements they are

not seen as pertinent to proving the ideas presented in this thesis. The framework is a flexible

platform that can allow any additional requirements to be plugged in as and when they are

needed. As such the Networked Appliance Service Utilisation Framework, as illustrated in

Figure 1.3 is only considered within the remainder of this thesis.

Figure 1.3 Proposed Framework

Using this framework several key requirements are addressed within this thesis, which

encompass advances made in the areas of service-oriented networking, networked appliances,

service discovery, dynamic service composition and self-adaptation. It does not consider the

aforementioned disciplines in isolation but rather investigates how they can be combined and

extended to create a new type of framework capable of seamlessly interconnecting devices.

1.8 Project Requirements

This section presents six main requirements used to design and implement a new framework

and to realise the challenges described in this chapter.

0 The functions offered by complex devices need to be published as independent

services so that they can be discovered and utilised by other devices within the

network.

0 Devices must have the ability to offer zero or more framework services. If a service is

not hosted by the device then it must be capable of discovering and using the service

remotely within the network. Framework services must be discovered and bound to

before the device is rendered fully functional.

" It is fundamental that services offered by devices are discovered without forcing the

device or the services it provides to register with centralised authorities. Once devices

9

Network

Devices

are switched on they must be capable of offering their services without being

constrained by a third-party service registry.

" Service descriptions and service requests must be based on machine-processable
semantics to successfully determine what services are relevant and what are not. This
brings with it additional challenges. The vocabularies used by different device

manufacturers will be different and the structure of the concepts themselves will vary.
Therefore mechanisms need to be developed that allow devices to dynamically create
a semantic interoperability bridge between terms that are syntactically distinct but

semantically equivalent. This mechanism must allow devices to discover other
devices and services within their environment and dynamically learn the different

terminologies they use. During the learning process vocabularies must be evolved
based on general consensus, whereby common terms are reinforced and unique terms
de-emphasised.

" Services provide an interface to functionality offered by devices, which can be
discovered, composed and used by other devices within the environment. This

requires mechanisms that enable a device to determine what services, offered by other
devices, it can use. Services need to be discovered based on their capabilities and
compositions need to be formed by processing and using service interfaces that match

required service capabilities. Typically service interfaces describe the operations the

service supports including the parameters (and their associated data types) they take

and the values they return. Devices need to automatically process these signatures and
determine if they can be composed with signatures supported by the devices local

services.

9 Devices must self-adapt to extend the functions they provide beyond what they were
initially designed to do. They must also detect and rectify any conflicts as and when
they occur within device configurations. Devices will automatically form

relationships with each other based on what services devices provide and what

services devices require. In this instance devices and/or services will connect too and
disconnect from the network over time potentially rendering the composite solution
incomplete. If a device or service is lost, an alternative must be found automatically

with minimum disruption.

1.9 Novel Contributions to Knowledge

This thesis proposes a new framework we have developed for integrating networked

appliances within device and service-rich environments so that high-level applications can be

automatically created. Our proposed framework provides services that discover and

10

interconnect devices within the network; enable operational functions to be discovered and

composed using semantic matching; select devices based on the capabilities they support; and

allow device configurations to self-adapt to environmental changes. Each of the novel

contributions we have made are discussed in turn in the following subsections.

1.9.1 Service-Oriented Networking

Currently applications are developed and deployed as one-off solutions - any application

changes thereafter appear in subsequent releases. Although such applications provide

considerable benefits it is becoming increasingly apparent that these solutions are inflexible.

Alternative mechanisms are needed that allow application functionality to be embedded

within the environment as network services. This will allow new frameworks to utilise these

services to create complex business processes more quickly. We have developed such a
framework that allows the operational functions provided by devices to be dispersed within
the network as services that can be combined to create high-level applications [Fergus 2003a,

Mingkhwan 2004, Fergus 2005a, Mingkhwan 2005]. Each contribution we have made is

listed below:

" Typical home appliances do not have the ability to provide their functions as
independent services that can be utilised, simultaneously, by other devices within the

environment. We have developed mechanisms to achieve this that allow devices to

dynamically integrate themselves within any environment and disperse the functions

they provide as independent services. Services may be pre-determined (middleware

services that comprise our framework) as well as application specific (services

wrapped around operational functions provided by devices) [Fergus 2003a], which

can be simultaneously discovered and used by other devices within the network
[Mingkhwan 2004, Mingkhwan 2005].

" Devices are manually connected and configured to work together in current home

environments. It is becoming increasingly more complex to manage this process and
therefore alternative mechanisms need to be developed to automate this. We have

developed mechanisms within our framework that help achieve this that allow
devices and services to be more accurately matched and integrated [Fergus 2005a].

1.9.2 Service Discovery

It is envisioned that application development will encompass the principles of service-

oriented computing. As such it is important mechanisms are developed to accurately discover

appropriate services. Current techniques are reliant on attribute-value pair matching, which is

inherently restrictive since no universal taxonomy exists to describe services homogeneously.

We have developed mechanisms that discover services based on semantic metadata that

11

describe what services do and what devices require [Fergus 2003a, Fergus 2003b, Fergus
2003c, Fergus 2005a]. Our novel contributions are listed below:

0 Composing services in current implementations is based on carefully choreographed

workflows or manual configuration. These approaches are inflexible and are difficult

to implement in ad hoc environments. We have overcome this limitation by providing

mechanisms within our framework that allow services to be described and discovered

based on semantic metadata. This allows devices to dynamically discover, compose

and execute services based on peer collaborations, devoid of any human intervention

[Fergus 2003a, Fergus 2005a].

" As discussed, current implementations describe services using attribute-value pairs.
This means that successful matches are only found if the service request exactly

matches the service description. If the two differ syntactically but are equivalent
semantically current approaches fail to find a match. This is inflexible and excludes a
large number of services because of syntactic differences. In our framework we

provide mechanisms that serialise service descriptions using high-level semantics that

provide rich conceptual information about the individual functions devices provide
[Fergus 2003b, Fergus 2003c]. Even if service requests and service descriptions are

syntactically distinct but semantically equivalent our framework can find a match.

" It is difficult to get different device manufacturers to create and use a single standard
for the terminology used to describe services. Consequently our framework uses high-

level semantics to resolve the inherent ambiguities between service requests and

service descriptions [Fergus 2003b].

0 Applications that use semantic metadata rely on centralised knowledge sources

managed by a consortium of knowledge engineers. Embedding heterogeneous devices

within ad hoc environments makes it difficult to implement any kind of centralised

solution. Devices need to host and manage their own knowledge, as such mechanisms

need to be developed that allow devices to share and maintain this knowledge over

time. In our framework semantic metadata resides on individual devices and the total

knowledge within the network is the sum of all devices and their associated semantic
information. No centralised servers are used to store this information, thus semantic
information is distributed within the network, which ensures flexibility, fault-

tolerance and fair concept creation and evolution [Fergus 2003b].

" Distributing knowledge within an ad hoc network makes it difficult to determine what

knowledge is correct. Typically the consortium determines this however this is

difficult when knowledge is embedded within devices that may not have a user

interface. As such our base assumption is that knowledge needs to be managed

12

without any human intervention. Our framework allows semantic information to be

dynamically evolved devoid of any centralisation using general consensus. Concepts

that are more commonly represented are emphasised whilst less common concepts are

removed from the network over time. This is an automated process that requires no
human intervention [Fergus 2003b].

1.9.3 Device Capability Matching

One of the main features with service-oriented architectures is that functionality can
redundantly co-exist. The difficulty is selecting the best service that meets the required
configuration requirements. It may be acceptable to stream DVD content to a plasma TV,
however the same is not true when a mobile phone is being used. As such service
compositions must be based on the capabilities individual devices have [Mingkhwan 2004,
Mingkhwan 2005]. The novel contributions we have made in addressing these challenges are
listed below:

" Current service-oriented architectures rely on the user to determine which service(s)
to select. The user determines what the best configuration should be in order to
provide the best solution. Although this may not be too taxing on the user this is set to
become increasingly more complex as networked appliances and home networks
become common place. We have developed mechanisms that allow devices to

automatically determine which device is better equipped to execute a given service
[Mingkhwan 2004, Mingkhwan 2005]. This helps devices dynamically compose to
create the solutions that provide the best quality of service.

" Existing capability specifications provide base solutions for describing device

capabilities however they do not provide any quantitative mechanisms to make
accurate comparisons. In our framework we extend existing specifications to include

capability scoring which not only assesses individual device capabilities but also
provides overall capability scores that assess the device as a whole. So even if a
device is weak in one particular area, its overall capability score may still infer that it
is the best device to use [Mingkhwan 2004, Mingkhwan 2005].

1.9.4 Dynamic service composition and self-adaptation

At present it is possible to implement networked appliances, however configuring and

managing such an environment is problematic. It is becoming increasing more difficult for IT

specialists and home users alike to install and configure next generation solutions.
Consequently the base premise must be to target users with limited or no technical

experience. As such mechanisms need to be developed that remove as much burden from the

user as possible. Devices need to automatically integrate themselves within the environment

13

and manage themselves over time. Our framework provides several mechanisms that allow
devices to automatically connect to each other to create high-level applications. Application

solutions are managed by devices in compositions using our framework ensuring a given

configuration is maintained [Fergus 2005a]. Again each novel contribution is listed below:

0 Current middleware solutions provide mechanisms to disperse devices and services

within the network however they do not provide any mechanisms that allow device

configurations to automatically emerge. Device configurations are manually created
by the user and thereafter managed. Again as we have argued above, as networked

appliances and their associated configurations become more complex so will the
integration and management tasks. This process needs to be automated. In our
framework mechanisms are provided that allow devices to automatically form

compositions with other devices to produce value added functions and aid zero-

configuration [Fergus 2005a].

0 Existing approaches do not provide mechanisms to detect conflicts and change

configurations accordingly. Our framework allows devices to self-adapt to

environmental changes as and when devices or services become unavailable to ensure
that device compositions are maintained [Fergus 2005a].

" In existing approaches devices are interconnected, more often than not using wired

solutions, by the user. Again the tasks associated with this are set to become

increasingly more complex. Our framework provides mechanisms that allow

relationships between devices to be automatically created to create high-level

applications. This ensures that the user's defined quality of service is either surpassed

or maintained [Fergus 2005a].

1.9.5 Ubiquitous Computing

Conventional computing is said to change as we see technology becoming more entwined

within the fabric of our surrounding environment. However, current approaches favour

enterprise solutions which exclude smaller devices with limited capabilities. By utilising

service-oriented computing our framework avoids this restriction by allowing operational
functions to be dispersed within the network. Our framework provides minimal functions that

allow any device to be connected to the network irrespective of their capabilities. Any

remaining functions the device is not capable of implementing can be discovered and used

remotely within the network. We have made several novel contributions, which again we

have published in [Fergus 2004, Fergus 2005b].

" Some devices, such as sensors will have limited capabilities and as such middleware

solutions need to accommodate this. Many existing approaches fail to provide

14

mechanisms to achieve this, consequently such devices are excluded. Our framework

can be implemented on devices with limited capabilities, for example sensors in a

sensor network, which allows devices to be controlled using biofeedback [Fergus

2004][Bianchi 2003].

0 Our framework allows the operational functions provided by devices to be dispersed

within networked environments, which harnesses the power of wireless and mobile
technologies, thus reducing the wires and cables that are part and parcel of all modern
day appliances [Fergus 2005b].

These novel contributions extend current advances in networked appliance and home

networking research initiatives and have helped create a framework that is highly flexible,

extensible and self-adaptive. Our framework moves us closer to seamlessly interconnecting

devices and realising zero-configuration. Several open standards have been enhanced to

provide additional functionality that surpasses the functions these standards provide. These

extensions fit more efficiently within new and emerging intelligent network architectures to

embrace ubiquitous and pervasive computing environments. Furthermore, our framework

provides highly adaptive mechanisms that allow any device, irrespective of its capabilities, to

function within the network and decide how the framework services are used.

1.10 Thesis Structure

Chapter 1 of this thesis provides an overview of the problem domain, namely the

inefficiencies associated with current networked appliances and home networking approaches.
It highlights that little work has been carried out within ad hoc home network environments,

and mechanisms for enabling devices and the services they provide to automatically form

relationships. This Chapter argues that device integration and the management of device

configurations needs to be automated to free the user as much as possible from the inherent

complexities this process incurs. In doing so the challenges are presented, which include

service-oriented networking, service discovery, device capability matching, dynamic service

composition, self-adaptation and ubiquitous computing. This Chapter also describes a
framework we have developed that addresses these challenges. Finally the Chapter is

concluded by defining the scope of the research project, the novel contributions made and an

outline of the thesis structure.

In Chapter 2 we begin by presenting the background and related work within the field of

networked appliances. This discussion defines the key concepts used within this thesis and

describes the limitations associated with current approaches. This Chapter also discusses how

networked appliances relate to home networking and describes current middleware solutions

that aim to interconnect devices within home environments. A discussion is presented

15

regarding how this integration is being performed using peer-to-peer (P2P) techniques, where

several P2P models are presented. Each P2P model is discussed in terms of their associated

functions, merits and limitations and an argument is presented regarding how P2P techniques

can be used to loosely connect devices within ad hoc network environments. In this Chapter

we also describe how techniques used within the Semantic Web and ontology engineering

domains can be adopted to address several limitations within current service-oriented

middleware architectures. The discussion argues that current service discovery mechanisms

are inherently restrictive given that they are based on proprietary descriptions that dictate how

services must be described and discovered, thus ignoring the semantics of information and the

inherent vocabulary differences. As such an argument is presented pertaining to the use of

semantics to better describe what services devices provide and what they require.

A detailed discussion of our new framework is presented in Chapter 3 and the core module

each device must implement is presented. This Chapter includes the design models for the
framework functions needed to connect the device to the network and communicate with

other devices within the environment. A detailed design is presented using UML, which
describes each of the design decisions made.

Chapter 4 is a continuation of Chapter 3, and describes in detail the UML design for all the

remaining secondary services that comprise our framework. This Chapter describes the

secondary services that do not need to be explicitly implemented by every device. The

discussion focuses on the services used to perform semantic interoperability and ontology

management; device capability matching; semantic service matching; and device self-

adaptation.

In Chapter 5, an Intelligent Home Environment case study is presented which describes how

the new framework implementation can be used to automatically discover and compose
devices and the services they provide within the home environment. The case study also
describes how devices within the home environment self-adapt as and when configuration

changes occur. Several other application scenarios are presented in this Chapter illustrating

how flexible the new framework is and examples are presented indicating how the framework

can be applied to other problem domains.

Chapter 6 presents a detailed discussion on how the new framework is implemented. This

Chapter discusses the toolsets used and highlights their merits and shortcomings. It presents

the specifications the framework conforms too and discuses the implementation details. This

includes an explanation of which tools where used to address the key requirements within the

framework, how they have been extended to include new functionality and what functions and

tools where problematic.

16

An evaluation of the framework implementation is presented in Chapter 7. Within this
Chapter the framework and each of the secondary services and their associated functions are
evaluated and discussed. The framework is also compared with existing middleware standards
and each novel contribution made is discussed.

The thesis is concluded in Chapter 8, which provides a summary of each chapter and re-
iterates the contributions made within this research project. Finally the future work is

presented before concluding with some final remarks.

17

Chapter 2

2 Networked Appliances, P2P Networking and Semantics

2.1 Introduction

This section provides an overview of the work carried out in the main research areas relevant

to this thesis, which includes networked appliances, home networking, peer-to-peer (P2P)

technologies, and matching processable semantics. Cutting edge research initiatives are

highlighted including their associated limitations, which are addressed within this thesis.

2.2 Networked Appliances

Devices are moving towards an increased reliance on interconnection. Games consoles, set-

top boxes such as TNOTM are extending the capabilities of conventional appliances to include

networked communications. This provides the ability to play online games and tailor how and

when we watch our favourite television programmes. Mundane tasks associated with general
household maintenance such as vacuuming, security and mowing the lawn will be performed

remotely by controlling devices using the Internet [Brooks 2002]. In this sense many devices

of varied complexity will be a Web server. Researchers within the home automation industry

believe that conventional household appliances such as the ones described above will form a

major part of the future Internet as more and more devices become network-enabled.

There are several definitions of networked appliances, consequently it is difficult to provide a

clear and decisive description of their key characteristics. From a hardware perspective,
Moyer et al. [Moyer 2000] define networked appliances as "a dedicated function consumer
device with an embedded processor and a network connection".

When trying to define networked appliances we also need to consider Internet appliances and

make a distinction. Gillet et al. [Gillett 2000] explain that Internet appliances are the result of

market pushes and consumer pulls. Mobile phones and Personal Digital Assistants (PDAs)

have now become commonplace, whereby Internet access is either gained via the Wireless

Application Protocol (WAP), Bluetooth and 802.1 lb wireless interfaces respectively.

Consequently the intersection of functions provided by these devices leads to duplication. As

a result, market and consumer demands are pressurising manufacturers to integrate these

devices to create Internet appliances. Gillet et al. argue that although there is no clear

18

definition regarding what an Internet appliance is, a definition can be defined based on how

such devices are marketed instead. They state that an Internet appliance is a consumer device

that is not a PC; something that connects to the Internet; and something that does not make

sense in a non-networked world. Driving such appliances is the need to reduce the complexity

of PCs, which is being driven by three types of people; people with less disposable income;

people who want to use the Internet, just not from a PC; and people who are happy using the

PC, but want to extend the functions around the home [Gillett 2000, Gillett 2001]. In contrast

a networked appliance differs from this definition, albeit it is a question of semantics, in that a

networked appliance has a network interface, however it is not required to connect to the

Internet - it could function perfectly well within a LAN. There is a fine line between these

definitions, however the subtlety lies in the fact that a networked appliance could also be an

Internet appliance (it could gain access to the Internet via its network connection, i. e.

broadband), however an Internet appliance could not necessarily be a networked appliance,

because it may only have the capabilities to connect to the Internet, but not interact within the

local network.

Within our research we agree with the definitions presented above, however we place more

emphasis on the software interfaces networked appliances provide. In this instance we

therefore define networked appliances as devices that publish the functions they provide as

independent services that can be discovered and used by other networked appliances in the

network (LAN or Internet) to control, monitor, manage and extend the functionality they

support beyond what they where initially designed to do.

2.3 Interconnecting Home Networked Appliances

In the following sub-sections we discuss some of the more common standards being used

within industry and academia alike to interconnect networked appliances within the home.

2.3.1 Open Services Gateway Initiative (OSGi)

A well established middleware standard used to realise the digital home is the Open Services

Gateway Initiative (OSGi) [OSGi Alliance 2005]. This standard has considerable industrial

and academic backing from organisations that include Telcordia, Panasonic Technologies,

Philips, Siemens and BMW. The alliance is composed of device manufacturers and service

providers and its mission is to create open specifications for an end-to-end solution that

enables the delivery of multiple services over Wide Area Networks (WANs) to home

networks. OSGi was founded in 1999 by Alcatel, Cable and Wireless, Enron

Communications, Ericsson, IBM, Lucent Technologies, Motorola, Nortel Networks and many

more.

19

The framework incorporates three logically separated entities: the service and network

provider, services gateway, and the in-home network. Service providers enable the provision

of value added services to the residential customer via the services gateway. Whilst service

operators, manage and maintain the services gateway and its services. Network providers

offer the necessary network infrastructure to enable communications between the services

gateway, the gateway operator, and the service provider.

Initially OSGi was designed as a mechanism to allow multimedia services to be provided

within home networks via a set-top box. However as it has evolved the alliance has extended

the capabilities of OSGi to surpass the functions provided by current set-box solutions. The

services gateway protocol stack specifies standard APIs for the platform execution

environment based on a Java Virtual Machine (JVM). The service framework itself sits on top

of the JVM and provides a general purpose, secure, managed, service framework. Using the

framework, applications known as bundles can be downloaded. Bundles are compressed Java

archives files (Jar), which contain the resources to support the service (Java classes),
including any dependency resources. Using Jar files for service deployment allows any

service to be downloaded and controlled in a uniform way. The services gateway is controlled

via a HTTP service on the gateway device. This service defines an API that allows service

operators to configure the server as well as publish static and dynamic content. Access to the

gateway is controlled using a device access service. This service allows service providers to

communicate with and control devices connected to the home network, via the gateway. One

of the important requirements from a user's perspective is to make the gateway transparent

allowing users to view information in the gateway, modify its configuration, process

notifications and interact with services. The configuration itself is performed using the

Configuration Data Service, whilst the Persistent Data Service allows information generated
by services to be stored. A generalisation of this service is the Logging Service, which allows

monitoring data to be recorded pertaining to the gateway, the services and user interaction.

The combination of these services forms the OSGi framework [OSGi Alliance 2005] and is a

mechanism that allows devices within the home network to be accessed and controlled from

external sources via the services gateway.

Configuring the OSGi framework is inherently human centric and in most cases managed and

controlled via centralised service providers. Services are discovered and composed based on

proprietary communication and middleware protocols. This is somewhat restrictive since

distributed computing and service models are becoming increasingly more pervasive. As such

devices and services are become more heterogeneous in nature. Consequently managing such

a framework will be more complex. As technologies become more pervasive the amount of

control placed on device and service integration becomes more difficult. Different device and

20

service providers will use different communication, middleware and service standards. As

such interoperability is a problem that will require a more effective solution. New

architectures need to be developed that overcome the restrictive proprietary nature of OSGi

and provide a framework for more innovative solutions - the current OSGi standard does not
have the ability to achieve this.

2.3.2 Digital Living Network Alliance (DLNA)

This in part has begun and research initiatives such as the Digital Living Network Alliance

(DLNA) [DLNA 2004] formally known as the Digital Home Working Group (DHWG)

[DHWG 2003] are developing interoperability standards. DLNA is also currently being used
to realise the Intel Digital Home implementation [Intel 2003]. The primary goal of DLNA is

to provide a framework that enables interoperability between devices that reside within three
domains currently in existence within the home - these being the Internet, broadcast and

mobile domains. They argue that consumers want the devices they own to work together

within these domains.

DLNA advocates that the key to successful integration is to address customer demands where
the devices they own work together within and across these domains. In order to achieve this,

products designed for the home should be easy to install, must provide value, be cheap to

purchase and interoperate with all other devices within the home. From a technical

perspective DLNA argue that this requires design choices constrained through industry

consensus that enable better interoperability. Currently open standards are too flexible and

consequently interoperability between different vendors fails. However, such standards in

conjunction with proprietary manufacturing are used because this is somewhat easier and in

most cases reduces the time taken to deliver the product to high-street stores. The downside

however is that such products have no effect on solving the interoperability problem.

The primary focus of DLNA is to move away from proprietary manufacturing and create a
framework that interconnects the Internet, broadcast and mobile domains. The framework is

based on a common approach which focuses on three key elements; industrial collaboration,

standards-based interoperability frameworks and compelling products. From an industry

perspective many Consumer Electronics (CE), mobile and PC industries have developed

innovative consumer products, however this has been achieved very much independently of

each other. No one single technology has the ability to guide interoperability alone.

This said each industry has made complementary contributions and offers unique capabilities

and attributes. DLNA aims to incorporate these contributions into a standard that addresses

interoperability. Through collaboration, standards form the basis for the creation of design

guidelines that enable device manufacturers to develop devices that support a common

21

baseline for the set of required standards used. Standards developed by the consortium are not

one-shot solutions but are continually evolved to support technological advances and the

emergence of new and improved standards, where interoperability is the main driver.

Building on this vision, the current version of the DLNA framework addresses several key

interoperability requirements. The building blocks include:

" Transparent connectivity between devices

"A unified framework for device discovery, configuration and control

" Interoperable media formats and streaming protocols

" An interoperable media management and control framework

" Compatible quality of service mechanisms

" Compatible authentication and authorisation mechanisms for users and devices

A number of design decisions have been made in the current specification and several existing

standards are used. At the physical network layer wired and IEEE 802.11 wireless standards
[IEEE Standards Association 2005] are supported using the IP network protocol. In the

current specification this is based on IPv4, however future versions will include IPv6. Device

discovery and control is achieved using Universal Plug and Play (UPnP) [Microsoft Corp.

2003], which is described below. The media transport protocol used is HTTP and several

media formats are supported, which fall into two categories, required and optional. The

required formats are JPEG, LPCM, MPEG2 and the optional formats are PNG, GIF, TIFF,

MP3, WMA9, AC-3, AAC, ATRAC3plus, MPEG1, MPEG4 and WMV9. In the current

version Digital Rights Management (DRM) and Content Protection (CP) are still under

consideration.

The consortium aims to address interoperability and their base assumption is interoperability

using agreed standards. Although it is not impossible it is not clear whether a single standard
is capable of addressing all interoperability issues. The goal must be to utilise existing open

standards as much as possible and interoperability mechanisms should be developed that

abstract the underlying implementation details allowing any standard to be used and

seamlessly integrated.

DLNA incorporates OSGi and as such it inherits the limitations associated with OSGi as

described above. It is not clear how DLNA proposes to address the complexities associated

with highly pervasive ad hoc environments. DLNA provides a base solution that is proprietary

in nature; however it is not clear how scalable or flexible their architecture is.

22

2.3.3 Universal Plug and Play (UPnP)

A further standard that also has considerable industrial and academic support is Universal
Plug and Play (UPnP) [Microsoft Corp. 2003]. This standard is in fact used by DLNA [DLNA
2004] to discover and control devices within the network. This standard is somewhat simpler
than DLNA and OSGi because its sole purpose is to automatically interconnect, discover and

control devices within the local home network. UPnP is a higher-layer protocol stack that

aims to extend the simplicity of auto-configuration features of device Plug and Play (PnP) to
the entire network enabling discovery and control of networked devices and services. UPnP is
built on top of existing standards such as IP, HTTP and XML, which are used to enable
devices to join the network dynamically, convey its own capabilities and learn the capabilities

of other devices connected to the network.

The Home API working group and UPnP merged in 1999 to unify specifications for the

development of home-control software. The specifications define an open network

architecture based on well-defined principles, protocols and applications currently used in

Local Area Networks (LANs). By utilising the benefits of the IP protocol, UPnP can be used

over a number of physical media, which includes radio frequency (RF, 802.11 x), phone line,

power line, coaxial, IrDA, Ethernet, and IEEE 1394 (Firewire) [Poltavets 2005].

Consequently any medium used to connect two devices together can be used to implement

UPnP. The UPnP standard is flexible and, although it is IP based, other technologies such as

the Home AudioNideo Interoperability (HAVi) specification [HAVI 2003], CEBus and their

associated Home Plug and Play (HPnP) standard [CEBus 2005], LonWorks [Chemishkian

2002] and X10 as demonstrated in the FP5 6Power project [Palet 2004a, Palet 2004b], can be

used using UPnP bridges, proxies or residential gateways. For example, OSGi is often used in

conjunction with UPnP. In this instance UPnP allows devices to be discovered and controlled

within the LAN, whereas OSGi allows devices to be accessed and controlled via external

sources.

The UPnP specification is comprised of four local node categories. Nodes can be control

points, which are UPnP devices containing a set of software modules used to communicate

with and supervise controlled devices. For example, a PC, PDA or set-top box may act as a

control point. Controlled devices are less intelligent than control points. They are passive in

nature and typically respond to control point commands and perform specific actions. A DVD

or a VCR could be a controlled device. The UPnP working group realise that the specification

will be used in conjunction with new and existing standards and as such the specification
defines a UPnP bridge. This is a multi-protocol, multi-technology UPnP device that allows

the UPnP network to be bridged with other technologies such as HAVi [HAVI 2003] and X10

as well as legacy devices. Such bridges may be requested if some devices are not UPnP

23

compliant, they do not have sufficient hardware resources or because the underlying

communications medium does not support TCP or HTTP protocols.

UPnP [Microsoft Corp. 2003] achieves interoperability by leveraging existing mature

standard protocols currently used on the Internet and LANs. A decision to use IP was adopted
because it is seen as the de facto standard and has the ability to span different physical media

allowing mature protocols like TCP, UDP, HTTP, DHCP and DNS to be used [Dean 2005]. It

provides flexible mechanisms that can either use existing addressing schemes such as DHCP

or AutoIP functions best suited to simple ad hoc networks [Dean 2005]. Devices and the

services they provide are discovered using the Simple Service Discovery Protocol (SSDP)

[Microsoft Corp. 2003], which enables home-network clients to discover networked

resources. SSDP allows devices to announce their existence and for control points to locate

the resources on the network. SSDP also allows devices to leave the network gracefully

taking its services with it. The Generic Event Notification Architecture (GENA) [Microsoft

Corp. 2003] is used for eventing. This mechanism allows devices to send and receive

notifications to subscriber entities using the HTTP protocol over TCP/IP and UDP. Typically

control points subscribe to event sources - GENA creates presence announcements which are

sent to registered control points using SSDP. Any changes that occur with service states are

also reported using GENA. Controlling the services provided by devices is achieved using the

Simple Object Access Protocol (SOAP) [W3C 2005]. SOAP defines the use of XML and

HTTP to execute services over the network using a form of remote procedure call (RPC).

Using the existing standards defined above coupled with the UPnP specification protocols,

UPnP defines a mechanism that allows devices and services to be discovered and controlled

within local area networks.

The main limitation associated with UPnP is that it is human centric and does not provide any

mechanisms that allow devices to automatically discover and compose devices and services

without any human intervention. Discovery is based on attribute-value pair matching, which
is restrictive and a poor mechanism for accurate device and service discovery. Compositions

are carefully choreographed and control is based on application specific serialisations, i. e.

predetermined SOAP messages. Furthermore devices can only be used that conform to the

specification. This is somewhat restrictive and may isolate a large number of other networked

appliances using different standards. Consequently the current version of UPnP, on its own,

only provides controlled interoperability which is restrictive and again leaves little room for

innovation.

24

2.3.4 Home Audio/Video Interoperability (HAVi)

Taking a more focused approach to interoperability is the Home AudioNideo Interoperability

(HAVi) specification [HAVI 2003]. The HAVi architecture is a set of APIs, defined by a

consortium of audio-visual electronics manufacturers who have developed a common,

openly-licensable specification for networking digital home entertainment systems. HAVi

uses a dedicated network based on the IEEE1394 standard [Poltavets 2005], which has a

bandwidth capability up to 800 Mb/s. Such bandwidth capabilities enable isochronous

communication and can simultaneously accommodate multiple real-time digital AV streams.

HAVi facilitates multi-vendor interoperability between consumer electronics and computing
devices and simplifies the development of distributed applications on home networks [Lea

2000, Nikolova 2003].

The HAVi architecture strikes a balance between the demands of consumers and vendors by

facilitating both device interoperability and the introduction of new features or refinements. A

key feature of HAVi is that each physical device has an associated software proxy. Adding

new proxies to a home system makes new features or devices accessible even to applications

running on older devices.

The software elements that comprise HAVi include the 1394 Communication Media

Manager, Messaging System, Registry, Event Manager, Stream Manager, Resource Manager,

Device Control Module, Functional Component Module, Device Control Module Manager

and Applications.

HAVi supports inter-relationships between other networking standards; however this is from

an audio/video perspective. The HAVi consortium sees this as an important aspect and aims
to build bridges to offer additional consumer benefits. Using the HAVi specifications, the

software API and the HAVi bridges, consumer electronics manufacturers can allow

audio/video devices to operate within and across different networks irrespective of the

underlying hardware or implementation details. This specification is designed to address
interoperability and plug-n-play capabilities for audio and video systems; consequently this is

a specialised standard that does not address wider interoperability issues.

2.3.5 Versatile Home Network (VHN)

Another home networking architecture is the Versatile Home Network (VHN) [CEA 2000,

Ungar 2000] [Zahariadis 2003]. It was started in 1995 as the Video Electronics Standards

Association (VESA) [Chen-Mie 1995, VESA 2005] Home Network. It was later transferred

to the Consumer Electronics Association (CEA) and standardised by EIA as the (EIA/CEA-

851) standard that defines a home intranet. VHN ties together home LANs, such as Ethernet

25

or IEEE 802.11 a, allowing any device on a home network to communicate with any other

device. The VHN architecture implements a whole home backbone, using IEEE 1394b, a long

distance version of IEEE 1394a (FireWire). Local area networks, such as Ethernet or IEEE

1394a, connect to the backbone in each room, and IP is used to tie everything together.

Version 2 of the VHN standard, was designed to incorporate UPnP for device discovery and

control, SIP (Session Initiation Protocol)-based telephony [IETF 2004], network management,

and security. It is compatible with OSGi [OSGi Alliance 2005] and HAVi [Williams 2001].

Another project that has adopted the VHN architecture is that of the Home Electronic System

(HES) standard [ISO/IEC 2001]. This project attempts to define an architecture to standardise

the use of available standards and protocols across the whole OSI layers from the physical

layer to software applications [HES 2005].

The VHN architecture encompasses several existing home and middleware standards, such as
UPnP, OSGi and HAVi, which have several limitations. As such the problems described

above are evident within VHN. This architecture does not provide mechanisms for automatic

service discovery and composition. Like other middleware standards VHN interoperability is

carefully configured when the backbone is implemented. This requires high maintenance

costs and lacks scalability. Each new standard used within the home must be carefully
integrated into the VHN backbone. Mechanisms need to be developed that perform this

process automatically. Devices must automatically adapt and integrate themselves within the

environment irrespective of the underlying communication or middleware protocol being

used. Again this requires a level of abstraction that hides the underlying implementation

details. To date the VHN architecture does not provide any mechanism to achieve this.

2.3.6 Power Line Communication (PLC)

Matsushita Electric Industrial Co., Ltd (Panasonic), Mitsubishi Electric Corporation and Sony

Corporation have joined forces to create a new alliance to define a new high-speed power line

communication (PLC) standard. The consortium, aim to provide an interface standard
between different devices, using electrical power lines for audio, video and data networking.
This new alliance is called the Consumer Electronics Powerline Communication Alliance

(CEPCA) [CEPCA 2005] and will promote PLC home networking worldwide by convincing

CE manufacturers and the Information Technology sector to collaborate with device

interoperability over power lines as the driving force.

The consortium believe that bi-directional PLC is a communication channel capable of

supporting home networking using existing electrical power lines installed in home

environments, which will enable high-definition video transmissions and the use of IP

telephony. Through the consortium and the PLC-based standards it defines, interoperability

26

can be addressed between devices provided by different device manufacturers. Through the

combined efforts of the consortium members, common standards will be developed for

different PLC-based products.

Again like DLNA interoperability is addressed through common standards. As previously

stated this is in theory possible, however in practice creating one single standard to address all

interoperability issues is difficult. The PLC standard like many other interoperability

standards is inflexible and requires carefully developed solutions. The cost of maintaining

such solutions will be expensive and again restricts true innovation.

2.3.7 ePerSpace

Globally there are a number of research initiatives that are trying to address key requirements
for next generation networked appliances and home networking. The ePerSpace [France

Telecom 2005] project aims to develop an end-to-end solution for personalised value-added
audiovisual services contained within the home and external environments that will increase

user acceptability of such systems. ePerSpace provides distributed multimedia services which

are accessed via an open access network (OAN) based on the details defined in

personalisation profiles that allow content and user devices to be dynamically adapted to

specific users. The approach taken by ePerSpace is to create a trusted and interoperable

integrated framework to seamlessly interconnect heterogeneous audio and visual devices.

This also includes home platforms that define generic business models for mass-market

adoption. This framework aims to address interoperability problems and the management of

service platforms including service and context adaptation using personalised data.

The ePerSpace framework provides Global Network Integration and Interoperability

mechanisms that allow audio and video content to be transmitted between distributed services

using secure shared user profiles. Through this framework environments are dynamically built

to include networked appliances that can be controlled by content creators using Rich Media

Object Management tools. Currently, aspects of the ePerSpace research initiative are being

used by the BT Extract project on consumer vehicle telematics [Millar 2004], investigating

the continuity of home-car services, with a particular focus on personalisation.

This standard attempts to move us one step further than the standards described above to add

a level of "intelligence" that provides context adaptation mechanisms based on user profiles.
However, again this is a carefully choreographed solution, based on proprietary standards that

will be difficult to implement in pervasive ad hoc environments. Contexts are serialised using

common standards and context adaptation is achieved by reasoning over these standards. This

solution assumes a close-world view and as such maintaining and managing this solution is

costly. New standards, devices or services integrated within the environment have to either

27

conform to the ePerSpace specification or adaptation mechanisms need to be developed that

integrate new device and service types. It is not clear at this stage how this can be achieved.

Although ePerSpace talks about adaptation this appears to only be between predetermined

profiles. Adaptation must filter down to the device and service layer whereby automatic
device and service compositions self-adapt based on environmental changes. The ePerSpace

literature does not suggest that this is the case.

2.3.8 MediaNet

MediaNet [Travert 2004] also aims to develop an end-to-end solution for multimedia content

distribution. The project aims to create a framework that provides multimedia

communications for content distribution services for residential markets. The framework

takes into account the complete supply chain to manage the collaboration between content

owners, network providers and middleware services.

The underlying principle adopted by MediaNet is to provide an open architecture that

provides common access mechanisms for interworking home networking platforms. The open

architecture is achieved using pre-defined standards, common interfaces and well understood
business models. The framework will provide mechanisms that allow content to be distributed

and accessed, interworking, multimedia content to be stored, digital rights management and
high-quality audio and video distribution between wired and wireless devices. Application

developers, service providers and equipment manufactures can use MediaNet to implement

new applications compatible with common infrastructures and interfaces, including

networked devices.

MediaNet extends existing In-Home networking technologies to include In-Home

management that enables interoperation between services provided by external service

providers and In-Home application services and also provides mechanisms for deploying and

controlling networked services in a user-friendly way. MediaNet is currently researching how

this can be achieved using existing standards like OSGi [OSGi Alliance 2005] and UPnP

[Microsoft Corp. 2005]. As such MediaNet also experiences the same limitations described

for OSGi and UPnP above. It is not clear from the literature whether MediaNet aims to

address these issues. However the interoperability standards being developed for multimedia

content could be integrated into different interoperability middleware solutions to solve

specific interoperability problems.

2.3.9 RUNES

As well as multimedia content, other research initiatives are concerned with the actual internal

and external control of household appliances. Playing a key role in this will be sensor

28

networks, which are said to become entwined within the fabric of home environments. One

such project investigating this is the European funded Reconfigurable Ubiquitous Networked

Embedded Systems (RUNES) [Koumpis 2005] project. RUNES claims that embedded

systems and the Internet will begin to merge to create truly pervasive networked computer

systems. This combination will result in complexity due to heterogeneity and the dynamic

nature associated with networks that resist any form of control. In spite of this, there is a need
to promote this integration because bespoke development is too expensive and too limiting for

innovative applications.

The RUNES project aims to address this complexity using a scalable middleware framework

including application development tools that will allow users, designers and programmers the
flexibility to interact with services, devices and sensors and ease the overall application
development process. This framework claims to be adaptive, robust and self-organising. The

project is in its early stages and it is not clear whether a middleware architecture can be

created to enable the creation of a large-scale, distributed, heterogeneous network system that

can seamlessly interoperate and dynamically adapt to environment changes.

2.3.10 Semantic HiFi

A new area of research, seen as a key enabling technology within home networking, is the

ability to effectively describe and discover multimedia services using ontological structures.
The Semantic HiFi [Jacob 2004] project falls under this category and aims to address the

limitations associated with attribute-based audio processing. The Semantic HiFi framework

allows users to discover music stored on a particular device or on another device that may

reside within the home network or the Internet.

Semantic HiFi uses a peer-to-peer network to distribute and discover music and meta-data

provided by home users, music labels, and amateur musicians. The framework provides a set

of libraries, semantic description schemes, specifications and guidelines that enable
interoperability between different applications. Each Semantic HiFi application contains a

metadata repository which is used to store audio fingerprints including metadata for

individual tracks, which are shared within the peer-to-peer network.

Semantic HiFi supplements semantic descriptions to include hash functions and audio

fingerprinting to standardise how files and musical content are identified. This provides a

more robust identification mechanism which is independent of the file type, audio encoding,

amplitude, and silence header. Applications use audio fingerprints to query the Semantic HiFi

network for metadata. The metadata itself is standardised in order to ensure interoperability

between metadata descriptions used by other devices within the network. This project

addresses an important requirement and as we see a large number of services and multimedia

29

content becoming common place within home networking platforms, selecting the correct
content will be paramount and a key factor for user acceptance.

2.3.11 Future Home

Connecting appliances using a wired building infrastructure is far more expensive and may

only be available for new buildings. In a typical ubiquitous environment, users need their

complex networked appliances to be capable of communicating anytime and anywhere, and

more significantly this must be done seamlessly and wirelessly. A wireless connection does

not need any rewiring and the full system can be up and running within minutes. The

European funded Future Home Project [Future Home 2005] is trying to address this issue by

creating a solid, secure, user friendly home networking concept with an open, wireless

networking specification. The project uses IPv6 and Mobile IP protocols in the wireless home

network. It also uses a generic device interface to make it easy and cost effective to insert

intelligence and communication capabilities in home appliances.

The ability to monitor and control appliances and consumer electronics remotely has
interested users for decades. Whether it is through mobile and land-based phones, digital
keypads or over the Internet via Web and WAP interactive sites, mobile users are becoming

more demanding in terms of monitoring and controlling the status of their homes and their

appliances. The HomeOnAir project [Barba 2005] has proposed the provision of advanced
home control services using wireless remote access based on WAP technology. It provides a
description of the services, architecture and human-machine interfaces and provides a
complete HomeOnAir system that is available for installation. A platform, that can manage
Lonworks and X-10 home automation networks, has also been provided.

Researchers are also looking at how existing technologies can be used to realise different

applications. This is becoming more popular in the area of patient care within residential
homes. For example, extending the concept of peer-to-peer chat programs homes can be

equipped with bi-directional communications between health centres and patients to perform

on-demand care. Furthermore, utilising advances within biofeedback, appliances can be

controlled and information can be sent to medical practitioners who could then interact with
the patient and the home to control networked appliances.

A project investigating this is the HomeTalk project [HomeTalk 2005]. This project has

proposed a voice-enabled, residential automation and networking platform to allow the

capability of communicating with the residents via a natural voice interface. It creates

technology for a human-centric, fully automated home with built-in intelligence and natural
language capabilities. The full implementation proposes to embed the voice interface

capability in the residential gateway/controller (RG) and support local interaction via any

30

indoor/outdoor network through ordinary telephone lines, wireless microphones or emerging

voice-over-broadband and the Internet.

2.3.12 WCAM

Similarly, the WCAM project [Meessen 2004] is an initiative to develop a system for audio-

visual content delivery over a wireless, seamless and secured network by exploiting the

technology convergence between video surveillance and multimedia streaming over the

Internet. It proposes an integrated solution for smart delivery of video surveillance data. This

includes smart video coding based on automatic scene analysis and understanding.

Specifically, the segmentation results are used for encoding regions of interest (ROI) in

Motion JPEG 2000 guaranteeing good quality for the semantically relevant objects while

keeping a low average data rate. By linking image analysis, such as segmentation and object

tracking for both vehicles and people to the video encoding the method is proposing to

reference images and segmentation using shape, colour or texture analysis. This process will

output active frames and ROI that need to be encoded with better quality and described by

means of metadata. The video content can also be secured using a Digital Rights Management

(DRM) system and privacy issues are addressed by selective protection of sensitive frame

regions.

2.3.13 BETSY

Wireless multimedia streaming on handheld, mobile or other battery-operated devices is a

major technology underlying the next generation information and entertainment appliances.
Today it is not possible, even at design time, to make well-founded system trade-offs between

network and terminal resource consumption, energy consumption of the terminal and

timeliness of the streaming data. The BETSY [BETSY 2005] project is aiming to deliver the

theory, models and design methodologies to make this possible during design time. It is also
devising a framework implementation that makes dynamic adaptations, in this trade-off,

possible at run-time. The project proposes to combine the research results of several domains,

such as networking, device resource management, real-time processing and stream

processing, to achieve a holistic view of the dependencies between bandwidth, delay,

schedules, and the power and energy consumption for this specific application domain. The

aim is that the results will lead to reduced product cost by eliminating pessimistic and large

safety margins or improved system performance with equal resource demands.

2.4 Peer to Peer Networking

Peer-to-peer (P2P) computing dates back to the first networks developed during early Internet

research projects such as ARPANET. ARPANET was carried out by Bolt, Beranek and

31

Newman (BBN) Technologies [BBN 2004] and was funded by the Advanced Research

Projects Agency (ARPA), which was changed to the Defence Advanced Research Projects

Agency (DARPA) in March 1972 [DARPA 2003]. This was the first large-scale network to

be developed and was based on packet-switching within a Wide Area Network (WAN). The

early developers of ARPANET envisaged that computers would be connected throughout the

world in a peer-to-peer fashion, whereby resources could be shared, thus the term peer-to-peer

emerged. In fact the early Internet was a P2P network and every node had a permanent IP

address.

In this model Computers were connected via a pre-determined communication protocol called

the Interface Message Processor (IMP). The IMP acted as a digital interface on each computer

and performed the functions of dial up, error checking, retransmission, routing and

verification. Roberts [Roberts 1967] describes the combination of the telephone lines, the

IMPs' and the data sets as the message switching network. The first IMP installation took

place during 1969 and by the middle of 1972 there where twenty three connected computers,

which were located in San Francisco, Utah, Michigan, Illinois, Pittsburgh, Boston,

Washington and Los Angeles.

The ARPANET was decommissioned at the end of 1991 and was classed as the forerunner of

today's Internet. Although ARPANET no longer exists in its original form, many of its parts
have progressed into the current Internet, including the TCP/IP protocol [Murhammer 1998] -
TCP/IP replaced the Network Control Program (NCP) protocol in 1978 [Murhammer 1998] -
which was developed as part of the ARPNET project [Feibel 2000]. With the advent of the

Internet and more recently the World Wide Web (WWW) [Berners-Lee 1989] the client-

server model has become one of the most common business models for distributed computing

and as the number of interconnected computers increased, so sparked the problem associated

with the number of available IP addresses. It soon became clear, based on lPv4, that there was

not enough IP addresses to accommodate every machine connected on the Internet.

Consequently, it has become impossible to connect every device in a true P2P fashion

whereby each device has its own 1P address.

This problem has been addressed in part using the Network Address Translation (NAT)

protocol, which allows public IP addresses (the range of addresses available under IPv4) to be

mapped onto internal private EP addresses. Thus computers in the centre of the network are

used as a means of connecting the organisation to the outside world, which themselves are

connected to all computers in the internal network using private IP addresses. The process of

allowing internal computers to communicate with the outside world, via the organisations

public IP address, is achieved using NAT. Although efforts in IPv6 are well underway, this

model still remains the dominant model to date.

32

P2P however is re-inventing itself and is once again becoming the distributed computing

model of choice. Although P2P is still seen as a disruptive technology, industrial and

academic institutions are beginning to view these networks as real enablers for new and

innovative applications. These networks are scalable and highly adaptive and provide

considerable benefits over current client-server solutions. As such, many P2P

implementations exist today, and many more are being created. Many of these applications

support their own proprietary protocols and P2P models, categorised as hybrid, pure,

unstructured and structured. The P2P applications considered within this thesis are listed in

Table 2.1.

Napster Gnutella Napster Chord
JXTA Gnutella CAN

Pastry

Table 2.1 P2P Models

Each P2P protocol listed in Table 2.1 is discussed in more detail in the following subsections.

2.4.1 Napster

One of the earliest P2P implementations that brought P2P computing to the forefront and

which sparked a large amount of media attention was Napster [Oram 2001]. Napster was

created purely for the distribution of MP3 audio files (an MPEG-l Layer 3 audio encoding)

[Brandenburg 1999], and as such it was swamped with negative press because people where

downloading digital content illegally, subsequently ignoring content copyright. Each Napster

node downloads and installs the client software used to connect the peer to the centralised

Napster server. Once connected, peers share MP3 files stored locally on their hard drives,

which are then indexed by the Napster server. Clients submit queries to the Napster servers

for a particular audio file. This results in a list of files that match, which includes the

connection information, username, IP and port address the querying client must use to

connect to the peer that has the file. Once the querying peer has this information it attempts to

connect to the peer and transfer the target content in a P2P fashion. At this point the Napster

server is no longer required [Gradecki 2002].

Although Napster proved successful and is said to be the grandfather of modern P2P

computing models it suffered from a number of limitations. The major limitation was the fact

that it could only share MP3 content. The other limitation lay in the fact that it was a hybrid

model reliant on client-server technology - if the server becomes unavailable then the

discovery mechanism used to find content is lost. This marked the demise of Napster when it

was ordered to switch off its servers in 2001.

33

2.4.2 Mesh

Another hybrid protocol, similar to Napster called iMesh [iMesh Inc 2005] uses a centralised

server, which clients connect to and search for content. However the iMesh model differs

somewhat to Napster in two main areas. Firstly it allows any content to be shared including

MP3 audio files. Secondly, and the reason why iMesh has not been subjected to the same
legal problems as Napster, it has a mechanism to remove copyrighted files from the network.

2.4.3 Gnutella

Computational expense and scalability issues associated with the above mentioned models are

well documented, which has resulted in new P2P networks devoid of any centralisation. The

most popular being the Gnutella protocol [Gnutella 2001]. Like Mesh is provides a generic
file sharing mechanism that allows any digital media content to be shared. However it differs

from iMesh and Napster because the Gnutella protocol uses a purely decentralised model,
which is not reliant on any centralised authority. Another distinguishing feature is its use of
the HTTP protocol to transfer information. In effect a Gnutella node is like a Web server.

The search mechanism used by Gnutella adopts a different approach to Napster in that it does

not require any centralised server to manage the location of content within the network.
Search packets are used with predefined TTL values, the default value being 7, which

corresponds to the number of hops the message can take. The packet is passed to all the
immediate peers' the querying peer is connected to, which in turn is passed to all the peers the

peer is connected to. The Horizon as defined by Kan [Oram 2001], given a TTL of 7

encompasses about ten thousand nodes. If a node is found that contains the file, the
information is routed back to the querying peer, which can then be downloaded directly from

the target node.

Unlike Napster, it is difficult to disrupt the network because no one single node is responsible
for creating it. If any given node is lost it does not affect the overall search mechanism of the
Gnutella network. The worst case is that you only lose the content provided by that node.
Consequently Gnutella provides mechanisms to counteract some of the limitations associated

with Napster. As such many Gnutella clients have been developed since the protocol was first

released in 2000, which include Bearshare [Free Peers 2005], Shareaza [Shareaza 2005] and

Limewire [Lime Wire LLC 2005].

2.4.4 FastTrack

The FastTrack protocol claims to be better than Gnutella and its variants. Unlike Gnutella this

protocol is proprietary, consequently specification details are difficult to find. A number of

popular applications such as Kazaa [Morle 2003], Morpheus [StreamCast Networks 2005]

34

and Grokster [Grokster 2005], use the FastTrack protocol which divides users into two group

types. The first group contains supernodes and the second contains ordinary nodes.

Supernodes are defined as computers with significant computation, network and bandwidth

capabilities. Supernodes are automatically selected, and typically owners do not know that

there machines are acting as a supernode. All supernodes are connected together to create an

overlay network that acts like a hub and processes all data requests received from ordinary

nodes within the network, which are inherently less capable nodes. Each supernode may serve

between 60 and 150 ordinary nodes at anyone time.

Initially when applications such as Kazaa are installed it uses pre-coded supernode addresses,

which act as bootstrapping nodes. When Kazaa is started it is registered with the "central

server" and chooses a supernode from a list of supernodes on that server. When a node wants
to share or search for a file a request is submitted to the supernode, which in turn submits it to

all other supernodes, which in turn propagate the request to the ordinary nodes it is servicing.
Like Gnutella, messages are configured with a TTL value of 7, ensuring that message

propagation is terminated once seven hops have been reached.

Once the content has been found it is transferred directly from the target node to the querying

node using the HTTP protocol, without using the supernode. There is a subtle distinction

between the FastTrack model and that of Napster in that the Napster server managed an index

of audio file information, which includes information about the peer sharing the file.

According to copyright laws this was deemed illegal and a copyright infringement even

though the file did not physically reside on the Napster servers or even facilitate in the

physical transportation of the file. The FastTrack protocol avoids this problem because it only

manages a list of supernodes and not information regarding the content itself. Supercodes are

ad hoc in nature and are free to join and leave the network at any time. So information about

supernodes held by the FastTrack servers continually changes. This abstraction detaches the

FastTrack protocol, including the applications that use the protocol, from media content and

thus some believe that FastTrack-based applications do not aid copyright infringement.

2.4.5 Chord

P2P network topologies are typically defined as hybrids, such as Napster, which use both

client-server and P2P techniques or pure as is the case with Gnutella. However further

distinctions have emerged as P2P systems have evolved which classify P2P networks as

unstructured (as is the case with Napster and Gnutella) or structured (as is the case with

Distributed Hash Table (DHT) based P2P implementations such as Chord [Dabek 2001],

CAN [Ratnasamy 2001] and Pastry [Rowstron 2001].)

35

Chord is a structured P2P network that allows order to emerge using its DHT routing

algorithm. Its basic structure forms a ring topology, whereby each node only has to establish

one connection. The protocol describes how peers join the ring, how data is stored and how

the network deals with failures [Dabek 2001, Eberspacher 2004].

Chord uses a hashing function, such as SHA-1, to generate node and object identifiers known

as keys. The node identifier is created using the IP address and port, whilst the object
identifier, which can be any kind of shared content, is created using the data to be shared

within the ring. Node identifiers are arranged in a circle modulo 2'", where m is the length of
the hash value. Every key k is assigned to the node whose identifier n is larger than or equal to

the hash value of k. The node the key belongs to is called the successor. In Chord, node
identifiers increase clockwise and keys are assigned to the first nodes that reside closest to

them clockwise. In this instance Chord is a hashing function, designed to distribute keys

evenly throughout the ring topology, whereby all nodes roughly receive the same number of
keys.

Finding nodes that map to the key is performed with little routing. Every node is aware of

their successor and as such queries are passed from successor to successor. When a node is

reached that has a hash value bigger or equal to the hash value of the key, then a node has

been found that can map the query to the key. Although this mechanism works, it would
however be inefficient in large rings because every node needs to be traversed. Chord

addresses this problem using a finger table. Each node has a finger table that is capable of
indexing t entries, where t is the number of bits in the identifier - if SHA-1 is used this would
be 160. Each entry of index i points to a node s that succeeds node n by at least 2'''. The node

s is known as the ilh finger of node n. Using this mechanism the first finger within the table is

always the nodes immediate successor.

In order to overcome the need to traverse every node, a node can use the entries contained in

the finger table to try and find the predecessor of some key k. Node n achieves this by

searching its finger table for some node x that immediately precedes some key k. If it finds

node x then it queries the node to determine which node is closet to x. By repeating this

process n moves the query closer and closer to k. In Chord this is called iterative routing.

As with any other P2P network, nodes will continually connect and disconnect from the ring.

As such the successor and predecessor relationships between nodes and keys, including the

finger tables will change. Chord addresses this problem using a stabilisation scheme designed

to repair the ring when new nodes arrive and existing nodes leave. Each node periodically

runs the stabilisation function to correct incorrect successor and predecessor entries. When

node n runs the stabiliser it asks its successor s for its predecessor p. Under normal conditions

36

this will be n. However if a new node enters the ring and its hash value falls between the hash

values for n and s then n has to update its successor entry to now point at the new node that
has joined. The old successor used by n is notified about the change so that it can update its

predecessor entry. Lastly the stabiliser notifies n's successor, which is the newly added node,
about its existence so that the new node can enter n as its predecessor. Although there are
additional features supported by Chord, this overview describes the basic functionality
[Dabek 2001, Eberspacher 2004].

2.4.6 Content-Addressable Network (CAN)

Another similar protocol to Chord is the Content-Addressable Network (CAN) protocol
[Ratnasamy 2001] which uses the DHT concept. CAN comprises a number of nodes that form

a overlay P2P network that store chunks, known as zones, of the hash table. Each node also
contains information about the adjacent zones in the hash table. Requests, which may be
insert, lookup and delete, for a particular key are routed towards the CAN node whose zone
contains the key. Like, Chord, CAN is a decentralised P2P network, which requires no
centralised server to index and discover content.

The central idea surrounding the CAN protocol is based on a virtual d-dimensional Cartesian

coordinate space. The space is dynamically partitioned among all the nodes in the system.
This means that every node owns its own zone within the global coordinate space. This space
stores key-value pairs where k1 is mapped onto a point p in the space using a uniform hashing
function. The key-value pairs are stored on the node that owns the zone in which p resides. To

discover the values of some key k1 any node can use the hash function to map k1 onto point p

and retrieve the contents from p. This may be the content or a pointer to the content. If the

point p is not owned by the querying node or its neighbour, then the request is routed towards

the node where pointp resides.

CAN nodes perform this type of routing using information about the zone and coordinate
information of its neighbouring nodes. The neighbouring nodes in the space server have a

coordinate routing table that allows information to be routed between any two nodes. Each

node maintains its own routing table, which contains information about IP addresses and zone

coordinates for all its neighbouring nodes. Two nodes are classed as neighbours if their

coordinates overlay around d-1 dimensions, i. e. in a two dimensional space two nodes are

neighbours if either the X or Y coordinates share the same value. In this instance, node (0,1)

would be a neighbour of node (1,1) because the Y coordinates for both nodes are the same.
Messages sent within the CAN network contain the coordinates for the destination. Using its

neighbours coordinate set, a node routes a message towards its destination using a mechanism

37

called greedy forwarding in CAN, which forwards messages to neighbouring nodes with
coordinates closest to the destination coordinates.

There may be many routes that exist between any two nodes within the CAN network,
consequently if neighbouring nodes fail or leave the network, the message can be routed
along an alternative route. In more severe instances where all the neighbouring nodes fail and
the repair mechanism has not rebuilt the mesh then greedy forwarding will temporarily fail.

The CAN protocol makes provisions for such an eventuality using a technique called

expanded search, which locates a node closer to the target node - when a node is found, the

greedy forwarding mechanism continues.

New nodes can join and leave the CAN network over time, which dynamically changes the

mesh configuration. In the instance when a new node joins it discovers an IP address of any
node within the CAN network. No constraints are placed on how this is achieved, however
bootstrap servers are used within CAN. Once a node has been found, the new node selects a
random point p in the coordinate space and sends a JOIN message. The message is forwarded

to the node whose zone contains point p. This node upon receiving the JOIN message splits
its zone in half and assigns one half to the new node.

Once the new node receives its zone the node uses the IP addresses of its neighbours, whilst
the previous owner of the zone updates its neighbour entries in its routing table - nodes that

are no longer neighbours are purged. The old and new node neighbours are notified of the

change, which results in each node updating its routing table. As well as update messages

each node periodically sends refresh messages to its neighbours containing the node's current
zone coordinates. The neighbours use these messages to update their routing table. The

procedure described here is localised so that newly added nodes only affect nodes which are
its direct neighbours. How many neighbours a node has is dependent on the dimensionality

used in the coordinate space.

In the case where nodes leave the space, either voluntarily or because of node or network
failure, zones are automatically reallocated. In controlled situations a node hands over its zone

and its associate key-value pairs, to one of its neighbours who have the smallest zone.
Conversely, there will be instances when a controlled handover is not possible, for example

when the node suddenly fails. Using a takeover algorithm a neighbouring node takes over the

zone. However the key-value pairs are lost until the state is refreshed by the holders of the

data.

As mentioned earlier nodes send update messages. The prolonged absence of messages
indicates that a node has failed. Once a neighbour determines that a node has failed it initiates

a takeover procedure. The node with the smallest zone should take over the available zone.

38

Determining the neighbour with the smallest zone is achieved by each neighbour starting a

timer - when the timer expires, a takeover message is sent to all the neighbours and when

these messages are received the node cancels its timer if the zone size in the message is less

than its own zone size. Alternatively the node responds with its own takeover message. This

mechanism allows neighbouring nodes to determine which node has the smallest zone and

thus provides a node selection mechanism to choose which node will perform the takeover.

This section describes the basic functionality of the CAN protocol, however for a more

detailed description including the enhancements to this protocol see [Ratnasamy 2001].

2.4.7 Pastry

The Pastry protocol is also similar to Chord and CAN, which is a self-organised overlay

network of nodes, where each node routes client requests. Pastry nodes are identified in the

network space using a 128 bit identifier, known as the nodeld. The nodeld indicates a node's

position in the circular nodeld space. The nodelds themselves are assigned randomly when
the node first connects to the Pastry network. Several mechanisms can be used to derive the

nodeld, however typical implementations use the nodes public key or IP address to create a
hash. In Pastry nodelds are thought of as a sequence of digits in base 26. Using this

mechanism messages are routed towards the nodeld that is numerically closest to the message
key. For example a node uses its routing table entries to forward the message to one of its

neighbours whose nodeld shares with the key a prefix that is a least one digit longer than the

prefix that the key shares with the present nodeld. If no such node is known, the message is

forwarded to a node whose nodeld shares a prefix with the key that is as long as the current

node, but is numerically closer to the key than the present node is.

Nodes within Pastry maintain their own routing table, which is organised into 128/2b

columns. For example, b could be 4 consequently there would be 8 rows and 16 columns. The

16 entries in row n contain the IP addresses of nodes whose nodeld share the first n digits

with the present nodes nodeld. Furthermore the nth +1 nodeld digit in the candidate nodeld
has one of the 2° possible values other than the nth +1 digit in the present nodeld. Entries in

the routing table are left empty if no node with the appropriate nodeld suffix is known.

Determining the value of b is a trade-off between the size of the populated portion of the

routing table and the maximum number of hops required to route a message between any two

nodes. The size of the populated portion of the table is log2bN * (26 - 1) where b is the base

and N is the number of nodes. The number of hops required can be calculated as log26N.

As well as the routing table, each node also maintains a neighbourhood set M, which contains

nodelds and IP addresses of the M nodes that are closest to the local node. The set is not used
for routing, but rather for maintaining locality properties [Rowstron 2001].

39

Nodes also maintain a leaf set L which contains a set of nodes with the numerically closest
larger nodelds and numerically smaller nodelds, relative to the present nodes nodeld. The leaf

set is used when messages are routed. When a node receives a message it first checks to see if

the key falls within the range of nodelds covered by its leaf set. If it is, the message is

forwarded directly to the destination node. If the key is not covered by the leaf set, the routing
table is used and a message is forwarded to the node that shares a common prefix with the key

by at least one more digit. In certain cases, it is possible that the appropriate entry in a table is

empty or the associated node is not reachable, in which case the message is forwarded to a

node that shares a prefix at least as long as the current node and is numerically closer to the
key than the current nodeld.

Pastry provides mechanisms to self-organise and adapt to network changes. In the case where

a node arrives, it needs to initialise its state tables and inform other nodes of its presence. An

assumption is made that the node knows about a nearby Pastry node A. This could be

achieved using multicasting. The new node asks node A to route a special join message with a
key equal to the new nodeld. Messages used to join a node to the Pastry network are like any

other Pastry message, consequently Pastry routes the join message to a node Z whose nodeld
is numerically closest to the new node. In response to the join request nodes A, Z and all

nodes en-route send their state table to the new node, which are used to initialise the new

node's state table. Lastly the new node informs any nodes of its arrival. This procedure

ensures that the new node initialises its state with appropriate values, and that the state in all

other affected nodes is updated [Rowstron 20011.

Nodes will depart and even fail over time without warning. In Pastry nodes can determine

whether neighbouring nodes have failed if communication can no longer be established. A

failed node in the leaf set is replaced by contacting its neighbour in the nodeld space and

asking that node for its leaf set. Using this leaf set the current node updates its own leaf set to

replace the failed node.

Failed routing table entries are repaired lazily, whenever a routing table entry is used to route

a message. Pastry routes the message to another node with a numerically closer nodeld. If the

downstream node has a routing table entry that matches the next digit of the message key, it

automatically informs the upstream node of that entry.

If a numerically closer node can be found in the routing table, it must be an entry in the same

row as the failed row node. If that node supplies a substitute entry for the failed node, its

expected distance from the local node is therefore low, now all these nodes are part of the

same nearby nodes with identical nodeld prefixes. If a replacement node is supplied to the

downstream, a routing table maintenance mechanism is triggered to find a replacement entity.

40

DHT-based P2P implementations are said to provide considerable benefits over previous

generations and provide emergent behaviours that support order and increased performance.
There is however a trade off between performance and maintenance costs. For instance the

cost associated with maintaining a consistent distributed index in DHT-based solutions is high

because most time is spent updating indices. It is generally agreed that DHT provides an

efficient mechanism for data access however costs are exponential as the number of peers that

continually connect and disconnect increases. The converse of this problem is that not having

a DHT requires an exhaustive traversal of the network, which results in network flooding.

Using this technique removes the maintenance costs associated with keeping the network

topology consistent, however it is penalised in terms of network congestion.

Whilst implementations like Chord, CAN and Pastry may work well in structured network

environments like organisational P2P networks (where the network structure remains largely

the same) they are not as effective in unstructured environments (as is the case with Gnutella

and FastTrack). This is because these networks are inherently ad hoc in nature and highly

unstructured. The network topology is continually changing and consequently managing a

consistent DHT across such networks requires considerable effort.

2.4.8 JXTA

New P2P initiatives, more specifically JXTA (Juxtapose), have tried to create a balance by

creating a hybrid system that uses a loosely consistent DHT [Traversat 2003]. JXTA in this

sense is similar to other implementations such as Chord by virtue of using DHT. However the

way in which a table is managed differs. Whilst Chord relies on more costly mechanisms to

keep the network view consistent, JXTA uses a less costly mechanism that ensures the

network view is only loosely-consistent. The advantage with this approach is that it is less

expensive to maintain, however the disadvantage is that it may be temporarily or permanently
inconsistent.

The JXTA architecture consists of three layers; the core layer; the services layer and the

application layer. The core layer provides the main services required for P2P computing such

as peer discovery, peer creation, groups, security and mechanisms for mobile devices, such as

mobile phones and personal digital assistants (PDA) [Gong 2001, JXTA 2001, Qu 2001,

Waterhouse 2001, Halepovic 2002, Oaks 2002, Traversat 2002, Wilson 2002, Arora 2003,

Sun Microsystems Inc. 2005a, Sun Microsystems Inc. 2005c]. The service layer provides

services that are deemed desirable, for example file sharing, protocol translation and

authentication. The application layer contains any number of P2P applications, built on top of

the services layer, to perform some given function, for example solutions provided by DLNA,

OSGi or UPnP.

41

The JXTA protocols allow any device to discover and communicate with each other and

provide mechanisms to perform interoperability between heterogeneous devices. Devices may

implement JXTA in any programming language and form bindings with any underlying

transport protocol on any platform.

Devices are known as peers in JXTA which are nodes that sit inside the network.

Communications take place between peers, which may reside within and across different

networks, by sending XML messages along communication channels called pipes. Peers are

dynamic in nature and are free to connect and disconnect at any time. This behaviour means

that peers dynamically reconfigure as network changes take place. Peers connect to form peer

groups, which emerge through inter-peer connections, known as relationships. Peer groups are

a logical grouping of peers that share a set of common services. Many peer groups may co-

exist, which can be identified using globally unique IDs. Peers are free to create or join

existing groups and may belong to several groups simultaneously. Constraints can be placed

on peer groups to implement security policies that control how and which peers may join.

Peer groups are designed to address several requirements, the first being security. The second

is to provide an effective scoping mechanism that split the network into specialised domains,

known as abstract regions which control the search space. Peers, within the network, share

several peer group services which include the Discovery Service, Membership Service,

Access Service, Pipe Service, Resolver Service and the Monitoring Service. The collective

use of these peer group services provides the core functionality most P2P applications require.

The central idea behind JXTA is the concept of services, which are referred to as modules.
JXTA supports two types of services called Peer Services and Peer Group services. Peer

services are implemented and used by a single device. If the device is disconnected then the

Peer services it provides are lost. Peer Group services are implemented on numerous peers

and shared within the group. When a single peer in the group is disconnected you only lose

the services provided by that device and devices are free to re-discover the same service

provided by another device.

Services are abstractions, which can be used to hide the underlying implementation details

regarding how the service is created. For example the implementation could be a Java class,

or a jar file. At an abstract level services are described in a standard way and the

implementation details are left to the device manufacturer. Each service is known as a

network behaviour, which can be discovered and used by any other device within the group.

JXTA services provide a flexible means of addressing interoperability between 'different

implementations.

42

Pipes are one of the main mechanisms for sending messages between devices, which support

both asynchronous and unidirectional communications. The message object can support any

arbitrary data such as binary code or Java objects serialised as XML. Pipes are known as

endpoints which may be input and output pipes mapped to network interfaces such as TCP/IP.

This is dynamically performed at runtime.

XML advertisements are used to advertise networked resources such as peers, services and

pipes. One of the key benefits of advertisements is that they are language neutral XML

documents, which means that they can describe and advertise the existence of any resource
irrespective of the programming language it was developed in or the underlying platform or
transport protocols it uses.

Discovering resources is achieved by searching for advertisements. If a local advertisement is

found then the device can use it otherwise JXTA searches for the advertisement remotely.
Advertisements have a lifetime that specifies the availability of the resource. Using TTL

values, resources can be deleted without having to use centralised control. Extending the

lifetime of a resource can be achieved by republishing an advertisement before the previous

advertisement expires.

Each resource within the JXTA network is identified using a globally unique ID, which is

created using the JXTA J2SE binding. In the current JXTA specification there are six entities
that use JXTA IDs. These are the Peer, Peer Group, Pipe, Content, Module Class, and the

Module Specification. JXTA IDs are represented as Universal Resource Indicators (URIs)

which are persistent location-independent identifiers.

IDs provide a level of abstraction that allow every network resource to be discovered and

referenced in a standardised way without having to consider the underlying implementation

details. This provides a unified addressing scheme that allows devices with different

addressing schemes to interoperate. For example devices that use IEEE 802.15.4 (Zigbee)

[IEEE Standards Association 2005] can communicate with devices that use 802.11 x using the

unified JXTA ID mapped to the underlying transport protocols being used - the conversion
between standards is invisible to the device.

The JXTA specification has matured, and has considerable support from industry and

academia alike. It is generating a great deal of interest within the ubiquitous and pervasive

computing domains and research initiatives are currently assessing how it can be used in the

digital home.

JXTA provides several discovery specifications, however they are somewhat restrictive

because services are not discovered based on the capabilities individual devices or the

services they provide support. The discovery process is based on pre-determined syntactic

43

descriptions. This technique is efficient when using pre-determined core framework services,

however it becomes more problematic when discovering application specific services that are

ad hoc in nature. These types of services are non-standard services that provide access to the

devices underlying functions. As such these functions will be numerous. The current version

of JXTA does not provide any mechanisms to discover services based on semantic

descriptions that describe the behavioural aspects of the service. Additional core services need

to be developed that extend the existing JXTA specification to address this requirement. This

will enabled devices to automatically compose devices and services without any human

intervention.

Other variants of P2P computing exist that are converging with home computing such as
Instant Messaging (IM) [Shigeoka 2002], which has seen a significant growth in recent years.
Instant Messaging follows a similar path as P2P in that the concepts have been around for

some time. Mechanisms that allow one-to-one and group chatting have been around long

before current IM solutions. Examples of such systems are Unix talk [Burk 1998] and Internet

Relay Chat (IRC) systems [Douglas 2004], which are extensions of Unix talk. P2P is also
being used to extend the gaming experience through distributed on-line game play. A

technology generating a great deal of interest within this area is Jabber [Lee 2002].

2.5 The Semantic Web

The term `Semantic Web' was coined by the inventor of the WWW, Tim Berners-Lee

[Berners-Lee 2000]. Berners-Lee had a two stage view of the WWW. The first stage was to

create a collaborative medium that allows authors to develop and host interconnected Web

pages using HTML and the concept of hyperlinking. The second stage was to make the Web

understandable in order to make data processable by machines as well as humans - this

second stage will result in a ̀ Semantic Web'.

There is nothing mystical about the Semantic Web and people often frown upon the idea of

making a machine intelligent and thus threatening. Berners-Lee clarifies the term by stating:

"A Semantic Web is not Artificial Intelligence. The concept of machine-understandable
documents does not imply some magical artificial intelligence which allows machines to

comprehend human mumblings. It only indicates a machine's ability to solve a well-defined

problem performing well-defined operations on existing well-defined data. Instead of asking

machines to understand people's language, it involves asking people to make the extra effort

[Berners-Lee 1998]. "

Daconta [Daconta 2003] makes reference to where the `Smarts' in data resides. Traditionally

data is propriety, which means it can only be accessed and understood by a purpose built

44

application. The data itself is not transitive and can only be accessed by pre-defined functions,

exposed by the application - if you do not have the software, then you cannot access the data.

Daconta states that in propriety data the `Smarts' reside in the application and not in the data

itself.

The introduction of XML has overcome this limitation and made information accessible

within a single domain. The data itself resides outside the application and as a result the

`Smarts' reside within the data and not in the application. Doconta defines this type of data as

application independent, which is smart enough to be transferred between applications within

a single domain. The XML paradigm can be further extended to ensure that data is

incorporated within and across multiple domains and is structured using taxonomies and

classification hierarchies. The true power of taxonomies becomes evermore apparent when
the data adopts the principles of ontology, and incorporates rules that enable information to be

inferred from existing data using logical definitions. The word ontology derives from the

Greek words ̀ onto' (being) and ̀ logia' (written or spoken discourse). There are many theories

of ontology dating back to Aristotle ranging from `concepts of being' to `knowledge

representation and information reuse. ' A more detailed discussion on ontology is presented in

Section 2.5.1 on page 46.

The Semantic Web is widely scoped and it is said that applications will be employed in

various guises. The technologies surrounding the Semantic Web are not solely designed for

the WWW, but rather define a set of tools and ontological languages that address the problem

of semantic interoperability. These tools are becoming more widespread and are used within

the areas of Sales Support, Strategic Vision, Marketing, Decision Support, Corporate

Information Sharing and many more [Daconta 2003].

The fundamental issue the Semantic Web addresses is semantic interoperability. XML paved

the way for syntactic interoperability, however it is important that this is extended to

incorporate semantic interoperability to ensure that information is not just dumped in files and
databases. The idea is to dress up this information and put the `Smarts' in the data itself and

enable syntactic and semantic interoperability within and across different domains.

Heflin [Heflin 2003] states:

"the goal driving the Semantic Web is to automate Web-document processing. To that end,

researchers are developing languages and software that adds explicit semantics to XML's

content structuring aspects. A Semantic Web language lets users create ontologies that

specify standard terms and machine-readable definitions. Information resources (such as

Web pages and databases) then commit to one or more ontologies, thus specifying which sets

of definitions are applicable to a specific resource. For example, an ontology about animals

45

might explicitly state the class `Dog' is a subclass of `Mammal' and that the classes
`Mammal' and `Fish' are disjoint. Logical reasoning systems can use these statements to
deduce additional information that was not explicitly stated about the terms in the resource. "

He further highlights the main challenges facing the Semantic Web:

"although a standardised Web ontology language will be a major step forward, several
challenges need to be addressed before the Semantic Web can become a `Pragmatic Web' -
an online environment that not only helps computer systems find information, but also helps

ordinary people accomplish tasks and get practical work done. The challenges include:

" Getting information into the appropriate format

" Scaling Semantic Web technology to handle `Web size' data

" Creating, maintaining and integrating ontologies

" Using the Semantic Web to describe and compose Web Services

" Handling inconsistent data and
" Determining what to trust. "

Heflin highlights some interesting challenges, more notably the idea that we need to get
information into an appropriate format as well as creating, maintaining and integrating

ontologies; and determining what to trust. He describes a "chicken and egg" problem whereby
if semantic web content was available then more systems and agents would use the Semantic

Web for search tasks and if it were used in more searches, more content providers would be

willing to provide information in the specified format. This is an interesting challenge.

2.5.1 Ontology

A brief definition of ontology was presented above and we highlighted that many theories
have been presented ranging from `concepts of being' to `knowledge representation and
information reuse. ' Decker et al [Decker 2000] define ontologies as:

"a shared formal conceptualisation of a particular domain which provides a common

understanding of topics that can be communicated between people and application systems. "

Whilst Gruber [Gruber 1993] states "an ontology is an explicit specification of a

conceptualisation. "

Following a similar description Uschold and Gruninger [Uschold 1996] define an ontology as:

"a shared understanding of some subject area which helps people or processes achieve better

communication, interoperability and effective reuse. The Ontology embodies a

conceptualisation - definitions of entities, their attributes and relationships that exist in some
domain of interest. The conceptualisation is explicitly represented. "

46

In the technical view of ontological engineering, ontology is the vocabulary for expressing the

entities and relationships of a conceptual model for a general or particular domain, along with

semantic constraints on the model that limits what the model means. Both the vocabulary and

the semantic constraints are necessary in order to correlate that information model with the

real-world domain it represents. Complex ontologies far exceed the capabilities of simple

ontologies such as taxonomies and catalogues, in that they are capable of consistency

checking, providing completion, interoperability support, validation and verification,

comparative and customised search, and exploiting generalisation and specialisation

information. The following sections explain this distinction by defining weak and strong

ontology representations.

2.5.1.1 Weakly Defined Ontology

Taxonomy is based on classification, which ensures that things are organised into logical

hierarchies. The hierarchy itself is represented as an upside down tree. Branches within the

tree are defined as nodes, with the top node being the most general. As nodes move further

down the tree, they become more specialised. For example, a `Dog' is a more specialised

concept than an `Animal' concept therefore the node `Dog' will appear under the node
`Animal'. The links between nodes are referred to as subclassification and superclassification.
For example the node ̀ Dog' appears as a subclassification of `Animal' whilst `Animal'

appears as a superclassification of `Dog'.

Taxonomies have proved to be a powerful tool for classifying information semantically (in

terms of taxonomies, this is usually defined as weak semantics or meta-data). By definition

this means that they are directly associated with technologies that focus on knowledge

representation such as thesauri, conceptual models and ontologies. Taxonomies are often

referred to as semantically weak representations because of their inability to express
information using rich modelling primitives. At the very best taxonomies can only provide a

simple model capable of making simple distinctions between objects, which primarily focus

on browsing and navigating information structures.

There is a subtle distinction between semantically weak representations and semantically

strong representations. Something is a subclassification or a superclassification of an object

within a taxonomy, however semantically strong representations enable us to define nodes

using richer model constructs such as disjointTo, equivalentTo as well as using properties to

describe the individual characteristics a class supports. Subclassification and

superclassification make the taxonomy structures ill-defined and semantically weaker than

other structures such as conceptual models and ontology. McGuinness [McGuinness 2001]

clarifies this point by stating:

47

"In these organisation schemes, it is typically the case that an instance of a more specific

class is also an instance of the more general class but that is not enforced 100% of the time.

For example, the general category Apparel includes a subcategory Woman (which should

more accurately be titled Women's Apparel) which then includes subcategories Accessories

and Dresses. While it is the case that every instance of a Dress is an instance of Apparel (and

probably an instance of Women's dress), it is not the case that a Dress is a woman and it is

also not the case that a Fragrance (an instance of a Women's accessory) is an instance of

Apparel. " She further states "Without true subclass (or true "isa') relationships, we will see

that certain kinds of deductive uses of ontologies become pragmatic. "

The Thesaurus is probably one of the most common classes of taxonomy. It is classed as a

semantically weak classification that enables information to be structured and ordered in a
known way so that equivalence, homographic, hierarchical and associative relationships

among terms can be displayed clearly and identified by standardised indicators. A thesaurus is

primarily used to aid information retrieval based on the rough associations between any terms.

This ensures that concepts are described in a consistent way and provides a tool for users

which enables them to drill down until required information is found.

McGuinness [McGuinness 20011 classifies thesauri as simple ontologies and states:

"thesauri are controlled vocabularies. These types of ontologies prove useful and common

term usage provides a starting point for interoperability. They are used for Web site

organisation and navigational support. In this sense they are a generalised hierarchy of terms

which can be further exposed to reveal relevant subcategories. Using hierarchical tree

structures provides the user with a realistic expectation of the site and enables the user to

quickly determine if the site contains the information they are looking for. This type of
functionality can be viewed as a browsing tool, which tags content to aid browsing and

searching. "

2.5.1.2 Strongly Defined Ontology

Conceptual models extend the capabilities of taxonomies by modelling a particular domain to

form a complex knowledge representation. The domain consists of entities, which have

relationships with other entities, and possess attributes with associated values. Conceptual

models extend the capabilities of typical taxonomies by fully implementing the ability to

capture the subclass relationships between parent and child classes. These models use the

object-oriented paradigm to construct complex knowledge domains which consist of the

meta-level and the object-model level. The meta-level defines the classes, the relationships

and the properties, whereas the object-model level defines content models. Ontologies can be

seen as conceptual models and more specifically logical models. Logical models are defined

48

as the combination of axioms, inference rules, and theorems. Axioms and inference rules are

used to prove theorems about the domain represented by a particular ontology.

The Resource Description Framework (RDF) [Decker 2000, W3C 2005] is a simple model

and is based on XML syntax, which has been a W3C recommendation since February 1999.

Its primary function is to describe resources using URLs. RDF differs from XML in several
different ways. The main difference relates to how the formats apply meta-data. XML applies

meta-data to the internal structures of an XML document whilst and RDF document focuses

on providing meta-data about the external information associated with a document such as
`Author' and the date the document was created.

The RDF Model is based on a collection of triples. A triple is the name given to RDF

statements, which contain three parts - the subject, predicate and object. The subject is a

resource, which can be either an electronic source such as a Web page or it can be a concept

like `Car'. A resource can be identified as anything that can be given an identity [Daconta

2003]. The predicate is a verb that links the subject and the object together. For example the

predicate in the following sentence "John throws the stick" is throws, which links the subject

(John) to the object (Stick). The object is a value associated with the subject via the predicate.

The object may be another subject or resource or it may be a literal value such as a string or a

numerical value.

The RDF structure itself can be represented using three different formats; RDF/XML, a triple

notation called N3 or a graph-triple notation. In addition to the simple triple model, RDF

contains two further features which deal with collections, more formally known as a Bag

object and Reification. The Bag feature is self-explanatory and allows groups of resources or

values to be combined. Reification is rarely used and focuses on high-level statements used to

describe other statements.

Although RDF offers distinct advantages over raw XML, it has not been widely accepted and
its uptake has been slow. This can be attributed to three reasons. It is difficult to embed RDF

within XML and as a result it is not easy to validate it. A second reason is that parts of RDF

are complex which make the development process significantly more difficult than XML

development. RDF allows metaphors to be mixed, which means that RDF documents are

capable of using terms from difficult representations provided by different organisations such

as linguistics, object-oriented concepts and relational data [Daconta 2003]. This is

advantageous in one sense because it provides for a more integrated environment that

promotes knowledge sharing; however this also causes a great deal of confusion.

The third problem can be directly related to the hierarchical constructs of RDF. It proves
difficult for document authors to arrange triples into a hierarchical structure using RDF in its

49

raw form. The document soon becomes unwieldy and difficult to follow or maintain -
however tools do exist, that abstract the complexities away from the user.

RDF provides a model capable of linking resources together in a directed graph format;

however it is too simplistic to capture the true semantics of information. RDF Schema

(RDFS) was developed to extend RDF and enable information to be represented as classes

and properties of classes with associated values. This allows class definitions to be

represented as inheritance hierarchies. RDFS can also further constrain the model by placing

domain and range restrictions on properties [Fensel 2003]. RDFS, like RDF is a simple

model, which provides a set of simple standardised resources and properties that enable

authors to create ontology-based vocabularies, and is based on an object-oriented paradigm.

Whereas RDF describes information at the instance level, RDFS extends this to represent

information at the class level. It allows the author to model information using object-oriented

principles, which is restricted to the development of classes and data that captures object

behaviours - RDFS is concerned with modelling data not behaviours and enhances the

modelling capabilities of RDF or XML not only to include classes, and properties of classes

but to also define complex relationships between classes and properties, such as subClassOf

and subPropertyCf, making classes and properties transitive.

Another specification for describing data is that of Topic Maps (TM) [Le Grand 20011. Topic

Maps are defined as a context-oriented index which sits above a set of documents. This

indexed-based overlay enables content based navigation over resources, which acts like a

taxonomy that describes, classifies and indexes a desired information space. TMs are not new

and appeared before XML. They were based on the Standard Generalised Markup Language

(SGML) [Goldfarb 2002] representation and became an ISO Standard (13250), which today

has two interchangeable syntaxes - XML and SGML. The more common representation is

XML and current TMs are usually referred to as XML Topic Maps (XTM). The key concepts

surrounding TMs are topic, association, occurrence, subject descriptor and scope. A topic is

defined as anything that can be a distinct subject of interest - the topic itself usually acts as a

proxy for a particular subject. Capturing subjects within a TM enables us to make assertions

about the subject. An occurrence is defined as a resource that provides us with some

information about a topic. The occurrence is described using a URI and has an associated data

value, which can be of different types, however unlike RDF, the value may not be another

resource. This is one of the fundamental limitations of TM and where RDF provides a more

complex form of linking. An association is defined as a relation between one or more topics.

A subject descriptor is defined as something that can be a resource, which has an associated

information representation called a topic. The scope is defined as the context of the topic, its

50

occurrences, resources and associations. The concept of scope is the same as a namespace

used in current markup languages.

In formal languages there is a vocabulary, which can be defined as a language that has a

syntax and associated semantics for the objects of that syntax. The primary function of

ontologies is to reduce the models of interpretation of specified vocabularies in order to

remove as much ambiguity as possible. No other model type, for example taxonomies, does

this. Consequently these models rely on the human to understand the semantics and resolve

any ambiguities that may exist. The view is that machines should be responsible for this level

of processing so the reliance on human intervention can be minimised.

2.5.1.3 Ontology Specifications

Many ontology specifications have been developed over the last twenty or thirty years. The

Simple HTML Ontology Extensions (SHOE) [Heflin 1998] specification was one of the first

languages that used ontologies for direct use on the World Wide Web (WWW) and was

viewed as the blueprint for the Semantic Web [Berners-Lee 2001]. SHOE combines the

features of mark-up languages and borrows the characteristics from both predicate logic and

frame-based systems. SHOE is designed directly in HTML and XML documents, however it

provides more benefits if it is embedded in XML because the extensive tools available, such

as the Document Object Model (DOM) [Goldfarb 2002], which can be used to perform

validation at the XML level. The SHOE syntax however still has to be parsed by SHOE-

aware software.

SHOE attempts to enhance interoperability between distributed Internet agents, by using

shared ontologies, prefix naming, prevention of contradictions, and locality of inference rules

[Fensel 2003]. Before SHOE can be used, an ontology needs to be located in a centralised

repository, which may consist of a number of Web pages that categorise ontologies, or the

repository itself may be more complex and enable the ontology to be annotated with meta-

data indicating key characteristics. This is said to provide a better search mechanism, however

if no ontology exists then a new ontology needs to be constructed from scratch.

In SHOE the Web page or the XML document is annotated. This means that SHOE-based

tags are inserted into the document. These documents are published on the Web and

discovered and used by SHOE-based proprietary software capable of understanding the

SHOE language. Documents are harvested using the SHOE Web Crawler called Expose,

which searches Web pages with SHOE syntax and stores these documents in the knowledge

base. The documents themselves can be used and the SHOE syntax extracted and processed

using a reasoner such as RACER [Haarslev 2001].

51

The XML Ontology Language (XOL) [Karp 2005] is a language for ontology exchange,
inspired by Ontolingua [Farquhar 1997] and the Ontology Markup Language (OML)

specification [Kent 2005]. Ontolingua defines ontologies using the LISP programming
language and OML uses conceptual graphs. The initial XOL specification is based on a
Document Type Definition (DTD) schema [W3C 2005], however this was updated to the

XML Schema specification [W3C 2005] by Dimitrov [Dimitrov 2000]. The main difference

between XOL and its predecessors is its use of data definition syntax. Other research
initiatives such as the Darpa Agent markup Language (DAML) [DAML 2003a], DAML-

ONT, MCF, OntoBroker, On-To-Knowledge and OIL [Fensel 2001], where also developed in

an attempt to create a de facto ontology standard.

OIL is a Web-based language and inference layer for ontologies, which combines primitives
from frame-based languages with the formal semantics and reasoning services provided by
description logics. OIL was the first ontology language to fully incorporate standards from the
W3C (RDF/RDFS as well as XML and XML-Schema). However, OIL extends RDFS by

adding additional language primitives not present in the RDFS specification. OIL marked a
significant advance and boosted superior capabilities not evident in languages such as CycL
[CyCorp 2002], KIF [Genesereth 1991], Ontolingua [Farquhar 1997] or any of the ontology
languages described above. It unifies three important aspects provided by different

communities; epistemological modelling primitives as provided by the frame community,
formal semantics and efficient reasoning support as provided by description logics, and a
standard proposal for syntactical exchange notations as provided by the Web community.

Instead of continuing with different languages for the Semantic Web a group of researchers

created the joint US/EU ad hoc Agent Markup Language Committee to create a new ontology
language called the Darpa Agent Markup Language + Ontology Inference Layer
(DAML+OIL) [DAML 2003a], built on both OIL and DAML-ONT. DAML+OIL constituted
the most semantically expressive language available for WWW documents.

The DAML+OIL specification was submitted to the W3C, which became the basis for the
Web Ontology Language (OWL) [Smith 2005] specification, which to date is considered the
de facto specification for describing ontologies on the Web.

2.5.1.4 Consensus Ontologies

Stephens el al. [Stephens 2001] describe the problems associated with information retrieval

and illustrate that although some sophisticated techniques exist that use ontologies, to date

there is no comprehensive ontology that can solve the problems associated with information

retrieval. Even if you could create such an ontology it would be so eclectic that no one would

adhere to it. Web developers could use a common terminology with agreed semantics,

52

however this solution is highly improbable. Web developers could use there own terminology

and explicitly provide translations to a global ontology, however this is difficult and as a

result highly unlikely.

A possible solution provided by Stephens et al. describes how Web developers could use

small, localised ontologies related indirectly with the assistance of agents. The solution is

based on the multiplicity of ontology fragments, representing the semantics of the

independent sources that can be related to each other automatically without using a global

ontology. Direct relationships between a pair of ontologies can be determined indirectly using

a semantic bridge. The resultant merged ontologies provide a semantic characterisation of the

set of sources and their domains, and effectively create a single large ontology to serve as a

global hub for interactions.

Stephens et al. further argue that a consensus ontology is perhaps the most useful for

information retrieval by humans because it represents the way most people view the world

and its information. He makes the following statement:

"If most people wrongly believe that crocodiles are a kind of mammal, for example, then most

users would find it easier to locate information about crocodiles located in a mammals

grouping, rather than in reptiles where it factually belongs. "

The precision and recall of information retrieval measures are based on some degree of match
between a request and a response. The length of a semantic bridge between two concepts can

provide an alternative measure of conceptual distance and an improved notion of information

relevance. Previous measures relied on the number of properties shared by, or the number of
links separating two concepts within the same ontology. These measures not only require a

common ontology, but also fail to account for the density or paucity of information about a

concept.

Although this is an interesting approach it is not clear how easy it is to develop agents to

perform mappings to create semantic bridges. Ontologies will be serialised using different

specifications so interoperability between different serialisations is paramount. It is not clear

how Stephens et al. propose to address this problem. An assumption needs to be made

regarding the serialisation whereby the representation is standardised, however the concepts

themselves remain totally unconstrained. Extending this further it is difficult to determine

how effective there algorithms are in terms of performing mappings using rich complex

ontological constructs such as those evident in the OWL specification. Typically ontology

engineers use real-world knowledge to create, merge or align ontology fragments, which takes

considerable effort. Trying to automate this process is not easy. However they do argue this

point above based on precision and recall.

53

Furthermore it is not clear how computationally expensive there approach is or how easy it is

to maintain the process. Localised ontologies will be subject to continual change,

consequently agents will need to maintain every semantic bridge it is responsible for. This is

somewhat simplified because there will be numerous agents which are only concerned with a

small proportion of the global ontology. This is analogous to the concepts used in P2P

computing whereby routing tables are managed for neighbouring peers only. Consequently

these systems are scalable; however they are computationally expensive in ad hoc

environments where continual change is the norm. Maintaining a global view may be easier

within controlled environments such as organisational LANS, however maintaining a global

view in ad hoc environments is more costly.

2.5.1.5 Ontology Evolution

It is generally agreed that describing information using ontologies provides a better solution

to discovery than attribute-value pair matching. Ontologies provide a semantic bridge

between different concepts providing mechanisms that help systems to proactively understand

and learn the relationships between different terminologies. This allows systems to

communicate with each other and understand terms that are syntactically different but

semantically equivalent.

Using ontologies for semantic interoperability proves successful in controlled environments,
however there are a number of challenges that need to be addressed such as semantic

interoperability, ontology heterogeneity, ontology merging and alignment and global

agreement on what constitutes a concept including how it should be described. An approach

used by Aberer et al., [Aberer 2003] is to capture knowledge through gossiping. Their

approach aims to interconnect peers within a P2P network via user-defined schemas to share

and incrementally evolve the search capabilities within the network. Their approach assumes

a large amount of data exists and that they have been organised and annotated according to

local schemas, which is not always the case in distributed networks. This technique primarily
focuses on creating mappings between ontologies based on the similarities found between

terms and relationships. This process requires an experienced knowledge engineer to have an

understanding of all the ontologies being mapped which must be continually maintained as

and when concepts are disproved, links are broken or new links added.

Noy et al. [Noy 2000] describe an algorithm they have developed called PROMPT that

provides a semi-automatic approach to ontology merging and alignment. It performs some

tasks automatically and guides the user through other tasks by taking two simple ontologies as

input and attempting to merge them into a single ontology. The algorithm merges the

ontologies based on similarities between classes, slots and bindings between slots. This

54

presents an interesting solution, however the merging process is based on the subjective

opinions of the user merging the two ontologies and suggests the person merging the

ontologies is an experienced knowledge engineer capable of creating the correct mappings.

The same problems are experienced in the Chimaera system developed by McGuinness et al.
[McGuinness 2000], which provides assistance with the task of merging knowledge bases

(KBs) produced by multiple authors. This is a web-based ontology editor that merges two or

more ontologies together based on identical terms and subsumption relationships between

terms. Again this approach experiences the same short-comings as PROMPT in that an

assumption is made that experienced knowledge engineers will carry out the merging process.

ONION [Mitra 2000] combines two separate ontologies to form an articulated ontology.

Rather than merging, ONION performs an alignment between two ontologies by capturing the

semantic gap between the two. This approach is similar to Aberer's approach in that the

technique acts like a mapping between two different representations. The process of creating

the semantic gap involves semantically relating classes and creating and managing semantic

bridges. ONION uses a semi-automatic approach, which relieves the user from having to

maintain the bridges; however this approach assumes that a domain expert, knowledgeable of

both structures, creates the semantic bridges.

All these approaches require human intervention during the ontology construction phase and

although there are semi-automated tools that aid the knowledge worker there are no

mechanisms to completely automate this process. The challenge is to allow knowledge to be

distributed and discovered using advances made in global communications and distributed

systems technology, which enable ontologies to be evolved based on general consensus

without any human intervention.

2.5.2 Semantic Web Services

Mcllraith et al. [DAML 2003b] highlight that there is a need to describe Web Services in

terms of their capabilities in an unambiguous, computer-interpretable language. Advances

made in Web Service technologies and research carried out by the Semantic Web community

could provide a means to achieve this vision by combining these technologies together to

produce Semantic Web Services. Mcllraith et al. describe how the DAML for services

(DAML-S) upper service ontologies can be used to describe Web services in terms of their

capabilities. They illustrate how DAML-S builds on the complementary technologies used by

Web Services such as WSDL and SOAP to enable dynamic service discovery, composition

and execution. Mcllraith et al. provide a clear justification for using DAML-S to describe the

capabilities of services using machine-processable semantics, which WSDL alone is

incapable of doing.

55

Paolucci et al. [Paolucci 2002a, Paolucci 2003] describe a matching engine that determines

the similarity between a service request and a service description by evaluating the inputs and

outputs they define. They use a term called "sufficiently similar"; in its strongest sense a

service description and a service request are sufficiently similar when they describe exactly

the same service. They state that this is too restrictive, because advertisers and requesters have

no prior agreements on how a service is presented. A restrictive criterion on matching is

bound to fail to recognise similarities between service descriptions and service requests. To

accommodate a softer definition of "sufficiently similar" Paolucci et al. explain that there is a

need to allow matching engines to perform flexible matches based on the degree of similarity

between the service request and the service description.

One of the main problems with the work carried out by Paolucci et al. is that it only performs

matches using the service profile. It does not process the remaining service ontologies to

determine if the information provided in the service request can be directly mapped onto
bindings described in the WSDL file associated with a particular service. Their research

clearly indicates that semantic searches provide a better alternative to attribute-value pair

matching, however they provide no mechanisms for automated service composition.

Maedche et al. [Maedche 2003] provide an assessment of service-driven systems and describe

the need to converge three separate technologies - Web Services, P2P technologies and the

Semantic Web. They argue that combining these technologies will allow services to be

identified, located and invoked. This new paradigm is important to the development of

service-enabled systems, however this is no easy task and the integration process itself gives

rise to new complexities such as locating and integrating services on the fly, semantic
interoperability, data heterogeneity and process mediation. Maedche et al. make a strong case

for combining several active areas of research and explain the importance and difficulties

with the integration process itself.

In this thesis we describe how our work is heavily reliant on distributed services within P2P

networks and illustrate how we aim to capitalise on the efforts made within the research

disciplines discussed in this chapter to better describe, discover and automatically compose

networked appliances based on semantic descriptions that describe the capabilities of service

requests and service descriptions.

2.6 Summary

There are many solutions that allow devices to be interconnected within the home

environment, however little advance has been made to abstract the complexity away from this

process. Technology is becoming more pervasive, consequently trying to manage solutions

and their associated configurations is becoming more difficult. Several research initiatives in

56

the area of communications and service-oriented architectures promise to provide solutions
that realise a seamless integration between heterogeneous devices, however to date few

solutions have produced any convincing results.

Frameworks such as OSGi, UPnP, DLNA and HAVi, including new projects such as VHN,

MediaNet, RUNES, ePerSpace, VisNet and Future Home are attempting to integrate devices,

however they are are managed and controlled via centralised providers. Services are

discovered and composed based on proprietary communication and middleware protocols.

Interoperability issues are addressed using agreed standards and although this is not

impossible it is not clear whether a single standard is capable of addressing all issues. The

goal must be to utilise existing open standards as much as possible and interoperability

mechanisms must be developed that abstract the underlying implementation details allowing

any standard to be used and seamlessly integrated.

Furthermore the solutions described in this chapter do not provide any mechanisms to enable
devices to automatically discover and compose devices and services. Compositions are

carefully choreographed and control is based on application specific serialisations. Some

solutions require separate hardware adapters to convert appliances into networked appliances.
This is somewhat restrictive since distributed computing and service models are becoming

increasingly more pervasive. As such devices and services are becoming more heterogeneous

in nature. Consequently managing such a framework will be more complex where the amount

of control placed on device and service integration becomes more difficult. Different device

and service providers will use different communication, middleware and service standards. As

such interoperability is a problem that will require more effective solutions. As such new

architectures need to be developed.

The P2P networking model is seen as a key enabling technology that will extend the reach of
devices connected to each other via global communications. As well as sharing digital

content, devices will be able to share and discover network behaviours provided by other

devices connected to the network. This in effect enables devices to share hardware resources

and services. Like home networking middleware solutions, P2P also supports several

techniques that have both strengths and weaknesses. Early P2P implementations such as

Napster proved successful, however these early solutions suffered from a number of

limitations, which include single content type sharing; and a reliance on client-server

technology. The primary difficulty with solutions such as Napster is it's central point of

control - switching off the Napster servers in effect disables the search mechanism and as

such content cannot be shared or discovered.

57

DHT-based P2P implementations adopted a more decentralised model. Unlike Napster, these

new P2P models are more difficult to control because no central server is used. However

these solutions are not without their own problems. Maintaining a consistent distributed index

in DHT-based solutions is expensive because most time is spent updating indices. DHT-based

solutions provide an efficient mechanism for data access, however costs are exponential as the

number of peers that continually connect and disconnect increases. If a DHT approach is not

used then computational costs are reduced however an exhaustive traversal of the network is

required, which results in network flooding. This said these solutions work well in structured

networks whereby control can be placed over the network topology. For example an

organisational network could be controlled to ensure that the frequency in which nodes join

and leave the network is kept to a minimum ensuring that DHT table updates are negligible.

However these solutions are not as effective in unstructured networks, such as global P2P

networks, whereby devices will continually come and go. Environments that are highly ad

hoc and mobile in nature are subject to continued change resulting in node DHT table update

algorithms continually managing all changes that occur.

All the above mentioned P2P models primarily focus is on sharing digital multimedia files

such as MP3 and AVI. None of these solutions provide any mechanisms to publish and
discover services. As distributed computing models move towards service-oriented

architectures, it is becoming more important for P2P implementations to support service

technologies. A new set of specifications called JXTA has realised this and is a new breed of

P2P that supports the discovery of both digital content and services. This marks a significant

advance in P2P technology. It is not sufficient to just host services but to also effectively
discover and use them. Services that are deterministic as is the case with JXTA core services

are easy to discover and use, however custom services are more problematic. We envisage

that there will be a large number of different services. Consequently it is impossible to

predetermine all the interfaces these services provide.

The current JXTA specifications allow custom services to be hosted, however the discovery

specifications provided by JXTA are somewhat restrictive because the discovery process is

based on predetermined syntactic descriptions. This technique is efficient when using pre-

determined core framework services, however it becomes more problematic when discovering

application specific services that are ad hoc in nature. The current version of JXTA does not

provide any mechanisms to overcome these limitations. Additional services are needed that

extend the existing JXTA specification to provide better service discovery mechanisms.

Services and the requests for services themselves need to utilise advances made within the

Semantic Web and Semantic Web Service communities. Alternative mechanisms are required

that overcome the inherent limitations associated with simple syntactic matching such as

58

attribute-value pair matching. This will allow devices to discover and use services based on

rich ontological descriptions that describe the behaviours of services, thus providing better

matching mechanisms for service discovery.

Several approaches within the Semantic Web, ontology engineering and Semantic Web

Services communities are trying to address this issue. We began by arguing that although the

thesaurus is probably one of the most common classes of taxonomy, it is classed as a

semantically weak classification that only enables information to be structured and ordered in

a known way so as to aid information retrieval based on the rough associations between

terms. Although thesauri have proved useful they are somewhat restrictive because they use
limited modelling primitives to describe concepts, the properties they support and the

relationships they have with other concepts.

Another serialisation is RDFS and standards built on top of RDFS, include TM, XTM,

DAML+OIL and OWL. All these are classed as ontology languages with distinguishing

features being in their ability to describe concepts. OWL is the most descriptive ontology

specification allowing complex knowledge structures to be modelled. OWL is designed to

reduce the models of interpretation within different domains, which aims to remove as much

ambiguity as possible making it easier for information to be processed by machines and

humans alike.

Serialising ontologies is a manual process. Research carried out by Stephens et al., suggest

that this is restrictive and it would be better if this process could be automated using agents.
There approach is interesting and will become increasingly more important. However it is not

clear how easy it is to develop agents capable creating and managing semantic data.

Ontologies will be serialised using different specifications so interoperability between

different serialisations is paramount. It is not clear how Stephens et al. propose to address this

problem. It is difficult to determine how effective there algorithms are in terms of performing

mappings using rich complex ontological constructs such as those evident in the OWL

specification. Typically ontology engineers use real-world knowledge to create, and merge or

align ontology fragments, which takes considerable effort.

Aberer et al. use an approach that assumes a large amount of data already exists and that they

have been organised and annotated according to local schemas. This process requires an

experienced knowledge engineer to have an understanding of all the ontologies being mapped

which must be continually maintained as and when concepts are disproved, links are broken

or new links added. This is costly and somewhat problematic because the knowledge engineer

is seen as the bottleneck; his opinions are subjective and he is susceptible to human fallibility.

59

Noy et al., Chimaera and ONION also propose similar approaches; consequently the same
limitations are apparent.

Several researchers are developing semantic service solutions, which use OWL and

DAML+OIL serialisations, however the matching process is limited and does not support

automatic discovery and composition of ad hoc services within highly disruptive network

configurations. Paolucci et al. have developed a semantic matching algorithm; however it

only performs matches using an abstract service profile as provided by the OWL-S

specification. This is adequate for service discovery; however it does not aid dynamic service

composition. It does not process the remaining service ontologies to determine if the

information provided in the service request can be directly mapped onto signatures described

in the service interface.

There are several other industry lead initiatives such as the Business Process Execution

Language for Web Services (BPEL4WS) [Andrews 2005], the Component Service Model

with Semantics (CoSMoS) [Fujii 2004], the Anamika [Chakraborty 2003] framework, and the

Integrated Service Planning and Execution (ISP&E) [Madhusudan 2004] framework, which

provide standards to compose Web Services in controlled environments. The major limitation

with these standards, however, can be directly attributed to the inability to compose services

on-demand where the location of services are not known or if they exist [Sirin 2003]. The

plethora of mobile devices is on the increase and the number of services they expose will be

numerous, therefore it is paramount that we develop mechanisms that discover, compose and

execute services on demand, without having to carefully choreograph the composition and

execution process beforehand.

It is paramount that ontologies are used to better describe what services require and what

services provide if we are to develop frameworks capable of automatically discovering and

composing devices within ad hoc environments. Services need to be described semantically to

describe their capabilities in an unambiguous machine-interpretable language that allows

networked appliances to automatically form compositions with each other based on the

available functions within the environment at any given moment. This will allow devices to

manage the integration process and self-adapt to environmental changes as and when they

occur, whilst minimising the amount of disruption.

2.6.1 Challenges

This Chapter has described the key research within the areas of Networked Appliances, Home

Networking, P2P technologies and the Semantic Web. We have identified several key

challenges pertinent to this thesis that have not been addressed in the above mentioned

60

approaches. Each of these challenges are listed below and addressed throughout the remainder
of this thesis.

I. Interoperability mechanisms need to be defined that allow any device to be

seamlessly integrated. Different device and service providers will use different

communication, middleware and service standards. As such interoperability is a

problem that requires a more effective solution.

2. A global view is paramount whereby devices and services can be discovered and
integrated into new and existing configurations irrespective of where they reside

within the global Internet. The challenge is to disperse the operational capacity of

devices within the network by utilising P2P technologies so that functions can

redundantly coexist and be discovered with local and global scope in mind.

3. Services and the request for services need to utilise advances made within the
Semantic Web and Semantic Web Service communities. The challenge is to develop

mechanisms that overcome the inherent limitations associated with simple syntactic

matching such as attribute-value pair matching, to allow devices and services to be

more accurately discovered and composed.

4. It is paramount that we develop mechanisms that discover, compose and execute

services on-demand, without having to carefully choreograph the composition and

execution process beforehand.

5. We can extend challenge three to define mechanisms that allow knowledge to be

distributed, discovered and evolved based on general consensus without any human

intervention. This will help support interoperability and ensure services and devices

are more accurately matched.

6. We can also extend challenge four to allow devices to manage the integration process

and self-adapt to environmental changes as and when they occur, whilst at the same

time minimising the amount of disruption.

61

Chapter 3

3 Networked Appliance Service Utilisation Framework

3.1 Introduction

In Chapter 2 we argued that current networked appliance and home networking platforms are

restrictive because they are heavily reliant on human intervention and carefully

choreographed vocabularies. Such approaches lack flexibility and do not scale in ad hoc

environments where little control can be placed on devices within the network or the services
they provide. They do not provide any mechanisms to effectively disperse services within the

network or discover those services using high-level semantics. The configuration process
itself is inherently human centric and there are no mechanisms to allow the configuration and

management of device configurations to be automated with little or no human intervention.

In this chapter we present our design for a Networked Appliance Service Utilisation

Framework. This framework addresses the challenges discussed in Chapter 1 on page 1,

which include service-oriented networking; service discovery; device capability matching;
dynamic service composition, self-adaptation; and ubiquitous computing. The framework

allows operational functions provided by devices to be dispersed within the home network;
devices can interconnect with other devices over time to form high-level compositions; and
devices can resolve terminology differences between vocabularies used to describe service
interfaces and service requests. We begin this chapter by proving an overview of our
framework.

3.2 Framework Overview

Our Networked Appliance Service Utilisation Framework (NASUF) is a Service-Oriented

Middleware (SOM), which allows ad hoc services [Fergus 2003a] offered by service-enabled

networked appliances [Mingkhwan 2004] to be dynamically discovered and composed within

a P2P network devoid of any centralisation. Each device implements the core and secondary

services that comprise NASUF as well as application specific services that disperse the

functions devices provide as independent services within the network. For example a TV

could have three application specific peer services; a visual service; an audio service; and a

terrestrial TV receiver service.

62

NASUF services allow devices to be connected to the network to form relationships with

other devices and self-adapt when environmental changes are detected. These services are the
Distributed Semantic Unstructured Services (DiSUS) Manager, the Device Capability

(DeCap) service, the Distributed Emergent Semantics (DistrES) service and the Semantic

Interoperability and Signature Matching (SISM) service. Our framework is illustrated in

Figure 3.1 and each service is described in turn below.

Figure 3.1 NASUF Framework

" The Semantic Interoperability and Signature Matching (SISM) Service performs

dynamic service compositions between networked appliances in the P2P network

based on device and service capability matching [Fergus 2005a]. This service is used
to semantically match service requests with service descriptions. Any ambiguities

found are resolved using the DistrES service, which is described below.

. The Distributed Emergent Semantics (DistrES) Service [Fergus 2003b] allows

ontological structures, used to describe devices and the services they provide, to be

evolved within the network based on general consensus. One of the key requirements

within our research is to address the inherent terminology differences that will exist

between different vocabularies used by different device manufacturers to describe the

services their devices provide. The DistrES Service achieves this by evolving the

knowledge structures provided by devices to create explicit mappings between terms

that are syntactically distinct but semantically equivalent.

. The Device Capability (DeCap) Service [Fergus 2005a] determines the quality of the

capabilities provided by devices, which include the hardware, software and network

capabilities needed to execute services. The DeCap service is designed to ensure that

63

an overall quality-of-service (QoS) for a particular service composition is equal to or

greater than the capability requirements defined within the service request.

" Devices will support zero or more application specific peer services (PS), designed to

publish the functionality they provide as independent services. Peer services provide a

level of abstraction that may map onto any service technology used, thus enabling

service interoperability. Devices will discover and form compositions with services

that reside locally on the device or remotely within the network to produce value-

added services that yield functions that could not be performed by one single service

alone.

" The DiSUS Manager [Fergus 2003a] is a core component that is implemented on

every device. It manages all services and provides several interfaces that allow the
device to be connected to any Service-Oriented Middleware (SOM) implementation,

irrespective of the underlying network protocol. It provides mechanisms for device-

to-device messaging, service discovery and mechanisms that allow devices to self-

adapt based on environmental changes.

The DiSUS Manager is the core service each networked appliance must implement. This is a

minimum requirement designed to enable networked appliances, independent of the

capabilities they support, to effectively interact within the NASUF network. The remaining

secondary services (DistrES, DeCap and SISM) must be either implemented locally on the

device itself or discovered remotely within the network and bound to before the device is

rendered fully functional. A device may implement some secondary services and outsource

the remaining secondary service functionality to other more capable devices within the

network. This feature provides a level of flexibility that allows interconnection between

devices that support varied capabilities. For example a mobile phone may only implement the

DiSUS Manager because the memory and processing constraints typically associated with this

type of device and discover the remaining services within the network.

In the following subsections we present our framework design before concluding this chapter.

The remaining secondary services provided by our framework are presented in Chapter 4

3.3 Distributed Semantic Unstructured Services (DiSUS)

One of the key requirements within NASUF is to enable devices to automatically connect to

the network without having to register themselves or the services they provide with any third-

party authority. When a device is switched on it must dynamically integrate itself and publish

the services it provides. In addition, at any point, it must be free to disconnect and withdraw

its services from the network. This section describes how this is achieved using a protocol

developed within this research called Distributed Semantic Unstructured Services (DiSUS)

64

[Fergus 2003a]. This protocol implements mechanisms to distribute services within a P2P

network and contributes additional knowledge to this area by enabling peers to semantically
discover them dynamically based on device capability matching.

3.3.1 The DiSUS Protocol Requirements

Within this work, one of the challenges is to allow devices to exist within ad hoc networks

and effectively publish the functions they provide as independent services. In order to

achieve this it is paramount that the protocol addresses a number of key requirements,

namely:

" InteroperabMity: The protocol must support interoperability between different service
technologies, middleware architectures and underlying protocols.

" Decentralisation: Devices and the services they provide must be decentralised; every
device that joins the P2P network must be capable of reaching any other device or

service without using any centralised third party registry.

9 Structured and Unstructured services: Services must be described and discovered

using pre-determined and non-determined vocabularies and interfaces.

9 Dynamic environments: Devices and the services they provide must be able to work
in dynamically changing environments [Wilson 2002]. The base assumption is that

devices and services will come and go over time.

" Intelligent Discovery: Services must be described and discovered using semantic
descriptions and processed using toolsets that have inferential capabilities [Mcllraith

2001, Maedche 2003, HP Labs 2004].

" On-demand Services: Services must be discovered and invoked as and when they are

required; irrespective of location [WebMethods 2003].

" Device Independence: Any device, irrespective of its capabilities, must be capable of
joining the network, which may range from high-end personal computers to resource-
limited sensors.

The following section describes how these requirements have been addressed using the

DiSUS protocol.

3.3.2 DiSUS Overview

The DiSUS protocol implements three main components: the P2P interface; SISM and

application specific peer services. Using these components DiSUS enables devices to publish

and discover services and evolve and learn the different vocabularies used by different device

and service manufacturers. Irrespective of the device's capabilities each device must

implement the P2P interface, however they may chose to implement any, all or none of the

65

remaining components depending on its capabilities. Figure 3.2 illustrates two types of device

-a Specialised Networked Appliance, defined as a device that supports high-end capabilities

such as a personal computer; and a Simple Networked Appliance defined as a device with
limited capabilities such as a sensor.

i
i

i

Service Intertace

1

APSI N iii

APS� ä

ialised-NA-B

AP SISM

 U

u('i APS1"" . APSJ APS�ia
P2P lnterface

iecialised-NA-A

Internet
Data Data

/
er"ce Interface

1

P2P Interface ý.. ýý Data ýýý P2P Interface

l__ "
SISM Service Interface

Figure 3.2 Distributed Semantic Unstructured Services

A Specialised Networked Appliance has the ability to host services, store and evolve semantic

information used to describe and discover services, as well as propagate service requests

within the P2P network. A Simple Networked Appliance by definition does not have these

capabilities. This type of device joins the network, propagates queries and invokes discovered

services without having to provide any services of its own. This is an important requirement

that enables any device, irrespective of its capabilities, to effectively interact within the

environment. Figure 3.2 illustrates two extremes that describe both devices that are highly

capable and those that have limited capabilities, however it is envisaged that there will be a

myriad of other possibilities between these extremes. In the following section, UML models

are presented to illustrate how the key functions provided by the DiSUS protocol operate.

3.3.3 The DiSUS Protocol Design

The Activity Diagrams presented in this section illustrate the DiSUS protocol in NASUF.

These models describe how devices execute the start-up procedure; how device capability and

semantic models are created; and how peer advertisements are created, published and

discovered within the network.

66

When a device is initially switched on it executes a start-up procedure to connect it to the

network. The start-up procedure is illustrated in Figure 3.3.

Connect Device
to the Network

Create Device
Capability --

j-

- Dc trbdel >[:
A bdel

-

Got Service
Description

No Serves (service exists
Description

Locally Discover Service

Remotely
Servio Exists

Publish Service

Add

s. i�ic.
i
L______ SiNic!

Create Service Servioe
ý:::

Ustener Lio1Mer

A Listenei is an
end-point that can
be bound to other """ "
devices.

Figure 3.3 Start Device

The device is initially connected to the P2P network and a device capability model is created.

The capability model captures four main capabilities used within NASUF - these are

Bandwidth, Memory, CPU usage and Power. However custom capabilities may be added that

are deemed important to the device manufacturer, such as screen resolution and dichotomous

variables like "display in use". This model is defined using a profile, which contains several

components relating to each capability. Within each component a set of attribute-value pairs

are used to rank the capability defined as the Status Rating, Status Assessment, Importance

Rating and Importance Ranking -a more detailed description of these are presented in

Section 4.3 on page 86.

Each device publishes the capabilities it supports in order to allow devices to first determine

whether it can effectively execute the services it provides. Figure 3.4 illustrates how

capability models are created in NASUF.

67

Create Now Device Device Capability

CepaMty Model Model

Create CcPeWity
Profile

Get Capability Component

Component does
not Exist

Compon nit Exists

Get Capability Attribute

Attribute does

not Exist

Attribut Exists

Append Attrbute
And Value to
Component

ACnd COnponet

to Profit

C

Append Pofte to
Model

Publish Device
Capability Model

Figure 3.4 Create Device Capability Model

Once the capability model has been created each of the peer services the device uses are

added to the DiSUS Manager and a listener for each service is created. If a device explicitly

implements a service locally, then it is used otherwise an attempt to discover the service

remotely is made. This feature is implemented on Specialised Networked Appliances only,

because Simple Networked Appliances do not offer any services of their own. A device only

needs to describe its capabilities to the outside world if it provides a service. Each service is

created and started, before its advertisement is published - there is no point publishing the

service if it cannot be started. This process is illustrated in Figure 3.5.

68

Create Peer Peer
Service Service Binding

Start Peer
Service

Peer Service
Not Started

Peer Servi e Started

Create Peer
Service Advertisements

Publish Peer
Locally in this

Service Advertisements sense means

Locally on the device

Publish Peer
Service Advertisements

Remotely

Figure 3.5 Publish Service

Peer service advertisements are created and published locally and remotely within the

network. Locally, in this context, means advertisements are published on the device - this

allows a generic discovery mechanism to be used that can find services either on the device

itself or within the network. This enables NASUF to move away from centralised registries

such as JINI [JINI Technology 2005] and UDDI [Oasis 2005] and ensures that there is no

central point of failure - if a device becomes unavailable you only lose the services that

device provides.

Within NASUF services are described using three advertisements - the Service Class

Advertisement, the Service Specification Advertisement and the Service Implementation

Advertisement. The Service Class Advertisement contains high-level information such as

service provider and device information. It also contains the Service Profile, which describes

the capabilities the service provides using semantic ontological structures, which are used for

semantic service discovery. The Service Specification Advertisement describes the service

bindings supported by the device. It also contains the Service Process Model, which groups

the capability descriptions described in the Service Profile into Atomic Processes, which are

used as semantic wrappers that map to signatures defined within the service interface. This is

discussed in more detail in Section 4.4 on page 92. The Service Implementation Class defines

69

the implementation details for a particular Service Specification Advertisement. This

advertisement contains the Service Grounding, which contains Atomic Processes that link the

Atomic Processes in the Service Process Model with implementation specific signatures

defined in the service interface. Each advertisement is linked using a unique ID. The process

used to create these advertisements is illustrated in Figure 3.6.

Create Service Class >>ervire class

Adveitisemerd Advertisement

Add Service Profile
to Service Class
Advertisement

Get Service Specification
Descriptor

Service Specification
does not Exist

Service 5peci cation Exists

Creata Service 3peciflcelion Service Specification

Advertisemen Advertisement

Associate Service
Specification wtih

Service Class

Add Service Process
Model to Specification

Advertisemei

Get Service Implementation
Descriptor

Exrt

Service I

Create Service
Inoementation
Advertisement

Add Service Grounding
to Service Implementation

Advertisement

_
Service linplemedd

Advertisement

Add Service Interface
to Service Implementation

Advertisement

Associate Service
Imnentation wtih

Service Specification

Figure 3.6 Create Peer Service Advertisements

70

Services are discovered and used by devices in NASUF using two methods. The first method

relates to the secondary services that comprise the framework. Secondary services are pre-

determined and the vocabularies used to discover these services are known by devices

beforehand. The name of the service is matched against the advertisements stored within the

device's advertisement cache. In this instance the name element contained within the

advertisement is extracted and compared with the name defined in the service request. The

process used to discover service advertisements is illustrated in Figure 3.7.

Discover Peer
Service Locally

Cant find
Service Locally Discover Service

Advertisement Remotely
Ser ice

ertise ent Exists
Service

Advertisement Exists
Authenticate

Service
Can find

Service

S Bi dT i
Peer

n o erv ce
Service Binding

Figure 3.7 Discover Peer Service

The second method relates to application specific services. This type of service is ad hoc and

the service name or its capabilities are not known beforehand. Within this project we address

this problem using semantic descriptions to describe service requests and service descriptions

in terms of the capabilities they support. This process is illustrated in Figure 3.8.

71

L
Create Service

Profile

Get Next TOPE

IOPE xists

Add TOPE to
Service Profile

Get Next
C

mic Process

Atomic Process
does not Exist

Atomic Process Exists

Add Atomic
Process to

Process Model

Create Service
Grounding

Get Next
Atomic Process

Service
Profile

TOPE does not Exist

ExA

Atomic Pro ess Exists

Add Atomic
Process to
Grounding

Map Atomic Process
to Service Interface

Create Service Service Process
Process Model Model

-- Service Grounding

Figure 3.8 Create Semantic Models

The service request is matched against semantic descriptions contained in the service

advertisements and a match is found if the capabilities described in the service request match

the capabilities described in the service advertisements. For a full list of UML diagrams for

the DiSUS Manager in NASUF see Appendix A, B, and C.

3.4 Summary

This chapter presented our framework. It provides an overview of all the services that

comprise NASUF and describes the minimum requirements needed to allow devices of varied

72

capabilities to join the network and interact with other connected devices. It describes how

our framework is capable of allowing devices to be dynamically distributed and discovered

within a P2P network to form high-level compositions.

In the following chapter our framework is extended to include the secondary services that

comprise the NASUF middleware architecture, which were presented briefly in Section 3.2.

Secondary services sit on top of the DiSUS Manager. This section explains that devices do

not have to explicitly implement these services, however if a device chooses not to they must

be discovered remotely and bound to before the device is classed as a fully operational

NASUF device. In the following chapter we describe how this is achieved and what

functionality each secondary service provides.

73

Chapter 4

4 Framework Secondary Services

4.1 Introduction

In the previous chapter we presented our framework that each device must implement. In this

chapter we describe the optional secondary services devices choose to implement. These

secondary services allow application specific services, such as audio and video, to be

semantically described and provide mechanisms to automatically resolve terminology

differences between vocabularies used. Secondary services also provide mechanisms to

enable devices to self-adapt and allow application specific services to be dynamically

composed. This allows application specific services to be discovered and combined with other

services based on the "what" part of the composition rather than the "how". Furthermore

secondary services provide mechanisms to determine how well a device can execute a service
before it commits to using it, providing a rudimentary cost metrics.

In this Chapter we present the Distributed Emergent Semantics (DistrES) service, the Device

Capability (DeCap) service and the Semantic Interoperability and Signature Matching (SISM)

service. These are services provided by the NASUF framework that allow device functions to

be semantically described and discovered, the capabilities of devices to be assessed in terms

of how effectively devices can execute services; and services that allow devices to be

automatically composed, managed and self-adapted based on environmental changes.

4.2 Distributed Emergent Semantics (DistrES)

Within this thesis one of the main contributions is the use of ontologies for the purpose of

service descriptions and dynamic service composition. This approach brings with it additional

challenges because it is difficult to constrain how different device manufacturers develop and

use ontological structures. Through peer collaborations devices need to understand the

different terminology used by different devices and dynamically evolve localised knowledge

structures to extend or reify concepts they already have [Fergus 2003b]. This being the case

mechanisms need to be developed that can evolve such structures and bridge the gap between

concepts that are semantically equivalent but syntactically distinct. Such mechanisms enable

semantic interoperability between different concepts and provide a high-level of flexibility

that does not constrain how services are described [Fergus 2003b].

74

The DistrES algorithm is designed to discover semantic information provided by devices

connected to the network and merge the results with existing knowledge structures. Devices
initially have knowledge that support the vocabularies used to describe their own services,
however knowledge structures are extended over time to include the vocabularies used by

other devices to describe similar concepts. A simple scenario is illustrated in Figure 4.1.

Y Kz

.. -....

C6

Kao

To

Figure 4.1 Evolving Knowledge Structures over Time

f -- º

jTN

The basic assumption is that a device will have a limited amount of information and will

evolve its internal knowledge structures over time by interacting with devices in the network

- KAO, represents a device with limited knowledge. At T, two information structures are

presented to the device, labelled Kx, and Ky. The device determines that Ky is a knowledge

structure that matches a query it has propagated within the network. The Ky structure is

identified as the most successful structure based on several responses received from the

network. The success of this structure is determined by statistically evaluating all response

knowledge structures received after To and extracting the common patterns found within those

responses to produce the Ky structure. This new structure is merged with KAO to become KAI.

At T2, the device propagates a query to the network. During this cycle KZ represents a

structure that matches the query. In this case, the structure KZ is identified as the best

information structure based on the number of common patterns found in all the responses

received after t=1. This new structure is merged with KAI and becomes KA2.

l:

.-

75

It is possible that this process leads to isolated information structures within the device's

knowledge base, which are detached from the root node. However over time these structures

will form connections to other knowledge structures as the device's information evolves. This

is illustrated at t=2 in Figure 4.1. When KZ is merged with the current information structure a

relationship is found between the information structure at t=0 and the information structure

merged at t=1. As a result this technique is able to determine relationships between

fragmented information structures and perform appropriate merges to connect them to the

main structure. This is possible because of the classification mechanisms used to construct

ontologies where classes may have many relationships with other classes - explicitly placing

a relationship between two concepts automatically links them together. How information is

structured will be the deciding factor as to whether concepts are linked with main structures

or remain isolated. This will be dependent on the general consensus, i. e. if the majority
believe that a concept dog is a subclass of another concept reptile then these will be explicitly
linked, however if the majority correctly believe that the concept dog is not a subclass of the

concept reptile then dog may remain isolated from the concept reptile. It depends on the

scope of the domain being modelled and how concepts are generally constructed.

This mechanism is designed to enable a device's ontology to be evolved as it moves through

time and interacts with other devices within its environment. The following section describes

the requirements needed to implement the DistrES algorithm and explains in detail the sub

processes it uses.

4.2.1 The DistrES Algorithm Requirements

In this thesis conceptually merging information structures is based on general consensus. For

example if nine out of ten people state that a concept Alsatian is a subclass of another concept

Dog then these terms including their associated relationships will be described in the optimal

structure because there is a general consensus agreement. The success of concept proliferation

is dependent on the consensus percentage. For example if 51% of devices believe that

Alsatian is a subclass of Dog then these concepts will form part of future structures because

the majority believe that this ontological structure is true. The converse of this is that if for

example only 30% of devices believe this to be true then the chance of this structure

appearing in future structures is decreased and the structure will eventually vanish.

Quantifying this is difficult because how successful an ontology structure is will be dependent

on the number of concepts that exist; the number of devices there are within the network; and

the global consensus on how structures are created. The DistrES algorithm is a mechanism

that embraces this uncertainty and enables ontological structures to be evolved based on the

environmental conditions at any given time. It can adapt to ontological and general consensus

76

changes. In order to achieve this, the DistrES algorithm is required to create, extract and

merge information within an ad hoc network environment. Consequently the algorithm must

address the following requirements:

" Knowledge Structure: Knowledge structures must be nodes sub-classed

taxonomically from some root node. However, fragmented structures may exist but

must be merged into existing structures as the device's ontology evolves over time.

The structure of information must be represented in an open standard format

(electronically readable) and must be searchable (in knowledge base) and be fully

editable.

" Targeted Knowledge Discovery: Devices must have the ability to evolve existing
information structures by propagating queries within the network about subsections of

their ontology they wish to extend, e. g. "Movie". It is the DistrES algorithm that

determines when and what structures to evolve based on any ambiguities that may be

encountered.

" Extraction Engine: When a device processes a query and determines that it has

relevant information structures, it has to extract this information from its ontology

and return it back to the querying device. Although this is the function of the

knowledge base, DistrES must define what subsection of the concept needs to be

extracted. This is an application specific function, which will be dependent on the

device and how rich the ontological structure should be. For example a mobile phone

may only require a concept that has a depth of three or less (subclasses), whilst a PC

may require a richer representation that has a depth of ten. This is important because

the depth of the concept will determine its size - the bigger the structure the more

memory and processing is required. Consequently the Extraction Engine must have

the ability to control this process.

" Statistical Pattern Extraction: Within the network a querying device may receive

several responses and the structure of the information within these responses will

differ. There is no centralised control and no assumptions can be made about the level

of expertise creators of knowledge will have. As such information structures need to

be evolved based on general consensus, which must be determined by evaluating

ontological structures in all responses received. This is achieved using statistical

analysis [Rumsey 2003], which extracts patterns from ontological structures being

processed until an optimal solution is created and merged within the device's local

ontology.

77

9 Merge Engine: When a device receives an optimised response from the Statistical

Pattern Extraction Engine, this information needs to be merged with the device's

existing ontology.

4.2.2 The DistrES Algorithm Overview

The DistrES algorithm extracts and merges information from ontologies and evolves

information structures to produce best solutions based on a general consensus. This is

achieved using the Extraction Engine (EE), the Statistical Pattern Extraction Engine (SPEE)

and the Merge Engine (ME).

Extraction Engine: Devices process queries propagated within the network and extract the

name of the concept. The concept name is used to query the device's ontology to see if the

concept exists. If it does the process begins by extracting all the dependents and for each
dependent found, the Extraction Engine retrieves all the relationships that exist between the

concept and all its dependents.

Statistical Pattern Extraction Engine: Devices propagate queries containing concepts they

wish to evolve, to other devices within the network. This may result in the device receiving

several responses which contain ontological structures that are subjective based on the

creator's own point of view. This leads to structural and possibly lexical variation between all

responses received. This research aims to address this problem using the Statistical Pattern

Extraction Engine (SPEE). The SPEE extracts structural patterns based on commonalities
found within all responses and produces an optimal ontological structure that is said to

capture the general consensus.

Figure 4.2 illustrates a subset of a device's ontology (Cl) and three responses (RI - R3)

representing the results the device has received from the network based on a query it

submitted.

78

Information Structures Fitness Functions

C1 R1
Travel Itinerary Travel Itinerary

Transport Transport Accommodation

Accommodation I
Mobile Caravan

R2
Travel Itinerary

Transport Insurance

Entertainment R3
VVV

Travel Itinerary

Location Car Rental Transport

Mobile Caravan

Accommodation

Travel Itinerary

Mobile Caravan

Transport

Entertainment

Insurance

Car Rental

Location

After SPE

Result

Travel Itinerary

Transport

Accommodation

Mobile Caravan

Figure 4.2 Statistical Pattern Extraction Engine

It is clear that although structurally RI - R3 are different, there are commonalities within the

structures that are apparent in them all. For example, the nodes "Travel Itinerary" and
"Transport" have a direct relationship between each other in all the structures. The SPEE

determines that this is a common pattern by calculating the number of times this relationship

occurs in all structures being processed - if there are four structures and four occurrences of

the relationship then it is said to be common to all structures, i. e. 100% consensus, and based

on the general consensus it should appear in the optimal structure.

In contrast Figure 4.2 also illustrates that the nodes "Entertainment", "Insurance", "Car

Rental" and "Location" are low scoring nodes because each node appears in one structure

only. The SPEE classes these low-scoring nodes as uncommon, i. e. 25% occurrence, and the

probability of these nodes appearing within the optimal structure is greatly reduced.

Initially all the unique terms, including the relationships that exist between terms are derived

from the device's extracted concept (CI) and all the responses (RI - R3). Using two fitness

functions, the SPEE decides which terms and which relationships will appear in the optimal

structure - terms and relationships with the highest fitness values are extracted and used to

rebuild the optimal structure. Fitness functions are configurable. The higher the fitness

function the more specific the extraction process is. The lower the fitness function the more

general the optimal structure will be. In this sense low fitness functions will enable optimal

structures to be created that have low-scoring nodes, whilst high fitness functions provide a

mechanism that filters concepts and relationships that are not generally used. Setting fitness

functions may be dependent on a number of factors such as accuracy, concept size and

79

processing time. For example a mobile phone, which is process and memory restrictive, may

require specific information to ensure that less common information is not included. This will

enable the device to minimise the size of the ontological structures that need to be stored.
Furthermore it will also decrease the amount of processing required.

The first fitness function places all the unique nodes, found within all structures, into a

collection, e. g.

[Travel Itinerary,

Mobile Caravan,

Transport,

Entertainment,

Insurance,

Car Rental,

Location,

Accommodation]

These nodes are given a fitness value based on the number of times a node appears within all

structures, which we call term frequency. For example, the node "Travel Itinerary" is given a

fitness value of four because it appears once in all structures. The second fitness function

places all the possible relationships into a collection that may exist between any two nodes,

e. g.

[Travel ItineraryjMobile Caravan,

Travel ItinerarylTransport,

Travel ItinerarylAccommodation,

Mobile CaravanITransport,

Mobile CaravanlAccommodation,

TransportlAccommodation]

The fitness value of each relationship is calculated based on the number of times a

relationship appears within each structure, which we call relationship frequency. For example

the relationship between "Transport" and "Accommodation" is given a fitness value of one

because the relationship appears in only one of the four structures.

Once the SPEE has a list of ranked nodes and relationships, it extracts the top scoring nodes

and the top scoring relationships and uses them to rebuild the optimal structure. For

80

illustration purposes the `Result' structure in Figure 4.2 is generated by using the top four

nodes and using the top three relationships. These are arbitrary values, which in a real-world

situation, will be application specific. As described above, several factors decide what these

values should be, i. e. accuracy, concept size and processing time. This means that the most
optimal structure would be represented by the following nodes:

[Travel Itinerary,

Mobile Caravan,

Transport,

Accommodation]

And the following relationship collection:

[Travel ItinerarylTransport,

Travel ItinerarylAccommodation,

Mobile CaravanITransport]

These are used by the SPEE to construct a new ontology structure, which is then merged with
the devices existing ontological structures using the Merge Engine.

Merge Engine: The Merge Engine iterates through the ontological structure produced by the

SPEE and attempts to merge the nodes and relationships with existing knowledge structures.
This process begins by iterating through all the nodes found within the structure and
determining whether the node already exists in the device's knowledge base - if the node does

not exist, a new node is created and inserted into the knowledge base. Once this is complete

the process is repeated for all the relationships that exist between the nodes in the structure.

This is explained in more detail below.

4.2.3 The DistrES Algorithm Design

This section presents several UML Activity Diagrams that illustrate how the DistrES

algorithm has been designed. These models describe how concepts are searched for,

extracted, evolved and merged with existing knowledge structures.

When a device is trying to determine if a relationship exists between two terms the DistrES

algorithm begins by trying to find a semantic relationship. For example an Alsatian is a

subclassOf Dog, consequently these terms could be used interchangeably and we could infer

that they, to a certain extent, mean the same thing. In this instance the two terms are Alsatian

and Dog and the relationship is subclassOf. If a subclassO,, relationship can be found

between the two terms then the concept surrounding the terms and the relationships that link

81

them are extracted and returned to the service requester. Any ambiguities between terms,

triggers the evolutionary process and in this instance the ambiguity could be because the

device does not have enough knowledge to relate the concepts. Thus the device tries to evolve

its existing knowledge structures in an attempt to determine whether a relationship exists in

other knowledge structures provided by devices in the network. This process is illustrated in

Figure 4.3.

Check For Semantic
Relationship

No Relationship is Found

Evolved st us is False

Create Semantic
Interoperability

Request

Propagate Request

Evolve Concepts

Merge Concepts

Evolved Status = True

Relationship
Found Return Semantic

Relationship

Evolved

Semantic Interoperability
Request

Figure 4.3 Semantic lnteroperability

If a relationship cannot be found and the two terms have not been evolved then DistrES

creates a semantic interoperability request that contains the two terms and propagates it within

the network. This request is processed by other DistrES services within the network and used

to determine if the device's ontology has a relationship that links the two terms together. This

process is illustrated in Figure 4.4.

82

Get
Relationship[
term[1], term[2]]

Extract Concept

Add Concept to
Response Object

Return Response

Figure 4.4 Extracting Ontological Structures

If at least one relationship is found the concept surrounding the terms is extracted and added

to a response object, which is then returned to the querying device. Any responses returned to

the querying device are evolved using the SPEE to produce an optimal structure. This process

is illustrated in Figure 4.5.

83

Extract LocalConcept
(Terns(]]

Create Term
Copection[LocalConcept,

ResponseConcepts(]l

Extract Next
Term D

Term does
not Exist

Tern xists

Calculate Term
Frequency

Create Rel.
C ollection[LocelConcept ,

ResponseConcepts[]]

Extract Next
Relationship

Relationship
does not Exist

Relati nship
Exi s

Calculate Relationship
Frequency

CreateOptimaistructure
[topTerms, topRel.]

I

Figure 4.5 Evolving Ontological Structures

All the unique terms in the concept, including all the responses received from other devices

within the network, are extracted and placed into a collection. This process loops through the

collection and for each term it checks how many times it appears within all the structures
being processed. This results in a term frequency value. Once all the terms have been

assigned a corresponding fitness value the same process is performed for all the unique

relationships that exist between the nodes. Again the relationship frequency is calculated

resulting in a relationship frequency value. Once this process is complete, the top n fittest

nodes and the top n fittest relationships are used to create an optimal structure. In this instance

n is an application specific value defined by the device depending on its capabilities. This

84

value is used to constrain the size of the optimal structure created, which is merged with the

devices existing knowledge structure. This process is illustrated in Figure 4.6.

Get Next
Term from

Optimal Stucture

Term does
not Exist

Term xists

Check if Term
Exists in KB

Term Exists

Term does
n ist

Add Term to
KB

Get Next
Relationship From
Optimal Structure

Exit

Relations ip Exists

Check if Rel.
Exists in KB

Relationship
Exists

! Relation ip Exists

Add Rel. to
KB

Figure 4.6 Merging Ontological Structures

Each of the terms that exist in the optimal ontology structure is checked to see if it already

exists in the device's local ontology. If the term does not exist it is added to the device's local

ontology. This iteration process continues until all of the terms have been processed. When

this occurs the process is repeated for each of the relationships that exist within the optimal

structure. If a relationship does not exist in the device's local ontology a new relationship is

created. Again this process continues until all the relationships in the optimal structure have

been processed.

85

Once the structure has been merged the status of the evolution process is set to true - this

stops the algorithm from continually looping as we only want to try and evolve a set of terms

once at any give time.

4.3 The Device Capability (DeCap) Service

When services are discovered and matched this may result in several candidate services that

provide the same functionality. Services provided by devices that best match the device

capability requirements, as described in the service request, must be selected. For example a

typical home environment may provide several `Visual' display services capable of

processing streamed data - typically devices that provide the best quality of service will be

selected, i. e. a `Visual' service provided by a TV may be selected instead of a ̀ Visual' service

provided by a mobile phone to view a DVD Movie. However, if the mobile phone is the only
device available, then an intermediary service may be discovered to transcode the DVD

movie into a format that can be readily processed by the mobile phone.

Consequently each device that joins the network within NASUF must describe the hardware,

software and networking capabilities it supports, including any other capabilities deemed

important to the device manufacturer. Figure 4.7 illustrates the process used that matches the

Device Capability Profile (DCP) described in the service request, with the Device Capability

Model (DCM) used to describe a particular device's capabilities [Mingkhwan 2005].

In this example a multimedia player begins by creating a DCP and adding it to a service

request before propagating it within the network. An audio device receives the message and

begins by checking to see if it provides a service matching the requirements defined in the

service request. If a service is found, the device determines if its DCM equals or surpasses the

DCP.

86

imedia Player Z Mobile Phon e
9
0 SISM

Service
11 P

6. Create Service
ym

°D
D CA

Request (DCP) ""
71 m L

7 Service Re uest 1
DISUS

. q

15. If Match: Ret. Service Adv. DiSUS

10. Extrac 10. Extract

da DCP DCM

U N
11. Match 14. Result

(DCP, DCM)

Device 0N w
Capability Device w30
Service 3

c°
n Capability c'

Service `D d

aA
Ä m

ä
'

Find
Ma Relationship Result

(DCP� DCM)

Advertisements DistrES
Service

Figure 4.7 Device Capability Matching Service

This is achieved by extracting the DCP from the service request and the DCM from the

devices persistent storage. Using the Device Capability (DeCap) service, the two models are

passed to a matching algorithm that calculates the overall capability of the device - if the

result of the DCM is equal to or greater than the result calculated for the DCP then the device

is said to satisfy the capability requirements defined by the service requester. In this instance

the device returns the service advertisement to the multimedia player. Again like service

requests and service descriptions, NASUF does not place any constraints on the vocabularies

used to describe quality of service parameters. If the terms found in the DCM and the DCP

differ the matching algorithm uses the DistrES service to determine if a semantic relationship

exists that links the terms together.

4.3.1 The DeCap Service Requirements

Device capabilities are determined by calculating the sum of all quality of service parameters

used that capture the software, hardware and networking properties supported by the device,

including custom defined parameters. In order to achieve this, an algorithm is required to

calculate the quality of service capabilities described in service requests and device capability

models that address the following requirements:

0 Process QoS Parameters: Quality of service parameters must be used to capture the

software, hardware, networking and custom capabilities a device supports. These

parameters must be defined and inserted into the service request before it is

87

propagated within the network. These parameters must also be used to describe the

capabilities the device actually supports and inserted into the DCM.

" Assign Parameter Rating and Status: For each parameter defined in the DCP, an
importance rating must be assigned indicating how important it is in relation to all the

parameters being used. Furthermore a status rating to indicate how well the device

conforms to that parameter, such as 100 for excellent, 50 for average and 0 for poor.

The importance rating and the status rating must be multiplied to give a weighting

value for a particular parameter being processed. The weighting value is created and

used by the DeCap service and indicates how well a device supports a parameter.

This value is added to the overall capability score, which is used to determine

whether the score produced for the DCM is equal to or greater than the capability

score calculated for the DCP.

9 Calculate Overall Quality Rating: Each of the parameter weightings must be added

together to give an overall weighting for the capabilities the device supports.

These requirements enable devices to determine whether a device that provides a particular

service is capable of executing the service in conformance with the requirements defined in

the DCP.

4.3.2 The DeCap Design

The matching algorithm used within the DeCap service uses two calculations to calculate the

current resource load and the load required to execute the service. DeCap begins by

calculating the resource expense incurred when the service is executed by adapting the

formulas defined in [Kumar 2003, Liu 2004]. The formula defined in (1) calculates the

percentage of a resource required, where a resource r offers a service s that requires acs, , units

of some total resource value tr,.

rescs, =
ac

it
r

(1)

This formula allows the DeCap service to determine what percentage of some resource will be

used given the total value of the resource available. For example, if a service requires 1

megabyte of RAM and the device provides a total of 32 megabytes, then the service is said to

require 3.1% of that total.

However it is not enough to only calculate the value for the resources needed to execute a

service. The DeCap service needs to determine if the device is overloaded by calculating how

much of the available resources on average are used by the device. For example, if the device

on average has 75% CPU utilisation, we can infer that the device may struggle to take on the

88

increased computational overhead if our service is to be executed. The cut-off value used to

determine when a capability is no good is application specific and dependent on the task in

hand. For example if the service is a transcoding service then the application may state that

CPU utilisation should be no more than 10% because the CPU required to perform the

transcoding will be approximately 90%. Conversely a service that processes simple

commands such as "Light switch on" may require minimal computation thus a device that has

75% CPU utilisation will be capable of incurring the additional computational overhead

without causing adverse effects.

Furthermore it is possible that the quality of service will be affected because the computation

may be shared across a large number of processes. When this is the case, DeCap calculates

the overhead for each resource the service requester deems important and compares it to the

desired capability defined in the service request. The DCS achieves this using a technique

called the Multi-Attribute Utility Theory (MAUT) [Kumar 2003, Liu 2004]. This algorithm is

implemented in DeCap and is used to produce an overall capability score for some device D

given the attributes defined in the device's DCM. This formula is defined as,

d

DCScore(D, DCM) _ cw; (DCM) - D(v;) (2)

where DCScore is the overall capability score for device D according to the device capability

model DCM, d is the number of capabilities for the type of device, cw, (DCM) is the

importance rating of attribute i according to devices DCM, and D(v;) is the status rating for

attribute i. The importance rating describes how important a given attribute is in relation to all

the attributes used, e. g. the CPU attribute may be the second most important attribute with an
importance rating of 30, which means that the CPU is considered three times more important

than an attribute with an importance rating of 10. The status rating describes how well the

device supports a particular attribute, e. g. a device may have "Excellent" for its CPU attribute,

which may equate to a value of 75 - therefore calculating a capability score for CPU, could be

achieved by multiplying 30 * 75 which is equal to 2250.

Given the two formulas, the device calculates the service ratings programmatically by

estimating the average attribute values from the operating system itself and assigning the

appropriate status rating. For example, if the device uses on average 25% of its CPU when the

required service is executed we may assign the CPU Load a status assessment of "Excellent"

with a status rating of 75.

The equation defined in (3) amends the MAUT formula to take into account the current

resource load and the load required to execute a service. In this instance the DCScore and the

89

resc,, . are added to give a combined resource load value, indicating whether the device can
effectively execute a service it provides.

d
DCScore(D, DCM) cw, (DCM) " D(v,) " (1- resc,,) (3)

When the terms in the DCP and the DCM are processed any ambiguities that are encountered

are resolved using the DistrES algorithm. When the formula in (3) is used to calculate the

score for the DCM, it is compared with the score generated for the DCP. If the DCM score is

equal to or greater than the score for the DCP then the device is said to be capable of

effectively executing the service, whilst ensuring the quality of service is maintained. In this

instance the service details are returned to the service requester.

The following models describe how the DCP is matched with the DCM. This process is

illustrated in Figure 4.8.

Extract Device
Capability Model

Extract Device
Capability Profile

Match[DCM, DCP]

No

If Match =True

Return True

Return False

Figure 4.8 Device Capability Matching

This process begins by extracting the DCM from the device currently processing a received

service request. DCMs and DCPs are Device Capability Advertisements that capture all the

key hardware, software and network capabilities. The Device Capability Advertisement

Object contains a device capability profile, which in turn contains a collection of component

objects. Each component object contains a collection of attribute objects that describe a

90

capability including its associated value. The class diagram for Device Capability

Advertisements is illustrated in Figure 4.9.

IDeviceCapabildyAdvertisement LqDeviceCapabvprofiIeO:

IDeviceCapabildyProfile
_ setDeviceCaI abilitvProfile(profile : IDeviceCapabiliVProfile) : void

DeviceCapabilityAdveitisement
deviceCa bill Profile : IDeviceCa i bilit Profile

DeviceCapebilityProfile
cm onent : (Corn)anent

IDeviceCapabilityProfile

getComponent() : (Component
setComponent(component : Component): void

(Component

getAttribute(index : int) : (Attribute
getAttributes() : IAttributefl
addAttribute(attrib : (Attribute): void ---
removeAttribute(index : int) : (Attribute

Strinq
Strinq

getDesc ription() : IAttributeDescritrtion
getName() : String
getValue(: Object
isDefauft() : boolean
setDescription(desc : String)
setName(name : String) : void
setvalue(value : Strinq) : void
setDefault(defaut : String) : void

Figure 4.9 Device Capability Advertisement

Once the DCMs have been loaded, the DCP is extracted from the service request and loaded.

They are passed to the DeCap Service, which returns a value of true or false indicating

whether the device has the required capabilities to execute the service it provides, based on

the requirements defined in the DCP.

The matching process as illustrated in Figure 4.10 loops through all the quality of service

parameters used and for each parameter extracted this process retrieves the importance rating

from the DCP. If the rating does not exist then the next parameter is extracted and the process

is repeated. If it does exist the status rating is retrieved from the DCM. Again if the rating

does not exist the next parameter is retrieved and processed. The importance rating and the

status rating are multiplied together and added to the overall quality of service result. Once all

the parameters have been processed the result is returned. If the returned value fro the DCM

score is equal to or greater than the score for the DCP then the device is said to be capable of

executing the service is provides.

91

Indi®6se Resi -0

Get Next
GoS Parameter

Parameter
does not Exist

Param xists

Get In ortence
Rating(DCP]

Rating as
not Exist

Impo ce
Rating xists

Get Status
Rding(DCA]

Rating does

not Exist

St s
Reding xists

Result = Result +
Multiply(IR, SRI

Retiun Result

Figure 4.10 Device Capability Matching Algorithm

4.4 Semantic Interoperability and Signature Matching (SISM)
Service

Within this thesis one of the key requirements is to enable devices to self-adapt and form

compositions with ad hoc services. Current home networking platforms perform

interoperability between heterogeneous devices by standardising the interfaces devices

implement imposing pre-determined vocabularies. This technique is restrictive and is difficult

to implement within uncontrolled environments. We address this limitation using a service we

have developed called the Semantic Interoperability and Signature Matching (SISM) service

[Fergus 2005a, Mingkhwan 2005].

SISM works by processing metadata used to describe the service and the service request,

including the signatures described in the service interface. Service descriptions and service

requests are described at an abstract level in terms of the Inputs, Outputs, Preconditions and

Effects (LOPE) they describe, which are more commonly referred to as IOPEs [DAML

92

2003c]. SISM allows highly independent services offered by appliances to be dynamically

composed without any human intervention. A high-level description of the possible

compositions performed using SISM, is illustrated in Figure 4.11.

Service Compositions
Intercom Hi-Fi Music Theatre

f

Networked Appliance Service Utilisation Framework

fI /f/ fý 1P/ %f f/

Peer-to-Peer I

Figure 4.11 Dynamic Service Compositions between Devices

This diagram illustrates that by using NASUF the individual functions provided by networked

enabled devices can be selected and composed to create high-level functions. For example by

discovering all the audio services in the network, and using a microphone provided by either

the laptop or camcorder, a composition of services can be combined to create an intercom

system. Processing the high-level semantic descriptions of services forms the basis for this

approach and is described in more detail in the following sub sections.

4.4.1 The SISM Service Requirements

Composing services poses a difficult challenge. This section describes the key requirements

to be addressed in order to enable SISM to automatically achieve this without any human

intervention. An algorithm is required to automatically compose services using semantic

descriptions thus:

Mechanisms need to be developed that allow the services offered by devices to be

automatically discovered and dynamically composed.

" Services need to be described semantically in order to expose the capabilities they

support.

Devices must be selected to ensure a high quality of service is maintained.

The remainder of this section describes how these challenges are addressed using the SISM

Service developed within this thesis.

93

4.4.2 The SISM Service Overview

The SISM algorithm matches IOPEs and signatures described in the service interface, which

supports direct matches, indirect matches and conflict resolution. Using this algorithm,

services can be matched and the service interface can be dynamically extended beyond what it

was initially designed to do.

4.4.2.1 The IOPE Matching Process

The SISM Service can determine if any two terms match using a number of techniques. One

possible match occurs when any two terms are equivalent, which is illustrated in Figure 4.12.

Digital Camcorder

DistrES Ontology
Thing

subClassOf subClassOf

equivalentTo equivalentTo Picture Movie -- Film
subClassOf subClassOf

subClassOf
MPEG-2 MPEG-1

subClassOf subClass 0f
subClassOf

Z

as SVCD MP2 sOf
subClassOf DV DVD MP3 VCD

SeCEn 4. getRelationship(Movie, Film) I 15. equivalentTo
(Movie, Film)

3. Service Request, 1I
I

Service Profile 6. Get Service
SISM ------ SISM Ontologies

--------- r Manag. ------- --I
7. Extended

1 1. SERVICE REQUEST II Interface
Input: [Movie svcd] 1 L. ----------

S@N[Ce
- 1 Output: [Movie vcd] 1 Ontologles

Precondition: Real-time 2. SERVICE PROFILE
Effect: converted ý Input: [Film svcd], Output: vcd

11
Precondition: Real-time, Effect: Converted

11
11
1L

8. Extended Interface

Figure 4.12 TOPE Matching performed by SISM

In this example the precondition 'Real-time' in the service request is equal to the precondition

`Real-time' in the service description. Another possible match can be achieved via

subsumption. For example an input in the service request may be called "Movie" and an input

in the service description may be called "Film" - if "Movie" is either a 'subclass',

'superclass' or `equivalent' to "Film" then a conceptual relationship has been found that links

94

the two terms together. However this example is problematic because the term "Film" could

mean "Movie" or "Slideshow". In this instance the name of the inputs and the outputs are

used to help determine the context in which the term is being used. This matching process is

described below:

0 If the IOPE in the service request is the same as the IOPE in the service description

then this constitutes an exact match.

0 If the IOPE in the service request has an ̀ equivalentTo' relationship with the IOPE in

the service description then this constitutes an exact match.

0 If the IOPE in the service request is a subclass of the IOPE in the service description

then this constitutes an exact match.

0 If the IOPE in the service description subsumes the IOPE in the service request then

this constitutes a plug-in match, i. e. if concept A is a sub-concept of a concept B this

is called a plug-in match. This is a useful matching process that loosely relates

concepts that exist in the same hierarchy path. However, the distance between the two

concepts need to be determined in order to establish how closely related they are. If

concepts are closely related then it may be possible to interchange these concepts

without altering the meaning. In this type of match concepts in the service request are

typically more general than concepts in the service description. This may result in

service descriptions being too specific for the service request [Paolucci 2002a].

" If the IOPE in the service request subsumes the IOPE in the service description then

this constitutes a subsumption relationship. For example if concept A is a super-

concept of concept B then concept B is subsumed by A. This type of match is weaker

than a plug-in match in that concepts in the service request are more specific than the

concepts in the service description. Although matches may occur, again it comes

down to the distance between concepts - in some cases the match may be too general

[Paolucci 2002a].

" Anything else fails.

If a relationship cannot be found, the unknown term is passed to the DistrES Service [Fergus

2003b] and propagated within the network. This results in zero or more semantic structures

being returned that describe how the term is defined. Using statistical programming

techniques, such as term and relationship frequency analysis, the structures are evolved until

an optimal solution has been produced and merged into the DistrES ontology [Fergus 2003b].

Once the structure has been merged the above matching process is repeated. This process

continues until all the IOPEs in the service request have been processed - if all the IOPEs are

matched this constitutes an abstract match. This could potentially be time consuming.

Depending on the number of responses and the size of individual concepts devices may

95

choose to perform this as a backend process. Consequently devices may choose to evolve
concepts offline. This may ensure that the next time a device processes a service request it can
better match the IOPEs in the service request and the service description.

When abstract matches are found, SISM retrieves the service ontologies [DAML 2003c],

along with the service interface object and creates a table containing the matching IOPEs

from the service request. A sample table may look like the one illustrated in Table 4.1.

Movie Film
TV Television
Speaker AudioDevice
MPEG-2 DVD

Table 4.1 Semantic Interoperability Table

The matched IOPEs act as keys in the table and have corresponding values, which represent

the names of the IOPEs used in the service ontologies. SISM uses the DistrES ontology to

resolve terminology differences, therefore the service request may refer to an input as

`Movie', whilst the input in the service ontologies may be referred to as `Film' - the table of

key-value pair IOPEs creates a semantic mapping between the different terms used. The

following section describes how abstract matches are used to find concrete matches.

4.4.2.2 The Signature Matching Process

The signature matching process tries to determine if the IOPEs in the service request can be

directly mapped onto concrete bindings in the service interface by processing all the service

ontologies. SISM processes the Service Profile [DAML 2003c] and retrieves the values

associated with each IOPE. These values specify which 'Atomic Process' [DAML 2003c]

each LOPE belongs to in the Service Process Model. The IOPEs may have been matched at an

abstract level, however they may belong to different atomic processes, therefore SISM needs

to determine if a single atomic process exists that supports all the IOPEs in the service

request. If an atomic process is found this means that an operation in the service interface

exists. In this instance SISM extracts the operation name from the Service Grounding and

retrieves the parameter order and the endpoint address from the service interface, which are

used to describe how the service is invoked. During this process the table of matched IOPEs

are used to bridge between the different terminologies used in the service request and the

service ontologies. If SISM maps the IOPEs in the service request to IOPEs in the Service

Process Model it tries to determine if the type information supported by both sets of IOPEs

match. SISM supports two types of matches at the concrete level: direct matches and indirect

matches. These are described below:

96

Direct Matches: The following tests are performed by SISM to determine if a direct match
has been found. If all the tests are true then the service can be invoked without the help of any
intermediary services, which is discussed later in this section.

" Test 1: An `Atomic Process' in the service process model for `Service A' has

associated input elements that conceptually match the inputs described in the service

request.

" Test 2: The type information associated with the `Atomic Process' input `range'

elements for `Service A' conceptually match the type information for inputs

described in the service request.

0 Test 3: The `Atomic Process' in the service process model for `Service A' has an

associated output element that conceptually matches an output described in the

service request.

0 Test 4: The type information associated with the `Atomic Process' output `range'

element in the service process model for `Service A' conceptually matches the type

information for the output described in the service request.

A direct match allows the querying device to directly invoke a service without the help of any

intermediary services. An indirect match is more complex and is explained below.

Indirect Matches: If a direct match cannot be found, SISM performs the following tests to

determine if the service can be invoked using one or more intermediary services.

Test 1: An `Atomic Process' in the service process model for `Service A' has

associated input elements that conceptually match the inputs described in the service

request.

Test 2: The type information associated with an `Atomic Process' input `range'

element for `Service A' is incompatible with the type information for an input

described in the service request.

. Test 3: An intermediary service exists' called `Service B' that has an `Atomic

Process' input element that conceptually matches the input described in the service

request. The type information associated with the `Atomic Process' input `range'

element conceptually matches the type information for the input described in the

service request. ̀ Service B' has an `Atomic Process' output `range' element that

conceptually matches the conflicting input described in the `Atomic Process' for

`Service A'. The type information associated with the `Atomic Process' output

`range' element in the Atomic Process for `Service B' conceptually matches the type

97

information for the conflicting `Atomic Process' input `range' element in the `Atomic

Process' for `Service A'. This process is recursive and can potentially involve several

intermediary services before a solution is found, i. e. `Service B' may need to use

`Service C' and `Service C' may need to use ̀ Service U.

0 Test 4: Anything else fails.

The challenge is to enable devices to form compositions between services either directly or

indirectly. For example in Figure 4.13 "DVD Player 1" reads the data from a movie disk the

user has inserted into the player. The 'Player' service discovers that the media format is Xvid,

which it cannot process because it only has a MPEG-2 decoder. If the data format had been

MPEG-2 then "DVD Player 1" could have decoded the data using its 'MPEG-2 Codec' and

transmitted the decoded data to the 'Visual' service provided by the Television. However in

this instance the data format is Xvid, consequently the SISM Service implemented in "DVD

Player 1" tries to resolve the conflict using an intermediary service, which takes as input an

Xvid data stream and generates an ̀ MPEG-2' output stream.
DVD Player 1

DistrES Ontology

yiSN SISM
Mana .

Profiles
s. cEn

EI Table CS McWdata

9. MPEG-2

1 . Television
T0

Binary
,1

EI Table CS Metadata

DistrES Ontology

SISM SISM
. Tana .

Profiles
socen

Service
Request

1. Xvid

8. MPEG-2

Service
Response

a. DivX

3. Xvid

e

Metadata CS Tbl

DistrES Ontology

SISM SISM
Manag.

rofiles
S-CE.

Figure 4.13 Dynamic Service Composition using SISM

Finding an intermediary service is achieved by propagating a reformulated service request to

the network describing the LOPE requirements. In our simple example "DVD Player 1" finds

"DVD Player 2", which can indirectly stream an Xvid movie into a 'MPEG-2' media format

using a service provided by a Laptop. "DVD Player 2" uses the Laptop to convert the Xvid

98

2. Xvid S. DivX
,

Laptop

format into a DivX format, which it can then process and convert into MPEG-2. When this

composition is executed, the Xvid data is transcoded and the resulting MPEG-2 stream is

decoded by "DVD Player 1" and streamed to the `Visual' service provided by the Television.

This allows "DVD Player 1" to extend the interface to the `Player' service it hosts to

accommodate the new `Xvid' movie format. "DVD Player 1" is not aware of the composition

between "DVD Player 2" and the Laptop and is only concerned that "DVD Player 2" can

successfully convert the `Xvid' data into `MPEG-2'.

The SISM service achieves this using an Extended Interface Metadata Object (EIMO). The

EIMO describes how signatures are constructed to transcode data and indicates whether the

intermediary service itself can be directly invoked or whether it also requires intermediary

services. This process allows services to dynamically discover and resolve 10 conflicts that

may occur and proactively establish compositions with intermediary services.

When intermediary services are discovered this may result in several candidate services that

provide the same functionality. In this instance the services that best match the device

capability requirements as described in section 4.3.2 on page 88, which are defined in the

service request, will be added to the EIMO.

In the following section we describe how the EIMO is invoked using the Extended Interface

Service.

4.4.2.3 The Extended Interface (EI) service

The EI service, as illustrated in Figure 4.14, is invoked when a service provided by the device

does not directly support a method invocation.

99

Binary
visual -------------r
Service

SVCD I

--i-- EI
_

Binarer
_

J.
r- Service

DivX_ ISVCD
1 DivX/ II Binary

1
Xvid

Xvi
El

SVCD

Service _ Binary
I DivX/ "
I Xvid I SVCD

11 DivX AjdjbL
EI - -PmLgmm

Service ._ SVCD

1 Xvid II DivX
1

11I

SeDivx

Xvidý I Binary
Xvid 1 L. EI -

L_. Service -- Binary

Figure 4.14 Extended Interfaces for the Visual Service

This service has a fixed operation name called `EI' which takes two parameters - the first

parameter is the EIMO and the second parameter is an object array which contains all the

parameters required to invoke the intermediary service. The EI service processes the EIMO,

which provides information about the operation name for the intermediary service, the

parameters it takes, including the associated data type information, and the order in which the

parameters appear in the signature.

The EIMO also specifies the connection mode supported by the service. If the connection

mode is `direct', the EI service uses the metadata for the intermediary service to construct the

required signature using the parameters in the object array, before binding with it and

executing the required method. In this instance `direct' means that device A can directly use a

service S, provided by device B without having to use any intermediary services. If the

connection mode is `composite' then the EI service processes the EIMO for the intermediary

service it needs to use before connecting to its EI service and passing it the metadata and the

parameters. In this instance 'composite' means that device A indirectly uses a service S,

provided by device B via service S2 provided by device C. This process continues until a

direct connection with a service in the composition is made.

This mechanism ensures that the service interface evolves over time to accommodate

numerous other inputs it was not initially designed to process. For example a DVD Player that

only implements an MPEG-2 codec can read a number of different media formats and interact

100

with the `Visual' service by first transcoding the data it reads from the disk into binary data

by discovering and using data adaptation services. The following section describes how the

SISM Service has been designed.

4.4.3 The SISM Service Design

The following models describe how service requests are processed and how abstract and

concrete matches are performed. They also describe how signatures are built, how

intermediary services are discovered and how peer services are invoked.

Figure 4.15 illustrates how service requests are processed by the SISM service. The service

request is matched at an abstract level and if a match is found the service ontologies for the

service, including the service interface are retrieved and passed to the concrete matching

algorithm. This algorithm uses the service ontologies and tries to map the semantic metadata

to concrete signatures contained within the service interface. If a match is found the service

advertisement for the current service being processed is returned to the service requester. If a

match cannot be found the matching process fails and a null value is returned.

E xtrad Service
Request

Get Neid Servloe
Desciption Locally

No

Service D acnption

Perform Abatrad
Match

No Match Found

Abstract M ch is Found

Perform Concrete
Match

No Match Found

Concrete M ch is Found

Return Serv ice Advertisement
To Service Requester

No match can
be found so
return null

;

ReturnnulI

Figure 4.15 Process Service Request

101

The abstract matching process itself begins by iterating through the IOPEs described in the

service request and extracting each IOPE in turn. IOPEs are used in the Service Profile to

capture the inputs and outputs service signatures support within the Service Interface

including any preconditions that must be satisfied and any effects that result when the service

is executed. Figure 4.16 illustrates the class diagram for the IOPEs which describe the class

variables used and the methods supported.

(Parameter

+setName(name : Siring) : void
+setRestrictedTo(restriction : String) : void
+setRefersTo(refersTo : String) : void
+setDomain(domain : String) : void
+setRange(range : String) : void
+setParrneterType(type String) : void
+getNaneO : String
+getRestrictedToQ : String
+getRefersToO : String

Parameter

Effect

String
ion : String
o: String Precondition

String

Figure 4.16 LOPE Class Diagram

The IOPE in the outer loop (service request) is compared with each IOPE extracted in the

inner loop (service description) to determine if an exact match can be found - this being the

case the service request IOPE status is set to true. If an exact match cannot be determined this

process calls the semantic interoperability process to determine whether any ontologies within

the wider network have a relationship that links the two terms together semantically. If a

semantic relationship is found then the service request LOPE status is set to true, again

indicating a match has been found via some semantic relationship. When all the IOPEs in the

service request have been processed, this process checks to see if all the service request

IOPEs statuses are set to true. If this is the case then an abstract match has been found. This

process is illustrated in Figure 4.17.

102

Extact I OP E From
Service Request

No

TOPE as

Extract IOPE From
Service Description

D

No

TOPE)ads

Check it IOP Es exffictly Metch)
No

No
Perform Semantic

If E and Mathis Found Interoperability

Set Mattlied
Status to True

If Semantic Relationship is Found

No

AI10PEsheve en Processed

Check Status of IOP Es in
Service Request

No
Abstract Match is, F alone

IfAll IOPE St us' are True

Abstract M etch is True

Figure 4.17 Perform Abstract Match

If an abstract match is found the service ontologies including the service interface are passed

to the concrete matching algorithm. This process begins by iterating through the IOPEs

(inputs, outputs, preconditions and effects) in the Service Profile Model and tries to find a

corresponding Atomic Process in the Service Process Model as illustrated in Figure 4.18.

Atomic Processes are used in the Service Process Model to logically group inputs, outputs,

preconditions and effects to form abstract semantic signatures. This is a key technique used to

map high-level semantics to low-level service interfaces. When all the IOPEs in the Service

Profile have been processed a check is made to determine whether a single Atomic Process

exists in the Service Process Model that subsumes all the IOPEs contained in the Service

Profile.

103

boolean
: boolean

ition() : boolean

it Parameter): void
x: int) : Parameter
IParameter(l
; index : int) : (Parameter
utput : Parameter): void
:x: int) : Parameter
Parameter[I
(index : int) : Parameter
tion(precondition : (Parameter) : void
ion(index : int) : Parameter
ionsO : IParameterf1
Dndition(index : int) : (Parameter
ffeet : Parameter): void
lex : int) : (Parameter

IParameterfl
t(index : int) : (Parameter

AtomicProcess

Preconditionoutput : IParameterfl Effect
precondition : IParameter(j

ýdlb

v44o, 4 fie... -..... de.. n

Figure 4.18 Atomic Process

If an Atomic Process is found the Build Signature process is called to determine if the Atomic

Process can be mapped onto a concrete signature described in the Service Interface. If the

Build Signature process returns a Service Advertisement then this constitutes a concrete

match and the advertisement is returned to the service requester. This process is illustrated in

Figure 4.19.

104

Get Ned'RefersTo' Element
For I OP E in SerH ce P roh le

Element does

not Emil

RefersTo EI ment Exids

Find Atomic Process in
Process Model

Atom Process

not Found

Atom Pr s is Found

Set IOPEIOPE
Status

Process Next
IOPE

Al 10 PE a have een Prace sed

No

WIIOPEs elongto
Single No icProcess

Build Signature

Return Service Advertisement
to Service Requester

Figure 4.19 Perform Concrete Match

An important design requirement within this framework is to resolve matching conflicts that

occur. If the Concrete Matching Algorithm successfully maps the IOPEs in the service request

with signatures in the Service Interface but encounters data type conflicts it must try to

resolve these conflicts using intermediary services that can explicitly provide data type

conversions. Contrary to this requirement there may be instances when converting the data

type is insufficient and rather the software to achieve this must be downloaded. For example a

device may choose to download a particular codec, from an intermediary service, to process

some media format rather than converting the data stream in real-time to increase or maintain

a high quality of service. However less capable devices may choose to outsource the

processing to a more capable device. How intermediary services are discovered to resolve

LOPE conflicts is discussed later in this section.

The build signature process illustrated in Figure 4.22 is the core component within the

concrete matching algorithm and is used to determine if a concrete match is found. If the

signature can be built this means that the IOPEs including their data type information can be

105

mapped onto a signature contained in the Service Interface. The build signature process
begins by trying to find an Atomic Process in the Service Grounding Model using the Atomic

Process extracted from the Service Process Model. The Service Grounding describes how the

service can be accessed and controlled. The grounding contains one or more
AtomicProcessGroundings, which contain Service Input objects, Service Output objects,

Service Operation objects, Service Input Message objects and Service Output Message

objects. These objects allow the IOPEs in the Atomic Process Grounding object to be mapped

onto concrete signature bindings in the Service Interface. The class diagram for the Service

Grounding Model is illustrated in Figure 4.20.

IGrou do

o ddAtunucPra: essGrourxkiQ(at(xnCProcess : IAtanicProcessGruundinq) : void
kpelAtanicProcessGroundino(index: u1): IAtoinicProcessGro nenc

removeAtomcProcessGi*oundirw(index : irt) : IAtuaveProcessGroundim
icehwuts: IServiceIOParemeter): void
IServI: eIOParameter
rvice0u9put :: IServicelOParameter) : void
0: IServiceOqet etion
(service0peretion: IService0pereaon): void
, aue() : IServiceirWMesseae
ýave(messeae: IServiceflx*MessoQe): void

4Sarvic lion

krtPoitTVtx() AKW

s'tPoi1TVV(vortTYP : ring) : void _
. urtop,. erdion(): 3rnq

set Otxxdion(opsrdion: Striiw): void

VOID

twt : IServicelOParöneter
IServiceOPeration
ltMeswie : IServiceMessage

IServiciMes: e
Se viceMessaueo : IServic: eMessege

setServiceMasseoe(messeve : IServiceMesseve) : void

Figure 4.20 Service Grounding Model

If an Atomic Process is found the operation name associated with the Grounding Atomic

Process is extracted, otherwise it is terminated. The operation name may be part of the

Service Grounding Atomic Process or it may be extracted from the Service Interface. The

Service Interface describes the signatures a particular service supports. Each signature is

known as a binding and a Service Interface may support several bindings. Each binding

contains a port Type, which contains an operation. An operation contains input message

objects that describe all the inputs the signature supports and an output message object that

describes the output the signature returns (if a return value is used). Each message contains

the name of the message and one or more message parts. Each message part contains the

partName, the parameter and parameterType. The class diagram for the Service Interface is

illustrated in Figure 4.21.

106

IServicelnterface
addBindinq(bindinq : IBindinq) : void -----------
aetBindingsO : IBindingfl
getBindinq(index : integer) : IBindinq

IPortType
setOperation(operation : Strinv) : void
uetOperation() : (Operation

i

17
Binding

setPoit(portTvpe : IPoitType) : void
UetPort() : IPoitTvpe

Operation
rtion getlnputMessaqe() : IMessaqe IMessage setlnI Jtrvlessage(messa4e : IMessage) : void IMessage getOutputMessa4e() : IMessaqe strinq

setOutputMessage(messaqe : IMessage) : void
getOperationNameO : Strinq
setOperationName(narne : Strinq)

I IMessage

Message getNarne() : 5trinq
-- addMessagePait(part: lMessagePart) : void Strin4

yetMessagePait(index : int): IMessagePait
S nt : Itve sa eP rt yettvlessagePatts() : IblessagePattfl

removeMessagePart(index : int) : IMessayePatt

IMessayePart
getPartNameO: Strinq

agePait setPartName(name : Strinq) : void
---------- qetParameter(): String

String setParameter(param : String) : void String getParameterTypeO : String
e: rin setParameterTvpe(tvpe : Strinq) : void

Figure 4.21 Service Interface Model

Once the operation name has been extracted this process iterates through the IOPEs in the

service request and extracts each LOPE in turn. When an IOPE has been extracted it is used to

extract the corresponding LOPE in the Service Grounding Atomic Process. Once these two

IOPEs have been extracted the data type information for each IOPE is matched and if a match

is found the IOPE data type status in the service request is set to true. If a data type conflict is

discovered then the conflict is resolved using an intermediary service - if the conflict is

resolved the LOPE data type status in the service request is set to true, otherwise the next

IOPE in the service request is extracted. When all the IOPEs in the Service Process Model

have been processed, this process checks to see if all the IOPEs, including there

corresponding data type information, have been matched - in this instance all the data type

status values should be true. If this is the case then the service endpoint is extracted from the

Service Interface and the Signature Built status is set to true to indicate a concrete match has

been found. In this instance the metadata is returned to the service requester. If any status

values are false then no concrete match has been found and this process terminates. This does

107

not mean that a service does not exist, it just means that the device processing the request

cannot provide the service. In reality numerous devices will process the service request, as

such it is envisaged that in a large P2P network as least one device will be able to satisfy the

request. This process is illustrated in Figure 4.22.

Find Atomic Process
in Service Grounding

Extract Operation
Name From Service

Grounding

Conflict Not
Extract Required TOPE From Resolved

Service Request

xtract Requ ired 10PE From
t

vice Grounding
tomic Process

C
Match TOPE Type

Data

No Match Resolve IOP E
Conflict Usi ng

Match i Found Intermediary
Service

Set IOP E Tue Status <--&
to True

Conflict
Process Ne)d Resolved

IOPE

Al IOPE shave an Processed

No

AIIIOPE St usesTrue

Extract Service Endpoint
From Servi ce I nterface

C
Set Signature Built

to True

Return Service
Metadate

Figure 4.22 Build Signature

One of the important requirements within this research is to develop a mechanism that allows

conflicts within signatures to be resolved using intermediary services. This means that

conflicting parameters are converted into the expected data type using a service discovered

108

within the network. This is achieved by extracting the conflicting LOPE name and data type

from the signature, including the required IOPE name and data type and inserting them into a

newly created service request. This service request is used to discover an intermediary service

that can convert the conflicting data type into the required data type. If a service cannot be

found then this process terminates. If a service is found an Extended Interface file is created

and the extracted IOPEs are added. The service advertisement for the intermediary service

being used to resolve conflicts is also added and once this has been done the Extended

Interface file is returned to the service requester. This process is illustrated in Figure 4.23.

Extract Conflicting 10
Name and Data Type

Extract Required 10
Name and Data Type

Create Service
Request

Discover Peer
Service Locally

No

IfPeerSe Found

Create Extended
Interface File

Add Confiding 10
Name and Data Type

Add Required 10
Name and Data Type

Append Intermediary
Service Advertisement

C
Return Extended

Interface File

Figure 4.23 Find Intermediary Service

109

When Extended Interface Objects are returned to the service requester, they are used to

determine how the service can be connected to and invoked. First the required Extended

Interface file is retrieved and the service advertisement is extracted. Once the service

advertisement has been extracted, the service invocation mode is extracted and used to

determine whether the service can be directly invoked or invoked via an intermediary service.

If the connection mode is direct then the direct endpoint is extracted else the composite

endpoint is extracted. The endpoint is used to bind to the service. If a connection mode cannot

be established then this process terminates. If a direct connection is established with the

service then the required signature is built by extracting the method name, the required

parameter names, including the data type information, and the order in which the parameters

must appear in the signature. This information is then used to build the signature and invoke

the required method. If a composite connection is established with the service, the service

advertisement along with the parameters is sent to the composite endpoint for further

processing. This involves extracting the information regarding the intermediary service being

used, again as illustrated above, the connection mode is determined and the intermediary

service is either, directly bound to and invoked, or the metadata is sent to the intermediary

service. When the intermediary service is invoked the conflicting data is substituted with the

value the service has returned. This process is illustrated in Figure 4.24.

110

Extract Service
Advertisement

Check hivocd, on
Mode

Mode is Composite

Mode Direct

Extract Composite Extract Direct
Endpoint Endpoint

Bind To
Endpoint

C

EnLr A Dete

Mode Direct

Bu ik! ! SinatuSend

Service

ModIEoI

Advertisement
And Parameter

Array

Invoke Service

Figure 4.24 Invoke Peer Service

For a full list of UML diagrams for all the secondary services that comprise NASUF see

Appendix A, B, and C.

4.5 Summary

This Chapter describes the high-level design requirements considered within this thesis for the

secondary services that comprise the NASUF architecture (detailed UML models can be

found in Appendix A, B, and Q. It describes how services are semantically described in terms

of their capabilities using ontological structures and dynamically composed to extend devices

beyond what they where initially designed to do. This included a detailed discussion

regarding how semantic interoperability is addressed between the inherent terminology

differences used by different device manufacturers. Devices continually evolve local ontology

structures to reflect these changes, ensuring that devices learn and map the terminology they

use with terminology used by other devices based on general consensus.

111

This chapter also argued that semantic descriptions themselves help solve the interface

problem and the design decisions used within our framework illustrate that this approach can
form compositions between other services based on the capabilities services describe using

semantic metadata, without having to know the concrete interface bindings beforehand.

Devices support different capabilities and as such some devices will be better equipped to

provide a given service than others. Consequently, the design considerations illustrate that

services are selected based on how effectively the device can execute the service.

Device configurations are automatically managed using the framework services, which

provide self-adaptation mechanisms that detect and make compensatory changes when

environmental changes are detected. This abstracts the underlying complexity associated with

device composition and network configuration, from the user, which is a feature not present in

existing approaches discussed in Chapter 2.

Chapter 3 and Chapter 4 provide formal design models that describe how our framework

addresses the requirements, and overcomes the challenges, described in Chapter 1. High-level

use cases, algorithms and data models illustrate how each service operates and what data

structures are used. Our design puts forward a viable solution that goes far beyond current

solutions such as OSGi, UPnP and DLNA.

It is hard to show how one set of services alone (presented in Chapter 3 and this chapter)

could provide a consumer much benefit, however when coupled together they provide value-

added functions that surpass existing middleware architectures described in Chapter 2. There

is a coupling (dependency) in our services but this is enabled via P2P which makes for a more

robust and redundant latent capacity within the entire network. Again this is a feature not

present in solutions such as OSGi.

Our design shows how machine-processable semantics can be used to overcome the inherent

limitations associated with attribute-value pair matching which is a technique used in OSGi,

UPnP and DLNA. Furthermore the design formalises how devices can be composed and self-

adapted to make compensatory changes to device configurations based on environmental

changes.

In the next chapter we discus a case study used to demonstrate the services provided by our

framework, which is used as a bases for our implementation discussed in Chapter 6.

112

Chapter 5

5 Case Study: Intelligent Home Environment

5.1 Introduction

In this chapter a case study is presented that is used to demonstrate the functions provided by

our framework, which has been implemented as a prototype - this is discussed in more detail

in Chapter 6. The case study describes an intelligent home environment capable of seamlessly
integrating networked appliances, such as TVs, Media Players, Surround Sound Speakers, and
Hifi Systems. It illustrates how our framework can be used to dynamically compose services

provided by these devices such as Visual, Audio and Player services. The successes and
failures found during the development of the case study are also presented as well as other

possible application areas that our framework can be used for.

5.2 Case Study

In this section an intelligent home environment is proposed that allows networked appliances

to automatically interconnect and dynamically form relationships with devices connected to

the network. This system allows devices to self-adapt and continually provide the best quality

of service based on devices and services within the current environment. If devices or services
fail, alternative solutions are automatically composed without any human intervention, with

minimal disruption to the user. The case study developed automatically interconnects the

audio/video and player devices within a typical home environment. Each device publishes the

functions it provides as independent services. For example a TV publishes the visual, audio

and RF-Receiver functions as independent services that can be simultaneously discovered and

used within the home environment.

This case study was selected to: (i) test the design decisions presented within this thesis and

illustrate how an Intelligent Home Environment can be created that addresses several

limitations found with traditional home networking solutions; (ii) demonstrate how devices

and services can be utilised by publishing and using functions provided by devices

simultaneously without disrupting devices and services currently in use; and (iii) highlight the

flexibility associated with the service-oriented architecture used in NASUF which allows

devices irrespective of their capabilities to be interconnected.

113

Imagine your home environment, more specifically your living room, and the devices it

contains. It is more than likely that it has a DVD player, VCR, Widescreen or Plasma TV, a

surround sound speaker system, and a HiFi. Now imagine the time you bought your DVD

Player and tried to integrate it with you existing device configuration. Like most people, you

may have taken the DVD player out of the box and attempted to connect the wires to your TV

and surround sound system and one hour later decided that maybe you need to look at the

instructions. After a further hour trying to understand the instructions, tune in your TV and

configure your surround sound system you finally succeeded in viewing the DVD movie you

bought.

These kinds of experiences are becoming increasingly more common because devices and

their associated configurations are becoming more complex, thus requiring considerable effort
from specialists and home users alike. This is set to become more difficult as the growth of

personal computer usage, the Internet and networked appliances become more widely used in

more diverse applications than ever before. We can expect ordinary everyday appliances to

become part of these networks, and networked devices will become pervasive and often
invisible to the users.

Now imagine a future environment whereby you take the DVD player out of the box, switch
it on and it just works. You put your DVD movie into the player, press play and the video is

displayed on your Plasma TV and the sound is streamed to your surround sound speaker

system. No manual configuration was required to integrate the DVD player and you did not
have to tune in your TV or configure your surround sound system. When the DVD player is

switched on it automatically communicates with all the other devices within the home via its

wireless network interface. These devices automatically form relationships with other devices

in the home based on what data the device outputs and what inputs devices process. This is

analogous to a jigsaw puzzle whereby the shapes of the individual pieces act as interfaces that

can be directly composed with corresponding interfaces provided by other jigsaw pieces.

Taking this vision one step further, devices will be highly flexible and will encompass

mechanisms that allow them to self-adapt based on conflicts during the integration process or

changes within compositions. In the former case devices will not simply fail but rather

proactively attempt to rectify the problem. Returning to our DVD example, imagine if you put

a movie into the player, which is encoded in a format your player does not have a codec for.

In this instance the DVD player could do one of two things. It could automatically discover an

intermediary device capable of processing the unknown movie format, which transcodes the

data into a format the DVD player is able to process. Alternatively the player could

automatically locate the codec internally within the home network or via the Internet,

download it and use it to play the movie. Making devices network-enabled in this way opens

114

up a number of possibilities that will not only become more important in the future, but which

will allow devices to be proactive.

Mechanisms will also allow devices to sense its own internal changes including changes

amongst devices it has direct relationships with. Again returning to our DVD example, if the

player determines that the surround sound system has become unavailable for some reason,

this change will be sensed and the player will automatically try to discover an alternative set

of speakers capable of processing the audio stream. In this instance the player could use the

speakers provided by the Plasma TV screen or the speakers provided by the HiFi and continue

streaming the audio with minimal disruption to the user's viewing experience. If the surround

sound system becomes available again the player will again sense this change and determine

that the surround sound speakers provide a better multimedia experience and as such stop

streaming the audio to the Plasma TV speakers and begin streaming the data to the surround

sound system.

The Intelligent Home Environment has the provision to provide any number of visual, audio

and player services. Once devices have been switched on, they all form relationships with

each other based on what devices want and what devices provide. For example the audio and

visual services offered by a TV appliance could be combined with the player service offered

by a DVD appliance to form a 'Home Theatre System'. Alternatively, the audio service

offered by a Hi-Fi appliance could be combined with the visual service offered by a TV

appliance and the player service offered by a DVD appliance. This is defined as Function

Utilisation and is illustrated in Figure 5.1.

Display
Recipe

Teletext

DVD Movie

O"p
p ý'' "".. Video, ''V p

Audio
"""".. Audio

R

Watch TV
Program

Figure 5.1 Function Utilisation

115

This provides additional advantages to the home environment, which enables devices and

services to be composed to create applications that do not explicitly need to be installed, but

rather can emerge based on device composition. The emergent functionality created is

dependent on what devices exist within the environment and the services they provide at any

given time. One example of an emergent function may be a virtual intercom system, which is

comprised of all the available speakers within the environment and a microphone provided by

a mobile phone as illustrated in Figure 5.2 Virtual Appliance

-..
J

,. ý.

Intercom

iO
0

Figure 5.2 Virtual Appliance

In this instance the intercom system does not explicitly exist, but rather emerges when devices

are composed. The NASUF middleware ensures that devices are not carefully manufactured,

but rather are an emergent property directly attributed to how devices are connected within

that environment and the functions they support. How devices are used and composed at

higher levels is application specific and is dependent on the application requirements, which

when executed are controlled for the duration of the task and then released. Consequently

solutions are not bespoke and compositions are not dependent on pre-determined

configuration rules. The integration process is based on how well the capabilities provided by

devices map onto the user requirements for the task in hand. Depending on the application

domain, networked devices are combined in any number of ways to perform some function.

Demonstrating the self-adaptive nature of NASUF devices can automatically select alternative

devices or services that provide a better quality of service. One possible example as illustrated

in Figure 5.3 is the redirection of audio and video from a video-enabled mobile phone.

116

0
..

..

Audio '. ý

r, O 3

ter

Video
Audio

Figure 5.3 Dynamic Service Composition

During a video call you enter your home environment and your phone automatically

integrates itself within the network and discovers the devices and services it has relationships

with. In this instance the phone discovers a visual service provided by a television and an

audio service provided by a surround sound speaker system. Based on the capabilities of the

mobile phone and the newly discovered devices, the phone can automatically self-adapt and

redirect the video and audio content to the more capable devices. The user still uses the

microphone provided by the phone except the video is displayed on the TV and the audio is

processed by the surround sound speakers.

NASUF provides the flexibility to combine any of the services available into a specified

configuration to form device compositions within the home. The composition process itself is

based on device capability matching, so although many devices form relationships based on

the behaviours they support, active compositions are constructed based on the overall quality

of service devices provide. Initially a composition may consist of a DVD player, a surround

sound speaker system and a 48inch Plasma screen, which the middleware has composed to

give the user the best viewing experience. However one of the features offered by NASUF is

that in the event of one of the devices becoming unavailable, for example the surround sound

speaker system, it can automatically adapt and select alternative speakers, i. e. speakers

offered by the Plasma screen, to process the audio stream. Furthermore the middleware can

revert back to a previous configuration if and when better services come back on line or are

newly installed. So for example, if the surround sound speaker system comes back online the

current audio service is stopped and the surround system is selected as the best solution and

started.

117

5.2.1 Characteristics of this study

Several characteristics are demonstrated within this case study that validates how the NASUF

prototype works. These characteristics are described as follows:

a) Devices join the network and automatically form compositions with other devices within
the network.

b) Devices can be used to perform some composite function. For example when the DVD

player's play button is pressed the player automatically selects and connects to the best

audio/visual services it is aware of.

c) Devices are selected that provide the best quality of service based on what devices and

services are available within the home network.
d) Device and service compositions can automatically self-adapt in the advent of device or

service failure by selecting the next best service, connecting to the device that provides it

and continue the composite execution.

e) Services provided by devices can be used in conjunction with other services being used

without affecting current service compositions. For example if the visual service provided

by the TV is being used to watch a DVD movie, the RF-Receiver can be simultaneously

used to display a terrestrial TV channel on the PC located elsewhere in the home, without

disrupting the persons viewing experience.

fl Virtual appliances can be automatically discovered and composed to create applications

that have not explicitly been installed. For example the microphone provided by a mobile

phone could be used to broadcast a message throughout the home by using all the

available audio services. This results in a virtual intercom system that has not been

explicitly installed.

These characteristics demonstrate how an intelligent home environment can be used which

utilises the available operational functions provided by devices; creates virtual appliances and

dynamically composes devices and services to create some high-level value added function

not provided by one single device or service alone.

5.2.2 Using our Framework for an Intelligent Home Environment

Several steps need to be taken to configure NASUF to implement the Intelligent Home

Environment. These are described within this section.

Step 1: Creating the Device objects - in this case study Audio, Video, Player and Controller

objects are created and are implemented on multiple machines within the experimental

environment, which is discussed in more detail in Chapter 6. These device objects implement

the secondary services that comprise NASUF, which may be explicitly implemented on the

device itself or used remotely within the network. The Controller device is a special device

118

used to discover and control devices and services within the network. Using the Controller,

devices can be stopped, started and invoked. The Controller also allows services provided by

a device to be stopped and started. When devices are discovered, the associated devices and

services used by that device are also displayed, which can also be controlled. When a device

is executed, the composite services it uses are automatically controlled via devices that use

these services.

Step 2: Creating NASUF Secondary Services - Depending on the device's capabilities the

secondary services are explicitly implemented on the device. In the case study each device

implements the DeCap, DistrES and SISM services. Although devices such as audio speakers

may not be capable of implementing all these services in a real-world setting they have been

implemented to evaluate how devices function when secondary services are added and

removed. The idea is that even if only one device provides the secondary services they can be

shared and used by all other devices within the network, however overall performance will

decrease because multiple devices are trying to use the same secondary services.

Step 3: Creating the Application Specific Peer Services - Device objects implement

application peer services which expose the device's functions. The Audio and Video devices

use a Multimedia Receiver peer service configured to either receive audio or video streams
dependent on the device implementing the service. The Player device uses a Multimedia

Transmitter peer service configured to transmit audio and video multimedia streams.

Step 4: Starting Devices - When the Audio, Video, Player and Controller devices have been

created and their associated secondary and application specific peer services started, the

device itself is started. At this point the device and the services it provides can be used by the

device and any other device within the network.

Once these steps have been completed a combination of devices and services can be

combined to provide high level functions. For example the Player device can combine one or

more of the Audio and Video devices to create a Home Theatre System. Compositions are

constrained based on the semantic queries propagated within the network and the semantic

descriptions used to describe services. In this instance Video devices will not form

compositions with Audio devices because they do not share any functional relationships. Both

devices process multimedia streams, consequently these devices receive input but do not

provide output. Typically compositions are formed based on what data devices output and

what inputs they receive, including any preconditions and effects that need to be considered.

In a typical home environment multiple services of the same type will co-exist. For example

the 43inch TV located in the living room and the 3G mobile phone you have will both provide

a visual service. Consequently compositions take into account devices that will provide the

119

best quality of service. For example the Player device will discover and use the 43inch TV

rather than the 3G mobile phone to watch a movie because it will provide a better quality of

service. However in the event that the 43 inch TV becomes unavailable for some reason,
alternative TV visual services will be automatically selected, with the 3G mobile phone being

one possible choice. In the case study this functionality is achievable using the NASUF
framework.

Using the Controller device the user can discover any device or service within the network.
Although individual control can be placed on devices and services, base compositions will

already be in place. This is performed when devices are initially switched on. As described

above devices automatically determine which devices and services they have relationships

with. Using the Control device the user can execute compositions and individually change

services within the composition. If device and service failures occur the Control device is

automatically updated to reflect these changes. This case also applies to devices and services

that re-register themselves within the network.

5.2.3 Anomalies in this Case Study

The service interface file used to describe the signatures the service supports is attached to the

service advertisements however only the operation names are extracted whilst the parameters

operations supported are disregarded. In this instance operation names such as "Play",

"Listen", and "Stop" have been used, which typically do not contain any parameters.
Discovering and more accurately matching services that contain parameters is the focus of
future work.

5.2.4 Positive aspects of this Case Study

This case study provides a number of advantages over other home network solutions. Devices

can be automatically deployed and composed without any human intervention. This case

study illustrates how zero-configuration can be realised using the secondary services provided

by NASUF. Many home middleware architectures are human centric and rely on human

expertise to glue devices and services together. In NASUF this process has been automated

and devices form loosely coupled relationships between each other based on device capability

and peer service capability matching techniques. Typically it is the user that decides what

devices to use in order to provide the best composition possible. This is not the case in

NASUF, which is capable of automatically determining what devices to use dependent on the

services they provide and how effective they can execute those services.

The case study illustrates how device configurations can automatically self-adapt in the event

of device or service failure. Using NASUF the home environment continually tries to

120

interconnect devices and create solutions that provide the best quality of service. In this
instance no matter how bad the solution is NASUF will always produce a solution that allows
devices to be composed. The self-adaptive nature of NASUF provides additional benefits to
home networking solutions that surpass current middleware standards such as OSGi and

UPnP. A description of the case study implementation is discussed in more detail in Chapter 6

5.3 Other Application Domains

NASUF has been designed as a generic middleware architecture that can be used by a large

number of application domains. We have presented an Intelligent Home Environment solution
however it can be used within large networked environments whether they are based on
infrastructure networks such as LANs and WANs or ad hoc networks whereby structural

change is dynamic and frequent. Consequently this section describes some of the application
domains in which our framework could be used.

5.3.1 Emergency Installations - Ad-Hoc Integration and Service Utilisation

Emergency installations (fire, ambulance, police and rescue services) are becoming more ad
hoc in nature and are adopting technologies that lend themselves to fast moving
intercommunications where the topological structure is continually changing shape as and

when devices and services are present. As such our framework allows the following

requirements to be realised.

9 NASUF can provide an ̀ intelligent' middleware that allows devices and services to

be dynamically integrated. As emergency installations move through the environment
the network is maintained and automatically adapted as new devices and services

arrive and existing devices and services disconnect from the network.

9 Independent emergency installations (ad hoc networks), can automatically join and
leave other sub-emergency installations as and when different sections occupy the

same location, to form one single network, i. e. the fire, ambulance, police and rescue

services can form a network and share services at an accident scene. This allows

services and information within this single network to be shared - when an

emergency installation re-locates it takes its devices, services and information with it.

This allows for automatic network configuration, information transfer, and device and

service utilisation.

" No maintenance or pre-configuration of networks, devices or services is required. The

ad hoc nature of decentralised networks ensures that devices within a particular
location are automatically interconnected into one logical network. Whilst the

121

middleware discovers and composes services/functions provided by devices

depending on particular functions requested.

5.3.2 Medical Installations - Emergent Functionality

Medical installations such as hospitals require a considerable amount of equipment, as is the

case of intensive care units. Such equipment is costly and in most situations the total

functionality provided by all devices remains largely redundant because only parts of the

functions provided by a device are used. As such costs can be reduced and equipment

requirements can be minimised by utilising functions more efficiently. Devices. that are

typically bought can be created by combining existing functions within the hospital

environment, which can be defined as emergent functions. One example could be an

observation system used to monitor the patient's heart, temperature, and blood pressure.

Instead of having an appliance located within the patients' room small wireless sensors, which

implement NASUF, could be used to send data to monitoring services provided by devices

located elsewhere in the hospital [Fergus 2004]. The data received could be streamed to a

dumb visual display located within the patient's room, however all processing is performed

by devices designed to process the data received from the patient.

Technological advances are moving at a fast pace and as such constant upgrades to the

existing equipment owned are required. In these instances only small changes are required

such as new networking interfaces or media codecs, whilst the core functionality remains the

same. For example a device may exist within some installation capable of processing

multimedia content in a particular format because it has the required codec. However if a new

device is integrated into the environment that uses a different multimedia encoding then this

content cannot be processed by legacy devices, consequently requiring a device upgrade.

Instead of replacing the device a better alternative would be to allow the device to extend the

functions if provides beyond what it was designed to do. When a conflict is encountered, i. e. a

multimedia format it does not have a codec for, it can either discover the codec within the

network, download it and process the content or it could find an intermediary service

provided by some device that can transcode the format into a format the device can readily

process. This is an automated process, which the user is not aware of. Using NASUF this

functionality can be performed, reducing costs by automatically extending device

functionality beyond what they were initially designed to do. This provides the following

features:

" Integrate the large number of services provided by devices to resolve device conflicts

as and when they happen.

122

" Reduce the costs associated with constantly upgrading hardware solutions, when all
that is required is a slight extension to the functions the device already provides.

" Devices do not have to have all the required functions, but rather can integrate and

utilise third party functions provided by other devices. In this instance custom devices

may be installed that provide some given function, i. e. information transcoding,

protocol interoperability, data aggregation, or intelligent processing and reasoning.

" Devices can choose to be as thin or fat as they want and at the same time perform

complex functions by loosely coupling remote services provided by other devices.

This means that devices, irrespective of their capabilities (sensors, PDAs or PCs), can

participate within any environment and provide and/or use the functions available.

5.4 Summary

This chapter demonstrates how our framework can be used to implement an Intelligent Home

Environment, capable of interconnecting networked appliances. The case study explains how

zero-configuration can be achieved and how device and service compositions can self-adapt
in the advent of device or service failure. The core functions highlighted within the case study

can be adapted and applied to different home networking scenarios allowing virtual

appliances to be created and enabling service utilisation. Numerous configurations can be

automatically created dependent on the devices and services available and the richness of the

semantic service capability descriptions provided by devices. Extending the application
domain further this chapter also highlights several other application domains in which
NASUF can be applied.
Many lessons have been learnt through our case study with the most important being that our
framework is highly flexible and portable across many different problem domains. It

highlights a completely new and novel way of interconnecting and using devices that to date

surpasses existing middleware solutions. By breaking the individual functions provided by

devices and dispersing them within the network results in distributed networked behaviours

that can be discovered and used in parallel with any other functions the device provides. It can

lead to a reduction in the amount of equipment required as is the case in our medical example
described above. It can also prolong the life of appliances by allowing them to extend the

functions they provide beyond what they are initially designed to do. This will provide

significant cost savings to consumers and forge a closer relationship between people and

technology.

Technological change is about innovation. Our framework breaks operational functions down

into constituent networked behaviours creating a promising foundation that aids innovation

and allows new and novel solutions to be created. For example networked behaviours can be

123

selected and combined irrespective of what devices provide them, and new solutions can be

created that could not be provided by any individual device alone, i. e. all the speaker
functions within the network could be combined to create a virtual intercom system. The

device does not explicitly exist but rather emerges for as long as the audio functions are held

in an intercom configuration.
Our framework aims to solve a number of difficult challenges and although we have

successfully achieved this there is still considerable room for improvement. The following

Chapter provides a detailed discussion on how we implemented our framework design to

realise the Case Study.

124

Chapter 6
6 System Implementation

6.1 Introduction

In this chapter we present the implementation for our framework described in Chapters 3 and
4. This chapter begins by describing the goals of our framework in relation to networked

appliances. The framework is an example of a service-oriented architecture and therefore it

addresses the same objectives. The individual services our framework provides are described

in detail, which also includes a description of the prototype we have developed to evaluate our
framework design.

6.2 Service-Oriented Architecture

NASUF is a service-oriented architecture. It provides mechanisms that allow networked

appliances to be seamlessly interconnected and offer the services they provide. Chapter 2

introduced the common concepts used within home networking, networked appliances, peer-

to-peer computing and the semantic web. Throughout this chapter these concepts will be used

to describe how the services that comprise NASUF realise the novel contributions detailed in

Section 1.9 on page 10.

6.3 Framework Services

The following subsections discuss the implementation details for each of the services used to

implement the NASUF framework. A discussion is presented on the technologies used to

achieve this, which includes the benefits they provide, the difficulties we encountered and

how they have been extended to incorporate our novel contributions. The framework

illustrated in Figure 6.1 shows the services used within NASUF and the relationships that

exist between them.

125

NASUF

DistrES Local PS-1
Service Ontology

SISM Manager

Service IT
Än Ontologies

PS-N
SISM

Service

DiSUS Manager

JXTA . NET JINI OSGi UPnP

NASUF

DistrES Local PS-1
Service Ontology

SISM Manager

Service I T
Än Ontologies

PS-N
SISM

Service

DiSUS Manager
11

Figure 6.1 NASUF Framework

The remaining subsections discuss the key techniques used to implement NASUF which

includes the JXTA peer-to-peer network; secondary and application specific services;

serialisation and semantic interoperability; dynamic service composition; device capability

matching; and self-adaptation.

6.3.1 The JXTA Peer-to-Peer Network

NASUF integrates heterogeneous devices; enables seamless communications; and allows

services provided by devices to be shared. Within NASUF this integration is achieved using

the JXTA protocols [Sun Microsystems Inc. 2005a]. These protocols allow any device to be

connected to the network independent of the platform, programming language, or the

transport protocols devices implement. Devices are inherently heterogeneous therefore

NASUF provides abstractions that hide the underlying implementation and transport details,

thus creating a logical layer whereby all devices appear homogeneous in nature. The findings

of this research are that of all the current toolsets, JXTA provides the best mechanisms to

achieve this (as argued in Section 2.4.8 on Page 41).

The NASUF secondary services we have developed exist within the service layer of JXTA.

This allows devices to perform device capability matching; semantic service discovery;

semantic interoperability; ontology evolution; dynamic service composition and self-

adaptation. The NASUF secondary services extend the JXTA specifications too include these

additional capabilities.

A multidisciplinary approach has been taken for inter-device communications within NASUF.

The services that comprise NASUF are pre-determined and each device understands how to

discover and invoke them. Pre-determined pipe advertisements are used to discover secondary

126

services. All devices that offer a particular secondary service use the same pipe

advertisement. This ensures that devices do not continually create and publish new

advertisements each time the device is connected to the NASUF network. This technique is

used to minimise discovery overheads and ensure that the advertisement cache does not

continually inflate over time.

Unlike secondary services, application specific services, (which are designed to publish the

functions provided by devices) are numerous and the pipe advertisements used by these

devices are not necessarily known by devices beforehand. As such semantic metadata is used

to discover application specific services based on the behaviours they support. NASUF-

enabled devices propagate messages to all devices within peer groups using the JXTA

ResolverService protocol. This protocol allows messages to be propagated within the network,

which are processed by ResolverService listeners implemented on devices - this provides an

effective messaging system for ad hoc service discovery. Devices discover application

specific services using a query containing the handler name, routing information and the

message digest. We have extended the query object provided by JXTA for ResolverService

communications to include additional XML tags that describe both the required capabilities

the candidate device must support and the service behaviours the querying device requires.

The device capability tags are used to describe CPU, memory, and networking capabilities for

example. This is an important requirement because the same type of service, for example an

audio service, could potentially be provided by multiple devices within the NASUF network.

As such the device capability model is used to select the device that can execute the service

most effectively. Devices that receive query objects use the device capability tags to

determine whether the capabilities it supports match or surpass the actual capabilities the

device requires. Device capability models in NASUF are serialised using the CC/PP

specification [Klyne 2004].

The service capability model, used in conjunction with the device capability model,

semantically describes each of the functions the service provides. This allows devices to

overcome the limitations associated with attribute-value pair matching to describe services in

more detail. Service capability models in NASUF are serialised using the OWL-S

specifications. These specifications have been used to extend the current discovery

specifications provided by JXTA to enable services to be matched semantically.

6.3.2 Secondary and Application Specific Services

All the services within NASUF, whether they are secondary, such as DistrES, or application

specific such as Audio or Video, are created and published as advertisements using JXTA.

We have developed a service factory, which acts as a wrapper around existing JXTA services

127

which includes our NASUF services. Discovering these services simply requires the device to

search for the service advertisement by name and extract the pipe advertisement it contains

before binding to and using it. This differs from application specific services because such

services are plugged into the framework by device manufacturers in order to allow access to

the functions provided by devices. Consequently, equipping a device with every variation of

the services contained within the network is not practical. As such application specific

services are discovered using semantic discovery mechanisms provided by NASUF.

We have extended the JXTA service advertisements to include the Peer ID. This could have

been overcome using the JXTA Peer Advertisement specification, however to reduce the

number of discovery requests made a decision was made to place the Peer ID in the service

advertisements. This allowed us to make one single discovery request for all the required
information needed. If we did not do this we would have had to develop the software to find

Peer advertisements as well as the service advertisements. This would require making two

advertisement requests, resulting in increased network traffic and computation. Our rationale

was that devices of varied capabilities will use the NASUF framework, consequently

minimising the amount of traffic and the computation required would ensure that devices with

limited capabilities are not over taxed.

Using the Peer ID is an important design decision, which ensures that, although more than

one service may exist of the same type, devices only bind and use the service initially

discovered when a connection request to the service is made. This makes sure that other pipe

listeners for a pipe advertisement do not receive and process messages not destined for them.

The decision to adopt this technique was based on a number of undesirable results we

encountered within our implementation, whereby connection requests could be made to any

pipe at the same time irrespective of the initial device and service discovered.

6.3.3 Serialisation and Machine-Processable Semantics

NASUF provides mechanisms that enable zero-configuration between devices based on

capability matching. Ontological structures are used to describe what devices want and what

they provide. Again a number of approaches have been considered for ontological processing

and several working prototypes have been developed within this research using OpenCyc,

XOL, RDF, RDF-S DAML+OIL, OWL, Jena and the Proteg6-OWL API. Although,

ontologically, OpenCyc provides considerable inferential capabilities it is very resource heavy

to implement (120 megabyte API). Furthermore the underlying knowledge base uses a

propriety language called CycL, which is somewhat restrictive because it is not considered an

open standard. XOL is considered a legacy ontology language, thus is has little support in

terms of tools and usage. RDF and RDF-S are W3C recommendations, consequently there is a

128

great deal of support and a large number of tools exist for RDF-based processing. However

the expressiveness of RDF-based serialisations is limited and in most cases inferior to other

ontological languages such as OWL. Within NASUF the goal is to enable devices to reason

over expressive ontology serialisations and deduce not only explicit, but implicit concepts

derived from atomic and complex concept compositions. In NASUF the OWL-DL

sublanguage of OWL has been adopted to achieve this because a large number of reasoners

exist capable of processing DL-based ontologies. This version of OWL also provides a

constrained, but expressive, language that can describe rich ontological structures and at the

same time support formal reasoning, consequently every device within NASUF creates and

evolves OWL-DL serialisations.

OWL-DL serialisations are processed using the Protege-OWL API [Stanford University

2005a], which overcomes the proprietary nature of OpenCyc by supporting open standards.

The Protege-OWL API is an open source project, designed to provide tools capable of

processing language-neutral ontologies. This API fully supports the OWL-DL specification

and is a well developed tool that has a large number of academic and industrial supporters.

The API is comprehensive and progressing at a fast pace. In our implementation the Protege-

OWL Reasoner API [Stanford University 2005b] is also used, which supports several DIG

compliant reasoners such as Racer [Haarslev 2001], FaCT [Horrocks 2005] and FaCT++

[Tsarkov 2005]. We have used the Racer reasoner because of its adoption within the wider

research community, thus more support, tools and usage scenarios are available.

We have also carried out extensive research using the Jena API, which provides several
internal and external reasoner interfaces, however a number of performance problems where

encountered. For example when an inferred model is created using internal and external

reasoners, out of memory errors occur. Through experimentation this limitation was

overcome using the Protege-OWL API and Racer. Jena is however used to perform simple

querying on OWL-S serialisations because they are not DL compliant. This is achieved using

the ontology models provided by Jena and RDQL.

Our DistrES service has been developed in Java and is used to determine if semantic

relationships exist between different vocabularies. It performs hierarchical analysis via

subsumption as well as equivalence and restriction checking between different concepts. The

DistrES service is capable of determining whether any two concepts are disjoint from each

other and can perform classification based on the properties a particular class supports. This

means that the reasoner can determine what concept(s) a particular individual or class belongs

to by analysing the properties it supports. This is an important requirement because services

are dynamically composed by matching signatures contained in the service interface, i. e. the

inputs and outputs used to represent a signature. This service provides a flexible abstraction

129

layer that enables open standard serialisations, such as OWL, to be processed and reasoned

over within our NASUF implementation. DistrES uses custom algorithms we have developed

in Java that utilise the functions provided by the Protege-OWL and Racer APIs. The DistrES

service extends the discovery mechanisms provided by JXTA, to enable semantic service

discovery. This allows devices to more accurately discover and use services based on

semantic mappings between high-level semantic descriptions of what the service does and

low-level service interfaces used to bind to and invoke the service.

6.3.3.1 Describing Services Semantically

NASUF uses semantic information for service descriptions and service requests. These

descriptions are serialised using OWL-S. OWL is used to serialise domain knowledge and
help perform interoperability between different terminologies used in service requests and

service descriptions. The OWL-S specification is in the early stages and to date is not a

recommended standard. It still has a number of issues, most importantly it does not conform

to OWL-DL, which makes it difficult to use with the Racer reasoner. However, the

specification provides an effective and promising mechanism for describing services

semantically and building a foundation on which to build.

Each application specific service within NASUF is described using OWL-S. The Service

Profile is used to describe both the service request and the high-level semantics of the service.
Semantically matching service requests with service advertisements is performed using the

SISM service which we have developed in Java and plugged into the JXTA service layer.

This service uses the AbstractMatcher algorithm we have developed to match the IOPEs in

the service request with IOPEs described in the service advertisement. Ambiguities between

different terms are resolved using the DistrES service. In conjunction with the

AbstractMatcher algorithm the ConcreteMatcher algorithm we developed maps the high-level

semantic descriptions defined in the Service Profile to concrete bindings within the service

interface. NASUF uses WSDL to syntactically describe low-level service signatures,
irrespective of the service technology being used. Through experimentation WSDL provides a

specification, which is a well understood standard recommended by the W3C. This

specification is flexible and extensible, allowing any service interface to be described at the

syntactic level. However WSDL does not address the semantics of information. Consequently

it is difficult to assess the capabilities services provide by looking at the interface alone. As

such WSDL is used in conjunction with OWL-S and embedded within JXTA service

advertisements to enable syntactic and semantic analysis. This extension allows devices to

process service advertisements and reason about service capabilities to determine if the

service provides the required behaviour.

130

6.3.3.2 Evolving ontological structures using general consensus

We have developed custom algorithms in Java to evolve ontological structures over time,

which we have implemented in the DistrES service. The Evolutionary Pattern Extraction

(EPE) algorithm allows concepts of various depths to be extracted from a device's domain

ontology. The EPE extracts conceptual information from separate ontological structures using

statistical analysis. Ontological structures themselves are discovered within the network using
JXTA and custom queries that define the concept required. The EPE extracts commonalities
from n ontological structures, where n is the number of ontology structures returned from the

network, to produce an optimal structure based on general consensus. Optimal structures are

merged with the device's local ontology using the Merge Algorithm (MA) that we have

developed. An assumption has been made that small device specific ontologies with be

developed by device manufacturers, however once the device is deployed, ontologies will be

evolved and managed by NASUF using the EPE and the MA.

6.3.4 Dynamically composing services using ontology

The SISM service we developed has been implemented within NASUF allowing devices to

determine what services they can form relationships with. Device manufacturers can retrieve

predefined semantic descriptions and use them to find any dependency services the device

requires. Service requests are described in terms of the inputs the service requires, the outputs
it generates, the preconditions that must be satisfied and the effects that happen as a result of

executing the service. All service requests are propagated within the network using DiSUS.

Devices capable of processing requests extract the semantic information and match it against

the semantic descriptions used to describe each application specific service the device

provides. SISM uses the AbstractMatcher and ConcreteMatcher algorithms to achieve this.

6.3.5 Formally describing device capabilities using MAUT

A number of experiments have been performed using the MAUT formula and the CC/PP

standard to calculate capability scores. Initial prototypes demonstrate that using MAUT

allows NASUF to effectively evaluate device capabilities. The CC/PP specification is used as

a base device capability model, which we have extended to include the MAUT constructs.

The DeCap service implements the MAUT algorithm we have developed, which is used to

provide an overall evaluation of the device's capabilities in conjunction with the device

capability model embedded in the service request. If the device capability model score is

equal to or greater than the score calculated for the device capability model extracted from the

service request, then the device is said to be capable of executing the service in conformance

with the querying device's requirements.

131

Based on several prototypes we have developed, the CC/PP specification and the MAUT

algorithm provide an effective mechanism for selecting devices and services. The DeCap

service is plugged into the service layer of JXTA and is used to extend the current JXTA

specification to consider how capable devices are before selecting a service it provides. For

example, several devices may provide "visual" services, however some devices may be more

capable of processing video content than others. The current version of JXTA does not

provide any mechanisms to achieve this.

6.3.6 Self-adaptive middleware

NASUF provides mechanisms that allow devices to form relationships with other devices and

services within the network. When a device is initially switched on it automatically discovers

the dependency services it requires. This may result in several services that provide the same
functionality. Devices store each response received from within the network and use a control

mechanism to adapt a particular service composition during execution. In NASUF,

mechanisms are provided that allow device manufacturers to decide how service

advertisements are stored and managed. In our implementation advertisements are processed
in memory, consequently when the device is switched off the advertisements are lost and

must be re-discovered again. However in real-world implementations some backend store, for

example a database system, may be used. This may not always be the case as the

environments in which these appliances exist are highly transient.

NASUF always picks the services that provide the best quality of service. If a service fails the

next best service is selected and plugged into the composition. In the advent of the failed

service becoming available again, it is used to replace the existing service in the composition

if it improves the overall quality of the composition. This is achieved using a custom control

mechanism we developed, which is implemented in the Device abstract class. This

functionality was required because JXTA does not provide any control mechanisms to allow
devices to automatically reconfigure in the event that services become unavailable. Our self-

adaptation mechanism has addressed this limitation to allow compositions between devices

and services to be automatically reconfigured without any human intervention as and when

service failures occur.

In the remaining sections the implementation details for each of the services that comprise the

NASUF architecture are discussed in more detail.

6.4 The Framework Prototype

In order to evaluate our framework design presented in Chapter 3 and 4, a prototype has been

developed. This is in accordance with the case study presented in Chapter 5, which is an

132

Intelligent Home Environment. The prototype uses four wirelessly connected computers to

simulate two televisions, a Media player and two audio speaker systems. The televisions host

'Visual' services, which process visual data streams. The Media player hosts a `Player'

service which outputs MPEGI multimedia data, and finally the audio speaker systems host

`Audio' services, which process audio data streams.

Communication between devices is achieved using the wireless 802.11 g standard and OWL-S

service requests are propagated between devices in the network using the JXTA

ResolverService. Each device implements DiSUS and either implements the SISM, DistrES

and DeCap services or discovers and uses these services remotely within the network. When

devices are initially switched on and have published the services they provide they

automatically try and discover devices within the environment they have a relationship with.

For example when the Media player is switched on it tries to discover devices capable of

processing audio and video streams outputted by the player. Using a simple control interface,

as illustrated in Figure 6.2, users can discover, use and control any device connected to the

network and the services it provides. Note in this instance devices themselves may control

other devices they have relationships with without any human intervention. For example if the

user sends a "Play" command to the Media player, the player interacts and controls the

speaker system and television automatically.

Using the user interface users can select the device and service capability models describing

the quality of service factors the device must support and the service functionality required.

These models are serialised as XML and are appended to a service request before being

propagated within the network using the "Send Query" button.

NASIF Hrlp

Load WACO Request

DCM

)Prolect%DB eIopmenI PackageWASUFUI dcmlylayeMcm xml
PSCM

roladlDaWloDmanllPackaOaWASUFWDIpscmlplayanpacm. rof _ Sand Awry

SwMCaa Dependencies

JXUISPECTRAMSMITTEN-urrk*M urI-596 JXTASPE6MA10_RECEVER+rnpfswid!
JX I ASPEC: VIUEO_HECIEVEH urn: Ixta: uub
J% I ASPt C: AUDIO_HI CWVEH-w n: Ja uud
]JXTASPEC. -VDEO_I CIFVER-urn xIa: uW

ýI I
il

Ply - SoW Co nand SUP - Seid Convmrkd

RonxwSwvim

Figure 6.2 NASUF User Interface

133

Three tests have been developed to evaluate NASUF. The first test demonstrates that NASUF

can allow devices to form relationships with other devices in the network without any human

intervention. The second demonstrates that conflicts within signature mappings can be

resolved using intermediary services and the last demonstrates that devices can self-adapt in

the event of any device or service becoming unavailable. In the first test the Media player is

started and two service requests are created using the OWL-S Service Profile. These service

requests are used to find devices capable of processing audio and video streams. The Media

player propagates the requests within the network using the DiSUS Manager and adds any

responses to a table of candidate services, categorised according to the type of device or

service discovered.

In the second test the user sends an Increase Volume or Decrease Volume command to the

speaker system (this is a dependency service used by the Media player as illustrated in Figure

6.2). To demonstrate parameter conflicts volume values are sent to the speaker system as

strings, however the parameter should be of type integer. We set up a simple service on the

network that performs data type conversions. Initially the speaker system receives the service

request and determines that the IOPE in the service request (Increase Volume) can be matched

with the IOPE in the service description (Increase Volume) however when the data types

associated with the IOPEs are processed, the SISM service determines that the data type

associated with the Increase Volume parameter in the service request is of type String and that

the parameter Increase Volume in the service description is of type Integer. In this instance

SISM tries to find an intermediary service capable of performing the conversion. SISM

reformulates a service request, which defines two IOPEs - the first IOPE is the conflicting

Input (string) found in the service request and the second IOPE is the required output needed

to resolve the conflict (integer). SISM then propagates the service request using DiSUS,

which is received and processed by the data type conversion service. This service takes as

input a StringValue of type String and outputs an Integer Value or type Integer. The service

matches the IOPEs at an abstract and concrete level and successfully creates the extended

interface metadata file and returns it to the audio speaker system. The audio speaker system

stores the metadata file along with a unique ID and creates its own extended interface

metadata file that links to the extended interface metadata file for our data type conversion

service using the unique ID, which is then returned to the Media player.

We where able to invoke the Increase Volume command and demonstrate how the speaker

system uses our intermediary data type conversion service to convert the String value into an

Integer value, by substituting the conflicting parameter with the result before invoking the

Increase Volume command on the audio speaker system. This is a simplistic demonstration

134

that only considers one parameter and simple data types however the mechanisms illustrate

how conflicts can be resolved.

The third test case demonstrates how devices adapt to device and service failure. When the

user sends a Play command, the player instructs the audio speaker system and the television

to begin processing the media streams sent from the player. For demonstrative purposes the

current audio speaker system being used was removed from the network to test NASUFs self-

adaptation capabilities. In this instance the Media player senses this change and automatically

uses a previously discovered audio service. The player binds to the audio service and instructs

it to begin processing the audio data outputted by the player. To further demonstrate the

adaptation mechanisms in NASUF, the previous audio speaker system used was re-published

within the network. The Media player successfully senses this change and compares the

device capability model for this speaker system with the device capability model for the

current speaker system being used. It discovers that the newly published speaker system

provides a better auditory experience than the speakers currently being used and as such it

instructs the audio speaker system being used to stop processing the audio stream and

instructs the newly published audio speaker system to begin processing the audio stream.

6.4.1 Technical Description

Each device publishes its functions as JXTA Peer services and allows devices within the P2P

network to discover and use them. The services have been developed as JXTA Peer services,

however any service technology could be used such as GLUE-STD [WebMethods 2003],

which are W3C compliant Web Services.

A typical device and service capability model used to discover a device capable of processing

an audio stream is illustrated in Figure 6.3 (a) and (b). The device capability model describes

the capability parameters, which also includes the MAUT values. The peer service capability

model describes two inputs which are stop and listen used to turn the speaker system on or

off. It has one output which is a RadioWave indicating the type of data this device outputs. It

has one effect which states that when the device is in use it is receiving a digitised wave and

one precondition which states that the device should be an AudioSpeaker. The device and

peer service capability models, in part, form the basis for service requests in NASUF.

135

<? xml version="1.0"? >
<rdf: RDF>

<rdf: Description rdf: about="http: //www. livjm. ac. uk/dcm#power">
<dcm: importanceRating>40</dcm: importanceRating>
<dcm: statusAssessment>Average</dcm: statusAssessment>
<dcm: statusRating> 50</dcm: status Rating>
<dcm: importanceRanking>4</dcm: importanceRanking>

</rdf: Description>
<rdf: Description rdf: about="http: //www. livjm. ac. uk/dcm#MyProfile">

<ccpp: component> http: //www. I ivj m. ac. uk/dcm#Memory</ccpp: com ponent>
<ccpp: component>http: //www. l ivjm. ac. uk/dcm#Bandwidth</ccpp: component>
<ccpp: component>http: //www. Iivjm. ac. uk/dcm#CPU</Ccpp: component>
<ccpp: component>http: //www. I ivjm. ac. uk/dcm#Power</ccpp: component>

</rdf: Description>
<rdf: Description rdf: about="http: //www. livjm. ac. uk/dcm#Power'>
<ccpp: defau Its> power</ccpp: d efa u Its>
<rdf: type> HardwarePlatform</rdf: type>

</rdf: Description>
<rdf: Description rdf: about="http: //www. livjm. ac. uk/dcm#cpu_load'>

<dcm: importance Ranking >4</dcm: importanceRanking>
<dcm: statusRating>50</dcm: statusRating>
<dcm: statusAssessment>Average</dcm: statusAssessment>
<dcm: importanceRating>40</dcm: importanceRating>

</rdf: Description>

</rdf: RDF>

a.

<profileHierarchy: ServiceRequest rdf: ID=
"AudioService Req uest">

<profile: haslnput rdf: resource=
"http: //www. livjm. ac. uk/ServiceRequest. owl#RadioWave"/>

<profile: haslnput rdf: resource=
"http: //www. livjm. ac. uk/ServiceRequest. owl#Stop"/>

<profile: haslnput rdf: resource=
"http: //www. livjm. ac. uk/ServiceRequest. owl#Play"/>

<profile: hasOutput rdf: resource=
"http: //www. livjm. ac. uk/ServiceRequest. owl*RadioWave"/>

<profile: hasEffect rdf: resource=
"http: //www. livjm. ac. uk/ServiceRequest. owl#ReceivingAWave"/>

<profile: hasEffect rdf: resource=
"hftp: //www. livjm. ac. uk/ServiceRequest. owl#PropagatingAWave"/>

</profileHierarchy: Service Req uest>

b.

Figure 6.3 NASUF Service Request Models

When a service is matched and the device providing the service has the required capabilities

to effectively execute it, the service advertisement is added to the devices collection of

matched services. Once all the required services have been found the device remains in an

idle state until it is controlled by the user via the user interface illustrated in Figure 6.2. In this

instance the user selects the required command from the drop down box located next to the

Send Command button, which is extracted from the service interface (in this case a WSDL file

- WSDL files are processed using GLUE-STD [WebMethods 2003]).

Service requests are propagated between devices in the P2P network using the JXTA Resolver

service and processed using two event handlers called process Query and processResponse.

136

All devices have a JXTA interface that allows them to join the default peergroup called
NetPeerGroup. The code to achieve this is illustrated in part in Figure 6.4.

public void startJxta(){
try{

peerGroup = PeerGroupFactory. newNetPeerGroup();
AbstractService. setPeerGroup(peerGroup);

resolverSvr = peerGroup. getResolverService(;
resolverSvr. registerHandler(handlerName,

(Q ueryH andler)ResolverMsgHandlerFaGory

. createD I SU S_Handler(this));
}catch(PeerGroupException e){

d(NASUF Logger. isEnabledFor(Level. ERROR))
NASUFLogger. error("DiSUS: startJxta: + e. toStringo);

System. exit(1);
}

}

Figure 6.4 Joining the P2P Network using JXTA

Once a device joins the peer group and registers a message handler with the Resolver service

it can send and receive messages. Each device in the prototype registers to receive DiSUS

messages, which are encapsulated using JXTA-defined messaging objects called

ResolverQueryMsg and ResolverResponseMsg. Along with other information, OWL-S service

requests we developed are wrapped in JXTA message objects and propagated within the P2P

network.

Devices communicate with secondary services such as SISM and DistrES using bidirectional

pipes called BiDiPipes in JXTA. Figure 6.5 illustrates in part how DiSUS binds to BiDiPipes

in NASUF. All the queries used to process the service ontologies are performed using the

RDQL API provided by the Jena 2.3 API.

Using a sample service request as illustrated in Figure 6.3 above, the RDQL query defined in

Figure 6.6 (a) can be executed using the sample code illustrated in Figure 6.6 (b), using Jena

to extract the defined inputs. The common keywords found in SQL such as Select, Where, For

and Using as illustrated in Figure 6.6 (a) are also used in RDQL. Jena provides a

comprehensive API that makes querying any RDF-based model, an easy process.

137

public void runO {
pipe = disus

.
bindToService(disus. discoverCoreService(

DistrESConstants. DISTRES_SPEC). toStringp, this);

if(! pipe. isBoundO){
if(NAS UFLogger. isEnabledFor(Level. INFO)){

NAS UF Logger. info("Failed to Connect to Pipe");
}
return;

Message dcmMsg = new Message();
dcmMsg. addMessageE lament(ServiceDescriptionConstants. NASUF_NAMESPACE,

new StrmgMessageElement("DistrESRequestType", "Sem interop" null)),

dem Msg. addMessageE lament(ServiceDescriptionConstants. NASU F_NAMES PACE,
new StringMessageElement(DistrESConstants. XTERM, srTerm, null)),

dem M sg. addM es sageE lement(ServiceDescript ionC onstants. NAS U F_NAM ES PACE,
new StringMessageElement(DistrESConstants. Y_TERM, spTerm, null)),

it(NAS UF Logger. isEnabledFor(Leve 1. INFO))
NASUFLogger. info("Sending DistrES Message"),

try{
pipe. sendMessage(dcm Msg);
Thread sleep(5000),
pipe. close));

)catch(Exception ex
if(NAS UFLogger. isEnabledFor(Level. ERROR))

NASUF Logger. error("AMatcher_DE CAP_Handler: run: "+ e. toStringO);
try{

pipe. close();
}catch(Exception ioe){

if(NAS UF Logger. isEnabledFor(Level. ERROR))
NASUFLogger. error("AMatcher DECAPHandler: run: "+ ioe. toStringO);

}
}

Figure 6.5 Binding to Secondary Services

SELECT ? input WHERE (? x profileHierarchy: ServiceRequest ? y),
(? y profile: haslnput ? z),

USING profile FOR
'<http: /Avww. dami. org/services/owl-s/l. O/Profile. owl>*

a.

public QueryResults executeQuery(OntModel ontModel, String queryString){
Query query = new Query(queryString);
q uery. setSo u rce (ontM odel) ;
QueryExecution qe = new QueryEngine(query);
QueryResults result = ge. execQ;
return result;

}

b.

Figure 6.6 RDQL query execution

In the prototype RDQL is used extensively to extract IOPEs and information that link the

service ontologies together. The SISM algorithm uses RDQL queries in conjunction with the

DistrES ontology to determine the relationships that exist between different terms. The

service request IOPEs and the service description IOPEs are extracted using RDQL queries

and relationships between the terms are determined using the DistrES ontology providing an

effective mechanism for semantic interoperability.

138

When a service request is received from a device, DiSUS attempts to match the service

request against the Service Profiles for each application specific service it provides. This is

achieved using the SISM service. Resolving ambiguities between terms that are syntactically
distinct but semantically equivalent is achieved using the DistrES service which uses an OWL

ontology [W3C 2004] we developed for networked appliances as illustrated, in part, in Figure

6.7 - more example models of the ontology can be seen in Appendix D on Page 230.

CableDeecraii* ler

ElectricalHouseholdippliance

RecordPlayer0ronicDevicem

TelevisioiSet

\

ElectronicHousehold1ppliance

MediaPlayingDevice

DVDPlayer

CornpactDiecPlaYer© LaserDiscP1ayer

CDPlayer-AudioCoeponent

Aýlifier

Audiob lifierCo ponent

}(oýeCaPlae
SatelliteTVReceiver

yer

RadioReceiver
VideoCaesetteRecorder Receiver-AodioCowgonent

HovkeludioReceiver

VisualIniormetionRecordin[Devise© - -' "--ft r Coionent
ludioVisualReceiver

Figure 6.7 DistrES Networked Appliances Ontology

The ontology itself conforms to the OWL-DL language [W3C 2004] and currently has about

500 concepts that semantically describe common household appliances and their associated

properties such as inputs outputs and events. The ontology was developed using the Protege

3.1 ontology editor and the OWL plug-in [Horridge 2004]. The domain ontology allows

devices to determine if any terms are conceptually related. In the implementation the Protege-

OWL API is used to load and process the ontology.

Domain knowledge is evolved using the DistrES service based on general consensus. Figure

6.8 provides, in part, the code used to extract the top n nodes, where n is the number common

nodes that exist within all ontology structures received from the P2P network. This is a

configurable feature that is dependent on the application. Class and relationship selection can

be based on manual configuration or using some automatic feedback mechanism implemented

as a service in NASUF.

The Protege-OWL API provides all the common methods required to reason over OWL-DL

serialisations. It also provides methods that allow the properties of concepts to be reasoned

139

over and it allows inferred knowledge structures to be calculated. Figure 6.9 illustrates some

of the code used in SISM to determine if a subclass or subsumption relationship exists

between two concepts.

pnvate Object getTopClasses(int topClasses){
Object tempKey = null;
Object tempValue = null;
Map topClassesCollection = new TreeMapü;
if(topClasses < classF. sizep){

for(int i=0; i< topClasses; i++){
int count = 0;

Iterator iter = classF. keySetü. iteratorO;
while(iter. hasNext()){

Object cis = iter. next();
int value = ((Integer)classF. get(cls)). intValue();
if(value > count){

tempKey = cis;
tempValue = classF. get(cls);

}
if(tempKey != null && tempValue != null){

Gass F. re move(tem pKey);
topClassesCollection. put(tempKey, tempValue);

} return topClassesCollection;
}else{

return classF;

Figure 6.8 Extracting the Top n Classes

//This method returns a true or false value depending on whether
//class1 is a subclass of class2.
public boolean isSubclassOf(Object classl, Object class2){

Collection col = this. getSubclasses(class2);
if(col. contains(

distresOntology

. getOW L NamedClass(
(String)class 1)))(

return true;
)else(

return false;
}

}

a.

public boolean isSubsumedBy(Object classl, Object class2) {
try(

return reasoner
. isSubsumedBy(

distresOntology
. getOWLNamedClass((String)classl),

distresOntology

. getOWLNamedClass((Stnng)class2), null);
)catch(Exception e){

if (NASUF Logger. isEnabled For(Level. ERROR))

NASUFLogger. error("getDescendentClasses Error: "+
e. toStringp);

return false;

b.

Figure 6.9 Reasoning over the domain ontology

140

Devices self-adapt using the DiSUS manager, the registered dependency services the device

has and the DeCap Service. The code in Figure 6.10 illustrates, in part, how the best service in

a composition is selected when conflicts are encountered.

protected String selectBestService(List serviceCollection){
IDataOb)ect bestService = null;
IDataObject tempService;
double dem score = 0.0;

Iterator fiter = serviceCollectton. iteratoro ;
try{

while(iter. hasNextp){
tempService = (IDataOb)ect)iter. nextq;
if((Double. valueOf(tempService. getDecapValuel). doubleValueO) - dcm_score){

bestService = tempService;
dem_score = Double. value0f(tempService. getDecapValueO). doubleValueü;

}
}

)catch(Exception e)(
if(NASUFlogger isEnabledFor(Level. ERROR))

NASUFLOgger. error("Device: selectBestService: "
e. toStnngp);

}
return bestService. getModuleSpeco ;

}

Figure 6.10 Selecting the Best Service

The application specific services used in the prototype have been developed using Java and

allow audio and video to be transmitted and received between devices. These media

processing services have been implemented using the Java Media Framework (JMF)

Performance pack for Windows, based on version 2.1.1 [Sun Microsystems Inc. 2005b].

The NASUF implementation comprises around 120 Java classes. This totals around 15

thousand lines of Java code (15 KLOC). The implementation uses several open source Java

APIs, consequently these must also be bundled with the NASUF APIs at deployment. The

implementation is portable and runs on different platforms. NASUF is a service-oriented

framework so depending on what secondary services devices implement also affects the size

of the deployment package. For example if a device does not implement DistrES then the

reasoner and ontology processing APIs do not need to be deployed on the device. This

ensures that devices irrespective of there capabilities can use and operate within the NASUF

network. The NASUF application was deployed using ANT [Hightower 2002], which is a

tool used to create and set-up deployment configurations.

6.4.2 Prototype Configuration

In order to evaluate the NASUF implementation, a prototype was set-up within the School of

Computing and Mathematical Sciences at Liverpool John Moores University. This prototype

was set-up as a distributed service-oriented architecture on top of a wireless network. The

configuration consisted of the following off-the-shelf components:

"A Cabletron Smart Switch Router 2000

0 Entrasys Roamabout Access Point

141

" RoamAbout 802.11 g PCMCIA network cards

" Four wirelessly connected Intel Pentium 4-1.8 GHz machines running Windows XP

Professional, Service Pack Two, with 500 megabytes of RAM.

Several environment parameters where considered to run a real-world test and demonstrate

the key functions the NASFUF framework provides. These scenario parameters are detailed

in Table 6.1.

Network
Transmitter Range 100 Meters
Bandwidth 54 Mbps
Number of Nodes 4
Pack Size 2048 bytes
Environment Size I00x100 Meters
Software
OS Windows XP Service Pack 2
Java 1.4.206-b03
JMF 2.1.1e
JXTA 2.3.1
OWL-S 1.0
Jena 2.0
Protege-OWL API 2.1
Prototype
Running Time 4 Minutes
Protocols 802.11 g
Media Transmitted MPEG1 Video (JPEG/RTP)

Table 6.1 Scenario Parameters

All the machines used within the prototype test-bed where connected using the standard

TCP/IP protocol. The 1.4.2_06-b03 version of the Java Development Kit was used on all

machines within the network. Several decisions where made regarding this network

configuration. The first decision being that all devices must be connected using wireless

communications. The second decision was that the 802.11g standard should be used to enable

multimedia streams to be processed more efficiently. The third decision was to enable devices

to join and leave the network without having to inform any third party - this was designed to

allow any device at any time to join or leave the network using ad hoc networking principles.

6.4.3 System Operation

To test the operational capabilities, all devices implemented and published all the secondary

services that comprise the NASUF framework. Each device also publishes the application

specific services it provides. For example, the television device publishes audio and video

services. Devices that require dependency services begin by trying to discover services based

on the behavioural functions they require. For example, the Media player begins by trying to

find audio and video services provided by devices capable of processing the multimedia

142

streams the Media player outputs. Once devices have published and run all services they

remain in an idle state until they are controlled via the NASUF user interface.

Using the user interface we tested whether our prototype could discover devices and services

using a number of device and service capability models. For example, we tested the discovery

of television services by manipulating the details described in the device capability model, i. e.

specified that devices must have low, medium and high capabilities. We also tested that our

prototype could pin-point application specific services using the semantic descriptions

contained in the service capability model. Our implementation illustrated that this could be

effectively achieved.

When all devices where in an idle state, using the user interface we discovered a Media player

and instructed it to play a movie. Using the quality of service features supported within
NASUF, our framework was capable of selecting the best visual and audio services within our

network configuration. We further demonstrated that devices could self-adapt when

environmental changes where encountered. We achieved this by removing devices from the

network during execution to see if alternative devices could automatically be discovered and

plugged into the composition with minimal disruption. For example, when we removed the

visual service from the composition, the Media player automatically discovered and invoked

an alternative visual service. The prototype also demonstrated that when the better visual

service came back on-line again it could successfully revert to this previous service to

improve the composite solution. Overall the operational functionality exhibited by our

prototype illustrated that secondary and application specific services could be seamlessly

integrated and removed from the network without disrupting service compositions.

Furthermore, the secondary services that comprise NASUF are optional, i. e. devices are not

required to implement them. We tested our implementation to determine whether devices

could remain functional even though minimal secondary services where available. Initially,

all devices implemented and ran all the required secondary services. We began to de-register

secondary services from the network provided by each device. Our prototype illustrates that

even when a device de-registers its secondary services it can automatically discover the

required secondary service provided by another device within the network and use it. The

prototype demonstrated that all our devices could operate effectively when only one device

provides a set of secondary services. Consequently this makes our implementation highly

fault-tolerant whereby devices only fail to function when no secondary services are available.

6.5 Summary

This chapter has described the main implementation details used to evaluate our NASUF

framework. It discussed and argued the tools and standards that we have used and highlighted

143

where existing tools have been extended to realise our novel contributions. Although devices

are required to implement the DiSUS manager they are free to explicitly implement the

remaining secondary services or discover and use these services provided by other devices

within the network. This provides considerable fault-tolerance through secondary service

replication. This chapter also illustrated how annotating service descriptions and service

requests using semantic serialisations provides a more effective mechanism for matching

services more accurately.

Many aspects of the design have been implemented, which includes the service-oriented

architecture and mechanisms to publish secondary and application specific peer services.

Services can be discovered based on semantic descriptions and ambiguities between domain

knowledge can be resolved using distributed device ontologies based on general consensus.

Services can be discovered based on capability matching rather than attribute-value pair

matching, which allows for greater flexibility and a more inclusive range of query

possibilities.

Devices can form dynamic compositions between services contained within the network using

semantic service descriptions and can self-adapt as and when services either become

unavailable or re-register themselves within the network. This chapter has also argued that
devices support different capabilities and as such some devices will be better equipped to

provide a given service than others. Our implementation illustrates how services are selected
based on how effectively the device can execute the service.

The goal of our implementation was to demonstrate an idea and ensure that the requirements

and challenges described in Chapter 1 could be addressed. It was not about delivering a final

product and as such the overall performance of the implementation was not a consideration.
What we have learnt from the implementation is that we are trying to solve very difficult

problems, for example dynamic service composition and ontology evolution. However our

goal was to address these problems head on and attempt to create a foundation on which to

build. We believe that we have successfully achieved this. We have a fully working prototype

that demonstrates the key novel contributions made within this thesis.

We have learnt that there are several grey areas within our research that are dependent on

numerous factors. As with P2P implementations, whether or not particular content can be

found is dependent on the number of nodes connected within the network and how many

people hold the content sought after. This is the same with our approach whereby success is

dependent on the number of devices connected to the network and the total number of

services and semantic data used to describe and discover services. This said, P2P is becoming

a networking model of choice and it is envisaged that networked appliances will be firmly

144

embedded within such a networking model. Sound business models and user acceptance will

be the deciding factors. The following Chapter provides a qualitative evaluation of our design.

145

Chapter 7

7 Evaluation

7.1 Introduction

Chapter 1 described the requirements needed to address some of the limitations with current

networked appliances and home networking approaches. These requirements detail what is

needed to enable flexible appliances and middleware solutions that will allow networked

devices to automatically configure and re-configure and self-adapt over time. Each of these

requirements forms the basis for the qualitative evaluation of our proposed framework.

7.2 Service-Oriented Architecture

The key requirement was to provide an open middleware architecture that utilises open

standards, promotes interoperability and disperses the operational functions devices provide

within the network as independent services. In doing so flexibility is seen as paramount, and

as such, our framework ensures that functionality is readily available through secondary

service replication. This idea is based on current file sharing principles whereby popular files

are distributed, shared and discovered within a P2P network. Our framework adopts the same

principle, however as well as content, services are also replicated. This means that even if

secondary services become unavailable there may be an alternative service within the network

that can be discovered and used that provides the same functionality. This makes our

framework robust and highly fault-tolerant, which ensures that device and service

compositions are more reliable.

This can be justified using two mathematical proofs, which illustrate serial and parallel

system reliability when services are composed. In this context services are carefully

choreographed in series using workflow standards [Andrews 2005] whereas parallel

compositions are performed using distributed P2P techniques.

P(A n B) = P(A " B) (1)

146

R; = P(A;) = P; (2)

Qj =P(A,)=1-P, =q, (3)

Rs = P(A, " A2 ... A�)

=P(A1)P(A2 I A,)... P(An I A, A2... An-,)

= P(A,)P(A2)... P(An)), if independent (4)
n

=flP(A)
i=l
n

_ fl R;

nn

QS =1-RS =1-f R; =1-fl(1-Q;) (5)
1-1 i=l

Figure 7.1 Serial Service Reliability

In Figure 7.1 equation (1) defines the set theory representation for sequential reliability of

service compositions. In this instance the probability of A intersection B is equal to the

probability of A multiplied by the probability of B. Equation (2) describes the reliability of
individual services, where R; is an individual reliable service within the service space and p, is

the probability value indicating how reliable the service is. Equation (3) describes the

unreliability of an individual service, where Q, is an individual unreliable service within the

service space and q; is the probability value describing how unreliable the service is. Equation

(4) describes the system reliability, which is the joint probability of all services in the

composition. Finally equation (5) describes the unreliability of the system.

To take an example, assume we use three services and each service has a reliability value of

90% then the following probabilities can be calculated.

Individual service reliability: P(A) = R; =p=0.90

Unreliability of individual service: Q; =1-R; = 0.10

System Reliability: R$ = 0.90 * 0.90 * 0.90 = 0.729

System unreliability: Qg =1- RS =1- p3 = 1- (0.90)3 = 1- 0.729 = 0.271

Now that we have values for the reliability of serial service composition we can compare this

with the reliability of a system that uses parallel service composition, as is the case with

service-oriented architectures based on P2P concepts.

P(A u B) = P(A + B) (1)

147

R; = P(A;) = P; (2)

Q; =P(A;)=1-P; =R'; (3)

Rs = P(A, +A2 +... +An)

=1-(P(Ai)*P(A,)*... *P(A�))

=1- P(Ai)P(A2) ... P(A�), if independent (4)
n

=1-f P(A;)

n

=1-fQ; i=l

n
Qp = fJQ; i5)

i-I

Figure 7.2 Parallel Service Reliability

In Figure 7.2 equation (1) defines the set theory representation for parallel reliability of

service compositions. In this instance the probability of A union B is equal to the probability

of A plus the probability of B. Equation (2) describes the reliability of individual services,

where R; is an individual reliable service within the service space and p; is the probability

value indicating how reliable the service is. Equation (3) describes the unreliability of an
individual service, where Q; is an individual unreliable service within the service space and qi
is the probability value describing how unreliable the service is. Equation (4) describes the

system reliability, which is the joint probability of all components. Finally equation (5)

describes the unreliability of the system.

Again, taking an example, assume service A has a reliability value of 90% and Service B has a

reliability value of 80%

P(A) = 0.90 and P(B) = 0.80. If this is a parallel system them

P(A + B) ° P(A) + P(B) - P(A " B)

= P(A) + P(B) - P(A) " P(B)

= 0.90+0.80-0.90.0.80

= 1.7 - 0.72

= 0.98

System Reliability: Rp = 0.98

148

System unreliability: Qp =1- Rp = 0.2

The redundancy of the parallel system allows either-or services to function. This results in a

system that remains operational with a higher probability than individual services acting in

series. In this instance, redundancy increases reliability. Successful operation of each service
is independent or at least pluggable. This means that in the event of a service becoming

unavailable the functionality can be automatically discovered and plugged into the

composition with minimal disruption.

This level of flexibility ensures that our framework allows devices to use service functionality

discovered within the network provided by either it or other devices. In order to achieve this it

is important that devices are broken down into their constituent parts whereby individual

functions can be replicated, accessed and used via the network. This requirement allows
devices to participate with and create service-oriented applications by picking and

constructing individual services to form high-level compositions.

Using parallel service composition and P2P techniques to redundantly replicate services is a

new and novel approach within networked appliance and home networking research [Fergus

2003a]. Research initiatives such as OSGi, UPnP, DLNA, HAVi, VHN, PLC, ePerSpace,
MediaNet and Runes to name a few primarily focus on carefully choreographing solutions

using different workflow standards such as WSFL and BPEL4WS. As long as all services in

the composition are available and the locations within which they reside remain the same

operation remains reliable. However if any service changes in anyway, i. e. becomes

unavailable or moves location then the whole composition may be rendered inoperable. In our
framework an alternative service would be automatically discovered and plugged into the

composition with minimal disruption.

Our framework differs in its ability to not only discover and use secondary services which are

pre-determined, but to also discover application specific services that abstract the individual

functions devices provide [Fergus 2005a]. Our framework demonstrates this using peer

service capability matching algorithms, that process semantic metadata wrapped around

services allowing devices to reason over what functions devices provide. High-level

semantics [DAML 2003c] are mapped onto concrete signatures defined in the service

interface. The signature itself is the method name along with its associated parameters and

data type information. Devices use these descriptions to reason in any direction, i. e. from the

signature to the high-level semantics or vice versa, and select functions based on the

capabilities the semantic description and service interface describes. Our implementation

supports this functionality and effectively performs this mapping [Fergus 2005a]. Devices

propagate service requests containing the semantics that define the required behaviours a

149

candidate service must support. These high-level semantics are matched against semantic

descriptions used to describe a service using our framework, which links semantic

information in the service request with parameters contained in service signatures. Our

framework services can match any service request with any service behaviour in the network

as long as that behaviour exists. One possible downside relates to environments that are more

ad hoc in nature. Because no control can be placed over how and what services are hosted, it

could be more difficult to exactly match service request semantics with parameters in a given

signature. The probability of no match occurring could be reduced by defining methods with

required and optional parameters, i. e. create multiple methods with different parameter

lengths whereby the simplest method only contains the absolute required parameters, whilst

more specialised versions contain additional optional parameters.

Our framework hosts all the secondary and application specific services within the network

and as such is a pure service-oriented architecture. We have extended the JXTA specification

to overcome the restrictive syntactic matching algorithms used in JXTA to discover and host

services. Additional services have been added to the service layer to enable devices to

discover services semantically based on how capable the device is of providing the service.

Another distinct feature supported by our framework and which has been demonstrated in the

implementation is the ability to enable devices to automatically form compositions between

devices and services without any human intervention. Again the JXTA specifications have

been extended to include zero-configuration mechanisms that utilise current P2P concepts and

the semantic matching capabilities provided by our framework. Services are selected based on

how capable the device is. To date current service-oriented specifications do not support these

functions.

Furthermore we have extended the concepts surrounding P2P, whereby we not only focus on

multimedia content sharing but also on the idea of distributing and sharing services. P2P is

typically associated with file-sharing, however these overlay networks can offer much more

by sharing networked behaviours as services. We have clearly made novel contributions

within this area and demonstrated how P2P can be used to enhance and extend networked

appliances and home networking configurations [Fergus 2003a, Fergus 2003b, Mingkhwan

2004, Fergus 2005a, Mingkhwan 2005]. To our knowledge our framework is the first to use

P2P techniques to disperse operational functions provided by networked appliances. We have

demonstrated that this approach is feasible using our prototype, which has shown that key

functions, described in this thesis and which are not provided by other approaches such as

OSGi, can be realised.

150

7.3 Semantic Discovery

We have argued that multiple application-specific services will co-exist, albeit with different

syntactic descriptions. However conceptually they may provide the same functionality. Many

researchers believe that lessons must be learnt from the World Wide Web, where we are

drowning in information but starved of knowledge [Naisbitt 1991]. This is directly attributed

to the representation used to describe content, which is primarily human centric.
Consequently developing software to read and understand Web pages is difficult. This

problem has transferred itself to Web Services whereby using and composing services is

primarily a human activity. Mcllraith et al. [Mcllraith 2003] state there is a need to describe

Web Services in terms of their capabilities in an unambiguous, computer-interpretable

language. Combining Web Service technology with the Semantic Web will allow services to

be more accurately discovered, composed and executed. Only when this is achieved will we

see the true potential of service technologies.

Paolucci et al. [Paolucci 2003] also believe the way forward for service technologies is to add

semantics. They argue that we need to move away from syntactic service descriptions and
discovery and instead discover services based on their capabilities. They use a term called
"sufficiently similar", which, in its strongest sense states that a service description and a

service request are sufficiently similar when they describe exactly the same service. They

state that this is too restrictive, because advertisers and requesters have no prior agreements

on how a service is presented. A restrictive criterion on matching is bound to fail to recognise

similarities between service descriptions and service requests. To accommodate a softer

definition of "sufficiently similar" Paolucci et al. explain that there is a need to allow

matching engines to perform flexible matches based on the degree of similarity between the

service request and the service description.

in further support of machine-processable semantics, linking all the salient headings within

this section, is the work carried out by Maedche et al. [Maedche 2003]. They provide an

assessment of service-driven systems and describe the need to converge three separate

technologies - Web Services, P2P technologies and the Semantic Web. They argue that

combining these technologies allow services to be identified, located and invoked. Maedche

et al. point out that this new paradigm is important to the development of service-enabled

systems, however they also state that this is no easy task and the integration process itself

gives rise to new complexities such as locating and integrating services on the fly, semantic

interoperability, data heterogeneity and process mediation.

Our framework presented in this thesis demonstrates that irrespective of how services are

described, conceptual mappings can be determined allowing services to be selected that

151

support descriptions that are syntactically distinct but semantically equivalent. This is

dependent on the total number of concepts shared between devices within the network. In a

real world scenario, concepts will be numerous and globally distributed between millions of
devices connected within the network. As such the more concepts that exist within the

network the more likely semantic interoperability may be performed [Fergus 2003b].

Our framework ensures that all service descriptions and service requests are described using

rich ontological constructs and ontologies are evolved over time using general consensus
[Fergus 2003b]. The following formula can be used to determine the probability of selecting a

concept from some sample concept space, where n is the number of successful outcomes and

m is the number of possible outcomes.

P(E) =n (1)

Figure 7.3 Probability of find n in set m

For example if the concept space, which may be distributed amongst numerous devices within

the network, is defined as follows:

0= {cl, c2, c3, c4, c5, c6, c7, c8, c9, cl 0}

The probability of finding the following concept in the global ontology

E= {c5}

can be defined as:
0: 5 P(E) <_ 1 (2)

= 0.1 (3) P(E) = 10

Figure 7.4 Find a concept in a global ontology

If the concept c3 and c4 define the same concept, i. e. `Audio' then the probability of fording

the concept ̀Audio' can be defined as
0: 5 P(E) <_ 1 (4)

P(E) =1+1=0.2 (5)
10 10

Figure 7.5 Finding one or more concepts in a global ontology

Determining the critical mass for finding any given concept in the global concept space is

dependent on the concept being searched for and the concepts contained within the concept

space. If the search concept does not exist in the concept space the probability of finding the

152

concept is 0. If every concept in the concept space is equal to the concept being searched for

then the outcome will be 1. Our framework creates a rich distributed ontology space which

allows concepts to be distributed, evolved and used to aid semantic interoperability. This has

been achieved using P2P concepts that utilise the replication functions. Concepts are

distributed and duplicated between devices in the network. Much like current P2P

implementations the more popular a particular concept is the more times it will be replicated.

Using semantic descriptions, our framework accurately discovers services by matching the

capability descriptions described in both the service description and the service request. Each

IOPE in the service request is matched with each IOPE contained in the service description

and if all IOPEs are matched this constitutes an abstract match. Using the case study the

inputs describe the media formats devices support, whilst outputs describe the type of

multimedia output, dependent on the device. Preconditions are used to further constrain the

type of device/service selected. For example if a multimedia player is looking for a device to

process audio then the Precondition may be set as "AudioSink". Effects are used to further

constrain the selected device and describe the types of effects the device/service is susceptible

to. For example the effect of sending audio data to an "AudioSink" results in radio waves

being outputted by the device. Conversely devices use IOPEs to describe similar services,

albeit the terminology may be different, which is demonstrated in the prototype developed for

the case study, where IOPEs are described syntactically different whilst retaining the same

semantics. As such it becomes important to resolve any ambiguities that appear. Our

framework achieves this by performing semantic interoperability between IOPEs using the

device's local ontology and ontologies provided by other devices within the network [Fergus

2005a].

The semantic interoperability mechanisms within our framework provide a base solution and

illustrate that high-level semantics can be mapped to low-level signatures. Our framework has

the ability to evolve ontological structures without having any centralised authority. Through

device-to-device communications these structures are evolved based on commonalities that

exist between all concepts, relating to the structure to be evolved, within the network [Fergus

2003b]. If the device contains the concepts then differences between terms can be resolved.

However, if the device needs to query the P2P network to discover the concept then this may

result in delays. The factors affecting this are the number of concepts and devices that exist,

and the density of the concepts themselves, i. e. how may classes and relationships exist within

the concept. As such our framework allows device manufacturers to perform this function as a

backend management task carried out when the device is idle. This feature of our framework

illustrates that using P2P technologies in conjunction with general consensus mechanisms,

ontological structures can be automatically evolved and managed. Consequently concepts are

153

not subjective because they conform to the general consensus not the subjective opinions of a
single ontology engineer - the more devices that support the concept, the more prominent the

concept becomes, whilst less common concepts are de-emphasised over time. This provides
considerable advantages over existing ontology evolution approaches and will become

increasingly more important as devices and services become more ubiquitous and ad hoc in

nature.

The way our framework processes semantic data is novel. Current approaches such as
PROMPT, Chimaera, and ONION rely on knowledge consortiums and to date are incapable

of automating the evolution and management of ontologies. They adopt a more centralised

approach whereby a single ontology is developed which all systems reference or multiple

ontologies are used and connected through manual links. Our framework completely

automates this process where every device is treated as a self-governing knowledge node. Our

prototype demonstrates that our approach works whereby we can distribute concepts and

evolve them over time without any human intervention. We have demonstrated that this

works, however to date this has only been tested on simple ontology structures. To the best of

our knowledge our approach is novel and is a new way of distributing and managing

ontological structures devoid of centralised repositories or any human intervention [Fergus

2003b].

7.4 Device Capability Matching

As networked appliances become more widespread it will become increasingly more
important to not only discover required functionality but to also select devices that can best

execute that functionality. NASUF supports this requirement and ensures devices that provide

the best quality of service are selected to execute a particular service. Using high-level

interfaces device manufacturers can specify the key capability parameters used to assess what

capabilities the device must have including their associated capability value. Our framework

uses an adaptation of the Multi-Attribute Utility Theory (MAUT) [Kumar 2003] algorithm

and the implementation illustrates that functionality can be selected which takes into account

the devices that best execute a given service. The formula defined in Figure 7.6 calculates the

percentage of a resource required, where a resource r offers a service s that requires acs, , units

of some total resource value tr,.

rescs r=
acs''
tr,

Figure 7.6 Percentage of resource required

154

This formula allows the DeCap service to determine what percentage of some resource will be

used given the total value of the resource available. The DeCap service also determines if the

device is overloaded by calculating how much of the available resources on average are used
by the device, i. e. CPU usage. Furthermore it is possible that the quality of service will be

affected because the computation may be shared across a large number of processes. When

this is the case, DeCap calculates the overhead for each resource the service requester deems

important and compares it to the desired capability defined in the service request. The DCS

achieves this using MAUT. The MAUT algorithm is implemented in DeCap and is used to

produce an overall capability score for some device D given the attributes defined in the

device's DCM. This formula is defined as,

a
DCScore(D, DCM) _ cw; (DCM) " D(v;)

Figure 7.7 Calculate device capability score

where DCScore is the overall capability score for device D according to the device capability

model DCM, d is the number of capabilities for the type of device, cw, (DCM) is the

importance rating of attribute i according to device DCM, and D(v;) is the status rating for

attribute i. The importance rating describes how important a given attribute is in relation to all

the attributes used, e. g. the CPU attribute may be the second most important attribute with an
importance rating of 30, which means that the CPU is considered three times more important

than an attribute with an importance rating of 10. The status rating describes how well the

device supports a particular attribute, e. g. a device may have "Excellent" for its CPU attribute,

which may equate to a value of 75 - therefore calculating a capability score for CPU, could be

achieved by multiplying 30 * 75 which is equal to 2250.

Given the two formulas, the device calculates the service ratings programmatically by

estimating the average attribute values from the operating system itself and assigning the

appropriate status rating. For example, if the device uses on average 25% of its CPU when the

required service is executed we may assign the CPU Load a status assessment of "Excellent"

with a status rating of 75. The equation defined in (3) illustrates that the MAUT formula has

been amended to take into account the current resource load and the load required to execute a

service. In this instance the DCScore and the rescs, , are added to give a combined resource

load value, indicating whether the device can effectively execute a service it provides.
d

DCScore(D, DCM) _ cw; (DCM) " D(v;) " (1- rescs.,)
ýaý

Figure 7.8 Extended MAUT formula

155

When the terms in the DCP and the DCM are processed, any ambiguities that are encountered

are resolved using the DistrES algorithm. When the formula in Figure 7.8 is used to calculate

the score for the DCM, it is compared with the score generated for the DCP. If the DCM score
is equal to or greater than the score for the DCP then the device is said to be capable of

effectively executing the service, whilst ensuring the quality of service is maintained. In this

instance the service details are returned to the service requester.

Our framework enables devices to create compositions with other devices within the network

and takes into account how well the device is capable of executing the service it provides
[Mingkhwan 2005]. This technique provides a mechanism that always ensures the best

possible composition is available based on those devices and services that are available at any

given time. This function is currently not implemented in any other middleware standards.

7.5 Dynamic Service Composition

Trying to dynamically compose services is an area of research that has received a

considerable amount of interest because of the benefits it can bring [Fujii 2004]. In the Web

Services community similar research is being carried out to facilitate dynamic on-the-fly

service composition. This is seen as a key step towards scalable and robust Web Service

frameworks. At present, current approaches to composite Web services assume a closed

world; consequently all services within the composition must be predetermined. The difficulty

in a real-world setting is that Web services may become unavailable and the lack of control

makes it difficult to predetermine service and network capabilities. As such this may result in

unpredictable results and even composite service failure.

Because of the difficulties associated with dynamic service composition, manual and semi-

automated approaches still receive considerable consideration [Chakraborty 2003, Chen 2003,

Sirin 2003, Sycara 2003]. This thesis opposes these approaches because they are too

inflexible for innovative solutions and we argue that devices and services need to be

dynamically composed on the fly based on what is available to the device at any given time.

This keeps with the visions provided by Fujii et al. and Madhusundan et al. where devices in

our framework dynamically discover, compose and execute services as and when they are

required without using templates or carefully choreographed composition scripts such as the

ones defined in [Leymann 2004, Andrews 2005]. In our framework devices are pre-

configured with service capability requests containing the IOPE descriptions for each service

the device requires. For example in our case study on Page 113 of this thesis, the Media

player has two service requests - one for an audio service and one for a video service. When

the device is initially switched on these service requests are propagated within the network

and any matching services are found. This provides a base solution and demonstrates that our

156

framework can dynamically discover and loosely bind to any service within the network using

pre-defined service requests. In the current implementation we have assumed that invocation

methods provided by devices are operations with no parameters such as "stop", "play" and

"listen". So although the Inputs and Outputs describe the data received and outputted by

devices this in effect describes the type of information passed or received from endpoints. To

enable true dynamic service composition more descriptive service ontologies need to be used

and detailed signature matching needs to be performed that allows high-level semantics to be

mapped to signatures in the service interface. This functionality is provided by our framework

[Fergus 2005a] which maps the service ontologies to service interfaces and enables devices to

dynamically compose services on the fly.

What we have found is that it is possible to automatically discover, bind to and invoke

services using high-level semantics [Fergus 2005a]. The prototype demonstrates that using

semantic descriptions to process services in terms of their capabilities is a viable approach and

to date this is a new strand of research within networked appliances and home networking

research.

Coupled with our service-oriented architecture and use of semantic metadata, our framework

provides robust mechanisms that improve the overall execution of service compositions

surpassing existing service-oriented architectures that use carefully choreographed

composition plans.

7.6 Self-Adaptation

One of the key factors within our framework is to enable devices to form compositions and

correct problems that occur automatically with minimal human intervention. Utilising

advances within the area of self-adaptive software research, the vision of self-healing

software forms part of our framework architecture. This is becoming an increasingly

important feature of software development, Laddaga et al. state

"The goal of self adaptive software is the creation of technology to enable programs to

understand, monitor and modify themselves. Self adaptive software understands: what it does;

how it does it; how to evaluate its own performance; and thus how to respond to changing

conditions. "

To further strengthen this definition the DARPA Broad Agency Announcement on Self-

Adaptive Software provide the following definition

"self-adaptive software evaluates its own behaviour and changes behaviour when the

evaluation indicates that it is not accomplishing what the software is intended to do, or when

better functionality or performance is possible. "

157

Our framework implements this functionality by automatically enabling devices to form

relationships with other devices when they come online [Fergus 2005a]. The effect of this is

that the device is self-aware of breaks in the relationships it has with devices it has previously
discovered. Any problems encountered within compositions are sensed, i. e. data or control

pipes become unavailable - determined by periodically sending heartbeat messages to devices

and services. Devices also perform cleanup procedures which inform other devices within the

network when the device or any of its services become unavailable. These messages are

received by devices and used to determine whether the device or the service affects the

composition it is in. Furthermore these messages are processed and used to determine whether

the composition of devices and services can be improved to improve the overall performance.

This being the case, our framework allows devices to promote and demote services

automatically as changes occur. These functions allow devices to automatically make

compensatory changes as and when required and thus provide effective mechanisms for self-

adaptation within networked appliance networks. This functionality is not evident in existing

approaches such as OSGi, UPnP and DLNA.

7.7 Comparison with existing Approaches

In this section we compare our framework with three state-of-the-art networked appliance and
home network approaches. We use our novel contributions (service-oriented networking,

service discovery, device capability matching, dynamic service composition, and self-

adaptation) as a basis for our comparison and compare them to the corresponding features

provided by these architectures, which are Universal Plug and Play, the Open Services

Gateway Initiative, and the Reconfigurable Ubiquitous Networked Embedded Systems

framework.

7.7.1 Universal Plug and Play

" Service-Oriented Networking - UPnP is a service-oriented architecture that provides

mechanisms to disperse device functions within the network in the same way our
framework does. The main limitation with UPnP however is its inability to provide or

access services outside a local area network. Our framework utilises P2P techniques,

which allows devices to function within the Internet with global scope in mind. The

communication protocols used in UPnP are IP based and messages are sent between

services using SOAP. Although these standards are open our framework abstracts the

use of standards allowing interoperability between any open standards, not just IP and
SOAP.

158

" Service Discovery - UPnP uses the Simple Service Discovery Protocol (SSDP) to

discover services in the network. This is achieved by matching attribute-value pairs

that allow pre-determined services such as printers and scanners to be discovered. The

UPnP specification highlights that SSDP does not consider advanced querying. This

is a major limitation of UPnP in that service descriptions and service requests must be

pre-determined and in a format defined by the SSDP specification. If attribute-value

pairs differ syntactically but mean the same thing semantically then service discovery

fails. In our framework we provide a more advanced querying mechanism that allows

service descriptions and service requests to be described using rich ontological

structures. This significantly improves the matching process by allowing service

descriptions and service requests to be matched not only at the syntactic level but at

the semantic level as well. If the vocabularies are syntactically different but

semantically equivalent our framework automatically resolves any terminology

differences. This allows services to be more accurately matched within our

framework than UPnP.

" Device Capability Matching - In UPnP devices provide a URL, which points to a
UPnP description used to describe the device and the services it provides. When

control points discover devices they use this URL to extract the description, which is

then used to determine the devices capabilities. UPnP descriptions primarily, focus on
describing high-level information about the device and its services rather than the

individual properties used to determine how resourceful the device is in terms of

memory and processing power for example. Consequently it is difficult to use the

UPnP standard to automatically determine what is the best device or service available

within the network. In our framework we overcome this by using an adapted version

of the CC/PP specification, which also uses our modified MAUT formula to provide

an overall assessment of how well the device can execute the service it provides. This

allows devices to select the best devices dependent on what is available within the

network at any one time. This is a feature the UPnP specification does not provide.

" Dynamic Service Composition - There are no mechanisms within the UPnP

specification to address dynamic service composition. Services are manually
discovered and used via user interfaces. There are no mechanisms that allow devices

to automatically discover ad hoc devices and services and compose them into high

level compositions. In our framework we have addressed this limitation by providing

semantic matching services that allow devices to query the network and form

compositions, automatically with other devices and services within the network,

159

without any human intervention. Again this is a feature not supported in the UPnP

specification.

" Self-Adaptation - There are no mechanisms within the UPnP specification to allow

device configurations to be automatically composed or self-adapted based on

environmental changes. Solutions are carefully choreographed and remain functional

as long as all services in the solution remain operational. If a service fails then the

whole solution may fail. In our framework services that provide the same

functionality redundantly co-exist. If a service fails or a better service becomes

available, device configurations are automatically adapted to ensure that the

composition is maintained and that the best quality of service is provided. This marks

a significant advantage over UPnP.

7.7.2 Open Services Gateway Initiative

" Service-Oriented Networking - OSGi is a service-oriented architecture, however the

way services are hosted and served differs from our approach. OSGi service providers
host services in the OSGi service container, which are controlled by service operators.
These services can then be served via the internet to home networks using the OSGi

gateway. This is an inherently centralised approach that provides services much like

typical set-top box solutions in existence today. In our approach we have selected a
less restrictive approach that utilises P2P technologies allowing for a greater number

of services and increased flexibility to enable better and more innovative solutions.

Any service within our framework can be used by any other device within the

network without having to register with third-party registries. This allows services

that provide the same functionality to redundantly co-exist and thus makes our

framework far more flexible, scalable and fault-tolerant than OSGi.

" Service Discovery - OSGi provides service discovery mechanisms that allow services

to be discovered that are contained in the OSGi Service Platform. Discovery is based

on searching for services with pre-determined properties and a simple query language

is used to select the required services needed. Again like UPnP services need to be

described using predetermined vocabularies. As such discovering services that are

syntactically distinct but semantically the same results in failure. In our framework

we provide a more advanced service discovery mechanism than OSGi that allows

devices to describe and discover services more accurately using high-level semantics.

Furthermore devices discover services with global scope in mind using P2P

technologies. We do not restrict services to proprietary service containers such as

160

OSGi, although our framework could accommodate this. This is a feature that OSGi
does not support.

" Device Capability Matching - The OSGi specification (Version 3) does not address
capability matching. Using services in OSGi is a manual process performed by the

service provider, service operator and the user. We have argued that device

compositions need to be created based on what devices and services within the

network provide the best solution. In our framework services are provided that enable
the device to determine how effectively the device can execute the service before it

commits to using it. This is a feature not provided by OSGi. This feature is important

for ubiquitous computing and services that reside within ad hoc environments such as
P2P.

" Dynamic Service Composition - The OSGi specification does not provide any

mechanisms to dynamically compose services without any human intervention. We

have argued that managing device configurations is problematic and a better strategy
is to develop mechanisms that allow devices themselves to do this. In our framework

mechanisms allow devices to automatically discover and compose devices and

services without any human intervention. This is a feature not supported by OSGi.

" Self-Adaptation - There are no self-adaptation mechanisms in OSGi. Service

configurations are manually created and controlled. Like workflows service

compositions remain operational as long as all services in the composition remain

operational. Any faults that occur need to be manually corrected. In our framework

any problems encountered within the composition are automatically corrected by

discovering alternative services within the network and plugging them in without any
human intervention. Again this is a feature not supported by OSGi.

7.7.3 Reconfigurable Ubiquitous Networked Embedded Systems

9 Service-Oriented Networking - In RUNES device functions are abstracted as software

services, which can be discovered and used within the network. This makes RUNES a

service-oriented architecture that provides mechanisms to integrate services within

the network. Services are plugged into RUNES using carefully created API interfaces.

As such this is a proprietary protocol, much like USB, that provides a solution but ties

device manufacturers into their protocol. It is not clear whether pre-defined interfaces

can accommodate all device functionality. It is a question of granularity, which means

that complex functions must be adapted to implement the interface methods provided
by the RUNES API. In our framework we have tried to overcome this restriction

using ontological structures to describe what services provide and how they can be

161

combined. In our framework devices propagate service requests that describe the data

the candidate service must be capable of processing. Certain data may be defined as

optional to make the matching process more flexible, as such our framework provides

more scalable and flexible mechanisms to host and discover services that are not

currently supported in RUNES.

" Service Discovery - The service discovery mechanism in RUNES, at present, is not

clearly defined. They provide a generic interface method called Advertisable, which

could support UPnP discovery. However restricting service discovery to the interface

methods devices support is inflexible. It is based on pre-defined vocabularies that are

syntactically matched. This solution will work in controlled environments, however

applying the same service discovery technique within ad hoc networks that host

heterogeneous devices is not possible. In our framework we overcome this limitation

using flexible matching algorithms that are less restrictive than RUNES.

. Device Capability Matching - The RUNES specification does not define any

mechanisms for selecting devices or services based on how capable they are or how

effectively they can execute the services they provide. We have argued that in order

to enable true ubiquity it is important to allow devices and services that provide the

same functions to co-exist. As such mechanisms need to be provided that allow
devices to decide what devices or services they use in order to create compositions

that provide the solution. In our framework we have overcome this limitation and

provided services that allow this to be achieved. Using these services devices can

reason over what devices and services to include in final compositions based on how

well they match the overall quality of service requirements.

" Dynamic Service Composition - RUNES supports dynamic service composition by

allowing devices to discover advertisements containing pre-defined interfaces

provided by the RUNES API. This is a restrictive form of dynamic service

composition that works well in controlled environments but in true ubiquitous

environments that are more ad hoc in nature, it would be difficult. In our framework

we have foreseen this problem and provided better services capable of dynamically

composing devices using rich ontological data. Devices can formulate semantic

requests and propagate them within the network, which can be matched against the

semantic descriptions of services. This makes our composition technique far more
flexible, scalable and less restrictive than the approach adopted in RUNES.

Consequently our framework can embrace ad hoc and infrastructure networks, which
RUNES cannot.

162

" Self-Adaptation - The RUNES project supports self-adaptation. Through its carefully
defined interfaces service compositions can detect and discover alternative services.
As is the common theme with RUNES, self-adaptation is based on pre-determined
interfaces, and as such it works well in controlled environments but not in ad hoc

environments. Self-adaptation is closely interlinked with how devices and services are

composed, and as such, restrictions in the higher levels filter through to the lower

layers. Devices and services will be heterogeneous in nature and different middleware

standards will be used. Consequently alternative mechanisms need to be developed

that accommodate this uncertainty. Our framework has been developed with

heterogeneity in mind and as such can self-adapt to changes between heterogeneous

devices and services. This is something that RUNES cannot do.

7.8 Summary

Our framework has performed as expected and it has demonstrated that the challenges
highlighted in Chapter 1 have been addressed. The overall performance of our prototype

needs to be improved; however our primary focus was to demonstrate our ideas. This has

been successfully achieved and provides a base solution on which to build.

Our evaluation shows that our framework surpasses current research initiatives within

networked appliances and home networking and addresses a number of difficult problems.
Many approaches adopt a human centric approach to interconnecting and managing

networked appliances. We have argued that such models are inappropriate because it raises

the question of who will perform these configuration and management tasks. It is becoming

increasingly more difficult for home users and IT specialists alike to perform these tasks.

Furthermore these approaches are too restrictive for innovative solutions. We have argued

that alternative approaches are needed to automate this process. Our framework is such an

approach and to the best of our knowledge is the first to address these issues within the field

of networked appliances, which OSGi, UPnP and RUNES to name a few do not.

This Chapter was about evaluation, which grouped the key requirements of this thesis under

five headings that our Networked Appliance Service Utilisation Framework must support.

The opinions of key researchers have been quoted and linked to the requirements defined in

Chapter 1. We have provided an evaluation of our framework and identified its strengths and

weaknesses. This thesis presents a clear and viable design that allows networked appliances to

exist within ad hoc networks and automatically discover semantically described services

provided by other devices, based on device capability matching, which provides a basis for

zero-configuration. It crosses several research disciplines and pulls together a number of key

technologies such as networked appliances, home networking, P2P, ad hoc networking,

163

Semantic Web technologies and device capability matching. Where appropriate existing
functionalities have been extended to include the secondary services provided by our
framework.

164

Chapter 8

8 Conclusions and Future Work

8.1 Introduction

In this thesis we have stated that the proliferation of home appliances and the complex
functions they provide make it ever harder for a specialist, let alone an ordinary home user, to

configure and use them. To re-iterate the scenario described at the beginning of this thesis.

Imagine your home environment, more specifically your living room, and the devices it

contains. It is more than likely that it has a DVD player, VCR, Widescreen or Plasma TV, a

surround sound speaker system, and a HiFi. Now imagine the time you bought your DVD

Player and tried to integrate it with your existing device configuration. Like most people, you

may have taken the DVD player out of the box and attempted to connect the wires to your TV

and surround sound system and one hour later decided you needed to look at the instructions.

After a further hour trying to understand the instructions, tuning in your TV and configuring

your surround sound system you finally succeeded in viewing the DVD movie you bought.

We have argued that these kinds of experiences are becoming increasingly more common and

that it is no longer acceptable to burden the user, thus alternative mechanisms are required to

abstract this complexity.

In this thesis we have focused on how to get different appliances, built to different

specifications, to work together without having to change their original characteristics or

protocols. Our research is about freeing users from the constraints imposed by physical

machines. It's about breaking down machines and dispersing their operational capacity

throughout our homes. Rather than severing ties between user and machines, we are actually

forging a more intimate relationship between people and technology.

In trying to achieve this many challenges have had to be addressed, which include service-

oriented networking; semantic service discovery; device capability matching; dynamic service

composition, self-adaptation; and ubiquitous computing. We have argued that these

challenges have been successfully addressed using our Networked Appliance Service

Utilisation Framework. We have discussed in detail the core service-oriented middleware that

comprises our framework, which integrates devices and the combined functions they provide.

We have argued that our framework takes into account the capabilities devices support and

165

self-adapt and manage device configurations automatically. A case study is presented and a
prototype solution has been developed that implements our framework.

In the remainder of this Chapter a summary of the thesis is presented, including the

contributions made and the future work that needs to be carried out. This encompasses the

difficulties encountered and the improvements required within the framework. This chapter is

then concluded with final remarks.

8.2 Thesis Summary

Chapter 1 of this thesis provided an overview of the problem domain, namely the
inefficiencies associated with current networked appliances and home networking middleware

standards. It identified that little work has been carried out within ad hoc home network

environments, which take into account flexible mechanisms that enable devices and the

services they provide to automatically form relationships, thus moving towards true zero-

configuration. This chapter then briefly detailed a framework we developed that addresses

these limitations enabling devices and services to be automatically integrated using flexible

algorithms that perform the integration process using high-level semantic descriptions that

describe the `what' part of the composition rather than the `how'. This chapter concluded by

defining the scope of the research project, the novel contributions we have made and an

outline of the thesis structure.

In Chapter 2 the background and related work was presented, which includes a discussion on

the state of the art approaches within the field of Networked Appliances. This discussion

defined the key concepts used within this thesis and described the limitations associated with

current approaches and how they are addressed within this thesis. This chapter also discussed

how networked appliances relate to home networking and described current middleware

solutions that aim to seamlessly interconnect devices within home environments. A discussion

was presented regarding how this integration is being performed using P2P techniques, where

several P2P models where presented. Each P2P model was discussed in terms of their

associated functions, merits and limitations and an argument was presented regarding how

P2P techniques can be used to loosely connect devices within ad hoc network environments.

In this chapter we also looked at how techniques used within the Semantic Web could be used

to address several limitations within current service-oriented middleware architectures, which

included a discussion on service discovery and ontology evolution. The discussion argues that

current service discovery mechanisms are inherently restrictive because they are based on

proprietary descriptions that dictate how services must be described and discovered, which do

not take into account the semantics or inherent vocabulary differences. As such an argument

was presented pertaining to the use of semantics to better describe what services devices

166

provide and what they require. This Chapter also discussed current research relating to how

ontologies can be used to describe services semantically, perform semantic interoperability

and to dynamically compose devices and services.

A detailed discussion and the UML design models for our framework was presented in

Chapter 3. This Chapter provides a high-level overview of our framework and briefly

introduces the secondary services, which are discussed in more detail in Chapter 4. This

Chapter then discusses the core service every device is required to implement, which allows

the device to connect to the network.

Chapter 4 described in detail the UML design models for all the remaining secondary services

that comprise our framework. These services allow devices to disperse their operational
functions as independent services. They allow these services to be described and discovered

using high-level semantics. These services also enable devices to determine how well a device

is capable of executing a service it provides before committing to using it. They also manage

device configurations and self-adapt when environmental changes are detected. We concluded

this chapter by providing a summary and discussing what we have learnt and achieved during

the design phase of this project.

In Chapter 5 an Intelligent Home Environment case study was presented which described how

our framework could be used to automatically discover and compose devices and the services

they provide, whilst at the same time providing the best quality of service. The case study also

described how devices within the Intelligent Home Environment self-adapt based on

environmental changes. Several other application scenarios where also presented indicating

how our framework can be applied to other problem domains. We finally concluded this

chapter with a summary and discussed what we have learnt from the case study and more

importantly about our overall approach.

Chapter 6 presented a detailed discussion on how our framework was implemented. It

discussed the toolsets used and highlighted the merits and shortcomings of several toolsets

considered during the production of this thesis. It also presented the specifications that our

framework conformed to and discussed how these specifications have been extended to

realise our novel contributions. This included a detailed discussion about the technical details

and explains how the prototype was developed. We concluded this chapter by providing a

summary and discussing what we have learnt during the development of the prototype.

A qualitative evaluation of the NASUF implementation was presented in Chapter 7, which

discussed the novel contributions the framework provides and how it was realised using our

Intelligent Home Environment prototype system.

167

8.3 Contribution to knowledge

This thesis has presented a framework we have developed for integrating networked

appliances within device and service-rich environments. The challenges we have overcome in

order to achieve this include: service-oriented networking, semantic service discovery,

dynamic service composition and device self-adaptive. We have addressed these challenges

using our framework and made several novel contributions [Fergus 2003a, Fergus 2003b,

Fergus 2003c, Fergus 2004, Mingkhwan 2004, Fergus 2005b, Fergus 2005a, Haggerty 2005,

Mingkhwan 2005]. Our framework provides services that discover and interconnect devices

within the network, enable operational functions to be discovered and composed using

semantic matching, select devices based on the capabilities they support and mechanisms that

allow device configurations to self-adapt to environmental changes. Each of these novel

contributions is discussed in turn in the following subsections.

8.3.1 Service-Oriented Networking

In the area of service-oriented networking we have made several novel contributions, which

we have published in [Fergus 2003a, Mingkhwan 2004, Fergus 2005a, Mingkhwan 2005].

Each contribution is listed below:

" Devices can dynamically integrate themselves within any environment and publish

and dynamically discover services. Services may be pre-determined (middleware

services that comprise our framework) as well as application specific (services

wrapped around operational functions provided by devices) [Fergus 2003a], which

can be simultaneously discovered and used by other devices within the environment
[Mingkhwan 2004, Mingkhwan 2005].

" Our framework provides enhanced functions that allow devices and services within

networked environments to be more accurately matched and integrated [Fergus

2005a].

8.3.2 Service Discovery

In the area of service discovery we have made several novel contributions, which we have

also published in [Fergus 2003a, Fergus 2003b, Fergus 2003c, Fergus 2005a]. These

contributions are listed below:

0 Services are described and discovered based on their capabilities and mechanisms
have been developed that perform better service matching than current attribute-value

pair matching techniques - this allows devices to dynamically discover, compose and

execute services based on peer collaborations, devoid of any human intervention

[Fergus 2003a, Fergus 2005a].

168

" Service descriptions are serialised using high-level semantics that provide rich

conceptual information about the individual functions devices provide [Fergus 2003b,

Fergus 2003c].

" Device manufacturers are free to describe services using unconstrained vocabularies.
Consequently, high-level semantics are used to resolve the inherent ambiguities
between service requests and service descriptions [Fergus 2003b].

0 Semantic service descriptions reside on individual devices and the total knowledge

within the network is the sum of all devices and their associated semantic
information. No centralised servers are used to store this information, thus semantic
information is distributed within the network, which ensures flexibility, fault-

tolerance and fair concept creation and evolution [Fergus 2003b].

" Semantic information is dynamically evolved devoid of any centralisation using

general consensus. Concepts that are more commonly represented are emphasised

whilst less common concepts are removed from the network over time. This is an

automated process that requires no human intervention [Fergus 2003b].

8.3.3 Device Capability Matching

In the area of device capability matching we have also made several novel contributions,

which have been published in [Mingkhwan 2004, Mingkhwan 2005]. These contributions are

listed below:

" Devices and services that are similar in nature can redundantly co-exist within the
framework and as such the same service can be provided by multiple devices. Device

capabilities will vary so mechanisms have been developed that determine which
device is better equipped to execute the given service [Mingkhwan 2004, Mingkhwan

2005].

" Existing device capability specifications have been extended to include capability

scoring which not only assess individual device capabilities but also provide overall

capability scores that assess the device as a whole. So even if a device is weak in one

particular area, its overall capability score may still infer that it is the best device to

use [Mingkhwan 2004, Mingkhwan 2005].

8.3.4 Dynamic service composition and self-adaptation

In the area of dynamic service composition we have made several novel contributions, which

we have published in [Fergus 2005a]. Again each contribution is listed below:

" Devices can automatically form compositions with other devices to produce value

added functions and aid zero-configuration [Fergus 2005a].

169

0 Devices can self-adapt to environmental changes as and when devices or services
become available or unavailable to ensure that device compositions are maintained
[Fergus 2005a].

" Devices can form relationships with each other to create the best solution as specified
in the capability models defined by each device. This ensures that the user's defined

quality of service is either surpassed or maintained [Fergus 2005a].

8.3.5 Ubiquitous Computing

Lastly in the area of Ubiquitous Computing we have demonstrated that the new framework

can be implemented on devices with limited capabilities. We have made several novel

contributions, which again we have published in [Fergus 2004, Fergus 2005b].

" The framework is designed to work with devices with limited capabilities and has

been implemented in a sensor network, which allows devices to be controlled using
biofeedback [Fergus 2004]. Sensors connected to the body interact with sensors

within the environment and when certain biological conditions are met, the devices

are controlled [Bianchi 2003].

" The operational functions provided by devices are dispersed within networked

environments using our framework, which harnesses the power of wireless and

mobile technologies, thus reduce the wires and cables that are part and parcel of all

modem day appliances [Fergus 2005b].

These novel contributions extend current advances in networked appliance and home

networking research initiatives and provide a framework that is highly flexible, extensible and

self-adaptive. Our framework moves us closer to seamlessly interconnecting devices and

realising zero-configuration. Several open standards have been enhanced to provide additional

functionality that surpasses the functions these standards describe. These extensions fit more

efficiently within new and emerging intelligent network architectures to embrace ubiquitous

and pervasive computing environments. Furthermore, our framework provides highly

adaptive mechanisms that allow any device, irrespective of its capabilities, to function within

the network and decide how the framework services are used.

Our evaluation demonstrates that our framework provides a viable solution. It highlights that

using a distributed service-oriented architecture based on the peer-to-peer paradigm provides

a better solution than existing workflow based approaches such as WSFL and BPEL4WS in

that our framework allows numerous services, that provide the same functionality, to

redundantly exist within the network - if a service fails an alternative service can be

automatically discovered and used. This feature has been fully implemented and demonstrates

that our framework is highly robust.

170

Our evaluation also shows that creating a single standard for describing and discovering

services is highly unlikely. Device manufacturers and service providers will inherently use
different vocabularies consequently our framework provides mechanisms capable of

performing semantic mappings between vocabularies that are syntactically distinct but

semantically equivalent. We show that using ontologies aids this mapping process and

provides a highly flexible mechanism for service discovery that can accommodate a broader

range of queries that surpasses existing service discovery mechanisms currently being using
in frameworks such as OSGi, UPnP and DLNA.

Again utilising peer-to-peer networking our implementation has demonstrated how devices

are treated as individual knowledge nodes that can share and evolve ontological structures

using our framework services. Devices contain their own knowledge used to describe the

services they provide, which can be shared with other devices within the network. We have

shown that these knowledge structures can be evolved over time using peer-to-peer

techniques and aid semantic interoperability between different vocabularies.

Our evaluation argues that typically compositions are inherently human centric and as such

the overall quality of device configurations is determined by the user. In our framework

device configurations and compositions are automated, as such our framework provides a

service that selects devices that provides the best quality of service.

We have found that dynamically composing devices and services is a difficult problem and as

such most research initiatives base their solutions on manual or semi-automated techniques.

In our framework however we have tried to address this challenge using techniques used

within the Semantic Web. Our evaluation illustrates that our matching process is more

flexible than existing approaches, such as OSGi, UPnP and DLNA and provides a base

solution.

Little work within the area of networked appliances and home network has been done in the

area of self-adaptation and as we have argued in this thesis it is becoming increasing more

difficult to manage device configurations. Our framework aims to relieve the user from the

management tasks associated with interconnecting devices using a self-adaptation service that

allows devices to form relationships with devices in the network as soon as they have been

switched on and self-adapt to any environment changes that may occur.

8.4 Further Work

The implementation and case study evaluation demonstrate that a contribution to knowledge

has been made and that the research carried out addresses several research problems.

However, our work has also encountered difficulties along the way and has raised a number

171

of interesting questions. As such this section provides details of the questions raised, which

are the subject of future research within the Networked Appliances Laboratory at Liverpool

John Moores University.

8.4.1 Semantic Annotation and Processing Issues

We still need to look at the co-existence of correct and incorrect information within device

ontologies. We do not make any assumptions that the information created by device

manufacturers will be correct or consistently represented in a pre-determined knowledge

structure. Consequently different device manufacturers will classify concepts differently and

in some cases incorrectly. Furthermore the ontology evolution process is problematic and

time consuming. The semantic matching algorithm needs to be optimised in order to speed up

the evolutionary process.

8.4.2 Security

One of the key functions that NASUF does not address is that of security.. Ad hoc

environments raise an important question regarding trustworthiness of service providers. The

middleware must ensure that the content received from services is authenticated and that data

streams are not intercepted and altered during transmission. In this way, trust between

network entities may be maintained. This becomes an important requirement within ad hoc

environments, which resist any form of centralised control. To address this challenge a

lightweight trust mechanism needs to be developed which guarantees the data transferred

between services has not been altered or redirected during transmission and which

accommodates different levels of integrity dependent on what type of data is being

transferred. For example transmitting payment details or documents between devices will

require that the highest level of integrity is maintained by encrypting every packet that is sent,

whilst streaming multimedia data may require less integrity where only every 100th packet

needs to be encrypted. The trust mechanisms must also be lightweight and capable of being

installed on any device irrespective of its capabilities.

In future work a lightweight mechanism for maintaining trust in ad hoc multimedia networks

will be developed, which will prevent the modification of data in transit. Development will

ensure that the computational overhead incurred by the posited scheme is minimal, whilst

ensuring that the content received by devices is free from modification. Our contribution will

be to extend existing authentication mechanisms to ensure trust is continually maintained

whilst data streams are being transmitted between different services [Haggerty 2005].

172

8.4.3 Feature Interaction

Another key requirement that needs to be addressed relates to Feature Interactions. Services

may operate well when used in isolation or within small compositions, however problems will

occur when trying to interwork a large number of services at the same time. A body of work
is currently being carried out elsewhere [Kolberg 2002, Kolberg 2003] to address the

challenges associated with Feature Interactions and it is envisaged that these research efforts

could be integrated into NASUF.

8.4.4 Service and Device Composition Issues

The concrete matching algorithm needs to be fully implemented. This will allow high-level

semantics to be mapped to low-level service interfaces. In the prototype we demonstrate this

using a simple test case, however a more complex mechanism is required. Work has begun

within this area [Fergus 2005a], however further research is required before this feature can

be fully functional within NASUF.

8.4.5 Transport Protocol Interoperability

At present the NASUF implementation is mapped onto the TCP/IP protocol because it is the

most common networking protocol currently used. However in the future interoperability

between different transport protocols will be investigated. The P2P implementation used

within NASUF is JXTA and at present the Java and C bindings only consider TCP/IP. The

documentation states that future bindings will be developed, consequently a future project

will interlink with current interoperability research being carried out [Abuelma'atti 2002a,

Abuelma'atti 2002b] to bridge between different wireless technologies such as 802.11 x,

Bluetooth and RF. This research will look at creating software adaptors as services that can be

dynamically discovered and integrated within NASUF. These adapters will automatically
form bindings with JXTA so as to maintain a unified addressing scheme.

8.5 Concluding Remarks

We are currently seeing the convergence of several key technologies whereby devices are

becoming more interconnected. Advances in global and wireless communications have

opened up the possibility for new and novel solutions that are changing the way we use and

interact with the devices we own. User demands and these technological advances are moving

us closer to the pervasive computing vision. The home of the future will include networked

appliances that disperse their operational functions as middleware services providing flexible,

intuitive and zero-maintenance mechanisms for dynamic service composition, deployment,

extensibility, management and usage. Whilst much work exists relating to service-oriented

173

frameworks, this typically relies on attribute-based service matching and discovery, which is

inherently restrictive since no universally agreed service description or taxonomy is available

to describe services homogeneously. Device manufacturers inadvertently use different

vocabularies to describe services and therefore ambiguities between terminologies are likely.

In this thesis these requirements have been successfully addressed by designing and
developing a new framework called NASUF. This framework allows services to be described

using machine-processable semantics. This enables devices to make informed decisions

regarding service compositions. The framework is self-adaptive and is capable of resolving
device or service failures within compositions as and when they occur.

Through peer collaborations devices successfully form dynamic compositions with other
devices and the services they provide by processing ontological contextual descriptions,

which guide the composition process. These descriptions describe the high-level concepts that

relate to the "what" part of the service composition rather than the "how". Consequently each
device provides ontological descriptions, which are dynamically evolved over time. Services

are composed based on the low-level signatures each service provides devoid of any human

intervention, which are not known beforehand. Mechanisms to achieve this give rise to the

true potential of service-oriented architectures by creating value-added services, whereby

global functionality cannot be produced by one single device or service alone. As such this

framework successfully provides mechanisms that allow services to be composed based on

the semantic similarities between the capabilities they support. High-level semantic

descriptions are developed and mapped onto the syntactic signatures used to describe

services, which form explicit mappings between the inputs one service requires and the

outputs another service produces.

Our framework successfully incorporates devices of varied capabilities using mechanisms that

perform capability matching. Before services provided by devices are composed, the

framework determines if the device providing the service has the required hardware, software

and networking capabilities to effectively execute it.

In this thesis we have provided a detailed overview of the background and related work and

discussed the influential factors. Developing our framework has been multi-disciplinary

which has utilised and extended existing research initiatives and open standards to produce a

flexible open middleware architecture that allows devices and services to be seamlessly

interconnected, which abstracts the underlying implementation details. Thus this thesis

provides a broad platform on which to integrate next generation networked appliances.

We have successfully illustrated that we have made several novel contributions that extend far

beyond existing networked appliance and home networking architectures. We have allowed

174

devices to redundantly disperse framework and operational functions within the network; we

have allowed services to be more accurately discovered using high-level semantics; we have

allowed devices to automatically select devices that best execute the services they provide;

and we have provided mechanisms to manage device configurations and allowed them to

automatically self-adapt to any environmental changes that occur.

We have successfully implemented our framework and produced a prototype that successfully
demonstrates how our framework services work. The prototype implements our case study,

which is an intelligent home environment, and illustrates how individual functions provided
by devices can be dispersed within the network and used to create high-level applications.
Our approach is novel, which is reflected in the number of papers we have published (a full

list can be founding Appendix E). We have published papers on how to embed device

functions within the network as individual services; semantic discovery mechanisms; device

capability matching; and self-adaptation.

Our framework is designed to reduce costs. Currently we are required to upgrade and replace

devices to support new and emerging standards even though a large percentage of the

functions provided by new and old devices alike remain the same. Our framework allows

devices to evolve over time to include new functions that they where not initially designed to

do. For example a DVD player can automatically download a required codec when it is

presented with a media format it cannot process. Devices to date do not work in this way - if

you wish to use a multimedia format your player does not support then you have to buy a new

player. This is inefficient and costly to the consumer. Using our framework, conflicts like this

can be automatically detected and rectified. No other framework provides this functionality.

Overall this has been a successful project and has generated a lot of interest. It has allowed us

to explore how technological advances will progress and we believe that we are ahead of

current solutions. Although it is difficult to predict how technology will change it is clear that

networked appliances and home networking is becoming more sophisticated and it is

reasonable to say that IT will play a major role in how it is managed. Our framework provides

a viable solution that can be used to reduce the inherent complexity this will bring and

automatically mange the device configuration and management tasks.

175

REFERENCES

[Aberer 2003] Aberer, K., Cudre-Mauroux, P., Hauswirth, M., "The Chatty Web: Emergent

Semantics Through Gossiping, " In Proceedings of The 12th International World Wide

Web Conference, pp. 197-206, Budapest, Hungary, Springer, (May 2003).

[Abuelma'atti 2002a] Abuelma'atti, 0., Merabti, M. Askwith, B., "Interworking the Wireless

Domain, " In Proceedings of Third International Symposium in Communication

Systems, Networks and Digital Signal Processing (CSNDSP), pp. 344-347,

Staffordshire, UK, (July 2002).

[Abuelma'atti 2002b] Abuelma'atti, 0., Merabti, M. and Askwith, B., "A Wireless Networked

Appliances MAC Bridge, " In Proceedings of 5th IEEE International Workshop on

Networked Appliances, pp. 96-101, Liverpool, IEEE Computer Society, (October

2002).

[OSGi Alliance 2005] OSGi Alliance, "The OSGi Service Platform - Dynamic services for

networked devices, " http: //www. os ig org/, (Accessed: 2006).

[Andrews 2005] Andrews, T., et al., "Business Process Execution Language for Web Services

Version 1.1, " http: //www-128. ibm. com/developerworks/librarL/specification/ws-
bl2el/, (Accessed: 2006).

[Arora 2003] Arora, A. C., Pabla, K. S., "JXTA for J2ME (JXME) Project, "

http: //jxme ixta. org/, (Accessed: 2006).

[IEEE Standards Association 2005] IEEE Standards Association, "IEEE Standards

Association, " http: //standards. ieee. org/, (Accessed: 2006).

[Barba 2005] Barba, A., "HomeOnAir: WAP Access for a Home Automation Server, "

http: //icadc. cordis. lu/fen-

cgi/srchidadb? ACTION=D&CALLER=PROD IST&OF EP RPG=IST-1999-20138,

(Accessed: 2006).

[BBN 2004] BBN, "The ARPANET: Forerunner of Today's Internet, "

ho: //www. bbn. com/Historical Highlights/? name=Arpanet html&search=arpan

(Accessed: 2006).

[Berners-Lee 1989] Berners-Lee, T., "Information Management: A Proposal, "

htti): //www. w3. orgfflistoKy/1989/prop2sal. htmi . (Accessed: 2006).

[Berners-Lee 1998] Berners-Lee, T., "What the Semantic Web can represent, "

ho: //www. w3. org/DesignIssues/RDFnot. html, (Accessed: 2006).

[Berners-Lee 2000] Berners-Lee, T., "Weaving The Web, " Texere Publishing Limited,

London, ISBN: 1-58799-018-0, (2000).

[Berners-Lee 2001] Berners-Lee, T., Hendler, J. and Lassila, 0., "The Semantic Web, "

Scientific America, vol. 284 (5), pp. 34-43, (May 2001).

176

[BETSY 2005] BETSY, "BEing on Time Saves energY: Continuous Multimedia Experiences

on Networked Handheld Devices, "

http: //www. extra. research. philips. com/euproiects/betsy/index. htm, (Accessed: 2006).

[Bhatti 2002] Bhatti, G., Sahinoglu, Z., Peker, K. A., Guo, J. and Matsubara, F., "A TV-

Centric Home Network to Provide a Unified Access to UPnP and PLC Domains, " In

Proceedings of IEEE Fourth International Workshop on Networked Appliances

(IWNA), pp. 234-242, Gaithersburg, USA, IEEE Computer Society, (January 2002).

[Bianchi 2003] Bianchi, L., Babiloni, F., Cincotti, F., Arrivas, M., Bollero, P. and Marciani,

M. G., "Developing wearable bio-feedback systems: a general-purpose platform, "

IEEE Neural Systems and Rehabilitation Engineering, vol. 11 (2), pp. 1-3, (2003).

[Brandenburg 1999] Brandenburg, K., "MP3 and ACC Explained, " In Proceedings of The

Proceedings of the AES 17th International Conference on High-Quality Audio

Coding, Florence, Italy, (September 1999).

[Brooks 2002] Brooks, R. A., "Robot: The future of flesh and machines, " Penguin Books,

London, ISBN: 0140297189, (2002).

[Burk 1998] Burk, R., "Unix Unleashed, " Sams Publishing, Indianapolis, Indiana, USA, Third

Edition, ISBN: 0672314118, (1998).

[CEA 2000] CEA, "VHN Home Network Specification, " EIA/CEA-851, Consumer

Electronics Association, (2000).

[CEBus 2005] CEBus, "Bringing Interoperability to Home Networks, " http: //www. cebus. org,
(Accessed: 2006).

[CEPCA 2005] CEPCA, "Consumer Electronics Powerline Communication Alliance

(CEPCA), " http: //www. cepca. org/home. (Accessed: 2006).

[Chakraborty 2003] Chakraborty, D. and Joshi, A., "Anamika: Distributed Service

Composition Architecture for Pervasive Environments, " In Proceedings of The Ninth

Annual International Conference on Mobile Computing and Networking (MobiCom),

pp. 38-40, San Diego, California, USA, ACM Press, (September 2003).

[Chemishkian 2002] Chemishkian, S., "Building smart services for Smart Home, " In

Proceedings of IEEE 4th International Workshop on Networked Appliances (IWNA),

pp. 215-224, Gaithersburg, Maryland, USA, IEEE Computer Society, (January 2002).

[Chen 2003] Chen, L., Schadbolt, N. R., Goble, C., Tao, F., Cox, S. J., Puleston, C. and

Smart, P., "Towards a Knowledge-based Approach to Semantic Service

Composition, " In Proceedings of 2nd International Semantic Web Conference

(ISWC2003), pp. 319-334, Florida, USA, Springer, (October 2003).

[Cheng 2000] Cheng, L. and Marsic, I., "Lightweight Service Discovery for Mobile AdHoc

Networked Appliances, " In Proceedings of Second International Workshop on
Networked Appliances, Rutgers University, New Jersey, USA.

177

[Chen-Mie 1995] Chen-Mie, W., Dah-Jyh, P., Wen-Tsung, C. and Jian-Shing, H., "A high-

performance system for real-time video image compression applications, " IEEE

Transactions on Consumer Electronics, vol. 41 (1), pp. 125 - 131.

[CyCorp 2002] Cycorp, "Writing Efficient CycL: Some Concrete Suggestions, " Web Site,

OpenCyc. org, http: //www. opencyc. orgldoc/tut/? expand all=1, (Accessed: 17-11-

2005).

[Dabek 20011 Dabek, F., Brunskill, E., Kaashoek, F. and Karger, D., "Building Peer-to-Peer

Systems with Chord, a Distributed Lookup Service, " In Proceedings of The Eighth

Workshop on Hot Topics in Operating Systems, pp. 81-86, Germany, IEEE Computer

Society, (May 2001).

[Daconta 2003] Daconta, M. C., Obrst, L. J. and Smith, K. T., "The Semantic Web -A Guide

to the Future of XML, Web Services, and Knowledge Management, " Wiley

Publishing Inc., Indianapolis, Indiana, ISBN: 0471432571, (2003).

[DAML 2003a] DAML, "DAML+OIL, " Web Site, http: //www. daml. org, (Accessed: 2006).

[DAML 2003b] DAML, "DAML-S: Semantic Markup for Web Services, " Web Site, DAML

Org, http: //www. daml. org/services/daml-s/0.9/dami-s. pdf, (Accessed: 17-11-2005).

[DAML 2003c] DAML, "OWL-S 1.0 Release, " http: //www. daml. org/services/owl-s/1.0/,
(Accessed: 2006).

[DARPA 2003] DARPA, "Defence Advanced Research Projects Agency, "

http//www. darpa. miU, (Accessed: 2006).

[Dean 2005] Dean, T., "Network+ 2005 in Depth, " Thomson Course Technology PTR,

Boston, USA, ISBN: 1592007929, (2005).

[Decker 2000] Decker, S., Melnik, S., van Harmelen, V., Fensel, D., Klein, M., Broekstra, J.,

Erdmann, M. and Horrocks, I., "The Semantic Web: The Roles of XML and RDF, "

IEEE Internet Computing, vol. 4 (5), pp. 63-74, (September/October 2000).

[DHWG 2003] DHWG, "Digital Home White Paper, "

http: //www. dhwg. org resources/DHWG WhitePaper. pdf. (June 2003).

[Dimitrov 2000] Dimitrov, M., "XML Standards for Ontology Exchange, " In Proceedings of
Proceedings of OntoLex 2000: Ontologies and Lexical Knowledge Bases, pp. 153-

188, Sozopol, Bulgaria, (September 2000).

[DLNA 2004] DLNA, "DLNA: Overview and Vision, " Portland,

http: //www. dlna. org/about/DLNA Overview. pdf. (June 2006).

[Douglas 2004] Douglas, S. and Douglas, K., "Linux Timesaving Techniques for Dummies, "

John Wiley & Sons Publishing, New York, USA, ISBN: 0764571737, (2004).

[Dutta-Roy 1999] Dutta-Roy, A., "Networks for Homes, " IEEE Spectrum, vol. 36 (12), pp. 26-

33, (December 1999).

178

[Eberspacher 2004] Eberspacher, J., Schollmeier, R., Zols, S. and Kunzmann, G., "Structured

P2P Networks in Mobile and Fixed Environments, " In Proceedings of 2nd

International Working Conference on Performance Modelling and Evaluation of

Heterogeneous Networks, West Yorkshire, UK, (July 2004).

[Evans 2001] Evans, D., "In-home wireless networking: an entertainment perspective, " IEEE

Electronic and Communication Engineering, vol. 13 (5), pp. 213-219, (October 2001).

[Farquhar 1997] Farquhar, A., Fikes, R. and Rice, J., "The Ontolingua Server: a tool for

collaborative ontology construction, " International Journal of Human-Computer

Studies, vol. 46 (6), pp. 707-727, (June 1997).

[Feibel 2000] Feibel, W., "The Network Press Encyclopaedia of Networking, " Sybex,

London, 3rd Edition, ISBN: 0782122558.

[Fensel 2001] Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D. L. and Patel-

Schneider, P. F., "OIL: An Ontology Infrastructure for the Semantic Web, " IEEE

Intelligent Systems, vol. 16 (2), pp. 38-45, (March/April 2001).

[Fensel 2002] Fensel, D., Staab, S., Studer, R. and van Harmelen, F., "Towards the Semantic

Web: Ontology-driven Knowledge Management, " John Wiley & Sons, Ltd,

Chichester, West Sussex, England, ISBN: 0470848677, (2002).

[Fensel 2003] Fensel, D., Hendler, J., Lieberman, H. and Wahlster, W., "Spinning the

Semantic Web: Bringing the World Wide Web to Its Full Potential, " MIT Press,

London, England, ISBN: 0262062321, (2003).

[Fergus 2003a] Fergus, P., Mingkhwan, A., Merabti, M. and Hanneghan, M., "DiSUS: Mobile

Ad Hoc Network Unstructured Services, " In Proceedings of (PWC'2003) Personal

Wireless Communications, pp. 484-491, Venice, Italy, Springer, (September 2003).

[Fergus 2003b] Fergus, P., Mingkhwan, A., Merabti, M. and Hanneghan, M., "Distributed

Emergent Semantics in P2P Networks, " In Proceedings of (IKS'2003) Information

and Knowledge Sharing, pp. 75-82, Scottsdale, Arizona, USA, ACTA Press,

(November 2003).

[Fergus 2003c] Fergus, P., Mingkhwan, A., Merabti, M. and Hanneghan, M., "Capturing

Tacit Knowledge in P2P Networks, " In Proceedings of (PGNET'2003)The 4th EPSRC

Annual Postgraduate Symposium on the Convergence of Telecommunications,

Networking and Broadcasting, pp. 159-165, Liverpool, UK, (June 2003).

[Fergus 2004] Fergus, P., Merabti, M., Hanneghan, M. B. and Taleb-Bendiab, A.,

"Controlling Networked Devices in Ubiquitous Computing Environments using

Biofeedback, " In Proceedings of The 5th Annual PostGraduate Symposium on The

Convergence of Telecommunications, Networking and Broadcasting, pp. 91-96,

Liverpool, UK, John Moores University, (June 2004).

179

[Fergus 2005a] Fergus, P., Merabti, M., Hanneghan, M. B., Taleb-Bendiab, A. and
Minghwan, A., "A Semantic Framework for Self-Adaptive Networked Appliances, "

In Proceedings of (CCNC'05) IEEE Consumer Communications & Networking

Conference, pp. 229-234, Las Vegas, Nevada, USA, IEEE Computer Society,

(January 2005).

[Fergus 2005b] Fergus, P., "Welcome to the Wireless Age, " In Proceedings of Review, pp. 34 -
35, Liverpool John Moores University, (November).

[Fujii 2004] Fujii, K. and Suda, T., "Dynamic Service Composition Using Semantic

Information, " In Proceedings of 2nd International Conference on Service Oriented

Computing, pp. 39-48, NY, USA, ACM Press, (November 2004).

[Genesereth 1991] Genesereth, M. R., "Knowledge Interchange Format, " In Proceedings of

2nd International Conference on Principles of Knowledge Representation and

Reasoning (KR'91), pp. 599-600, Cambridge, Massachusetts, USA, (April 1991).

[Gillett 2000] Gillett, S. E., Lehr, W. H., Wroclawski, J. T. and Clark, D., "A Taxonomy of
Internet Appliances, " In Proceedings of (TPRC2000) Telecommunications Policy

Research Conference, Alexandria, VA, USA, (September 2000).

[Gillett 2001] Gillett, S. E., Lehr, W. H., Wroclawski, J. T. and Clark, D., "Do Appliances

Threaten Internet Innovation?, " IEEE Communications Magazine, vol. 39 (10), pp. 46-

51, (October 2001).

[Gnutella 20011 Gnutella, "The Gnutella Protocol Specification v0.4, "

http: //www9. limewire. com/developgr/gnutella protocol 0.4. pdf, (Accessed: 2006).

[Goldfarb 2002] Goldfarb, C. F. and Prescod, P., "XML Handbook, " Prentice Hill PTR,

Upper Saddle River, NJ 07458,4th Edition, ISBN: 0130651982, (2002).

[Gong 2001] Gong, L., "JXTA: A Network Programming Environment, " IEEE Internet

Computing, vol. 5 (3), pp. 88-95, (May/June 2001).

[Gradecki 2002] Gradecki, J. D., "Mastering JXTA: Building Java Peer-to-Peer

Applications, " Wiley Publishing, Inc., Indianapolis, Indiana, USA, ISBN:

0471250848, (2002).

[Le Grand 2001] Le Grand, B., Soto, M. and Dodds, D., "XML Topic Maps and Semantic

Web Mining, " In Proceedings of 12th European Conference on Machine

Learning/Sth European Conference on Principles and Practice of Knowledge

Discovery in Databases (ECML/PKDD -2001), Freiburg, Germany, (September

2001).

[Grokster 2005] Grokster, "Grokster, " httu: //www. grokster. com/. (Accessed: 2006).

[Gruber 1993] Gruber, T. R., "A translation approach to portable ontology specifications, "

Knowledge Acquisition, vol. 5 (2), pp. 199-220, (June 1993).

180

[Haarslev 2001] Haarslev, V. and Moller, R., "Description of the RACER System and its

Applications, " In Proceedings of International Workshop on description Logics,

pp. 131-141, Stanford, USA, (August 2001).

[Haggerty 2005] Haggerty, J., Shi, Q., Fergus, P. and Merabti, M., "Data Authentication and

Trust within Distributed Intrusion Detection System Inter-Component

Communications, " In Proceedings of (EC2ND'05) Ist European Conference on

Computer Network Defence, pp. 197-206, University of Glamorgan, UK, Springer,

(December 2005).

[Halepovic 2002] Halepovic, E. and Deters, R., "Building a P2P Forum System with JXTA, "

In Proceedings of Second International Conference on Peer-to-Peer Computing

(P2P'02), pp. 41-48, Linkoping, Sweden, IEEE Computer Society, (September 2002).

[HAVI 2003] HAVI, "HAVI, the AN digital network revolution, " San Mamon, CA,

http: //www. havi. org//pdf/white. pdf, (2003).

[Heflin 1998] Heflin, J., "Semantic Search - The SHOE Search Engine, " Web Site,

http: //www. cs. umd. edu, http: //www cs umd edu/projects/plus/SHOE/search/
(Accessed: 04-08).

[Heflin 2000] Heflin, J. and Hendler, J., "Dynamic Ontologies on the Web, " In Proceedings of
Seventeenth National Conference on Artificial Intelligence (AAAI-2000), pp. 443-449,

Austin, Texas, U. S. A., AAAI/MIT, (July 2000).

[Heflin 2003] Heflin, J. and Huhns, M. N., "The Zen of the Web, " IEEE Internet Computing,

vol. 7 (5), pp. 30-33, (September/October 2003).

[HES 2005] HES-Standards, "Home Electronic System Standards, " ISO/IEC JTC 1/SC

25/WG 1, www. hes-standards. org. (Accessed: 2005).

[Hightower 2002] Hightower, R. and Lesiecki, N., "Java Tools for Extreme Programming:

Mastering Open Source Tools Including Ant, JUnit, and Cactus, " John Wiley & Sons,

Inc., New York, ISBN: 0-471-20708-X, (2002).

[Future Home 2005] Future Home, "The Future Home Project, " http: //future-home. org,
(Accessed: 2006).

[HomeTalk 2005] HomeTalk, "The HomeTalk Project, " Web Site, http: //www. hometalk. or
(Accessed: 2006).

[Horridge 2004] Horridge, M., Knublauch, H., Rector, A., Stevens, R. and Wroe, C., "A

Practical Guide To Building OWL Ontologies Using the Protege-OWL Plugin and

CO-ODE Tools Edition 1.0, " Tutorial, University of Manchester, University of

Stanford, Manchester, hM: //www. c-0-

ode. orgZr-esour-ces/tutorials/ProtegeOWLTutorial. R df, (August 2004).

[Horrocks 2005] Horrocks, I., "The FaCT System, "

http: //www. cs. man. ac. uk/-horrocks/FaCT/. (Accessed: 2006).

181

[HP Labs 20041 HP Labs., "Jena -A Semantic Web Framework for Java, "

http: //na. sourceforge. net, (Accessed: 2006).

[IETF 2004] IETF, "Session Initiation Protocol (SIP), " http: //www. ietforglhtml. charters/sip

charter. html, (Accessed: 2006).

[iMesh Inc 2005] iMesh Inc., "iMesh Professional 5.0, " http: //www. imesh. com/, (Accessed:

2006).

[Sun Microsystems Inc. 2005a] Sun Microsystems Inc., "JXTA v2.3. x: Java Programmer's

Guide, " http: //www jxta. org/docs/JxtaPro Gg uide v2.3. pdf, (Accessed: 2006).

[Sun Microsystems Inc. 2005b] Sun Microsystems Inc., "Java Media Framework, "

http//iava. sun. com/products/java-media/imf/, (Accessed: 2006).

[Sun Microsystems Inc. 2005c] Sun Microsystems Inc., "JXTA 2.3.1, " http: //www. ixta. org/,

(Accessed: 2006).

[Intel 2003] Intel, "Intel Digital Homes, " http: //www. intel. com/technology/digitalhome/,
(Accessed: 2006).

[ISO/IEC 2001] ISO/IEC, "Interconnection of Information Technology Equipment: Home

Electronic System, " ISO/IEC JTC 1/SC 25/WG 1, (2001).

[Jacob 2004] Jacob, M., "RDF in the Semantic Hifi European project, " In Proceedings of Ist

Italian Workshop on Semantic Web Applications and Perspectives (SWAP), pp. 50-54,

Ancona, Italy, (December 2004).

[JXTA 2001] JXTA, "Project JXTA: An Open, Innovative Collaboration, "

hqR: //www. jxta. org[project/www/docs/Opqnlnnovative. pd f, (2001).

[Karp 2005] Karp, P. D., Chaudhri, V. K. and Thomere, J., "XOL: XML-Based Ontology

Language, " http: //www. ai. sri. com/pkarp/xol/, (Accessed: 2006).

[Kent 2005] Kent, R. E., "Ontology Markup Language, "

httg: //www. ontologos. org/OML/OML%200.3. htm, (Accessed: 2006).

[Klyne 2004] Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler, M. H. and

Tran, L., "Composite Capability/Preference Profiles (CC/PP): Structure and

Vocabularies 1.0, " http: //www. w3. or /TR/2004/REC-CCPP-struct-vocab-20040 11 5/,

(Accessed: 2006).

[Kolberg 2002] Kolberg, M., Magill, E., Marples, D. and Tsang, S., "Feature Interactions in

Services for Internet Personal Appliances, " In Proceedings of (ICC'02) IEEE

International Conference on Communications, pp. 2613-2618, New York, USA, IEEE

Computer Society, (April 2002).

[Kolberg 2003] Kolberg, M., Magill, E. H. and Wilson, M., "Compatibility Issues between

Services Supporting Networked Appliances, " IEEE Communications Magazine,

vol. 41 (11), pp. 136 - 147, (November 2003).

182

[Koumpis 2005] Koumpis, C., Hanna, L., Anderson, M. and Johansson, M., "Beyond wireless

cable-replacement for industrial control and monitoring: The RUNES approach, " In

Proceedings of Profibus International Conference, Warwickshire, UK, (June 2005).

[Kumar 2003] Kumar, R., Poladian, V., Geenberg, I., Messer, A. and Milojicic, D., "Selecting

Devices for Aggregation, " In Proceedings of (WMCSA'03) Fifth IEEE Workshop on
Mobile Computing Systems and Applications, pp. 150-159, Monterey, California,

USA, IEEE Computer Society, (October 2003).

[Langton 1996] Langton, C. G., "Artificial Life, " "The Philosophy of Artificial Life. " Edited

by M. A. Boden. New York, Oxford University Press Inc.: 39-93.

[Lea 2000] Lea, R., Gibbs, S., Dara-Abrams, A. and Eytchison, E., "Networking home

entertainment devices with HAVi, " IEEE Computer, vol. 33 (9), pp. 35 - 43, (2000).

[Lee 2002] Lee, S. and Smelser, T., "Jabber Programming, " M&T Books, Hungry Minds

Inc.,, 909 Third Avenue, New York, NY 10022, ISBN: 0-7645-4934-0, (2002).

[Leymann 2004] Leymann, F., "Web Services Flow Language (WSFL) Version 1.0, "

http: //www-306. ibm. com/software/solutions/webservices/pdf/WSFL. Rdf (Accessed:

2006).

[Liu 2004] Liu, J. and Issarny, V., "QoS-Aware Service Location in Mobile Ad-Hoc

Networks, " In Proceedings of (MDM'04) IEEE International Conference on Mobile

Data Management, pp. 224-235, Berkeley, California, USA, IEEE Computer Society,

(January 2004).

[Lime Wire LLC 2005] Lime Wire LLC, "LimeWire, "

http: //www. limewire. com/english/content/home. shtml. (Accessed: 2006).

[Madhusudan 2004] Madhusudan, T. and Uttamisingh, N., "A declarative approach to

composing web services in dynamic environments, " Decision Support Systems, vol. In

Press.

[Maedche 2003] Maedche, A. and Staab, S., "Services on the Move - Towards P2P-Enabled

Semantic Web Services, " In Proceedings of The 1e International Conference on
Information Technology and Travel & Tourism, pp. 124-133, Helsinki, Springer,

(January 2003).

[Marples 20011 Marples, D. and Kriens, P., "The Open Services Gateway Initiative: An

Introductory Overview, " IEEE Communications Magazine, vol. 39 (12), pp. 110-114,

(December 2001).

[Marshall 20011 Marshall, P., "Home networking: a TV perspective, " IEEE Electronic and

Communication Engineering, vol. 13 (5), pp. 209-212, (October 2001).

[McGuinness 2000] McGuinness, D. L., Fikes, R., Rice, J. and Wilder, S., "An Environment

for Merging and Testing Large Ontologies, " In Proceedings of Proceedings of the

Seventh International Conference on Principles of Knowledge Representation and

183

Reasoning (KR2000), pp. 483-493, Breckenridge, Colarado, USA, Morgan Kaufmann

Pubishers, (April 2000).

[McGuinness 2001] McGuinness, D. L., "Ontologies Come of Age, " "The Semantic Web:

Why, What, How. " Edited by. London, England, MIT Press.

[Mcllraith 2001] Mcllraith, S. A., Son, T. C. and Zeng, H., "Semantic Web Services, " IEEE

Intelligent Systems, vol. 16 (2), pp. 46-53, (March/April 2001).

[Mcllraith 2003] Mcllraith, S. A. and Martin, D. L., "Bringing semantics to Web services, "

IEEE Intelligent Systems, vol. 18 (1), pp. 90-93, (Jannuary/February 2003).

[Medjahed 2003] Medjahed, B., Bouguettaya, A. and Elmagarmid, A. K., "Composing Web

Services on the Semantic Web, " The International Journal of Very Large Data Bases,

vol. 12 (4), pp. 333-351, (November 2003).

[Meessen 2004] Meessen, J., Parisot, C., Lebarz, C., Delaigle, J. F. and Nicholson, D., "IST

WCAM Project : Smart and Secure Video Coding Based on Content Detection, " In

Proceedings of European Workshop on the Integration of Knowledge, Semantics and
Digital Media Technology, London, U. K., (November 2004).

[Microsoft Corp. 2003] Microsoft Corp., "UPnP Device Architecture 1.0: Service

Description, " http: //www. upnp. org(resources/documents/C1eanUPnPDA101-
20031202s. pdf, (December 2003).

[Microsoft Corp. 2005] Microsoft Corp., "UPnP Forum, " http: //www. upnp. or¢/, (Accessed:

2006).

[Milanovic 2004] Milanovic, M. and Malek, M., "Current Solutions for Web Service

Composition, " Internet Computing, vol. 80 (6), pp. 51-59, (Nov/Dec 2004).

[Millar 2004] Millar, W., Collingridge, R. J. and Ward, D. A., "Consumer vehicle telematics -
an emerging market where web Services offer benefits, " BT Technology. Journal,

vol. 22 (1), pp. 99-106, (March 2004).

[Miller 2001] Miller, B., Nixon, T., Tai, C. and Wood, M. D., "Home Networking with
Universal Plug and Play, " IEEE Communications Magazine, vol. 39 (12), pp. 104-109,

(2001).

[Mingkhwan 2002] Mingkhwan, A., Merabti, M. and Askwith, B., "Interoperability of
Structured and Unstructured Services in Personal Mobility Information Space, " In

Proceedings of European Wireless 2002, Florence, Italy, (2002).

[Mingkhwan 2003] Mingkhwan, A., Merabti, M., Askwith, B. and Hanneghan, M., "Global

Wireless Framework, " In Proceedings of European Personal Mobile Communications

Conference (EPMCC'03), Glasgow, Scotland, (2003).

[Mingkhwan 2004] Mingkhwan, A., Fergus, P., Abuelma'atti, 0. and Merabti, M., "Implicit

Functionality: Dynamic Services Composition for Home Networked Appliances, " In

184

Proceedings of (ICC'2004) IEEE International Conference on Communications,

pp. 43-47, Paris, France, IEEE Computer Society, (June 2004).

[Mingkhwan 2005] Mingkhwan, A., Fergus, P., Abuelma'atti, 0., Merabti, M., Askwith, B.

and Hanneghan, M., "Dynamic Service Composition in Home Appliance Networks, "

(MTAP) Multimedia Tools and Applications: A Special Issue on Advances in

Consumer Communications and Networking, vol. 31 (1), (December 2006).

[Minoh 2001] Minoh, M. and Kamae, T., "Networked Appliances and their Peer-to-Peer

Architecture AMIDEN, " IEEE Communications Magazine, vol. 39 (10), pp. 80-84,

(2001).

[Mitra 2000] Mitra, P., Wiederhold, G. and Kersten, M. L., "A Graph-Oriented Model for

Artriculation of Ontology Interdependencies, " In Proceedings of 7th International

Conference on Extending Database Technology, pp. 80-100, Konstanz, Germany,

Springer, (March 2000).

[Morle 2003] Morle, P., Morris, A. and Hemming, N., "KaZaa, "

http: //www. zeropaid. com/kazaalite/, (Accessed: 2006).

[Moyer 2000] Moyer, S., Marples, D., Tsang, S. and Ghosh, A., "Service Portability of
Networked Appliances, " IEEE Communications Magazine, vol. 40 (1), pp. 116-121,

(January 2000).

[Murhammer 1998] Murhammer, W., et al., "TCP/IP Tutorial and Technical Overview, " IBM

Redbooks, Research Triangle Park, NC, 27709-2195,6th Edition, ISBN:

0738412007.

[Naisbitt 1991] Naisbitt, J. and Aburdene, P., "Megatrends 2000: New directions for

tomorrow, " Avon Books, Inc., New York, ISBN: 0380704374, (1991).

[Narayanan 2002] Narayanan, S. and Mcllraith, S. A., "Simulation, Verification and
Automated Composition of Web Services, " In Proceedings of Proceedings of the

eleventh international conference on World Wide Web, pp. 77-88, Honolulu, Hawaii,

USA, ACM Press, (May 2002).

[StreamCast Networks 2005] StreamCast Networks, "Morpheus, " http: //morpheus. com/,
(Accessed: 2005).

[Nikolova 2003] Nikolova, M., Meijs, F. and Voorwinden, P., "Remote mobile control of
home appliances, " IEEE Transactions on Consumer Electronics, vol. 49 (1), pp. 123 -
127, (2003).

[Noy 2000] Noy, N. F. and Musen, M. A., "PROMPT: Algorithm and Tool for Automated

Ontology Merging and Alignment, " In Proceedings of The Seventeenth National

Conference on Artificial Intelligence (AAAI'00), pp. 450-455, Austin, Texas, USA.,

AAAI Press/The MIT Press, (July 2000).

185

[Oaks 2002] Oaks, S., Traversat, B. and Gong, L., "JXTA in a Nutshell, " O'Reilly Associates,

ISBN: 0-596-00236-x, (2002).

[Oasis 2005] Oasis, "UDDI, " http: //www. uddi. oriz (Accessed: 2006).

[Oram 2001] Oram, A., Minar, N. and Hedlund, M., "Peer-to-Peer: Harnessing the Power of

Disruptive Technologies, " O'Reilly, 1005, Gravenstein Highway North, Sebastopol,

CA 95472, ISBN: 0-596-00110-X, (2001).

[Palensky 2000] Palensky, P. and Sauter, T., "Modular Software Architecture for Networked

Appliances, " In Proceedings of (IWNA'02) 2nd International Workshop on Networked

Appliances, Rutgers University, IEEE Computer Society.

[Palet 2004a] Palet, J., "6Power: How to reach all the planets with IP, " In Proceedings of

IEEE International Symposium on Applications and the Internet Workshop (SAINT),

pp. 120-126, Tokyo, Japan, IEEE Computer Society, (January 2004).

[Palet 2004b] Palet, J., Bano, L., Herandez, F. J., Marin, I., Manzano, D. M. and Moreno, J. J.

P., "PLC-Based Home Automation System Completed, " Spain,

http: //www. 6power. org/opgn/6power pu d4 10 vl 4. pdf, (February 2004).

[Paolucci 2002a] Paolucci, M., Kawamura, T., Payne, T. R. and Sycara, K., "Semantic

Matching of Web Services Capabilities, " In Proceedings of The First International

Semantic Web Conference (ISWC), pp. 333-347, Sardinia, Italy, Springer, (June 2002).

[Paolucci 2002b] Paolucci, M., Kawamura, T., Payne, T. R. and Sycara, K., "Importing the

Semantic Web in UDDI, " In Proceedings of Web Services, E-Business, and the

Semantic Web - CAiSE 2002 International Workshop (WES'02), pp. 225-236, Toronto,

Ontario, Canada, Springer-Verlag, (May 2002).

[Paolucci 2003] Paolucci, M., Sycara, K. and Kawamura, T., "Delivering Semantic Web

Services, " In Proceedings of The Twelfth International World Wide Web Conference,

pp. 111-118, Budapest, Hungary, (May 2003).

[Parameswaran 2001] Parameswaran, M., Susarla, A. and Whinston, A. B., "P2P Networking:

An information-Sharing Alternative., " IEEE Computer, vol. 34 (7), pp. 31-38, (2001).

[Pattenden 2001] Pattenden, S., Colebrook, P., Ungar, S., Borghese, F., Francon, C. and
Ambrosio, R., "Architecture for HomeGate, the residential gateway (AHRG), "

http: //hes-standards. or c/SC25 WG1 N0912. doc, (2001).

[Free Peers 2005] Free Peers, "BearShare, " http: //www. bearshare. com/, (Accessed: 2006).

[Poltavets 2005] Poltavets, Y., Part, Y. and Kim, D., "IEEE1394 to UPnP Software Bridge

Structure, " In Proceedings of IEEE International Conference on Consumer

Electronics (ICCE), pp. 375-376, Las Vegas, Nevada, USA, IEEE Computer Society,

(January 2005).

186

[Qu 2001] Qu, C. and Nejdl, W., "Exploring JXTASearch for P2P Learning Resource

Discovery, " Learning Lab Lower Saxony, Hannover,

http: //citeseer. ist. psu. edu/guOlexploring. html, (November 2001).

[Ratnasamy 2001] Ratnasamy, S., Fancis, P., Handley, M. and Karp, R., "A Scalable Content-

Addressable Network, " In Proceedings of ACM SIGCOMM annual conference of the

Special Interest Group on Data Communications, pp. 161-172, San Diego, California,

USA, ACM Press, (August 2001).

[Roberts 1967] Roberts, L. G., "Multiple Computer Networks and Intercomputer

Communication, " In Proceedings of Proceedings of the ACM symposium on
Operating System Principles, pp. 3.1-3.6, ACM Press, (January 1967).

[Rose 2001] Rose, B., "Home Networks: A Standards Perspective, " IEEE Communications

Magazine, vol. 39 (12), pp. 78-85, (December 2001).

[Rowstron 20011 Rowstron, A. and Druschel, P., "Pastry: Scalable, distributed object location

and routing for large-scale peer-to-peer systems, " In Proceedings of IFIP/ACM

International Conference on Distributed Systems Platforms (Middleware), pp. 329-

350, Heidelberg, Germany, ACM Press, (November 2001).

[Rumsey 2003] Rumsey, D., "Statistics for Dummies, " Wiley Publishing, Inc., Hoboken, NJ,

07030, ISBN: 0764554239.

[Shareaza 2005] Shareaza Development Team, "Shareaza, " Web Site, Shareaza Open Source

Development Team, http: //www. shareaza. com/, (Accessed: 2006).

[Shigeoka 2002] Shigeoka, I., "Instant Messaging in Java - The Jabber Protocols, " Manning

Publications Co., 209 Bruce Park Avenue, Greenwich, CT 06830, ISBN: 1-930110-

46-4.

[Siebes 2002] Siebes, R. and van Harmelen, F., "Ranking Agent Statements for Building

Evolving Ontologies, " In Proceedings of Workshop on Meaning Negotiation, in

conjunction with the Eighteenth National Conference on Artificial Intelligence,

Emonton, Alberta, Canada, (July 2002).

[Sirin 2003] Sirin, E., Hendler, J. A. and Parasia, B., "Semi-automatic Composition of Web

Services using Semantic Descriptions, " In Proceedings of (WSMAI'03) Proceedings

of the Ist Workshop on Web Services: Modelling, Architecture and Infrastructure,

pp. 17-24, Angers, France, ICEIS Press, (April 2003).

[Siuru 2000] Siuru, B., "Appliances on the Internet, " Poptronics, vol. 1, pp. 41-44, (June

2000).

[Smith 2000] Smith, E., Dominguez, M. and Merabti, M., "Component Support Services for

Heterogeneous Networked Appliances, " In Proceedings of (IWNA'02) 2nd IEEE

International Workshop on Networked Appliances, Rutgers University, IEEE

Computer Society.

187

[Smith 2005] Smith, M. K., Welty, C. and McGuinness, D. L., "OWL Web Ontology

Language, " http: //www. w3. org/TR/owl-guide/, (Accessed: 2006).

[Stephens 2001] Stephens, L. M. and Huhns, M. N., "Consensus Ontologies - Reconciling the
Semantics of Web Pages and Agents, " IEEE Internet Computing, vol. 5 (5), pp. 92-95,
(Sep/Oct 2001).

[Stephens 2003] Stephens, L. M., Gangam, A. K. and Huhns, M. N., "Constructing Consensus

Ontologies for the Semantic Web: A Conceptual Approach, " Klewers Academic
Publishers, (2003).

[Sycara 2003] Sycara, K., Paolucci, M., Ankolekar, A. and Srinivasan, N., "Automated

discovery, interaction and composition of Semantic Web services, " Web Semantics,

vol. 1 (1), pp. 27-46, (December 2003).

[JINI Technology 2005] JINI Technology, "JINI Technology, " Web Page,

http: //www. jini. or /, (Accessed: 2006).

[France Telecom 2005] France Telecom, "ePerSpace: Towards the era of personal services at
home and everywhere, " http: //www. ist-eperspace. org/, (Accessed: 2006).

[Traversat 2002] Traversat, B., Abdelaziz, M., Duigou, M., Hugly, J., Pouyoul, E. and
Yeager, B., "Project JXTA Virtual Network, " 901 San Antonio Road, Palo Alto, CA

94303, USA, ft: //www. ixta. orglpro-ject/www/docs/JXTAprotocols 01nov02. pdf,
(October 2002).

[Traversat 2003] Traversat, B., Abdelaziz, M. and Pouyoul, E., "Project JXTA: A Loosely-

Consistent DHT Rendezvous Walker, " http: //www. xta. org/docs/jxta-dht. Rdf, (2003).

[Travert 20041 Travert, S. and Lemonier, M., "The MediaNet Project, " In Proceedings of 5th
International Workshop on Image Analysis for Multimedia Interactive Services,

Lisboa, Portugal, (April 2004).

[Tsarkov 2005] Tsarkov, D. and Honocks, I., "FaCT++, " httn: //owl. man. ac. uk/factplusplus/.
(Accessed: 2006).

[Ungar 2000] Ungar, S. G., "The VHN Network, " In Proceedings of IEEE Second

International Workshop on Networked Appliances, IWNA'2000, Rutgers University,

(2000).

[Stanford University 2005x] Stanford University, "Protege OWL Plugin API, "

http: //protege. stanford. edu/plugins/owl/api/index. html. (Accessed: 2006).

[Stanford University 2005b] Stanford University, "Using the Protege-OWL Reasoning API, "

http: //protege. stanford. edu/plugins/owl/api/ReasonerAPIExatnples html (Accessed:

2006).

[Uschold 1996] Uschold, M. and Gruninger, M., "Ontologies: Principles, Methods and
Applications, " The Knowledge Engineering Review, vol. 11 (2), pp. 93-155, (June

1996).

188

[VESA 2005] VESA, "Video Electronics Standards Association, " http: //www. vesa. org,
(Accessed: 2005).

[W3C 2004] W3C, "OWL Web Ontology Language Guide, " Web Site, W3C,
http: //www. w3. or R/owl- uide/, (Accessed: 2006).

[W3C 2005] W3C, "World Wide Web Consortium, " http: //www. w3c. org, (Accessed: 2006).

[Waterhouse 2001] Waterhouse, S., "JXTA Search: Distributed Search for Distributed

Networks, " http: //search. ixta. org/JXTAsearch. pdf, (Accessed: 2006).
[WebMethods 2003] WebMethods, "GLUE, "

http: //www. webmethods. com/meta/default/folder/0000005452, (Accessed: 2006).

[Williams 2001] Williams, L. V., "CEA-851 versatile home network (VHN)-a home intranet

backbone for inter-cluster connectivity using IEEE 1394 and IP, " In Proceedings of
International Conference on Consumer Electronics, ICCE2001, pp. 230 - 231, (2001).

[Wilson 2002] Wilson, B. J., "JXTA, " New Riders Publishing, 201 West 103rd Street,

Indianapolis, Indiana 46290, ISBN: 0734712344.

[Zahariadis 2002] Zahariadis, T. and Pramataris, K., "Multimedia home networks: standards

and interfaces, " Computer Standards and Interfaces, vol. 24 (5), pp. 425-235, (2002).

[Zahariadis 2003] Zahariadis, T. B., "Home Networking Technologies and Standards, " Artech

House, Inc., Boston - London, ISBN: 1580536484, (2003).

189

APPENDIX A: NASUF USE CASE DIAGRAMS

Stet Device

PJ*Ih Pf
Services

PeC(

CQnrw. d Device
to the Network

Publish Device
capatoilly

Adveitisemerif

Device

Publish k*ementakion
Services

Find Core
Services

Realise
Context

Figure A. 1 Start Device

Description:

This Use Case illustrates a typical scenario when a Device is initially switched on within this
framework.

Conned Device To
The Network

Aufhx«tkation
USeý

c<U1Ckude» i

Lo* To sslnciudess
------ Putýlish Public

Network Key
Device

ýýk1CIude»

Get Certificate

Certificate
Authoriy

Figure A. 2 Connect Device to Network

190

Description:

This Use Case illustrates how a device is connected to the network within this framework.

Create Device Ca *b y
Adveftiseme 1

Hardware P sh Device
cep" y Capsbitr Adveºtiýertýýt
Nbtadata

Netwoºtc
Cede Device Ca{)ebey

Cefabey Metadda acwe

Device

Software
Capabity

Figure A. 3 Create Device Capability Model

Description:

This Use Case illustrates how the capabilities of the device are described in terms of the
devices hardware, software and network capabilities within this framework.

Publish Device capablly
Adve%tiaament

Create Device
Cap" y

Advertisoment

«N1ekide»

Publish
Adverts anent

Context
Manager
Service

Figure A. 4 Publish Create Device Capability Model

Description:

This Use Case illustrates how a device publishes a capability advertisement locally and

globally within this framework.

191

Create P(-, -i ' i-i vice
Adveitisrm-nt

Service Class ----- Add Semar*ic -,
Advertisement Mockl

«InCkrde>a

Create Peer Service Service Mnpee nerta ion
Advertisement Advertisement

Device

Service Specification (hCIUde»
------------------------------ J

Figure A. 5 Create Peer Service Advertisement

Description:

This Use Case illustrates how Peer Service Advertisements are created within this framework.

Puldsh Peer
Services

Coasted Device to the
Network

ý «MýCkJde»

4ndude»
Pubhh Peet

Crede Peer Service

Services Advaita merts

Context
µß tI «Mxkjdes
Sel vice

PtAAsh br4)km t~
Services

Figure A. 6 Publish Peer Service

Description:

This Use Case illustrates how peer services are published locally and remotely within the P2P

network in this framework.

192

Create Semantic Service
Description

Create
Service
Profile

Create
Service

Device
rocess
Model

Create
Service

Grounding

«Include» 1,

Map Service
hiterface

Figure A. 7 Create Semantic Service Models

Description:

This Use Case illustrates how semantic service descriptions are created by devices, which are
explicitly mapped to service interfaces.

Find Ca e' wes

Get Core Seivlce
Descriptor Fie

<M ýyýyyp!!

Extract Core seance
Descrpta

lflý
Aver

Discover Peer
Service

Figure A. 8 Find Core Services

Description:

This Use Case illustrates how a device finds core service advertisements located on the device

and distributed within the P2P network.

193

Discover Peer Service

acInslude»
Discover Peer ------ Authenticate
Set vice Localy Service

X/(

Discover Peer «Include» I
Service Remotely --------------- J

Aver

Bind to Peer
Service

Device

Figure A. 9 Discover Peer Service

Description:

This Use Case illustrates how peer services are discovered within this framework.

Invoke Peer Service

Extract Service
Advertisement d ý9 e

s<Include» i
i,

Check Invocation .ý Extract Direct
Mode Endpoint

Device
ir

f' e<Include»

Mid to XeCt

Endpoint ------ Invoke Service
cOrlude all I

(Include)'

Sind to Composite
EndpQ01 Encrypt Data

«Include» <dnckýdea> ,

«Inckude»
Send Service

Extract Composite Adveilisemellt &1d
Erwipoint Partymeter Array

Figure A. 10 Invoke Peer Service

Description:

194

This Use Case illustrates how peer services are invoked within this framework.

Process service
Requep

Process 5«vice
Oeawpt Data

E*ad oft
Requelf from Serwia:

Pow

" 19arc4, as»

<dncluasss ".
ý.

Malich Service Request 4-rCk4ss Cowde
1cPEswrIService ----------

ý-------- Match
Descr~ IOPEt

' <QICM1d0» iý
i, .» akýcMýder>

<4indudsss
Retrieve Se vice Abed

------- --

<Add

to Un4 n wn
DescroAOn Match Term T& Ie

Figure A. 11 Process Service Request

Description:

This Use Case illustrates how a device processes a service request received from the P2P
network within this framework.

Perform Semantic
kAeroperM y

Find Concept
----- Encrypt Date

«Innlude»

ý <dndude»

Evolve Concept --- Catcepl

Mdchhq
Alga hm

Chedk Rdatioýhip
Between Terms

Figure A. 12 Perform Semantic Interoperability

Description:

This Use Case illustrates how the matching algorithms perform semantic interoperability
between terms that are syntactically different but semantically equivalent.

195

Abstrad Match

Extad
10PEs

<dndudesa

Match SR IOPEs
wkh SD KVEs

Peer 1

' <4ndude»

Add to lJnknown
Tam TaMe

Figure A. 13 Perform Abstract Match

Description:

This Use Case illustrates how the abstract matching algorithm matches the Inputs, Outputs,
Preconditions, and Effects (IOPEs) found within both the service request and the service
description within this framework.

c«naete
MMMM
Mott"

Conaele MOAch

44 tUdess
r----------

Pw}Gf m Sawmribc

ktergmabdti

eurgd
Sign6Aue

sdnduds»

Exhad iefersTö
Elend lot IOPE

<a, duaý»

Find Atomic
Process

Figure A. 14 Perform Concrete Match

Description:

This Use Case illustrates how the concrete matching algorithm matches the Inputs and
Outputs found in the service request with concrete bindings found in the service interface
within this framework.

196

Buld 5igndtwe

Concrete

Matching
AkWIh i

Exract Operation None

Perform Semantic:
klteroperabilty

Extract parameters

Extract Parameter Order
ch Type NNvrmatiQn

«knckjde»

41

Gele SignaRtxe ------- Find kýter mecNary

cAnch)»
SerVIGe3

Figure A. 15 Build Signature

Description:

This Use Case illustrates how signatures are built to determine if a concrete match has been
found within this framework.

Find kltermeäa'y Service

Extract Conflicting 10
None and Type

K41nckxieaa

cclnckude» Resolve 10

Extract Required 1cß
Conf id Narn and Type

Concrete i
(q ckJde}) ýýý sclnclude»

McRclin9
Alwthm

Cremte Service Discorar Peep
Request Ser vice

Create Extended Aýx1 Exteroded klerfece
kýterface File ----- Service Advertisemmt

Figure A. 16 Find Intermediary Service

Description:

This Use Case illustrates how intermediary services are found and how extended interface
files are created within this framework.

197

APPENDIX B: NASUF CLASS DIAGRAMS

+addApplicationPeerService(service: IAbstractService) : void
+addCoreService(service : IAbstractService) : void
+bindToService(serviceSpec : String, listener : IEndPointListener) : IEndPoint
+changePeerGroup(peerGroup: Peer Group) : void
+cleanUp() : void
+discoverApplicationPeerService(id : int, dem : String, pscm : String) : void
+discoverApplicationPeerService(msg : IQueryMsg) : void
+discoverCoreServiceO : IAbstractService[]

+getApplicationPeerServicesO : IAbstractService[]
+getDependentServices() : IAbstractService[]
+getPeerGroupo : IPeerGroup
+getCoreServicesO : IAbstractService[]
+getDCM() : String
+registerService(serviceName : String) : void
+removeAllApplicationPeerServicesO : void
+removeAIlCoreServicesQ : void
+removeApplicationPeerService(service : IAbstractService) : void
+removeCoreService(service : IAbstractService) : void
+sendCommand(command: String, endPoint : IEndPoint) : void
+sendResolverQuery(id : String, msg : IQueryMsg) : void
+sendResolverResponse(source: String, response : IQueryMsg) : void
+setDecapResuft(resuft : IQueryMsg) : void
+startCoreServicesO: void
+startServices() : void
+stopManager() : void
+unregisterService(serviceName : String) : void

-coreServices : IAbs r actService[]

-appicationServices : IAbstractService[]

-peerGroup: Peet-Group

-resolverService : IAbstractService

Figure B. 1 Distributed Semantic Unstructured Services Manager

Description:
This Class Diagram illustrates the classes used to implement Distributed Semantic
Unstructured Services within this framework.

198

+getAdvertisementType() : String
+getDescr ption() : String
+getModulelD() : IModulelD
+getNameo : String

; ementType(advType : String) : void
ion(descriution : Siring) : void
)(moduleID : IlAodulelD) : void
ame : String) : void

Strinq

serviceClassAdv : ICIassAdvertisement

-servicelmplAdv : IServicehnplAdvertisement
serviceSpecAdv : IServiceSpecAdveitisement

DistrESServiee SISMService

+cleanUp() : void
+getServiesClassAdvertisement(: Advertisement
+getServiceSpecAdvertisemerd() : (Advertisement
+getServicelmplAdvertisement() : (Advertisement
+getServiceDescriptionQ void
+publishService(service Object) : void
+removeService(service Object) : void
+startService() : void

+stopServiceO : void

--------------J

DECAPServsce

Figure B. 2 Peer Service

Description:

This Class Diagram illustrates the required Peer Service class, including its associated
subclasses which must be used within this framework.

IEndPoint IEndPointListener

+closeO : buvl" an +endPointMsgEvent(msgEvent : IEndPointMsgEvent) : void
+getAdveitisementO : (Advertisement
+getNameO : String

+getlDO : String

I

1 17
IOutpuREndPoint

IlnputEndPoint

+poll(irterval : int) : IEndPointMessage
+isClosed() : boolean I I+waitForMessage() : IEndPoint
+send(message : IEndPointMessage) : boolean +endPointMsgEvern(msgEvent : IEndPointMsgEvent) : void)

Figure B. 3 Endpoint

Description:

This Class Diagram illustrates the classes required for the Endpoints used within this
framework.

IEndPointListener I End Point MsgEvent

+endPointMsgEvent(msgEvent : IEndPointMsgEvent) : void

+gettvlessage(): IEndPointMessaye
+getID() : IEndPointlD

Figure B. 4 Endpoint Listener

Description:

This Class Diagram illustrates the classes required for implementing input endpoint message
listeners within this framework.

(Advertisement

+getAdvertisementTypeO : String

+getDescriptionO : String
+getModulelD() : IModulelD
+getNameü : String

+setAdvertisementType(advType : String) : void
+setDescription(description : String) : void
+setModulelD(modulelD : IModulelD) : void
+setName(name: String) : void
+toStringO : String

ServiceSpecAdvertisement

Service ImplAdvertisemerrt

Advertisement

-adveitisementType : String

-description : String

-modulelD : IModuleClassiD

DeviceCapabilityAdoerti: ement ServiceClassAdvertisement

Figure B. 5 Service Advertisement

Description:

This Class Diagram illustrates the required classes to create Service Advertisements within
this framework.

r erviceClassAdvertislnent
cetServiceProfikOntologvO: ProfdeMlodel
seiServE ePlofIICOrtoIoUV(INotie : ProfPeModel) : void

rri

Sei vk: r(IssAdvertisemer-* IProfdeModel

-servic er fb Önt v Ivy v: P AeModel

Figure B. 6 Service Class Advertisement

Description:

200

This Class Diagram illustrates the classes required to create a Service Class Advertisement
within this framework.

`trig

cherliteme, 1: IAdvwrtitemerit
String

: Skirlq

ssOO : IAod/eClasst
xettModelO, 1obvv() : Pr oces sMode1Model

setCredoir(Cre or : Strfq) : void

SdEndPo"Advertisemea(endPoirdAdvertitemer! : (Advertisement): void
seeSlvedJREun: S*ring) void
set 'ers or version : Str rw) : void

etortology(Om : IProcessModel odel) : void
: Wodk : ClmssO) : void
on(si : Mod iekntlD) : boolean
itafion(su : PAodu"mlD) : Nvloci MID

I

: Strap
\dvertisement : tAdvertisernerl
Strirw
string
bodel: DrocessModelModel

- -------- i

IProcessModeNodel

Figure B. 7 Service Specification Advertisement

Description:

This Class Diagram illustrates the required classes to create a service specification
advertisement within this framework.

f): Striv
at() : Docune l
IeSpeclD : MAodtilekroM
: Slriw

IServiceCrouncb odel
code : SUN) : void
9t(conwd : Document) : void
eSpecID(modu eSpecD : IMockkkr): void
i: Strirw) : void

lServiceGroundinJModcI) : voki

IG -OLHI ingtvlodel

Service dvertisemed
ode : Strino ----,
onip : Document

SuecD : NboduleSpeC IServicehterface
i: Strnv

Lver vic

Figure B. 8 Service Implementation Advertisement

Description:

This Class Diagram illustrates the required classes to create a service implementation service
within this framework.

201

setVersion(version : `trinq) : void
setCommerlt(c ormtcnt ' `ti inq) ;;, _, n l

emersion() : Strin. r
getCormxent() : Strin-i
toStrinq() : Siring
cietServi=eMocK): I. -dlrý. ýý.. fr)

tiervlceMOKW version : Strinv Swvicekiterface
conwnert : 5'trinq

ProfleModel II Piocr_ssModel II GroundingModel

Figure B. 9 Service Ontology Model

Description:

This Class Diagram illustrates the required classes to create a Service Ontology Model within
this framework.

cris : IProfile(Aodel): void
iescribedBv : IProcessModel) : void
>ats : IGroundingMlodel) : void

'r ofileModel
() : IProcessModel

ServiceModel
Profi d4odel : IProfdeModel
urocessModel : ProcessModel

Figure B. 10 Service Model

Description:

This Class Diagram illustrates the required classes needed to create a Service Model within
this framework.

202

): IParameter(1
dex : infecier) : Parameter
i(: IParameteril
index : Nleger) : Parameter

dition sO : IPara, neterf l
dltion(inde x: ir*eper) : Parameter
() : PararrWo- ll
): (Parameter
tlnfo() : (Actor
scription() : S'trinq
: ýArinc
ip(t : Parameter): void
(ot p. i : Parallleter) : void
Idition(precondition : Parameter): void
etfed : Parameter) : void
ut(ndex : iii) : (Parameter
tput(index : UI) : Parameter
'con(Aion(irldex : int) : Parameter
ed(index : int) : Parameter
tkifo(descriptor : (Actor) : void
scription(descroion :)tring) : void
spe : Siring) : void

IS rYiceModd) : void

Figure B. 11 Service Profile Model

String

Description:

This Class Diagram illustrates the required classes need to create a Service Profile Model
within this framework.

ProcessModel
se*Descnbes(describes : NerviceModel) : void

c1Atqº>tcProcess(Prvicess ; IAtvmMCPrviceas) ; void
AtonwcProcesses() : IAtorrwcProc esstl
AtomicPfocezs(index ; integer) ; IAtvm cProcoss

emoveAtoarwcPrvicess(inclex : integer) : IAtomicProcess

ProcessM edel
r lAtQw. Processil

Figure B. 12 Service Process Model

Description:

This Class Diagram illustrates the classes required to create a service process ontology model
within this framework.

NaMe(n" :Sr no) : void
Tßk(ttle : String) : void
Phonr(phone : Strkw) : void
Fax(tax : Siring) : void
Emad(emai : Siring) : void

: alAddress(ackiress : Strinq) : void
RL(url : Str m u) : void

: String
: Strinq
! 0: String

String
Strinq

: alA ddressO : String
RL(ý : Strinq

Actor
name : LIrinq
tale : String
phone : Siring
tax : String
email : Str inq

203

IAtonwc Process
haskitxt() : boolean
hasCOPLA() : boo on
hasP i econd , on() : boole an
ha$Ettect() : boolean
addInlx*(Nip Parameter): void
UrtlnpL1(index : int) : Parameter
uetbijxRs(1: IPara, n terfI
removehxA(Hxkx : int) : Parameter
addOuhxA(o. *put : IPararneter) : void
grthiput(mdex : wit) : Parameter
(jet- xAs(1 : IParauneterfl
re. nwveinPUt(indrx : uzt) : Parameter
addPr(-condRion(Arecondüion : Parameter): void
getPrecondiciai(index : kt): (Parameter
getPrecondtions() : IParameterfl
felnovePrecondlhon(Index : Ini) : Parameter
addEffect(effect : Paramieter) : void
gctEffect(index : int) : Parameter
getEffects() : Parametern
removeEffect(index : HI) : Parameter

Atomic Process
innot : IParameterfl
ulJI)Lt : IParamterfl

: vndition : IParameterfl pi-

Figure B. 13 Atomic Process

Description:

This Class Diagram illustrates the classes required to create an Atomic Process within this
framework.

parameter
srtNarne(nomr 'trsnq) : void
Se4ReStnctrdTo(restr uctbn : Str plq) : void
se4RefarsTo(ref. -rsTo : '-Irr) : void
setD(xnan(do naiv : Stri)g) : void
sARanx(rnr : String), void
setPanneterTvpe(tvpe ` trm): void

getRestrictedTo() : String
qetRefersTo() : String
qetDoinainf : Strirºq

r eftilc () : String
get PararneterTypeo : `trinq

String
Lion : Strinq
To : Siring
i: Strrci
: Strr iq

Figure B. 14 Parameter

Effect

Description:

This Class Diagram illustrates the classes required to create a Parameter within this
framework.

204

ICA
+tedBv IServiceModeq : void
mv'ProceSS : IA 4. ProceSSGroundK'q) : void
nicProcess : IAtanicProcessCt%*-K inq) : IGroundinq
IAt arýcProcessGroundindl

Groundi 4'Aockl
at At nicPr

Figure B. 15 Service Grounding Model

Description:

This Class Diagram illustrates the classes required to create a service process ontology model
within this framework.

oo. nora. riayoný«ets woýi*oc *sGa. I+o1 void
. eomýRao. ". aw.. ýýarna.. .) At *oc. s. G. oi.. r�

emorwa oceev*c rgkn«ne.. Ill womKv#o e Gtouebwo

ti« vr vaum «

esý. NC. av.. i. ýeo
re wdo- Mt darvýealooefýe. º vaa

sarrweou. SWn) void

. u@ ý«SU uSIS n vom rim Ytc Sri »c»

*$mm F� ec@Metsml void

rsý. . on
ATWDIl1 ym

twdvontwe 9utw) vao

fý10DýrorYaorMicn 71rä01 void

ociNY;

ervKaMetseaärj$* rf 1I. M. so.) mA

Figure B. 16 Atomic Process Grounding

Description:

205

This Class Diagram illustrates the classes required to create an Atomic Process Grounding

within this framework.

ISetvice$OPar 4er

QetkvttM. ssaveM (index il): IAessaQeMap
athut1MrssaaeNlau8 l: l iessMrtwl
removek%x AessaaeMew(i vJex : irrq : Mrsso(PeMap
QetQutvuhýkSSýhlflRýindex ; int1: IMcssa9shiýp
seýMýxxMessaoe I)(me*$ 1eMau : MessavrMa)) : void
artOiIp sage Map(i dex : nt1 Messo4e p
Qetot, pLoArsseo'Mavso : ssaoeMeivfl
chnu. "Ofti NIA1 S ; cr"J-I. hi hf)' J" , It)

setoiz,. iýra.. _. 1^r.. I -_ý: , "-r. 1. t. _, rr. "., 1

IGrouix c Paimieler
Grotatclrxýaranwfer()' SIºino

setCajowvhCCP& arnetef (t)l am Ana) : vald

Ne5saQ Liotarenwter41:

IServlceParameter
ServrOaiameta(): I5ervicýIntýrfaeeAtarrcCý+o&i dlrw fServicaftrainotef

Sete(otxxingft m eter{Peranwier RS etvicePorametet) : void ServiceftrErneler(1 Shirty

setServic eParameler(Darainder IServiceParamder) void BetServx: eJ? aran ter(uarmn `arm) : void

Figure B. 17 Service Input/Output Parameter

Description:

This Class Diagram illustrates the classes required to create a Service Input/Output Parameter
within this framework.

ServicelOParwneler

U)(*Messagel t essaaeMarý(1

206

t5ewvkeWefiaCC 5Cf viceirterIace

Bw)*x si 1: and WI

9*45WK*401dex :Wt -f 1: IBirxlUxý

PoriType

setOveration(operatbon : String) : vad
UetOverrationO: K)Peretiaº

L1es8Age
r' IMMSSý

Strinq
Str inq

getPartNameO : Strr q
setPartNane(name : String) : void
getParameter() : String
setParameter(param : String) : void
getParameterTvi'eO: String
setParameterType(type : Siring) : void

Figure B. 18 Service Interface Model

Description:

This Class Diagram illustrates the classes required to create a service interface model within
this framework.

17
SSinchng

setPwt(por1Tvtx : IPortTvtx) : void
getPort() : IPadTvp'

mon

iet")tAW3saae(1: IMessaae
sethp *Message(messaqe : IFAessage) : void
(IetOuAPUkMessage(): IAessaqe
setOutputMessave(messaue : Message): void
q tOperchoiWame() : String
ssdOperat*r"ame(name : String)

message
cWNwoe() : String
addMessavePait(parl : NessagePart) : void
ci MessamPart(hMx, irrt) : IMessaciePart
getMessaqeParts(1 : IMes sage Partfl
removeMesssgePart(index , irrt) : IMessagePart

207

E icrCA AbiltyAdvertisement
getDeviceCapabOKyPrvfib() : Voi*KopW NtyProf$*
setDeviceCapebOyProfNe (profile : IPeviceCap"YProfile) : void --

Drvic: e(ap; ýbýlt Adv.. ýtlsenxrrd

-deyiceCai)ab*vPiQfd-

Devs: eC AIlMyProfik

i ---------

Deviceca al; lim Profile
Ccxlxxx ent() : ICanponeil

setComponent(cmPonent : IComponer t) : void

Ida r1
getAttrilx*e(N dex : N1): IAttrib e
getAttrilwtes() : IAttrilx tefl
addAttribute(altrib : Attribute): void -- -'
remove Attrib te(ridex : kt) : IAttrilx4e

Attribute

Strinv
Strinq

IAttrdxteDescriution

Obi ct
boolean
on(desc : Strino)
me : Strna) : void
Aie : Strno) : void
lefauk : Stri w) : void

Figure B. 19 Device Capability Model

Description:

This Class Diagram illustrates the classes required to create a device capability model within
this framework.

IDeCapService

+getDeCapAlgon hm() : (Algorithm
+setDeCapAlgorithm(algorithm Algorithm): void

DeCapService IDeCap AIDorithm

-dcmAlgoirthm : IAlgorithm

Figure B. 20 Device Capability Service

Description:

This Class Diagram illustrates the classes required to create the DeCap Service within this
framework.

IDeCapAlgorithm

+checkCapability(params : Object, deviceDeCap : Object, clientDeCap : Object) : Object

DeCapAlgorithm

Figure B. 21 Device Capability Algorithm

Description:

208

This Class Diagram illustrates the classes required to create the DeCap Service within this
framework.

IDistrESService

+getEEAlgorithmO : IAlgorithm
+getEPEAlgorihmO : (Algorithm
+getDistrESOntology() : (Ontology
+setDistrESOntology(ontology : (Ontology): void
+getUnknownTermTableQ : IUnknownTermTable
+setUnknownTermTable(table : IUnknownTermTable) : void
+setEEAlgordhm(algorithm : IAlgordhm) : void
+setEPEAlgorithm(algorithm : Algorithm): void

DistrESService
-epeAlgorthm : IAIgorthm

-eeAlgorithm : (Algorithm

-distresOntology : (Ontology

-unknownTermTable : IIJnKnownTermTable

IEEAIgorithm

IEPEAIgorithm

EiUnknownTermTable

I-term : 10ntologyClass[]

IUnknownTermTable

-index : int

+addUnknownTenn(tenn : IOntoloyyClass)
+yetTerm(index : int) : IOntologyClass

Figure B. 22 Distributed Emergent Semantics Service

Description:

This Class Diagram illustrates the classes required for implementing distributed emergent
semantics within this framework.

IEEAlgorithm

+getConcept(term : 10ntologyClass) : (Ontology
+getRelationship(x: IOntologyClass, y: IOntologyClass) : String[]

IUnknownTermTable EEAlgorithm (Ontology

Figure B. 23 Extraction Engine

Description:

This Class Diagram illustrates the classes required for the extracting concepts from the
knowledge base within this framework.

209

IEPEAIgorithm

+evolveConcepts(concepts :]Ontology[]) : (Ontology
+mergeConcept(concept:]Ontology): boolean

14
EPEAIgor thm IOnrtology

IMergeAlgorRhm

+mergeConcept(concept :]Ontology): boolean

Figure B. 24 Evolutionary Pattern Extraction Engine

Description:

This Class Diagram illustrates the classes required to extract common patterns and evolve
knowledge structures within this framework.

,i

Obc7VCIBSSfndex nt) : IOrwobgyaeu
OöxIyQbSse3O K (1C 00YCb33f)

ýseOredoavtiesstortobvvCbss IOnedocvCtessl : vad
trrnaveOrdologypess index iY) IOrfdo 1sss

SWclassrrs(). Ki1cogyClessf)

Q, 1S A)ercbsse$o X, tobvyClo=s(1
at¬wvde 1CIo: seal) ý, do yCItun
, ýrasp. rc w): ar1aoarc, ssseqý

Sul CIaBS(x : IO 1 o9YC1 u. Y: IOi1 IogyC1 «s): bQwmw
s uu1 Mtx. l loluwCless. v: artoloarclass) : boolemn

wvakAClass(x : IO 1okigyc$ess. v: gntobavCk+ss) boolesn
elelýortshI)(k dex et) ICisssRektsorahp

adýR. iabonshplyd: ICMSSRekgKu ww vod
emoreRctotionsilo(nd x. w1 iclosRe ialshu

i
tbiiRdöhCý1

cbssx Ott loss
'-------" classy OtobaKloss

avobvvC1ess : Oi1alogYclus) void
XtaiogK bn : OntobgqCbss) void
Ntßovatv(dsssPha tv das5P+overlr). void
1: O. lobQYClass

KINIPPOgr4hP

eoqetCUnXO : IOrdobawClsss
- sdClessX(dess IOrtdogyCless) : void

CIassYO Kkvo OQYClsss
semClessY(dess IOitobovCIass) : void
(P. IýAiOfl$I y Skino
SrtR. +lolanShiXr d Slrnv) : void

IOrtd ýCbss
nddDt&vu*rvVNcrrto ogvCless .

K)rW VCb$s) : void
ad cEwivak. 1aoss(onlolovyClass : IOilobvrdsss} : void
od"xWcs(oi*olovyClsss : KWologvCfsss) void

KWMiodVYM): K)dok gyCless
81MC1$$ZO 10rtdO VCkus

s())Ortdoq ss
dess() IOlolovyCless

Figure B. 25 DistrES Ontology

Description:

This Class Diagram illustrates the classes required to describe ontologies within this
framework.

210

+getAbstractMatcherAlgorithm() : (Algorithm
+getConcreteMatcherAlgorithmO : Algorithm
+setAbstractMatcherAlgorith(algorithm : Algorithm): void
+setConcreteMatcherAlgorithm(algorithm : Algorithm): void

abstractlylctdier : IAIgordhm
concreteWlotcher : (Algorithm

IConcreteMatcherAloorithm

Figure B. 26 SISM Service

Description:

This Class Diagram illustrates the required classes for performing semantic interoperability.

IAbstractMatcherAlgorithm
+getDistrESServiceO : (Advertisement
+setDistrESService(service : IAdveitisement) : void
+abstractMetch(serviceRequest : IProfileModel, serviceProfile : IProfileModel) : Boolean

AbstrsctMatcherSerrice IProfileModel
---------------- -distres : IAdvertisenerd

Figure B. 27 Abstract Matcher Algorithm

Description:

This Class Diagram illustrates the classes required to abstract match service requests with
service descriptions.

IConcreteMatcherAlgorithm

+yetDistrESServiceO: Advertisement

+setDistrESService(service : (Advertisement): void
+concreteMatch(serviceRequest : IProfileModel, serviceClassAdvertisement : (Advertisement): (Advertisement

1Concrete Matcher Service IServiceOntologyModel

-distres IAdvritisement

Figure B. 28 Concrete Matcher Algorithm

Description:

This Class Diagram illustrates the required classes to concrete match service descriptions with
signatures in service interfaces.

211

APPENDIX C: NASUF ACTIVITY DIAGRAMS

Connect Device
to the Network

Create Device
Capability -- - DC Ivbdel

C
Get Service
Description

No Service 'Service Exists
Description Lo call Discover Service

Remotely
Servic Exists

Publish Service

Add
service

------- Service

Create Service
--

Service
-- Listener Listener

A Listenei is an
end-point that can
be bound to other "" """'"-
devices.

Figure C. 1 Start Device

Description:

This Activity Diagram illustrates what happens when the device is initially started within this
framework.

212

Authenticate User

Get Certificate

I= null

Check if Key
Exists

Persist Key

Sign Key

Publish
Advertisement

--- Certificate

Get Key
If Key xists

Create Key Key

Create Key
)-

Advertisement

Figure C. 2 Connect device to the network

Description:

This Activity Diagram illustrates how devices connect to the network within this framework.

213

Create New Device Devine Capability

Capablldy Model Model

Create Capability
Profile

-J
EiiYCoinent

abitComponent

does
not Exist

Compon it Exists

Get Capability Attribute

Attribute does

not Exist

Attribut Exists

Append Attribute
And Value to
Component

Append Componet
to Profile

Append Pofile to
Model

C
Publish Device

Capability Model

V

Figure C. 3 Create device capability model

Description:

This Activity Diagram illustrates how a Device Capability Model is created within this
framework.

214

Create Service Class Service Class

Advertisement Advertisement

Add Service Profile
to Service Class

Advertisement

Get Service Specification
Descriptor

Service Specification Exists

Service Specification
does not Exist

Service Specification __
Service Specification

Advertisement Advertisement

Associate Service
Specification vvtih

Service Class

Add Service Process
Model to Specification

Advertisement

Get Service Implementation
Descriptor

Exit

Service hilem station Exists

Create Service
Implementation
Advertisement

Add Service Grounding
to Service Implementation

Advertisement

Add Service Interface
to Service Implementation

Advertisement

Associate Service
Implementation wtih

Service Specification

Service Implementation
Advertisement

Figure C. 4 Create Peer Service advertisements

Description:

This Activity Diagram illustrates how Peer Service Advertisements are created within this
framework.

215

Create Peer

Peer

Service Service Bindiny

Start Peer
Service

Peer Service
Not Started

Peer Servi e Started

Create Peer
Service Advertisements

Publish Peer
Service Adveiiisements

Locally in this
sense means
on the device

Publish Peer
Service Advertisements

Figure C. 5 Publish Peer Services

Description:

This Activity Diagram illustrates how Peer Services are published within this framework.

216

Create Service
Profile

Get Next IOPE

TOPE xi r.

AddlOPEto
Service Profile

Get Next
Atomic Process

Atomic Process
does not Exist

Atomic Prokess Exists

Add Atomic
Process to

Process Model

Create Service
Grounding

Get Next
Atomic Process

Exit

Atomic Pro ess Exists

Add Atomic
Process to
Grounding

Map Atomic Process
to Service Interface

Create Service
__

Service Process
Process Model Model

-- Service Grounding

Figure C. 6 Create Semantic Models

Description:

This Activity Diagram illustrates how semantic models are created within this framework.

Service
Profile

TOPE does not Exist

217

Get Core Service
Descriptor File

If Descriutod File Exists

Get Next Core
Service Descriptor

It Core Service Descriptor Exists

Discover Peer
Service Locally

Figure C. 7 Find Core Services

Description:

This Activity Diagram illustrates how core services are discovered within this framework.

Discover Peer
Service Locally

Cant find
Service Locally Discover Service

Advertisement Remotely
Ser ice

ertisei ent Exists
Service

Advertisement Exists
Authenticate

Service
Can find

Service emotely

Bind To Service Peer
Service Binding

Figure C. 8 Discover Peer Service

Description:
This Activity Diagram illustrates how Peer Services are discovered locally and remotely in
the P2P network within this framework.

218

Extract Service L
Advertisement

C Check Invocation
Mode

Mode is Composite

Mode I Direct

Extract Composite Extract Direct
Endpoint Endpoint

Bind To
EndPoint

Encrypt Data

Mode is Composite

Mode I Direct

Build Signature

Send Service
Advertisement
And Parameter

Array

Invoke Service

4

Figure C. 9 Invoke Peer Service

Description:

This Activity Diagram illustrates how peer services are invoked within this framework.

219

Figure C. 10 Process Service Request

Description:

This Activity Diagram illustrates how service requests, received either locally or from within
the P2P network are processed in this framework.

220

Check for Semantic
Relationship

Relationship
Found Return Semantic

Relationship
No Relation ip is Found

EvýIvrd

Evolved :: s is False

Create Semantic
Interoperability

Request

Propagate Request

Evolve Concepts

Merge Concepts

Evolved Status = True

-
Semantic Interoperability

Request

Figure C. 11 Perform Semantic Interoperability

Description:

This Activity Diagram illustrates how semantic interoperability is performed within this
framework.

Get
Relationship[

Extract Concept

Add Concept to
Response Object

Return Response

Figure C. 12 Extract ontological structures

221

Description:

This Activity Diagram illustrates how ontological structures are extracted within this
framework.

Extract LocalConcept

ý
[Terms[]]

Create Term
Collection[LocalConcept,

ResponseConcepts[11

Extract Next
Term

Term does
not Exist

Term xists

Calculate Term
Frequency

Create Rel.
Collection(LocalConcept,

ResponseConcepts(]]

Extract Next
Relationship

%I/ Relationship

Calculate Relationship
Frequency

CreateÖptimalStructure
(topTerms, topRel.]

Figure C. 13 Evolve ontological structures

Description:

This Activity Diagram illustrates how ontological structures are evolved within this
framework.

222

Get Next
Term from

Optimal Stucture

Term does
not Exist

Term xists

Check if Tenn
Exists in KB

Term Exists

Term does
n ist

Add Term to
KB

Get Next
Relationship From

Optimal Structure

Exit

Relations ip Exists

Check if Rel.
Exists in KB

Relationship
Exists

! Relation ip Exists

Add Rel. to
KB

Figure C. 14 Merge ontological structures

Description:

This Activity Diagram illustrates how ontological structures are merged within this
framework.

223

EAact100E From
Sawce Requo"

No

IOPE you

Extras IOPE From
Service Descl% on

No

IOPE 4*2

Check dIOPEs "acüyMatch No

No
Ps brm 5emmöc

IfEmctMst . Fovw lydsrge sbYty

Set Mded
Ststusto True

No

All IOPE s hsw Proasss l

If Semarftc ReI IOnahp is Found

Chad St*Ao1IOPEsn
sarv" RevueM

No
AEAbW 1AMthEFMM

It AN IOPE St 'are Tru e

Ibstr WM Mdi is True

Figure C. 15 Perform Abstract Match

Description:

This Activity Diagram illustrates how Abstract Matching is performed within this framework.

224

Ga NQ4 Rol"Toý EIcmnrr
For TOPE in Serwce Prolle

Eremen[doss
nc Ed

ReMrs ToE cnAE*As

Fina AioMIc Pr oces in
Process Model

MOM Proem
nol Foul

Atom Pr Is FoLnd

Set I OP E TOPE
S1sAa

Prcces Net
TOPE

AN COP Es have Processed
No

PIIOPEs cnpto
Sir* NCV, oc"s

Raid SIPS$

Return Senke Advalisemert
to Serincs Regixsfer

Figure C. 16 Perform Concrete Match

Description:
This Activity Diagram illustrates how Concrete Matching is achieved within this framework.

225

Fr4Mc cProcee
in Saurot Gro 91-mv

E. trW Opertmon
Mme From SerAct

Gaoun hq

coda Not
E dre+d Requoro010PE From Resolved

Servrc. Rpxe!

*ad RiQwod lOPE Frarra
Serv"Oraw Mine

Momrc Proams

MdChIOPE Typt
Ora

NoMMCA ROwv IOPE
Confect U

Mach Found IrtMrnadery
Spry"

Sw)OP ET We Status
to True

Cor+lkt
Prows Not R

10ºE

MI 10ºE t Iwo Proonu0

No

MIIOPE True

e now"

MOWMA

Figure C. 17 Build S ignature

Description:

This Activity Diagram illustrates how signatures are built within this framework.

226

Figure C. 18 Find Intermediary Service

Description:

This Activity Diagram illustrates how intermediary services are found within this framework.

227

Extract Device
C apabirty Model

E x1ract Device
C spalbIty P rofle

Match(I)CM, DCPJ

No

IiMaich - TRie

Retun True

Return Frise

Figure C. 19 Device capability matching

Description:

This Activity Diagram illustrates how device capability profiles contained in service requests
are matched with device capability advertisements located on the device, within this
framework.

228

Initialise Resuft =0

Get Next
QoS Parameter

Parameter
does not Exist

Per ate xists

Get Importance
Rating[DCP]

Rat
not Exist

Impo nce
Rating xists

L

RffiGet
Status

inq[DCA]

Rating does
not Exist

St us
Rating xists

ResuR = Result +
MuMiply[IR, SRI

Return Resut

Figure C. 20 Device capability matching algorithm

Description:

This Activity Diagram illustrates how the device capability matching algorithm works within
this framework.

229

APPENDIX D: NETWORKED APPLIANCES ONTOLOGY

ElectronicHouseholdIpiliance

Elect ricalMuseholdAppliance

ElectricalDevice

PhysicalDevice

PoweredDevice

RecordingOfWaveIBT

SeltPoweredDevice

ComgutationalSystem

Figure D. 1 Household Appliance Ontology Portion

Description:

This ontology portion describes the HouseholdAppliance concept within the DistrES
ontology.

Awti, Visua1IAtormtiowPecordingDcHce RecordiwgD arelBT
Electrica]Deviceý ýýýý Systen

ArdloTpeDeckMec ®
1dAppliance

PoweredDeHce
WwtonMtioaAecordinqDeHce SelfPoasrsiDeHcsB HsgseticDcvi"

N1relessCamo w entlowDerice
TeleHsio. Set® rI

\I

ýHOHeReel

CommAelcatiowDevice meckamicalDeVICS

\\ I/
A

actDisc-6swerlc
WINNER

DenceOn DiscStoragetleQiww
\ \wtormetlowStorageHedia

Erswt -ýý
IwterwetLink

PioHoV1: Tºip

hRecorerDiek PAysicalPartotoajecc
AatoAMladto

PersowalDence PbmgrapkRecord
Mill Portableabject I iv

. Iwtormet. lowBearipTRi \\
IatorwwtiowStore f

Speciticscron

1(+ PersowaJDigitalAssistant

Paper tlDigitalAsdloPlayer

Figure D. 2 Physical Device Ontology Portion

Description:

This ontology portion describes the PhysicalDevice concept within the DistrES ontology.

230

Electric alHouseholdAppliance

TelevisionSet

ElectronicDevice

CableDescramibler

RecordPlayer

B
ConswT rAudioVideoCwionent

Figure D. 3 Electronic Household Appliance Ontology Portion

Description:

This ontology portion describes the ElectronicHouseholdAppliance concept within the
DistrES ontology.

ElectricalDevice
Householditpliance

SeitPoweredDevice

PhysicalDevice
PoweredDevice

//M

CoiutationalSystem

RecordedVideoProduct

MusicVideoCopy19 Video Recordedfbjecct
InformationBearinyobject

® RecordedTBO
MovieReel AudioRecordedObject

InformatioiStorageMedia

AudioClip

Information0earincIThing

B
RecordedSoundProduct

Figure D. 4 Recording of Wave IBT Ontology Portion

Description:

This ontology portion describes the Record ingOfW ave I BT concept within the DistrES

ontology.

231

Portable Audi oEgiin ent RecordingotWaveIBT

SelIfPomeredDevicefl
CorputationalSystem

BatteryPoeeredDevice 'PhyicalDevice
PoweredDevice I

VideoScreen
HameTheaterSystem

Ho ueeholdlilipliance

AudioTapeDeckkechanim
® /

®
ElectricalHouseholdippliance

AudioSpeaker -Electrical Coonent j
+

Antenna

! '/

® E1ectronid unchol 1iance Headphones ElectronicCaamonen= '/

_`

ElectronicDevice

AudioEquipment

0
MediaPlayineDeviae Wireles9CoerwnicationDevice

A

VideoCamiera rHardwareltem-Device

Figure D. 5 Electrical Device Ontology Portion

Description:

This ontology portion describes the Electrical Device concept within the DistrES ontology.

PortableAudioEquipr nt

MagneticDevice

BatteryPoweredDevice

ýý MechanicalDevice
MovieReel - 10

ElectricalDevice

PhyeicalDevica
7"\

/

PoweredDevice

Householdlippliance

RecordingofWavelBTitationa1System

Figure D. 6 Self-Powered Device Ontology Portion

Description:

This ontology portion describes the SelfPoweredDevice concept within the DistrES ontology.

232

F DeviceOn
CammucetionDerice

Perqza=`evic/e ControlDevice

DiscStaregeMedlýn \
ý/

IwterietLi
Inf oradt ioIRecordinýe nce

PkysicalDevice
®--

owl: Thieg

MechanicalDevice

House)oldAppliaace /
/t

BatteryPoneredDevice

ElectricaIHotisehDId1pp1iaete/

ElectricalDevice
a

ElectroeicDevice
Ele7

\

ctricalCuponent HamýeTAeate----
- ---

AudioRecordedObject

C111WYterKlt.. k

ComatationalSy. tew

RecordingOtWaveIHT Router-)etmork
B

InlormetionBear1e Thject

V11{OOReCOrýdftJOCt

Figure D. 7 Powered Device Ontology Portion

Description:

This ontology portion describes the PhysicalDevice concept within the DistrES ontology.

233

APPENDIX E: PUBICATIONS RESULTING FROM THIS THESIS

Merabti, M., Fergus, P., Abuelma'atti, 0. and Yu, H., "Networked Appliances and Home
Networking, " submitted to IEEE Multimedia Magazine, 2006.

Merabti, M., Fergus, P. "A Framework for Self-Adaptive Networked Appliances, " submitted
to IEEE Communications Magazine: Special issue on Consumer Communications
and Networking, 2006

Fergus, P., Merabti, M., "Welcome to the Wireless Age, " Review, November 2005, pp. 34-
35, Liverpool John Moores University, Liverpool, UK, (November 2005)

Fergus, P., Merabti, M., Hanneghan, M. B. and Taleb-Bendiab, A., "Controlling Networked
Devices in Ubiquitous Computing Environments using Biofeedback, " In Proceedings
of The 5th Annual PostGraduate Symposium on The Convergence of
Telecommunications, Networking and Broadcasting, pp. 91-96, Liverpool, UK, John
Moores University, (June 2005).

Fergus, P., Merabti, M., Hanneghan, M. B., Taleb-Bendiab, A. and Minghwan, A., "A
Semantic Framework for Self-Adaptive Networked Appliances, " In Proceedings of
(CCNC'05) IEEE Consumer Communications & Networking Conference, pp. 229-234,
Las Vegas, Nevada, USA, IEEE Computer Society, (January 2005).

Fergus, P., Mingkhwan, A., Merabti, M. and Hanneghan, M., "DiSUS: Mobile Ad Hoc
Network Unstructured Services, " In Proceedings of (PWC'2003) Personal Wireless
Communications, pp. 484-491, Venice, Italy, Springer, (September 2003).

Fergus, P., Mingkhwan, A., Merabti, M. and Hanneghan, M., "Capturing Tacit Knowledge in
P2P Networks, " In Proceedings of (PGNET'2003)The 4th EPSRC Annual
Postgraduate Symposium on the Convergence of Telecommunications, Networking
and Broadcasting, pp. 159-165, Liverpool, UK, (June 2003).

Fergus, P., Mingkhwan, A., Merabti, M. and Hanneghan, M., "Distributed Emergent
Semantics in P2P Networks, " In Proceedings of (IKS'2003) Information and
Knowledge Sharing, pp. 75-82, Scottsdale, Arizona, USA, ACTA Press, (November
2003).

Merabti, M., Abuelma'atti, 0. and Fergus, P., "Networked Appliances and Home
Networking, " In Proceedings of The First International Workshop on the Ubiquitous
Home, Kyoto University, Japan, (March 2004).

Mingkhwan, A., Fergus, P., Abuelma'atti, 0. and Merabti, M., "Implicit Functionality:
Dynamic Services Composition for Home Networked Appliances, " In Proceedings of
(ICC'2004) IEEE International Conference on Communications, pp. 43-47, Paris,
France, IEEE, (June 2004).

Mingkhwan, A., Fergus, P., Abuelma'atti, 0., Merabti, M., Askwith, B. and Hanneghan, M.,
"Dynamic Service Composition in Home Appliance Networks, " (MTAP) Multimedia
Tools and Applications: A Special Issue on Advances in Consumer Communications
and Networking, vol. 31 (1), (December 2006).

Haggerty, J., Shi, Q., Fergus, P. and Merabti, M., "Data Authentication and Trust within
Distributed Intrusion Detection System Inter-Component Communications, " In
Proceedings of (EC2ND'05) Ist European Conference on Computer, Network
Defence, pp. 197-206, University of Glamorgan, UK, (December 2005).

234

