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ABSTRACT 

Fault detection, isolation (FDI) and accommodation is one of the most 
demanding and developing areas in the automobile industry nowadays. Major 
car firms are looking for neural network (NN)-based solutions for FDI and 
accommodation. A new on-line FDI system is proposed in this research for 
automotive engine air path, which uses adaptive neural network as fault 
classifier. Radial basis function (RBF) neural networks are adapted for better 
classification capability and robustness. The developed FDI system is 
adapted on-line and therefore is capable to cope up with system 
uncertainties, environmental changes, engine parameter changes, 
disturbances and engine to engine changes. 

Two component and two sensor faults have been investigated as four typical 
and practical examples of internal combustion (IC) engine faults. Two 
component faults are exhaust gas recycle (EGR) valve clogged and air 
leakage in the intake manifold. Two sensor faults are intake manifold 
pressure and temperature sensor faults. All the faults are considered at four 
different levels of intensity. A well-known benchmark, the mean value engine 
model (MVEM), is used for fault-simulation. The adaptive FDI method is 
compared with a non-adaptive method. The adaptive method out performs 
the non-adaptive method on simulated data from MVEM. The adaptive 
method is able to detect and isolate different types of the faults as well as the 
intensities of the fault. Further, the adaptive method is evaluated for 

robustness under closed-loop control. The adaptive method is found robust 
against throttle angle change, load change, engine parameter change and all 
the changes happening simultaneously. The adaptive method is novel and it 
is believed to be a contribution to knowledge in this field of study. 

A one-litre four-stroke Volkswagen petrol car engine test-bed is used for 
further experimentation. Real data is acquired over a wide range of engine 
operations from the engine test-bed. Five different sensor bias faults are 
superimposed on the fault-free real engine data and the adaptive FDI system 
is evaluated against these sensor faults including throttle angle, torque, 
crankshaft speed, intake manifold pressure and temperature sensors. The 
fault diagnosis results confirm that the sensor faults as small as 2% are 
clearly detected and isolated for different data sets. Unknown fault detection 
is also investigated for three different faults using novelty detection method. 
Lastly, satisfactory sensor fault accommodation is achieved for three different 
sensors using predictive neural networks. 
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1 Introduction 

CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

The greenhouse gases and air pollution are the most discussed topics among 

ecologist for last several decades. The vehicle exhaust contains nitrogen 

compounds that get into the atmosphere and form acids, although the natural 

sources are much more limited but the biggest non-natural source is burning 

fossil fuels, especially gasoline. Acid rain forms when molecules of oxidized 

sulphur and/or nitrogen in the atmosphere combine with water, forming acidic 

compounds that dissolve in the water that becomes rain. The acid rains in 

California in early sixties opened the eyes of ecologist and life scientists and 

the first wave to save environment started. 

Old cars and other vehicles on the road emit a lot of harmful gases in the 

environment. Some times these harmful emissions many fold with faults in the 

vehicle engine. This significant increase in emissions causes severe air 

pollution and damage the ozone layer which results in global warming and 

climate change. Therefore fault detection; isolation and accommodation have 

become one of the most important aspects of automobile design. There are 

strict laws to be abided by all the automobile manufacturers. Continuous 

efforts are being made to improve the design of the Electronic Control Unit 

(ECU) in an automotive engine in order to ensure early detection and isolation 

of engine faults that can be hazardous for human life or adversely affect the 

fuel efficiency of the engine or lead to increase in air pollution. 
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1 Introduction 

A fault can be defined as an undesired deviation of one or more variables of 

the system from the normal/healthy behaviour. Determination of the presence 

of a fault in the system is called fault detection. Identification of occurring fault 

from a number of possible faults is called fault isolation. Some times it may be 

possible to auto-correct the fault and this is known as fault accommodation. 
Fault accommodation may not be possible for component faults but is 

possible for sensor faults. In this research neural networks are investigated 

for fault diagnosis in the air path of an automotive engine. 

1.2 WHY THIS RESEARCH 

Automobiles manufactured since the early 1980s are equipped with smart 

systems, known as on-board diagnostics. On-board diagnostics or OBD 

systems were developed to help repair technicians identify problems 

associated with the computerized engine systems of modern vehicles. These 

systems are made up of various sensors and a computer that communicates 
its findings to a technician by means of diagnostic trouble codes that are 

stored in the automobile's computer called on-board system. Legislation for 

on-board diagnostic capability in all vehicles was first enforced from 1988 in 

United States of America. It was known as OBD -I and it only monitored the 

oxygen sensor, EGR system, fuel delivery system and engine control module. 

The limitation of OBD1 was that it couldn't detect certain kinds of problems 

such as a non-functioning or missing catalytic converter, ignition misfires, or 

evaporative emission problems. In addition, the MIL would only illuminate 

after a failure had occurred, it had no way of monitoring progressive 
deterioration of emissions-related components. 

According to the federal Clean Air Act Amendments of 1990, the California Air 

Resource Board (CARB) and Environment Protection Agency (EPA) required 

all 1996 and newer light duty vehicles to have more advanced OBD systems, 

known as OBD II (Tan and Saif, 2000) in America. The OBD 11 system 

monitors vehicle conditions and components that are related to vehicle 

emissions, such as the catalyst in the catalytic converter, engine misfire, the 

engine coolant temperature, and the oxygen sensors. Federal law requires 
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I Introduction 

some states that do not meet federal air quality standards to implement an 
OBD II inspection program to ensure that emissions control equipment is 

operating correctly. The Environmental Protection Agency (EPA), as well as 
the California Air Resource Board (CARB) mandated "On Board Diagnosis II" 

(OBD-ll) for all light duty vehicles. All diesel cars sold in the EU must have an 
OBD system from year 2003 (Nyberg and Stutte, 2004). 

Cars and trucks are responsible for approximately half of the air pollution that 

causes smog, acid rain, and climate change (Air resources environmental fact 

sheet, 2005). While it is true that modern cars emit less air pollution than 

older vehicles due to new engine management technology and emission 

control equipment, they are only cleaner if all emission control systems are 

operating properly. The OBD II system can often detect a vehicle malfunction 
before the driver becomes aware of the problem. Early detection and repair of 

malfunctions will result in less emission. In addition, early repair of minor 

problems may prevent more significant and more expensive engine problems 
that could develop if left undetected. For example, a poorly performing spark 

plug can cause the engine to misfire, a condition sometimes unnoticed by the 

driver, but one that will be detected by the OBD II system. This engine misfire 

can, in turn, quickly degrade the performance of the catalytic converter and 

permanently damage the catalyst. By responding to the check engine light 

(turned on by the OBD II system) in a timely manner, the driver would be 

faced with a relatively inexpensive spark plug repair. However, without OBD II 

detection, the driver could be faced with an expensive catalytic converter 

repair in addition to the spark plug repair. By storing the malfunction 
information in the computer's memory at the time it occurs, OBD II allows the 

service technician to more accurately identify the problem and make the 

proper repairs. This saves time for the repair technician, money for the 

consumer, and 'reduces air pollution. 

The OBD II system monitors a variety of engine conditions and outputs while 
the car is being driven. When the OBD II system detects a problem with the 

emission control system, a dashboard light is illuminated indicating "Check 

Engine" or "Service Engine Soon. " A corresponding diagnostic trouble code is 

stored in the computer's memory documenting which emissions control 

component is experiencing the problem, and under what conditions. The 

repair technician will retrieve the diagnostic trouble code information from the 

3 



1 Introduction 

computer using a computer scan tool. By using this information, a properly 

trained technician can more accurately find and fix the problem. If the 

malfunction indicator light illuminates with a steady, continuous light, the 

vehicle operator should contact a repair technician and schedule a service 

visit. This is not an emergency situation, but the vehicle should be serviced 

soon. However, if the malfunction indicator light blinks or flashes, this 

indicates certain severe engine malfunctions. When this occurs, the vehicle 

operator should stop the car immediately and refer to the owner's manual to 

determine if the car can be driven or if it should be towed to a service station. 
Continued operation of the vehicle could result in damage to the engine or 

emissions control components, specifically the catalytic converter, a very 

costly component. Sometimes the malfunction indicator light goes out by 

itself. This indicates that the problem that initially triggered the light no longer 

exists. This could happen if, for example, the gas cap was not on tight, but 

was then fixed. In this case, the light should reset itself and go out after 

several trips, eliminating the need for a service visit. 

OBD-II has continuous monitoring and fault detection capability for all vehicle 

components whose failures can result in emission levels beyond 1.5 times of 
the Federal Test Procedure (FTP) standards. This means that the OBD-II 

system should trigger and detect the deterioration of any component that 

results in a FTP exhaust emission increase of 0.075 g/mi of HC, 1.7 g/mi of 
CO, and 0.2 g/mi of NOx (Tan and Saif, 2000). Once a failure has been 

detected, a malfunction indicator light (MIL) is to be illuminated to inform the 

driver of a problem, and a diagnostic trouble code (DTC) is to be stored in the 

on board memory. The OBD II system may tell the technician that certain 

components are not ready for testing and the vehicle owner may be asked to 

drive the vehicle under a variety of conditions for a few days to complete the 

drive cycle, and then return for testing. The drive cycle is different for each 

vehicle, but generally can be completed by operating the vehicle in a 

combination of in-town and highway driving. Essentially a drive cycle puts a 

vehicle through enough different situations to allow the OBD II system to 

adequately evaluate the various components. A vehicle may not be ready for 

a number of reasons, including a recently disconnected battery, or recent 

clearing of diagnostic codes using an OBD II scan tool. 
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I Introduction 

Short coming of OBD II is that even in case of an increased emission 

problem, there is just an indicator which driver has a tendency to over ook. 
This can lead to environmental damage due to increased air pollutior. To 

overcome this problem, OBD III is discussed as a program to minimize the 

delay between the detection of an emission malfunction by the OBD-II system 

and the actual repair of the vehicle. This can be achieved by transmitting 

wireless signal (DTC code) from vehicle ECU to the roadside reader anc *hen 

further to the nearest dealer. There are legal issues of 'unsuspicious -pass 

surveillance of private vehicle property' to be sorted out before OBD II is 

mandated by EPA. 

All vehicles sold in the UK after December 31st 2000 are required by 

legislation to allow the European On-Board Diagnostic (EOBD) protocol 
(Official Journal of the European Communities, 1998). EOBD is the European 

equivalent of the American OBD II standard. These days OBD-III is being 

discussed as a program to minimize the delay between the detection of an 

emission malfunction by the OBD-II system and the actual repair of the 

vehicle. EOBD2 stands for 'Enhanced On-Board Diagnostics. Second 

Generation'. EOBD2 tends to refer to manufacturer-specific features available 

on some OBDII/EOBD tools to access additional parameters/information from 

a car, over and above the normal parameters and information available within 
the EOBD/OBDII standard. EOBD2 features are normally highly 

manufacturer-specific, and will usually only be available for a certain car 

manufacturer, e. g. Ford. 

For safety and reliability of vehicle it is required to automate the fault 

diagnosis procedure. Use of artificial intelligence and sophisticated and 
dedicated computers has made it possible and a number of fault detection 

and isolation (FDI) techniques have been developed in contemporary era. For 

example a Mercedes S class car (1998-model) utilises computing power of 40 

microprocessors and over 100 motors (Denton, 2004) for comfort, control and 
FDI in the car. 

A lot of research is going on in finding simple, reliable and efficient techniques 

to fulfil mandatory OBD-II requirements for automotives. The basic reasons 
for this are to ensure human safety, pollution control and increase in fuel 

efficiency of the engine. A fault in automotive engine can affect all these 
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three reasons adversely and lead to hazardous situation for the driver and 

can cause unwanted air pollution and decrease in fuel efficiency. Millions of 

people travel by cars everyday and therefore the reliability of the vehicle is 

very important. Faults are often harmful to automobiles if early detection is not 

made. Prompt detection helps to minimise the maintenance and repair costs 

of the system and contributes towards increased system reliability. 

This research investigates the possibility of finding a simple and reliable FDI 

technique, which is able to classify different faults along with fault sizes 

utilising an artificial neural network (ANN) based technique for quick and 

accurate fault diagnosis in the automotive engine air path. If successful, it will 

benefit the entire automobile industry and will also contribute to reduction in 

vehicle emissions due to unwanted faults. The reduction in vehicle emission 

is the utmost requirement to save ozone layer and the global warming. 
Sensor faults even have a possibility of accommodation which will save 

money, time and energy for the driver. 

1.3 RESEARCH AIMS AND OBJECTIVES 

The principle aims and objectives of this research project are as follows: 

1. To carry out a comprehensive literature review on different FDI techniques 

and engine FDI techniques, their advantages and disadvantages, different 

faults considered and US, EU/UK regulations for on-board diagnostics 

and future directions. 

2. To modify mean value engine model (MVEM) to simulate different faults 

and enhance MVEM by including load dynamics etc. 
3. To review well established NN training algorithms. Optimise and utilise 

them for engine FDI. 
4. To find a new, reliable and efficient method for engine FDl. 

5. To investigate robustness to load changes and parameter variability of the 

engine under closed-loop control. 

6. To implement, evaluate and redesign the technique with real data. 

7. To explore possibilities for sensor fault accommodation and unknown fault 

detection. 
8. To conclude the results and explore scope for further research. 
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The first aim is to explore critically all type of FDI systems in practice 

especially automotive engine FDI systems and to study their pros and cons. 
There are strict government regulations for on-board FDI in a vehicle. The 

first aim also covers an in-depth knowledge of the rules and regulations in 

practice worldwide regarding emissions from a vehicle on road. The USA is 

the first country to enforce such legislation which is followed by the UK and 

subsequently by the European Union and all of them have their own OBD 

regulations which are more or less the same. 

The second aim is to extend current application of neural networks in engine 
FDI by focusing on the diagnosis of the cause and intensity of faults in an 

engine air path under different operating conditions. A Mean Value Engine 

Model (MVEM) simulation (Hendricks et al. 1993,1996 and 2000) is used 
initially for development of the techniques and performance assessment. The 

MVEM is modified in order to simulate different faults e. g. air leakage in the 

intake manifold, EGR valve clogged and manifold pressure and temperature 

sensors malfunction with a bias fault etc. It covers all sorts of faults i. e. 

component, actuator and sensor. Air leakage is a component fault whereas 
EGR valve clogged can a fault with the valve actuator or with valve itself. 

The third aim is to review and drive some of the well-known algorithms for 

fault detection and isolation for radial basis function (RBF) neural networks 

e. g. K-means algorithm, P-nearest neighbourhood, batch least squares 
(BLS), recursive least squares (RLS) method etc. Subsequently optimise the 

algorithms with necessary modifications and use them according to the 

requirements of the application in engine FDI. 

The fourth aim is to find a new neural network algorithm for engine FDI with 
better classification capability and robustness. The new algorithm should be 

able to cope with environmental changes, uncertainties and changes due to 

aging of the engine and other components and sensors. This can be achieved 

with an adaptive FDI algorithm which has the capability of on-line learning. 

The new adaptive algorithm should also be compared with the other well 
known algorithms to demonstrate better classification results and robustness. 
Robustness should be examined under closed-loop operation for sinusoidal 
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throttle angle change, load change, engine parameter change (due to aging 

or some other reason) and also for all the changes happening simultaneously. 

The sixth aim is to real data assessment of the developed scheme. To fulfil 

this objective the real data has to be acquired from an engine test bed in the 

workshop. The data should be acquired for a wide range of operation of the 

engine so that the developed FDI scheme may be checked and assessed for 

all possible different type of engine operational modes. Redesign the scheme 
if required to optimise the results. 

The seventh aim is to explore the possibility of sensor fault accommodation 

and detection of unknown faults in the engine air path. This is important 

because it is a kind of immediate repair of the fault which will definitely result 
in emission control from the vehicle if the sensor fault had increased the 

emissions. Fault accommodation is also very cost effective because basically 

no cost is paid for repair as far as the accommodation of fault puts the sensor 

values in the green area (acceptable area) of its behavioural spectrum under 
different operating conditions. This is important to note that if the sensor 

accommodation fails for a particular operating condition then immediate repair 

will be required in case it has affected emissions adversely. Unknown fault 

detection capability for an FDI system is also an important aspect because it 

may be rare but has a possibility for an unknown fault to happen. If the 

unknown fault is affecting the emissions adversely then it needs to be 

detected and subsequently rectified as soon as possible. 

The last aim of this research is to conclude the results and explore the 

possibilities for further improvements and the possibilities of implementation 

of the developed FDI scheme in the electronic control unit of the vehicle. This 

will require first testing of the scheme with hardware in loop simulation (NILS). 

If the developed scheme passes satisfactorily in the HILS test then the 

algorithm codes can be translated from MATLAB codes to C/C++ codes and 

a digital signal processor can be programmed accordingly and embedded in 

the vehicle ECU using controller area network (CAN) protocols. 

Steady state FDI at different constant-speed engine operations was 
investigated during MSc project in year 2004 and all the aims of this research 

8 



I Introduction 

are fulfilled during study of the PhD degree from February 2005 to March 

2008. 

1.4 OVERVIEW 

This thesis is organised as follows: 

In Chapter 1, an introduction to why this research is required is given. The 

legislative requirements for EOBD/OBD-II and other reasons for the 

motivation of on board diagnostics are discussed. It is not just the desire to 

improve engine efficiency and human safety but there are wider issues 

involved to protect the environment from the air pollution which has resulted 
in acid rain, smog and climate change e. g. the North-eastern section of the 

United States, the South-eastern section of Canada, Central Europe and 
Scandinavian countries where acid rain and smog are caused by high 

numbers of factories, power plants and pollution from vehicles on the road. 
The principle aims and objectives of this research are also listed and briefly 

discussed. 

In Chapter 2, an extensive literature survey is done on fault detection and 
isolation (FDI) methods in general and also particularly for automotive engine. 
A number of FDI systems are thoroughly reviewed e. g. traditional limit alarm 

system, statistical process control method, fuzzy logic method, parameter 

estimation, observer based methods, model based methods, structured 
hypothesis, principle component analysis, wavelet networks, analytical 

redundancy, hybrid model-based technique, residual generation using parity 

equations, physical redundancy and other untraditional FDI methods like 

probabilistic approach etc. Modern artificial intelligence (Al) methods 

especially neural network based methods are also reviewed for automotive 

engine FDI e. g. Kohonen network, classical RBF classifier, support vector 

machine (SVM). 

In Chapter 3, mean value engine model (MVEM) is discussed, which is a 

simplified set of dynamic engine models based on models of the most 
important engine subsystems. A brief introduction to the working of diesel and 

petrol engines is given before discussing the basic MVEM sub-models e. g. 
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fuel mass flow dynamic sub-model, Intake manifold filling dynamics and 

crankshaft speed dynamics. 

In Chapter 4, an off-line fault diagnosis method for automotive engwe is 

investigated. This method utilises the well known algorithms nam¬ yK 

means, P-nearest neighbours and batch least-squares (BLS) method for an 
RBF neural network fault diagnosis system. This chapter also inc: udes 

simulation of air leakage in intake manifold, EGR valve clogged and make 

manifold pressure and temperature sensor faults. The data is collected 'rom 

MVEM in a variety of operating conditions for all the four faults (war- 'our 

different intensities for each fault) and no-fault states. The neural network is 

trained and tested on different sets of data and the limitations and 3nort- 

comings of the FDI system are noticed. 

In Chapter 5, a new adaptive fault diagnosis algorithm for on-line FDI of an 

automotive engine is developed and mathematically derived. The developed 

technique utilises the gradient descent method for the widths and "ecursive 
least-squares algorithm for choosing the weights in the output layer of the 

RBF classifier. The adaptive classifier is trained and tested for four different 

faults (with four different intensities for each fault) and the results are 

compared with a non-adaptive classifier developed previously in Chapter 4. 

This chapter highlights how the short-comings of the non-adaptive (off-line) 

classifier are overcome by the adaptive (on-line) classifier by comparing the 

results from both. 

In Chapter 6, the robustness assessment of the developed adaptive FDI 

technique is investigated under closed-loop control. A PID controller is 

designed for crankshaft speed feedback control and the robustness of FDI 

technique is assessed under different load conditions, sinusoidal throttle 

angle change, speed set point change, engine parameter change and all the 

changes taking place simultaneously. The evaluations are performed on 

mean value engine model (MVEM) simulations and are also compared with 

simulation results from the non-adaptive classifier. The simulation results 

confirm the proposed adaptive FDI system is robust against various 

uncertainties, disturbances, and environment changes. 
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In Chapter 7, real engine data is collected from the Volkswagen engine test 

bed when the engine runs under different driving conditions in terms of 
different speeds and loads. Five different sensor faults are simulated on no 
fault data collected for a wide range of engine operation. Adaptive FDI system 
is evaluated against the real data and the robustness assessment is also 
done. The experiments show that all simulated sensor faults were detected 

and isolated clearly. 

In Chapter 8, fault accommodation for four different sensors and unknown 
fault detection for three different unknown faults are investigated. The 

unknown faults are investigated using novelty detection (Bishop, 1994) 

technique. The non-adaptive RBF classifier is able to detect two out of three 

unknown faults correctly. Sensor fault accommodation is carried out for four 

different sensors on simulated engine no-fault data using predictive neural 

networks. The developed accommodation scheme is able to accommodate 

sensor faults with less than 5% average error. 

In Chapter 9, conclusions are drawn for each major section of the thesis 

briefly. Further research work is discussed to bridge the gap between the 

academic research and its industrial application in real life. The developed 

adaptive FDI system is required to be tested with hardware in loop simulation 
(HILS) before considering it for implementation in the electronic control unit of 

a real car/vehicle. A concrete proposal for HILS testing and further 

investigation of adaptive FDI and further development of other more efficient 

techniques for unknown fault detection and accommodation of sensor faults is 

presented. 
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CHAPTER 2 

LITERATURE SURVEY 

2.1 BASIC FDI CONCEPTS 

A fault can be defined as any kind of malfunction in a system which leads to 

an unacceptable behaviour or poor performance of the overall system. The 

malfunctions can occur any where in the healthy system such as on 

actuators, components or sensors and are called actuator faults, component 
faults and sensor faults respectively. A fault in a dynamic system is a change 

of the system structure or a deviation of the system parameters from the 

nominal situation. The set of interacting components of the plant or the 

interface between the plant and the controller are changed by the fault. These 

faults cause variance in the dynamical input/output (I/O) properties of the 

plant from the nominal ones and, hence, change the performance of the 

closed-loop system which further results in a degradation or even a loss of 

the system function. 

In continuous-variable system described by an analytical model (e. g. 

differential equation), faults are usually described as additional external signal 

or as parameter deviation. The first form of faults is called additive faults and 
is represented by an unknown input that enters the model equation as 

addend. The second form is called multiplicative fault: in this case the system 

parameters are scaled depending on the fault size. Also disturbances and 

model uncertainties change the plant behaviour. Disturbances are usually 

represented by unknown input signals that have to be added up to the system 
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output, while model uncertainties change the model parameters in a similar 

way as multiplicative faults. Faults are often classified as follows: 

  Plant component faults: faults that change the dynamical I/O properties of 

the system. 

" Sensor faults: the plant properties are not affected, but the sensor 

readings have substantial errors. 

  Actuator faults: the plant properties are not affected, but the influence of 
the controller on the plant is modified. 

A remark is necessary concerning the distinction of the notions of fault and 
failure. A fault causes a change in the characteristics of a component such 
that the mode of operation or performance of the component is changed in an 

undesired way. Hence the required specifications on the system performance 

are no longer met. However, a fault can be worked around by fault-tolerant 

control so that the faulty system remains operational. The notion of a failure, 

describes the inability of a system or a component to accomplish its function. 

Y2 4 Region of danger 

Region of degraded N 
performance 

Region of 
fault Region of / 

required unacceptabl 
ecovery 

performance J 
behaviour 

Yi 

Fig. 2.1: System subject to fault 

Assuming that the system performance can be described by two variables yi 

and y2 (Fig. 2.1). In the region of required performance, the system satisfies 
its function. During its time of operation the system should remain in this 
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region. The controller makes the nominal system remain in this region despite 

of disturbances and uncertainties of the model. The controller may even hold 

the system in this region if small faults occur. 

A block diagram for FDI system with unknown inputs and faults inputs is 

shown in Fig. 2.2 (Yu, 2005). The system measurements are used for 

residual generation and residual evaluation. The residual evaluation further 

leads to fault detection and isolation. To represent a non-linear dynamic 

system subjected to faults and unknown inputs, the following bilinear state 

equation model (Frank, 1994) can be used: 

z(t)=g(x(t), u(t))+Sg(x(t), u(t), (x(t), fa(f(t), x(t), u(t)) (2-1a) 

v(r) = h(x(t), u(t))+8k(x(t), u(t), f(r))+ }s (f(r), x(t), u(t)) (2-1 b) 

Reference input 

Fig. 2.2: Block diagram of an FDI system 

Where x(t) E R", u(t) E R'" and y(t) E RP are state, input and measured 

output vectors respectively. g(. ) and h(. ) are known vector functions of 
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compatible dimensions. Further, f(t) E R9 is a fault vector and J) and 

fs() are known vector functions representing the effects of component and 

actuator faults and sensors faults respectively. The vector functicr 5l 

represents the modelling errors of the components and actuators ana vh 

those of the sensors. 8g and 8h can also be used to represent signal 

disturbance and noise. They are generally referred to as unknown inputs 

In the special case of linear systems, the following model is considered 

x(t) = Ax(t) + Bu(t) + Ed (t) + Gfa (t) 

y(t) = Cx(t) + Du(t) + Q/ (t) 

2-2a) 

2-2b) 

Where A, B, C and D are known matrices and d(t) is an unknown input. If E is 

known, d(t) is termed structured, otherwise it is termed as unstructured. The 

fault signals fa(t) and fs(t) are unknown time functions and their aistribution 

matrices G and Q, may or may not be known, depending upon the structure 

and knowledge of-the system. Without loss of generality, it can be assumed 

that E, G, C and Q are full rank. 

Fault Detectability and Isolability 

A transfer function model of the system (2-2) is given as 

y(s) = G. (s)u(s)+Gd(s)d(s)+G. (s) fa(s)+G, (s)f, (s) 

= GG(s)u(s)+Gd(s)d(s)+G(s)f(s) (2-3) 

Based on this form, two basic definitions are given by Patton (1994). 

Definition 2.1. Fault detectability: a fault is said to be detectable if G; (s) # 0, 

where G; (s) is the ith sub-matrix of the transfer matrix G(s)=[Gi(s), ..., 
GP(s)] in 

(2-3) 
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Definition 2.2. Fault isolability: given two signals f(t) and f2(t) such that 

the system response to the two signals is 

y(s) = G, (s)f, (s) + G2 (s)f2 (s) 

then the signal f, (t) is said to be isolable from f2(t) if 

R{G, (s)} R{G2(s)} (2-4) 

where R{. } represents the range space of a matrix and G, (s) and G2(s) are 

the transfer functions relating f and f2 to y. 

In these terms, the observer based robust FDI problem can be stated as 
follows: 

o For fault detection a fault effect must be isolable from the effect of the 

unknown inputs. 

o For fault isolation the effect of a fault must be isolable from the effect 

of the unknown inputs and the other faults. 

2.2 REVIEW OF GENERAL FDI METHODS 

2.2.1 Limit Alarm Method 

In the limit alarm system, the process variable ranges are defined for a 

healthy operation along with a reasonable tolerance for upper and lower 

limits. If the value of any process variable is observed to exceed the upper or 

the lower tolerance limit then it is considered as a fault condition. Automatic 

shut down of the process is possible in case of a fault condition. Such 

systems heavily rely on human expert interface for the fault isolation. 

Fault detection using limit boundaries is shown in Fig. 2.3. The healthy 

operating range for the process variable is 20 to 25. The upper limit and lower 

limit for the variable is set to 27.5 and 17.5 respectively. This tolerance is 
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carefully calculated and designed by a process control engineer. The signal 
falling outside of the defined lower and upper limits causes alarm signal and 
detects a fault in the process. An auto shut down limit is also defined in case 
the process variable exceeds the limits too much to save the plant from 

damage. As shown in the graph the auto shut down limit for the process 

variable is set to 35. The biggest advantage of such systems is its simplicity 

and inexpensiveness. 

Fault detection of sensor malfunction can be carried out by hardware 

redundancy which involves comparing the measurements of repeated 
hardware elements for consistency (Patton et al., 1989). This method is 

expensive and requires extra space for the additional sensors to install. On 

the other hand analytical redundancy method uses representative model 
instead of repeated hardware sensors etc. The signals from the model are 

compared with the signals from the actual process for the fault detection. 

40 

35 

n 30 
n 
aA 

I:: 

15 

Fault detection using limit boundaries 

10L 
0 

Auto shut down limit 
Fault region 

Upper Limit 

Healthy Operation 

Fault 

Lower Limit 

region 

2468 10 12 14 16 18 
Time in minutes ---»> 

Fig. 2.3: Fault detection using limit boundaries 

However, for a dynamic system the output relies on the input and therefore a 

constant limit is not useful, while variable limits are very difficult to choose. 
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Therefore this method is very limited to be used for a small range of simple 

systems. 

2.2.2 Statistical Process Control (SPC) 

The SPC methods are based on charting the final quality variables of a 

process. The real time quality measurements are taken by using on-line 

analytical instruments such as spectrometry and chromatography systems. 
These instruments are very expensive and are available for limited 

applications. Therefore many processes adopt an off line method for 

obtaining the quality measurements. After collecting a sample of process data 

representing no fault state statistical confidence bounds are calculated for 

each monitored variable. The confidence bounds can have confidence limits 

such as 97% or 99% etc. These confidence bounds are incorporated into a 
SPC chart and the process variables can then be monitored on line to see if 

they fall within expected limits. Exponentially weighted moving average 

charts, Shewart charts (Mcfarlane, 1996) and cumulative charts are the most 

commonly used charts for SPC. These charts are used to detect the 

occurrence of any abnormal activity. 

Statistical process control techniques in particular the control charts have 

been widely used in manufacturing industry (Xie et aL, 2001). Usually control 

charts are implemented for the purpose of process monitoring. When a 

process is considered out of control, an alarm is raised so that engineers can 
look for assignable causes of variation and try to eliminate them. Traditional 

control charts aroused in such a way that corrective action are taken only 

after the occurrence of the out of control signal which indicates that the 

process performance has changed to a state significantly far from the original 

state. 

SPC uses output measurements to control the stability of a process and to 

detect causes of out of control situations (Montgomery, 1996). The main 
drawback of SPC is that its effective implementation cannot be achieved 

unless we have a good understanding of the key factors that will make the 

application successful (Rungasamy et al., 2002). 
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Many industrial processes have a large number of inputs and output variables 

and it may not be practical to draw charts for all the variables and apply SPC 

strategy for monitoring without first doing principal component analysis (PCA) 

to limit the number of variables to be monitored for faults and safe operation. 

2.2.3 Al and Knowledge based methods 

It is not always possible to develop model based FDI system for a process 

especially when quantitative model are not available due to complexity of 

process or due to some other reasons. In such cases quantitative knowledge 

based methods are used for fault diagnosis. These methods can also be 

designed to complement the quantitative methods by incorporating process 
knowledge at the residual evaluation stage. Knowledge based diagnosis 

methods mainly fall into two categories, symptom based and quantitative 

model based methods. Symptom based methods are based on knowledge 

about the process history and are evaluated using rule based systems such 

as expert systems or fuzzy logic. With qualitative models, the knowledge is 

derived in terms of facts and rules from the description of system structure 

and behaviour in first principles (Weerasinghe, 1998). A main component of 

qualitative modelling is causal graphs, such as signed directed graphs (SDG), 

which are based on tracing process malfunctions to their source. 

In this section, the expert system, fuzzy logic and neural network methods will 
be discussed separately. 

A. Expert Systems Method 

Expert systems are used in a variety of areas, and are the most popular 
developmental approach in the field of artificial intelligence. The major use of 

artificial intelligence today is in expert systems, Al programs that act as 
intelligent advisors or consultants. Drawing on stored knowledge in a specific 
domain, an inexperienced user applies inference capability to tap the 

knowledge base. As a result, almost anyone can solve problems and make 
decisions in a subject area nearly as well as an expert. It is not easy to give a 

precise definition of an expert system, because the concept of expert system 
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itself is changing as technological advances in computer systems take place 

and new tasks are incorporated into the old ones. In simple words, it can be 

defined as a computer program that models the reasoning and action 

processes of a human expert in a given problem area. Expert systems, like 

human experts, attempt to reason within specific knowledge domains. 

An expert system permits the knowledge and experience of one or more 

experts to be captured and stored in a computer. This knowledge can then be 

used by anyone requiring it. The purpose of an expert system is not to 

replace the experts, but simply to make their knowledge and experience more 
ideally available. Typically there are more problems to solve than there are 

experts available to handle them. The expert system permits others to 

increase their productivity, improve the quality of their decisions, or simply to 

solve problems when an expert is not available. Valuable knowledge is a 

major resource and it often lies with only a few experts. It is important to 

capture that knowledge so others can use it. Experts retire, get sick, move on 
to other fields, and otherwise become unavailable. Thus the knowledge is 

lost. Books can capture some knowledge, but they leave the problem of 

application up to the reader. 

Expert systems provide a direct means of applying expertise. An expert 

system has three main components: a knowledge base, an inference engine, 

and a man-machine interface. The knowledge base is the set of rules 
describing the domain knowledge for use in problem solving. The prime 

element of the man-machine interface is a working memory, which serves to 

store information from the user of the system and the intermediate results of 
knowledge processing. The inference engine uses the domain knowledge 

together with the acquired information about the problem to reason and 

provide expert solution. 

In nut-shell an expert system can be thought of a body that holds a large 

amount of expert knowledge about the subject under consideration in an 

advisory capacity to users of lesser knowledge of different situations. The 

information may take the form of system diagnosis and prognosis and advice 

on possible corrective actions. For the design of a diagnostic expert system 
for a process, the expert system should hold the knowledge of process 

experts, such as process operators and engineers, information about the 
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process behaviour under no fault and fault conditions and manuals of process 

equipments. The knowledge base is then compiled in the form of facts and 

rules and can be used as fault diagnosis tool with in the domain of expertise. 
High costs and long development time are two major disadvantages of such 

systems. 

The rule-based expert systems on process diagnosis are primarily snallow 

reasoning-based expert systems which help users to diagnose the cause of 

process deviations and suggest corrective actions. These expert systems 

generally contain human expertise in the form of rules or decision trees 4vnich 
are often augmented with causal graphs or decision trees (Melton ät al., 
1997). 

Ebersbach and Peng (2008) developed an expert system to analyse vibration 
data with similar accuracy as an expert maintenance engineer in an 

automated software package allowing high analysis output, and hence 

suitable for commercial condition monitoring laboratories or on-site use. 

Tomaszewski et at., (2007) compared the performance of the statistical fault 

prediction models with expert estimations and found that the statistical 

methods clearly outperform the expert estimations. The main reason for the 

superiority of the statistical models was their ability to cope with large 

datasets. 

It is possible only in a narrow domain to programme a computer system to 

emulate the decision-making ability of an expert human. It is very difficult to 

encode enough knowledge into a system to make it multi-dimensional expert 

and therefore expert systems not suitable for FDI a large systems which have 

hundreds of variables and parameters. 

B. Fuzzy Logic Method 

Fuzzy logic means approximate reasoning, information granulation, 

computing with words and so on. Ambiguity is always present in any realistic 

process. This ambiguity may arise from the interpretation of the data inputs 

and in the rules used to describe the relationships between the informative 
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attributes. Fuzzy logic provides an inference structure that enables the human 

reasoning capabilities to be applied to artificial knowledge-based systems. 
Fuzzy logic provides a means for converting linguistic strategy into control 

actions and thus offers a high-level computation. 

Fuzzy logic provides mathematical strength to the emulation of certain 

perceptual and linguistic attributes associated with human cognition, whereas 
the science of neural networks provides a new computing tool with learning 

and adaptation capabilities. The theory of fuzzy logic provides an inference 

mechanism under cognitive uncertainty; computational neural networks offer 

exciting advantages such as learning, adaptation, fault tolerance, parallelism, 

and generalization. 

Fuzzy logic is based on the way the brain deals with inexact information. 

Fuzzy systems are structured numerical estimators. They start from highly 

formalised insights about the structure of categories found in real world and 
then articulate fuzzy IF THEN rules as a kind of expert knowledge. Fuzzy 

systems combine fuzzy sets with fuzzy rules to produce overall complex 

nonlinear behaviour. In the past decade, fuzzy systems have supplanted 

conventional technologies in many scientific applications and engineering 

systems especially in control systems and pattern recognition (classification). 

One of the biggest differences between crisp and fuzzy sets is that the former 

always has unique membership functions whereas every fuzzy set has an 
infinite number of membership functions that may represent it. This enables 
fuzzy systems to be adjusted for maximum utility in a given situation. In a 
broad sense, as pointed out by Professor Lotfi Zadeh (inventor of fuzzy logic, 

1973) any field can be fuzzified and hence generalised by replacing the 

concept of a crisp set in the target field by the concept of a fuzzy set. The 

incoming data from the process is fuzzified to give linguistic labels such as, 
large, medium, small etc rather than crisp values. The fuzzification is 

evaluated according to its degree of membership of a certain specified 

membership function. The logical operators AND, OR and NOT are applied to 

the membership function when developing the rule base. Structure of a 

simple fuzzy logic system is given in Fig. 2.4. 
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Fig. 2.4: Structure of a simple fuzzy logic system 
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One major feature of fuzzy logic is its ability to express the amount of 

ambiguity in human thinking and subjectivity in a comparatively undistorted 

manner. 

Laukonen and Passino (1995) trained fuzzy systems to perform estimation 

and identification. A fuzzy approximation technique was used to solve 

nonlinear estimation and system identification problems. A fuzzy system was 

constructed to interpolate between input and output data to provide an 

approximation for the function defined by the input-output data pair 

association. Uniform training and the modified learning from examples 
technique were illustrated by a simple pendulum example and the use of the 

modified learning from examples approach was demonstrated in constructing 

a fuzzy system which can identify actuator failures in an F-16 aircraft. Hissel 

et al., (2004), presented a diagnosis oriented model of a proton exchange 

membrane fuel cell (PEMFC). The diagnosis model was based on fuzzy logic 

system and was tuned with the help of genetic algorithms. The fuzzy classifier 

worked well for two different types of faults in the fuel cell system i. e. 

accumulation of water/nitrogen in the anode compartment and drying of the 

proton exchange membrane. 

A fuzzy model was implemented (Lu et al., 2000) to detect vacuum leak in the 

electric engine controller (EEC) as part of the end-of-line test at automotive 

assembly plants. The fuzzy model learnt automotive diagnostic knowledge 

through machine learning techniques. The fuzzy model generated fuzzy rules 

and optimised fuzzy membership functions automatically and this auto-tuning 

made the system adaptive to different vehicle models. The machine learning 

23 



2 Literature Survey 

system allowed the human knowledge to be incorporated in the knowledge 

base through the generation of prior rules and the modification of the 

membership functions after rule generation. The diagnostic system was 

tested on two different vehicle models and the test results showed that the 

system was effective, fast and suitable for running on PC platform. 

C. Artificial Neural Network (ANN) Method 

An artificial neural network (ANN) is an information-processing system that 

has certain performance characteristics in common with biological neural 

networks. Artificial neural networks have been developed as generalizations 

of mathematical models of human cognition or neural biology, based on the 

assumptions that: 

  Information processing occurs at many simple elements called 

neurons. 

  Signals are passed between neurons over connection links. 

" Each connection link has an associated weight, which, in a typical 

neural net, multiplies the signal transmitted. 

  Each neuron applies an activation function (usually nonlinear) to its 

net input (sum of weighted input signals) to determine its output 

signal. 

A neural network is characterised by (1) its patter of connections between the 

neurons (called its architecture), (2) its method of determining the weights on 

the connections (called its training, or learning, algorithm), and (3) its 

activation function. Each neuron is connected to other neuron by means of 

directed communication links, each with an associated weight. The weights 

represent information being used by net to solve a problem. Neural nets can 

be applied to a wide variety of problems, such as storing and recalling data or 

patterns, classifying patterns, performing general mappings from input 

patterns to output patterns, or finding solutions to constrained optimisation 

problems. 

Pattern recognition is one of the major applications of ANNs. Pattern 

recognition is basically 'classification' of known sets of patterns. Artificial 
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Neural Networks (ANNs) are found very useful for this purpose. The main 

applications of pattern classification are in the field of image and speech 

recognition. They are also used in the field of fault diagnosis to classify the 

input patterns. It requires a set of process data that covers all fault conditions 
to be diagnosed. The input data to ANN consists of all the fault states 
including no fault state. The data is normalised and scaled to appropriate 
level before putting it through ANN for training. 

If sufficient data is provided, an ANN can learn any type of non-linearity. A 

properly trained ANN can further be used for classification of faults. ANN has 

ability to generalise to new inputs i. e. a trained network is capable of 

providing meaningful outputs when presented with input data that has never 
been used before. 

Yu et aL, (1999), investigated radial basis function (RBF) neural networks for 

process fault diagnosis. The output prediction error between a neural network 

model and a non-linear dynamic process was used as residual for diagnosing 

actuator, component and sensor faults for a real multivariable chemical 

reactor (Yu et al., 2003). Real data experiment showed that sensor faults can 
be detected and isolated without a process mathematical model by using a 

semi-independent neural model. It demonstrated a general approach which 

could be employed for sensor fault diagnosis of any real systems but the 

successful classification would depend on the model sensitivity for residual 

generation. 

Other authors investigated fault classification for double-circuit lines based on 

combined supervised and unsupervised neural networks (Aggarwal et al., 
1999). A neural network based on combined supervised and unsupervised 
training methodology provided the ability to accurately classify the fault type 

by identifying different patterns of the associated voltages and currents. This 

hybrid classifier was also compared with supervised classifier and it was 
found that the hybrid classifier performed better and was suitable for double- 

circuit-line faults classification. In the hybrid classifier, first self organising 

maps (SOM) were used with unlabelled data to form internal clusters. Then 

labels are assigned during the supervised stage and back propagation (BP) 

algorithm is used for supervised stage. 
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This two stage FDI method is effective and suitable for double-circuit (ine 

faults. The reason is that faults in double-circuit lines have less number of 

classes which are diagnosed in stage 1 of the method using SOMs. Once : he 

class of fault is known then in the second stage (supervised stage) car in 

point the fault more precisely and isolate it. This technique may nc( oe 

suitable for systems which have larger numbers of fault classes. 

Yang et al., (2004), proposed a Kohonen neural network (KNN) )ased 

classifier for fault diagnosis of rotating machinery. They showed that the 

neural network based on adaptive resonance theory (ART) were capacte of 

carrying out on-line training without forgetting previously trained patterns. For 

the purpose of testing the proposed network and to compare it with the Dther 
FDI systems, the vibration signal was selected as raw inputs due to simoiicity, 

accuracy and efficiency. On comparison it was found that ART-Kanonen 

neural network performed better than self-organising feature maps (SOFM), 

learning vector quantisation (LVQ) and radial basis function (RBF\ networks 
for this particular application of diagnosing rotating machinery where the 

vibration signals substantially change with the different types of the 'fault e. g. 
faulty bearing, misalignment and unbalance. Many authors used KNN for 

process monitoring and fault diagnosis. This method may not be suitable for 

the detection of faults which do not cause substantial change in the vibration 

characteristics of the machine. 

Jamsa-Jounela et aL, (2003) investigated application of Kohonen self- 

organising maps in conjunction with heuristic rules to detect equipment 

malfunctions in a copper flash smelter industry with an objective to detect 

process failure at an early stage. The FDI system worked satisfactorily but 

expert-knowledge of the human operator about the process still plays an 
important role in fault detection. To eliminate the role of an expert-human 

operator, more information about process states is required which cannot 

easily be measured therefore it is necessary to rely on operator's 

observations and make necessary observations. 

Kowalski and Orlowska-Kowalska, (2003), investigated self organising 
Kohonen networks and multilayer perceptron (MLP) networks for FDI of rotor, 

stator and roller bearing of an induction motor. Measurement data of stator 

current and mechanical vibration spectra were used for training and testing of 
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the neural networks. SOMs were used at initial stage of classification as an 
introductory step and then MLP networks were used for final fault detection 

and isolation. The results demonstrate that the proposed method can 

effectively used for the recognition of induction motor faults. 

Jakubek and Strasser (2002) proposed an automatic fault diagnosis scheme 
for automotives and their approach modelled the distribution function of 

available fault free data using ellipsoidal basis function network. More 

attention was paid to automatic adaptation of pre-existing network to new 
data points using gradient optimisation with algebraic constraints and 

numerical examples with real data showed good results. The detection 

scheme processes hundreds of measurements but the main problem is that 

there is no further information available except the available data. The 

authors have not tried PCA to reduce the number of measurements to be 

processed. This is important because some measurements do not contribute 

any information for residual generation. 

Dalmi et al., (1999), investigated four different FDI algorithms e. g. radial basis 

function and multilayer perceptron for supervised training and Kohonen and 

counter-propagation networks for unsupervised training for fault diagnosis of 

an autonomous mobile vehicle. The authors found that counter-propagation 

algorithm is better for the detection of unknown faults and RBF network is 

more suited for the detection of known faults. The same authors also 

investigated residual based pattern recognition approach for FDI (Dalmi et al., 

2001). Unsupervised neural networks with on-line training were used for the 

classification of the unknown faults. 

Scholkopf et al., (1997), compared classical RBF classifier, support vector 
(SV) machine with Gaussian kernel, and a hybrid system with the centres 
determined by the SV method and the weights trained by back-propagation 

algorithm. All the three systems were tested on United States postal service 
database of hand written digits. The results showed that the SVM achieves 
the highest accuracy in correct recognition of hand written digits followed by 

the hybrid system. Therefore the SV approach is not only well founded 

theoretically but also is superior in a practical application. 
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Vong et aL, (2006), used least squares SVM and Bayesian interface for 

prediction of automotive engine power and torque. Approximate power and 
torque model of an engine was determined by training the sample data 

acquired form the dynamometer and this resulted in reduced number of 
dynamometer tests required for engine tune up. Bayesian framework was 

applied to infer the hyper-parameters used in LS-SVM so as to eliminate the 

work of cross validation which led to substantial reduction in training time. The 

LS-SVM methodology was also compared with multilayer feed forward neural 

networks and was found better for this particular application. The LS-SVM 

training time is also considerably small as compared to traditional neural 

network method. The construction of gasoline automotive engine power and 
torque functions using LS-SVM is a successful attempt and may also be 

suitable to apply to other type of engines. 

Neural networks can be used even for unknown fault diagnosis. Li et al., 
(2002) presented a novel technique for the determination of an appropriate 
threshold for RBF classifier. Threshold based neural network output 
interpretation is appropriate for FDI systems. Generally neural network based 

FDI systems not only classify known normal and fault input vectors but also 

recognise that a particular input is neither normal nor a member of the one of 
the existing fault categories. Bishop (1994) called it 'novelty detection'. By 

using a threshold based classifier outputs of the neural network may be 

readily interpreted as an unknown fault when none of the normal or fault 

output neuron exceeds the threshold. According to Li et al., (2002), the ability 
to detect unknown faults may be at the expense of a decrease in the 

classification performance for known classes and therefore a second phase 

should be performed. In this second phase the classifier threshold may be 

modified to translate the unknown faults into known faults. When sufficient 
data has been collected about unknown fault then the classifier should be 

retrained using all available data. The authors have derived a novel technique 

for threshold determination of RBF network where there may be possible new 

classes or unknown faults. The results suggest a two-phase approach to RBF 

classifier when there is a possibility of unknown faults. The authors have 

successfully overcome the problem of decrease in classification performance 
for known classes because of the threshold adjustment made for the 

detection of unknown classes by performing a second phase of known fault 

detection with modified threshold. 
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2.2.4 Model Based Methods 

A variety of diagnosis methods have been proposed under the umbrella of 

model-based techniques. The feature of all these techniques is that some 
form of mathematical knowledge of the process of interest along with inputs 

and outputs are used to generate superfluous information about that process. 
This redundant information is then used in a diagnostic process to arrive at 
decisions regarding fault or no-fault conditions. Model based diagnosis has 

proven a useful alternative to the traditional approaches, and has potentially 
the following advantages: 

¢" It can provide a higher diagnosis performance, in terms of detecting 

faults with small size and shorter detection time. 

¢" Different faults can be isolated. 

¢" It can be performed over a large operating range. 
" Disturbances can be compensated for, which enables high diagnosis 

performance in spite of present disturbances. 

¢" It is applicable to a wider range of components. Not all hardware can 
be duplicated. 

¢" No extra hardware is needed, which saves space, weight and 

sometimes even money. 

The disadvantage of model-based diagnosis is the need of an accurate 

model, computing capability and perhaps also a more complex design 

procedure. Building the model is probably what takes the most work when 
designing a diagnosis system and it also is the most important part since the 

model normally is what limits the performance of the diagnosis system. The 

analytical or model based approach has become a subject of tremendous 

research in recent years. In a survey by Isermann and Balle (1997), it was 

stated that model based methods are the most frequently applied methods for 

fault diagnosis. A variety of diagnosis methods have been proposed under the 

umbrella of model-based techniques. A number of survey papers can be 

found on the subject such as Isermann (1997), Gertler (1988), Frank (1996) 

and Chen and Patton (1999). The feature of all these techniques was that 

some form of mathematical knowledge of the process of interest along with 
inputs and outputs were used to generate superfluous information about that 

process. This redundant information was then used in a diagnostic process to 
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arrive at decisions regarding fault or no-fault conditions. Model based 

methods used 'analytical redundancy' instead of 'physical or hardware 

redundancy'. Figure 2.5 shows the structure of a model based FDI system. 

Faults 

Input I Output 
Process I P-1 

Noise 

Model I--i 

Error signal 

Residual evaluation 

rauet 
diaanosis 

Fig. 2.5: Model based FDI system 

The error between the process and the model output is called residual. A 

single residual is sufficient for fault detection but a set of residuals is required 

for fault isolation. In healthy condition the residual is zero. Residual is 

generated only in the fault condition when the process variables deviate from 

the normal values. 

Pisu et al., (2003) presented the design of a new model-based fault diagnosis 

method for monitoring the vehicle chassis performance based on a 

hierarchical structure of the FDI schemes that reduced the computational 

effort. A set of low level detection unit was realised to determine basic faults 

and then the information was shared with the top level to determine the 

different types of faults. To demonstrate the validity of the approach the 

hierarchical structure was applied to a brake-by-wire system without 

mechanical backup. The validity of this approach was then examined by 

extensive number of simulations performed under noisy measurements and 

unmodelled dynamics. The approach was successful. 
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Butler et al., (1999), discussed a simulation and modelling package 
developed at Taxas A&M University, V-Elph 2.01. It was composed of 
detailed models of four major types of components e. g. electric motor, internal 

combustion engines, batteries and support components that could be 

integrated to model and simulate drive trains having all electric, series hybrid, 

and parallel hybrid configurations. Simulation results such as fuel 

consumption, vehicle emissions and complexity were compared for different 

types of vehicles. The authors have basically discussed a new simulation and 

modelling package to study issues related to electric vehicles (EV) and hybrid 

electric vehicles (HEV) design such as energy efficiency, fuel economy and 

vehicle emission. This modelling package can be run on any PC or UNIX 

based computer. 

Crossley and Cook (1991) developed a nonlinear mathematical model of a 
four cylinder spark ignition engine to incorporate into an overall vehicle 
driveline model. Emphasis was placed on the formulation of engine 

component functional relationships and the validation of modelled system 
dynamics by engine dynamometer testing. This work showed that a relatively 
low order engine model can capture the main transient effects for use in 

traction control system design. 

Modelling vehicle engine diagnostics as a signal fault diagnostic problem 

requires a good understanding of signal behaviour relating to various vehicle 
faults. These signals range from simple binary modes to complex spark 
ignition timing signals. Two important tasks in vehicle signal diagnostics are to 

find what signal features are related to various vehicle faults and how can 
these features be effectively extracted from signals. Crossman et al., (2003), 

presented results in signal faulty behaviour analysis, automatic signal 

segmentation, feature extraction and selection of important features. This 

research is challenging to automotive fault diagnosis and the results are 

useful to other applications such as pattern recognition and intelligent 

systems. Authors have also developed agent-based system for vehicle FDI. 

A hybrid feature selection algorithm was evaluated using a fuzzy diagnostic 

system developed for vehicle signal diagnosis which automatically generated 
fuzzy rules and fuzzy membership functions from training data and optimised 
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the fuzzy membership functions (Lu and Chen, 1998). The approach was 

successful. 

Frisk and Nyberg (2002) presented an algorithm for designing linear res, aual 

generators. The algorithm was able to design residual generators for any 

model described by general linear differential-algebraic equations. The 

algorithm was based on polynomial matrix algebra for which efficient 

computational tools were commercially available. The algorithm could -andle 

all types of models handled by earlier algorithms (e. g. models describea by 

state space, transfer function and descriptor form) but also a more general 

class of models not handled by previous algorithms. 

Yu et al., (2005) investigated application of empirical mode decomposition 

(EMD) method and Hilbert spectrum for fault diagnosis of roller bearings. The 

orthogonal wavelet bases were used to translate vibration signals of a roller 

bearing into time scale representation. The real vibration signals measured 

from roller bearings with faults were analysed and the results showed that the 

proposed method was better than the traditional envelop spectrum method in 

extracting the fault symptoms. This approach is only suitable for application 

where the faults affect the vibration signals. If the faults in the system do not 

affect the vibration signals then they are not detectable using this approach. 

A robust FDI scheme for abrupt and incipient faults in nonlinear uncertain 
dynamic systems was presented by Zhang et aL, (2002). The proposed 

scheme consisted of a bank of nonlinear adaptive estimators. One was the 

fault detection and approximation estimator and others were for fault isolation 

(each of them associated with a specific type of fault). The detection and 

approximation detector was used for normal operating condition to monitor 

any fault. If a fault was detected then the fault isolation estimators were 

activated and the fault detection and approximation estimator adopts the 

mode of approximating the fault by using online approximation method. The 

main contribution was the design of fault isolation scheme as the key part of 

the diagnosis architecture. The residual of each fault isolation estimator was 

associated with an adaptive threshold which could be implemented online by 

using linear filtering method. This would reduce false isolation decision. The 

effectiveness of the proposed FDI scheme is illustrated by the example of 

three tank (MIMO) system. 
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Hybrid model-based techniques employing quantitative models and graph- 
based dependency models for intelligent diagnosis were investigated by Luo 

et al., (2003). It was found promising to integrate intelligent model-based 
diagnostic processes into the initial design phase for vehicle health 

management. The results of the test designs from different model-based 
diagnostic schemes were layered onto a graph-based dependency model 

which was more compact for real time diagnostic implementation. Intelligent 

model-based diagnostic process provided a systematically solution for vehicle 
health management problem. 

The most common approach to design diagnostic systems is to use residual 

generators which are usually constructed considering all the model equations. 
There are many advantages of considering a small subset of model equations 

called minimal structurally singular (MSS) sets of equations. Biteus and 
Nyberg (2003) presented a new method for finding residual generators for 

MSS sets. This approach was used on a non-trivial non-linear point-mass 

satellite system. MSS models from the dynamic and partially dynamic 

approaches were used and the result was analysed. The numerical simulation 

of MSS models showed good results. 

2.3 REVIEW OF ENGINE FDI METHODS 

Engine health monitoring process is widely discussed. Fundamentally, the 

monitoring process involves diagnosing engine parameters which deviate 

from 'normal' value. Faults can come from several sources. Traditionally, 

engine faults have only been identified after the engine has broken down. If 

there is an on board parameter monitoring device to reflect the online engine 

condition, then diagnosis can be affected earlier. One of the objectives of this 

research is to design a condition monitoring and fault diagnosis system which 

can be used to investigate the possible faults at component level for an 

engine. The system must be capable of detecting and isolating particular 
faults on the engine. 

There are a number of books that have been published on fault detection for 

engineering processes (Patton, 1989; Chen, 1999; Gertler, 1998; Chiang, 
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2001) and various fault diagnosis techniques have been reported in the 

literature. A few detailed survey papers are available (Isermann, 1984; 

Gertler, 1988). Isermann reported that process faults could be detected when 
based on the estimation of immeasurable process parameters and state 

variables. He also described the suitable choice of using parameter 

estimation for continuous-time models in fault detection. He then reported the 

use of process model knowledge and model-based (Isermann, 1997) fault 

diagnosis of technical processes. Gertler pointed out the possibility of using 
both model-based and model-free methods for fault detection. He asserted 
that the sensitivity and robustness of models play a role in the selection of a 
desired model and filtering may be applied to improve sensitivity within a 

given model framework. Modelling errors affect the fault detection process 

and may falsify the failure signatures. The following gives a brief overview of 

some techniques in general terms. 

2.3.1 Model Based Engine FDI Methods 

The model-based technique is the most common approach to fault detection 

and isolation. This method utilises an explicit mathematical model of the plant 

under investigation. The sensor measurements are compared to analytically 

computed values (i. e. from the model) of the respective variable and the 

resulting difference is called the residual. The residuals are indicative of the 

presence of faults in the system. There are a few approaches to residual 

generation in model based fault diagnosis. 

A. Parameter Estimation Method 

Parameter estimation is an approach to the detection of parametric faults. A 

reference model is obtained by identifying the plant in a fault-free condition. 
The models may be constructed from first principles to relate the model 

parameters directly to parameters that have physical meaning in the process. 
Any deviation from the reference plant model serves as a basis for fault 

detection. This technique may be applied to a non-linear system where the 

structure is known. The parameter estimation method is appropriate if the 

process faults are associated with changes in model parameters (i. e. 
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multiplicative faults), and appropriate mathematical models are available. 
Benvenuti et al., (2003), presented an estimation technique for injector 

characteristics based on a set of measurements that could be carried out 

using sensors present in the car e. g. intake manifold pressure, crankshaft 

speed, throttle-valve plate angle, injection timings and exhaust air/fuel ratio 

etc. All these measurements could also be taken by a single sensor placed at 

the exhaust pipe output known as Universal Exhaust Gas Oxygen (UEGO) 

sensor. Vemuri (1999) investigated an adaptive technique to estimate the 

presence of an unknown constant bias in the UEGO sensor. The simulation 

results showed that the proposed technique achieved robust diagnosis. 

Conatser et al., (2004), investigated fault diagnosis of automotive electronic 
throttle control (ETC) system. The ETC system was modelled and a parity 
diagnostic strategy applied to detect the presence of any fault. The specific 
fault was isolated using a parametric estimation methodology. The nonlinear 

parity residual generation method used forward and inverse system models to 

compare actual and modelled system input/output values to detect system 
faults. Numerical results were presented and discussed which demonstrated 

the performance of the health monitoring algorithms in diagnosing a suite of 

system failures. The fault diagnosis was successful for ETC system. 

B. Observer-based Techniques 

The observer-based technique can be used for both non-linear and linear 

plant models. The plant states may provide important information to the plant 

operating condition. However, some plants states are known to be non- 

measurable and an observer can be employed to estimate these plant states. 

Once the residuals are obtained, evaluation of these residuals may be carried 

out. Residual evaluation is a decision making stage to classify the particular 
faults in the plant. Some of the faults gradually build up and may provide a 

certain fault pattern. This fault pattern can be recognised based on the history 

of the plant or some theoretical considerations. Once the residuals are 

obtained, they may be classified into further categories, i. e. good condition, 

moderate, serious or danger to give the user a clear picture of the plant 

condition. The users can then react to these decisions as appropriate. 
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Model based methods cover a wide class of fault detection and isolation (FDI) 

techniques and a verity of these methods had been proposed (Frank et aL, 
2000). The feature of all these techniques was that some form of 

mathematical knowledge of the process of interest along with inputs and 

outputs were used to generate superfluous information about that process. 
This redundant information was then used in a diagnostic process to arrive at 
decisions regarding fault or no-fault conditions. 

A number of model based FDI techniques (Isermann and Balle, 1997; Nyberg 

and Nielsen, 1997; and Nyberg and Perkovic, 1998) for automotive engines 

was previously investigated. Nyberg and Nielsen (1997) developed a fault 

diagnosis system based on non-linear semi-physical model and used a 

combination of different residual generation methods. It was capable of 
detecting and isolating faults in throttle actuator, throttle sensor, air mass flow 

sensor and manifold pressure sensor. A combination of different residual 

generation methods was used. This had an advantage of fewer model 

constraints which made it possible to use less restrictive model building and 
this led to better diagnostic performance. The scheme was experimentally 

validated on a real production engine. Nyberg and Perkovic (1998) 

investigated leaks in the air path of a turbo charged SI engine. Estimation of 
leakage area before and after the throttle could be found. The control 

algorithm could be reconfigured to suppress the effects of the leakage on 

emissions. Leaks of 2 mm diameters could be found and their method of 
diagnosis could be formulated as recursive least squares (RLS) algorithm and 
therefore it was suitable for on-line implementation. 

Gertler et al., (1991,1993 and 1995) and his group were involved in a project 

with General Motors during 1991-93 and a simulation study was done. A 

linear model was not found sufficient because of its limited operating range 

and then a hybrid model with linear core was developed. Five residuals in the 

form of parity equations were used to diagnose faults in throttle angle sensor, 
EGR-valve, fuel injectors, manifold pressure sensor, engine speed sensor 

and lambda sensor. These were also input to the diagnosis system. The 

residual structure was able to distinguish all faults except fuel injector and 
lambda sensor faults. The problem was that the characteristics of the lambda 

sensor were unknown. During 1994-95, they tried this scheme on a real 3.1 
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litre V6 engine in a production vehicle. Both off-line and on-line versions Nere 
developed and they stressed the importance of simple algorithms because of 
limited computing power available on-board. Instead of using five linear oarity 

equations, they used six non-linear parity equations as residuals. The same 
faults as before were diagnosed and the new residual structure provided 
isolation between all faults. To increase robustness, the residuals are ow- 

pass filtered and threshold crossings were counted. It was reported that they 

were able to diagnose faults of 10% size. This approach cannot detect vaults 

below the size of 10% with satisfactory performance and therefore, s not 

suitable for smaller faults. 

Rizzoni et aL, (1989 and 1991) used an extended version of the detection 
filter derived from a fourth order linear state space engine model. The Nork 

was partially supported by Ford. The diagnosis system measured throttle 

angle, manifold pressure and engine speed to produce two residuals. The 

scheme was shown to be able to diagnose 10% faults in throttle angle sensor 

and manifold pressure sensor on a real Ford 3.0 litre engine. The 
-Ise of a 

linear model restricted the operating range of the model and data was shown 
for 50-60 kPa and 1050-1130 rpm. It seemed like the residuals were sensitive 
to engine transients. Rizzoni et al., (1993) used a non-linear model to 

generate five residuals based on parity equations. The throttle angle, engine 

speed, manifold pressure and injected fuel were measured to diagnose faults 

in a real 4 cylinder 1.3 litre engine. The diagnosed components were throttle 

angle sensor, engine speed sensor, and manifold pressure sensor and fuel 

injectors. The load was decoupled. The plots of the residuals were shown for 

the case of 10% faults of the diagnosed components. Later in year 1994, 

Krishnaswami et al., (1994); and Luh and Rizzoni (1994) started using a non- 
linear discrete Narmax model which was a linear combination of second order 

polynomials, i. e. it was linear in the parameters. Inputs to the diagnosis 

system were demanded throttle angle, injected fuel and measured air mass 
flow and engine speed. Forward and reverse models were used to generate 
four corresponding parity equation residuals. The load is decoupled. The 

scheme was tested on a real Ford 3.0 litre engine over a standardised test 

schedule and was reported to be able to diagnose 10% faults in the air mass 
flow sensor, 20% faults in the engine speed sensor, 15% faults in the throttle 

actuator and 40% faults in the fuel injector. 40% faults in the fuel injector is a 
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very big fault. The fault sizes are very big for other faults also and therefore 

are easy to diagnose. This FDI scheme may not be suitable for smaller faults. 

Observer based non-linear estimation was investigated by Yong-Wha (1998). 

The focus is on the use of physical models to estimate unmeasured or 
immeasurable variables and parameters to be used for control and diagnostic 

purposes. In the non-linear parity equation residual generation (NPERG) 

diagnostic approach, sensor faults were detected and isolated using output 

estimators, while input and plant parameter faults were isolated using input 

estimators. In the case of sensor faults, the information supplied by the faulty 

sensor to the control module can be decoupled by removing the faulty sensor 

and replacing the information with estimates obtained through reliable 

measurements and models. If the system is not observable after removing the 

faulty sensor, a model of the system can be used to estimate the faulty 

sensor reading and used as an observer. This is a good approach for sensor 
fault accommodation but it may not be successful for small bias faults in the 

sensors. In chapter 8 of this thesis similar fault accommodation scheme for 

sensor faults is investigated using predictive neural networks and has 

successfully demonstrated accommodation of 10% sensor bias faults with 
less than 5% mean accommodation error. 

C. Structured Hypothesis Method 

Real time supervision using production sensors and additional sensors 
installed was investigated by Nyberg and Stufte, (2004) and they proposed a 

new method for adaptive thresholds to handle modelling errors. It was 

realised that the proposed method for normalisation of the test quantities 

significantly increased the diagnosis performance. The diagnosis system was 

constructed within the framework of structured hypothesis tests. The 

hypothesis tests used were binary i. e. the task was to test one null hypothesis 

against one alternative hypothesis. The car used for experimentation was E- 

class Mercedes-Benz with 2.21 litre diesel engine. Two sensor and two 

component faults were considered. The sensor faults were simulated in 

Matlab from real no fault data while component faults were implemented in 

the car. The FDI scheme was successful for a small set of faults and the 

intensity of the fault cannot be diagnosed. 
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Structured hypothesis based on statistical hypothesis tests (SHT) (Nyberg, 

1999a, 1999b, 2000,2001 and Nyberg and Krysander, 2003) was also mainly 
investigated by Nyberg in earlier studies. Nyberg (1999a and 1999b) 

designed a complete diagnosis system for the air-intake system of an SI 

engine. The complete design procedure was discussed which included design 

of test quantities and selection and tuning of the hypothesis tests. The 

diagnosis system was then experimentally validated using a real engine. The 

method was applied to the diagnosis of sensor faults and leakage in the air 
intake system of an SI engine. Two previous methods presented in Nyberg 

and Nielsen (1997), and Nyberg and Perkovic (1998), solved these two 

diagnosis problems by two different methods. However, each of these 

methods was dedicated to a certain type of faults and the two methods could 

not easily be combined into one single system capable of diagnosing both 

leaks and sensor faults. 

Nyberg (2000) investigated two different methods for diagnosing leakage in 

the air path of an automotive engine. The first method was based on 

comparison between the measured and estimated air flow and the other 

method was based on an estimation of the leakage area. Theoretically and 

experimentally it was found that the principle based on estimated leakage 

area gives better results if only leakage is considered. If other faults also 

needed to be diagnosed then the principle based on comparison of estimated 

and measured air flow performed better. According to Nyberg (2001), the fault 

models are powerful tools for handling all types of faults. Structured 

hypothesis test (SHT) framework can diagnose faults that are modelled as 
deviations in constant parameters, arbitrary signals, abrupt signals, a change 
in signal variance and also their combinations. Fault models increase 

possibility to isolate different faults. For instance, by knowing that two different 

faults are acting in a different way, it can distinguish between the faults even 
though they are acting on the same component. Nyberg and Krysander 

(2003) combined Al, FDI and statistical hypothesis testing (SHT) in a 
framework for diagnosis. The isolation mechanism was based on Al and thus 

could handle multiple faults simultaneously using symptomatic logic. It was 

shown that standard FDI methods such as residuals based on parity relations 

or observers could be used within the framework. The diagnostic tests used 

were statistical hypothesis testing and therefore could handle noisy data 

easily which was an advantage as compared to structured residuals. In nut 

39 



2 Literature Survey 

shell, the framework presented could efficiently handle fault models, several 
different fault types, more than two behavioural modes per component, 

general differential-algebraic models, noise, uncertainties, decoupling of 
disturbances, static and dynamic systems and isolation of multiple faults. 

D. Principal Component Analysis Method 

Principal component analysis (PCA) was investigated by Gomm et al., (2000) 

with practical application to a real industrial nuclear fuel-processing plan. A 

simulated chemical process was also used to assist the development of PCA 

technique. Industrial plants often have many process variable measurements 

available, which can be used as neural network inputs for training and fault 

classification. Using PCA the number of neural network parameters can be 

reduced up to 50 percent with a very little sacrifice in the performance of the 

classifier. Results were presented to illustrate the performance of the 

developed scheme on applications to the simulated and the real industrial 

data. 

E. Wavelet Networks Method 

Wavelet networks are a class of neural networks consisting of wavelets. A 

new notion of wavelet network was proposed as an alternative to feed forward 

neural networks for approximating arbitrary nonlinear functions by Zhang and 
Benveniste, (1992). It gave a new method for identification of general 

nonlinear static systems from input/output observations by cascading an 

affine transform and a multidimensional wavelet. These affine transforms and 
the synaptic weights were identified from possibly noisy input/output data. 

This new type of network was called wavelet network. It was inspired by both 

the feed-forward neural networks and wavelet decompositions. An algorithm 

of back-propagation type was proposed and experimental results were 

reported. This approach is efficient and is suitable where other more 
traditional methods are not able to generate residuals for FDI. Wavelet 

networks have application in very complex and highly non-linear systems. 
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Algorithms for wavelet network construction were proposed by Zhang, (1997) 

for the purpose of nonparametric regression estimation. The proposed 

algorithms were more constructive as compared to back propagation 

algorithm, in the sense that they automatically determine the network size and 

estimate the network coefficient in a reasonable number of iterations. More 

attention was paid to sparseness of training data so that problem of large 

dimension could be better handled. Wavelet networks can also be trained by 

back-propagation algorithms because of its neural network like structure. 
Author used Radial wavelets instead of tensor product wavelets because they 

could generate single scaling wavelet frames and it weekly depended on its 

dimension. Due to the radial structure of the wave lets it can also be 

considered as RBF network. The difference between the two is that the 

former originates from a wavelet frame with multi-scale structure. 

F. Other untraditional methods 

Alternative to model-based FDI for automotive engines have also been 

researched. Barigozzi et aL, (2004) developed a probabilistic approach for 

complex systems made up of a large number of components and 
demonstrated the method for diagnosis of an engine throttle body and angular 

sensors measuring the throttle plate angle. A probabilistic approach to fault 

diagnosis of industrial automobile applications specifically the diagnosis of the 

throttle body and the angular sensors measuring the throttle plate angle was 
described. The sensors, actuators and diagnostic tests were described as 

stochastic finite-state machines (FSM). The diagnosis system was assumed 
to be composed by apparatuses and tests. Apparatuses were all the system 

components which could be subject to fault and tests were sources of 
information which could be used to monitor the system. Transitions between 

states were probabilistic and forced by events which described either the 

occurrence of faults or normal working condition. In the composition of FSM 

models it is possible force the elimination of composite states with negligible 

probability of occurrence and to normalise the reduced model for further 

compositions which would lead to a significant reduction in the size of the 

diagnostic system at the cost of an approximate solution. 

41 



2 Literature Survey 

Capriglione et aL, (2004), presented an analytical redundancy based 

procedure designed for the on-board real-time fault detection, isolation and 

accommodation (IFDIA) of sensors typically mounted in public transportation 

vehicles. The IFDIA procedure essentially had five steps: data acquis, uon, 

measurement, residual generation, fault detection and isolation and : ault 

accommodation. Fault detection and isolation step followed some IF THEN 

rules. The accommodation step accommodated faults by substituting the 
faulty sensor output with the expected (calculated or predicted) :, Ltout. 
Implementation of the procedure on a PC required 238 ms to detect and 
isolate a sensor fault and further 240 ms for accommodation. This 

performance was better than required by the system dynamics and therefore 

was found suitable for on-board operation. 

According to Yang et al., (2001), faults relating to gas pressure in the cylinder 

of a diesel engine could be diagnosed by the use of an instantaneous angular 

speed fluctuation ratio (IASFR) of the engine. It was realised that direct 

measurement of the gas pressure in the cylinder was impractical because 
installing pressure transducers inside the cylinder was generally difficult and 

uneconomical for the practical use. In contrast, instantaneous angular speed 
measurement of the diesel engine is very convenient, economical and 

reliable. The instantaneous angular speed waveforms both in the fuel leakage 

condition and in normal condition were measured under various engine 

speeds and loads in laboratory condition. The characteristic parameters for 

detecting the faults relating to the gas pressure in the cylinder were obtained 

successfully. 

2.3.2 Model-Free Technique 

The fault diagnosis techniques which have been reviewed above required a 

plant model. However, some plants may be too complex to efficiently derive a 

plant model. A model-free technique is then required. There are several 

model-free techniques reported (Gertler, 1998). Two of the techniques are 

physical redundancy and spectrum analysis. A brief description of these 

techniques is presented as follows: 
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A. Physical Redundancy 

This approach can be used to detect sensor faults. To carry out the diagnostic 

process, multiple sensors are installed to measure the same physical 

quantity. Any serious discrepancy between the measurements indicates a 
fault in the plant. If only two sensors are used, fault isolation is not possible. If 

three sensors are used, a voting scheme can be used to isolate the faulty 

sensor. Nyberg and Stutte (2004) installed additional pressure and 
temperature sensors and a turbocharger speed sensor in a Mercedes-Benz 

car for the experimental setup of an FDI scheme based on framework of 

structured hypothesis tests. However, physical redundancy involves 

additional hardware cost and therefore has a very limited application. But on 
the contrary, analytical redundancy techniques are widely used in the industry 

because of low costs. 

B. Spectrum Analysis 

Spectrum analysis of plant measurements may be used for fault detection. 
Most plant variables exhibit a typical frequency spectrum under normal 
operating conditions. Any deviation from this normal condition is an indication 

of abnormality. 

Shoji et al., (2002) proposed fault diagnosis system based on the spectrum of 

vibrations or sounds obtained from an operating machine, because the time 

series data of vibrations or sounds are complicated and include noise. The 

difference between normal and abnormal data becomes clearer comparing 
time series data. It is suitable for the detection of the fault by utilizing changes 

of spectral data. Using this method, it is shown that it can even detect 

unknown fault patterns. The authors have used neural networks for fault 

pattern recognition. The authors investigated this FDI method for 

electromagnetic valve and a wood slicing machine. This method may not be 

useful for more complicated systems like automotive engines where noise 
levels of vibration and sound can be very high and in a complex machine 
there can be hundreds of possibilities of abnormal vibration and it may not be 

possible to train a neural network for such a large data. 
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Toshiyuki et al., (2000) proposed two new fault diagnosis systems in which 

one diagnoses a fault based on behaviour of the object system, and other 
diagnoses a fault based on power spectrum of the object system. In the latter, 

neural network learns power spectrum of both the normal and fault states for 

the object. The authors verifier the effectiveness of the developed FDI system 

on simulations. This technique is quite similar to the technique developed by 

Shoji et al., (2002) and has the same limitation of handling bulky data. Both 

these techniques may be suitable for off-line application but are not suitable 
for real time application. 

2.3.3 FDI Using Neural Networks 

The good classification properties of neural networks for engine FDI are well 
documented by Principe et aL, (2000). Antory (2007), investigated application 
of data driven monitoring technique to diagnose air leaks in an automotive 
diesel engine. The model was derived solely from the measurement signals 
because there is no requirement to make any simplifying assumptions to build 

the model. The interdependency of the original signals was captured and 
transformed into a new and smaller number of independent signals. The 

remaining (not captured) signals contained mainly uninformative and noisy 
data. It was shown that diagnostic PCA model performed better in 

comparison to a physical model when detecting air leaks at intake manifold 

chamber especially for a small diameter of air leak. Another advantage of this 

diagnosis model is that it can be used to detect any type of fault in a similar 

manner to the air leakage fault. The effectiveness of the model was validated 
using an experimental automotive 1.9L four-cylinder diesel engine test-bed. 
Small air leaks in the inlet manifold with a diameter size of 2-6mm were 

accurately detected. 

Neural network based models have a simple structure and a good 

generalisation capabilities. Tan and Saif (2000) investigated external 

recurrent neural networks to identify the nonlinear dynamic model of the 
intake manifold and the throttle body process in an automotive engine. 
Levenberg - Marquardt algorithm was applied for weight estimation in this 

study. It was realised that neural network based modelling of intake manifold 
is comparable if not better than the first principle based models. It was 
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concluded that the neural network based models can capture the inherent 

nonlinearity and the dynamics of the manifold pressure as well as the mass 
flow processes in automotive engines. The experimental results presented in 

the paper show that the NN based models are suitable for modelling for the 

purpose of control and on-board diagnosis of automotive engines. 

The pattern recognition and classification abilities of neural networks are 

applied to crankshaft speed fluctuation data for engine fault diagnosis and 

multidimensional mapping capabilities were investigated as an alternative to 

large lookup-tables and calibration functions by Shayler et aL, (2000). The 

possibility of replacing specific sections of engine control strategy software 

with neural network based systems was also investigated. In each 
investigation the neural networks used had multi-layer perceptron (MLP) 

architecture and had been trained with back-propagation algorithm. The 

pattern recognition and classification abilities of neural networks were applied 
to crankshaft speed fluctuation data for engine fault diagnosis. 

Manzie et al., (2001) proposed a radial basis function (RBF) based approach 
for the fuel injection control of an automotive engine. On line learning was 

achieved using gradient descent updates method the proposed approach 

requires no prior knowledge of engine system. The RBF network was 
implemented on a four-cylinder engine and outperforms a production engine 

control unit. Thus, it has a possibility to use an RBF network in place of the 

lookup tables currently used in fuel injection systems to estimate airflow into 

the cylinder. The proposed scheme was evaluated on a dynamometer test rig. 
The engine used was a four-stroke, 2.41 Mitubishi Magna TE engine with no 
EGR. The RBF controller was implemented in Labview on a standard PC 

equipped with data acquisition card NIDAQ PC-LPM 16. 

Jakubek and Strasser (2002) presented a new training algorithm for 

ellipsoidal basis function networks to use as few basis functions as possible 
to reduce the amount of necessary model parameters. This was 

accomplished by adapting the spread parameters using Taylor's theorem. 

The initial problem was that a large number of measurements were to be 

monitored with as few parameters as possible with a reasonable 

computational effort which was sorted out with principle component analysis 
(PCA). The resultant network used significantly less number of basis 
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functions than an RBF network of the same accuracy. Application to 

measured data from a real automotive process shows that the proposed 

algorithm achieved good results. 

Kimmich et al., (2005) contributed and showed a systematic development of 
fault detection and diagnosis methods for intake system and injection system 

along with combustion process of a diesel engine. Black box modelling with 

the special local linear neural network, comprising of both automatic model 

structure generation and identification of its parameters was used. The five 

different identified reference models calculating special features were used to 

set up five independent parity equations which yielded to the residuals. The 

signal processing and the model based fault detecting algorithms were 
implemented on a dSPACE rapid control prototyping system (Hardware and 
Software) in Matlab/Simulink. Experimental investigations presented were 

performed on Opel four cylinder diesel engine test bench and in vehicle. 
Experiments on a dynamic test bench demonstrated the detection and 
diagnosis of different process faults under real time conditions. 

Capriglione et al., (2003) used multilayer perceptron artificial neural networks 
(ANNs) with the back-propagation training algorithm for fault diagnosis and 

accommodation in automotive engines. It was felt impracticable to produce 

real faults during engine operation and therefore a suitable set of possible 
faults were simulated. Many different ANN architectures were tried for 

residual generation. The learning set of each ANN was constituted by 3300 

real samples acquired in different fault free operating conditions. The 

networks were trained by using Levenberg Marquardt back-propagation 

algorithm. On the basis of data acquired in fault-free conditions, the 

diagnostic performances in an on-line condition were verified. The fault 

accommodation showed a good performance with maximum error of 5%. The 

applicability of ANN FDI to on-board engine control units was also 
demonstrated. 

Capriglione et al., 2007 presented the implementation of instrument fault 

detection, isolation and accommodation system developed for real-time 

automotive applications for a Fiat 1.2L SI engine and applied to the main 

engine-operating control sensors. The system was able to identify and 

accommodate different kind of faults e. g. short circuit, open circuit, no 

46 



2 Literature Survey 

calibration (bias) and hold (constant reading). Analytical redundancy based 

systems are more useful for automotive applications because physical 

redundancy based systems require triplication of sensor leads which increase 

costs and volume. The accommodation accuracy was not very good but could 
be accepted as they were compatible with the specific application. There is a 

possibility of programming a digital signal processor (DSP) with a neural 

network fault diagnosis system and embedding it in the electronic control unit 

of a car. The ECU would then be able to classify and isolate all sorts of faults, 

which were considered for neural network training. 

Isermann (2005) proposed three different detection modules to generate 

symptoms mainly based on production type sensors. The symptoms were 

generated with non-linear output error and input error parity equations for 

special model-based characteristic quantities like volumetric efficiency, 

oscillations of pressure, flow and angular speed and oxygen content. The 

generation of about twenty symptoms then allowed an in-depth fault diagnosis 

using fuzzy logic interface scheme. 

Vinsonneau et al., (2001) investigated fault diagnosis strategy for a model of 
Jaguar car engine. Real engine data was used to model manifold dynamics 

over several engine speeds and operation conditions. A number of fault 

scenarios were considered. A nonlinear observer method was used to detect 

both additive and multiplicative sensor faults. Fault isolation logic was also 
designed. Isermann and Schwarte (2004) developed a fault diagnosis method 
for the intake system of a diesel engine. Signal models and parity equations 

residuals were generated by applying semi-physical dynamic process model 
identification with local linear dynamic neural networks. These residuals led to 

the symptoms which were the basis for the diagnosis of several faults. All the 

experiments were performed on a dynamic test bed for 2.01 diesel engine. 
The diagnosis scheme demonstrated the detection and diagnosis of several 
implemented faults in real time with reasonable calculation effort. The 

calculation effort was an important aspect because of limited processing 

capability available on-board. Tawel et aL, (1998) presented neural networks 

as a means of creating control and diagnostic strategies that help in meeting 

mandatory government requirements on emission control efficiently and 

robustly. This research described a VLSI design that permits neural networks 
to execute in real time and do misfire detection on-board. 
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Shiraishi et al., (1995) presented a new automotive fuel-injection controller 

using the cerebellar model articulation controller (CMAC) neural network and 
implemented to maintain air-to-fuel ration at its stoichiometric value. OMAC 

neural network for fuel-injection control was demonstrated on a research 

automobile. The CMAC's fast computation is a distinct advantage for control 
within the time span of an engine revolution. It required almost no orior 
knowledge of the engine dynamics and modelled the characteristics J '. he 

engine very quickly in real time. It is also adaptive and is effective in dealing 

with the inherent time delays in the oxygen sensor. 

Leonhardt et at., (1995) presented two methods of real time supervision of 
injection and combustion in turbocharged diesel engines. Cylinder pressure 

and crankshaft speed contain hidden information about internal motor 
conditions. A real time data reduction method was implemented to generate 
characteristic fault symptoms from this information and which may further be 

processed by approximation or classification algorithms utilising ANNs. This 

approach is validated by simulation and experimental data obtained from a 4- 

cylinder 1.6 litre diesel engine. 

According to Evans-Pughe (2006), major car firms are looking for neural 
networks to solve the demanding engine control and diagnosis requirements 
mandated by the government in order to control emissions. Ford has 

introduced the Econoline van which uses a neural network based misfire 
detection algorithm in its V10 engine. Chrysler is working on developing a 

neural network based method for controlling variable valve timing in next 

generation fuel efficient engines. General Motors recently produced a paper 

with UK based neural network chip firm Axeon on a sensor-replacement 

application. 

While MLP networks have been utilised for fault diagnosis in automotive 
engines to some extent but the other architectures like RBF have not. It was 
investigated and found that RBF networks have better classification 

capabilities than MLP networks (Sangha et al., 2004a, 2005a, 2005b, Gomm 

et al., 2000). In previous study in MSc thesis (Sangha, 2004b), both MLP and 
RBF networks were investigated for steady state fault diagnosis. The steady 
state data for no fault state and all fault states was collected and normalised. 
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Some data was utilised to train the neural network and some for testing. 

During the static fault diagnosis, Levenberg-Marquardt algorithm is used 

when back propagation algorithm acts very slowly for MLP training. "The 

training time of an MLP using back-propagation (BP) was experimentally 
determined to increase exponentially with the size of the problem; that is, 

although the required number of patterns increases only linearly with the 

number of weights, the training time of larger networks seems to scale 

exponentially to their size. This indicates that there are problems that cannot 
be solved practically with MLPs trained with BP, " (Principe et aL, 2000). The 

steady state fault diagnosis was successfully demonstrated with good results 

and it was found that RBF out performed MLP for engine air path faults 

classification. 

In the existing researches, little attention has been given to the problem of 
diagnosing faults with different intensities. The field of on-board engine fault 

diagnosis using artificial neural networks is still not fully explored and has a lot 

of potential for further research. This work has been carried out in this PhD 

study as mentioned in the research aims and objectives. 

2.4 SUMMARY 

After discussing basic FDI concepts, general FDI methods are reviewed in 

depth which included classical limit alarm system, statistical process control 
approach, Al and knowledge based systems and general model based 

methods. 

Model based FDI methods are most extensively used in different industries 

and the use of Al is increasing day by day. The major car firms are looking 
for neural networks based solutions for FDI and accommodation as car 

engine dynamics are severely nonlinear and multivariable. An exhaustive 
literature survey on different engine FDI methods is also conducted. It 

included parameter estimation, observer based methods, structured 
hypothesis, principle component analysis, wavelet networks, and other 

untraditional FDI methods like probabilistic approach and IASFR. A short 
introduction is given to model free techniques e. g. physical redundancy and 
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spectrum analysis. Lastly an automotive engine FDI exploiting neural 

networks are reviewed. 

It can be seen from the review that though neural networks have been used 
for modelling and classification of engines for their condition monitoring and 
FDI, the disturbance effects are seldom considered and addressed. These 

effects significantly affect the correctness and accuracy of FDI of industrial 

systems. In this PhD project, it is proposed to on-line adapt the neural 
network classifier so that the effects of disturbance can be eliminated to a 
maximal possible amount. Thus, the reliability and applicability of the 
developed FDI method is greatly enhanced. 
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CHAPTER 3 

MEAN VALUE ENGINE MODEL 

3.1 INTRODUCTION 

In this chapter, a brief introduction to the working of different types of internal 

combustion (IC) engines is given along with a brief history of engine 
development. 

A well-known engine benchmark mean value engine model (MVEM) is used 

throughout this research project. This engine model is available in 

Matlab/Simulink format and is widely used by the researchers and industrial 

system developers. The major sub-models and the main system equations of 

MVEM are discussed in Section 3.4 ahead. 

3.2 DIESEL ENGINE SYSTEM 

The history of the diesel engine can be traced back over a hundred years to 

the late 19mcentury. Rudolf Diesel (1858-1913), is the pioneer who invented 

the diesel engine and the engine was then named after him. He obtained the 

first patent number 608845 for the internal combustion diesel engine 

(California Energy Commission, 2006) in 1892. The first fully operational 

diesel engine was introduced in 1897. Since then, it has been the most widely 

used industrial source of power. His original concept allows a maximum 

amount of work to be obtained from a given heat source which has yet to be 
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improved commercially. The diesel engine is a spark-less compression- 
ignition engine, which transforms the energy stored in fuel into motion and 

useful work. The compression-ignition principle employed by the diesel 

engine distinguishes it from the petrol engine which uses a spark-ignition (SI) 

principle. In diesel engines, the air is compressed and the fuel is then injected 

at an appropriate point in the cycle once the air is well above the ignition 

temperature. In the SI engine, a spark plug is used to ignite the fuel mixture. 

In general, diesel engines can be classified into two categories, two-stroke 

and four-stroke engines. In the two-stroke engine, combustion occurs in the 

region of top dead centre (TDC) of every revolution and gas exchange at 

every revolution at bottom dead centre (BDC). TDC is the position where the 

cylinder reaches its maximum upward movement and vice versa for the BDC. 

In the four-stroke engine, there are four cycles namely, intake, compression, 

expansion, and exhaust. The combustion only occurs once every two 

revolutions. The main advantage of the four-stroke cycle is that it provides a 
longer period for the gas exchange process which results in purer trapped 

charge. This allows time for sufficient fresh air to be drawn into the 

combustion chamber to mix with the diesel and the exhaust can be drawn out 

of the combustion chamber. It also lowers the thermal loading associated with 

engine internal components like pistons, cylinder heads and liners. The 

application of the two-stroke engine can be seen in marines and stationary 

applications while four-stroke engines are used in the majority of other 

applications. 

Today's diesels inject fuel directly into an engine's cylinders using tiny 

computers to deliver precisely the right amount of fuel the instant it is needed 
(Bosch, 2005). All functions in a modern diesel engine are controlled by an 

electronic control module that communicates with an elaborate array of 

sensors placed at strategic locations throughout the engine to monitor 

everything from engine speed to coolant and oil temperatures and even 

piston position. Tight electronic control means that fuel burns more 

thoroughly, delivering more power, greater fuel economy, and fewer 

emissions than yesterday's diesel engines could achieve. Modern direct- 

injection diesel engines produce low amounts of carbon dioxide, carbon 

monoxide, and unburned hydrocarbons etc. 
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3.3 PETROUGASOLINE ENGINE SYSTEM 

A petrol engine (UK) or a gasoline engine (US) can be classified as one Y the 

following types: 

> Four-stroke cycle engine 
¢ Two-stroke cycle engine 
¢ Wankel engine 

The internal combustion engine is an engine in which the combusticn. or 

rapid oxidation, of gas and air occurs in a confined space called a comcusuon 

chamber. This exothermic reaction of a fuel with an oxidizer creates gases of 

high temperature and pressure, which are permitted to expand. The defining 

feature of an internal combustion engine is that useful work is performed by 

the expanding hot gases acting directly to cause pressure, further causing 

movement of the piston inside the cylinder. For example by acting on pistons, 

rotors, or even by pressing on and moving the entire- engine itself. This 

contrasts with external combustion engines, such as steam enaines and 

Stirling engines, which use an external combustion chamber tc ieat a 

separate working fluid, which then in turn work by moving a piston. 

The term Internal Combustion (IC) engine is almost always used to refer 

specifically to reciprocating engines, Wankel engines and similar designs in 

which combustion is intermittent. However, continuous combustion engines, 

such as jet engines, most rockets and many gas turbines are also internal 

combustion engines. All internal combustion engines depend on the 

exothermic chemical process of combustion; the reaction of a fuel typically 

with air, although other oxidisers such as nitrous oxide may be employed 

(Bell, 2004). 

The most common modern fuels are made up of hydrocarbons and are 

derived from mostly petroleum. These include the fuels known as diesel fuel, 

gasoline and petroleum gas, and the rarer use of propane gas. Most internal 

combustion engines designed for gasoline can run on natural gas or liquefied 

petroleum gases without major modifications except for the fuel delivery 

components. Liquid and gaseous bio-fuels, such as Ethanol and bio-diesel, a 

form of diesel fuel that is produced from crops that yield triglycerides such as 

soy bean oil, can also be used. Some can also run on Hydrogen gas. 
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Electrical/Gasoline-type ignition systems (that can also run on other fuels as 

previously mentioned) generally rely on a combination of a lead-acid battery 

and an induction coil to provide a high voltage electrical spark to ignite the air- 
fuel mix in the engine's cylinders. This battery can be recharged during 

operation using an electricity-generating device, such as an alternator or 

generator driven by the engine. Gasoline engines (Bosch, 2004) take in a 

mixture of air and gasoline and compress to less than 170 psi and use a 

spark plug to ignite the mixture when it is compressed by the piston head in 

each cylinder. 

1. The piston starts at the top, the intake valve opens, and the piston moves 
down to let the engine take in a cylinder-full of air and gasoline. This is the 

intake stroke. Only the tiniest drop of gasoline needs to be mixed into the 

air for this to work. 
Spark plug 

Exhaust valve 

ýtrol vapour and air mixture 
Piston 

Wheel 

(a) 

2. Then the piston moves back up to compress this fuel/air mixture. 
Compression makes the explosion more powerful. 

Compressed 
fuel 

(b) 
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3. When the piston reaches the top of its stroke, the spark plug emits a spark 
to ignite the gasoline. The gasoline charge in the cylinder explodes, 
driving the piston down. 

ipark 

Burning 
gases 

(c) 

4. Once the piston hits the bottom of its stroke, the exhaust valve opens and 
the exhaust leaves the cylinder to go out the tailpipe. 

Exhaust gases 
(Burnt gases) 
going out 

Spent gas 

Fig. 3.0: Engine states (a) Suction (b) Compression (c) Explosion (d) Exhaust 

Now the engine is ready for the next cycle, so it intakes another charge of air 

and gas. The linear motion of the pistons is converted into rotational motion 
by the crankshaft. The rotational motion is necessary because it rotates the 

car's wheels with it. For a four-stroke engine, key parts of the engine include 

the crankshaft, one or more camshafts and valves. For a two-stroke engine, 

there may simply be an exhaust outlet and fuel inlet instead of a valve 

system. In both types of engines, there are one or more cylinders and for 

each cylinder there is a spark plug, a piston and a crank. A single sweep of 

the cylinder by the piston in an upward or downward motion is known as a 

55 

-1-4 



3 Mean Value Engine Model 

stroke and the downward stroke that occurs directly after the air-fuel mix 

passes from the carburettor to the cylinder, where it is ignited. 

A Wankel engine has a triangular rotor that orbits in a chamber around an 

eccentric shaft. The four phases of operation (intake, compression, power, 

and exhaust) take place in separate locations, instead of one single location 

as in a reciprocating engine. A Bourke Engine uses a pair of pistons 
integrated to a Scotch Yoke that transmits reciprocating force through a 

specially designed bearing assembly to turn a crank mechanism. Intake, 

compression, power, and exhaust all occur in each stroke of this yoke. 

Most car engines have four to eight cylinders, with some high performance 

cars having ten, twelve, or even sixteen, and some very small cars and trucks 

having two or three. In previous years some quite large cars, such as the 

DKW and Saab 92, had two cylinders, two stroke engines. 

Air path for a typical spark ignition engine is shown in Figure 3.1 which 
includes exhaust gas recycling. 

EGR 
Valve 

Temperature 
Sensor 

Throttle 
Cylinder 

Plate Inlet 
Valves 

1-11 
Manifold 

ý_,. 

4-i__ý 

Exhaust 

'ressure 
Sensor 

Fig. 3.1: Schematic view of the air intake and exhaust system of an 

automotive engine 

Air flows over the throttle and enters the inlet manifold. Some part of the 

exhaust is also fed back in the inlet manifold and this is called exhaust gas 

recycle (EGR). The flow of exhaust gas in the inlet manifold is controlled by 
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an EGR valve. From the inlet manifold the gas flows into the combustion 

chamber (cylinder) where the fuel is also injected and the combustion takes 

place with spark ignition (in case of a gasoline engine). The burnt gases go to 

the exhaust manifold and then pass over the lambda sensors. Finally the 

burnt gases are released into the atmosphere from the tail pipe. 

3.4 MEAN VALUE ENGINE MODEL (MVEM) 

All IC engines contain significant nonlinearities, which dominate their dynamic 

behaviour. The MVEM is a fairly good approximation of medium speed IC 

engine dynamics. This model includes the latest results and efficiency 

enhancement system such as Exhaust Gas Recycle (EGR) unit. MVEM is 

simplified dynamic engine models, which are based on collections of physical 

models of the most important engine subsystems. They are intended to 

operate as predictors of averages rather than the cycle-to-cycle values of the 

most important engine states and variables. Such models are currently used 
for a number of purposes in engine control applications such as engine 

control system design and engine diagnostics (Hendricks, et al. 2000). The 

main focus of this research is on Fault Detection & Isolation (FDI) and not on 

the MVEM simulation. A MVEM consists of three important subsystems, 

which describe the behaviour of the fuel mass flow, the intake manifold filling 

dynamics and the acceleration of the crankshaft. In this chapter, the main 

system equations and simulink models are briefly explained. The block 

diagram of MVEM is shown in fig 3.2. 

System 
Input 

Throttle 
Angle 
Input 

Load 
Torque 

System 
Outputs 

Manifold 
Temperature 

Crankshaft Speed 
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3 Mean Value Engine Model 

MVEM has throttle angle as the only input and inlet manifold temperature, 

pressure and crankshaft speed as the system outputs. MVEM consists of 

three important subsystems which describe the behaviour of the fuel mass 

flow, the intake manifold filling dynamics and the acceleration of the 

crankshaft. These three subsystems are described briefly here in their most 

common forms. A detailed derivation of all the sub-models of the MVEM can 

be found in Hendricks et aL (1996 and 1993). 

3.4.1 Fuel Mass Flow Dynamic Sub-model 

The fuel flow dynamics for a multi-point injection engine can be given by the 

following model: 

ihff= 
1T 

(-tuff+Xlritft) (3.1) 
I 

m. fi, = (1-X f)m ft (3.1a) 

mf =mf, +mff (3.1b) 

The model is based on keeping track of the fuel mass flow. The parameters in 

the model are time constant for fuel evaporation, rf and the proportion of the 

fuel which is deposited on the intake manifold or close to the intake manifold, 

X1 . 
These parameters are operating point dependent and thus the model is 

nonlinear in spite of its linear form (Hendricks, et al. 2000). The fuelling model 

parameters can be approximately expressed in terms of the states of the 

model as: 

r (p;, n)=1.35(-0.672n+1.68)(p, -0.825)2+(-0.06n+0.15)+0.56 (3.2) 

X1(p;, n) =-0.277p; -0.055n+0.68 (3.3) 

where pi is in bar and n is in krpm (1000 x rpm). Above expressions are only 

for a particular engine running after fully warm-up (for a multi point injection 

manifold). For other engines these parameters have to be mapped as a 

function of other variables and at different operating temperature (Hendricks, 

et aL, 1993). 
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Fig. 3.3: DTU compensator and dynamic fuel flow model 

Therefore the above two equations are only given as examples of wnac can 

be generally expected. A block diagram of this sub-model is given as Fig. 3.3. 

The compensator for DTU fuel flow model can be described as: 

m8'= 
I 

(-m8'+Xtmfi) 3.4) 
I 

mý 1-X 
(mfr-mff (3.5) 

I 

The fuel flow dynamic equations are usually not used in the engine control 

system but what is used are compensators based on the models which 

effectively cancel out the fuelling dynamics. The compensators are inserted in 

front of the injector driving algorithm and ideally adjust the fuel flow so that the 

fuelling dynamics do not influence the requested fuel quantity. 

The variables in above four equations represent the projected fuel mass flow 

and the projected fuel puddle mass respectively in the DTU and Aquino 

models (Aquino, 1981). In general the 'X' and 'tau' in the models and in the 

corresponding compensators will not be the same but are intended. Both the 

compensators are differentiating networks and only have a transient effect on 

the fuel command signal. The compensators are each unique to the model for 

which they are derived because the systems are nonlinear. A transient 
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method of mapping the parameters of the compensators is suggested in 

(Hendricks, 1993). 

3.4.2 Inlet Manifold Filling Dynamics 

Assuming the intake manifold temperature to be constant and equal to the 

ambient and EGR temperature, the manifold filling state equation can be 

given as 

Pi = j7 
TI 

mat + map + mEGR) (3.6) 

where p; is absolute manifold pressure (bar), mat is air mass flow past 

throttle plate (kg/sec), map is air mass flow into intake port (kg/sec), rhEGR is 

EGR mass flow (kg/sec), T; is intake manifold temperature in Kelvin, V, is 

(manifold + port passage) volume (m3) and R is gas constant (287 x 10"5). 

It can be seen from equation (3.6) that change in absolute manifold pressure 

with respect to time is dependent on three factors i. e. air mass flow past 

throttle plate mal , air mass flow into intake port map and EGR mass flow 

rEGR . 
The temperature is considered constant equal to T, and V, and R are 

also constants. This isothermal assumption is an approximation and may not 
lead to good results because the EGR temperature can easily approach up to 

200 degree centigrade and the quantity of EGR flow can be as high as 25% 

of the total flow. The manifold filling dynamics in reality is based on as 

adiabatic operation rather than isothermal. For the best accuracy the above 

equation can be modified as follows: 

Pi -l mapTi + matTa + tEGRTEGR) (3.7) 
Vi 

where T. is ambient temperature (Kelvin), TEGR EGR temperature in Kelvin 

and x is ratio of specific heats which is 1.4 for air. The only problem with 

adiabatic assumption is that the intake manifold temperature must be known 
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accurately and instantaneously, whereas the traditional temperature 

transducers have a time constant of up to three seconds. 

The port and throttle air mass flow in equation (3.2) is given by expressions 

which were derived in Hendricks and Sorenson, (1990) and modified in 

Hendricks et aL, (1996). 

map (n, pi) - 
v120RT. 

(e,. pi )n (3.8) 

where n is engine speed (rpm/1000), e, is volumetric efficiency based on 

manifold conditions and Vd is engine displacement (litres). Air mass flow into 

intake port that is a function of crankshaft speed and absolute manifold 

pressure as shown in equation (3.8). Where as air mass flow past throttle 

plate me, is a function of throttle plate angle and absolute manifold pressure 

and can be given as: 

mar (a, p) = man A (a)ß2 (P, ) + maro (3.9) J. 

where a is throttle plate angle (degrees), pa is ambient pressure (bars), p, is 

relative pressure and p, is critical pressure which is a constant, and where 

2 

ý3, (a) =1- cos(a) -1 (3.10) 
2 

and 

P, (3.11) _P' - Po 

and 

m,, o, mar� as and p, are also constants. 
2 (Pr Pc 

- if 
"� Pr Pc {ii___1PC 

.) 
(3.12) ýz(P 

1 if P, <PC 
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In the throttle mass flow equation (3.9) the expression which serves in place 

of the isentropic flow equation has been derived on the basis of a two flow 

path model presented in Hendricks et al., (1996) and further extended in work 

presented in Chevalier et al., (2000). Equation (3.12) is a compact 

approximation of this theory which is useful for calculations. The correct 

expression, containing more details can be found in Chevalier et al., (2000). 

In particular equation (3.12) is not correct in the presence of heavy manifold 

pumping fluctuations and for about pr > 0.98. Equation (3.12) often has to be 

modified because it is common that original equipment manufacturers often 

use large throttle body openings to avoid even small pressure drops across 

the throttle body. This changes the effective critical pressure p, in equation 
(3.12). 

The sub-model for throttle plate opening angle is presented in Fig. 3.4. It can 
be seen that the port air mass flow provides the feedback around the 

integrator and it is thus is responsible for the effective time constant of the 

sub-system. 

I IStep13 alphai 
d/dt aa 

Step13 f(u) -K- +1 s 
a Output Sizing 1/tausquare Integrator 

SquareGenerator 

1/tausquare 

Fig. 3.4: Block diagram which simulates throttle plate angle 

In equation (3.12) the intake manifold temperature has to be known 

accurately and instantaneously. Using the law of energy conservation a state 

equation which describes the time development of the intake manifold 

temperature can be given as: 

T= 
"_ 

t map(x-1)T +mar(kTa -TI)+tECR( ECR -T)] (3.13) 
pivi 
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The change in intake manifold temperature with respect to time is dependent 

on three factors as shown in equation (3.13) i. e. air mass flow into intake port, 

air mass flow past throttle plate and EGR mass flow respectively. 

Equations (3.7) and (3.13) are the essential sub-models for the adiabatic 
MVEM shown in Fig. 3.5 and block diagrams of these sub-models are given 
in Fig. 3.6 and Fig. 3.7 respectively. 

Fig. 3.5: Adiabatic MVEM Simulink Model 

Fig. 3.6: Simulink model for intake manifold gas pressure dynamics 
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dmat2dt 

dmegrdt 

pit 

dmaý: t 

Fig. 3.7: Simulink model for intake manifold gas temperature dynamics 

3.4.3 Crank Shaft Speed Dynamics 

Applying the law of conservation of rotational energy, the crank-shaft 
dynamics of an SI engine (MVEM) is described by the following equal cn: 

n=- 
I (Pf(P, 

gn)+(Pp(Pjgn)+Pb(n)))+ 
1 

H. r7j(Pr, n, A)m! (t-Otd) (3.14) 
In In 

where I is the scaled moment of inertia of the engine and its load and the 

mean injection/torque time delay has been taken into account with variable 

LTd. A. is taken equal to "1" which corresponds to air/fuel ratio of 14.7 for 

gasoline and 14.5 for diesel. At aA value of "1" we have stoiciometry or the 

point at which the most complete combustion takes place. A gives a measure 

of Air Fuel Ratio which is independent of the type of fuel being used. A. > 1.0 

=> Excess Air (Lean) and I<1.0 => Excess Fuel (Rich). H. is fuel lower 

heating value (kJ/kg). t is time in seconds and mf is engine port mass flow in 

kg/sec. r/; is volumetric efficiency which is a function of absolute manifold 

pressure, crankshaft speed and air / fuel ratio. 

Friction power Pf and pumping power Pp both are functions of absolute 

manifold pressure P and crankshaft speed n. Whereas load power Pb if only 
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the function of the crankshaft speed n. q, is volumetric efficiency which is a 

function of absolute manifold pressure, crankshaft speed and air / fuel ratio. 

The moment of inertia and the injection torque delay time can be given by the 

following equations: 

l2 
1 I", 

(60 
I "1000, Ord=60 1+ 

1 

nny, 
(3.15) 

and I is the actual moment of inertia for a port injected engine. The 

functions which describe the frictional, pumping and load power as well as 

thermal efficiency can be found in Hendricks et al., (1996). 

Theta f(u) 
27.5 
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Fig. 3.8: Simulink model of the crankshaft speed state equation 

The crankshaft is driven due to fuel flow to the engine and therefore the fuel 

flow has to be determined in such a way that the air/fuel ratio has a 

reasonable value such as 0.8 
_<a <_ 1.2. Fuel flow to the crankshaft speed 

state equation has thus to be given by an expression of the form 

/hap 
mf= 

"dejLth 
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The desired value of the air fuel ratio lambda is 1 for an engine which uses a 

three way catalyst. For maximum power during acceleration the value may be 

increased to 0.85 or 0.90. When going idle from cruise fuel is usually cut off 

completely. When cursing at a constant speed lambda should be between 1 

to 1.1, depending on the engine and its operating mode. 

3.5 SUMMARY 

A brief introduction of the basic working of diesel engine and petrol/gasoline 

engine is given. This research is mainly about fault diagnosis of the engine air 

path and therefore the schematic view of the air path of the engine is shown 

and briefly explained. The mean value engine is extensively used in this 

research and therefore the basic MVEM equations and the important 

MATLAB/Simulink models and sub-models are reviewed e. g. fuel mass flow 

dynamics, intake manifold temperature and pressure dynamics, crankshaft 

speed dynamics and the throttle plate angle dynamics. The derivations of all 
the equations are available in the previous works of Hendricks and others and 

therefore instead of deriving all equations, most of them are just referred in 

the published work of other authors. 
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CHAPTER 4 

FDI WITH NON-ADAPTIVE CLASSIFICATION 

4.1 INTRODUCTION 

Fault diagnosis of an automotive spark ignition (SI) engine using a non- 

adaptive classification method has been investigated in this chapter. The 

study is based on the mean value engine model (MVEM) simulation that is 

reviewed in the previous chapter. Four realistic and practical faults are 

considered for investigation, which are air leakage in the intake-manifold, 

Exhaust Air Recycle (EGR) valve clogged in different positions, intake- 

manifold pressure and temperature sensor bias faults. All the four faults are 

considered at four different levels of intensity. The experiment is designed 

and conducted in three different stages of engine operation to enhance 

generality. 

The RBF neural networks with the K-means, P-nearest neighbour's and batch 

least squares (BLS) training algorithms are used for the investigation. The 

faults considered are similar to those studied in other research (e. g., Nyberg 

and Stufte, 2004; Capriglione et al., 2003 and 2007; Gertler et at., 1995; 

Nyberg and Nielsen, 1997). The air leakage fault (as small as 2mm leakage- 

diameter) is also investigated by Nyberg and Perkovic (1998), and Antory 

(2007). Similar sensor bias faults as in this research are investigated by 

Nyberg (1999) using structured hypothesis tests. 
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4.2 FAULT SIMULATION 

Two component and two sensor faults with four different levels of intensity 
have been investigated as four typical and practical examples of SI engine 
faults. The two component faults are exhaust air recycle (EGR) valve clogged 

and air leakage in the intake manifold. The two sensor faults are intake 

manifold pressure and temperature sensor faults. 

The sensor faults can occur due to two reasons: 

(i) aging and wear and tear of the mechanical parts of the 
deflection meter and 

(ii) electrical fault e. g. short circuit or open circuit fault in the 

signal cable. 

The electrical faults such as open circuit and short circuit faults are easy to 

detect because they cause a full deflection or zero deflection in the meter 

respectively. On the contrary, the aging and mechanical faults cause an 
incorrect meter reading i. e. over- or under- reading of the actual values. Both 

cases of under- and over- reading of the temperature or pressure 

measurements are considered here. 

Air leak in the air path of an engine can happen due to any of the following 

reasons (Reineman, 2000) or a breakage due to some physical damage: 

(i) missing air cap 
(ii) loose air cap 
(iii) leaks in air cap or vapour vent lines 

(iv) disconnected purge lines 

Current OBD regulations require monitoring of any leaks (for 2003 year model 

and after) that exceed 0.02 inch in diameter (0.5 mm approx). It is not 

practical to create some component faults in a running engine in real life, 

such as air leakage in manifold or EGR valve stuck. Therefore the faults are 

simulated in a Matlab/Simulink engine model in this research. The air leakage 

is simulated in the modified mean value engine model as a percentage of the 

total air mass flow in the intake manifold explained later. The EGR valve can 
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be stuck up in any position where there is a failure of the EGR calve 

positioning control. This will lead to a fixed percentage EGR flow througn : he 

valve. There can be many reasons for failure of the EGR valve positioning 

system, which have not been investigated here. The investigation is foc., sed 

on the detection and isolation of the fault with different intensities and -c[ on 

pin-pointing the actual component failure of the EGR system viz. 

" EGR fault open circuit, 

" EGR fault vent solenoid, 

" EGR step motor 1 fault, 

" EGR step motor 2 fault, 

" EGR vacuum regulator fault, 

" EGR boost solenoid control, etc. 

Details of the simulation of the faults are described in the following sub- 

sections. 

4.2.1 No Fault 

No fault case implies that all the sensors are working well and there is no air 

leak in the intake manifold. And also, the EGR is assumed to be 1/6 (16.67%) 

of the total air mass flow in the intake manifold. In order to collect no fault 

data, the MVEM simulation is run for 6 seconds. The simulation is run for 6 

seconds because in this period of time all the output variables reach the 

steady state condition. Therefore, to collect sufficient information of the 

transient state is fully reflected in the collected input/output data. The 

sampling time is chosen to be 0.3 seconds and 20 data points are collected 

for throttle angle input and for all the three output variables i. e. inlet manifold 

pressure, temperature and crankshaft speed. 

4.2.2 Air Leakage Faults 

To collect the engine data subjected to the air leakage fault, equation (3-12) is 

modified to 
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P ='S 
( mppT. +mat TQ +tEGRTEGR -01) (4-1) 

where Ol is used to simulate the leakage from the air manifold, which is 

subtracted to increase the air outflow from the intake manifold. 01= 0 will 

represent no air leakage in the intake manifold. Fig. 3.7 which represents 

Simulink model for intake manifold air pressure dynamics is modified 

accordingly as shown Fig. 4.1. 

dmat2dt 

a dmat2dt 

q2 

dmat2dt 
massflow 

iD- 
n2 

Tit 

K 4" dmegrdt'Tegr Scopet 

kRNi 2 dmegrdt*Tegr 

d/dt pit If pit 

Ta-kRM Integrator 
02 12 

Scope W2 
Aa dmap2dt 112 dmap2dt dmat2dt x 

n2 

-OEýý - 

k-RNi t To Worlýace7 Wo ace Product dmap2dt 
equation 2 ý,, 

Fig. 4.1: Modified Simulink model for intake manifold air pressure dynamics 

Comparing Fig. 3.7 and Fig. 4.1 the simulation is modified to increase the 

outflow of air from the intake manifold to represent leakage in the intake 

manifold. The air leakage levels are simulated as 5%, 10%, 15% and 20% of 

the total air intake in the intake manifold, respectively. For example, if total air 

mass flow in the intake manifold at steady state (for 30° throttle angle) is 

0.0317 kg/sec then 5% air leakage will be 0.0317x0.05 = 0.001585 kg/sec. 

4.2.3 EGR Valve Faults 

The normal value of EGR is kept as 1/6 of the total air mass flow, i. e. 16.67%. 

The EGR can be as high as 20% of the total air mass flow in the intake 
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manifold. Thus, a realistic value of EGR feedback is chosen for the 

experiments. The value of "2EGR for different fault intensities are regulated as 

0%, 25%, 50%, 75% and 100% of the total EGR air mass flow. Where 0% 

EGR air mass flow corresponds to the EGR valve stuck in hundred percent- 

closed positions and 100% corresponds to full EGR air mass flow, i. e. no fault 

condition. 

Table 4.1: All 17 fault states and multiplying factors (MF) 

S. No. Fault Name MF 

1 No Fault 

2 Leakage 5% 

3 Leakage 10% 

4 Leakage 15% 
5 Leakage 20% 

6 EGR clogged 25% closed 
7 EGR clogged 50% closed 
8 EGR clogged 75% closed 

9 EGR clogged 100% closed 
10 Temp. sensor 20% over reading MF=1.2 

11 Temp. sensor 10% over reading MF=1.1 

12 Temp. sensor 10% under reading MF=0.9 

13 Temp. sensor 20% under reading MF=0.8 
14 Pressure sensor 10% over reading MF=1.2 

15 Pressure sensor 20% over reading MF=1.1 

16 Pressure sensor 20% under reading MF=0.9 
17 Pressure sensor 10% under reading MF=0.8 

4.2.4 Temperature/Pressure Sensor Faults 

Temperature and pressure sensor faults are considered in four different 

intensities: Sensors over-reading 20% or 10% and sensors under-reading 

10% or 20% of the normal value. The fault data for the sensors is generated 

using multiplying factors of 1.2,1.1,0.9 and 0.8 for over reading 20%, 10% 

and under reading 10%, 20% respectively. Faulty data are collected when 

throttle angle is changing between 20° and 40° for all the fault conditions 
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including no fault condition. Note that the total range of the throttle angle is 

[20°, 40°] in the MVEM, which represents the whole operating space. All the 

17 fault states with multiplying factors are given in Table 4.1. 

4.3 NORMALISATION OF DATA 

Data normalisation is necessary before inputting it through a Neural Network 

for learning so that variable with higher numerical value will not dominate the 

learning. Moreover, the graphical data analysis will be difficult due to huge 

difference in the numerical values of data. One way to normalise data is to 

find deviation from the normal steady state as given in equation (4-2). 

Deviation = 
x-Xss30 

xss30 
(4-2) 

where, xss30 is the steady state value of the variable at 300 throttle angle input. 

Considering steady state values of all the three outputs as normal at 300 

throttle angle input for no fault condition (i. e. xss30 ), the deviation is calculated 

using above formula along with the use of a proper multiplier. The steady 

state values of manifold temperature, pressure and the crankshaft speed at 

300 throttle angle input are 293.79 Kelvin, 0.8038 bar, 3.5810 rpm/1000 

respectively. 

All the three outputs of MVEM (i. e. manifold temperature and pressure and 

crankshaft speed) and the throttle angle input are normalised and are used as 

an input to the neural network for training because all of these contain useful 

transient information of the engine air path dynamics. This is further explained 

in section 4.4.3 ahead. The four neural network inputs are graphically shown 

in Fig. 4.2,4.3,4.4 and 4.5 for constant speed run explained in section 4.5.1. 
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Fig. 4.2: Normalised throttle angle input for all the 17 faults 

Graph for change in intake manifold pressure for all the 17 faults 
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Fig. 4.3: Normalised manifold pressure input for all the 17 faults 
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Fig. 4.4: Normalised manifold temperature input for all 17 faults 
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Graph of normalised speed for all the 17 faults 
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Fig. 4.5: Normalised crankshaft speed input for all the 17 faults 

4.4 FAULT DIAGNOSIS METHOD 

4.4.1. Neural Network Structure 

The structure of the used neural network is shown in Fig. 4.6. It consists of 
three layers; input, hidden and output. The input layer simply receives the 

network input vectorx e fit" , and passes the inputs to each node in the hidden 

layer. The hidden layer consists of nh nodes that process the input vector. 

The P node in the hidden layer contains an individual centre vector c; of the 

same dimension as x and a scalar width p.. The Euclidean distance between 

the input and the centre vectors is calculated, 

Zi =X- cil= 
ý(XI 

-cif +... +(X, -cin)2 (4-3) 

where i=1,..., nh, and passed through a non-linear basis function to produce 

the hidden node outputs O; 
. Several choices of basis function are available, 

e. g. thin plate spline, Gaussian function, etc. Gaussian basis functions 

provide a local excitation of the node with an output O, near zero for input far 

from the centre and O, near one for input close to the centre. This is 

especially suitable for classification applications and is therefore used in this 

work. The Gaussian basis function is defined as 
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o; =exp[ 
(z; /P; y} 

p>>0 (4-4. 

Finally the network outputs are computed as a linear weighted sum cr he 

hidden node outputs: 

y=W6 Id-=1 

Where yE 934 is the output vector, WE 92gx"k is the output layer weight -acrix 

with element w connecting the Ih hidden node to the Ih output, and nsa 

vector containing the hidden node outputs. 

For training RBF neural network the K-means algorithm is used to choose the 

centres, P-nearest algorithm decides the widths and the batch least squares 

algorithm calculates weights for the output layer of RBF network. 

Fig. 4.6 The RBF neural network structure 

4.4.2. RBF Off-line Training Algorithms 

A y1 

A Y2 

A 
i4 

Training an RBF network means optimising the parameters of centres, widths 

and weights in the network. For training the RBF network the K -means, P- 
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nearest neighbours and batch least squares (BLS) algorithms are used. 
These algorithms are reviewed or derived below. 

A. K-means Algorithm 

The objective of the K-means clustering method is to minimise the sum of 

squared distances from each input data to its closest centre so that the data 

is adequately covered by the activation functions q; (t) . The K-means 

clustering method proceeds as follows: 

(i) Randomly choose some input data to be the initial centres. The 

number of the centres is designed according to the complexity of the 

problem. 

(ii) Let p(x) denotes the index of the best-matching centre for the input 

vector x. Find p(x) at iteration t by minimising the sum squared 
distances: 

P(x) = arg Ohl x(k) - c, (k)112 (4-6) 

Where c. (k) is the centre of the /h activation function at iteration k. 

(iii) Update the centres of the activation functions by using the following 

rule: 

{ci(k)+a[x(k)_c1(k)] if k= p(x) 
c; (k), otherwise (4-7) 

Where as is the centre learning rate that lies in the range (0,1). 

(iv) Increment k by 1 and go back to step (ii). Continue the algorithm until 

no noticeable changes are observed in the centres C,. 
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B. P-nearest Neighbour's Algorithm 

The P-nearest neighbours algorithm (Moody and Darken, 1989) determine 

width for each centre as the square root of average squares of the distances 

from the centre to the nearest p centres as described in the following 

equation: 

6i- 
1 IIcf-ýýII*, i=1,..., nh 
P i=' (4-8) 

where c1 is thee' nearest centre to c+ 

C. Batch Least Squares (BLS) Algorithm 

BLS algorithm is widely used for off-line training. The batch least squares 

method is responsible for training the weights by using the following equation: 

W= (fT O)-'. fT Y (4-9) 

Where W is the matrix of weights, 0 is the matrix of activation function 

outputs and Y is the matrix of training targets. If the RBF neural network has n 

inputs, nh hidden nodes and q outputs as shown in Fig. 4.6 then the 

dimensions of W, 0 and Y will be (q by n,, ), (nh by 1) and (N by q) 

respectively. (N is the number of samples in a set of data). 

4.4.3 Fault Diagnosis Method 

The RBF network, as the fault classifier will receive all possible and relevant 

signals containing fault information, and has 17 outputs with each indicating 

one of the investigated states in Table 1. The information flow for the fault 

diagnosis is illustrated in Fig. 4.7. According to the engine air path dynamics, 

four variables are chosen as the network inputs: the throttle angle, the 
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manifold pressure, the manifold temperature and the crankshaft speed as 

shown in Fig. 4.7. 

Component 
Faults I Noise 

Manifold 
Pressure 

Throttle Manifold 
angle MVEM 
input 

Temperatur 
Crankshaft 

Speed 

Fault 
Diagnosis 

Data jo NF 
Condi- Neural 10 
tioning Network 

No 10 16 

Fig. 4.7 Information flow of the fault diagnosis 

Two levels, 0 and 1, are used as the output targets of the classifier. Thus, the 

target matrix is a unity diagonal matrix of dimension 17 (when there is one 
training pattern for each fault) with each column being used as the classifier- 
training target vector. A successfully trained network will therefore diagnose 

the fault intensity as well as the fault type, as shown in Table 4.1. 

4.5 TRAINING AND TESTING OF NEURAL CLASSIFIER 

Three cases are considered with increasing generality of engine operation. In 

case 1, engine runs at different steady state speeds and the faults occur one 
by one. For example, the engine runs at a constant speed corresponding to a 
fixed throttle angle input of 24°. In case 2, engine accelerates or retards from 

a mean speed corresponding to throttle angle input of 30° and the faults occur 

one by one. In case 3, engine accelerates or retards from any initial speed to 

any final speed and different faults occur one by one. The third case is the 

most general case and previous two cases are the sub-sets of the third case. 
The neural network is trained and tested for all the three cases and results 

are shown in the next three sub-sections. 
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4.5.1 Case 1: Constant Speed Run 

For this part of the experiment, the engine is run in steady-state for a 

particular throttle angle input and a fault occurs. The throttle angle is also 

used as a neural network input along with pressure, temperature and speed 

as shown in Fig. 4.7. The network has 17 outputs, one to indicate each of the 

investigated states in Table 4.1. The training data is collected for 11 different 

throttle angles ranging from 20°, 22°, 24°, ..., 40° for all the 17 different states 

and therefore 11 data sets are collected, one for each throttle angle input. 

The network is trained to output a high value (1) on one output to indicate a 

particular operating state with other outputs low (0). A successfully trained 

network will therefore indicate the fault intensity as well as the fault type. In 

each throttle angle and for each fault 20 samples are collected. There are 10 

throttle angles and 17 faults. Therefore, ten data sets (10x20x17=3400) are 

used for training and one data set (1x20x17=340) is used for testing at a time. 

For example when the neural network is tested for 26° throttle angle then the 

training data set excluded 26° throttle angle data. And when the RBF neural 

network is tested for 22° throttle angle then 22° throttle angle data is not 
included in the training set. The training data matrix size is 4x3400 and the 

target matrix size is 17x3400. The testing data matrix size is 4x340. 

Training data sets for case 1 and case 2 have the same pattern for 17 faults, 

and therefore, one training target matrix X,, is formed and used for both case 
1 and case 2. Target matrix has 3400 rows and 17 columns. Its first column 
has ones from the first row to 200th row and the other entries are zeros, the 

second column has ones from the 201st row to the 400th row and the other 

entries are zeros, the last column has ones from the 3210' row to the 3400th 

row and the other entries are zeros. This is shown as follows: 

Row Numbers Xo 

1-200 10000 ""ý 
201 - 400 01 

0. 

0 

0 
3201- 3400 

Fig. 4.8: Target matrix Xa 
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Thus, the transpose of the t row in Xo is used as the training target vector for 

the Ph training pattern. 130 hidden nodes are chosen by k-means method. 
Widths and weights are trained using P-nearest neighbours and batch east 

square algorithms respectively. The trained network is then tested jr all 
faults occurring at some throttle angle inputs which was not included r-. the 

training data. The RBF network structure is 4x130x17. 

Fig. 4.9 shows typical test results for 26° throttle angle. The fault det¬: caon 

threshold is chosen as 0.5. High thresholds may lead to missed detections 

whilst low thresholds will cause false alarms. Threshold is chosen as .5 oy 

utilising experience in minimising false alarm rate. The simulation is run for 

different values of threshold and threshold = 0.5 (mean value of two target 

values i. e. 0 and 1) is chosen for minimal false alarms. The classification 

result shown in Fig. 4.9 which has misclassifications which would cause false 

alarms. 

The network has been tested for many different throttle angles but ! he 'esults 

are more or less the same and therefore only one result is shown here 

I 
m 0.8 
V 

0.6 

y 0.4 
m 

0.2 
cc 

0 

-0.2-- 0 50 100 150 200 250 300 
Data Samples 

Fig. 4.9: RBF test results for case 1 

4.5.2 Case 2: Variable Speed Run 

In order to train the neural network (NN) dynamically, throttle angle inputs of 

200,22°, 24°, ..., 
40° are applied for each fault condition, keeping all the initial 

conditions set to 30° throttle angle. It is assumed that the engine is initially 
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running for 30° throttle angle before accelerating or retarding the speed, i. e. 
increasing or reducing the throttle angle. 

30° is chosen as the initial condition because it is the mean value of the 

selected operation range of the engine. The RBF NN is trained from this data 

as before, for the whole range of throttle angles from 200 to 40° excluding one 

throttle angle which is used for testing as explained in the previous case. 190 

centres are chosen by K-means method. Widths and weights are trained 

using P-nearest neighbours and batch least square algorithms respectively as 

before. The RBF network structure is 4x190x17. The trained network is then 

tested for all faults occurring at some throttle angle inputs which was not 

included in the training data. The test results for when engine is retarding 
from 300 to 26° are shown in Fig. 4.10. There are misclassifications in the 

result which would cause false alarms. 

1 

0.8 

0 0.6 

0.4 
Z 

0.2 
co or 

0 

-0.21 0 50 100 150 200 250 300 
Data Samples 

Fig. 4.10: RBF Test Results for case 2 

4.5.3 Case 3: Variable Speed Run from Different Initial Speeds 

In training of the fault classifier, the training data should represent the engine 

dynamics in the whole operating space. Considering practical implementation, 

we collect a number of sets of training data with each of which collected when 

engine runs in a different range of throttle angles and on different working 

modes. These ranges are distributed in the entire operating space from 200 to 

40° and the modes include accelerating, constant speed and decelerating. 

This is the most general case when the engine initial conditions are any value 

and the engine accelerates or retards to any value when a fault occurs. The 
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previous two cases are subsets of this case. The engine is initialised to 

steady state for different throttle angles and then accelerated and retarded to 

other throttle angles as shown in Table 4.2. Table 4.2 can be read in the way 
that for example, the first line has 5 data sets. In the first set the throttle angle 
has a constant speed from 22° to 22°, in the second set the throttle angle 

change from 22° to 26°, in the third set the throttle angle changed from 22° to 

300 , etc. 25 sets of data are collected all together. 

Table 4.2: Training data for case 3 

Initial Engine Speed Engine Speed Number 

Throttle Accelerating to Retarding to of Sets 

Angle throttle angle throttle angle 
22 22,26,30,34,38 Nil 5 

26 26,30,34,38 22 5 
30 30,34,38 22,26 5 
34 34,38 22,26,30 5 
38 38 22,26,30,34 5 

The number of training data becomes very large when 20 data points are 

collected for each 6 second simulation time for all the 17 states. It is important 

to collect at least 20 data points to represent the dynamic response of the 

engine properly. For the 5 throttle angles considered there are 5x5=25 

different acceleration/deceleration cases each for 17 states and each state 
has 20 data points. Thus, the number of training data points is 

5x5x20x17=8500. The sizes of the input and target matrices for network 
training are therefore 4x8500 and 17x8500 respectively. 

This large training data takes about 10 minutes for training with 200 hidden 

nodes on a standard Pentium-IV computer. The structure of the RBF is 

4x200x17 and the test results for constant speed, acceleration and 
decelerating engine operations are shown in Fig. 4.11. It can be seen in the 

Fig. 4.11 that even a huge network of 200 hidden nodes is not able to classify 
large fault-set of 17 faults and most of the faults are not classified at all. 
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Non-adaptive classifier, RBF Hidden Nodes=200, Tested for constant speed at 26 

U) 
ä 

O 0.5 

0 

0 50 100 150 200 250 300 
Data Samples 

(a) 

1 
N 

a 
0 0.5 

0 
3ý 
z0ý.. 

0 

N1 
d 

0 0.5 

d 
Z0 

Non-adaptive classifier, RBF Hidden Nodes=200, Tested for accelerating from 24 to 30 

50 100 150 200 250 300 
Data Samples 

(b) 

Non-adapti%e classifier, RBF Hidden Nodes=200, Tested for decelerating from 38 to 30 

Fig. 4.11: RBF test results for case 3 (a) Constant speed at 26° throttle angle 

(b) Accelerating from 24° to 30° (c) Decelerating from 38° to 30° throttle angle 

This off-line classifier is unable to classify a large set of faults and therefore 

the fault set is reduced to investigate with 9 faults. In order to reduce the fault 

set and training data volume, all four faults are considered with two levels of 

intensities instead of four as shown in Table 4.3. 

83 

0 50 100 150 200 250 300 
Data Samples 

(C) 



4 FDI with Non-adaptive Classification 

Table 4.3: Reduced fault set considered for case 3 

State No. Fault 

1 No Fault (NF) 

2 10% air leakage in intake manifold 
3 20% air leakage in intake manifold 
4 EGR valve stuck in 50% closed position 
5 EGR valve stuck in 100% closed position 

6 Temperature sensor 20% over reading 
7 Temperature sensor 20% under reading 
8 Pressure sensor 20% over reading 

9 Pressure sensor 20% under reading 

This reduces the size of the training data matrices to 4x4500 and 9x4500. 

MATLAB could easily handle this data size and an RBF is trained with 65 

hidden nodes chosen by K-means method. The RBF network size is 4x65x17. 

Subsequently the trained RBF network is tested for different sets of seen and 

unseen throttle angles with different sets of noisy data as shown in Table 4.4. 

Up to 2% measurement noise is added to the test data to check robustness of 

the classifier against measurement noise. The neural network inputs for 

training with a reduced set of faults are graphically shown in Fig. 4.12. 

Table 4.4: Testing data for case 3 

Initial Final Remarks 

throttle throttle 

angle angle 
22 22 Seen throttle angle 
26 26 Seen throttle angle 
38 30 Seen throttle angles 
24 30 Partially seen throttle angles 
28 32 Unseen throttle angles 
36 28 Unseen throttle angles 
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Fourth neural network input (case 3): Crankshaft speed 
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Fig. 4.12: RBF neural network inputs for training (a) Throttle angle (b) Intake 

Manifold Temperature (c) Pressure and (d) Crankshaft speed 

Target matrix has 4500 rows and 9 columns. Its first column has ones from 

the first row to 500th row and the other entries are zeros, the second column 
has ones from the 501St row to the 1000`h row and the other entries are zeros, 

the last column has ones from the 4001St row to the 4500th row and the other 

entries are zeros. This is shown in Fig 4.13. 

Row Numbers X0 

1-500 10000 

501-1000 01 """ 
0. 

0 

0 
4001- 4500 

Fig. 4.13: Target matrix Xo 

Test results show that the trained network could interpolate the unseen data 

well and classifies all the faults with few misclassifications. The result for the 

faults occurring when the initial condition of throttle angle is 24° and final 

condition is 30°, are shown in Fig. 4.14 and when the initial condition of 
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throttle angle is 28° and final condition is 32°, are shown in Fig. 4.15. 

Practically there can be infinite number of possibilities for initial and final 

conditions of the engine. The network is trained for the five equally distributed 

typical cases in table 2. The network interpolates the remaining in-between 

situations and results in proper fault classification. 

RBF test data graph for throttle angle accelerating from 24 to 30 degrees 

a ö 0.5 

0 
0 3 
w 
z0 

RBF Test data graph for throttle angle accelerating from 28 to 32 degrees 
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Fig. 4.15: RBF test result 2 for eight faults for case 3 

4.6 DISCUSSION 

A neural network classification approach with off-line training for fault 

diagnosis in automotive engines is investigated in this chapter. The technique 

is first demonstrated for classifying 16 fault states in three different engine 

operating conditions. The simulated faults can be detected and isolated for 

different types and for different intensities for case 1 and 2 but the classifier 
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could not classify faults for a more general case i. e. case 3. It is further 

investigated for a more general case with a smaller fault-set in section 4.5.3. 

Here, a neural network is trained for eight fault conditions in order to reduce 

the size of the training data. The trained RBF neural network is found to 

interpolate the between samples and is tested for unseen data sets. The 

results are acceptable. 
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CHAPTER 5 

FDI WITH ADAPTIVE CLASSIFICATION 

5.1 INTRODUCTION 

In the previous chapter, a non-adaptive classification algorithm was 
investigated and it was found that although it worked fine for a smaller training 

data set but it was unable to handle larger training data sets satisfactorily. 
Therefore, the algorithm was found unsuitable for larger fault-set to be 

classified. Another problem with non-adaptive algorithm was that it trained off- 
line and as result it was unable to cope with environmental changes, 
disturbances and uncertainties. Therefore the need for an efficient adaptive 

classification algorithm was felt. 

In this chapter, a new on-line FDI scheme is proposed for automotive engines 

using an adaptive neural network classifier. It has the following three salient 
features: 

(a) Using the strong nonlinear mapping (classifying) ability of the ANN to 

cope with the multivariable, severe nonlinearity of engine dynamics. 

(b) The classifier is made adaptive to cope with the significant parameter 

uncertainty, disturbance and environment change; and 
(c) On-line fault diagnosis which can be directly implemented in an on- 

board diagnosis system. 

During operation, the network classifier learns parameter changes in the 

engine due to aging or environment change. It can also adapt to engine-to- 
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engine differences within a batch of products. Gaussian radial basis function 

(RBF) neural nets are used for this purpose and both weights and widths are 

adapted on-line. Every sample of engine data is first tested for a fault and 
then used to update the neural network. 

The proposed approach is applied to diagnose same simulated faults in an SI 

engine air path as discussed in the previous chapter. The faults are simulated 
in MVEM as explained before e. g. two component and two sensor faults with 
four different levels of intensities. The algorithm is compared with the 

previously used non-adaptive classifier and its robustness is demonstrated 

with simulation results. 

5.2 ADAPTIVE ALGORITHMS 

For training the non-adaptive RBF network and the initial off-line training of 
the adaptive network, the K-means, P-nearest neighbours and batch least 

squares (BLS) algorithms were used. When the adaptive classifier is used on- 
line, the centres remain fixed, as they have been chosen distributed in the 

whole operating space, while the widths and weights are adapted to minimise 
the classification error caused by any time-varying dynamics and model 

uncertainty. The widths are adapted using a gradient descent algorithm and 
the weights are adapted using the recursive least squares (RLS) algorithm. 
These algorithms are reviewed and derived below. 

5.2.1 Gradient Descent method for the widths 

When the RBF network is used to model a nonlinear mapping or a dynamic 

system, the width in each hidden layer node is usually chosen as a constant 

using the P-nearest rule, or all widths are just chosen equal to the same 

value, as it is believed that the modelling error is not sensitive to the width. 
However, when the RBF network is used as a classifier, the classification is 

strongly sensitive to the Gaussian local function, which is mainly 

characterised by the width. Therefore, a gradient descent algorithm is derived 

to on-line adapt the widths to achieve a minimal objective function. 
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The width parameter adaptation algorithm is explained here. The predictive 

value of RBF output can be given by the following equation: 

yj 
= wij O1 +w2j 02 +..... +wnal 

, 

where i =I .......... n. and n. is the number of hidden nodes in the network and 

j=I......, q and q is the number of outputs of the network. w represents the 

weights in output layer and 0 is Gaussian basis activation function. 

01 

02 y=[wlj w2i - Wnhj 

O^e 

y=WTO 

The cost function for error is defined as 

J=e _1+...... -ý692 6j2 
j=1 

(5-1) 

where ee = yj -yj is the /h classifier output error and yj is the Ih training 

target. Then, according to the gradient method, the Ih width can be adapted 

as 

p, (k+l)=Pr(k)-a 
aJ(k) 

i=1,... nh ap, (k) (5-2) 

where a is a learning factor and 0<a <1. The gradient can be easily derived 

from equations (4-3)-(4-5) and (5-1), 

9 Cal vel 
aQ-ýJ 00, 

aP; f= 

[ae, 

091'ß air oP; 
(5-3) 

Partially differentiating J with respect toe,; from equation (5-1) 
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ai 
= 2ej j=1., q (5-3a) 

öej 

e, is defined as ej = yj -yj and therefore 

ae. 
' (5-3b) 

Partial derivative of y, with respect to O; is: 

0Yj 
= w;. i =1, ....., nh and j =1, ......., q (5-3c) 

ao; 

Gaussian basis activation function 0 is given as 

4 

0i 
x=e 

i=1, ........., nh 

Therefore 

ýx-Cr ýz 

J ýol 
=e_l °rz [(IIxcII2). 

(-2) 
p; 

aoi 
=0;. 2. 

I'x-C' 12 
(5-3d) 

aP; Pi3 

The four partial derivatives derived in equations (5-3a)-(5-3d) are substituted 
into (5-3) giving, 

4ew ý, 
Ilx-C11 2 

api Pi 

Or 
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2 

of IIx - C, II 9 =-40; 3 E(e; wý) aP; P; j°` 

Substituting this back in equation (5-2), we have 

2 

p, (k + 1) = p, (k) + 4. a. q$; (k) 
Il x(k) 

k 
`II 

jI 
[e; (k) ''''; j (k)J (5-4) 

p, () 

This training algorithm can update the width parameters to minimise the sum 

of squared error defined in (5-1). 

5.2.2 Recursive Least Squares Algorithm 

If the RBF network has d inputs, q outputs and nh hidden nodes, the output 

matrix with N samples (YNxq) can be written as 

Y= (D(x) w 

where 
X Nxd is the input matrix, (D(X 

Nxrth 

is the matrix of activation function 

outputs and Wnhxq is the matrix of weights. The RLS method is used for on- 

line training. The RLS algorithm given in (Ljung, 1999) is summarized as 

follows. 

L(k) - 
P(k -1)ip(k) 

2(k) + caT (k)P(k -1)ca(k) 

W(k) =W (k -1) + L(k) [yT (k) _VT (k)W(k -1)] (5-5) 

P(k) =1 P(k -1) - 
P(k -1)(p(k)cpT (k)P(k -1) 

A(k) 2(k) +, pT (k)P(k -1)So(k) 

where y(k) and O(k) represent the network target vector and hidden layer 

output vector at simple instant k respectively. Also, yT (k) and VF (k) are kth 

row vector in matrix Y and ID . P(k) is the covariance matrix and L(k) is the 

gain matrix, 2(k) is called the forgetting factor and lies in the range of (0,1). 
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The parameters L(k), W(k) and P(k) are updated orderly with the 

activation function outputs cp(k) at each sampling time after setting the value 

of 2(k) and the initial values of Wand P. 

5.3 ON-LINE RBF CLASSIFIER ADAPTATION 

The main contribution of adaptive algorithm is that while the fault classifier 

diagnoses faults on-board, the classifier is adapted on-line so that the model- 

plant mismatch, parameter uncertainty and especially the time varying 

dynamics caused by mechanical wear of components and environment 

change can be modelled. In this way the classification error and consequently 

the false alarm rate can be greatly reduced. In fact, these effects are main 
drawbacks for the fixed parameter neural network to be used practically. 

The fault classification and on-line adaptation can be implemented as follows. 

Firstly, the measurements are read into the electronic control unit (ECU). 

Then, the data is fed into the classifier to diagnose faults. After this, the target 

will be modified according to whether a fault or several faults are detected. If 

a fault is detected the on-line training target vector will be changed to the 

target vector corresponding to the occurred fault. Then the measurements 

and the modified target are used to update the classifier. In the adaptation, 

the width in each hidden node is adapted using the gradient descent 

algorithm in (5-4) and the centre locations remain fixed as previously 

described. This is followed by adaptation of the weights using the RLS 

algorithm (1-jung, 1999) in (5-5). 

There are two points that should be addressed. One is to identify the 

occurrence of a fault. To reduce the effect of peak noise on the fault detection 

so as to reduce the false alarm rate, the mean absolute modelling error for 

each classifier output is calculated for the previous M samples as the 

residual, i. e. 

k 
rj Y 

+IYj(1)-Yj(1)I, 
j=1, -. -9 

M I=k-M1 (5-6) 
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and a fault is believed to be fired when 

rj ý rl (5-7) 

where k is the sample instant, r; is the residual and r, is the threshold to be 

designed according to the noise level. Another point is that a multi-epoch 

training of the width in one sample period using the gradient descent method 

is employed. It was found that a single iteration updating with the gradient 

descent method would not reach the minimum if the learning rate is chosen 

small, while a large learning rate will cause unstable convergence. The 

recursive updating of the widths runs until the following is satisfied, 

SQ, j=1'" 
'nh 

ap' (5-8) 

where a is a pre-specified small positive constant, or a pre-specified number 

of iterations is reached. The fault diagnosis and classifier adaptation within 

one sample period is illustrated in Fig. 5.1. 

Collect input data and output measurements 

Send these data to the RBF to generate residuals 

Calculate (5-6) & (5-7) 
Is any fault reported? 

Yes 

No Modify the target 

Update p, with (5-4) then test if (5-8) is satisfied 

Is (5-8) satisfied or max No 
No of iterations reached? 

Yes 

Update weights using (5-5) 1 

Fig. 5.1: Flow chart of fault diagnosis and classifier updating 
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5.4 Data Collection & Normalisation 

Data is collected and normalised as explained in Chapter 4 in section 4. and 
4.5.3 respectively. Twenty five data sets are presented in Table 4.2 mich 

created a huge data set of 4x8500 for RBF training. In order to reduce the 

training data size, the data of constant speed was removed from the -able 

4.2 as shown in Table 5.1. Therefore, Table 5.1 shows 4 data sets in ow 
instead of 5 data sets. The data sets of constant speed are removed because 

they were mere repetition of data because each data set contains first rata 

sample as the constant speed data and therefore a separate set for constant 

speed was not required. 

Table 5.1: Details of data sets collected for training and testing of RBF 

networks 

Initial Engine Speed Engine Speed Number 

Throttle Accelerating to Retarding to of Sets 

Angle throttle angle throttle angle 
22 26,30,34,38 Nil 4 

26 30,34,38 22 4 

30 34,38 22,26 4 

34 38 22,26,30 4 

38 Nil 22,26,30,34 4 

It may be noted that when the engine accelerates with throttle angle 
increasing from 22° to 26°, the speed acceleration is different from that when 
it accelerates with throttle angle from 22° to 38° in the same period of time. 

Same is the case with deceleration and therefore the no fault and fault data is 

collected for different speed accelerations and decelerations. Data for all the 

four variables is collected i. e. throttle angle, manifold pressure, temperature 

and crankshaft speed. To evaluate the robustness of the developed method 

to measurement noise, a noise of normal distribution with zero mean and 

unity variance is added to the collected data. The amplitude of the noise is set 

to about 2% of the average of the signal amplitude to simulate the 
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measurement noise expected in a real engine system. Out of 20 data sets, 
two data sets are reserved for testing and remaining 18 data sets are used for 

training of the RBF neural network. The four normalised variables used as 
training data (18`340 = 6120 samples) are graphically shown in Fig. 5.2. 

Clearly the size of training data is reduced by 28% as compared to 8500 

samples initially used for training in section 4.5.3 in Chapter 4. 
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Fig. 5.2: RBF neural net training data with four variables 

5.5 NETWORK TRAINING 

Two RBF networks are used for fault classification, with one for non-adaptive 

classifier and the other for adaptive classifier. Both networks have the same 

structure and will be pre-trained with the same training data and using the 

same training algorithm. The training for the adaptive network is referred to as 
"initial training". After training, the non-adaptive network will be used to do 

fault diagnosis with the test data without on-line training, while the adaptive 

network will be used with the same test data but with on-line training. This 

establishes a fair basis for comparison between the adaptive and non- 

adaptive classifiers. 

The network has 4 inputs. Each network output is used to indicate occurrence 

of one faulty state: "0" implies that the fault does not occur while "1" implies 

that the fault occurs. Therefore, network has 17 outputs with each 

corresponds to one fault or no-fault condition. The hidden layer nodes are 

chosen as 60 at the beginning for both networks. Then the centres increase 

to 150 for the non-adaptive network to evaluate the improvement. To outline, 

the networks have structure 4: 60: 17 and later, the non-adaptive network has 

structure 4: 150: 17. 
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Two data sets, one acceleration data with 0= 26° -+ 34° and one 

deceleration data with 0= 340 -a 26° will be used as test data, all the 

remaining 18 sets are used as training data. As each training data set has the 

same pattern for 17 faults, one training target matrix Xo is formed and used for 

all the training data sets. Xo has 6120 rows and 17 columns. Its first column 
has ones from the first row to 340th row and the other entries are zeros, the 

second column has ones from the 341x` row to the 680th row and the other 

entries are zeros, the last column has ones from the 5781st row to the 6120th 

row and the other entries are zeros. This is shown as follows: 

Row Numbers X. 

1-340 10000 

341-680 01 

0. 
0 
0 

5781-6120 

Thus, the transpose of the nth row in Xo is used as the training target vector for 

the nth training pattern. 

The 60 centres are chosen using the K-means clustering algorithm from the 

training data sets. The widths were chosen using the P-nearest neighbours' 

algorithm, and the weights were trained using the Recursive Least Squares 

algorithm. 

5.6 FAULT DIAGNOSIS 

After training with the training data sets, the two networks are used to 

diagnose faults with the two test data sets described before and another data 

set when the throttle angle is constant, 30°. The classification results of the 

non-adaptive network are displayed in Fig. 5.3. The adaptive network is used 

to classify the faults in the on-line mode with network adaptation as illustrated 

in the flow chart in Fig. 5.1, where M in (5-6) was chosen as M =1 (to see the 

residuals before the treatment), the fault detection threshold in (5-7) was 
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chosen as r, = 0.5. High thresholds may lead to missed detections whilst low 

thresholds will cause false alarms. rr is chosen as 0.5 by utilising experience 

in minimising false alarm rate. The simulation is run for different values of r, 

and r, = 0.5 (mean value of two target values i. e. 0 and 1) is chosen for 

minimal false alarm rate. Mathematically r, should be a little bit higher than 

0.5 according to the level of noise in the testing data. But r, = 0.5 is found as 

a good compromise between reliability of detection and insensitivity to noise. 
The threshold for the gradient of the objective function in (5-8) was chosen 

as 7=0.00001. The forgetting factor for the RLS algorithm in (5-5) was chosen 

a constant value of' = 0.99. The diagnosis results are shown in Fig. 5.4. Then, 

the centres of the non-adaptive network are increased to 150. The fault 

detection results are displayed in Fig. 5.5. To see residuals more clearly, the 

outputs of the adaptive classifier in Fig. 5.4b are displayed separately in Fig. 

5.6. 

It is clearly seen in Fig. 5.3 that the non-adaptive classifier with 60 centres are 

not able to classify the simulated faults to an acceptable level. Whilst the 

adaptive network clearly classifies the faults (see Fig. 5.4 and 5.6) with just a 
few peak values that may cause false alarm when 0.5 is used as the fault 

detection threshold. Further more, if M in (5-6) is chosen as 3 or greater, the 

averaged residual will be greatly reduced and the false alarm rate will be 

zero. It can also be seen in Fig. 5.5 that even with the much more centres 
150, though the performance is improved, it still has many misclassifications 

and is still not as good as the adaptive method. In addition, 150 centres 

greatly increase the computing load and are more difficult to implement in 

practice. 
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Fig. 5.3: Test results of the non-adaptive classifier with nh = 6C 
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Adapti%e classifier, RBF Hidden Nodes=60, Tested for throttle angle 30-30 
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Fig. 5.4: Test results of Adaptive classifier nh = 60 
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The results displayed in (a) and (b) of Fig. 5.3 - Fig. 5.5 are for the data 

without noise but with operating point (throttle angle) variations. To validate 
the ability of the neural network to be tolerant to noise, fault diagnosis with 

noisy data is conducted. The same training and test data sets were added 

with the random noise described in Section 5.4. The same tests were 

repeated with the noisy data for the both networks and the classification 

results are displayed in Fig. 5.7 - Fig. 5.10. It can be seen that the 

classification is not sensitive to the noise and is again observed that the 

adaptive classifier with 60 hidden nodes gives much better results than the 

non-adaptive, off-line trained network with 60 hidden nodes and even 150 

hidden nodes. 
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Fig. 5.6: Each output displayed separately for the result in Fig. 5.4b 
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Adaptive classifier, RBF Hidden Nodes=60, Tested for throttle angle 34-26 
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Fig. 5.8: Test results of adaptive classifier with noisy data and nh = 60 
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Non-adaptive classifier, RBF Hidden Nodes= 150, Tested for throttle angle 30-30 
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Fig. 5.9: Test results of non-adaptive classifier with noisy data and n,, =150 
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Fig. 5.10: Each output displayed separately for the result in Fig. 5.8b 

The on-line learning utilises the fault detection result so that faults are not 

learned as dynamics changes. 
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5.7 DISCUSSION 

In chapter 4 and 5, non-adaptive and adaptive algorithms have been 

investigated for fault diagnosis in the engine air path in different engine 

operating conditions and the results are compared in the Table 5.2 

Table 5.2: Comparison of results of adaptive and non-adaptive methods 

Engine Operating Training 

CHAPTER 4 

RBF Neural Remarks 

Condition Data size Network size 

Case 1: Constant (4x3400) 4x130x17 Non-adaptive system 
Speed Run (17x3400) (Large) successfully classified 17 faults 

Fig. 4.9 

Case 2: Variable (4x3400) 4x190x17 Non-adaptive system 
Speed from mean (17x3400) (Very Large) successfully classified 17 faults 

initial speed) Fig. 4.10 

Case 3: Variable Non-adaptive system takes too 

speed from any (4x8500) 4x200x17 much time for training, the 

initial speed (17x8500) (Very large) network size is very large, and 

was unsuccessful for 17 faults 

Fig. 4.11 

Case 3: Variable (4x4500) 4x65x9 Non-adaptive system 

speed from any (17x4500) (Small) successfully classified 9 faults 

initial speed 
CHAPTER 5 

Fig. 4.13 and Fig. 4.14 

Acceleration, (4x6120) 4x60x17 Adaptive system successfully 

deceleration and (17x6120) (Small) classified 17 faults. Fig. 5.4, 

constant speed Fig. 5.6, Fig. 5.8 and Fig. 5.10 

Acceleration, (4x6120) 4x60x17 Non-adaptive system could not 

deceleration and (17x6120) (Small) classify 17 faults 

constant speed Fig. 5.3, Fig. 5.7 

Non-adaptive system was 

Acceleration, (4x6120) 4x150x17 unsuccessful for acceleration 

deceleration and (17x6120) (Large) and deceleration but successful 

constant speed for constant speed run for 17 

faults. Fig. 5.5c and Fig. 5.9c 
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It was seen in chapter 4 that non-adaptive classifier could not classify large 

fault set of 17 faults for the most general case of engine operation but was 

able to classify smaller set of 9 faults. On the other hand, the adaptive 

classifier is able to classify large set of 17 faults and also the size of the RBF 

network is significantly smaller as compared to non-adaptive classifier. The 

smaller size of neural network (4x60x17) is much easier to realise as 

compared to a larger network (4x190x17). 

The adaptive fault classifier on-line updates its widths and weights to learn 

changes in the system dynamics and environment. To avoid that the classifier 

also learns the faults as the changes of dynamics, the on-line learning target 

is modified according to the fault diagnosis result. Therefore, this scheme will 

still work after one fault is detected. The assessment results on the mean 

value engine model show that the four simulated faults with different fault 

sizes are clearly diagnosed. The results are much better than that by a non- 

adaptive classifier in terms of much lower misclassification rate and much 

smaller network size. The developed adaptive method is robust to engine 
dynamics changes including the engine-to-engine differences caused by 

batch production and the parameter variation caused by long-term 

mechanical wear of engine components, as well as noise. 

One of the drawbacks of developed method is that it is not sensitive to very 

slowly developing incipient faults, as these faults would be treated as system 

uncertainty and be ignored by the network. A method is proposed by (Zhang 

et a/., 2002) to detect and isolate incipient faults in nonlinear system which 

also has a possibility of application in automotive engine FDI. Another 

drawback of this method is that it can classify the predefined faults which 
have been considered for the training of the neural network but cannot 
diagnose the faults which have not been predefined. It implies that unknown 
faults cannot be diagnosed by this method. 

Capriglione et al., (2003 and 2007) have demonstrated the applicability of 

neural network based FDI system to on-board control units by prototype 
implementation on a digital signal processor (DSP) which allowed dynamic 

and diagnostic performances in on-line conditions to be verified. 
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CHAPTER 6 

ROBUSTNESS ASSESSMENT UNDER CLOSED-LOOP 

CONTROL 

6.1 INTRODUCTION 

In this chapter the robustness of adaptive neural network classifier presented 

in Chapter 5 and also in (Sangha et aL, 2006) is thoroughly investigated for 

the closed-loop system with crankshaft speed feedback for a wide range of 

operational modes, including robustness against fixed and sinusoidal throttle 

angle inputs, change in load, change in an engine parameter, and all these 

changes occurring simultaneously. The evaluations are performed on mean 

value engine model (MVEM). This is to confirm the proposed method is 

robust against various uncertainties, disturbances, and environment changes. 

The adaptive algorithm is also compared with a non-adaptive algorithm in 

terms of the robustness against a wide range of operational modes for 

changes in speed set-point, load, and the engine parameter. The nobility of 

this work consists in the successful demonstration of robustness of the 

developed adaptive neural network-based FDI algorithm. 

6.2 FAULT DIAGNOSIS FOR CLOSED-LOOP SYSTEM 
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According to the engine air path dynamics, four variables are chosen as the 

network inputs i. e. the throttle angle, the manifold pressure, the manifold 

temperature, and the crankshaft speed. This is the same as described 

before. The RBF network, as the fault classifier has 17 outputs each 

indicating one of the investigated states, one for no-fault and 16 for 16 faults 

that are the same as considered in the previous chapter. The information 

flow for the fault diagnosis is illustrated in Fig. 6.1. 
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Fig. 6.1: Information flow of the fault diagnosis. 

The speed feedback system in a real automotive is fulfilled by a human 

element (the driver). The speed is controlled to track a set-point by adjusting 

the throttle angle. In the model, the human controller is represented by a PID 

controller. The mean value engine model (MVEM) receives a controlled 

throttle angle input. Component faults are simulated in the model one by one 

and an appropriate level of measurement noise is added to all input and 

output measurements. All four inputs and outputs are conditioned, 

normalised, and fed to the adaptive classifier. Widths in the hidden nodes 

and the weights in the output layer of the RBF network are adapted to 

minimise the sum squared error between the output from the adaptive 

system and the pre-decided target output. The gradient descent method is 

used for the widths of the RBF network. The width in each hidden layer node 

is chosen as a constant using the P-nearest rule. The classification is 

sensitive to the Gaussian local function, which is mainly characterised by the 

width. Therefore, the gradient descent algorithm is useful for on-line 

adaptation of widths to achieve a minimal objective function as explained 

before in section 5.2.1. 
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6.3 PID CONTROLLER DESIGN 

A closed-loop PID control is shown in Fig. 6.2. 

e PID u MVEM 
+ Controller 

Fig. 6.2: Closed-loop PID control. 

The variable 'e' represents the tracking error, the difference between the 

desired reference signal 'R, and the actual output 'Y. This error signal 'e' is 

sent to the PID controller, and the controller computes both the derivative 

and the integral of this error signal. The controller output signal 'u' is equal to 

the proportional gain Kp times the magnitude of the error plus the integral 

gain K; times the integral of the error, and plus the derivative gain Kd times 

the derivative of the error, as shown in equation (6-1): 

u(t)=Kpe(t)+K; 
fe(t)dt+Kddot) (6-1) 

This signal `u' is put into the MVEM, completing the feedback loop fed back 

to the reference. The well known Ziegler-Nichols method is used for tuning 

the PID controller. Initially, K; and Kd gains are set to zero. The proportional 

gain is increased until it reaches the critical-gain K. at which the output of the 

loop starts to oscillate. KK and the oscillation period PP are used to set the 

gains as Kp 0.45*Kc and K, -1.2`K, JPC. The desired output is achieved 

without the use of the derivative gain. Therefore, the derivative gain is kept 

zero to keep the controller as simple as possible. 

A set of five random values in the range of 2 to 4 kRPM are applied as 

reference signals. Each random speed is sustained for 6 seconds before the 

speed signal is changed to the next value because the outputs of the 

simulation reach their steady state values in six seconds. The data is 

sampled every 0.5 seconds. Therefore, 12 data points are collected in every 
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six seconds of time. The output response of the crankshaft speed for the no 
fault case for five different reference signals is shown in Fig. 6.3. 

4 
............ """" 

Reference signal 
Crankshaft speed 

:.......................... . 

2 ........ . __ .......... ... 

06 12 18 24 30 

t (sec) 

Fig. 6.3: No fault outputs for five random speed reference signals. 

The output crankshaft speed follows the input reference speed without much 

overshoot, delay time, and with a small steady-state error. The chosen PID 

(Kp =10, K; =10, Kd = 0) settings give an acceptable level of performance of 

the controller for further experimentation. 

6.4 NETWORK TRAINING 

Two RBF networks are used for fault classification, with one for the non- 

adaptive classifier and the other for the adaptive classifier. Both networks 

have the same structure and will be trained with the same training data as 

well as using the same training algorithm. The training for the adaptive 

network is referred to as initial training. After training, the non-adaptive 

network will be used to do fault diagnosis with the test data without on-line 

training, while the adaptive network will be used with the same test data but 

with on-line training as before in Chapter 5. The comparison between the 

adaptive and non-adaptive classifiers is done for their relative performances. 

The network input variables are chosen as before: throttle angle, manifold 

pressure, manifold temperature and crankshaft speed. Therefore, the 

network has 4 inputs. Each network output is used to indicate the occurrence 

of one faulty state 0 (zero), which implies that the fault does not occur while 1 

(one) implies that the fault occurs. Therefore, the network has 17 outputs 

with each corresponding to the one fault or no-fault condition. Twenty data 

sets for different initial and final throttle angle positions are collected as 

shown in Table 6.1. 
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Table 6.1: Data sets collected for training and testing of RBF networks. 

Start degree 

of 0 

Accelerating Decelerating No. of 
data sets 

22 26,30,34,38 --- 4 

26 30,34,38 22 4 

30 34,38 26,22 4 

34 38 30,26,22 4 

38 --- 34,30,26,22 4 

Twenty data sets are collected as shown in the Table 6.1. Two data sets, one 

acceleration data with 0= 26° -- 34° and one deceleration data 

with 0= 34° -* 26° , are used as test data. All the remaining 18 sets are used as 

training data. As each training data set has the same pattern for 17 faults, one 

training target matrix Xa (Fig. 6.4) is formed and used for all the training data 

sets. X. has 204 rows and 17 columns. Its first column has ones from the first 

row to 12th row with all other entries as zeros and the second column has 

ones from the 13th row to the 24th row with all other entries as zeros, and the 

last column has ones from the 193rd row to the 204`h row with all other entries 

as zeros. 

Row Numbers X. 

1-12 10000 "" 
13 - 24 01 """ 

0 
0 
0 

193 -204 

Fig. 6.4: Target matrix X0. 

Thus, the transposition of the /h row in X. is used as the training target vector 

for the iah training pattern. The centres are chosen using the K-means 

clustering algorithm from the training data sets. The widths were chosen 

using the P-nearest neighbour's algorithm. The weights were trained using 
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the RLS algorithm. Two levels, 0 and 1, are used as the output targets of the 

classifier. Thus, the target matrix is a unity diagonal matrix of dimension 17 

(when there is one training pattern for each fault) with each column being 

used as the classifier-training target vector. A successfully trained network 

will therefore diagnose the fault intensity as well as the fault type. 

6.5 FAULT CLASSIFICATION 

Both adaptive and non-adaptive networks are used to diagnose faults with 
test data sets after training with the training data sets. The fault detection 

threshold in (5-7) was chosen as r. =0.5 . High thresholds may lead to missed 

detections while low thresholds will cause more false alarms. Mathematically, 

r1 should be a little bit higher than 0.5 according to the level of noise in the 

testing data. However, r, =0.5 is found as a good compromise between 

reliability of detection and insensitivity to noise. 

M in (5-6) is chosen as 3. The averaged residual will be greatly reduced and 
the false alarm is consequently reduced. The threshold for the gradient of the 

objective function in (5-8) was chosen as a= 0.00001. The forgetting factor for 

the RLS algorithm was chosen as a constant value of A=o. 99. 

The three different reference signals 2.5 kRPM, 3.0 kRPM, and 3.5 kRPM 

are chosen as Ref1, Ref2 and Ref3 for the speed control, respectively. No 

fault and faulty data is collected for all three reference signals. Both the non- 

adaptive and the adaptive RBF neural network classifiers are then trained 

and tested for six different sets of data. The results for training the networks 

on the Ref 1 and testing on the Ref 3 data are shown in Fig. 6.5 and Fig. 6.6. 

The number of centres for the adaptive and non-adaptive networks is chosen 

as 100. It is clear that the non-adaptive classifier is not able to classify the 

simulated faults while the adaptive network classifies the faults with just a 
few peak values that may cause false alarms when 0.5 is used as the fault 

detection threshold. These faults are classified when the engine is under 

closed-loop speed control. 
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Fig. 6.5: Networks trained on Ref1 and tested on Ref3: (a) Non-adaptive; (b) 

Adaptive. 

In comparison, it is found that the adaptive classifier has performed far better 

than the non-adaptive classifier. Unlike the non-adaptive classifier, the 

adaptive classifier is able to identify all the faults but with false alarms. For 

clarity, Fig. 6.5b is shown in an expanded form in Fig. 6.6 with every fault 

classification shown separately. It can be seen that state 1 has one false 

alarm, state 2 has two false alarms, state 3 has one false alarm, and so on. 
Here the requirement of data filtration is felt because of the false alarms. FDI 

with data filtration is investigated in section 6.7 ahead. 
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Left and right hand columns show results for state No. 1,3,5,7,9,11,13,15,17 and 2,4,6,8,10,12,14,16 respectively 

Fig. 6.6: Details of each fault classification in Fig. 6.5b is shown separately 
for clarity. 

6.6 ROBUSTNESS ASSESSMENT OF FDI SYSTEM 

Further to introducing speed feedback control, robustness assessment of the 

FDI system is carried out in the following three different modes in increasing 

generality of engine operation: 

(1) Load change 
(2) Engine parameter change 

(3) All the changes happening simultaneously 
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6.6.1 Load Change 

To incorporate the provision for engine load change in the MVEM he 

crankshaft speed sub-model is modified. The pumping power Pp arc: -he 
friction power Pf are functions of absolute manifold pressure = and 

crankshaft speed n whereas the load power Pb is only a function of 

crankshaft speed as shown in equation (3-19). The load factor Kb (=0.4-, ' is a 

constant. Engine load can be changed by changing load power Pb. The oad 

on the engine in kW is given as: 

Engine Load = Kb * n3 

Engine load is equal to the load power of engine and therefore, 

3 Pb = Kb * n 

Load Power in the modified model is presented as 

Pb=Kb*n3+L, 6-2) 

where L, is the load variation in kW and n is the crankshaft speed in kRPM. 

The reference signal for speed control is kept fixed but the load on the 

engine is changed in sinusoidal and saw-tooth style as shown in Fig. 6.7 (a) 

and (b). 

Sinusoidal load change 
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Saw-tooth load change 
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Fig. 6.7: (a) Sinusoidal (Lu) load change; (b) Saw-tooth load change; (c) No 

fault response for Saw-tooth load change. 

In the case of a sinusoidal load change, the load on the automobile (engine) 

can be negative for some time. This represents the downhill running of the 

vehicle. Similarly, an increase in the load represents the uphill running of the 

vehicle. 

The change in load is applied through variable L� as shown in the simulation 
diagram in Fig. 6.8. Modified Simulink model of the crankshaft speed state 

equation according to equation (6-2) is shown in Fig. 6.9 

118 



6 Robustness Assessment Under Closed-loop Control 

Fig. 6.8: Simulink model of MVEM with crankshaft speed feedback. 

Fig. 6.9: Modified Simulink model of the crankshaft speed state equation 

Two sets of data are collected for no fault and faulty conditions; the first set 

of data for the sinusoidal change in the load and the second set for the saw- 
tooth change in the load. The reference input signal is kept constant at 
2.5kRPM for both data sets. First of all, both networks are trained with data 

for the sinusoidal load change and tested with data for the saw-tooth load 
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change and then vice-versa. With both training data sets the classification 

results were found satisfactory. The classification test results for both 

classifiers when tested for the sinusoidal load change are shown in Fig. 6.10. 

The results of the non-adaptive classifier are not good as shown in Fig. 6.10 

(a) and it is not able to identify different faults. The adaptive classifier is able 
to identify all the faults as shown in Fig. 6.10 (b) and (c) but with false alarms. 
There are several false alarms in all and they can be seen in Fig. 6.10 (c), 

where the small spikes exceeding the threshold of 0.5 can be eliminated by a 
low-pass filter. 
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Left and right hand columns show results for state No. 1,3,5,7,9,11,13,15,17 and 2,4,6,8,10,12,14,16 respectively 

(c) 

Fig. 6.10: Networks trained on saw-tooth load and tested on sinusoidal load. 

(a) Results for Non-adaptive classifier; (b) Results for Adaptive classifier; (c) 

Details of each fault classification in; (b) shown separately for clarity. 

6.6.2. Engine Parameter Change 

The engine displacement is a constant for an engine and is 1.275 litres for 

the MVEM. After a few years of operation, the engine displacement has a 
tendency to increase by a small amount due to abrasion. In order to check 
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the robustness of the classifier against such an aging effect of the engine, 

the no fault and faulty data for 1% increased engine displacement i. e. 
1.01'`1.275 litres) is collected. Both classifiers are trained for the normal 

engine data and then tested on the data from the increased engine 
displacement. In this part of the experiment the speed reference signcil and 

the load on the engine are not changed. It is found that the performance of 

the adaptive classifier Fig. 6.11 (b) and (c) is much better than the -ion- 

adaptive classifier Fig. 6.11 (a) but with false alarms. There are severe- apse 

alarms in all and they can be seen in Fig. 6.11 (c) as small spikes exceeding 

the threshold of 0.5. 
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1I 

0.8 

0.6 

0.4 

0.21 

-0.2 200 

Adaptive classifier, Nodes=60, Trained on normal & Tested on I% increased engine displacement 

1 

0.8 
0.6- 
0.4 

z 0.2 
0 

-0.2 0 

122 

20 40 60 80 100 120 140 160 180 

(a) Data Samples 

20 40 60 80 100 120 140 160 180 200 

(b) 
Data Samples 



6 Robustness Assessment Under Closed-loop Control 

u 
z 

0.5 
0 
0 50 100 150 200 

0.5 
0 
0 50 100 150 200 

0.5 
- 0 

0 50 100 150 200 

0.5 
0= 
0 50 100 150 200 

0.5 
y 

0 - -- 0 50 100 150 200 

0.5 
0 
0 50 100 150 200 

1 
0.5 , 0 

0 50 100 150 200 

0.5 
0 
0 50 100 150 200 

0.5 

0 50 100 150 200 

05 
0 

- 0 50 100 150 200 
1 

0.5 
^ 'lull 

0 50 100 150 200 

0.5 
O 

0 50 100 150 200 

0.5 , 0 - 
0 50 100 150 200 

1 
0.5 

0 
z o 50 100 150 200 

0.5 
0 
0 50 100 150 200 

1 
0.5 

ýý u 

0 50 100 150 200 
1 

0.5 ,T 

0 50 100 150 200 

Data Samples 

Left and right hand columns show results for state No. 1.3.5,7.9,11,13,15,17 and 2,4,6,8,10,12,14,16 respectiWty 

(c) 

Fig. 6.11: Networks trained on normal and tested on I% increased engine 
displacement: (a) Non-adaptive classifier; (b) Adaptive classifier; (c) Details 

of each fault classification in (b) shown separately for clarity. 

6.6.3 All the Changes Happening Together 

In this section data is collected for all the changes happening simultaneously, 
i. e. when the reference is a saw-tooth signal, the load is changing in the 

sinusoidal style and the engine displacement is increased by 11%. Both non- 
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adaptive and adaptive classifiers are trained on data with fixed reference, no 

change in load, no increase in engine displacement, and then tested with the 

data when all the changes happen together. 

The results in Fig. 6.12 (b) and (c) show that the adaptive classifier performs 

well as compared to the non-adaptive classifier in Fig. 6.12 (a) but with false 

alarms. There are several false alarms in all and they can be seen in Fig. 

6.12 (c) as small spikes going over threshold of 0.5. 

Non-adapt\e classifier, Nodes=90, Trained on 2.5kRPM throttle, no bad change, no dispalcement change 
and Tested on Saw-tooth throttle change, Sinusoidal load change and 1% increased engine displacement 
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and Tested on Saw-tooth throttle change, Sinusoidal load change and 1% increased engine displacement 

1 

0.8 

0.6' 

0.4 
3 0.2 i 

z0 

-0.2 0 20 40 60 80 100 120 140 160 180 200 

(b) Data Samples 

124 



6 Robustness Assessment Under Closed-loop Control 

0.5 

0 50 100 150 200 
1 

0.5 

0 50 100 150 200 
1ý 

0.5 

0 50 100 150 200 
1 H 

0 5 
. 

0 50 100 150 200 

z 0.5 
0 

0 50 100 150 200 

0.5 

0 50 100 150 200 
1 

0.5 p.. 
ýý 

0 «, .I 
0 50 100 150 200 

1r 
0.5 ICI 

0 50 100 150 200 
1 

0.5 

0 50 100 150 200 

0.11 
O 

0 50 100 150 200 
1t ; 

0.05 

M1. 
0 50 100 150 200 

0.5 

0 50 100 150 200 

y1 0.5 
0 

0 50 100 150 200 
1 

0.5' z 
0--i '- , 0 50 100 150 200 
1' 

0.5 
0 

0 50 100 150 200 
1 

0.5 
0 

0 50 100 150 200 

0.5 
0- H 

0 50 100 150 200 

Data Samples 

Left and right hand columns show results for state No. 1,3,5,7,9,11,13,15,17 and 2,4,6,8,10,12,14,16 respectiven 

(c) 

Fig. 6.12: Networks trained on fixed reference and tested on saw-tooth 

reference, sinusoidal load change and 1% increased engine displacement: 

(a) Non-adaptive; (b) Adaptive classifier; (c) Details of each fault 

classification in b shown separately for clarity. 
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6.7 FDI WITH DATA FILTERATION 

In order to improve the problem of false alarms, the signal processing toolbox 

in Matlab is utilised and a third order low-pass digital filter is designed to 

suppress the spikes in the resultant data. A Butterworth digital filter can be 

designed using the Matlab function "butter". The function has two arguments 
N and W,, for the order of the filter and cut-off frequency, respectively. The 

function returns the filter coefficients in length N+1 vectors B and A, 

numerator and denominator, respectively. The cut-off frequency must be 0.0 

< W,, < 1.0, with 1.0 corresponding to half the sample rate. The value of W� is 

to be chosen carefully. A high value may not do any filtration at all whereas a 

very low value may cause a long time delay and poor filtration. 

A value of 0.1 has been carefully chosen for W� which reduces the spikes to 

half of their original height (i. e. much below the threshold of 0.5) and causes 
little time delay. The false alarms are practically reduced to zero times as 

shown in Fig. 6.13 (a) and (b). 

Filtered and unfiltered data graphs compared for fourth Fault 
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(b) 

Fig. 6.13: Classification results after using a low-pass Butterworth filter. 

(a) Comparison of classification results before and after filtration for fault 

number 4; (b) Classification results of 13; (c) after filtration. 

It can be seen from graphs in Fig. 6.13 that the spikes causing false alarms 
have been filtered out and make the classification more robust and reliable. 
Low-pass filtered results for Fig. 6.5, Fig. 6.10 and Fig. 6.11 are shown in 

Fig. 14. 
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Fig. 6.14: Filtered results for Fig. 6.5, Fig. 6.10 and Fig. 6.11 respectively in 
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Adaptive classifier, Nodes=90, Trained on 2.5kRPM reference throttle angle, no load change, no dispalcement 
change and Tested on Saw-tooth throttle change, Sinusoidal load change and 1% increased engine displacemem 
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Fig. 6.15: (a) Filtered results for Fig. 6.12 (b) Details of each fault classification 

separately shown for clarity 
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6.8 DISCUSSION 

At different stages, the mean value engine model is modified and enhanced 

as required. Initially, the author modified the mean value engine model by 

introducing air leakage fault in the intake manifold which is explained in 

Section 4.2 of Chapter 4. Later on, the MVEM is enhanced by introducing 

load dynamics in the model as explained in Section 6.6 of this Chapter 

before. The modification and enhancement of the model is original work of 
the author. 

In order to reduce the false alarms, the concept of averaging M samples of 

network outputs, as explained in equation (5-6), is also an original idea. The 

value of M=3 was considered suitable for this work because the sample 
time is 0.3 seconds and the measured engine variables reach steady state in 

6 seconds. 

The robustness of the adaptive RBF-based FDI system is investigated for a 

wide range of operational modes with increasing generality. Robustness 

assessment has been carried out against fixed and sinusoidal throttle angle 
inputs (i. e. set point change), change in load, change in engine parameter, 

and all these changes occurring at the same time for both adaptive and non- 

adaptive networks. The adaptive network performs very well and the 

simulation test results are satisfactory after data filtration for all the sixteen 
faults considered. The non-adaptive classifier fails to cope up with the load 

change, parameter change, etc. Thus, it is not robust whereas the adaptive 

network classifies all the faults correctly. The false alarm is reduced to zero 
by the use of a low-pass filter at the output of the neural network before 

making a decision whether a particular fault has occurred or not. 

The adaptive fault diagnosis method outperformed the non-adaptive method 
in the following ways: 

  It could handle bigger set of faults, 

  It is more robust to throttle angle, and is robust to load and 

engine parameter variation, and 

" The size of the required RBF neural network is small. 
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A neural network of smaller size is easier to realise and can work faster. 

Smaller network would require less computational time and therefore could 

work in real time. The adaptive methodology developed for engine fault 

diagnosis in this research is a novel piece of work and is author's contribution 

to knowledge. 

Robustness assessment against different types of unknown faults and 

simultaneously occurring multi-faults are not considered and robustness 

evaluation for real engine data is carried out in the next chapter. 
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CHAPTER 7 

REAL DATA EVALUATION 

7.1 INTRODUCTION 

In this chapter five different sensors in automotive engine have been 

investigated for positive and negative bias faults on real engine data. The 

sensors considered are throttle angle position, crankshaft speed, torque, and 

intake manifold pressure, and intake manifold temperature sensors. The 

faults considered are common and realistic, and have been considered 

previously by several researchers (Antory, 2005; Nyberg and Stufte, 2004; 

Capriglione et al., 2004; Vinsonneau et al., 2001). The throttle angle position, 

crankshaft speed and manifold pressure sensors have also been previously 

investigated by Capriglione et al., (2003) and implemented on a digital signal 

processor (DSP). The intake manifold pressure and temperature sensors 

have also been previously investigated in Chapter 4,5 and 6 on simulated 

data from MVEM (Sangha et aL, 2005b, 2006 and 2007). It was not practical 

to make a leakage in the intake manifold of a real running engine at a desired 

time and therefore gas leakage fault is not considered for real data 

evaluation. The automotive engine available in the workshop for 

experimentation does not have an EGR system and therefore EGR valve 

clogged fault is also not investigated for real data evaluation. 

A small bias in a sensor can adversely affect the engine efficiency especially 

when the sensed value is directly or indirectly utilised in the electronic control 

unit (ECU) of the engine for engine control. Some sensor faults can even lead 

to increased pollution due to less efficient engine operating state. Timely 
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detection of faults can prevent the development of possible catastrophes in 

the near future. Some sensor faults with which the sensor output is used for 

feedback control will affect both dynamic and steady state performance. 
Therefore, sensor fault detection and isolation is important for automcu'ves. 
An adaptive on-line fault diagnosis algorithm derived in Chapter - is 

evaluated on real engine data to cope with engine-to-engine variations, 

parameter uncertainty, disturbances, variations due to environmental changes 

and aging of the engine and measurement devices. 

It is important to mention here that sensor failures investigated in (Capnglione 

et al., 2007) e. g. short circuit (zero deflection), open circuit (full deflection), 

hold (reading-halt) and short circuit between two sensors, are not considered 
in this research due to the fact that these are easier to be diagnosed 

compared to a sensor bias fault as small as 2%. 

7.2. EXPERIMENTAL SET-UP 
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Fig. 7.1: Schematic diagram of engine test bed 

A Volkswagen petrol car engine test bed is used for real engine data 

collection. Fig. 7.1 shows the schematic diagram of the experimental set-up. 
Main details of the engine specifications are given in Table 7.1. The engine 

test bed has a provision for 15 thermocouple inputs, 24 digital I/O and 2 

n 
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frequency/pulse differential signals from transducers at different locations in 

the entire engine system. 

Table 7.1: Volkswagen car engine specifications 

Engine Number Nominal Maximum Bore/ Capacity Compression 

Code of output in torque Stroke in cm3 
Cylinders kW/rpm N-m/rpm in mm 

ATE 4 37/5000 86/3000... 67.1/70.6 999 10.5 

3600 

The interface hardware of the test bed, Personal Daq (PDQ), provides a 

connection between the computer USB port and the data logging rack. The 

data logging rack is directly connected to the transducer connection panel 
through cables. All the transducers installed in the engine test bed are 

connected to the transducer panel to provide an interface with the data 

logging rack. 

The data acquisition software, Personal Daq View, is configured on a PC to 

access real engine data through a USB port. This software has a configurable 

user-friendly interface which can provide a highest frequency/pulse 

measurement up to 1 MHz. Up to 100 Personal Daq/PDQ (combined units) 

can be connected to one PC by the use of USB hubs; providing a total 

channel capacity of 8,000 channels. With slow measurement duration of 610 

milliseconds, there will only be 1.6 samples per second whereas with a very 
fast measurement duration of 12.5 milliseconds, there can be 80 samples per 

second at the most. The sampling time is also dependent on the number of 
different variables to be acquired. A sample time of 1.4 seconds was found 

appropriate for this experiment to catch transient dynamics of the variables 

required for fault diagnosis. 

7.3 REAL DATA ACQUISITION 

For fault detection and isolation via neural networks, training and testing data 

sets are required and all of which should contain samples with no fault and all 
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faults considered. It is impracticable to produce real faults during engine 

operation and to acquire training data for every possible operating mode of an 

engine. Therefore a suitable set of possible faults was simulated on the basis 

of data acquired in fault-free condition which is explained in section 5.1. 

Data acquisition is one of the most important parts of these experiments. The 

data is acquired in many different operating states of the engine to cover the 

entire range of normal engine operation. The engine is carefully operated to 

run in different speed and torque conditions to cover the maximum spectrum 

of real engine runs on road. The different sets of acquired engine data are 

shown in Table 7.2. 

Table 7.2: Ranges of important variables in acquired real engine data 

Variation in % Variation in Variation in 

throttle angle crankshaft torque 

position speed (N-m) 

(RPM) 

Data sets 1&2 (High speed 0.28 - 77 720 -3976 -1.0 - 85 

variation run) (High variation) 
Data sets 3&4 20-50 2127-2192 28-48 

(Approximately constant (Almost 

speed run) Constant) 

Data sets 5&6 (Low speed 4-80 1510 - 2870 -0.25 - 

variation run) (Low variation) 85.8 

The speed variation during experiments covers a wide range form nearly 700 

rpm to 4000 rpm. The torque variation ranged from -1.0 N-m to 86 N-m. The 

maximum allowable torque for this engine is 86 N-m; and therefore the engine 

was run up to the maximum allowable torque. The engine data was acquired 

on different days to ensure different ambient conditions. Six different data 

sets were collected on different days and different sessions for training and 

testing of neural classifier. One raw data set is graphically shown in Fig. 7.2 

for illustration. 
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Raw Engine Data 
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Fig. 7.2: Raw engine data in data set 2 

The sampling time for the raw data in Fig. 7.2 was 1.4 seconds and a total of 
441 samples were acquired and recorded on computer using the Personal 

Daq View software. Initially the engine was run idle for 10 minutes for proper 
heating up and then throttle position and load were simultaneously changed 

and necessary readings were recorded for 617.4 seconds as shown 

graphically in Fig. 7.2. In the beginning, the engine is run on low throttle (slow 

speed) for a minute as if run in congestion and then, gradually, the throttle is 

increased to increase speed up to nearly 4000 rpm to represent high-speed 

run. Then, the throttle is gradually decreased in steps to reduce the engine 

speed and this is how a high variation in engine speed is achieved. The load 

on the engine is also changed within allowable limits during data recording to 

achieve up hill and down hill running conditions of the engine. An increase 
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and decrease in engine load corresponds to up hill and down hill runs of the 

engine respectively. 

Some engine operating modes, e. g. sudden and harsh braking, steep up hill 

and steep down hill runs, have not been considered in these experiments due 

to limitations of the technical facilities available in the test-bed. The ranges 

for all the raw data are tabulated in Table 7.2. 

7.4 INFORMATION FLOW IN FDI 

The RBF network, as the fault classifier, receives all possible and relevant 

signals containing fault information. From engine dynamics it is known that all 

the five sensor outputs are involved in the dynamics and the interactions 

among them should not be neglected. Therefore, all the five sensor variables, 

the throttle angle position, the manifold pressure, the manifold temperature, 

the crankshaft speed and torque, are chosen as neural network (NN) inputs. 

Also, when the dynamics of the engine are considered, the delayed sensor 

outputs have been included in the network inputs, where the number of 

delayed samples for each variable is chosen according to the order of the 

dynamics. Because, including the delayed outputs considerably increase the 

number of network inputs and lead to a much larger network size, which 

requires more computing time and possibly lower generalization ability and 

the classification performance has not been significantly improved. In this 

research, both ways of including and excluding the past output data in the 

network inputs are tested and the results are compared. 

The network has 11 outputs with each indicating one of the investigated 

states: one for no-fault state, 5 for positive bias of the 5 sensors and another 

5 for negative bias of the 5 sensors. The information flow for the fault 

diagnosis method is illustrated in Fig. 7.3. 
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Fig. 7.3: Information flow of the fault diagnosis method 

The acquired raw data is linearly normalised to the range of [0 1] and the 

different 10 sensor faults are simulated by superimposing on the normal 

sensor output with one fault at a time. Then all five inputs are fed to the 

adaptive classifier. Widths in the hidden nodes and the weights in the output 

layer of the RBF network are on-line adapted during the moritoring to 

minimise the sum-squared error between the output from the aaaptive 

network and the pre-decided target output. Gradient descent methoa s used 

for adjusting the widths of the RBF network as explained in Chapter 5. The 

width in each hidden layer node is initially chosen as a constant using the P- 

nearest rule. The classification is sensitive to the Gaussian local function, 

which is mainly characterised by the width. Therefore, a gradient descent 

algorithm is used to on-line adapt the widths to achieve a minimal objective 

function as given in equation (5-1). 

7.5 FAULT DIAGNOSIS 

7.5.1 Fault Simulation on the Real Data 

As real sensor faults with the amplitude as small as 2% and at some specific 

time periods are not easy to be introduced to the engine test bed in practice. 

Therefore, the sensor faults are simulated by superimposing a bias with a 

certain percentage of its normal sensor output on real data. This does not 

affect system dynamics and fault detection. Both +-2% and +- 5% bias are 

used and this is achieved using a multiplying factor (MF) of 1.02 and 0.98 and 
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1.05,0.95 respectively. The 2% faults are shown in the Table 7.3 together 

with all the names of faults simulated. 

Table 7.3: Simulated faults and their multiplying factors 

State 

No. 

Fault description MF 

1 No Fault (All the sensors reading correctly) 1.00 

2 Throttle angle sensor 2% over reading 1.02 

3 Throttle angle sensor 2% under reading 0.98 

4 Manifold pressure sensor 2% over reading 1.02 

5 Manifold pressure sensor 2% under reading 0.98 
6 Manifold temperature sensor 2% over reading 1.02 

7 Manifold temperature sensor 2% under reading 0.98 

8 Crankshaft speed sensor 2% over reading 1.02 
9 Crankshaft speed sensor 2% under reading 0.98 

10 Torque sensor 2% over reading 1.02 

11 Torque sensor 2% under reading 0.98 

317 samples are used in each data set where one of 11 fault states is 

generated to all the samples of the set. This is repeated for 11 times, to form 

317 x 11 = 3487 samples in the whole faulty data set. In this way the fault 

classification can be tested and viewed clearly. 

7.5.2 Network Structure Selection and Initial Training 

Before the network is used on-line, it needs to be pre-trained off-line. This is 

referred to as initial training. With 5 inputs and 11 outputs determined in 

Section 7.4, the remaining structure of the network to be determined is the 

number of hidden layer nodes. Different numbers of hidden nodes ranging 

from 5 to 35 were tried and network performance, in terms of good 

classification and time taken for computations, was analysed. Twenty hidden 

nodes were found appropriate for a satisfactory level of performance because 

more hidden nodes gave a slightly better performance but the computational 
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load on the microprocessor increases substantially in terms of real time 

processing. Therefore the structure of the network was taken as 5: 20: 11. 

The target of network output in the training is given by a 11-dimension row 

vector with 0 or 1, a "0" (zero) output implies that the fault does not occur 

while a "1" (one) output implies that the fault occurs. As 11 fault states are 

simulated with each for 317 data samples, one target vector will be used 

repeatedly for 317 times and the vector has only one "1" corresponding to the 

fault and all the other entries are "zero". Thus, target matrix Xo has 317x11 = 

3487 rows and 11 columns. Each column of Xo represents i`h target for one of 

the 11 states. Its first column has ones from the first row to the 317th row and 

the other entries are zeros, the second column has ones from the 318th row to 

the 634th row and the other entries are zeros, the last column has ones from 

the 3171st row to the 3487th row and the other entries are zeros. This is shown 
in Fig. 7.4: 

Row Numbers X. 

1- 317 1 0 00 

318-634 0 1 """ 0 

". 0 
3171-3487 00 """ 01 

Fig. 7.4: Target matrix X. 

Thus, the transpose of the P' row in Xa is used as the training target vector for 

the i' training pattern. The centres are chosen using the K-means clustering 

algorithm from the training data set. The widths were initially chosen using the 

P-nearest neighbour's algorithm, and the weights were trained using the RLS 

algorithm. 

7.5.3 Fault Classification Results 
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The adaptive network is used to diagnose faults with test data sets after initial 

training with the training data set. The fault detection threshold in equation (5- 

7) was chosen as r, = 0.5 with M in equation (5-6) chosen as M=3. This 

replies that one of the network outputs must be over 0.5 continuously for 3 

samples, a fault is then believed occurred. High thresholds may lead to 

missed detections whilst low thresholds may cause more false alarms. A 

proper choice can be found in experiment and r, = 0.5 is found as a good 

compromise between reliability of detection and insensitivity to noise in this 

application. The threshold for the gradient of the objective function in equation 
(5-8) was chosen as a=0.00001. The forgetting factor for the RLS algorithm 

was chosen as a constant value of A=0.99. 

The adaptive network is initially trained on data set 6 for 5% sensor faults and 
tested on other data sets. The results for network testing on data set 5 with 
2% fault are shown in Fig. 7.5. 

Adaptive classifier, Hidden Nodes=20, Trained on set6, 
tested on set5 of real engine data for 2% sensor faults 

1 

0.5 

ä, 
Z0 

(a) 

Adapti\e classifier, Hidden Nodes=20, Trained on set6, 
tested on set5 of real engine data for 2% sensor faults 

y1 ýV. wJp 
'Y' Y9 eýv° rý 

0.5- 12345 i'6 789 10 11 

0. . 

I! 

---ý. 
", 

.. 

I ý" 
,, ý 

Z 
.- . _. ... 

` 

Iý 
ý ... v 'i. 

0 500 1000 1500 2000 2500 3000 
Data Samples 

(b) 

141 

0 500 1000 1500 2000 2500 3000 
Data Samples 



7 Real Data Evaluation 

N 

CL 
7 

0 

O 

aý 
Z 

0.5 
p 
0 1000 2000 3000 

0.5 

0 1000 2000 3000 

0.5 

01 000 2000 3000 

0.5 
0 

0 1000 2000 3000 

0.5 
0 

0 1000 2000 - 3000 

a1 
0 0.5 

0 
0 1000 2000 3000 

0.5 
0"ý- 
01 000 2000 3000 

- 
0.1 

0 
0 1000 2000 3000 

0.5 

0 1000 
2000 3000 

1Tr , -- - 

0.5 
0 -- 

0 1000 2000 3000 

E- 
0.5 

0 1000 2000 3000 
Data Samples 

Lef and right hand columns show results for state No. 1,3,5,7,9,11 and 2,4,6,8,10 respectively 

(c) 

Fig. 7.5: Classification result for 2% faults when the network is trained on data 

set 6 and tested on data set 5. (a) Without data filtration (b) after low pass 

data filtration (c) Each state separately shown for clarity 

There would be misclassifications for unfiltered data as shown in Fig. 7.5(a). 

There are a number of spikes crossing the threshold of 0.5 which may cause 

false alarms if their average value in three samples is over 0.5. To further 

reduce the false alarms the classifier outputs are filtered by a low-pass filter. 

The low-pass Butterworth filter attenuates the high frequency spikes and the 

result for the same fault is shown in Fig. 7.5b. There are still a few spikes 

142 



7 Real Data Evaluation 

visible but these do not cross the threshold of 0.5 and therefore cannot cause 

a false alarm. To analyse the resultant classification, all the 11 states are 

shown separately in Fig. 7.5c for better visibility. It can be seen that all the ten 

fault states and the no fault state are clearly classified and the results are 

satisfactory. But in this fault diagnosis system, only the current values of the 

five variables were used as inputs to the adaptive neural network for training 

as explained in information flow of the FDI method before in Fig. 7.3. 

In order to improve the results further, three past values of dynamic data are 

used as input to the neural network for training for all the five variables along 

with the current values. Therefore, there are 20 inputs to the neural network 

viz. manifold pressure [p(k), p(k-1), p(k-2), p(k-3)], manifold temperature [t(k), 

t(k-1), t(k-2), t(k-3)], crankshaft speed [n(k), n(k-1), n(k-2), n(k-3)], throttle 

angle position [th(k), th(k-1), th(k-2), th(k-3)] and torque [q(k), q(k-1), q(k-2), 

q(k-3)] . 
This will substantially increase the size of the network to 20x2Oxl1 

instead of 5x20x11. The test results are shown in Fig. 7.6. When these results 

are compared with the previous results shown in Fig. 7.5, it is observed that 

there is a very little improvement in the results but the size of neural network 
is substantially increased. 

The dynamic data with three past values does not improve the performance 

of the FDI system because the adaptive system itself is a dynamic system 

and trains with every sample of data before testing. 

Adaptive classifier, Hidden Nodes=20, Trained on set 6 
tested on set 5 of real engine data for 2% sensor faults 
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Adaptive classifier, Hidden Nodes=20, Trained on set 6 
tested on set 5 of real engine data for 2% sensor faults 
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Fig. 7.6: Classification result for 2% faults when the network is trained on data 

set 6 and tested on data set 5 using three past and present values of all the 

five variables (a) Without data filtration (b) after low pass data filtration 

Another test result for network initial training on data set 6 with 5% faults and 
testing on data set 1 with 2% faults is shown in Fig. 7.7. Fig. 7.7c shows the 

results are satisfactory with all the ten sensor faults and no fault state clearly 

classified with no false alarms or misclassification. In order to improve the 

results further, three past values of dynamic data are used as input to the 

neural network for training for all the five variables along with the current 

values as before. But it does not make any noticeable difference or 
improvement. 
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Adaptive classifier, Hidden Nodes=20, Trained on set6, 
tested on sett of real engine data for 2% sensor faults 
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Left and right hand columns show results for state No. 1,3,5,7,9,11 and 2,4,6,8,10 respecti%ely 

(c) 

Fig. 7.7: Classification result for 2% faults when the network is trained on data 

set 6 and tested on data set 1. (a) Without data filtration (b) after low pass 

data filtration (c) Each state separately shown for clarity 
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The experimental results of real data confirm that the dynamic issues of 

disturbances, variations due to environmental changes are solved by 

adaptation of the neural classifier, though the classifier uses only current 

sensor outputs. To further evaluate the sensitivity and robustness of the 

developed adaptive classifier, a real data set with 1% faults is tested. The 

network is initially trained on data set 2 with 2% sensor faults and tested on 

data set 1 with 1% fault. The initial false alarms are high as shown in Fig. 

7.8(a). The low pass filtering reduces the number of false alarms but some 

false alarms are still present as shown in Fig. 7.8(b). It is seen that a couple 

of misclassifications are present as indicated in Fig. 7.8(c). Fault diagnosis for 

1% sensor faults was also tried for other sets of the real engine data and 

similar results were achieved. With a closer look at the test results, it was 

found that fault states 9 and 10 cause misclassifications. 
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Fig. 7.8: Classification result for 1% fault when the network is trained on data 

set 2 and tested on data set 1 (a) Without data filtration (b) after low pass 
data filtration (c) Each state separately shown for clarity 

To understand the reason for the above misclassifications, the equation (3- 

14) of engine crankshaft speed dynamics could help. 
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n=-1 (Pf(P;, 
n)+(Pp(Pi, n)+Pb(n))+ 

1 
Hu7l; (Pj, n, A)riz j(t-Otd) In In 

where n is the first derivative of crankshaft speed, I is the scaled moment of 

inertia of the engine crankshaft and its load, Azd is the mean injection time 

delay, t is time (sec), n engine speed (krpm), mf engine port fuel mass flow 

rate (kg/sec), p, absolute manifold pressure (bar), Pf friction power (kW), Pb 

load power (kW), PP pumping power (kW) and H� fuel lower heating valve 
(kJ/kg). From the equation it can be seen that the crankshaft speed and the 

moment of inertia of the engine and its load have opposite effects on engine 

shaft acceleration. That means when the load on the engine is high then the 

speed of the engine would be low if the speed does not intend to change. The 

faults causing misclassification are speed sensor under reading (No. 9) and 
the torque sensor over reading (No. 10). Therefore, these two faults have the 

same effects on the engine acceleration and are consequently difficult to be 

isolated compared with the other faults. 

7.6 DISCUSSION 

Real engine data of five sensors is acquired from a one-litre Volkswagen car 

engine test bed under different operating states, on which ten different faults 

are superimposed. The fault detection and isolation scheme using adaptive 
RBF classifier is employed to diagnose faults from real data. The 

experimental results confirm that the sensor faults as small as 2% are clearly 
detected and isolated for different data sets. 

The training and testing of the adaptive neural network is investigated both 

with static and dynamic data but results are more or less the same. This is 

because the adaptive FDI system itself is dynamic and trains dynamically with 

each sample of data before testing. 

The neural network classifier is on-line adapted for its widths and weights to 

cope with model uncertainty, time varying dynamics and environment change, 

so that the sensitivity of the scheme to the faults and the robustness to the 

uncertainty and disturbances are maintained. 
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CHAPTER 8 

UNKNOWN FAULT DETECTION AND FAULT 

ACCOMMODATION 

8.1 INTRODUCTION 

Nowadays a large number of sensors are used in a car for improved -eiiability 

and increased comfort. Sensors used by motor vehicle systems are following 

a trend towards greater integration of processing power in the actual sensors. 
Integrated pre-processing unit and analogue-to-digital converter in a sensor, 

make the signal interference proof. Sensors with local intelligence, known as 
'intelligent sensors', are also available commercially but are very expensive. 
This level of integration allows built-in monitoring and diagnostic ability in a 

sensor, which leads to much improved reliability and control of the vehicle. 

The correctness of operation of an electronic control unit (ECU) for a car 

engine depends upon a number of measurements, e. g. crankshaft speed, inlet 

manifold pressure, throttle position, air fuel ratio, etc. A growing demand on 

security and comfort has pushed an increased use of suitable sensors and 

actuators. In-vehicle conditions are optimised using environmental sensors for 

evaluating the outside conditions, e. g. road condition, visibility, presence of ice 

and intensity of rain, etc. Anti-crash sensors, global positioning system 

(GPS), anti-skid braking and anti-spin traction control, etc. are used in most of 

the new generation of cars for improved security, fuel efficiency and comfort. 

Most importantly, the driver status/condition is also monitored on-line by a 

more complex measurement system in high end cars, to avoid crashes due to 
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human errors. As operations under any faulty sensor condition will cause high 

cost, low security and low comfort, automotive measurement system should 

also be sensor fault tolerant like aircrafts and nuclear power plants. 

Sensor fault correction is essentially a three fold system. The first stage is 

fault detection, which indicates occurrence of a known or unknown fault. The 

second stage involves establishment of type and location of the fault and this 

is called fault isolation. When a fault is detected and isolated, it is desirable to 

auto-correct the fault during operation if possible, before the vehicle is 

scheduled for repair. The auto correction of fault may not be possible for some 

components and actuator faults; but some known sensor faults may be 

corrected according to their known no-fault characteristics. This is known as 

sensor fault accommodation. 

Sensor fault accommodation for three different sensors along with unknown 

fault detection has been investigated in this chapter. Once a sensor fault is 

detected then using pattern classification approach, the accommodation is 

achieved by replacing the sensor values with the predicted values. The 

present values of the faulty sensor are not used as an input to the neural 

predictor. The values for the faulty sensor are predicted on the basis of the no 

fault behaviour of different sensors. The predictor used healthy sensors as 

input and predicts a suitable value for the faulty sensor. The results 

demonstrated acceptable average prediction error for the faulty sensor. 

Three different unknown faults have been investigated for detection while 

neural network is trained for four different sensor faults. Unknown fault 

detection is carried out using data with 'unknown faults' simulated in MVEM. 

When none of the 'no-fault' or 'fault' output neurons exceed the threshold, it 

can be interpreted as detection of 'unknown fault' (Li et al., 2002). This 

process is also known as novelty detection (Bishop, 1994). 

When none of the 'fault' output neurons exceed the threshold then it implies 

that none of the 'known-faults' has occurred and when 'no-fault' output neuron 

does not exceeds the threshold then it implies that some fault has occurred; it 

may be a known fault or an unknown fault. But when both the 'no-fault' output 

neuron and the 'fault' neurons do not exceed the threshold simultaneously 

then it implies that an 'unknown fault' has occurred. This method has been 
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used in this chapter for detection of 'unknown faults'. The results demonstrate 

successful detection of unknown faults and also demonstrate that some small 

unknown faults may not be detectable using this method. 

8.2 SIMULATION OF FAULTS 

Four sensor faults have been investigated as four typical and practical 

examples. All the four faults are considered with positive and negative bias of 
10% on their correct values. The sensor faults can occur due to two basic 

reasons: 

(i) wear and tear of the mechanical parts of the deflection meter or some 

changes in the value of resistance or capacitance used in the circuit 
due to aging (e. g. leakage of dielectric material or change in dielectric 

strength of the material), and 

(ii) electrical fault such as short circuit or open circuit in the signal cable or 

on the circuit board. 

The electrical faults are easy to detect because open circuit and short circuit 
faults will cause a full deflection or zero deflection in the meter respectively, 

and can be easily detected by a value check on the sensor output. On the 

contrary, the aging and mechanical faults cause incorrect meter readings and 

thus are difficult to detect. They can cause over-read or under-read the 

sensed variable and are known as bias faults. 

The above mentioned faults can be planned and the data under faulty 

condition can be collected to train the neural classifier before the classifier is 

used on-line. These faults are therefore called 'known faults'. Any fault in the 

system for which the classifier is not trained is categorised as 'unknown fault'. 

The RBF classifier is only trained for the sensor faults in this study and thus 

any component fault happened in the system would be treated as unknown 

fault. For instance, an air leakage in the inlet manifold or the EGR valve 

clogged in closed position etc. There can be other unknown faults which may 

change some vital parameters like the air/fuel ratio. 
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A. ) No-Fault For no-fault situation, EGR is assumed to be 1/6 (16.67%) of 

the total air mass flow in the intake manifold. Practically EGR in a car can be 

as high as 20% of the total air mass flow. It is also assumed that all the 

sensors are working well and no component is malfunctioning. The no-fault 

data is collected for different throttle angle inputs ranging from 20 to 40 degree 

(the idling throttle angle for the engine is 15 degrees) for different operating 

points. 

B. ) Sensor Faults: Different multiplying factors (MFs) are used to generate 

fault data for eight different sensor faults by times the MF to a correct data 

(no-fault) as shown in Table 8.1. 

Table 8.1: Faults and no-fault states and multiplying factors 

State Name of Fault MF 

0. No-Fault (NF) 1 

1. Throttle angle position sensor 10% under reading 0.9 

2. Throttle angle position sensor 10% over reading 1.1 

3. Intake Manifold pressure sensor 10% under reading 0.9 

4. Intake Manifold pressure sensor 10% over reading 1.1 

5. Intake Manifold temperature sensor 10% under reading 0.9 
6. Intake Manifold temperature sensor 10% over reading 1.1 

7. Crankshaft Speed sensor 10% under reading 0.9 

8. Crankshaft Speed sensor 10% over reading 1.1 

C. ) Unknown Faults: Three different unknown faults are simulated in the 

model: 

(i) Air leakage in the intake manifold 

The air leakage in the intake manifold is simulated as explained 
before in section 4.2.2. 

(ii) EGR valve clogged in closed position 
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EGR valve clogged in closed position (100% closed) would stop 

EGR flow and this is simulated as explained before in section 
4.2.3. 

(iii) Air/fuel ration fault 

For a normal operation, A is taken equal to "1" which corresponds 

to air/fuel ratio of 14.7 for gasoline engines and 14.5 for diesel 

engines. At A equal to "1", it is stoiciometry or the point at which 

the most complete combustion takes place. A gives a measure of 

air/fuel ratio which is independent of the type of fuel being used. A. 

being more than one implies excess air (Lean), while less than one 

implies excess fuel (Rich). We set A =14.7+2.0=16.7 as fault of 

excess air while A =14.7-2.0=12.7 as fault of excess fuel. 

8.3 RBF TRAINING & TESTING PROCEDURES 

Procedure for the training and testing of algorithm for unknown faults is 

explained step by step as follows: 

a) K-means and P-nearest neighbours' algorithms are used to get the widths 

and the centres in the hidden layer of an RBF network utilising the training 

data set, the first set of the data collected from simulation. 

b) Gaussian basis function is used as activation function and the activation 
function outputs are calculated. 

c) Weights in the output layer are calculated by using batch least squares 

algorithm for minimum modelling error for the target values pre-defined for 

known faults. 

d) All the three calculated matrices viz. centres, widths and weights are 

saved for the testing phase. 

e) Another set of data with unknown faults is used for the testing purpose 

and is fed into the trained classifier. The network utilises the previously 

calculated values of centres, widths and weights. The network outputs are 

calculated. 
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f) The network outputs are compared with the ideal target values and 0.5 is 

considered as the decision boundary. 

g) If none of the network outputs (including no-fault output) is more than 3.5 

then it is considered as detection of an unknown fault. 

h) Entire procedure from a) to g) is repeated with other sets of data Nith 
different unknown faults. 

8.4 DATA FLOW FOR FDI 

Fig. 8.1 shows the block diagram of the FDI system. First of all the MVEM is 

run and different data sets for all the four sensor outputs are collected as 

explained in Section 8.2. Then the collected data is normalised as explained in 

Section 4.3 of Chapter 4. All the eight faults are simulated on no-fault acta as 

explained in section 8.2 using MFs listed in Table 8.1. The neural network is 

trained with the training data set. Then the different testing data sets are 

passed through the pre-trained neural classifier. The outputs of the , Iassifler 

are filtered by a low-pass filter before decision stage. In the decision stage, 

one of the nine states (from NF to 8) will be high while others are low :o show 

the occurrence of no-fault or any one of the faults. After the detection and 
isolation of fault, the fault accommodation would take place according to the 

fault detected. This is explained in Section 8.7 ahead. 

Throttle 

Temperature Data 
Data from normalisation Neural Low- 

MVEM IIpressure and sensor Network pass 
Simualtion fault Classifier Filter 

simulation 

No Fault plus Classification -- Nofault data -ý Faulty data 

JF No Fault 
1+ bias fault on throttle sensor Trigger 
2- bias fault on throttle sensor ANNth 
3+ bias fault on temp sensor 
4- bias fault on temp sensor 
5+ bias fault on pressure senso Trigger 
6- bias fault on pressure sensor ANNA 
7+ bias fault on speed sensoriTrigger 
8- bias fault on speed sensor J ANN,, 

Accommodation 
of Faults 

Fig. 8.1: Block diagram of FDI system 
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8.5 SIMULATION & FDI RESULTS 

8.5.1 Data Collection 

(A) RBF Training data collection 

First of all the MVEM is run for different throttle angle inputs i. e. 20°, 22°, 24°, 

..., 
400 for no-fault condition and data for throttle angle position, inlet manifold 

pressure, temperature and crankshaft speed is collected. In the same way the 

data for each fault condition listed in Table 8.1 is collected for all the different 

throttle angle inputs. 12 data points are collected for each throttle input in 6 

seconds at a sample time of 0.5 second. 120 data points are collected for 

each state for 10 different throttle angle inputs. There are 9 states in all and 

therefore the size of the training data set will be 1080 x4 (12 x 10 x9= 1080). 

The target matrix size would be 1080 x9 as explained in Section 8.6.2 ahead. 

(B) Testing Data collection for known faults 

Several testing data sets are separately collected for five different random 
throttle angle inputs to the MVEM. Same as before, 12 data points are 

collected for each throttle input in 6 seconds at a sample time of 0.5 seconds. 

Therefore, 60 data points are collected for each state for 5 different throttle 

angle inputs. The size of the testing data set is 540 x4 (12 x5x9= 540). 

(C) Testing Data collection for unknown faults 

All the unknown faults are simulated one by one for 6 seconds. Each time 

when the simulation is run, 60 data points are collected at 0.5 seconds sample 

time for 5 different throttle angle inputs. Four different data sets are collected; 

one for each unknown fault i. e. 20% air leakage in the inlet manifold, EGR 

valve clogged in closed position, air/fuel ration thin (16.7) and air/fuel ratio 

thick (12.7). The size of each testing data set is 60 x 4. 

155 



8 Unknown Fault Detection and Fault Accommodation 

8.5.2 Data Pre-processing 

All the data sets collected are pre-processed. One data set is used as training 

data and the other as test data. The data is normalised by subtracting the 

steady state values and then scaled to the range of [0 1] as explained before 

in Section 4.3 of Chapter 4. 

The target matrix xo has ones in the first column up to the 120th row and all 
the other entries are zeros, the second column has ones from the 121st row to 

the 240th row and so on. The last column has ones from the 961st row to the 

1080th row. This is shown in Fig. 8.2 as follows: 

Row Numbers X. 

1-120 10000 
121 -240 01 """ 

0. 
0 
0 

961 -1080 

Fig. 8.2: Target matrix X. 

Thus, one of the 9 columns in the target matrix is associated to a fault 

condition. With the chosen input variables and the target, RBF network was 

trained with the training data set, where 90 centres were chosen using the K 

means clustering algorithm. The widths were chosen using the P-nearest 

algorithm, and the weights were trained using the batch least squares (BLS) 

algorithm. 

8.5.3 Detection of known faults 

Training and testing procedure given in Section 8.4 is followed and the testing 

results for the second and third sets of data are shown in Fig. 8.3 and Fig. 8.4. 
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Fig. 8.3: Test results for data set 2 (a) before data filtration (b) after data 
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Fig. 8.4: Test results for data set 3 (a) before data filtration (b) after data 

filtration 
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Test results for data set 2 while RBF network is Pained on data set 1 with 90 hidden nodes 
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There are a number of visible spikes crossing the threshold of 0.5 in Fig. 

8.3(a) and Fig. 8.4(a). These spikes would cause false alarms when actually 

the fault has not happened. To get rid of these spikes, the data is filtered using 

a third order Butterworth low-pass filter and the results are shown in Fig. 

8.3(b) and Fig. 8.4(b). It can be seen that the filtered data has no false alarms 

and classifies all the faults clearly. 

8.5.4 Detection of unknown faults 

All the four data sets collected for unknown faults were passed through the 

pre-trained RBF network and the results are shown in Fig. 8.5 - Fig. 8.8. For 

the correct classification of an unknown fault, all outputs of the classifier 

should remain lower than the threshold of 0.5. The first, third and fourth faults 

are clearly classified as shown in Fig. 8.5, Fig. 8.7 and Fig. 8.8. But for the 

second fault (EGR valve clogged in closed position), some test result values 

exceed the threshold as shown in Fig. 8.6. 
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Fig. 8.5: Test results for first unknown fault (20% air leakage in inlet manifold) 

(a) Before data filtration and (b) After data filtration 
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None of the known fault states and no- fault state should exceed the 

threshold, which did not happen in case of second fault and therefore it was 

not detected. 
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Fig. 8.6: Test results for second unknown fault (EGR valve clogged in closed 

position) (a) Before data filtration and (b) After data filtration 
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Test results for third unknown fault, when RBF trained on set 1 with 90 hidden nodes 

0 
f 0.5 
ö 

a) 0 =---.. ý_ - -- --- z 
0 10 20 30 40 50 Samples 60 

(b) 

Fig. 8.7: Test results for third unknown fault (air/fuel ratio is thin i. e. 24.7) 

(a) Before data filtration and (b) After data filtration 
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Fig. 8.8: Test results for fourth unknown fault (air/fuel ratio is thick i. e. 10.7) 

(a) Before data filtration and (b) After data filtration 

The test results demonstrated that some unknown faults can be detected 

while some others cannot be detected using the developed method. The 

reason for that can be analysed. The unknown faults that have not been 
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detected have similar effects to some of the known faults on some of classifier 

outputs, causing these outputs break the threshold. These faults possibly 
have similar data structure to that of the known faults and therefore caused 

alarm fired. The faults having similar data structure cannot be isolated by the 

unknown observer method (Chen and Patton, 1999). Thus, other methods that 

do not depend on data structure need to be developed or applied in this case 
to isolate these faults. 

8.6 FAULT ACCOMMODATION 

Three sensors are considered for fault accommodation in this section: 
manifold pressure, crankshaft speed and throttle angle position sensors. 
Three different RBF networks are used to predict correct value for the faulty 

sensor as shown in Fig. 8.9. The present value and three past instance values 

of manifold pressure [p(k), p(k-1), p(k-2), p(k-3)] and crankshaft speed [n(k), 

n(k-1), n(k-2), n(k-3)] are used to predict the present value of throttle angle 

position [th(k)] in ANNth. Similarly, the present value and three past instance 

values of throttle angle position [th(k), th(k-1), th(k-2), th(k-3)] and manifold 

pressure [p(k), p(k-1), p(k-2), p(k-3)] are used to predict the present value of 
the crankshaft speed [n(k)] in ANNA. The present value and three past 
instance values of throttle angle position [th(k), th(k-1), th(k-2), th(k-3)] and 

crankshaft speed [n(k), n(k-1), n(k-2), n(k-3)] are used to predict the present 

value of manifold pressure [p(k)] in ANNA . 

Why the other two sensor outputs rather than the sensor output to be 

estimated are used as the network inputs? We use information provided by 

other sensors rather than the information provided by it to reconstruct the 

concerned sensor output. This is because when the sensor has a fault the 

faulty output of the sensor will not affect the estimated value of the network 

because its output is simply not used as the network input. Different numbers 

of the hidden nodes have been tested for the RBF network predictor and 20 

hidden nodes are found giving minimal prediction error for a given set of 

training data. Therefore the structure of each RBF network predictor is 8x 20 

x 1. The same RBF training algorithms are used as for the classifier before. 
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Fig. 8.9: Structures of the three RBF predictors for throttle angle, crankshaft 

speed and inlet manifold pressure 

8.7 ACCOMMODATION PERFORMANCE EVALUATION 

The reconstruction capabilities of the three ANNs are investigated for the 

purpose of accommodation system performance evaluation. With a set of test 

data that is different from the training data set, the RBF predictor performance 
is tested and the results are displayed in Fig. 8.10. 
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Comparison of actual and predicted manifold pressure when tested on set 2 
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Fig. 8.10: Comparison of predicted and actual values of throttle angle, 

crankshaft speed and manifold pressure in (a), (b) and (c) respectively 

From the data in Fig. 8.10 the average reconstruction error for the three 

predictors are calculated. It is found that for ANNth and ANNA are below 5% 

whereas for ANNA it is below 3% as shown in Table 2. 

Table 8.2: Characteristics of the ANNs used in the accommodation phase 

Artificial Neural ANNth ANN� ANNA 

Network (ANN) (Predictive (Predictive (Predictive 

throttle crankshaft manifold 

angle) speed) pressure) 

Eight ANN Inputs n(k)... n(k-3); th(k)... th(k-3); th(k)... th(k-3); 

p(k)... p(k-3) p(k)... p(k-3) n(k)... n(k-3) 

No of Hidden Nodes 20 20 20 

Mean absolute 0.0433 0.048 0.028 

error 

standard 0.067 0.047 0.058 

deviation 

MAE of fs. d. 4.33% 4.8% 2.8% 

Peak error of 20.15% 29.91% 18.53% 

f. s. d. 
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Where f. s. d. is the full scale deflection. In all the tests, a peak error for ANNA� 

and ANNP is nearly 20% whereas for ANN� it is as high as nearly 30%. 

However, these reconstruction accuracies are acceptable in applications such 

as automotive engine where typical sensor aging can lead to measurement 

accuracies of up to 30% (Capriglione et al., 2007). 

8.8 DISCUSSION 

Sensor fault detection, isolation (FDI) and accommodation for automotive 

engines are investigated in this chapter. Different faults cause different 

structures in measurement data and therefore FDI is achieved by pattern 

classification approach while fault accommodation is achieved with prediction, 

where radial basis function (RBF) neural networks are used as classifiers and 

predictors. Three sensor outputs are on-line estimated from information 

excluding their own past outputs, and are used to replace the faulty sensor 

outputs temporarily till the sensor is repaired, to achieve fault accommodation. 
The key technique here is not using the measurement of the sensor to be 

predicted as the input of the predictor. In this way, the faulty sensor output will 

not affect the prediction, so that the predicted value can be used to replace 
the faulty sensor output. The sensor faults of ± 10% amplitude were 

successfully detected, isolated and accommodated. 

Moreover, several unknown faults are evaluated with the developed method 

and found that they are detected with this method. Ten percent bias fault is 

simulated from an engine simulation benchmark, the mean value engine 

model (MVEM), and the developed method is evaluated. Three unknown 
faults were tested and two of them can be detected with the developed 

method. Satisfactory results are achieved in simulations but improvement for 

better efficiency of the method is required. 

The sensor fault accommodation with an average prediction error of less than 

5% achieved in this study is an excellent result because typical sensor fault 

due to aging can lead to measurement error of up to 30% (Capriglione et al., 
2007). Current production cars in Europe are equipped with a preliminary 
EOBD that uses the default values in the look-up tables to replace the faulty 

sensor output. This is not as accurate as fault accommodation error of less 
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than 5% achieved in this research by predictive neural networks. The 

traditional method of using look-up tables also has a disadvantage of running 

the engine in uneconomical mode because the default values are approximate 

values and this might also increase tail pipe emissions. For the peak we acner 

conditions like heavy snow, the default values from the look-up table may ead 

to low fuel economy. 

The work of sensor fault accommodation for automotive engine ersing 
predictive neural networks in such a way is an original work of the author. 
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CHAPTER 9 

CONCLUSIONS AND FURTHER WORK 

9.1 CONCLUSIONS 

All the aims and objectives listed in the first chapter of the thesis have been 

achieved and are briefly concluded as below: 

A comprehensive literature survey on different FDI methods and engine FDI 

methods was conducted which included traditional limit alarm system, 
statistical process control method, fuzzy logic method, parameter estimation, 

observer based methods, model based methods, structured hypothesis, 

principle component analysis, wavelet networks, analytical redundancy, 

hybrid model-based technique, residual generation using parity equations, 

physical redundancy and other untraditional FDI methods like probabilistic 

approach and IASFR. Neural network based methods were also reviewed for 

automotive engine FDI e. g. Kohonen network, classical RBF classifier, 

support vector machine (SVM). It was concluded from the review that though 

neural networks have been used for modelling and classification of engine 

data for their condition monitoring and FDI, the disturbance effects are 

seldom considered and addressed. It was also concluded that little attention 

has been paid to the problem of diagnosing faults with different intensities. 

Moreover, the field of on-board engine fault diagnosis using artificial neural 

networks is still not fully explored. Application of ANN for automotive FDI has 

a lot of potential for present and future research. 
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A general introduction of diesel and petrol (gasoline) engine's working 

principle is briefly given in the beginning of chapter 3. The mean value engine 

model developed by Hendricks is used for simulations during the entire 

research period after minor modification. The basic MVEM equations and 
important Simulink models and sub-models are briefly reviewed, e. g. fuel 

mass flow dynamics, intake manifold filling dynamics, throttle plate angle 
dynamics, crankshaft speed dynamics, etc. 

A non-adaptive RBF classifier is investigated for engine fault classification 

and the training algorithms are reviewed and derived. The K -means algorithm 
is used to choose the centres, P-nearest algorithm for widths and batch least 

squares algorithm for calculating weights in the output layer for RBF network. 
Sixteen different fault states were simulated along with no fault state. The 

non-adaptive network was able to classify all the faults for constant speed run 

and variable speed run from fixed initial speed, but failed to classify the faults 

for the most general case of variable engine speed from different initial 

speeds. But on the other hand, the non-adaptive classifier was able to classify 

all the faults in the reduced set of eight faults for the most general case. At 

this stage, the developed classifier is able to classify faults as small as 10% 

air leakage in manifold, EGR valve clogged in 50% closed position, 20% 

under reading and over reading bias in manifold pressure and temperature 

sensors. This classifier is not able to handle larger fault-set e. g. fault set with 
16 faults. Moreover this method uses an off-line algorithm and therefore is not 

able to do FDI against disturbances, parameter change and model 

uncertainty. 

A new adaptive RBF classification method is developed which can handle 

larger sets of faults and is also suitable for implementation in an on-board FDI 

system of an automobile. The developed algorithm can train and test 

classifier in an on-line condition. The widths of the RBF classifier are adapted 

using gradient descent method and the weights are adapted using recursive 
least squares algorithm whereas the centres remain fixed, as they are chosen 

to be distributed in the whole operating range. The classification results of 

adaptive classifier are compared with the results of non-adaptive classifier for 

a large set of 16 faults. It is found that adaptive classifier performs 

satisfactorily and is able to classify all the faults correctly unlike non-adaptive 

classifier. The performance of the non-adaptive classifier improves when the 
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number of hidden nodes for the RBF is increased from 60 to 150 but is still 

not able to classify all the faults correctly. The adaptive method is novel and it 

is believed to be contribution to knowledge in this field. 

The robustness of adaptive neural network classifier is thoroughly assessed 
for the closed-loop system with crankshaft speed feedback control for a wide 

range of operational modes, including robustness against fixed and sinusoidal 
throttle angle inputs, change in load, change in an engine parameter, and all 

changes occurring simultaneously. The evaluations are performed on mean 

value engine model. The simulation results confirm that the proposed method 
is robust against uncertainty, disturbances, and environment change. The 

robustness assessment is also carried out for non-adaptive system and is 

compared with robustness assessment results of adaptive system. The 

adaptive system out performs the non-adaptive system. The nobility of the 

work consists in the successful demonstration of robustness of the developed 

adaptive FDI algorithm. 

The real data assessment of adaptive neural network classifier is also carried 

out for five different sensor bias faults. A Volkswagen petrol car engine test 

bed is used for real data collection. The real data is collected for a wide range 

of operation of the engine. The load on the engine is changed from zero to 

maximum allowable load (86 N-m) and the crankshaft speed is also changed 
from 700 to 4000 rpm with percentage throttle angle changed up to 80%. The 

developed adaptive classifier is able to classify sensor bias faults as small as 
2% without false alarms or misclassifications. Dynamic data with all inputs 

having three past values are used as input to the neural network for training 

for all the five sensor variables along with the current values. Such trained 

network makes a little improvement. This is because the adaptive FDI system 
itself can cope with fault classification in dynamic system due to adaptation. 

Unknown fault diagnosis is carried out using novelty detection (Bishop, 1994) 

technique. Three different unknown faults are simulated in MVEM and tested 

on the non-adaptive RBF network for four sensor bias faults of 10%. The 

classifier was able to clearly classify two unknown faults but failed for the third 

fault. It is concluded that all unknown faults cannot be diagnosed by this 

method. The fault accommodation is also achieved for three sensor bias 

faults of 10% using predictive neural networks. The predictions are made for 
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the faulty sensor on the basis of healthy sensor behaviour. The 

accommodation is achieved for three sensors with an average prediction error 

below 5%. 

9.2 FURTHER WORK 

9.2.1 Introduction 

A new adaptive FDI system has been developed and thoroughly checked for 

robustness and also assessed on real engine data in this research. The 

adaptive system has shown good classification capabilities and sensor faults 

as small as 2% can be detected and isolated without any misclassifications or 
false alarms. Further research work is required to bridge the gap between the 

academic research and its industrial application in real life. The developed 

FDI scheme has not been investigated for on-board application in an 

automobile ECU. In order to accomplish this, further research aims can be 

listed as follows: 

i. To run adaptive FDI algorithm in real time with hardware-in-loop 

simulation (HILS) and check for performance and reliability. 
ii. To develop algorithm to handle multiple faults happening 

simultaneously. 
iii. To develop unknown fault detection and isolation system. 
iv. To develop sensor fault accommodation system. 

v. To implement the complete adaptive FDI and accommodation 

system in to the vehicle ECU. 

For the fulfilment of above listed aims, additional hardware and software are 

requited to be installed in the engine test bed. The fifth objective cannot be 

achieved in the workshop but can only be achieved by the vehicle 

manufacturer. All the aims listed above have only two objectives. 

I. To increase engine efficiency and fuel economy and 

II. To decrease emission up to or below the level required by EOBD 
regulations 
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The following additional hardware and software from dSPACE would ae 

required to complete the experimental setup. The additional hardware and 
software required are shown in dashed lines in Fig. 9.1. 

a) List of hardware required 
1. High performance PC with dedicated graphics card and 

2 GB system RAM 

2. DS1104 R&D Controller board 

3. Combined Connector/LED Panel [CLP1104] 

b) List of software required 
1. Control Desk Standard - Developer Version [CS_D! 

2. Real Time Interface [RTI] 

3. Microtec C Compiler [CCPPPC] 

Due to fault in sensor if the deviations of sensor's output occur and cause the 

vehicles emissions to exceed maximum values set by the EOBC; OBD-II 

regulations, then the EOBD/OBD-II system takes a predetermined course of 

action. The diagnostic functions enable sensor faults to be recorded and fault 

codes stored in ECU memory. This will assist the technician for the repair 

work. The on-board diagnostic system replaces the faulty sensor readings 

with default values which may protect sensitive components. For example, if 

an over-fuelling or misfire condition is detected, corrective actions can be 

implemented to protect the catalytic converter from overheating and 

permanent damage. 

Here arises the requirement of auto correction for the sensor faults which is 

known as fault accommodation. The driver should immediately take the 

vehicle to the dealer for repair when the malfunction indicator lamp (MIL) 

lights, but this does not happen in real life. There is always a delay period 

between the fault indication and the actual repair. The delay in repair would 

unnecessarily cause environmental pollution. Fault accommodation would 

result in reduced emissions and increased vehicle reliability. It will also reduce 

the costs of repair and in some cases, where fault accommodation system 
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takes the emissions back to the permissible limits; the repair may not be 

required at all. 
9.2.2 Methodology Overview 

There are a number of fault diagnosis systems in practice but major car firms 

are now looking at neural networks to solve the demanding engine control 

and diagnostic requirements (Evans-Pughe, 2006). For instance Ford has 

introduced the Econoline van, which uses a neural net to detect misfire in its 

V10 engine. Applications of artificial neural networks (ANNs) to engine 

modelling and control have previously been presented by many authors (Tan 

and Saif, 2000; Kimmich et at, 2005; Manzie et al., 2001; Jakubek and 

Strasser, 2002). The application of a data-driven monitoring technique to 

accurately diagnose air leakage in the inlet manifold plenum chamber of an 

automotive engine with a diameter size as small as 2 mm can be found in 

(Antory, 2007). A hardware-in-the-loop simulation (HILS) system was 

developed and performance of a commercial Electronic Stability Program 

(ESP) Electronic Control Unit (ECU) was evaluated for a virtual vehicle under 

various driving conditions (Lee et al., 2007). This HILS system can be used in 

various applications such as benchmarking, comparison of commercial ECUs, 

and detection of fault and malfunction of ESP ECUs. 

Sensor fault accommodation for an automotive engine using artificial neural 

networks is quite a new and developing field of research. Fault 

accommodation of inlet manifold pressure, crankshaft speed and throttle 

angle position sensors using neural networks was investigated by Capriglione 

et aL, (2007) but the mean absolute fault accommodation errors were high 

and the peak errors were very high. The same sensors were also investigated 

in chapter 8 using different algorithms of neural networks and nearly similar 

results were achieved. Further, sensor FDI for automotive engine with real 

data evaluation was investigated by Sangha et al., (2007) using adaptive 

neural networks and classification results for as small as 2% sensor faults 

were achieved. 

Using dSPACE hardware and software, the fault classification and 

accommodation algorithms in Matlab/Simulink code can be run online with the 

ECU of automobile in real-time. A dSPACE prototyping system is 

programmed automatically from a block diagram. It is based on off-the-shelf 
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hardware and software components from which own personal dSPACE 

system can be configured for immediate use in conjunction with a PC. 

Control Loop 

dSPACE i Programm 4-cylinder Original CLP1104 i -able Sensor Volswagen Car Connector/ 
ECU Piggy- lues Engine 

LED Panel Back ECU Test-Bed 
- 

i PC with DS1104 
Card, dSPACE PC with PC with Data 

I RTI software &I SMT 7 Acquisition 
ýMatlab/Simulink I ---- 

Software Software 
1 T 
_ ____ 

Fig. 9.1: Block diagram of experimental setup 

9.2.3 Basic approach 

Fig. 9.1 shows the block diagram of the experimental setup. The firm lines in 

the block diagram show the hardware and software already available and the 
dash lines show the additional hardware and software required to complete 
the experimental setup. 

The right most blocks show the engine test bed and the PC with powerful 
data acquisition software (Daq View/ Lab View) and hardware. All the sensor 

values are read into piggy-back ECU and can be modified by the ECU tuning 

software by Digital Data Systems (SMT 7) run on the second PC. Further the 

sensor values are read into the original car engine ECU through dSPACE 

connector/LED panel (CLP1104). At this stage, different FDI algorithms can 
be run in Matlab/Simulink in real-time through the third PC and the control 

signals can be sent to the engine through the original car ECU. 

The DS1104 R&D Controller board (hardware) from dSPACE upgrades the 

third PC into a powerful development system for rapid control prototyping 
(RCP). The DS1104 is specifically designed for the development of high 
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speed multivariable digital controllers and real-time simulations. It is complete 

real-time control system based on a 603 PowerPC floating point processor 

running at 250 MHz. For advanced I/O purposes, the board includes a slave- 

DSP subsystem based on the TMS320F240 DSP microcontroller. The real- 

time interface (RTI) software provides Simulink blocks for graphical 

configuration of A/D, D/A, digital I/O lines and incremental encoder interface 

etc. Real -time workshop generates the model code while RTI provides 
blocks that implement the I/O capabilities of dSPACE systems in Simulink 

models. The real-time model is compiled, downloaded, and started 

automatically on the real-time hardware. Different channels of the same I/O 

board can be used with different sample rates, and even in different 

subsystems. DS1 104 R&D board has comprehensive functionalities and can 

turn into a hardware-in-loop (HIL) control system with RTI software. 

Usually the piggy back ECU is connected between existing ECU and the 

engine sensor inputs and outputs with an objective to adjust the sensor 

readings such as air temperature, engine speed or crank position and 

effectively lie to the standard ECU forcing more aggressive ignition timing. But 

here the piggy back ECU would be used to manipulate the sensor values and 
for introducing sensor bias faults. Initially all the piggy back ECU maps would 

be set to defaults so that it does not affect/change any sensor values. Later 

on, the maps would be modified to achieve phantom sensor bias faults as 

required. These phantom sensor faults will be diagnosed by fault diagnosis 

system in Matlab in third PC and further the faults would be accommodated 

by the fault accommodation system. In order to verify the accommodation of 

sensor faults, the primary sensor values would be recorded and analysed 

before and after the fault accommodation phase. 
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