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Abstract 
Wireless Sensor Networks (WSNs) are a newly developed networking technology 
consisting of multifunctional sensor nodes that are small in size and communicate over 
short distances. Continuous growth in the use of Wireless Sensor Networks (WSNs) in 
sensitive applications such as military or hostile environments and also generally has 
resulted in a requirement for effective security mechanisms in the system design. In order 
to protect the sensitive data and the sensor readings, shared keys should be used to 
encrypt the exchanged messages between communicating nodes. Many key management 
schemes have been developed recently and a serious threat highlighted in all of these 
schemes is that of node capture attacks, where an adversary gains full control over a 
sensor node through direct physical access. This can lead an adversary to compromise the 
communication of an entire WSN. Additionally ignoring security issues related to data 
aggregation can also bring large damage to WSNs. Furthermore, in case an aggregator 
node, group leader or cluster head node fails there should be a secure and efficient way of 
electing or selecting a new aggregator or group leader node in order to avoid adversary 
node to be selected as a new group leader. A key management protocol for mobile sensor 
nodes is needed to enable them to securely communicate and authenticate with the rest of 
the WSN. 

This thesis presents a new key management protocol stack - entitled the Structure and 
Density Independent Group-Based Key Management protocol (SADI-GKM) - to fulfil 
the pre-deployment security needs of WSNs. 'Ibis protocol stack combines four different 
novel layers with different algorithms. All these layers are integrated with each other to 
provide better secure solutions for multiple security issues. The first layer of this protocol 
stack provides structure and density independent key management for large scale WSNs. 
The second layer's responsibility is to provide secure data aggregation according to the 
need of the target application. The third layer provides facilities for the secure selection 
of a new aggregator or group leader sensor node. The fourth layer's main task is to 
provide key management services for mobile sensor nodes in a WSN. All the four layers 
of SADI-GKM have been evaluated and implemented using different topologies both 
with and without group structures and compared against existing solutions. Evaluation 
results show a significant improvement in ten-ns of resilience against node capture attacks, 
replication attacks, data confidentiality, secure group leader selection, authentication of 
mobile sensor node and memory overhead. This shows that our protocol can be used to 
improve security in WSNs. 
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Chapter one. - Introduction 

Chapter One: Introduction 

With the continuous growth and development of computer networks, the idea of Wireless 

Sensor Networks (WSNs) introduced by Mark Weiser [1] have received increasing 

attention. However, research in WSNs is currently in an early stage, so they face many 
barriers. An important issue is that WSNs must be secure in order to counter a number of 

security threats from malicious entities. Therefore secure communication is essential. 
One solution for this is to use a key management scheme to provide secure 

communication. This is the topic for this thesis. 

This chapter is organized as follows. First, the topic of the thesis is presented with its 

aims. Second, the novel contribution of the new approach posited in the thesis is 

presented. Third, an overview of the chapters of the thesis is presented. Finally, the 

chapter is summarized. 

1.1 Wireless Sensor Networks 

Humans always invent new technologies according to their needs to bring more 
flexibility to their daily lives. The history of networking is a good example of how 

computer networking has become more efficient and flexible day by day, e. g. the 

evolution from wired networks to wireless networks to bring more amenities and 

flexibility to users. 

Correspondingly, WSNs are a newly developed networking technology consisting of 

multifunctional sensor nodes that are small in size and communicate over short distances. 

WSNs provide more and unique facilities to users, many of which would be impossible 

otherwise. Sensor nodes incorporate properties for sensing environments, data processing 

and communication with other sensors. 

WSNs are a new technology that provides facilities for users to monitor environments 

across a wide area using their laptops or PCs. The unique properties of WSNs increase 
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flexibility and reduce user involvement in operational tasks such as in battlefields. The 

role of WSNs in many applications can be very useful, but on the other hand there remain 
significant challenges for researchers in providing efficient communication and correct 
information from such networks using reduced resources. In the future WSNs will be an 
integral part of our lives [2]. They may be working in busy road intersections [7], in the 
interior of large machineries, at the bottom of an ocean, on the surface of an ocean during 

a tornado, in a biologically or chemically contaminated field, in a battlefield beyond 

enemy lines, in a home or large building, in a large warehouse, attached to animals, 
attached to fast moving vehicles, in a drain or river moving with current. 

WSNs are a type of wireless ad hoc network in which communication links are wireless 

and refer to network connections established for a single session. Such a network does 

not require a router because every node in the network provides a routing service for 

others. Minimal configuration and quick deployment make ad hoc networks particularly 

suitable for emergency situations. 

If we compare the basic functionalities of a sensor node with a computer, we find them to 
be similar. As a sensor node receives input data through sensing, it processes it and 

produces an output to send on to its destination. Similarly computers receive input from a 

user, process it and produce output. Consequently we can call them tiny computers with 

additional sensing capabilities. 

1.2 WSN Communication Architecture 

A WSN is composed of a large number of sensor nodes and a base station. A base station 
is typically a gateway to another network, a powerful data processing or storage centre, or 

an access point for human interfaces. It can be used as a connection to disseminate 

control information into the network or extract data from it. A base station is also referred 
to as a sink [116]. Sinks are often many orders of magnitude more powerful than sensor 

nodes. The sensor nodes are usually scattered in a sensor field and each of these scattered 

sensor nodes has the capabilities to collect data and route data back to a sink and end 

users as shown in Figure I-1. The sink may communicate with the task manager node via 

2 
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the Internet or via Satellite communications [7]. In a WSN every sensor node plays a role 

as a router. 

I- 

-1 

711 

c 711 

Sink 
111 

Figure 1-1: Wireless Sensor Network. 

WSNs might consist of different types of sensor node such as low sampling rate magnetic, 

thermal, visual, infrared, acoustic or radar sensors, which are able to monitor a wide 

variety of ambient conditions [23]. 

Sensor nodes are densely deployed either very closely or directly inside the phenomenon 

to be observed. Therefore, they usually work unattended in remote geographic areas. 
WSNs have different communication patterns for different applications according to their 

requirements. The categories of these patterns include: 

" Node to base station communication, e. g. sensor readings and specific alerts. 

" Base station to node communication, e. g. specific requests and key updates. 

" Base station to all nodes, e. g. routing beacons, queries or reprogramming of the 

entire network. 

Communication amongst a defined cluster of nodes (say, a node and all its 

neighbors) [116]. Clusters can reduce the total number of messages using data 

aggregation. 

Senyor nodes 

-0 
0 
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1.2.1 Components of a Sensor node 

Sensor nodes are capable of gathering sensory information, performing processing and 

communicating with other connected nodes in the network [179]. The typical hardware 

architecture of a sensor node is shown in Figure 1-2. 

Figure 1-2: Sensor node architecture. 

Figure 1-3 (a) shows a crossbow sensor node called mote and Figure 1-3 (b) shows Sun 

Microsystems' new sensor node called a Sun SPOT. 

410 
(a) : Crossbow mote (b): Sun SPOT 

Figure 1-3: Sensor node devices. 

The main components of a sensor node are a Microcontroller, Transceiver, External 

memory, Analogue to Digital Converter (ADC) and power source. We explain the 

functionality of the most important elements below. 

4 
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(a) Nficrocontroller: A microcontroller (or MCU) is a computer-on-a-chip. It is a type of 

microprocessor emphasizing self-sufficiency and cost-effectiveness, in contrast to a 

general-purpose microprocessor (such as the kind used in a PC). The only difference 

between a microcontroller and a microprocessor is that a microprocessor has three parts - 
an ALU, a Control Unit and registers (like memory), while the microcontroller has 

additional elements such as ROM and RAM [179]. The microcontrolier performs tasks, 

processes data and controls the functionality of other components in the sensor node. 

(b) Transceiver: A transceiver unit connects the node to the network via wireless radio 

communication. Sensor nodes make use of the ISM (industrial, scientific and medical) 

radio band which gives free radio, huge spectrum allocation and global availability [4]. 

Radio Frequency (RF) based communication is compatible with the majority of WSN 

applications. WSNs use the communication frequencies between about 433 MHz and 2.4 

GHz. Radios used in transceivers operate in four different modes: Transmit, Receive, Idle, 

and Sleep. Radios operating in the Idle mode result in power consumption almost equal 

to the power consumed in the Receive mode [5]. Thus it is better to completely shutdown 

the radios rather than leave them in the Idle mode when not transmitting and receiving. A 

significant amount of power is also consumed when switching from the Sleep mode to 

the Transmit mode to transmit a data packet. 

(d) Power Source: Sensor node power is consumed by sensing, communication and data 

processing actions. Communications between sensor nodes consume higher energy as 

compared to sensing and processing. Sending one bit requires the same amount of energy 

as executing 50 to 150 instructions on a sensor node [6]. Batteries are the main source of 

power supply for sensor nodes. Two types of batteries can be used, namely chargeable 

and non-rechargeable. They are also classified according to the electrochemical material 

used for the electrodes such as NiCd (nickel-cadmium), NiZn (nickel-zinc), Nimh (nickel 

metal hydride) or Lithium-Ion [179]. 

5 
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(e) External Memory: A sensor node may make use of memory for two purposes: 

storing application related or personal data and programming the device. Flash memory is 

used in sensor nodes due to its cost and storage capacity. The memory size of mica-2 

nodes is 128K Flash and 4K Ram. 

1.3 Applications of WSNs 

WSNs are different from traditional networks and present a new set of properties. 
Typically the communication structure of a traditional network will remain the same in 

all its applications while a WSN's structure will change according to its application. 
WNSs can be classified into two categories according to applications. The first category 
is that of indoor WSNs and the second is that of outdoor WSNs. Indoor WSNs can be 

implemented in buildings, houses, hospitals, factories etc [ 17,21-23]. Outdoor WSNs can 
be implemented for battlefield, marine, soil, and atmospheric monitoring; forest fire 

detection; meteorological or geophysical research; flood detection; bio-complexity 

mapping of environments; pollution studies; etc [6,7,11,12] [118]. Other applications of 

sensor nodes can be found in smart environments, interactive museums [21], car theft 

monitoring [22], inventory control, vehicle tracking and detection [23], soil moisture 

monitoring, pH and salinity level measurement, traffic control and road detection, aircraft 

and space vehicles to report excessive temperatures, tire temperature and pressure 

monitors on automobiles, aircraft to provide early warnings of impending tread 

separation [7], and many others. We now present some WSN projects for different 

applications, including: 

1. PODS-A Remote Ecological Micro-Sensor Network: PODS is a research project 

conducted at the University of Hawaii, which involved building a wireless 

network of environmental sensors to investigate why endangered species of plants 

grow in one area but not in neighbouring areas [13]. 

2. Flood detection: ALERT (Automated Local Evaluation in Real-Time) was 

probably the first well-known WSN deployed in the real world. It was developed 

by the National Weather Service in the 1970's. ALERT provides important real- 

time rainfall and water level information to evaluate the possibility of potential 

6 
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flooding. Currently ALERT is deployed across most of the western United States. 

It is heavily used for flooding alarming in California and Arizona [14]. 

3. ZebraNet: ZebraNet is studying power-aware, position-aware 

computing/communication systems. On the biology side, the goal is to use the 

systems to perform novel studies of animal migrations and inter-species 

interactions [95,96]. 

4. Monitoring Volcanic Eruptions with a WSN. - Two WSNs on active volcanoes 

were deployed by this project [90,91]. Their initial deployment at Tungurahua 

volcano, Ecuador, in July 2004 served as a proof-of-concept and consisted of a 

small array of wireless nodes capturing continuous infrasound data. Their second 
deployment at Reventador volcano, Ecuador, in July/August 2005 consisted of 16 

nodes deployed over a3 krn aperture on the upper flanks of the volcano to 

measure both seismic and infrasonic signals with a high resolution (24 bits per 

channel at 100 Hz) [89]. 

11 f w9huutN* ro *f, 4w. % ýý ýýtse 

At4*o 0*»" "-*"< *-0,4 

EIK* mm» b«w" VVW4 r&Vwr 

ca %* -. jý7 
4-ý WOW-- , ýo % 

et. - 

Figure 1-4: Volcano monitoring sensor network architecture [89]. 

5. FireWxNet: FireWxNet is a multi-tiered portable wireless system for monitoring 

weather conditions in rugged wild land fire environments. FireWxNet provides 

the fire fighting community with the ability to safely and easily measure and view 

fire and weather conditions over a wide range of locations and elevations within 

7 



Chapter one. - Introduction 

forest fires [108]. FireWxNet was deployed in summer 2005 at Montana in 

Colorado. 

Pol tilde 3dKalliqe 
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Figure 1-5: System overview: Radios with directional antennas were used at each 

peak and at the base camp to relay data from the sensor network and webcam [1081. 

6. Code Blue: The Code Blue project research is to apply WSN technology to a 

range of medical applications, including pre-hospital and in-hospital emergency 

care, disaster response and stroke patient rehabilitation [15-19,20]. The Code 

Blue software platfon-n is shown in Figures 1-6 and 1-7. 

jkfwfe4ý. s PMce vjtdi aign swisn,! i 
on dtKawmr mmm 

ISSOOS quofles 
lot palrawl vdg) sogns 

Kotwit sef? sOrs 

%; erxj 41410 M-wv 

(nu)(Ara5f fvutjffg 

*-"nsrj, 7 Oro. Vy MYfr. cornposs 
ai, an. Wyze data to redtice radb 
uVwSlioll 

Figure 1-6: Code Blue architecture for emergency response 1181. 
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Figure 1-7: Monitoring limb movement in stroke patient rehabilitation [201. 

7. WBAN (Wearable Wireless Body Area Network): The WBAN [24] 

implementation consists of inexpensive, lightweight, and miniature sensors that 

can allow long-term, unobtrusive, ambulatory health monitoring with 
instantaneous feedback to the user about the current health status and real-time or 

near real-time updates of the user's medical records. Such a system can be used 

where intelligent heart monitors can warn users about impeding medical 

conditions [25] or provide information for a specialized service in the case of 

catastrophic events [ 19] [26]. 
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Figure 1-8: Wireless body area network of intelligent sensors for patient monitoring. 
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8. AlarmNet. - The AlarmNet system integrates heterogeneous devices: some 

wearable on the patient and some placed inside the living space. Together they 

perform a health-mission specified by a healthcare provider. Data is collected, 

aggregated, pre-processed, stored, and acted upon, according to a set of system 

requirements identified [92-941. 

9. VigilNet: The VigilNet system is a real-time WSN for military surveillance. The 

general objective of VigilNet is to alert military command and control units of the 

occurrence of events of interest in hostile regions [8-10]. 

The above projects showed us the important involvement of WSNs in our daily life. It 

will not only help us in emergency services to save lives but also benefit us to monitor 
forest fire, flood detection and many other sectors. We believe in future, we will see 
WSNs in many new applications to play an integral part of our life. 

1.4 Security in WSNs 

The main focus of the work presented here is on the development of security mechanisms 
for WSNs. Before considering such issues in greater detail, it will be useful to first 

consider security in a wider context. 
The term computer security generally refers to methods of protecting information, 

computer programs, and other computer system from unauthorized access, whereas the 

term information security applies to protecting information and information systems from 

unauthorized access, use, disclosure, disruption, modification, or destruction. The core 

principles of information security are confidentiality, possession, integrity, authenticity, 

availability and utility [174]. In WSNs information security related issues and 

requirements have gained the attention of many researchers due to their importance in 

many applications. 

Cryptography - the process by which a raw message (plaintext) is mapped or encrypted 

to a scrambled form (ciphertext) before transmission or storage, then mapped back to its 

original form again (decrypted) when an authorized party wishes to read it - this is the de 

facto mechanism used for information security [174]. Encryption and decryption 

10 



Chapter one: Introduction 

generally require the use of some secret information, referred to as a ke . In some y 

encryption mechanisms, the same key is used for both encryption and decryption; 

whereas for other mechanisms different keys are used. Moreover key management deals 

with the secure generation, distribution, and storage of keys. Secure methods of key 

management are extremely important. Once a key has been generated, it must remain 

secret to avoid serious security mishaps [115]. Security is always an issue in traditional 

networks and brings increasing challenges over time. WSNs have similar and additional 
issues as compared to traditional networks. Below we provide a brief description of some 

of the security issues and goals in WSNs that are addressed in this thesis [41]: 

Data Confidentiality: Data confidentiality is an issue in network security. In WSNs 

confidentiality relates that it should not leak sensor readings to its neighbours, build a 

secure channel for secure communication and public sensor information should be 

encrypted, such as sensor identities and public keys. Generally key establishment is used 

to achieve data confidentiality. For example Jun et al. [175] has proposed a solution using 

symmetric key establishment to protect confidentiality against a parasitic adversary. 

Many current proposed solutions for data confidentiality suffer from a number of 

problems which we discuss and address in this thesis. 

Data Integrity: This is defined as the quality of correctness, completeness, wholeness, 

soundness and compliance with the intention of the creators of the data. In WSNs secure 

data aggregation techniques are used to achieve data integrity and data confidentiality 

[148,149]. However in applications where sensitive data are collected, some systems 

have also been proposed to check data integrity using Intrusion Detection Systems [ 176]. 

This thesis also focuses on issues related to secure data aggregation, describe these 

limitations and discusses how they can be mitigated using our novel protocol. 

Availability The accessibility of a system resource in a timely manner; Availability is 

one of the six ftindamental components of information security. The requirement of 

security not only affects the operation of the network, but also is highly important in 

maintaining the availability of the whole network. For better availability in WSNs good 

network management, monitoring and a reliable transport layer solution are needed [177]. 

Authenticity: Defined as the verification and integrity of a transmitted message. In WSNs 

an adversary is not just limited to modifying the data packet. It can change the whole 
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packet stream by injecting additional packets. So the receiver needs to ensure that the 

data used in any decision-making process originates from the correct source. Many 

schemes have been proposed and in this thesis we draw on the benefits they provide to 

provide an authentication scheme to provide increased information security. 
These general issues directly affect the functionality of our proposed protocol and are 

addressed in later subsections. 

The limited resources of a sensor node and its different characteristics from those of a 

traditional computer make it difficult to use traditional security techniques for WSNs. 

As described earlier, a sensor node is a tiny device, with only a small amount of memory 

and storage space for the code. In order to build an effective security mechanism, it is 

necessary to limit the code size of security algorithms. For example, one common sensor 

type (TelosB) has a 16-bit, 8 MHz RISC CPU with only 4-10K RAM, 48K program 

memory, and 1024K flash storage [110]. With such a limitation, the software built for the 

sensor node must also be quite small. Therefore, the size for all security related code 

must be small. Security also gets more challenging when we talk about scalable WSNs or 

add considerations of mobility to the WSNs. During our research we have identified that 

even topologies directly affect security as well [33]. All these issues are inter-linked with 

each other, making them even more challenging. In the following subsection we formally 

define the problem domain. 

1.5 Problem Definition 

A WSN is vulnerable to several security threats/attacks similar to those of traditional 

networks. One such possible attack on WSNs is called a node capture attack (NCA): 

where an adversary gains full control over a sensor node (or nodes) through direct 

physical access. This can lead to compromise of the communication of an entire WSN. 

Such an attack could allow an adversary to launch many other attacks, e. g. Replay, 

Blackhole and Denial of Service attacks. The compromised sensor node can be an 

aggregator node, a cluster head node or a normal sensor node. Therefore data 

confidentiality and data integrity are at high risk. Many key management solutions have 
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been proposed recently to provide secure communication and reduce the impact of 

adversaries damaging WSNs using node capture attacks, but these solutions still suffer 
from its effects. However there is also the possibility of replay attacks without physically 

compromising a sensor node, where an adversary node will eavesdrop on packets and 

resend old packets in an attempt to constantly waste other sensor nodes' energy or obtain 

secret keys. 

In WSN many applications are carrying sensitive data and information and thus we 

should consider threat like node capture attack as high risk for communication and data 

con fidentiality/security. Furthermore, ignoring security issues relating to data aggregation 

can result in significant damage of data confidentiality to a WSN. Although data 

aggregation in WSNs is helpful in reducing the amount of data to be transmitted between 

sources and destinations - thereby conserving energy, it is important to balance this 

against the security implications. Current data aggregation schemes are designed without 

considering possible security issues related to data confidentiality. Therefore data 

aggregation needs to be enhanced to maintain the privacy/security of sensor nodes and 

their data. Additionally in case of aggregator node, group leader or cluster head node fails 

due to fewer resources or physical compromise there should be a secure and efficient way 

of electing or selecting a new aggregator or group leader node. For example a new 

selected group leader node can be an adversary node. There are different proposed 

schemes which are only providing election of a new group leader node but they didn't 

consider related security issues. Therefore an efficient secure group leader/cluster 

head/aggregator node selection solution is one of the important requirements of WSNs 

The sensor nodes' mobility poses far more challenges in Mobile Sensor Networks 

(MSNs) compared to Static Sensor Networks. The network topology is highly dynamic as 

sensor nodes frequently join or leave the WSN, and roam throughout the WSN. The 

wireless channel is also subject to greater interferences and errors, revealing volatile 

characteristics in terrns of bandwidth and delay. With such dynamics, mobile nodes may 

request for anytime, anywhere security services as they move from one place to another. 

In terms of solutions to these security challenges in Mobile and Static WSNs, researchers 

have proposed different key management schemes [2-9,14] for secure communication 
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and resilience against possible attacks. These schemes try to provide better resilience 

against node capture attacks, but there is still a chance of the entire WSN being 

compromised. For example, in probabilistic key pre-distribution schemes [2,5], 

compromising a few nodes can lead to the entire WSN communications being 

compromised. 

One of the important concerns in terms of security solutions for WSNs is that all these 

proposed solutions are specifically designed for single application or security problems, 

explicitly with certain attack models in mind. They work well in the presence of a 
designated network model, application or attack but may collapse under unanticipated 

attacks, different application or changes to the WSN model. Therefore we are unaware of 

the consequences when multiple security problems occur together in a WSN. To achieve 

this goal, a new application independent and integrated approach is needed. 

A challenge remains therefore to create an application independent, scalable and 
integrated key management solution for WSNs which can provide better secure 

communication, secure data aggregation, data confidentiality, and resilience against node 

capture and replication attacks for different applications. Furthermore such a proposed 
key management solution should also support applications with mobility. Giving this 

challenge, our intention is to develop a secure communication solution for large scale 

WSNs, which will be elaborated in the next section. 

1.6 Project Aims and Objectives 

The aim of this project has been to design a structure and density independent key 

management solution for large scale WSNs, which can provide secure communication 
between sources and destinations, resilience against node capture and replication attacks, 

secure data aggregation, secure group leader selection, and key management in different 

applications including for MSNs. 

Specifically, the objectives of this project are: 

To establish the background related to security issues and security requirements 
for WSNs, for which existing key management techniques offer appropriate 
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solutions. This literature research presents current efforts and contributions 

towards WSN security, and also magnifies the core problems and difficulties 

faced by the existing key management solutions. This objective has been fulfilled 

using an extensive literature survey in Chapters two and three. 

To design an application independent, scalable and integrated group-based key 

management protocol for large scale WSNs, providing secure communication 
between source and destination nodes. The protocol should be able to: 

o Provide high resilience against node capture attacks to minimize their 
impact so that compromised sensor nodes should not help an adversary to 

compromise the communication among other sensor nodes. 

o Provide resilience against replay attacks to ensure data freshness. 

Minimize memory usage and communication overhead, and increase key 

connectivity. 

We present the protocol that we have developed to fulfil these objectives in 

section 5.2 and evaluated in section 6.3 

To provide different levels of data confidentiality. Consequently the proposed 

protocol should provide a secure data aggregation service at the sensor node 

acting as a group leader. This service will help to ensure that sensitive data is not 
disclosed in case a sensor node or group leader node is compromised. The level of 
data confidentiality should be variable according to application requirements in 

respect of available resources. We have developed a secure data aggregation 

scheme which is the second layer of our proposed protocol, described in section 

5.2.1 and evaluated in section 6.3.3. 

To design a secure and efficient group leader selection algorithm in case a group 
leader battery life runs out or is physically compromised. This allows a selection 

process to be activated to establish a new group leader when certain parameters of 

the current group leader fall below a given threshold or it is detected to be 

compromised. We have achieved this by testing various selection parameters in 

section 5.1.2 that we used to propos an efficient group leader selection scheme 
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described in section 5.2.2. Finally the proposed scheme is evaluated in section 
6.3.8. 

To propose a key management algorithm able to provide a solution for 

applications where sensor nodes are mobile. We have achieved this by extended 

our protocol in section 5.2.3 and evaluated in section 6.3.9. 

1.7 Novel Research Contributions 

This thesis proposed a novel and distinct protocol stack Structure And Density 

Independent Group Based Key Management (SADI-GKM) for WSNs. This protocol 

comprises four layers, which we refer to as the protocol stack. Each layer contains its 

own set of algorithms to perform its own set of functions. Therefore the stack and its 

algorithms form the first layer provides a structure and density independent key 

management solution for large scale, the second deals with secure data aggregation, the 

third operates secure group leader selection services, and the fourth layer offers a key 

management solution for MSNs. Specifically our novel contributions can be summarized 

as follows: 

e Development of the structure and density independent key management 

protocol: Our proposed key management protocol is designed for large-scale 

WSNs. As this protocol is topology independent, it can work on different 

topologies. The protocol has been evaluated using different topologies both with 

and without group structures and compared against existing key management 

schemes. Our evaluation results show a significant improvement in terms of 

resilience against node capture attacks, data confidentiality, memory overhead 

and connectivity. There are a verity of key management protocols that are 

available but we have demonstrated using simulation that they are not structure 

and density independent in section 6.3.1. These protocols are limited to specific 

applications and a structure and density independent key management solution 

therefore provides benefits in ten-ns of universal applicability and helps to reduce 

computation costs in maintaining the network topology when new nodes join or 
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leave a group/network. Structure And Density Independent Group-Based Key 

Management (SADI-GKM) as presented in Chapter 5, is therefore a novel 

protocol. 

Design of a secure data aggregation algorithm: This provides secure data 

aggregation by using homomorphic encryption to aggregate encrypted data 

without the need for decryption at the group leader node. The algorithm helps to 

maintain better data confidentiality. Furthermore we have provided two different 

aggregation solutions according to the level of data confident ly/security required 
in a target application. Current secure data aggregation schemes do not provide 
different levels of confidentiality. However our secure data aggregation solution 

provides different levels of confidentiality using different encryption methods for 

different applications according to their requirements and available resources, 

therefore providing novel functionality as presented in section 5.2.1. 

Development of a secure group leader selection algorithm: This forms part of 

our key management protocol. This novel method allows a new group leader to be 

selected using four different weighting factors: available energy at each sensor 

node, its level of trust, its distance from the current group leader (position of new 

group leader sensor node) and the number of its neighbouring sensor nodes, 

presented in section 5.2.2. The sensor node with the highest combined factor 

value will be selected as the new group leader node. Moreover, the algorithm only 
involves a few sensor nodes in the new group leader selection process, which 
helps to reduce the overall cost. Furthermore we have analysed and found the 

impact of the group leader position on group lifetime in section 5.1.2. Current 

group leader election/selection schemes are based on simple selection factors such 

as energy and number of neighbouring sensor nodes. The inclusion of group 

leader position in our group leader selection protocol is therefore a useful and 

novel addition. 

Design of a key management algorithm for MSNs: There are many different 

application scenarios for MSNs, where all sensor nodes can be mobile or some of 

them are static and the others mobile. Furthermore there are different types of 
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roaming for mobile sensor nodes: free roaming (e. g. WSNs in water) and guided 

roaming. These properties of MSNs pose more security challenges than static 

sensor networks. If we link the issue of scalability to MSNs, security issues 

becomes more complicated. According to our literature survey there is no 

appropriate key management protocol for WSNs, which can consider all these 

issues together. Therefore we have proposed a novel key management algorithm 
for MSNs to provide better secure communication which is presented in section 
5.2.3. 

Discovery of the effect of node topology, density and level of key sharing on 

security: During our research we identified that sensor node topology, density 

(the number of neighbouring nodes) and level of key sharing with neighbouring 

sensor nodes have a direct effect on WSN security in particular in relation to node 

capture attacks. Currently the effect of node capture attacks on entire WSNs has 

not been analysed in the context of topology, density and level of key sharing. We 

evaluated these factors in section 5.1.1 and show them to have an impact on the 

security of entire WSN. Therefore we need to be careful in selecting an 

appropriate topology and density, and consider the number of keys shared 
between neighbouring nodes [33]. These findings are of significant benefits to the 

future development of WSN security technologies. 

Discovery of the effect of group leader position on performance of a sensors 

group: During our investigatory research we identified that group leader position 
in a group has direct effect on the performance of the sensor group. Especially in 

case of large group of sensor nodes or large packet size the wrong position can 
increase communication overhead dramatically. Currently group leader position 
has not been analysed in context of group or WSN lifetime. We evaluated this 

factor in section 5.1.2 and show group leader position impact on performance of 

entire group. 
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1.8 Thesis Structure 

Chapter one: In this chapter we discuss the wider context and outline the problem of 

secure communication in large scale WSNs. We include the definition of WSNs, their 

main application areas and a survey of current WSN projects. We describe the 

communication architecture and components of sensor nodes. We also briefly describe 

the importance of security in WSNs. Furthermore the chapter highlights the consequences 

of node capture attacks, other interlink attacks and security vulnerabilities. 
Chapter two: In this chapter we provide a general overview of challenges in WSNs, 

including: fault tolerance, sensor network topology, routing, mobility and scalability. 
Furthermore we present a survey of the security challenges and possible attacks in WSNs. 

The main security challenges include: data confidentiality, data integrity, authentication, 
key establishment, availability, privacy, secure routing, secure group management, 
intrusion detection and secure data aggregation. Possible attacks on WSNs include: node 

capture attacks, replay attacks, side channel attacks, Denial of Service (DoS) attacks, 

software attacks, routing attacks, traffic analysis attacks, Sybil attacks and attacks on in- 

network processing. At the end of chapter we provide an overview of security in MSNs. 

Chapter three: This chapter presents a critical survey on literature and works relating to 

key management, secure data aggregation, group leader election/selection and key 

management for MSNs. It also includes discussions on the existing solutions of key 

management for static WSNs. These solutions are classified into five different types: key 

pool based key management, session based key management, hierarchical based key 

management, key management for heterogeneous sensor networks and group based key 

management. Limitations and drawbacks of the current key management schemes are 

assessed. In particular, all the existing solutions are structure dependent, and any change 

to the structure of a WSN directly affects its security. 

Chapter four: This chapter presents the basic design of our novel Structure And Density 

Independent Group-Based Key Management (SADI-GKM) protocol stack with a 

description of its four layers. The chapter starts with the background of current security 

issues, their relationships and current requirements of secure WSNs. It then highlights the 
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importance of providing an integrated proactive security solution and explains how our 
four protocol layers are integrated with each other in order to achieve our goals. 

Chapter five: This chapter describes the design and different operation steps of our 

protocol in details. The important part of this chapter is our pre-design research 
investigations which help us in developing efficient protocol SADI-GKM- The chapter 

also describes each layer of our protocol. We begin by looking at the first and second 
layers, key management and secure data aggregation, where we describe the basic key 

management and secure data algorithms together. Then we explain the third layer, secure 

group leader selection. In the fourth layer we present a key management solution for 

MSNs. 

Chapter six: This chapter presents the implementation phases, simulation environments, 

analysis, results and performance evaluation of our protocol. We start this chapter by 

describing the implementation phases including a radio model, topology implementations, 

routing algorithms and security. We evaluate SADI-GKM performance against node 

capture attacks using various topologies both with and without the use of groups. We 

then describe our implementation of secure data aggregation using homomorphic 

encryption, and secure group leader selection. Finally we evaluate key management for 

MSNs. 

Chapter seven: We conclude our dissertation by summarizing the findings that we have 

achieved so far, and discuss major issues and future work in the area of WSN security. 

1.9 Summary 

This chapter has presented an overview of this thesis. WSNs consist of a large number of 

low-cost, low-power, and multifunctional sensor nodes that communicate over short 

distances through wireless links. Continuous growth in the use of WSNs in sensitive 

applications such as military or hostile environments has resulted in a requirement for 

effective security mechanisms in the WSN design. Achieving security in resource- 

constrained WSNs is a challenging research task. Many key management schemes have 

been developed recently to provide secure communication between sources and 
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destinations in WSNs. A serious threat highlighted in all these schemes is that of node 

capture attacks, where an adversary gains full control over a sensor node through direct 

physical access. The compromised sensor node can be an aggregator node, a cluster head 

node or a normal sensor node. This could allow the adversary to compromise the 

communication of an entire sensor network, which causes a high risk for data privacy. 
Furthermore ignoring security issues related to data aggregation and aggregator node 

election can bring large damage to WSNs. To deal with these issues we have therefore 

proposed the novel protocol SADI-GKM to provide better secure communication, secure 
data aggregation, privacy, and resilience against node capture and replication attacks. 
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Chapter Two: Security in Wireless Sensor 

Networks 

WSNs are a new research area that has a large number of complicated research 

challenges in security, routing, topology management, mobility and many others. In this 

chapter we will first describe some general research challenges and later concentrate on 
the security challenges and security threats that exist for WSNs. 

2.1 Challenges in WSNs 

In this section we will briefly describe general research issues and challenges in WSNs. 

These include fault tolerance; scalability; production costs; operating environiment; 

topology maintenance; hardware constraints; power consumption; security and so on. 

2.1.1 Fault Tolerance 

As described in section 1.3, WSNs are often deployed in inhospitable environments. 
Furthermore sensor nodes need to be inexpensive to achieve target benefits anticipated 
from their future use. Consequently they are liable to faults and resource depletion. 

Fault-tolerance is the ability of a system to deliver a desired level of functionality in the 

presence of faults. Fault-tolerance is crucial for many systems and is becoming vitally 
important for computing and communication based systems. Since WSNs are inherently 

fault-prone and their on-site maintenance is infeasible, scalable self-healing is crucial for 

enabling the deployment of large-scale WSNs applications [27]. The level of fault 

tolerance can be higher and lower depending on the different applications of particular 

WSNs, and relevant schemes must be developed with this in mind. Fault tolerance can be 
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addressed at the physical layer, hardware, system software, middleware, or application 
level [28]. 

2.1.2 WSNs Topology 

WSNs might contain a large number of sensor nodes in applications where networking 
would otherwise be inaccessible. They are also prone to frequent failures and thus make 
topology maintenance a challenging task. There are generally three main topologies in 

WSNs. These are grid, tree and random mesh topologies. WSN applications are generally 
topology dependent. Therefore it can be difficult to make use of any proposed solution 

related to routing, security and so on across multiple applications. Use of these topologies 
2 

varies according to applications [33]. The node density may be as high as 20 nodes/m , or 
in some circumstances even higher [32]. Deploying a large number of sensor nodes 
densely requires careful handling of topology maintenance. Therefore topology 

maintenance schemes are required. Topology maintenance can be split into several 

phases: Pre-deployment, deployment, Post-deployment and Re-deployment phases. 

2.1.3 Routing 

Routing in WSNs is very challenging due to the inherent characteristics that distinguish 

these networks from other wireless networks like mobile ad hoc networks or cellular 

networks. First, due to the relatively large number of sensor nodes, it is not possible to 

build a global addressing scheme for the deployment of a large number of sensor nodes 

as the overhead of identification (ID) maintenance is high. Thus, traditional IP-based 

protocols may not be applied to WSNs [35]. Furthermore, sensor nodes are deployed in 

an ad hoc manner. According to Al-Karaki and Kamal [35] the design of routing 

protocols is influenced by many design factors. The following factors must be considered 

to achieve efficient communication in WSNs: node deployment, energy consumption 

without loss of accuracy, data reporting model and nodel7ink heterogeneity. Fault 

tolerance, scalability and connectivity are other factors which have a direct influence on 

routing as described in earlier sections. 
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2.1.4 Mobility 

Mobility is generally viewed as a major hurdle in the control and management of large- 

scale wireless networks. In fact without mobility (i. e. stationary nodes only), a 

hierarchical clustering and addressing scheme (of the type used in the Internet) could be 

easily applied to manage routing. However, as nodes move, the hierarchical partitioning 

structure also changes, forcing frequent hierarchical address changes followed by update 

broadcasts to the entire network. This is a very resource consuming proposition that can 

easily congest the entire network. Most of the network architectures assume that sensor 

nodes are stationary. However, the mobility of either base stations or sensor nodes is 

sometimes necessary in many applications [37]. 

Furthermore mobility in WSNs brings similar (like other wireless networks) and more 

complicated challenges (related to security, scalability, routing, network management and 

so on) due to limited available resources and structure dependent applications. Since we 

are unable to use traditional wireless networks solutions in WSNs due to limited 

resources and the dense nature of the networks, similar conditions apply to MSNs [36]. 

2.1.5 Scalability 

Generally WSNs are assumed to contain hundreds or thousands of sensor nodes. 

However the number of sensor nodes depends on applications, and in some 

circumstances it might reach to millions. Consequently WSNs must be highly scaleable 

networks and any new scheme must also be able to work in such large-scale WSNs. 

Scalability is one of the core challenges in WSNs because we need to pay particular 

attention to the provision of a solution for scaleable routing, security and management 

when networks are scaleable. Providing these solutions in the limited resource 

environment of WSNs is a considerable research challenges. 

In the management of such large scale networks with high density of neighbouring nodes, 

every single node plays an important role. This can cause the overloading of individual 

sensor nodes, which can directly affect the performance of the entire WSNs. The right 

selection of density can help to balance energy consumption in the network. The density 
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can range from a few sensor nodes to several hundred sensor nodes in a region [34]. The 

node density depends on the application in which the sensor nodes are deployed. For 

example, for machine diagnosis applications, the node density can be around 300 sensor 
nodes in a5x5m2 region, and the density for vehicle tracking applications can be 

around 10 sensor nodes per 5x5m2 region [32,7]. 

2.1.6 Other Issues 

There are many other issues such as production costs [23,30,3 1 ], time synchronization 
[I 11,112], group management [113], boundary recognition [114] and security, along 
with various other issues related to specific applications. In the next section we will 
discuss security issues and challenges in WSNs. 

2.2 Security Challenges in WSNs 

In this section we describe generally and briefly about challenges in WSNs, including 
data confidentiality, data integrity, authentication, key establishment, availability, privacy, 
secure routing, secure group management, intrusion detection and secure data 

aggregation. 

2.2.1 Data Confidentiality 

In order to secure data from eavesdroppers it is necessary to ensure the confidentiality of 

sensed data. To achieve data confidentiality, encryption functions are normally used, 

which are a standard method and rely on a shared secret key existing between 

communicating parties. To protect the confidentiality of data, encryption itself is not 

sufficient; as an eavesdropper can perform traffic analysis on the overheard ciphertext, 

which could release sensitive information about the data. Furthermore, to avoid misuse of 
information, confidentiality of sensed data also needs to be enforced via access control 

policies at base stations [40]. To maintain better confidentiality we should follow some of 

the following rules [38,39]: 
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A WSN should not leak sensor readings to its neighbours. In some applications, 
the data stored in a sensor node may be highly sensitive. To avoid leakage of 
sensitive data a sensor node should therefore avoid sharing keys used for 

encryption and decryption with neighbouring nodes [33]. 

* Secure channels should be built into WSNs. 

* Public sensor information such as sensors' identities should also be encrypted to 
some extent to protect against traffic analysis attacks. 

Physical node compromise makes the problem of confidentiality complex. When an 

adversary physically captures a sensor node, it is generally assumed that the adversary 

can extract all information or data from that sensor node. To minimize the risk of 
disclosing sensitive data after physical attacks on sensor nodes, it is better to use rules 
described earlier in this section. Further details about node capture attacks will be 

provided in Section 2.3.1. 

In MSNs,, higher risk levels are associated with data confidentiality than in static sensor 

networks due to their roaming and the sharing of information with sensor nodes. 
Therefore it is particularly important that mobile sensor nodes should not leak sensor 

readings to neighbouring nodes without proper security. We do not recommend to share 
keys with neighbouring sensor nodes which are used for data encryption and decryption 

[36]. 

2.2.2 Data Integrity 

Data integrity issues in wireless networks are similar to those in wired networks. Data 

integrity ensures that any received data has not been altered or deleted in transit. We 

should keep in mind that an adversary can launch modification attacks when 

cryptographic checking mechanisms such as message authentication codes and hashes are 

not used. For example, a malicious node may add some fragments or alter the data within 

a packet. This new packet can then be sent to the original receiver [41 ]. 
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We also need to ensure the freshness of each message. Informally, data freshness 

suggests that the data is recent, and it ensures that no old messages have been replayed. 
This requirement is especially important when there are shared-key strategies employed 
in the design. 

2.23 Authentication 

Authentication is a process which enables a node to verify the origin of a packet and 

ensure data integrity. In WSNs an adversary is not just limited to modifying data packets. 
It can change the whole packet stream by injecting additional packets. So the receiver 

node needs to ensure that the data used in any decision-making process originates from 

correct sources [41]. In many applications authentication is essential due to matters of 

sensitivity. 

However whilst authentication stops outsiders from inserting or spoofing packets, it does 

not solve the problem of physically compromised sensor nodes. As a compromised 

sensor node contains the same secret keys as a legitimate node, it can authenticate itself 

to the network and an adversary may also exploit the broadcast authentication capabilities 

of the compromised sensor nodes to attack the WSN itself (e. g. to consume sensors' 
battery power by instructing them to do unnecessary operations). We may be able to use 
intrusion detection techniques [40] to spot such compromised nodes, and revoke the 

broadcast authentication capabilities of the compromised senders [43]. There are many 

authentications schemes [39,41,43-48] that have been proposed for WSNs. 

Establishing efficient authentication in MSNs is a more challenging task than in static 

WSNs. In a static WSN every sensor node might have a fixed number of neighbours, and 

new sensor nodes are unlikely to be added after deployment. However in a MSN nodes 

easily roam from one place to another. Providing authentication in large scale MSNs is 

challenging due to resource limitations [36]. 
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2.2.4 Key Establishment 

Key management constitutes a set of techniques and procedures supporting the 

establishment and maintenance of keying relationships between authorized parties. There 

are two types of key algorithms. Symmetric key algorithms represent a system involving 

two transfon-nations: one for a source/sender and another for the receiver, both of which 

make use of either the same secret key (symmetric key) or two keys easily computed by 

each other. Asymmetric key algorithms represent a system comprised of two related 
transformations: one defined by a public key (the public transformation), and another 
defined by a private key (the private transformation). Finding the private key from the 

public key can be difficult. 

Confidentiality, entity authentication, data origin authentication, data integrity, and 
digital signatures are some of the cryptographic techniques for which key management 

perforins a very important role. 

In indoor and outdoor WSN applications, communications can be monitored and nodes 

are potentially subject to capture and surreptitious use by an adversary. For this reason 

cryptographically protected communications are required. A keying relationship can be 

used to facilitate cryptographic techniques, whereby communicating entities share 

common data (keying materiaý. This data may include public or secret keys, initialization 

values, or additional non-secret parameters [3]. 

Many researchers have proposed different key management schemes for secure 

communication between sensor nodes that try to provide better resilience against node 

capture attacks, but at some level of node capture attack there is a possibility that the 

entire sensor network may become compromised. For example, in probabilistic key pre- 

distribution schemes [2,5] the compromise ofjust a few nodes can lead to a compromise 

in the communications of the entire sensor network. 

In general, resource usage, scalability, key connectivity and resilience are conflicting 

requirements; therefore trade-offs among these requirements must be carefully observed 

[8]. In the next chapter we will describe various key management techniques and related 

work in detail. 
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2.2.5 Availability 

Providing availability requires that a sensor network should be functional throughout its 
lifetime. However, strict limitations and unnecessary overheads weaken the availability 

of sensors and sensor networks. The following factors have a particular impact on 
availability [41]: 

Additional computation consumes additional energy. If no more energy exists, the 
data will no longer be available. 

Additional communication also consumes more energy. What's more, as 

communication increases so too does the chance of incurring a communication 
conflict. 

Therefore by fulfilling the requirement of security we can help to maintain the 

availability of the whole network. Denials of service (DoS) attacks such as jamming 

usually result in a failure of availability. Jamming occurs when a malicious user 
deliberately derives a signal from a wireless device in order to overwhelm legitimate 

wireless signals. Jamming may also be inadvertently caused by cordless phones, 

microwave ovens or other electromagnetic emissions. Jamming results in a breakdown in 

communications because legitimate wireless signals are unable to communicate on the 

network [42]. 

Loss of availability may have serious impacts. In some applications, e. g. manufacturing 

monitoring applications, loss of availability may cause failures to detect a potential 

accident resulting in financial loss or even human harm. Loss of availability may also 

open a back door for enemy invasion in battlefield surveillance applications [40]. Lack of 

availability may affect the operation of many critical real time applications such as those 

in the healthcare sector that require a 24 hours operation, the failure of which could even 

result in loss of lives. 

2.2.6 Privacy 

The main purpose of privacy in WSNs is to ensure that sensed information stays within 

the WSNs and is only accessible by trusted parties. 

29 



Chapter two: Security in Wireless Sensor Networks 

Common approaches generally address concerns of data privacy and location privacy 
[50-52]. For example, privacy policies govem who can use an individual's data and for 

which purposes. Furthermore, confidential ity/secrecy mechanisms [53] provide access to 
data without disclosing private or sensitive information. However, data is difficult to 

protect once it is stored on a system [49]. 

An adversary could mount the following attacks to compromise privacy in a network 
[49]: 

The adversary could simply listen to control and data traffic. Control traffic 

conveys information about the sensor network configuration. Data traffic contains 

potentially more detailed information than that accessible through the location 

server. 

An increase in the number of transmitted packets between certain nodes could 

signal that a specific sensor has registered its activity. 

A malicious node could trick the system into reducing data distortion (privacy 

protection) through subject spoofing. 

An inserted or compromised node could drop packets, forward them incorrectly, 

or advertise itself as the best route to all nodes (black hole effect) in an attempt to 

gain information. 

Privacy can possibly be maintained using data encryption, access control, and restricting 

the network's ability to gather data at a sufficiently detailed level that could compromise 

privacy. 

2.2.7 Secure Routing 

The main challenge for secure routing is to ensure that each intermediate node cannot 

remove existing nodes or add extra nodes to the associated route. In the real world, a 

secure routing protocol guarantees the integrity, authenticity and availability of messages 

in the existence of adversaries. Every authorized receiver should receive all messages 

intended for it and should be capable of proving the integrity of these messages and also 

the identity of their sender. There are many routing protocols but they generally fail to 
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consider security in any serious manner. As discussed earlier, WSNs might be performing 

operations where they are dealing with sensitive data. Therefore given the insecure 

wireless communication medium, limited node capabilities, scalability, and possible 
insider threats, and that adversaries can use powerful laptops with high energy and long 

range communication capabilities to attack a network, designing a secure routing protocol 
is non-trivial [54]. 

Secure routing protocols for providing security from sources to destinations in WSNs 

must satisfy the following requirements [119]: 

" Isolation of unauthorized nodes during the route discovery protocol. 

" The network topology which depends on strong network bonds should not 

be revealed to an adversary. 

Security of the paths must be maintained. Otherwise an attacker is able to 

misdirect the network by advertising the false shortest path and possibly 

causing the formation of loops. 

Messages changed by an adversary and aberrant nodes can be identified. 

Unauthorised or aberrant nodes should not be able to change routing 

messages. 

We will discuss all possible routing attacks in the section 2.3.5. 

2.2.8 Secure Group Management 

To manage a large scale network researchers generally recommend splitting the network 

into groups, clusters or domains, and also distributing the workload in an equitable way 

across these groups. Group management or cluster management protocols are used to 

maintain the groups of different nodes (adding or removing sensor nodes from a group, 

selecting/electing a new group leader, etc). Other services of the group management 

protocols help to increase network performance and consume fewer resources. 

As we have described earlier, generally WSNs are assumed to be scalable. Therefore an 

energy efficient group management protocol is desirable. There exist different group 

management protocols. However these protocols have not considered security related 
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issues properly. For example, the in-network processing of raw data is performed in a 
WSN by dividing the network into small groups and analyzing the data aggregated at the 

group leaders. So a group leader has to authenticate the data it is receiving from other 
nodes in the group. This requires group key management. However, addition or deletion 

of nodes from the group leads to more problems. Moreover, these protocols need to be 

efficient in terms of energy, computation and communication to benefit WSNs. This 

means that traditional group management approaches are not directly implementable in 

WSNs due to their excessive memory and communication overheads [63]. Consequently, 

more cost-effective secure protocols for group management are needed. 

2.2.9 Intrusion Detection 

Intrusion detection is a type of security management system for computers and networks. 
An intrusion detection system (IDS) gathers and analyzes information from various areas 

within a computer or a network to identify possible security breaches, which include both 

intrusions (attacks from outside the organization) and misuse (attacks from within the 

organization). Intrusion detection functions include [64]: 

Monitoring and analysis of both user and system activities. 

Analysis of system configurations and vulnerabilities. 

Assessment of system and file integrity. 

Ability to recognize typical patterns of attacks. 

Analysis of abnormal activity patterns. 

Tracking of user policy violations. 

According to Freiling et al. [65] an IDS for WSNs should satisfy the following 

properties: 

* It must work with localized and partial audit data, as in WSNs there are no 

centralized points (apart from base stations and group leaders or cluster heads) 

that can collect global audit data. Thus this approach fits the WSN paradigm. 
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* It should utilize only a small amount of resources. A wireless network does not 
have stable connections, and physical resources of the network and devices, such 
as bandwidth and power, are limited. Disconnection can happen at any time. In 

addition, communication between nodes for intrusion detection purposes should 
not take too much of the available bandwidth. 

9 It cannot assume that any single node is secure. Unlike wired networks, sensor 
nodes can be very easily compromised. Therefore, in cooperative algorithms, the 
IDS must assume that no node can be fully trusted. 

0 It should be able to resist a hostile attack against itself Compromising a 

monitoring node and controlling the behaviour of an embedded IDS agent should 

not enable an adversary to revoke a legitimate node from the network, or keep 

another intruder node undetected. 

e The data collection and analysis should be performed at a number of locations and 
be truly distributed. The distributed approach also applies to the execution of 
detection algorithms and alert correlations. 

We believe these requirements are reasonable in the context of WSNs IDS. However IDS 

is not the main focus of our research and we developed our own set of requirements 

mentioned in Chapter 4 that are more suitable for secure communication between source 

and destination. 

2.2.10 Secure Data Aggregation 

Most of a sensor node's energy is consumed during computation as well as sending and 

receiving of data packets. Sending one bit requires the same amount of energy as 

executing 50 to 150 instructions on sensor nodes [6]. Therefore reducing network traffic 

is important to save sensors' battery power in any WSN communication protocol. 

To minimize the number of transmissions from thousands of sensor nodes towards a sink, 

a well known approach is to use in-network aggregation. The energy savings of 

performing in-network aggregation have been shown to be significant and are crucial for 

energy-constrained WSNs [57-59]. In a WSN sensed values should be transmitted to a 

sink but in many scenarios the sink does not need exact values from all sensors but rather 
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a derivative such as a sum, average or deviation. The idea of in-network aggregation is to 
aggregate the data required for the determination of the derivatives as closely to the data 
sources as possible instead of transmitting all sensed individual values through the entire 
network [56]. 

A serious issue connected with in-network data aggregation is data security [2]. Although 

previous works [57-60] do provide in-network data aggregation to reduce energy costs, 
these schemes assume that every node is honest which may not be suitable in terrns of 
security. There are different types of attacks which can be harmful for in-network data 

aggregation, e. g., a compromised aggregator node or several compromised sensor nodes 
due to physical tempering could inject faulty data into the network. This will result in a 
corrupted aggregate. In many applications, nodes are communicating highly sensitive 
data, and due to such threats data privacy/security is vital. Aggregation becomes more 
challenging if end-to-end privacy between sensors and their associated sink is required 
[61-62]. 

2.3 Attacks on WSNs 

Computer viruses, bugs and attacks have a history as long as computer networking itself 

The first bug was identified in 1945. In 1960 the first threat to network security was 
identified; a white-collar crime performed by a programmer for the financial division of a 
large corporation. In 1983 Fred Cohen coined the term computer virus. One of the first 

PC viruses was created in 1986, called "The Brain". The history about computer and 

network security has been well documented [66-68]. Accordingly with improvements in 

the security of networks and computers we are now facing increasingly sophisticated 

attacks and threats. 

In this section we will describe and discuss attacks and threats related to WSNs. Most of 
these attacks are similar to those that apply to traditional networks. However node 

captures are totally new and distinct attacks which do not apply to traditional networks. 
Further in this section we will describe attacks which are noxious and possibly lead 

towards a big damage in a network. 
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2.3.1 Node Capture Attacks 

A node capture is one possible distinct attack on WSNs, where an adversary gains full 

control over a sensor node through direct physical access. The adversary can then easily 
extract cryptographic primitives and get unlimited access to the information stored on the 

node's memory chip, and can cause substantial damage to the entire system. This process 
can be done using reverse engineering followed by probing techniques that require access 
to the chip level components of the device [81 ]. It is usually assumed that node capture is 

easy, due to no physical restriction, to prevent access to sensor nodes in an outdoor 
environment [69]. 

Many researchers have proposed different key management schemes [72-80] for secure 

communication between sensor nodes. These schemes try to provide better resilience 

against node capture attacks, but still there is a chance of the entire network being 

compromised. For example in probabilistic key pre-distribution schemes [72,75] 

compromising a few nodes can lead to the entire network communications being 

compromised. 

One of our novel research contributions to provide high resilience against node capture 

attack has mentioned in section 1.7 and described in detail in section 5.5-1. Where we 
have discovered three main factors which can help adversaries during node capture 

attacks to compromise the communication of an entire sensor network [33,71 ]: 

o Node capture attacks can be a large threat if sensor nodes within the network 

share a key or keys with neighbouring nodes used to encrypt or decrypt data. 

Consequently the greater the level of key-sharing between neighbouring nodes the 

greater threat there is to communication privacy being compromised. Most 

existing solutions suffer from this drawback. 

The structure (topology) of a WSN affects the impact of node capture attacks. In 

general, the fewer the communication links between sensor nodes, the greater the 

possibility that an attacker can entirely block the communication paths between a 

source and a destination. For example, node capture attacks are generally more 
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effective in tree topologies than mesh topologies because in the former there is 

only one route from a child to its parent. If the parent node is compromised, the 

entire communication from its child nodes downward will potentially be 

compromised. 

* The density of the WSN has a direct influence on node capture attacks, having a 
similar affect to the network structure. Consequently the optimum number of 

neighbouring nodes needs to be identified for specific applications after analysis. 
This has an effect on energy consumption, but more importantly when a sensor 

node with high density is physically captured this can lead towards compromise 

of larger sections of the WSN compared to a lower density sensor node. 

By considering these three parameters we can improve resilience against node capture 

attacks. Key management schemes, which provide resilience against node capture attacks 

at the first level (i. e. pre-security), is not sufficient. Therefore post-security (i. e. second 

level security) solutions are also required to identify malicious or compromised sensor 

nodes, so that these compromised nodes can be excluded. 

2.3.2 Side Channel Affacks 

Side channel attacks are not part of this work (thesis). However we are discussing them in 

this section for the purposes of completeness. 

Side channel attacks also fall into the category of physical tampering in the same way as 

node capture attacks. However this type of attack generally applies to all Wireless 

Networks. A side channel attack refers to any attack that is based on information gathered 

from the physical implementation of a cryptosystem, in contrast to a vulnerability in the 

algorithm itself [81]. For example the attacker monitors the power consumption or the 

Electro Magnetic (EM) emanation from such cryptographic devices, and then analyzes 

the collected data to extract the associated crypto key. These side channel attacks aim at 

vulnerabilities of implementations rather than algorithms, which make them particularly 

powerful since adversaries are not required to know the design of the target system. 

Simple Power Analysis (SPA), Differential Power Analysis (DPA), Simple 

36 



Chapter two: Security in Wireless Sensor Networks 

Electromagnetic Analysis (SEMA), and Differential Electromagnetic Analysis (DEMA) 

are side channel attacks that enable extraction of a secret key stored in cryptographic 
devices [83]. 

Simple power analysis [701 is a technique that involves directly interpreting power 

consumption measurements collected during cryptographic operations. No statistical 

analysis is required in such an attack. The analysis can yield information about a device's 

operation as well as key material. It can be used to break cryptographic implementations 

in which the execution path depends on the data being processed. 

Similarly, in simple electromagnetic analysis [84], an adversary is able to extract 

compromising information from a single electromagnetic sample. 

In differential power analysis [70], an adversary monitors the power consumed by 

cryptographic devices, and then statistically analyzes the collected data to extract a key in 

contrast to the simple power analysis. 

In differential electromagnetic analysis [84], instead of monitoring the power 

consumption, an attacker monitors electromagnetic emanations from cryptographic 

devices, and then the same statistical analysis as that for the differential power analysis is 

performed on the collected electromagnetic data to extract secret parameters [81 ]. 

Side channel attacks are also possible in WSNs. Okeya et al. describes the fact that a 

side-channel attack on Message Authentication Codes (MAC), using simple Power 

Analysis as well as Differential Power Analysis, is possible in WSNs [82]. Their results 

suggest that several key bits can be extracted through the power analysis attack. This 

leads to the conclusion that protecting block ciphers against side channel attacks is not 

sufficient. Further research is required to explore all possible security measures for 

Message Authentication Codes as well. 

TinySec is link layer security architecture for WSNs, and it uses a block cipher 

encryption scheme for its implementation. According to the previous discussion, such an 

encryption scheme shows a weakness of the TinySec protocol [85]. 

Additionally, timing attacks come under the category of side-channel attacks. They have 

not yet been explored in the context of WSNs. A timing attack makes use of algorithms 
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which have non-constant execution times and can potentially leak secret information. 
Non-constant execution times can be caused by conditional branching and various 
optimization techniques. The operating system running on sensor nodes is event-driven 
and extremely optimized in terms of memory consumption. This suggests that a timing 
side-channel attack is possible. A solution to this type of attack is to use constant 
execution time software. However, it is not clear if this is easily achievable in WSNs. 
Therefore, searching for countermeasures for timing attacks in WSNs is an important 

area for future research. 

Some countermeasures for side-channei attacks used in traditional and embedded systems 
are [8 1 ]: 

power consumption randomization, 

randomization of the execution of the instruction set, 

randomization of the usage of register memory, 
CPU clock randomization, 

using fake instructions, 

using bit splitting. 

2.3.3 Denial of Service (DoS) 

A denial of service attack is any event that diminishes or eliminates a network's capacity 

to perform its expected function through hardware failures, software bugs, resource 

exhaustion, malicious broadcasting of high energy signals, environmental conditions, or 

any complicated interaction between these factors. Communication systems could be 

jammed completely if such attacks succeed. Other denial of service attacks are also 

possible, e. g. inhibiting communication by violating the MAC protocol. 

One of the standard protections againstjamming utilizes spread spectrum communication. 

However, cryptographically secure spread spectrum radios are not available 

commercially. Also, this protection is not secure against adversaries who can capture 

nodes and remove their cryptographic keys [86]. 
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Each protocol layer in a WSN is defenceless to different DoS attacks and has different 

options available for its defence. Some of the attacks crosscut multiple layers or exploit 
interactions between them. For example, at the network layer in a homing attack, the 
attacker looks at network traffic to deduce the geographic location of critical nodes, such 
as cluster heads or neighbours of a base station [29]. Furthermore in the routing and 
network layer, due to a "misdirection" attack, messages could flood the network. This 

could also happen by looking at the routing table or negative advertising by the adversary 
to flood either a sender, receiver or an arbitrary node [120]. Table 2-1 shows a typical 

sensor9s network layers and describes each layer's vulnerabilities and defences [87]. 

Sensor network layers and denial-of-services defence 

Protocol layer Attacks Defences 

Physical Jamming Spread-spectrum, priority message, lower 

duty cycle, region mapping, mode change 
Tampering Tamper-proofing, hiding 

Link Collision Error-correction code 

Exhaustion Rate limitation 

Unfairness Small frames 

Network and Neglect and greed Redundancy, probing 

i 
Homing Encryption 

Rout ng Misdirection Egress filtering, authentication, monitoring 

Black holes Authorization, monitoring, redundancy 

Transport Flooding Client puzzles 

De-synchronization Authentication 

Table 2-1: Sensor protocol layers and DoS defences. 

According to Wood et al., every DoS attack is perpetrated by someone [88]. The attacker 

has an identity and a motive, and is able to do certain things in or to a WSN. An attack 

targets some service or layer by exploiting some vulnerability. An attack may be 
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thwarted, or it may succeed with varying results. Each of these elements is necessary for 

understanding the whole process of a DoS attack. Any useful and intuitive DoS taxonomy 

should answer the following questions: 

o Who is the attacker? 

0 What is she/he capable oV 

0 What is the target? 

0 How is it attacked? 

0 What are the results? 

Wood et al. [88] also answer each question listed above in turn. Taken together the 

attacker, capability, target, vulnerability, and results describe a DoS attack against a 
WSN. 

2.3.4 Software Attacks 

Software-based attacks in WSNs can also be dangerous. For this type of attack, an 

adversary may try to modify the code in memory or exploit known vulnerabilities in the 

code. A well-known example of such an attack is a buffer overflow attack. Buffer 

overflow refers to the scenario where a process attempts to store data beyond the 

boundaries of a fixed length buffer. This results in the extra data overwriting the adjacent 

memory locations [8 1 ]. 

Such attacks can easily apply to TinyOS - an operating system developed for sensor 

nodes with limited resources. The current implementation of TinyOS does not provide 

any memory access control, i. e. there is no function to control which users/processes 

access which resources on the system, and what type of execution rights they have. In 

TinyOS the assumption is largely that a single application or user controls the system 

[81]. However in traditional operating systems, access control involves authenticating 

processes, and then mediating their access to different system resources. 

Regehr et al. have presented the concept of drawing a red line, which refers to having a 

boundary between trusted and un-trusted code. Their solution, called Un-trusted 

Extension for TinyOS (UTOS), uses a concept similar to sandboxing. This solution 
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provides an environment in which un-trusted, and possibly malicious, code could be run 
without affecting the kernel [97,98]. 

Similarly TinyOS uses the concept of Active Messaging (AM). AM is an environment 
that facilitates message-based communication in distributed computer systems. Each AM 
message consists of the name of a user-level handler on the target node that needs to be 
invoked as well as the data that needs to be passed on [99]. This approach enables the 
implementation of a TCPAP-like network stack on the sensor node that fits the hardware 
limitations of the sensor nodes. Roosta et al. have pointed out another weakness in 
TinyOS, resulting from port operations. It is possible to open a port to a remote sensor 
node using a USB port and a PC. The serial forwarder, which is one of the most 
fundamental components of TinyOS software, can be called to open a port to a node. 
There is no security check to authenticate the user who is attempting to open the port. 
This could lead to an attack on the software whereby an adversary opens a port to the 

node and uploads software, or downioads information from the node [81]. 

The following countermeasure can be considered to secure the TinyOS software and 
protect the software from being exploited by malicious users: 

o Software authentication and validation, e. g. remote software-based attestation for 

sensor networks [100]. 

Defining accurate trust boundaries for different components and users. 

Using a restricted environment such as the Java Virtual Machine. 

9 Dynamic run-time encryption. /decryption for software: this is similar to the 

encryption/decryPtion of data except that the code running on the device is 

encrypted. This can prevent a malicious user from exploiting the software [8 1 ]. 

* Hardware attestation. The trusted computing group platform and next generation 

secure computing base provide this type of attestation [101]. A similar model 

could be used in sensor networks. 
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2.3.5 Routing Attacks 

As described earlier in WSNs, every node acts as a router. Routing and data forwarding is 

an important task for sensor nodes. Routing protocols have to be energy and memory 
efficient but at the same time they have to be robust against attacks and node failures. 

There have been many power-efficient routing protocols proposed for WSNs. However, 

most of them suffer from different security vulnerabilities. In the real world, a secure 

routing protocol should guarantee the integrity, authenticity and availability of messages 
in the existence of adversaries of arbitrary power. Every authorized receiver should 

receive all messages proposed for it and would be capable of proving the integrity of 

every message and also the identity of the sender [54]. We briefly describe a few attacks 

on routing protocols: 

Black hole attack or packet drop attack: An attacker can drop received routing 

messages, instead of relaying them as the protocol requires, in order to reduce the 

quantity of routing infon-nation available to other nodes. This is called a black hole 

attack [102]. This attack can be launched selectively (dropping routing packets for 

a specified destination, a packet every t seconds, or a randomly selected portion of 

each packet) or in bulk (drop all packets), and may have the effect of making the 

destination node unreachable or downgrade communications in the network [ 103]. 

Spoofed, altered, or replayed attack: In this attack an adversary can record old 

valid control messages and re-send them, causing the receiver node to lose energy 

quickly. As the topology changes, old control messages, though valid in the past, 

may describe a topology configuration that no longer exists. An attacker can 

perform a replay attack to make other nodes update their routing tables with stale 

routes. This attack can be successful even if control messages bear a digest or a 

digital signature that does not include a timestamp [ 102]. 

Wormholes attack: This attack [1041 is quite severe, and consists in recording 

traffic from one region of the network and replaying it in a different region. This 

attack is particularly challenging to deal with since the adversary does not need to 

compromise any nodes and can use laptops or other wireless devices to send 
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packets on a low latency channel. Hu et al. [104] proposed the concept of packet 
leashes where additional information is added to a packet, the purpose of which is 

to restrict the maximum distance the packet can travel in a given amount of time 
[81]. 

9 Selective forwarding attack: In this attack, a malicious node selectively drops 

sensitive packets. Selective forwarding attacks are typically most effective when 
the attacking nodes are explicitly included on the path of a data flow. Yu et. al. 
[105] proposed a light weight detection scheme which uses a multi-hop 

acknowledgement technique to launch alarms by obtaining responses from 

intermediate nodes. 

e Sinkhole attack. - In this attack, an adversary tries to attract as much traff ic as 

possible toward compromised nodes. The impact of the sinkhole is that it can be 

used to launch further active attacks on the traffic that is routed through it. The 

severity of active attacks increases multi-fold especially when these are carried 

out in collusion [106]. Sinkhole attacks typically work by making a compromised 

node look especially attractive to surrounding nodes with respect to the routing 

algorithm. For instance, an adversary could spoof or replay an advertisement for 

an extremely high quality route to a sink [41 ]. 

* HELLO flood attack: The preference for the shortest communication route can 

usually be exploited by a HELLO flood. In the case of multi-hops, this means 

broadcasting a message with a long-range radio-antenna to all nodes in the 

network, stating the node performing the HELLO flood is the base station. The 

receiving nodes should then conclude that the route through the node sending the 

HELLO flood is the shortest. They will try to send all their succeeding messages 

through this node, which most probably is not even within radio range. In the 

worst case, all nodes in the network will keep sending their messages into 

oblivion. An attack such as the HELLO flood is meant to completely disable the 

WSN and prevent it from performing its tasks [107]. 

Acknowledgement spoofing. - The goal of an adversary in this attack is to spoof a 

bad link or a dead node using the link layer acknowledgement for the packets it 

overhears for those nodes. 
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2.3.6 Traffic Analysis Attacks 

In WSNs all communication is moving toward a sink or base station in many-to-one or 

many-to-few patterns. An adversary is able to gather a lot of information on the topology 

of the network as well as the location of the base station and other strategic nodes by 

observing the traffic volume and pattern [81 ]. 

Deng et al. have defined two types of traffic analysis attacks in WSNs: a rate monitoring 

attack and a time correlation attack. In a rate monitoring attack, an adversary monitors 
the packet sending rate of nodes near the adversary, and moves closer to the nodes that 

have a higher packet sending rate. In a time correlation attack, an adversary observes the 

correlation in sending time between a node and its neighbour node that is assumed to be 

forwarding the same packet, and deduces the path by following the "sound" of each 

forwarding operation as the packet propagates towards the base station [109]. 

The possible solutions to the traffic analysis attacks are to use randomness and multiple 

paths in routing, using probabilistic routing and the introduction of fake messages in the 

network. In the case of fake messages it can increase the communication overhead. 

Therefore it might not be a cost effective solution. 

2.3.7 Sybil Attack 

The Sybil attack is defined as a "malicious device illegitimately taking on multiple 

identities" [101]. For example, a malicious node can claim false identities, or impersonate 

other legitimate nodes in the network [81]. Perrig et al. have pointed out that the Sybil 

attack can affect a number of different protocols [10 11: 

Distributed Storage Protocols. 

Routing Protocols. 

Data Aggregation (used in query protocols). 

Voting (used in many trust schemes). 

Fair Resource Allocation Protocols. 

44 



Chapter two: Security in Wireless Sensor Networks 

* Misbehaviour Detection Protocols. 

To attack the routing protocols, the Sybil attack would rely on a malicious node taking on 
the identity of multiple nodes, and thus routing multiple paths through a single malicious 
node [41 ]. However the Sybil attack can operate in different orders to attack the protocols 
listed above. 

The proposed solutions to the Sybil attack include: 1) radio resource testing which relies 
on the assumption that each physical device has only one radio, 2) random key 

predistribution which associates the identity of each node to the keys assigned to it and 

validates the keys to establish whether the node is really who it claims to be, 3) 

registration of the node identities at a central base station, and 4) position verification 

which makes the assumption that the WSN topology is static. 

2.3.8 Attacks on In-network Processing 

In-network processing, also called data aggregation, was discussed in terms of secure 
data aggregation in section 2.2.10. Data aggregation is very useful in terms of reducing 

the communication overhead. However there can be different types of attack on in- 

network processing: 

" Compromise anode physically to affect aggregated results [117]. 

" Attack aggregator nodes using different attacks. 

" Send false information to affect the aggregation results [164]. 

To handle these possible attacks, there should be an efficient security solution to stop the 

adversary from affecting aggregated results. Furthermore this security solution should be 

capable of providing resilience against attacks (routing attacks etc. ) on aggregator nodes. 

It is necessary to have mechanisms to provide accurate information to end users after 

successful attacks on aggregator nodes or results. 
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2.3.9 Attacks on Time Synchronization Protocols 

Time synchronization protocols provide a mechanism for synchronizing the local clocks 
of nodes in a WSN. There are various different protocols proposed for time 

synchronization. Three of the most prominent protocols are the Reference Broadcast 
Synchronization (RBS) [6], Timing-sync Protocol for Sensor Networks (TPSN) [9], and 
Flooding Time Synchronization Protocol (FTSP) [20]. 

Most of the time synchronization protocols don't consider security. An adversary can 

easily attack any of these time synchronization protocols by physically capturing a 
fraction of the nodes and injecting them with faulty time synchronization message 

updates. In effect, this makes the nodes in the entire network out-of-sync with each other. 
Time-synchronization attacks can have a significant effect on a set of WSN applications 

and services since they heavily rely on accurate time synchronization to perform their 

respective functions [81]. 

2.4 Security in Mobile Sensor Networks 

Secure communication between network components is always an issue, and researchers 

are continually inventing new security protocols to provide more and more secure 

communications. Although security has long been an active research topic in traditional 

networks, the unique characteristics of MSNs present a new set of nontrivial challenges, 

to security design. These challenges include the open network architecture, shared 

wireless medium, resource constraints, scalability, and highly dynamic network 

topologies of MSNs. Consequently, the existing security solutions for traditional 

networks, mobile ad hoc networks and static sensor networks do not directly apply to 

MSNs [361. 

The ultimate goal of security solutions for MSNs is to provide security services, such as 

authentication, confidentiality, integrity, anonymity and availability, to mobile nodes. 

Node mobility poses far more dynamics in MSNs compared to SSNs (Static Sensor 

Networks). The network topology is highly dynamic as nodes frequently join and leave 

the network, and roam in the network. The wireless channel is also subject to 
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interferences and errors, revealing volatile characteristics in terms of bandwidth and 
delay. The dynamics nature of MSNs increases security challenges, as mobile nodes may 
request for anytime, anywhere security services as they move from one place to another. 

2.5 Summary 

This chapter starts with general (non-security) challenges in WSNs, which include fault 

tolerance, topologies, routing, mobility and scalability. We have then discussed in detail 

about security challenges in WSNs, including data confidentiality, data integrity, 

authentication, key establishment, availability, privacy, secure routing, secure group 

management, intrusion detection and secure data aggregation. Finally we have described 

possible attacks on WSNs, which include node capture attacks, side channel attacks, 
denial of service attacks, software attacks, routing attacks, traffic analysis attacks, Sybil 

attacks and attacks on in-network processing. Some of these attacks are similar to those 

in traditional networks, e. g. routing attacks and DoS attacks, while the others only exist in 

WSNs. In particular, node capture attacks may allow an adversary to compromise the 

security of an entire WSN. Therefore this attack is the centre of attention of many 

researchers. The uniqueness of the node capture attack and its after attack effects on 

WSN is more challenging. The current work is using different key establishment 

techniques to reduce the after damage in case some sensor nodes are physically 

compromised. However due to the possibility of physically compromising sensor nodes 

data confidentiality is at high risk. The compromised sensor node could be an aggregator 

or group leader sensor node. All these issues are interlinked with each other. Therefore 

we require that key management solution should provide high resilience against node 

capture attack using less resource, efficient secure data aggregation to achieve better 

confidentiality for different applications, secure and efficient group leader/aggregator 

selection scheme and key management for mobile sensor node in case nodes roam from 

one place to another. 

In the next chapter, we will present a critical survey on current key management, secure 

data aggregations, secure group leader election and key management for MSN protocols, 

and also discuss their specific limitations against the requirements of WSNs. 
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Chapter Three: Key Management in WSNs 
Key establishment/management is the basic technique to achieve data confidentiality, 
data integrity, authenticity, secure data routing and secure data aggregation. Due to the 
importance of key establishment/management in order to achieve information security we 
therefore describe existing WSNs key management solutions in the start of this chapter. 
For a better understanding we have divided these existing key management solutions into 
five different categories; key pool based key management, session based key 

management, hierarchical based key management, group based key management and key 

management for heterogeneous sensor networks. Furthermore secure data aggregation is 

presented in section 3.2, replication attacks described in section 3.3, secure group leader 

election/selection discussed in section 3.4 and key management for MSNs is presented in 

section 3.5. 

3.1 Key Management in WSNs 

When setting up a WSN, one of the initial requirements is to establish cryptographic keys 

for later use. In indoor and outdoor WSN applications, communications can be monitored 

and nodes are potentially subject to capture and surreptitious use by an adversary [72]. 

For this reason cryptographically protected communications are required. A keying 

relationship can be used to facilitate cryptographic techniques. Cryptographic techniques 

are categorized as either symmetric or asymmetric forms of cryptography. Symmetric 

cryptography relies on a shared secret key between two parties to enable secure 

communication. Asymmetric cryptography, on the other hand, employs two different 

keys, a private one and a public one. The public key is used for encryption and can be 

published. The private key is used for decryption. From a computational point of view, 

asymmetric cryptography requires orders of magnitude more resources than symmetric 

cryptography and similarly a public key infrastructure (PKI) would be required, which 

may be difficult to achieve in the ad-hoc environment of a WSN. Therefore, recently only 

symmetric cryptosystems have been proposed and recommended for WSNs. 
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An ideal key management solution for WSN would satisfy the design criteria of 
providing secure communication between source and destination, scalability and resource 
efficiency. There are two simple strategies for symmetric key management schemes for 

WSNs. One is to use a single secret key over the entire WSN- This scheme is obviously 

efficient in terms of the cost of computation and memory. However the compromise of 

only a single sensor node exposes all communications over the entire WSN, which is a 

serious deficiency. The other approach is to use distinct keys for all possible pairs of 

sensor nodes. Then every sensor node is preloaded with n-I keys, where n is the WSN 

size. This scheme guarantees perfect resilience in that links between non-compromised 

sensor nodes are secure against any coalition of compromised sensor nodes. However this 

scheme is not suitable for large-scale WSNs since the key storage required per sensor 

node increases linearly with the WSN size [781. If there is a network of 10,000 sensor 

nodes, then each node must store 9999 keys in their memory. Since sensor nodes are 

resource-constrained, this significant overhead limits the scheme's applicability, but it 

can be effectively used for smaller WSNs. Consequently, in the first strategy the sharing 

of keys between sensor nodes is high whilst in the second strategy sharing between the 

sensor nodes is low. Due to the need for secure communication with only limited 

resources, researchers are proposing solutions that fall between these two strategies. 

3.1.1 Key pool Based Key Management 

3.1.1.1 Random key predistribution scheme (Basic Scheme) 

Eschenacuer and Gilger [72] proposed a probabilistic key pre-distribution scheme. This 

scheme is also known as the Basic Scheme. This scheme is divided into three parts: key 

pre-distribution, shared-key discovery, and path key establishment [ 144]. 

(a) Key predistribution phase: There is a large key pool S of [S] keys with unique 

identifiers. Every sensor node is equipped with a fixed number of keys randomly selected 

from this key pool with their key identifiers. Once keys and their identifiers are assigned 
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to every sensor node in the WSN, trusted nodes will be selected as controller nodes, and 
all the key identifiers and their associated sensor identifiers will be saved on the 
controller nodes. These few keys are enough to ensure that any two nodes share a 
common key, possibly through the assistance of other nodes, based on a selected 

probability. 

(b) Shared-key discovery phase: Once nodes are successfully deployed in a target 

application, every pair of nodes within their wireless communication range establishes a 
common keys. If they share any common key(s) among their assigned keys, they can pick 

one of them as their shared secret key. There are many ways for finding out whether two 

nodes share common keys or not. The simplest way is to make the nodes broadcast their 
key identifier lists to other nodes. If a node finds out that it shares a common key with a 

particular node, it can use this key for secure communication. This approach does not 

give an adversary any new attack opportunities and only leaves some room for launching 

a traffic analysis attack in the absence of key identifiers. 

(c) Path key establishment phase: As discussed earlier communication can be 

established between two sensor nodes only if they share a key, but the path key 

establishment stage facilitates provision of a link between two sensor nodes when they do 

not share a common key. Let us assume that a sensor node x wants to communicate with 

another sensor node y, but they do not share a common key between them. x can send a 

message to a sensor node u, saying that it wants to communicate with y, where the 

message is encrypted using the common key shared between x and u. If u has a key in 

common with y, it can generate a pair-wise key K,, y for x and y, thereby acting like a key 

distribution centre or a mediator between x and y. All the communications are in an 

encrypted form using their respective shared keys. 

The advantages of this scheme include the fact that it is flexible, efficient, and fairly 

simple to employ. The disadvantages of this scheme include that it cannot be used in 

circumstances demanding heightened security or node to node authentication, and it 

provides only limited scalability. Compromise of a controller sensor node and certain 

number of other sensor nodes can lead the adversary to compromise the entire WSN 

[144]. 
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3.1.1.2 Q-composite random key predistribution scheme 

Chan et al. [75] extended the previous idea of the Basic Scheme [72] to overcome the 
difficulties that occur when a pair of sensor nodes share no common key. Chan et al. 
proposed two different variations of the Basic scheme: Q-Composite Random Key 
Predistribution and Multipath Key Reinforcement, and a variation of the commonly 
known Pairwise Scheme, called the Random Pairwise Scheme. In the Basic Scheme [72], 
two nodes share a unique key for establishing secure communications. A given network's 
resilience to node capture can be improved by increasing the number of common keys 
that are needed for link establishment. The Q-Composite Random Key Predistribution 
Scheme does this by requiring that two nodes have at least q common keys to set up a 
link [75]. As the amount of key overlap between two sensor nodes is increased, it 
becomes harder for an adversary to compromise their communication link. At the same 
time, to maintain the probability that two sensor nodes establish a link with q common 
keys, it is necessary to reduce the size [S] of the key pool S, which poses a possible 
security breach in the network as the adversary now has to compromise only a few nodes 
to gain a large part of S. So the challenge of the Q-Composite Scheme is to choose an 

optimal value for q wh i le ensuring that security is not sacrificed [ 144]. 

The first phase of the Basic and Q-composite schemes are the same but in the second 

phase these two schemes differ in that the Q-Composite Scheme requires each node to 
identify neighbouring sensor nodes with which they share at least q common keys, while 

the Basic scheme only requires one shared key. This restriction in the Q-Composite 

Scheme allows the number of keys shared to be more than q but not less. At this stage in 

the process, nodes will fail to establish a link if the number of keys shared is less than q; 

and otherwise they will form a new communication link using the hash of all the q keys 

as a shared key, denoted as K= hash(k, jk2l... IQ where I is used for concatenation. The 

size of the key pool S is an important parameter that needs to be calculated. The Q- 

composite scheme provides better resilience against node capture attacks. The amount of 

communications that are compromised in a given network with the Q-Composite Scheme 

applied is 4.74 percent when there are 50 compromised nodes, while the same network 
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with the Basic scheme applied will have 9.52 percent of communications compromised 
[144]. Though the Q-Composite Scheme performs badly when more sensor nodes are 
captured in a WSN, this may prove a reasonable concession as adversaries are more 
likely to commit a small-scale attack and preventing smaller attacks can push an 
adversary to launch a large-scale attack, which is far easier to detect. 

The advantages of the Q-Composite scheme include that it provides better security than 
the Basic Scheme by requiring more keys to share with neighbouring sensor nodes for 

communication, which makes it difficult for an adversary to compromise the 

communication of a sensor node. The disadvantages of this scheme include that it is 

vulnerable to breakdown under large-scale attacks, and does not satisfy scalability 

requirements. 

Furthermore, the multipath key reinforcement scheme [75] provides good security with 

additional communication overhead. In previous schemes there is an issue that the links 

formed between sensor nodes after the key discovery phase may not be totally secure due 

to the random selection of keys from the key pool, allowing some sensor nodes in a WSN 

to share the same keys. This could threaten the security of these sensor nodes when only 

one of them is compromised. 

To solve this problem, the communication keys must be updated when a sensor node is 

compromised. This should not be done using the old established links, as an adversary 

would then be able to decrypt the communications to obtain new keys. Instead it should 

be coordinated using multiple independent paths for greater security. 

The advantages of this scheme include that it offers better security than the Basic scheme 

or the Q-Composite Scheme. The disadvantages of this scheme include that it creates 

communication overhead that can lead to depleted node battery life and the chance for an 

adversary to launch a DoS attack. 

3.1.1.3 Polynomial pool-based key pre-distribution 

Liu et al. [128] designed two schemes for secure pair-wise communication in Wireless 

Sensor Networks: Polynomial-based and grid-based key distribution protocols. The 
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polynomial-based protocol further extends the idea of Eschenauer et al. works [72]. 
Instead of pre-distributing keys, they actually pre-distribute polynomials from a 
polynomial pool. This polynomial based key pre-distribution scheme offers several 
efficient features compared to other schemes: 

Any two sensor nodes can definitely establish a pair-wise key when there are no 
compromised sensors. 

* Even with some sensor nodes being compromised, the others in the WSN can still 
establish pair-wise keys. 

*A node can find the common keys to determine whether or not it can establish a 
pairwise key and thereby help reduce communication overhead [144]. 

The drawback of this scheme is that compromising more than t polynomials leads to 

sensor network compromise. Further to avoid such attacks each node must store 2 

bivariate t-degree polynomials and IDs of the compromised nodes, which is resulting in 

additional memory overhead. 

3.1.1.4 Hypercube key distribution scheme 

The Hypercube Key Distribution Scheme [125] guarantees that any two sensor nodes in 

the WSN can establish a pair-wise key if there are no compromised sensor nodes present 

as long as the two sensor nodes can communicate. Also, sensor nodes can still 

communicate with a high probability even if compromised sensor nodes are present. 

Sensor nodes can decide whether or not they can directly communicate with other sensor 

nodes and what polynomial they should use when transmitting messages. If two sensor 

nodes do not share a common polynomial, they have to use a path discovery method to 

compute an indirect key. 

The path discovery algorithm described by Ning et al. [1251 finds paths between a pair of 

sensor nodes a and b dynamically. In this method, the source and other sensor nodes 

communicate with a sensor node that is uncompromised and has a closer match to the 

destination sensor node compared to the Hamming distance of their IDs where the 
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Hamming distance is defined as a measure of the difference between two binary 

sequences of equal length. If there are no compromised sensor nodes in the WSN, this 

scheme will always work as long as any two sensor nodes can communicate. 

There are a number of attacks that can be applied to the current scheme. One attack is to 

attempt to compromise the polynomials used in key generation between sensor nodes a 

and b without compromising the sensor nodes themselves. To achieve this, the attacker 

must first compromise t+I other sensor nodes. If the sensor nodes a and b have 

computed an indirect key, the attacker must compromise the sensor nodes used in the 

path that established the key. In total, the attacker must compromise nx (t + 1) (where n 
is the number of polynomials and t is number of compromised node IDs) sensor nodes to 

effectively prevent sensor nodes a and b from communicating with each other. A second 

attack against the scheme is to damage the whole WSN. One way to do this is to 

compromise a number, b, of polynomials distributed to the sensor nodes in the WSN. 

This will affect the indirect keys computed. A further way to attack the WSN as a whole 

is to randomly compromise individual sensor nodes. This could compromise the path 

discovery process and make it more expensive to create pair-wise keys [ 125,144]. 

3.1.1.5 Key management schemes using deployment knowledge 

Du et al. [78] propose a scheme using deployment knowledge that is based on the Basic 

Scheme [721. Deployment knowledge in this scheme is modelled using probability 

density functions (PDFs). All the schemes discussed until now considered the PDF to be 

uniform, so knowledge about sensor nodes cannot be derived from it. Du et al. consider 

non-uniform PDFs, which means that they assume the positions of sensor nodes to be in 

certain areas. Their method first models sensor node deployment knowledge in a WSN 

and then develops a key pre-distribution scheme based on this model. 

As in the Basic Scheme, the key pre-distribution scheme also consists of three phases for 

the deployment model: key pre-distribution, shared key discovery, and path key 

establishment. This scheme differs only in the first stage while the other two stages are 

similar to those of the Basic Scheme. 
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Key pre-distribution: In this phase the scheme divides the key pool KP into txn key 

pools KPjj of size coij. The goal of dividing the key pool is to ensure that neighbouring 
key pools have more keys in common. The pool KPj is used for the nodes in the group 
Gij. Given coij and overlapping factors a and P, the key-pool is divided into subsets so 
that (i) two horizontally and vertically neighbouring key-pools have ax Wij keys in 

common, (ii) two diagonally neighbouring key-pools havefi x o)ij keys in common, and 
(iii) non-neighbouring key-pools do not share a key. Two key pools are neighbours if 

their deployment groups have nearby resident points (xi, yj) for I<i<1 and I<j<n, 

where the points are arranged in a two dimensional grid. After the key pool is divided, 

each node in a group Gij is selected and keys are installed from the corresponding subset 
key pools. As mentioned earlier, for the current scheme the Shared discovery phase and 
Path key establishment phase are exactly the same as for the Basic Scheme [72] 

described in section 3.1.1 - 1. 

According to Du et al. [78] an increase in the number of random keys chosen from the 

key pool for each sensor node will increase the connectivity, which is true. Moreover 

they show that if we can carry 100 keys in each sensor node using their method the 

probability of local connectivity with neighbouring nodes will be 0.687. Now, suppose G 

is the number of compromised nodes and m is the number of compromised keys. The 

compromise of more nodes will allow an adversary to get more keys. Suppose we have a 

network of 10,000 sensor nodes. If an adversary gets 10 keys then the probability that it 

can communicate with any other node will be 0.024. If the number of compromised keys 

increases to 120 through the compromise of C, nodes, the probability will increase to 

0.871. We represented this in the graph shown in Figure 3-1 below. This graph shows 

that the compromise of more nodes will help to compromise the complete network. 
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Node Capture Attack 
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Figure 3-1: Compromise of a sensor network using node capture attacks on the 

scheme of Du et al. 178]. 

The advantages of this scheme include the fact that, by only considering deployment 

knowledge that can minimize the number of keys and help to reduce network overhead, it 
increases overall connectivity of the network graph, and offers the same benefits over the 
Basic Scheme on which it is based. The problem in this scheme is the difficulty and 

complexity in deciding the parameters wij, a and, 8 to provide adequate key connectivity. 

3.1.1.6 Location dependent key management scheme 

The location dependent key management scheme proposed by Anjum [126] decides 

which keys to put on each node depending on their locations in the environment. In this 

scherne, nodes are determined to be static. They communicate only through encrypted 

channels and nodes can be added at any time. Also nodes in this scheme are assumed to 

be capable of transmitting at different power levels and giving different transmission 

ranges. Also there exist special nodes called anchors. The only difference between the 

anchor nodes and the other nodes in the network is that the anchor nodes transmit at 

different power levels and are tamper proof There are also three phases in the scheme: a 

pre-distribution phase, an initialization phase, and a communication phase. In the pre- 

distribution phase, a key server computes a set of keys to be used by the nodes. It places 
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the keys into a key pool. Each sensor node is then loaded with a subset of these keys 

along with a single common key every node shares. The anchor nodes do not get keys 
r__ - 

from the key pool. 

All of the nodes and anchors are randomly distributed. During the initialization phase the 
anchor nodes help the other sensor nodes to change their existing keys by providing 
beacons. The sensor nodes receive these beacons and compute new keys based on their 

old keys and the beacons received from the anchor nodes. The original subset of keys is 
deleted from the memory of the sensor nodes after they compute their new keys. In the 

communication phase, the nodes compute pair-wise keys to establish secure 
communication among them. One of the significant advantages of this location-aware key 

management scheme is that compromised nodes do not affect nodes in a different 

location of the network. 

This scheme also performs worse than a random key distribution scheme with a key pool 

size of 5000 and 175 keys on each sensor node. As the numbers of compromised sensor 

nodes in the WSN are increased, the performance of the random key distribution scheme 
deteriorated faster than the location-dependent scheme [ 126]. Furthermore anchor nodes 

create an extra overhead on the WSN. 

In the location dependent key management scheme, an adversary can launch a denial of 

service attack if they jam the anchor nodes and transmit false beacons. This is fairly hard 

to accomplish since anchor nodes are randomly dispersed in the environment. There is no 

alternative when anchor nodes are physically compromised. 

According to Zhou et al., random key pre-distribution schemes suffer from two major 

problems, making them inappropriate for many applications. First these schemes require 

that the deployment density is high enough to ensure connectivity. Second the 

compromise of a set of keys or key spaces leads toward compromise of the entire WSN 

[80]. 

PIKE [76] addresses the problem of the high density requirement of random key pre- 

distribution schemes [122]. In PIKE, each sensor node is equipped with an ID of the form 

(ij), corresponding to a location on a In- x NFn grid, where n is the network size. Each 

sensor is also preloaded with a number of pair-wise keys, each of which is shared with a 
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sensor that corresponds to a location on the same row or the same column of the grid. 
Now any pair of sensors that does not share a preloaded pair-wise key can use one or 
more peer sensors as trusted intermediaries to establish a path key. PIKE requires 
network-wide communications to establish path keys, each of which requires 0(, R) 
communication overhead. This is a relatively high communication overhead, making it 

unsuitable for large WSNs. 

3.1.2 Session Based Key Management 

3.1. ZI SPINS 

A number of shared-session key negotiation protocols have been developed for WSNs- 

SPINS [39] is a security suite that includes two protocols: SNEP anduTESLA. SNEP is 

for confidentiality, two party data authentication, integrity and data freshness, whilst 

pTESLA provides authentication for data broadcasting. Suppose that a node x wants to 

establish a shared session key SKxy with another node y through a trusted third party sink 
S. The sink plays a role as the key distribution centre. x will send a request message to y. 

y receives this message and sends a message to S. S will perform the authentication and 

generate the shared session key and send this key back to x and y respectively. 

Liu et al., [441 quote in their paper that pTESLA [39] will not be efficient in large WSNs. 

For example, let uTESLA use 1OKbps bandwidth and support 30 byte messages. To 

bootstrap 2000 sensor nodes, the sink has to send or receive at least 4000 packets to 

distribute the initial parameters, which takes at least 4000 x 30 x8/ 10240 = 93.75 

seconds even if the channel utilization is perfect. Such a method certainly cannot scale up 

to very large WSNs, which may have tens of thousands of sensor nodes. 

Therefore multi-level uTESLA schemes have been proposed to extend the capability of 

the original pTESLA protocol [20,21]. An improved version of the PTESLA system 

uses broadcasting of the key chain commitments rather than pTESLA's unicasting 

technique. They present a series of schemes starting with a simple pre-determination of 

key chains and finally settling on a multi-level key chain technique. 
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Liu et al. [43] have found weaknesses in their own work [44,451 and suggest that these 
issues which are not properly addressed in their publications [44,451 need to be 

addressed. These are described below: 

DoS attacks: The multi-leveluTESLA schemes scale broadcast authentication up to large 

networks by constructing multi-level key chains and distributing initial parameters of 
lower-level pTESLA instances with higher-level ones. However, multi-level PTESLA 
schemes magnify the threat of DoS attacks. An attacker may launch DoS attacks on the 

messages carrying the initial pTESLA parameters [44,45]. Though several solutions 
have been proposed in Liu et al. [44], they either use substantial bandwidth or require 

significant resources to be available to senders [43]. 

3.1.2.2 BROSK 

The BROadcast Session Key (BROSK) [ 129] negotiation protocol stores a single master 
key in each sensor node for the entire WSN. A pair of sensor nodes (Si, Sj) exchange 

random nonce values Nj and Nj. The master key K, is used to establish a session key Kjj 

= MAC (K,, I Ni I Nj), where "I" is used for concatenation and MAC is a Message 

Authentication Code function [115]. There are a couple of issues which are not described 

by BROSK. If the master key is compromised after a node capture attack, an adversary 

can easily compromise the entire network communication and generate all other keys. 

The BROSK protocol also didn't present the effect of node capture attacks in their 

scheme, when few sensor nodes are physically compromised. 

3.1.23 Two phase session based key management 

Pietro et al., [1301 proposed a key management protocol for large scale WSNs. The 

protocol is composed of two main phases. In the first phase, a new session key is 

generated, while in the second phase the new session key is distributed to all sensor nodes 

in the WSN. In the first phase, each sensor node autonomously generates the session key. 

The algorithm driving such a generation makes sure that each sensor node generates the 

same key. The second phase focuses on ensuring that each sensor node holds an 
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appropriate set of cryptographic keys. This second phase is needed for synchronization. 
Similarly like BROSK this scheme has not considered node capture attacks. 

3.1.3 Hierarchical Based Key Management 

3.1.3.1 LEAP 

LF, 4P is based on the theory that different types of messages exchanged between nodes 
need to satisfy different security requirements. All the packets transferred in a sensor 
network need to always be authenticated where a sensor node knows the sender of the 
data since an adversary may attack a WSN with false data at any time. On the other hand 

confidentiality, like encryption of packets carrying routing information, is not always 
needed. Different keying mechanisms are necessary to handle the different types of 
packets. For this Zhu et al., [121] establish LEAP with four types of keys that must be 

stored in each sensor: individual, pair-wise, cluster, and group. Each key has its own 
significance while transferring messages from one node to another in a WSN. By using 
these keys LEAP offers efficiency and security with resistance to copious attacks such as 
the wormhole and Sybil attacks. LEAP usesuTESLA for local broadcast authentication. 

The advantages of this scheme include that it offers efficient protocols for supporting 
four types of key schemes for different types of messages broadcast, it reduces battery 

usage and communication overhead through in-network processing, and it uses a variant 

of pTESLA to provide local broadcast authentication. The disadvantages of this scheme 
include that it requires excessive storage with each node storing four types of keys and a 

one-way key chain. In addition, the computation and communication overhead are 
dependent upon network density (the denser a network, the more overhead there is). 

3.1.3.2 Cluster based key managementfor WSN 

Jolly et al., [131] structure the WSN in clusters, and then assign one gateway (super 

node) to each cluster to be in charge of the cluster. Gateway nodes are equipped with 

more resources compared to the rest of the nodes. In their solution each sensor stores two 

keys. One key is shared with a gateway and the other with a sink. This scheme can also 
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be categorized under heterogeneous WSNs- The disadvantages of this scheme include 
that in case a gateway node is compromised, it means that the data confidentiality and 
communication of this cluster will be compromised.. 

3.1.3.3 Three tier key managementfor WSNs 

Bohge et al., [132] propose a new WSN structure for their key management idea. They 
use a three-tier ad hoc network topology. At the top level there are high-power access 
points that route packets received via radio links to the wired infrastructure. On the 
second level there are medium power forwarding sensor nodes and at the bottom level 
there are low power mobile sensor nodes with limited resources. The lower level nodes 
share keys with the level above them. For more security each sensor node should have a 
personal initial certificate. They split sensing data into two parts: normal and sensitive 
data. 

3.1.3.4 SHELL 

Younis et al. [ 127] propose a lightweight combinatorial construction of key management 
for clustered WSNs, called SHELL. In SHELL, collusion is reduced by using nodes' 

physical locations for computing their keys. This scheme uses a command sensor node to 

govern the entire WSN. The command sensor node directly communicates with the 

gateway nodes which are in charge of individual clusters. Sensor nodes can be added to 

this WSN at any time. The gateway nodes are powerful enough to communicate with the 

command sensor node and undertake required key management functions. 

Each gateway node can communicate with at least two other gateway nodes in the WSN, 

and has three types of key [127]. The first is a preloaded key that allows the gateway to 

directly communicate with the command node. The second type of key allows the various 

gateway nodes to communicate. The third allows the gateway to communicate with all 

the sensor nodes in its cluster. In the case of node capture attacks, it is assumed that the 

command node is unable to be compromised. If a single sensor in a cluster is 

compromised, the keys of all the sensor nodes in the cluster have to be replaced. If a 
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gateway node is compromised, the command node will do rekeying of the inter-gateway 

nodes. The application scenario is not clearly explained. The re-keying action in clusters 
or for gateway nodes in the case of a single node compromise is costly in terms of 
resources. 

3.1.4 Key Management for Heterogeneous Sensor Networks 

In the work [ 122,123], Du et al. considered key management in a Heterogeneous Sensor 

Network (HSN) that consists of a small number of powerful high-end sensors and a large 

number of low-end sensors. 

They have also presented an effective key management scheme - the asymmetric pre- 
distribution (AP) scheme for HSNs [122]. Powerful high-end sensors are utilized to 

provide simple, efficient and effective key set up schemes for low-end sensors. The basic 

idea of the AP key management scheme is to pre-load a large number of keys in each 
high-end sensor while only pre-loading a small number of keys in each low-end sensor. A 

high-end sensor has much larger storage space than a low-end sensor, and the keys pre- 

loaded in a high-end sensor are protected by tamper resistant hardware. 

However according to Hussain et al. [145] the AP scheme is not efficient in terms of 

memory overhead. For example, if there are 1000 low end-sensors and 10 high end- 

sensors in an HSN and each high end-sensor is loaded with 500 keys and each low end- 

sensor is loaded with 20 keys, the total memory requirement for storing these keys will be 

(10 x 500) + (1000 x 20) = 25,000 (in the unit of key length). 

Du et al. also propose a routing-driven key management scheme, which only establishes 

shared keys for neighbour sensors that communicate with each other [123]. They have 

used tree topology based routing; and also elliptic curve cryptography to further increase 

the efficiency of the key management scheme. 

There are a few issues in their current solution. The authors have presented an evaluation 

comparison with homogenous WSNs, whereas the current proposed solution is for 

heterogeneous WSNs. The authors have not considered the effect of node capture attacks 

when high-end sensor nodes are compromised. This is important since all 
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communications between clusters is through the high-end sensor nodes. According to 
Hussain et al. [145], asymmetric cryptography such as RSA or elliptic curve 
cryptography (ECC) is unsuitable for most sensor architectures due to its high energy 
consumption and increased code storage requirements. As target applications for the 
scheme have not been clearly described in the paper, it's therefore difficult to establish 
whether the current network model can achieve scalability. 

Hussain et al. [1451 have also proposed a key distribution scheme for heterogeneous 
WSNs. Similarly they have assumed high-end (H-end) and low-end (L-end) sensor nodes. 
H-sensor nodes will act as cluster heads. There is a key pool K consisting of M different 
key chains. These key chains will be used to preload keys in L-end sensor and H-end 

sensor nodes. After a successful cluster formation phase a shared key discovery phase 
begins. Every L-end sensor will establish a key with a H-end sensor and with its own 
neighbouring nodes. 

Similar to Du et al. in [122,123], Traynor et al. [124] also assume that there are sensor 

nodes in the WSN that are more powerful and more secure than others, and these more 

powerful sensor nodes are also in tamper proof boxes or well guarded. A sensor node that 

has limited memory and processing power is identified as L I, and a sensor node that has 

more memory and more processing power is identified as L2 [1241. L2 nodes act as head 

sensor nodes for the Ll sensor nodes and have the responsibility of routing packets 

throughout the WSN. These L2 sensor nodes have access to gateway servers which are 

connected to a wired network. 

3.1.5 Group Based Key Management 

Most proposed solutions for group key management use a session key concept. Here we 

will provide an overview of some of these solutions. 

EltoweissY et al. [77] propose a scheme for group key management in large-scale WSNs. 

Their proposed scheme is based on Exclusion Basic Systems (EBS). The use of EBS (n, k, 

m) is to assign and manage keys for a group, where n is the number of group members, k 

represents keys held by the nodes and m is the number of broadcast messages needed for 

63 



Chapter three: Key Management in PVSNs 

rekeying after a node is evicted. They assume that all sensor nodes are pre-initialized 
before deployment, with an identical state mainly consisting of a set of training 
parameters and a number of keys. A key server also has one or more session keys known 
to subsets of group members. All group members aware of a particular session key 

constitute a secure communication group. Members in a secure communication group use 
the session key corresponding to the group for the encryption of messages exchanged 
among group members. 

Pietro et al., [130] propose a key management solution for large scale WSN. Their 

protocol generates keys without requiring communication among sensors. They believe 

that direct communication between sensor nodes consumes more energy. They also prefer 
to use the session key concept. They propose two different methods for sensor nodes to 

agree on session keys: one for a base station scenario and the other for a completely 
distributed scenario. The base station has to interact with the WSN to invoke the 

command to generate new keys. In the distributed case each sensor node stores a 

parameter p that drives the generation of a new session. After a time out of P clock ticks 

has elapsed, the sensor node invokes the generation of a new session key. 

Group communication applications can use IP multicast to transmit data to all n group 

members using minimum resources. Efficiency is achieved because data packets need to 

be transmitted only once when they pass through any link between two nodes, hence 

saving bandwidth. This contrasts with unicast-based group communication where the 

sender has to transmit n copies of the same packet. Any multicast-enabled host can send 

messages to its neighbour router and request to join a multicast group [39]. There is no 

authentication or access control enforced in this operation [145]. The security challenge 

for multicast is in providing an effective method for controlling access to the group and 

its information that is as efficient as the underlying multicast. 

After explanation of all these key management solutions, we have concluded that the 

main objective of these solutions is the same: secure communication between pairs of 

sensor nodes or sources and destinations. However all these solutions are applications or 

structure dependent and limited to specific applications. These static WSN security 
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solutions do not support mobility, which results in significant limitations. Mobility 

generates more security challenges and attacks than in static WSNs. 

Furthermore these solutions only describe resilience against node capture attacks but fail 

to discuss the possible attacks that can occur after node capture, e. g. replication, black 
hole and Sybil attacks. Key management also has some inter-link issues related to 

network processing (such as data aggregation). Suppose that an aggregator, a cluster head, 

a master sensor node or any ordinary sensor node is compromised where data aggregation 
takes place. This would bring issues surrounding data confidentiality, data integrity and 
trust to the fore. 

In case a group leader, a cluster head or an aggregator sensor node becomes 

compromised, there should be a solution to allow election or selection of a new group 

leader, a cluster head or an aggregator sensor node, in order to provide better and 

continuous service and availability. 

All these issues (mobility, secure data aggregation, secure group leader election or 

selection and resilience against all other possible attacks) are related to key management 

directly, so we will present a brief literature related to these issues next. 

3.2 Secure Data Aggregation 

In the initial stages of sensor network research, many data aggregation protocols [58-59, 

147] were proposed, but none of them were designed with the consideration of possible 

security threats. Further research in this area highlighted the importance of security. 

Hu et al., [150] proposed a secure hop-by-hop data aggregation scheme. In this scheme 

individual packets are aggregated in such a way that a sink can detect non-authorized 

inputs. The proposed solution introduces a significant bandwidth overhead per packet. 

They also assume that only leaf nodes with a tree-like network topology sense data, 

whereas the intermediate nodes do not have their own data readings. Jadia et al., [148] 

extended the Hu et al. approach by integrating privacy, but considered only a single 

malicious node. 
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Several secure aggregation algorithms have also been proposed for the scenario of a 
single data aggregator for a group of sensor nodes. Przydatek et al. [149] proposed 
Secure Information Aggregation (SIA) to detect forged aggregation values from all 
sensor nodes in a network. The aggregator then computes an aggregation result over the 

raw data together with a commitment to the data based on a Merkle-hash tree and then 

sends them to a trustable remote user, who later challenges the aggregator to verify the 

aggregate. They assume that the bandwidth between a remote user and an aggregator is a 
bottleneck. Therefore their protocol is intended for reducing this bandwidth overhead 

while providing a means to detect with a high probability if the aggregator is 

compromised. Yang et al. [152] describe a probabilistic aggregation algorithm which 

subdivides an aggregation tree into sub trees, each of which reports its aggregates directly 

to the sink. Outliers among the sub trees are then probed for inconsistencies [56]. 

Moreover a number of aggregation algorithms have been proposed to ensure the data 

confidentiality of the data against intermediate aggregators. Such algorithms have been 

proposed by Girao et al. [ 15 1 ], Castelluccia et al. [61 ], and Cam et al. [ 147]. In the next 

section we will describe the relationship between data confidentiality and secure data 

aggregation. 

3.2.1 Confidentiality and Data Aggregation 

Confidentiality can be maintained between sources and destinations using different 

solutions according to requirements and available resources. In our further discussion we 

describe three possible solutions to achieve end-to-end (source to destination) 

confidentiality in large scale sensor networks. 

The first option is for each sensor to store a unique key shared only with the sink, and to 

send encrypted data through other sensors to the sink without decryption at any non-sink 

node. This end-to-end confidentiality can be achieved but there are some drawbacks. 

Because all packets are forwarded towards the sink, a lot of bandwidth is consumed. It's 

also very burdensome when a sensor network is busy to recover large amounts of data 

from every single node in the case of data loss. Finally, there is an extreme imbalance 

66 



Chapter three: Key Management in WSNs 

between sensors in terms of the amount of data communicated. For example sensors 
closer to the sink will lose energy more quickly. 

The second option is hop-by-hop secure data aggregation. This type of scheme is only 
limited to specific topologies such as tree topologies, but it nonetheless achieves the goal. 

The third option which we recommend is where an aggregator node has an appropriate 
position, such as a group leader node, which can assist in securely aggregating the data 

within its group. This will also help to reduce the amount of data to be transferred to the 

sink and support network structure independence. It is possible that the group leader node 
is not in the best position to perform the role. The issue of how to optimally select a node 
in a group for the role of data aggregation in relation to several factors such as minimal 

energy consumptions and the number of neighbouring sensor nodes will be presented 
later in this thesis. 

3.2.2 Homomorphic Encryption 

Homomorphic encryption is a semantically-secure encryption which, in addition to 

providing the standard guarantees has additional properties. In particular the sum of any 

two encrypted values is equal to the encrypted sum of the values. There are several 

efficient homomorphic cryptosystems such as Unpadded RSA, El-Gamal, Golchvasser- 

Micali and Benaloh and Paillier [ 15 3]. 

Consider Unpadded RSA as an example, where we use the notation Ek(x) to denote the 

encryption of a message x with a key k using the method. Suppose that a public RSA key 

is expressed as pk = (e, m). Then the encryption of a message x with key pk is signified as 

Epk(x) = Xe mod m. In this case we have the homomorphic property: 

(Epk(xl) Epk(x2)) mod m= (xl'x2') mod m 

= (xlx2)' mod m 

= Epk(xiX2) 
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For addition and average calculations in WSNs, we can use the following homomorphic 
encryption algorithm. 

Encryption: 

1. Represent a message (sensed data) as an integer d with 0<d<Z, where Z is a large 
integer. 

2. Let s= (k, Z) be a shared secret key with 0<k<Z. 

3. Define c= EXd) = (d + k) mod Z. 

Decryption: 

1. Compute E, - I (c) = (c - k) mod Z= d. 

Addition of Ciphertexts: 

1. Let si = (ki, Z) andS2= (k2, Z) be two secret keys, and di and d2, where 0< (di + d2) < 

Z, be two messages. Compute cl = Ej(dj) = (d, + kl) mod Z andC2 = E, 2(d2) = (d2 + 

k2) mod Z This leads to (c, + c2) mod Z= ((d, + d2) + (k, + k2)) mod Z=E, 1,2(d, 
+d2), 

with key sl, 2 = (k, Z) and k= (k, + k2) mod Z. 

2. For decryption, we have: 

E, 
1,2-1 

(c I+ c2) = &I + c2)-k) mod Z=dl +d2. 

n 

Note that if n different ciphers ci are added, then Z must be larger than d, , and 

otherwise the correctness of recovered data is not provided. In practice, if p= max (di), 

then Z should be selected as Z=2 [loo (p * n)] 

3.3 Replication Attacks 

Replication attacks can be launched in two different ways in WSNs. In the first type of 

replication attack an adversary can eavesdrop on communications and resend old packets 

again multiple times in order to waste its neighbouring sensor nodes' energy. In the 
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second type of replication attack an adversary can insert additional replicated hostile 

sensor nodes into the WSN after obtaining some secret information from captured sensor 
nodes or through infiltration [133,134]. 

Fu et al. evaluated the effect of replication attack on key pool based key management 

schemes [72,75,128,135,136]. They analyze, characterize and discuss the relationship 

among the replicated hostile sensor nodes, the WSN, and the resilience of various random 
key pre-distribution schemes against replication attacks using a combination of 

modelling, analysis, and experiments. Example findings include the following. 

(1) WSNs with random key pre-distribution schemes, even with one replicated sensor 

node, start to become almost 100% insecure when an adversary captures and stores key 

information equivalent to those carried by one good sensor node. 

(2) When the replicated sensor node has less memory to store key information than the 

original sensor node, among the proposed schemes, the q-composite scheme with larger q 
is most resilient against replication attacks while the Basic Scheme is least resilient [ 133, 

134]. In Parno et al. presented distributed methods of detecting replication attacks in 

WSNs [1371. According to Parno et al. an adversary can compromise a few sensor nodes 
in the network and can create more cloned sensor nodes to place them in different 

locations in the WSN to launch replications attacks. We conclude from our review of the 

literature that group based key management schemes are more resilient against 

replication attacks, even after some of the nodes have been compromised. This is due to 

the fact that group based key management schemes can minimize global key sharing in 

comparison to key pre-distribution schemes [ 13 7]. 

3.4 Secure Group Leader Election/Selection 

There are various different proposed solutions for group leader election or selection; 

some of these also consider security issues. First we will give an overview of non secure 

group leader or cluster head election related work, and then we will briefly describe 

related work on secure group leader election/selection. 
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In LEACH [139], initially when clusters are being created, each sensor node decides 
whether or not to become a cluster head for the current round. This decision is based on 
the suggested percentage of cluster heads for the WSN (determined a priori) and the 
number of times the sensor node has been a cluster head so far. 

Wen et al [140] define two different methods: centralized and distributed for cluster head 

election. In the centralized method, the current cluster head, sensor i, determines a new 
cluster head by aggregating energy and neighbour sensor nodes information from its 

cluster members. In the distributed method, once the energy in the current cluster head is 
below a given threshold, it transmits a message to start the reselection process. Each 

cluster member then checks its energy constraints. As long as the cluster member satisfies 
these constraints, it generates a random waiting time which depends on the number of 
neighbouring cluster members and the remaining energy level. 

Vasudevan et al. [ 146] define algorithms for the secure election of leaders in wireless ad- 
hoc networks, but these algorithms use public-key cryptography, which is unappealing 
for resource-constrained WSNs. As described earlier, security in WSNs is subject to 
different and increased constraints compared to traditional and ad-hoc networks. Keeping 

the limited resources of WSNs in mind, Liu et al., [128] present a hybrid public-key 

system for WSN security, where more capable gateway devices perform the bulk of the 

computation. This approach is appealing in group mobility situations, but again it may be 

limited to certain applications as it is still not as computationally lightweight as a 

symmetric-key algorithm would be. Symmetric-key authentication systems are a well- 

researched field. In order to use symmetric-key cryptography in a WSN, we must have a 

reliable method for the distribution of symmetric keys. There has been work in this area. 
As described in section 3.1.3.1, LEAP is a method for key management and 

authentication in WSNs. However, LEAP doesn't consider group leader election in the 

case of group leader compromise. As described in section 3.1.2.1, Perrig et al. present a 

number of security protocols for WSNs using a master key system, where each sensor 

node derives its private key from the master key. Furthermore as we have discussed in 

section 3.1.1.1, Eschenauer and Gligor present a probabilistic keying scheme that relies 

on sensor nodes being assured a certain probability of communication with other sensor 

nodes, rather than being assured with certainty, to reduce the number of keys a node must 
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keep track of Traynor et al. [138] present LIGER, a hybrid system for symmetric-key 
distribution using both probabilistic keying and a KDC in MSNs, and an implementation 

and analysis of probabilistic keying schemes [124]. Using elements from LIGER and 
Traynor et al, we can ensure that sensor nodes have a computationally inexpensive means 
of communicating securely, and in turn, electing a leader securely. 

3.5 Key Management for MSNs 

Security issues can be more destructive in MSNs then static WSNs. For example, in key 

pool based schemes [72,75,78], if a single mobile sensor node is compromised it can 
listen to the communication of the entire WSN due to the global sharing of keys. 

Currently key management has only been considered in mobile ad hoc networks and most 

of these proposed solutions consider either hierarchal key management or group based 

key management. 

Wang et al. [143] propose a hierarchical key management scheme for secure group 

communication in mobile ad hoc networks. In this scheme the entire network is split in 

groups and further into sub-groups. Subgroups are further divided into two levels, Ll- 

subgroups and L2-subgroups. Different keys are used at each of these levels. For 

communication between groups, a communication key is used by bridge nodes referred to 

as communication nodes. There are certain issues when a new node joins a group. In 

particular, the L2-head has to regenerate a new subgroup key and send it to its entire set 

of members. 

Wu et al. [141] propose a secure and efficient key management scheme for mobile ad hoc 

networks. They also organise their network into server groups and use public key 

infrastructure. Along with key management they also explain about group maintenance 

and formation. Each server group creates a view of the certificate authority (CA) and 

provides a certificate update service for all nodes, including the servers themselves. A 

ticket scheme is introduced for efficient certificate service provision. As they use an 

asymmetric cryptographic method, it is not efficient to use such a method for WSNs. 
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Cho et al. [142] propose a region-based group key management scheme for mobile ad- 
hoc networks. In this scheme group members are broken into region-based subgroups. 
The leaders in a subgroup securely communicate with each other to agree on a group key 
in response to membership changes and member mobi I ity- induced events. They have 

assumed that every single node is equipped with GPS and knows their location when they 
move across regions. Such an assumption is not suited for WSNs due to its limitation. 
They have used a hierarchy of keys, e. g. regional keys, group keys and leader keys at 
different levels of the group. In their attack model they assume only external attacks can 
occur. However in WSNs node capture attack is totally different and unique to traditional 

network schemes. If we apply node capture attacks at different levels of a group on [ 142], 

or if a Leader node becomes compromised, data confidentiality and integrity can be 

compromised and there is no election or selection method for Leader nodes. 

We can see from existing key management solutions for mobile ad hoc networks that 

most of these solutions are hierarchical. There are some issues that relate to application of 
these solutions for WSNs. WSNs are scaleable networks, public key management and 
GPS are not ideal for WSNs due to the limited resources of nodes and regeneration of 
keys due to the joining and leaving of nodes in a group is an energy consuming task, 

especially when we consider sensor networks in water (such as the sea) where nodes may 

change position rapidly. Therefore it remains an open research issue, and many solid 

answers are needed in order to provide for future solutions. 

3.6 Summary 

In this chapter, we surveyed the literature and works relating to key management, secure 

data aggregation, group leader election/selection and key management for MSNs. We 

presented and discussed the existing solutions of key management for static WSNs. 

These solutions were classified into five different types including: key pool based key 

management, session based key management, hierarchical based key management, key 

management for heterogeneous sensor networks, and group based key management. All 

of these solutions place emphasis on the important issue of providing high resilience 

against node capture attacks and providing better secure communication between sources 
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and destinations. This chapter pointed out the main drawbacks of existing key 
management solutions. There are some common drawbacks in these schemes, for 
example all of these solutions are structure dependent and any change in the structure 
directly affects the security of the WSN. Each key management solution is particularly 
designed for one specific problem, and these solutions do not handle problems such as 
secure data aggregation or replication attacks. Furthermore we have listed some 
individual weaknesses of these schemes are summaries in table below: 

Key Management Scheme Drawbacks 

Key pool based 0 Probabilistic key sharing increases the probability of 

compromising the entire WSN. 

0 Extra communication overhead during key establishment 

phase. 

0 Memory overhead due to preloading more keys to increase the 

probability of key sharing between sensor nodes. 

0 Forward and backward secrecy requirements will increase 

communication overhead. 

Hierarchical 0 Minimum number of routes for child sensor nodes to 

communicate with their parent sensor nodes. Therefore in the 

case of a parent sensor node being compromised, all of the 

communication from its child sensor nodes will be blocked. 

0 These key management schemes can only be used in specific 

applications and they are not scalable. 

Session based 0 These solutions are limited to small WSNs. 

Sharing common values to produce different session keys for 

encryption increases vulnerability of communication 

compromise of the WSN in the case of compromise of a single 

sensor node. 

These solutions are more vulnerable to DoS attacks. 

Heterogeneous Physical compromise of a high end-sensor causes problems 

similar to the compromise of a parent sensor node in the 

hierarchical key management. 

Some of these schemes have used asymmetric cryptography 

which is unsuitable for most sensor architectures due to its high 

energy consumption and increased code storage requirements. 
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Forward and backward secrecy is another weakness of these 
schemes. 

Group based These solutions only describe resilience against node capture 
attacks but fail to discuss the possible attacks that can occur 
after node capture, e. g. replication, black hole and Sybil 

attacks. 

In case of aggregator, a cluster head, a master sensor node is 

compromised where data aggregation takes place. This would 
bring issues surrounding data confidentiality and integritý. 

There is no alternative in case a group leader, a cluster head or 
an aggregator sensor node becomes compromised, in order to 

provide better and continuous service and availability. 

Table 3-1: Drawbacks of current key management schemes 

Later in the chapter we have described related works concerning secure data aggregation 

and its importance. Secure data aggregation is vital in applications where very sensitive 
data are communicated through the sensor nodes. Compromise of an aggregator node can 
be a significant risk to data confidentiality. Therefore data aggregation should be 

performed on encrypted data without decryption to improve data confidentiality. 

Furthermore we have presented related works about secure group leader selection. Finally 

we described related work about key management for MSNs- 
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Chapter Four: Structure And Density Independent 
Group-Based Key Management (SADI-GKM) 

Protocol Design Overview 

The unique properties of WSNs increase their popularity and potential for future 
involvement in major applications of our daily life. All of these facilities are potentially 
hindered by a number of important issues. It is therefore important that these issues be 

resolved in order to fully benefit from WSNs. Some of these issues are general and basic, 

e. g. scalability and resource usage reduction, and have influence or inter-relations with 
other issues such as security, routing and fault tolerance. For example, security and 
routing protocols must also be scalable and energy efficient. 

In this chapter we will concentrate on the issue of security, presenting the requirements 

and design overview of a key management protocol that is intended to improve security 

while at the same time taking into account the more general issues of scalability and 

energy elfficiency as described above. Having described our requirement and protocol 
framework in this and detail design the next chapter, we will then go on to test it and 

evaluate it against other protocols in Chapter six. 

4.1 Background 

As described in earlier chapters, WSNs can contain hundreds and potentially thousands 

of small sensor nodes able to perform various different jobs. It is commonly assumed that 

the purpose of WSNs is to monitor large areas. Moreover the number of WSN 

applications is increasing quickly due to their unique characteristics. Future applications 

will be highly scalable, e. g. whole countries and cities will be monitored for various 

purposes using WSNs. Therefore scalability is a core issue and this can affect the 
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performance of any proposed security and non-security protocols especially when we 
also take into account resource limitations. To handle scalability issues using fewer 
resources, researchers spilt an entire network into zones, groups or clusters [31]. 
Furthermore, these groups are then organised into different topologies according to the 
application requirements. Clustering and group management are well known approaches 
used to provide efficient management of large scale networks of various types, including 
WSNs and ad hoc networks [3 1 ]. 

Our aim is to provide secure communication for scalable WSNs. We have therefore used 
group key management concepts in our protocol design. 

Furthermore in relation to security and scalability, a WSN is strictly structure and 
application dependent, i. e. if a protocol is designed for indoor applications it is unlikely 
to work in outdoor applications. If the size of a network increases or decreases these 

protocols often show appalling performance, e. g., pTESLA [39] shows good performance 
in small scale WSNs but its performance decreases in large scale WSNs [20]. 

Furthermore pTESLA is also topology dependent and especially designed for hierarchical 

WSNs. 

As described in section 2.3.1 about node capture attack, the sensor nodes and their 

operation in remote and hostile areas makes it easy for sensor nodes to be captured and 
increases the chance that a sensor node will be targeted. There can be many possible 

ways for an adversary to use a compromised sensor node. For example, after 

compromising a sensor node or nodes physically, an adversary can easily extract key 

information from the sensor node and replace it back into the WSN as an adversary- 

controlled sensor node. It will then behave as a normal sensor node and can establish 

communication with other non-compromised sensor nodes. Consequently data 

confidentiality and privacy will be at high risk. Therefore any solution to provide 

resilience against node capture should assure that the compromised sensor node should 

not leak sensitive data and should not compromise the confidentiality of other sensor 

nodes. 

To minimize the number of transmissions from thousands of sensor nodes towards a sink, 

a well known approach is to use in-network aggregation as discussed in section 2.2.10 
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and 3.2. A serious issue connected with in-network data aggregation is data 
security/integrity [154]. There are different types of attacks which can be harmfal for in- 

network data aggregation, e. g. a compromise of an aggregator sensor node due to 
physical tampering using node capture attack. In many applications nodes are 
communicating highly sensitive data (for example in military and rescue applications) 
and due to such threats data integrity/security is vital. Therefore a secure data aggregation 
method is required to provide better integrity and data confidentiality. 

Furthermore, in case of an aggregator, a group leader or a cluster head sensor node failure 
due to resource depletion; there should be a secure way of electing or selecting a new 
aggregator or group leader sensor node. There are various proposed schemes which 
provide election of a new group leader sensor node, but they generally fail to consider the 
issue of security. For example, a new elected group leader sensor node could turn out to 
be an adversary sensor node. We therefore need to make sure that any new group leader 

sensor node is a trusted node. 

Considering our previous discussion, it's clear that all of these issues - scalability, 

application or structure dependency, node capture attack, replay attack, secure data 

aggregation and secure group leader election - are inter-related with each other. By 

ignoring any one of these we are likely to end up weakening the overall security solution. 

Until now all of these problems have been addressed individually but separately, and 

while any good solution for a single problem might tackle this problem well, it will often 
have no integration with other solutions proposed for the other problems. In this case the 

problem will remain with the overall method. Therefore an integrated approach is 

required to combine all of these issues together and identify their relationships, allowing 

them to be handled efficiently. 

Following from our research into node capture attacks, various evolutionary results have 

highlighted three main factors which can aid adversaries during node capture attacks, in 

order to compromise the communication of the entire sensor network [33,71]. The first 

factor is that node capture attacks can be a threat only if sensor nodes within the WSN 

share a key or keys with neighbouring sensor nodes used to encrypt or decrypt data. 

Consequently the greater the level of key-sharing between neighbouring sensor nodes, the 

77 



Chapterfour: Structure And Density Independent Group-Based Key Management (SADI- 
GKM) Protocol Design Overview 

greater the threat to data communication integrity and confidentiality. Most existing key 
management solutions suffer from this drawback. The second important factor is the 
structure (topology) of the WSN. In general, the fewer the communication links between 

sensor nodes, the greater the possibility that an attacker can entirely block the 
communication paths between a source and destination. For example, node capture 
attacks are generally more effective in tree topologies than mesh topologies because in 
the former there is only one route from child to parent. If the parent node is compromised, 
the entire communication from its child nodes downward will potentially be 

compromised [33,71]. The last factor which has a direct influence on node capture 
attacks is the density of the network, having a similar effect as the second factor. For 

example, physical compromise of sensor node with high density will be larger damage as 
compare to sensor node with low density. Therefore these three design factors were 
ascertained as being vital for a key management protocol to provide high resilience 

against node capture attacks. First, encryption should happen only at source sensor nodes 

and data should be decrypted at the corresponding destination sensor nodes (group 

leaders or sinks) to provide better confidentiality. The second factor is the selection of an 

appropriate topology, since this can help to provide resilience against node capture 

attacks. For example, DGKE has better performance results against attacks when a 

random mesh is used as compared to other topologies. Finally we need to select a suitable 
density according to the application in order to overcome the risk of serious damage to 

the WSN resulting from a node capture attack. In the next chapter we will describe the 

details and evaluation of DGKE. 

4.2 Aims and Objective 

In this section, we discuss the overall aims and specific objective of our work. In 

previous sections we have described relevant security threats and issues which are inter- 

linked with each other, and the need for an integrated security solution. We also provided 

background needed in order to support our main aims and objectives. Given this, the 

major research objectives that we address in the problem area are as follows: 
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9 To develop a novel key management protocol. This protocol should have different 
layers to tackle different security problems at the prevention level. All these 
layers must be integrated with each other to prevent an attacker from system 
penetration. The proposed key management protocol should support topology 
independency, scalability, node to node authentication, high resilience against 
node capture attacks and replay attacks, and be resource efficient. The protocol 
should be evaluated using different topologies and compared against existing key 

management protocols to show its performance. This can be carried out using 

simulations. 

* To design a secure data aggregation scheme to provide better data confidentiality 

and integrity inside groups. This secure data aggregation service will come under 
the second layer of the key management protocol, and should not increase 

resource usage. The second layer should provide different options in terms of data 

confidentiality according to user and application requirements. This mechanism 

can be evaluated using simulations by monitoring the aggregator sensor node 

energy consumption. 

* To develope novel techniques for secure selection of a new group leader sensor 

node using various selection parameters. The proposed techniques should avoid 

the selection of sensor nodes with low trust, low energy or which have long 

distances from the current group leader. The selection process should be quick 

and short to minimize energy consumption. The proposed schemes can be 

evaluated by comparing them to existing solutions using simulations. This scheme 

will come under the third layer of the proposed protocol. 

To design a key management scheme to support MSNs appropriately. The 

proposed scheme should support different mobility patterns (e. g. free and guided 

mobility) and different security levels according to different applications and 

resource availability. This scheme can also be evaluated using simulations. 
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4.3 Requirements 

1. Confidentially and Data integrity: In WSNs, confidentiality relates to the 
following: 

" Providing confidentiality of the wireless communications channels to 

prevent eavesdropping. A sensor node should not leak sensor readings to 
its neighbouring sensor nodes. In some applications, the data stored in the 

sensor node may be highly sensitive. To achieve this, a sensor node should 

avoid sharing keys with neighbouring sensor nodes, when these keys are 

used for encryption and decryption [33]. 

" The building of secure channels in the WSN. 

" Sensor information, such as sensor identities and public keys, is encrypted 

to some extent to protect against traffic analysis attacks. 
Data integrity issues in wireless networks are similar to those in wired networks. 
Data integrity ensures that any received data has not been altered or deleted in 

transit. We should keep in mind that an adversary can launch modification attacks 

when cryptographic checking mechanisms such as message authentication codes 

and hashes are not used. 

11. Authentication: In WSNs an adversary's attack is notjust limited to modifying data 

packets. An adversary can change the whole packet stream by injecting additional 

packets, so the receiver node needs to ensure that the data used in any decision- 

making process originates from the correct source [41]. Authentication of other 

sensor nodes, cluster heads, and sinks before revealing information is therefore 

crucial. 
111. Availability: Key management services must ensure that confidentially and group- 

level authentication services are available to authorized parties when needed. 

However strict limitations and unnecessary overheads weaken the availability of 

sensors and WSNs [41 ]. 
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IV. Scalability: Key distribution schemes must support large scale WSNs, and must be 
flexible during increases in the size of the WSN. 

V. Datafreshness: Proposed key management solution should have the ability to check 
data freshness that the data is recent, and it ensures that no old messages have been 

replayed. 
VI. Application independency: Due to disorder and the wide range of potential 

applications for WSNs, an application independent solution is required which can 
be used for more than one application. This is especially important in MSNs and ad 
hoc sensor networks where topologies change frequently due to nodes joining and 
leaving. A topology independent solution could significantly decrease energy 
consumption. 

VII. Survivability: Due to the unattended nature of WSNs, an attacker could launch 

various security attacks and even compromise sensor nodes without being detected. 

Therefore, a WSN should be robust against security attacks such as node capture 

attacks and replication attacks. Even if an attacker succeeds, its impact should be 

minimized. For example, the compromise of a single sensor node should not break 

the security of the entire WSN. 

VIII. Supporting secure in-network processing: Security mechanisms should permit in- 

network processing operations in a secure way such as through secure data 

aggregation. In-network processing significantly reduces energy consumption in 

WSNs. 

IX. Supporting secure group leader selection: In case a goup leader sensor node is 

compromised or dies, there should be a secure way of selecting another group 

leader sensor node. 
X. Forward and backward secrecy: The proposed key management scheme should 

provide forward and backward secrecy when nodes join or leave a group [ 178]. 

XI. Memory overhead: Propose key management should use few keys while supporting 

a high level of security. 
X11. Connectivity: With a smaller number of keys, the probability that two sensors 

sharing at least one common key during any given time-interval should be kept as 

high as possible, in order to increase connectivity. 
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4.4 The Importance of Integrated Security 

According to Yang et al. [156] there are basically two approaches toward security 
solutions in ad hoc networks (such as WSNs): proactive and reactive. The proactive 
approach tries to prevent an attacker from launching attacks in the first place, typically 
through various cryptographic techniques (such as key management). In contrast, the 
reactive approach seeks to detect security threats afterward and react accordingly. Due to 
the absence of a clear line of defence, a complete security solution for WSNs should 
integrate both approaches and include all three components: prevention, detection, and 
reaction. 

The prevention component prevents an attacker from penetrating the system. However, 

the history of security has clearly shown that a completely intrusion-free system is 

infeasible, no matter how carefully the prevention mechanisms are designed [156]. This 

is especially true in WSNs, since they consist of small sensor devices that are prone to 

compromise or physical capture. Therefore, the detection and reaction components that 
discover the occasional intrusions and take reactions to avoid persistent adverse effects 

are vital for security solutions to operate in the presence of limited intrusions. As argued 
by Nikopolitidis [3], security is a chain and is only as secure as the weakest link. Missing 

a single component may significantly degrade the strength of the overall security 

solution. Furthermore there are many threats at the prevention level. All these solutions 

aim to prevent adversaries from penetrating the system, and should be tightly integrated. 

However our proposed protocol falls into the category of a prevention component as 

shown in Figure 4-1. 

4.5 Protocol Design Overview 

We have designed our Structure And Density Independent Group-Based Key 

Management Protocol (SADI-GKM) [1171 as a stack of four different layers with 

different functional ities, which are integrated with each other as shown in Figure 4-1. The 

protocol includes: a novel group-based key management scheme, efficient secure data 

aggregation [62], a novel secure group leader selection scheme and key management 
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capabilities for MSNs [36]. We have described earlier the need for such a protocol, in 
order to address the possible threats and issues together. Our proposed protocol has 
flexibility allowing the addition of more security solutions through the addition of more 
layers. 

Key Management 
s Prevention 

tA 
Secure Data Aggregation D 

TII Detection 
Secure Group_Uader Selectionj 

iG Key Management for 
Mobile Sensor Neworks K Reaction 

M 
New Layer 

Figure 4-1: Structure and Density Independent Group-Based Key Management 

(SADI-GKM) protocol stack. 

Our protocol works on three different node types: a sink node, group leader nodes and 

group member nodes. These three different node types play different roles in our protocol 

design and we have therefore designed different algorithms for each of them. The job of 

the group member sensor nodes is to sense, encrypt and send their data toward a sink or 

group leader sensor nodes. The group leader sensor nodes have multiple responsibilities 

as compared to the normal group member sensor nodes. These group leader sensor nodes 

will play the role of aggregators and gateways. The sink works as a base station to collect 

all the information and data from the sensor field. In the following subsections we 

describe the functionalities and tasks of each layer. 
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4.5.1 Layer 1: Key Management 

This layer has responsibility to pre-establish keys between sensor nodes and provides 
basic rules and regulations which are further integrated with the other layers. We organise 

WSNs into multiple geographical groups as shown below in Figures 4-2 and 4-3. Every 

group of sensor nodes will be preloaded with a unique master key, authentication value 

and unique global network ID. All sensor nodes in every group will use this master key to 

generate their unique keys for encryption. 

flu 

i; 4 

I, 
1 1- I 

Figure 4-2: A2x2 km outdoor WSN. 

84 



Chapterfour: Structure And Density Independent Group-Based Key Management (SADI- 
GKU) Protocol Design Overview 

Figure 4-3: A WSN in a five story building (indoor WSNs). 

The key management layer operates in two phases: a key pre-establishment phase and a 
data transmission phase. We try to avoid any communication between sensor nodes 
during the key establishment phase to reduce the risk of eavesdropping and store only a 
few keys in each sensor node in contrast to existing schemes [72-78][125,126,128,130, 

145]. which require every sensor node to be equipped with 50 to 100 keys and perform 

more communication during the key establishment phase. We believe that using our 

minimal pre-establishment approach will save considerable amounts of communication 

overhead and subsequently reduce the energy cost. The data transmission phase will 
begin after successful key establishment. 

4.5.2 Layer 2: Secure Data Aggregation 

As described in the previous chapter, aggregator sensor nodes receive data from member 

sensor nodes and calculate aggregated results to reduce the quantity of transmissions. In 

case of physical compromise of an aggregator sensor node, the data confidentiality and 

integrity of all other sensor nodes using the aggregator may also be compromised. We 

therefore propose two different cases for secure data aggregation. In the first case an 

aggregator sensor node (a group leader) authenticates incoming data, decrypts and 

aggregates it. Furthermore the aggregated result will be re-encrypted and sent toward the 
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sink. The sink will decrypt this incoming data in order to obtain the aggregated result. In 
the second case the aggregator sensor node will not be allowed to decrypt the data; 

aggregation will be performed on encrypted data. Moreover the sink will perform further 

calculations in order to obtain the aggregated results. In the second case we use 
homomorphic encryption. The secure data aggregation algorithms will be preloaded into 

all group leaders, group member sensor nodes and the sink. We have integrated this 

scheme with the first layer of our protocol. The implementation of second layer is 

described in section 6.3.3. 

4.5.3 Layer 3: Secure Group Leader Selection 

The current solutions for group leader election have only used energy as a major election 

criterion. In our proposed solution we consider four different criteria: available energy of 

a sensor node, the number of neighbouring sensor nodes, the communication distance 

from the current group leader node (based on the position of the new group leader node), 

and the trust level of a sensor node. We have assumed different values for the trust 

factors during our analysis. However, trust values can also be found in various other 

proposed solutions [157-159]. These factors are very important, for example, sensor 

nodes with low levels of trust should be avoided; and sensor node with fewer 

neighbouring sensor nodes should also be avoided. The position of the group leader is 

also very important as it can directly effect the energy consumption of the entire group 

(we explain this issue in detail in the next chapter). Similarly node energy plays an 

important role. 

One of the main advantages of our scheme is that we do not involve all sensor nodes in 

the group for selecting a new group leader sensor node. First only neighbouring sensor 

nodes of the old group leader will be checked for new group leader selection. 

Secure group leader selection/election is vital in case of a group leader failure due to a 

node capture attack, energy failure or other causes. Our proposed scheme can also be 

used for different applications with respect to different communication behaviour of the 

sensor nodes. For example, in some applications sensors might use different radio ranges 

with respect to distances between different sensor nodes. In this case we can measure the 

space between a source node and a group leader in order to establish a distance metric. 
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However in applications where a fixed radio range is used for communication between 

sensor nodes this may not be possible. In such cases we measure the space between a 
source sensor node and a group leader using a hop count. Figure 4-5 shows an example of 
this. In case I we have a fixed radio range meaning that every hop is considered to be the 

same distance, whereas in case 2 every sensor node has a different radio range, and 
different hops between sensor nodes can have different distances. The distinction is 

highlighted by the fact that in the diagram d] has four hops, d2 has three hops, but the 
distance d2 is greater then d]. Therefore in our proposed group leader selection process 

we have considered both of these cases. Furthermore our proposed secure group leader 

selection scheme can also be used in heterogeneous WSN applications where different 

types of sensor nodes are used. In the next chapter we will describe this process in detail 

using our proposed formula for group leader selection. 
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Figure 4-4: Distance or number of hops from a source to its group leader. 
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4.5.4 Layer 4: Key Management for MSNs 

There are many complicated research issues relating to MSNs, including localizations, 

routing, network management, topology maintenance, security and many more. As we 
have seen, WSNs have many applications all with different requirements and different 
levels of available resources. There can be many different scenarios in which MSNs are 
used. In some cases all sensor nodes may be mobile, whereas in other cases there may be 

some static sensors and some mobile. Furthermore there can be different types of 
roaming for mobile sensor nodes, including free roaming (e. g. applications like MSNs in 

water) and guided roaming (e. g. applications in which sensor nodes attached to reboots, 
human body and vehicle). These properties of MSNs increase the challenges compared to 

static WSNs. Furthermore if we consider scalability issues with MSNs, things become 

more complicated again. Secure communication is also an essential requirement of MSNs, 

in similarity with other wireless networks. We intend to propose a secure communication 

solution for NISNs, but to achieve this we must also consider non-security related issues 

(such as scalability) which have a significant influence on MSN security. 

In this section we describe our proposed key management solution for MSNs, according 

to network available resources and security requirements. This key management solution 

is based on our proposed protocol SADI-GKM (Structure And Density Independent 

Group-Based Key Management) Layer 1, Layer 2 and Layer 3. In this proposed key 

management solution the MSN uses SADI-GKM Layer I for basic key establishment, 

Layer 2 for secure data aggregation, Layer 3 for secure group leader selection and a key 

pool based key management process for mobile sensor node authentication within the 

host group. Furthermore we use the micro-mobility concept for our MSN key 

management scheme. We assume that every sensor node has stored its position and the 

boundary coordinates of the group. The boundary coordinates of the group can help the 

mobile sensor to establish when they enter a neighbouring or other group territory. We 

will describe this scheme in detail in chapter five and six. 
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4.6. Summary 

In this chapter we have presented design overview of our novel protocol SADI-GKM. 

This protocol combines four different layers with different schemes. All these layers are 
integrated with each other to provide better secure solutions for multiple proactive 

security issues. The first layer of this protocol provides basic key management to all 

sensor nodes. The second layer's responsibility is to provide secure data aggregation 

according to the need of target applications. The third layer provides facilities for the 

selection of a new aggregator or group leader sensor node. This layer deals with the tasks 

of how to initiate the selection process, how to gather information from member sensor 

node, and how to find the next suitable group leader sensor node. The fourth layer's 

main task is to provide key management services for mobile sensor nodes in a WSN. The 

reason for the inclusion of this layer is due to its inter-relationships with the issues 

addressed by the other layers. Ignoring any such issue can weaken the network security. 

We have also identified requirements, issues and challenges that are important when 

designing an effective key management protocol for large scale WSNs. 

89 



Chapterfive: SADI-GKM Protocol Components 

Chapter Five: SADI-GKM Protocol Components 

In the previous chapters we have described the basic functionalities of our protocol. In 
this chapter we explain the operation of all the protocol layers in detail. Before going into 
the protocol design details, we describe some interesting parts of our project development, 
including some key research investigations that have helped us to design an efficient 

protocol. These key analyses are described in Section 5.1. For example we have 

established three important parameters during our analysis of node capture attacks as to 
be explained in Section 5.1.1. Unless balanced carefully, these three parameters can help 

an adversary to compromise the communications of an entire WSN. Similarly we have 

also investigated how a group leader's position in a group can affect the performance of 

the entire group of sensor nodes, as will be described in section 5.1.2. 

We then continue our discussion with the key management and secure data aggregation 
layers, where we explain about different algorithms, and how we can perform the secure 

data aggregation and key management tasks together. This constitutes part of our novel 

SADI-GKM protocol. Next we explain our novel secure group leader selection scheme 

which comes under the third layer of our protocol. Finally, we discuss key management 

for MSNs which come under the fourth layer of our protocol. 

5.1 SADI-GKM Pre-design Investigations 

5.1.1 Node Capture Attacks 

Node capture attacks are one of the most important and distinct issues that catch the 

attention of many researchers. 'Iberefore a number of different key management schemes 

have been proposed as described in Chapter three. As a part of our investigation on node 

capture attacks we proposed a simple protocol called Dynamic Group-Based Key 

Establishment (DGKE) [118,33,163,71]. 
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In DGKE we assign a unique master key to each group of sensor nodes. These keys will 
be set up in each sensor node before deployment. Once deployed, sensor nodes in a group 

will generate new keys using the master key and a random number. The sender sensor 

node will encrypt a hello message using this newly generated key and send the resulting 

ciphertext to its neighbours along with the random number used to generate the key. The 

neighbouring sensor nodes will use the master key and the received random number to 
decrypt the ciphertext message. Once decryption is successfully completed that key will 
be used for ffirther communication. The sender and receiver sensor nodes will perform 

these steps once after deployment, after which the non-group leader nodes will no longer 

retain the master key. The group leader retains the master key for use when new nodes 

join or leave the network [33]. We can explain this process with an example. We assume 

Figure 5-1 (a) as a group of five sensor nodes: nI, n2, n3, n4 and n5. All these sensor 

nodes have a shared key K (the master key). 

ni n2 nl KI n2 

K2 X6 

n3 n3e Ks 
ns K3 

M 4 
n4 

(a) (b) 

n6 

Figure 5-1: (a) Nodes deployed. (b) Key establishment. 

After successful sensor nodes deployment, each pair of nodes generate a key using the 

master key & (shared between all the group member sensor nodes) and a random number 

r (generated by the initiator node and sent to the other node), i. e. &= hash (K, r) as 

shown in Figure 5-1 (b). Specifically, the generated keys are defined below: 

K, = hash (K, 5) 4 shared between nI and n2 
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K2= hash (K, 65) 4 shared between nI and n3 
K3= hash (K, 3 1) -iý shared between n2 and M 

K4= hash (K, 57) 4 shared between n4 and n5 
K5= hash (K, 52) 4 shared between n3 and n5 
K6= hash (K, 101) 4 shared between n2 and n3 

These keys will be generated once and only for the nodes within the group. 
(a) Analysis 

We have simulated DGKE against node capture attacks using various different topologies 

to find the core properties which can help an adversary to compromise the 

communication of an entire sensor network. Our main goal in discovering these 

characteristics is that they can be avoided during the design of further WSN protocols. In 

this section we describe the detailed process of how we design our simulation framework 

and how we conduct the simulations. 

The simulation process involves two parts: building an appropriate test topology, and 

measuring a sequence of sensor node compromises to establish the effects that they have 

on the security of the WSN. We describe each of these parts separately. In the first part 

we describe how the topology creation process is performed. In the second part we 

describe the process of node capture attacks on the WSN. Using these simulations we 

intend to find the probability of total communication compromise after a certain number 

of node capture attacks have taken place. This is achieved by randomly selecting a sensor 

node during the simulation and assuming that this node has been physically compromised, 

after which the affects on the network of this compromise are measured. 

We performed a number of tests for comparison, pseudo randomly compromising 100, 

200 and 300 sensor nodes of the entire WSN. Even though a large scale WSN might be 

expected to have many more sensor node performing the test in this way allows us to 

provide a suitable comparison to analyse the effect of node capture attack on different 

topology. In every simulation for tree, grid and random mesh topologies we count the 

total number of communication links in the entire WSN and count the compromised links 

after having launched the stated number of node capture attacks. These two values give 
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us the proportion of compromised communication for the entire WSN. We perforrned 
5000 runs of the simulation for every set of node capture attacks to determine the average 
proportion of compromised nodes for a particular value n of node compromises. This 

provides us with a probability for the likelihood of a communication link being 

compromised after a certain number of sensor nodes within the WSN have been 

compromised. For all of these simulations, we assume that if the group leader sensor 

node is compromised the communication for the entire group becomes compromised 
because the node holds the master key. In a Heterogonous WSN group leader might have 

different characteristics from member sensor nodes. However we assume the likelihood 

of compromising the group leader node will be the same as other member sensor nodes. 

Node capture attacks on tree topology 

As discussed earlier we organise the entire WSN into groups. Each group has 100 sensor 

nodes and is structured as a tree topology. Each sensor node is connected to its parent and 

between I and 5 child sensor nodes. The number of child sensor nodes for each parent 

sensor node is selected randomly. Figure 5-2 (a) shows 100 sensor nodes organised in 

such a tree topology. 

12; %tip 

(c (d) 

Figure 5-2: (a): 100 sensor nodes in random tree topology. (b): Compromised links 

after the first random node capture attack. (c): Compromised links after the second 

node capture attack. (d): Compromised links after the third node capture attack. 
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In the simu ation process we assume every child sensor node shares a key with its parent 

sensor node. We assume that all keys will be successfully established using the process 
described in Section 511. After successful establishment of the WSN in a tree topology 
formation, we launch several node capture attacks. For each attack we randomly select a 

node and assume that it has been physically compromised, namely, all its stored data are 
known to the attacker. Since the data include encryption keys, all the communication 
links of the compromised sensor node will also be compromised. Moreover if the 

compromised sensor node is a parent node, all data sent by its child sensor nodes to the 

sink must pass through it, and consequently the communications links of all of these child 

sensor nodes should also be considered compromised. Figures 5-2 (b), (c) and (d) show 

the effects of one, two and three node capture attacks at different positions within the 

group respectively. The crosses indicate the compromised sensor nodes and highlighted 

lines between sensor nodes indicate compromised communication links resulting from 

the compromise of these sensor nodes. 

(H) Node capture attacks on grid topology 

This process is used to organise the entire WSN in a grid topology formation. We follow 

a similar process to that of the tree topology, managing the entire WSN in groups of 100 

sensor nodes. In a grid of 100 sensor nodes every sensor node has a maximum of 4 and a 

minimum of 2 neighbouring nodes, as shown in Figure 5-3 (a). 

Once the entire WSN has been established we start the testing process. "is is achieved 

similarly to the process for the tree topology where we randomly capture nodes. Once a 

node is physically compromised, we assume that all the communication links with its 

neighbouring nodes are compromised as well. Figures 5-3 (b) and (c) visualize the 

compromised communication links after the physical compromises of two and four 

sensor nodes respectively. Figure 5-3 (d) shows this effect after the compromise of the 

group leader sensor node. 
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la) (b) 

(C) 

Figure 5-3: (a): 100 sensor nodes in a grid topology. (b): Compromised links after 
two random nodes capture attacks. (c): Compromised links after four node capture 
attacks. (d): Compromised links after the compromise of the group leader node (top 

left sensor node). 

For a better understanding of the process Figure 5-4 presents a further depiction of the 

compromised and uncompromised keys after n node capture attacks. The numbers 
indicate a sensor node's complement of uncompromised keys and the highlighted zeros 

therefore indicate the location of the compromised sensor nodes. For example, in Figure 

5-4, after the first attack one sensor node at location (7,4) is compromised, resulting in 

the compromise of the four shared keys with the four neighbouring sensor nodes. The 

compromised node therefore holds no uncompromised keys, while the four neighbouring 

sensor nodes each hold three uncompromised keys. Note that all communication links of 

a compromised sensor node with its neighbouring sensor nodes are compromised. 

Therefore for each compromised neighbour we subtract by one the number of 

uncompromised links from neighbouring sensor nodes. For each simulation we count the 

total communication links compared against the compromised communication links to 

find the probability for certain number of attacks. 
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attack 2 "d attack 3d attack 4'h attack 
Figure 5-4: Random four node capture attacks in a group. 

At every simulation step we count the total communication links and compromised 

communication links to find the probability of communication compromises given certain 

number of attacks. We ran this process 5000 times to get an averaged probability figure. 

(III) Node capture attacks on random mesh topology 

The setup of the random mesh topology is different from those of the tree and grid 

topologies. In a random mesh topology we select neighbouring sensor nodes on the basis 

of radio ranges between sensor nodes. Effectively, all sensor nodes coming within a 

sensor node's radio range will form its neighbours. Nodes in every group are randomly 

deployed and assigned geographical coordinates (x, y). We assume that the radio range of 

every sensor node is 40 meters. The geographical area of each group is 150x 150 meters, 

containing 100 sensor nodes. Every sensor node in a group will establish communication 

links with its neighbouring sensor nodes falling in the range of 40 meters. Figure 5-5 (a) 

shows the random mesh topology in a group. 
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(a) N 1c) d 

Figure 5-5: (a): 100 sensor nodes in a random mesh topology. (b): Compromised 

links after two random node capture attacks. (c): Compromised links after three 

node capture attacks. (d): Compromised links after four node capture attacks. 

As explained in Section 5.1.1, using DGKE every sensor node will store the number of 
keys according to its local neighbourhood density. Consequently if a sensor node has 10 

neighbouring sensor nodes, it will store 10 different keys. In a random mesh topology we 

select the number of neighbouring sensor nodes on the basis of radio ranges and therefore 

the number of keys stored in each sensor node will vary, in contrast to the situation with 

the grid topology. 

The simulation process for the random mesh topology is similar to those of the tree and 

grid topologies. Figures 5-5 (b), (c) and (d) show two, three and four node capture attacks 

at different positions within the group respectively. As described earlier, the crosses show 

the positions of compromised nodes and the highlighted lines between sensor nodes show 

compromised links. To find the probability of the total communication compromised we 

count the total communication links and compromised ones, thereby establishing the 

effect of node capture attacks. 

Conclusions 

Figure 5-6 shows the effect of node capture attacks on the tree, grid and random mesh 

topologies using groups, based on the results obtained from the simulations described 
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above. According to our simulation results, a WSN using the random mesh topology 

shows better resilience against node capture attacks than the grid and tree topologies. 

It is clear that the node capture attacks are more dangerous for the tree topology than the 

mesh topology because the tree topology has only one route from a child to its parent. If 

the parent is compromised, all data passing through the node from its children 
downwards will also be compromised. The results show a high risk associated with the 

use of tree topologies as compared to other topologies in terrns of node capture attacks. 
New and improve security protocols for tree topology might improve security but with 
high cost which can be easily achieve using other topologies like grid and random mesh. 

r_ 0.8 0 
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E "0 
E 

'10A 0.5 
0, E 

0 0.4 

0E 03 
%- 0 
0 10 0.2 
c 0 0.1 

0 

Number of nodes compromised (out of 1000) 

DGKE-Tree Topology DGKE-Grid Topology 

DGKE-Ranclom Topology 

Figure 5-6: Node capture attack on DGKE using different topologies. 

On the basis of these simulation results we have established useful information 

concerning the nature of node capture attacks. Tberefore during the design of our SADI- 

GKM protocol we have attempted to avoid sharing keys which are used for encryption 

and decryption, chosen appropriate neighbouring node densities, and been careful to 

allow the selection of an appropriate topology. 
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5.1.2 Importance of Group Leader Positions 

In this section we propose a formula for new group leader selection. This formula 

considers four different selection parameters: the energy of a candidate sensor node, the 

number of its neighbouring sensor nodes, the trust level of the sensor node and the 

position of the sensor node. As sensor nodes' energy is limited and they will stop 

working after finishing their available energy, it is understandable why energy is an 
important parameter in the group leader selection. Similarly the fewer the neighbours a 

sensor node has, the less suitable the sensor node is to be selected as a new group leader 

Furthennore a sensor node with low trust should also be avoided. All these parameters 

are very important in the selection process of a new group leader. However to verify the 

importance of the fourth parameter "position of a new group leader", we found it 

necessary to undertake some investigative analysis. This analysis, which we outline 

below, has shown us the importance of sensor node positions in the selection of a new 

group leader. 

In this evaluation process we have assumed a simple scenario as shown in Figure 5-7. 

a 

- 1 

31 

41 

a 

4 

Figure 5-7: Group leader positions and communications towards the sink. 
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Figure 5-8: Energy consumptions of a group with different positions for the group 
leader. 

During this simulation we have selected a group of 25 sensor nodes in a grid topology as 

shown in Figure 5-7. Each sensor node has one joule of energy. The packet size is 48 bits. 

We have placed the group leader sensor node at all possible positions in the group. In this 

evaluation process all sensor nodes sense and route data towards the group leader using 

an adaptive routing algorithm [162]. The group leader receives data from 24 nodes and 

aggregates all the data before finally routing it towards the sink. This entire process is 

considered to be one cycle. We measure the energy consumption of every single node in 

Joules usingfirst radio model described in Section 6.2, phase 3, which calculates the cost 

of transmitting and receiving packet of size k bits. These energy outcome values might be 

different in real applications where different sensor nodes are used with different radio 

models. We have run 100 cycles for each group leader and then calculated the energy 

consumption of the entire group as shown in Figure 5-8. We have also run the same 

simulation for a group of 100 sensor nodes, providing us with a large amount of useful 

information. in particular the sensor at position (2,2) is the most efficient which consume 
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0.310 Joules in comparison to the least efficient sensor node at position (0,0) which 
consumes 0.504 Joules which means the sensor node at position (0,0) consumes 20% 
more energy as compared to position (2,2). As shown in Figure 5-7, the group leader 
position in the middle helps to save energy consumptions. For better understanding we 
take an example if the battery life of every sensor node in a group is 10 hours and we 
select every sensor node in the group as group leader for 100 cycles. The sensor node at 
position (0,0) consumes 7 hours of its battery life where as node at position consumes 
only 5 hours of its battery life. These results clearly indicate that the position of the group 
leader has a direct affect on the performance of the entire group. Based on this, during the 

new group leader selection process we should use the node positions as a selection 
parameter. Further details about our proposed solution for the new group leader selection 

will be described in Section 5.2.2. 

Conclusions 

The outcome and results from our experiments show the importance of the group leader's 

position and its effect on the WSN performance. This importance will increase further as 
the size of the group increases, or as the packet size increases. With large group or packet 

sizes, the inappropriate selection of a new group leader can result in a large energy 

overhead. 

5.2 SADI-GKM Protocol Components 

This section presents our main protocol (SADI-GKM). To apply the SADI-GKM 

technique to a WSN, a number of assumptions are necessary in order to provide a 

consistent framework within which to work. It will also be useful for us to consider the 

requirements of our design. These are outlined in the following subsections. 
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5.2.1 Key Management and Secure Data Aggregation (First and Second Layer of 
SADI-GKM) 

Generally WSNs are scalable networks, and it is not uncommon for them to incorporate 
thousands or even millions of sensor nodes. Researchers have proposed a number of 
different network management protocols and schemes for large scale WSNs. A common 
idea proposed for the management of large-scale networks is that of splitting them into 

regions or small groups of nodes (logically or physically) using clustering, geographical 
division, topology etc. To deal with the scalability issue we therefore organise large-scale 

WSNs into small groups of sensor nodes with unique IDs. 

As for deployment, a Gaussian distribution can be used to establish a random group 
deployment of sensor nodes in some outdoor applications [78]. For indoor applications 

sensor nodes can easily be deployed in groups. However, we do not intend to consider the 

issue of node deployment in detail at this stage. The notations to be used for the protocol 

presentation are summarised as follows: 

GI Group ID 

NI Node ID in group 
ID Node ID in network (concatenation of GI and NI) 

MkGI Symmetric master key shared between sink SI and group leader GI 

A Encrypted data of node IDj 
MGI Encrypted data of group leader node GI 

Ksj,, Di Symmetric key shared between node ID, and the sink ST This key is used for the 

encryption and decryption of data collected by ID, 

KGI,, Di Symmetric key shared between node M and its group leader node GI 

VGI Key/secret shared among all the sensor nodes in group GI 

Ua, b Key/secret shared only between neighbouring group leaders a and b 

TSIDj Time stamp for node ID, 

TSGI Time stamp for group leader node GI 

di Sensed data by node ID, 

xilyi Hash values calculated by sensor node/group leader node 
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(a) Key Pre-distribution Phase 

in the first phase of key pre-distribution the following steps are performed. This occurs 
before the deployment of the sensor nodes in groups: 

Assign a global unique ID to each sensor node. This global ID is comprised of a 

group ID, GI and an ID within the group, NI (see Figure 5-9). 

Assign a unique group master keyMkGIto every group leader in the WSN- 

Assign a unique value VGI to each group of sensor nodes, used for authentication 
inside the group. 

Assign a unique value Ua, b to every pair of neighbouring group leader sensor 

nodes. 

Generate and store a unique key &I, a using the corresponding group master key 

MkG1 and a sensor node ID for every group member sensor node. 

Assign a unique key Ksj,, Di to every sensor node ID, (note: this key need only be 

assigned if we require the aggregation of data in an encrypted form at group 

leader sensor nodes). 
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n , *tuaooy Mko2o ,. . 0 na2000002 
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Figure 5-9: Organization of sensor groups. 
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In the example illustrated in Figure 5-9, a sensor node has a global ID of the form 
02000002, with the initial three digits representing GI (group ID) and the last five digits 

representing NI (local node ID in a group GI). Algorithm 5-1 shows the complete pre- 
distribution process. According to step 2 there will be no master key stored in any 
member sensor nodes. These steps should be performed by an administrator prior to 
deployment. It is important to emphasise that sensor nodes in all groups will use different 
keys KGjjD for encryption purposes in order to provide better confidentiality (as discussed 
in section 5.1.1). The reason for keeping the master key MkG, at the leader of each group 
GI is to allow it to decrypt the encrypted data received from the member sensor nodes in 

its group. In every single group data will be encrypted at source sensor nodes and is only 
decrypted at the group leader node for data aggregation purposes, as will be explained in 

later sections. 

- Pre deployment - 
Step 1: Node IDformation 

Concatenation of Group ID and Node IDforms a unique IDfor each node in 
the Network 

ID (-- join (GI, NI) 

Step 2: Group key generationfor node ID 

if ID =join (GI, 00) then //Check if the node is a group leader 

KGI, ID 
<-- Mk(;, //Assign a group leader master key Mk(;, to the node 

Else 

KGI, ID <- hash (MkG,, ID) //Assign a group member key to the node 

End if 

Step 3: Sink key generalionjor node ID only if secure data aggregation is required 

Ksj., D <- a key shared with the sink 

Step 4: Slore KGIID, VGi, Ksi. iD 

Algorithm 5-1: Pre-distribution phase. 

Data Transmission Phase 

We first discuss the functions of each non-group-leader sensor node, which are defined in 

Algorithm 5-2 as part of the proposed protocol. Suppose that after successful deployment 

of the sensor nodes, an event occurs. In the step I of the Send function in Algorithm 5-2, 
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an event source node with its identity IDj will collect and encrypt the event data d, with 
its key Ksj,, Di shared with the sink to produce Ci. To enable data freshness checking by the 

group leader of node M for the detection of a replication attack, we produce a value M, 
by re-encrypting Ci with a time stamp TSID, using the key KGI,, Di shared between node ID, 

and its group leader GI, where "C, I TSID, " in EKG, 
, ID, (Ci I TSID, ) signifies the concatenation 

of Ci and TSiDi. 

In step 2, node IDi produces an authentication code Xi by hashing Mi, the key/secret VG1 

shared among all the group members, ID, and TSjDj, for communication with 

neighbouring sensor nodes. After finding a correct neighbouring sensor node using its 

energy level and direction value, sensor node ID, sends out (X,, Mi, ID', TS, ). The value X, 

will be used by the receiver sensor node to authenticate the received information and 

TSjDj is used to avoid replay attacks. 

When the neighbouring sensor node receives the information, it produces an 

authentication code Xj by hashing the received items (M, M, TSID) with shared key VGI, 

and compares it against Xi for the purposes of authentication, as illustrated in the Receive 

function of Algorithm 5-2. If successful, the received data are forwarded to the next 

neighbour. In this way, we avoid encryption and decryption at every single hop to reduce 

the usage of limited recourses available to the nodes. 
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- Group member nodes - 

Send () IH Works inside a group 
Step 1: Collect, encrypt and assign sensed data to variable Mj 

di Sensed_data 
Cj EKsjIDj (dj) 

Mj EKG,, 
IdCi 

I TSIDi) 

Step 2: Send out encrypted data Mi, hash value Xj, source node ID, and time stamp TSIDi 

Xj <- hash (Mi, VGI, IDj, TSDj) 

Retum (Xi, Mi, IDj, TSDi) 

Receive (X., Mi, IDi, TSi) I 
Step 1: Authenticate the sender node 

X'j <- hash (Mj, VGI, IDj, TS) 

If X'i =X and TSj is fresh then 
Step 2: Forward received data to next neighbour towards group leader 

Return (Xi, Mi, ID, TSj) 

Else 

Abort and report to group leader GI 

Algorithm 5-2: Group member nodes. 

Second, each group leader sensor node has additional responsibilities, including secure 

data aggregation, integrity checking and authenticate communication with other group 

leaders. Algorithm 5-3 illustrates the functions performed by each group leader sensor 

node. 

As shown in the Receive function of Algorithm 5-3, when a group leader sensor node 

receives data, it will first check whether the data are from another group leader node or a 
U, b used member node, based on two calculated hashes XG, and Xj. Here, secrets VGI and ' 

for the calculation of the hashes are stored in the sensor node prior to its deployment. In 

the case where the data are from a member node (i. e. Xi = Yj), the leader sensor node 

applies its master key MkGj and received identity IDi to compute shared key &j, jDj for the 
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decryption of Mi to recover Ci and TSID, It saves Cj if TSiDi is fresh, and discards Ci 

otherwise. The successful decryption of A can also be used to authenticate source sensor 
node IDi and check data integrity. After the data from all expected group member sensor 
nodes have been received, the leader sensor node invokes the Send function of Algorithm 
5-3. 

If the data is from another group leader (i. e. XG, = Yj) and TSj is fresh, then the received 
data are forwarded to the next appropriate group leader on the route to the sink. 

We intend to apply SADI-GKM to different applications. Therefore for the secure 

communication between groups, we can establish key management according to the 

structure of applications. For example, we adopt the assumption used in LEACH [ 139], 

namely, each group leader node has a larger communication range than an ordinary one 

so that neighbouring group leader nodes can communicate with one another directly. This 

assumption can also be considered in order to allow non-group- leader sensor nodes to 

mediate communications between group leaders. 
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- Group Leader Nodes - 

Send () t 
Step 1: Compute aggregated data DGI ftom encrypted data, Cl, ..., C" received from group 

member nodes 

n 
DGi *- (EC) mod Z O<D<Z 

i=l 

Step 2: Encrypt DG, and TSGi to produce MG, 
MGI *- Em kGl (DGIý TSGI) 

Step 3: Send out encrypted data Mul, hash value YGI, group identity GI, and time stamp TSGI 
ftom group leader sensor node a in group GI to group leader b 
YGI '(- haSh (MGh Ua, bq GIi TSGI) 

Retum Mi, MG� Gl, TSGI) 

Receive (Yi, Mi,, IDj, TS; ) I 

Step 1: Check ifthe data are comingfrom a member node or another group leader 

XGI, (- hash (MjqUa, bq mg Tsi) 

Xj (-- hash (Mi, VGI, ID, 7S, ) 

If Xj = Yj then H Data from a member node 

Step2: Decrypt Alfj using key KGI,, Di where KGI,, Di= hash(MkG,, lD, ), to recover Ci and TSID, 

(Cii 7SIDi) (-- E'KGj, lDi(Afý) 
if TSjDj is fresh then 

Save Ci 

If Cj is the last value received then 
Step 3: Send out aggregated data 

Send () 

Else 

Discard Cj and report to sink 

Else if Xc,, = Yi and 75ý is fresh then 
Step 4: Forward the data receivedftom a group leader to another group leader towards the sink 

Return (Yj, M, ID, M) 

Else 

Abort and report to sink 

Algorithm 5-3: Group leader nodes. 
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For the Send function of Algorithm 5-3, the encrypted data items (CI, 
... ..., Cn) are first 

aggregated to produce DGI using homomorphic encryption as described in section 3.2. We 

note that the value of Z must be chosen large enough to prevent overfiow. As with 
Algorithm 5-2, it is necessary to encrypt DG, and a time stamp TSGI with the keyMkGl., 

shared with the sink, for the purposes of data authentication and freshness checking. The 

Send ftinction also uses the secret U,,, b, shared among a pair of neighbouring group leader 

sensor nodes a and b, and a time stamp TSGI to produce an authentication code YGI to 

deter replay attacks. Finally, the data items (YGI, MGI, GI, TSGI) are sent to the first 

neighbouring group leader sensor node on the route to the sink. 

Third, Algorithm 5-4 explains the decryption process performed by the sink. We assume 

the sink has all the keys Ua, bq MkGj and Ksj,, Di shared with the group leaders and sensor 

nodes. Once the data have been received at the sink it will go through a process to verify 

the source group leader (i. e. by checking that Yik = YGI and TSGI is fresh). However the 

YGI can be forged if a group leader node is compromised. Step 2 ensures that the time 

stamp and data have not been altered by a compromised group leader (i. e. E" MkGAMi) and 

TS'GI = TSGI) otherwise the sink should discard the received information and take 

appropriate actions. If step I and 2 are successful then step 3 will be performed to 

retrieve the aggregated data as shown in Algorithm 5-4. 
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- Sink Node - 

Receive (YGI, MGI, GI, TSGI) I 

Step]: Authenticate the sender group leader 
Y, j4, E- hash (MG1, U,,, b, GI, TSGI) 

If Yj4 = YGi and TSGI is fresh then 
Step2: Decrypt MG, using master key MkG, to recover DG, and TSGI. 

(DGjq TSGI) '(- ElMkGAMGI) 

If TSGj = TSGI then 
Step3: Get the aggregated data 

n 
(DGi- Ksi, iDi )) mod Z 

Else 

Abort and take actions 

Algorithm 54: Sink node. 

The sink can calculate the averageu asu = Sln. To calculate the variance 0-2 every sensor 
node needs to send the square of each sensed value to its group leader so the variance can 
be calculated as oý = Sln _ P2 where S, is the sum of the squared value of each sensor 

node. If the group leader node is interested to find the minimum or maximum values from 

received encrypted values, we can use the Order Preserving Encryption Scheme for 

Numeric Data (OPES) [164]. This scheme allows comparisons to be directly applied to 

encrypted data. Existing results have shown that homomorphic encryption is a cost 

effective so lution for secure data aggregation in sensor networks [ 165 ]. 

5.2.2 Secure Group Leader Selection (Layer three) 

In this section we propose a formula for new group leader selection. In this formula we 

consider four important factors in the selection process. These factors include available 

energy, trust level, number of neighbouring nodes and position of a new group leader 

node. During the selection process the available energy El and trust level T, need to be 
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greater than the thresholds 8 and a respectively, to become eligible for new group leader 

selection. 

This formula can be used for different applications with respect to different 

communication behaviours of sensor nodes. For example in some applications sensors 

might use different radio ranges with respect to distances between different sensor nodes 

as described in the previous chapter. In such applications we measure the space S, 

between source sensor nodes and the current group leader using distance dl. However in 

applications where a fixed radio range is used for communication between sensor nodes, 

we measure the space S, between source nodes and the current group leader using hops hi. 

Furthermore our proposed formula can also be used in heterogeneous WSNs where 

different sensor nodes have different energy requirements. However, existing solutions 

for group leader selection/election have only used energy or the number of neighbouring 

sensor nodes as their main election criteria [ 140,160,13 9,161 ]. 

We have used the following notation in our proposed formula: 

S, Space between source sensor node I and the group leader. 

d, Distance between sensor node 1 and the group leader. 

h, Number of hops between sensor node 1 and the group leader. 

6 Energy threshold level. 

a Trust threshold level. 

We Weighting factor for energy. 

WSI Weighting factor for the space between sensor node I and the group leader node, 

where ws, can be wdlor WhI. which are two different weighting factors for d, and 

h, respectively. 

Wt Weighting factor for trust. 

El Available energy of sensor node 1. 

T, Trust level of sensor node 1. 

N, Number of neighbouring sensor nodes. 

W, Selection value of sensor node 1 in the process of new group leader selection. 
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In the new group leader selection process, the current group leader will send a selection 
process packet to specific nodes that are to participate in the selection process. All 
participant nodes will calculate their selection value W1 using the formula shown below, 
and send it to the current group leader: 

Wi = (EI x w�) + (T, x wt) + (NI x w�) +(1+ wsl) si 

If El> 6 and T, >a and N, >0 and S, = d, or hl> 0, 

otherwise W, = 0. 

In this formula we multiply available energy El with weighting factor w,, trust T, with 
trust weighting factor wl, N1 with its weighting factor w,, and S1 with its weighting factor 

w,,, and then add them together to calculate W1, in order to help us during simulation to 

evaluate the affect of each parameter during the selection process. Any node with Wj=O 

will not be selected as a new group leader. In order to participate in the group leader 

selection, the current sensor node's available energy El, trust level T, and number of 

neighbouring sensor nodes N, need to be greater than the thresholds 6, Ct and zero 

respectively. We note that IISI gives a higher value when a sensor node is closer to the 

current group leader. 

The group leader sensor node will determine the highest value of W, in order to select a 

new group leader sensor node. The current group leader will then broadcast a message 

containing the new group leader ID to all its group member sensor nodes. Furthermore 

the current group leader will send the master key and any keys shared with other groups 

to the new group leader. For future communication all data should then be routed toward 

the new group leader sensor node. 

In the given formula we calculate the selection value W, using four different factors by 

adding the values of the energy factor, trust factor, number of neighbouring nodes factor 

and distance between group leader and node factor. If node I has the highest energy 
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above the threshold 6, more than one neighbouring nodes (NI > 0) and is close to the 
current group leader (SI) but the trust T, is less then the threshold a, then the node will 
have W, =0 and be automatically ruled out as a future group leader. Similarly the other 
factors will play roles in much the same way. 

According to the results described earlier in Section 5.1.2, we don't involve all group 
member sensor nodes in the selection process. As nodes closer to the current group leader 

are more ideal for performing the role of the new group leader as compared to sensor 
nodes that are further away. Therefore we only involve the limited number of sensor 

nodes around the current group leader in the selection process. This will help us to reduce 
the energy cost during the selection process. This is in contrast with existing proposed 

solutions, which involve all group members in their election or selection process, thereby 

consuming extra energy as a result. This is another advantage of our proposed scheme. 
The formula above can be coded into all group member nodes. Whenever a group leader 

requests a member node's selection value, the node will calculate it using this formula 

and send it to the group leader. We will describe in detail the implementation of this 

group leader selection process in Chapter 6. 

Moreover our current solution is also scalable. The number of participant nodes can be 

increased by sending participation packets to more nodes during the new group leader 

selection process. For example, the current group leader can only send participation 

packets to first hop neighbours or to first and second hops neighbours and so on. 

In our present solution we do not consider issues when member sensor nodes send out 

false information (e. g. using incorrect trust levels for selection value calculations) in 

order to be selected as a new group leader. This is an area of ongoing research which we 

hope to tackle in future work. 

5.2.3 Key Management for MSNs (Layer four) 

In the previous chapter we briefly described our proposed key management solution for 

MSNs. In this section we will explain in detail about the solutions. Before going into 

further details we first present the security policy that we apply to MSNs. 
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5.23.1 Security policyfor MSNs 

We can establish different security policies for mobile sensor nodes when they roam from 

one group to another. After successful authentication, a new incoming mobile sensor 
node can only access limited services in the host group, for example to communicate with 
only a single host group member sensor node. Moreover the guest mobile sensor node 

might have many neighbouring sensor nodes within its communication range but 

according to the security policy, a guest sensor node is only entitled to communicate with 

one host sensor node. Furthermore the new mobile sensor node will not be involved in 

any internal operations of the group such as data aggregation, group leader selection, etc. 
The initial service available to the guest mobile sensor node will be routing. 

The host group will establish future relations (similar to granting a membership) with the 

guest mobile sensor node on the basis of its past performance and behaviour history 

inside the group. Once the guest mobile sensor node achieves a membership of the group, 
it can then establish communication links with more than one sensor node, and participate 
in sensing and new group leader selection operations. These policies can be defined 

according to the target application nature and its security requirements. 

The future stay of mobile guest sensor nodes in the host group will be monitored on the 

basis of a trust point system. If a guest sensor node performs a malicious activity it will 

be marked down with a negative trust point. The host group will make a decision based 

on these trust points as to whether to refuse or extend a ftirther stay of the guest sensor 

node within the group. 

In summary a group leader sensor node will allow a guest mobile sensor node to establish 

a secure communication link (through the sharing of a session key) with only a single 

sensor node, i. e. a new incoming sensor node will have only one neighbouring sensor 

node. The new sensor node can then only communicate through this one sensor node. We 

enforce such restrictions according to the threat level of the target application. 

Furthermore a group leader will grant more rights to incoming sensor nodes to establish 

secure communication links according to their trust levels. 
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5. Z3.2 Keypool based authentication for MSNs 

In this solution we extend SADI-GKM for key establishment with the addition of a 
probabilistic key based idea for mobile sensor node authentication. This extended SADI- 
GKM pre-distribution phase includes the following activities: 

1. Assign a unique ID to each sensor node, which is a combination of its group ID, 
GI, and its own ID, NT 

2. Assign a unique master keyMkGI tOthe leader of group GI and its member sensor 

nodes. 
3. Pre-load k (key ring) keys from key pool S, which the mobile and static sensor 

nodes use for intra and inter group authentication. 
4. Assign a unique valueUa, b to every pair of neighbouring group leader sensor 

nodes a and b. 

5. Generate and store a unique key KGI, a using the master key MkG, and node ID of 

each sensor node. 
6. Assign a unique key Ksjja to every sensor node ID, (note: this key need only be 

assigned if we require the aggregation of data in an encrypted form at group 

leader nodes). 

As Ksl,, Di is a unique encryption key for each sensor node in the WSN, therefore it will 

not change even after the mobile sensor node roams from one group to another. However 

we do need to update the authentication keys which will be tackled later in this section. 

Note that we assume the initial group IDs for the nodes are known in advance, however 

once deployed the protocol allows nodes to move between groups unrestricted. 

We have amended the step 4 of the original SADI-GKM pre-distribution phase as shown 

above. According to the amended step 4, the k keys will be preloaded from the key pool S 

into every sensor node before deployment, whereas in the original SADI-GKM ever. \ 
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sensor node in each group G1 is preloaded with a value VGI for authentication inside the 
group and every group Gli has a different VGjj. 

We are interested to find the probability of key sharing when a mobile sensor node moves 
from one group to another. We need to use a probabilistic key establishment idea in the 

case when a mobile sensor node moves from one group to another. What will be the 

probability that it can establish at least one link with any member of the new group? 
When a mobile sensor node moves from one place to another, we calculate the 

probability P of any specific node within the group being within radio range. We need to 
find the probability that the mobile sensor node can establish at least one link with one of 
its neighbouring sensor nodes. We do this by assuming the sensor nodes lie on a plane 

and that the radio coverage of a sensor node is circular with radius r. The area of radio 

coverage for the sensor node is therefore the area of a circle ir x rý. If the overall area of 

the group is represented by A then the proportion of the group within the radio range of a 

single node can therefore be represented by D where 

ir xr2 
A 

Here r is the radio range of the mobile sensor node in metres, A is the area of the new 

group, measured in rn 2 and the constant ;r represents the ratio of the circumference of a 

circle to its diameter. 

Having established D we need to find the probability that this sensor node shares a key 

with one of its neighbours. Furthermore we have already described in our security policy 

that initially a guest sensor node will be allowed to communicate with only one sensor 

node, depending on the given security requirements. 

Given D as above, group size N and probability P that two given nodes do not share a key, 

the probability that the mobile sensor node does not share a key with any of its 

neighbours can be calculated as follows. 

Pr ý::::: KI - D) + (D x P)l N-0 
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The formula (1) includes the chance of a given node falling outside the radio range of the 

mobile node is (I - D). The chance that it is within the radio range but shares no key ýk ith 

the mobile node is (D x P). The chance that it is not possible to communicate with the 

node for either reason is therefore the sum of these two probabilities. Finally the 

probability P, for N nodes is therefore this probability powered to the N-th degree. 

Work on existing probabilistic key management solutions (key pool based ideas) has 

attempted to find the probability of establishing a secure link between a pair of sensor 

nodes. For example, according to the Basic Probabilistic scheme [72], if the size of the 

key pool S is 10,000 and 75 keys (k = 75, key ring) are preloaded in every sensor node, 

then the probability of sharing at least one key between a pair of nodes is 0.5. They 

formulated the probability that two sensor nodes do not share any keys as: 

((S - k) ! )2 
p=-. (2) 

(S - 2k)! S! 

By simplifying the expression of equation (2) we get: 

k) 
)2(S-k+l) 2 

. 2k (S-2k+ 
I) 

s)2 

By substituting equation (3) into equation (1) we get: 

k)1)2(S-k+ -I) 
(0 2 

P,, D) + (D x- 
S 
2k ) (s 2k+ 

s 
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The probability of the mobile sensor node being able to establish one link out of the D 
N neighbouring sensors is 

Pr. 

Substituting the values from equation (4) we get 

. 

k) 
1) 

2(S-k+ -I) 

s2 

(5) 
2k (S-2k+') 

s)i 

Equation (5) will give the probability for the mobile sensor node to establish at least one 
link (enabling it to authenticate itself), given that we know the group area A and size N, 

mobile node radio range r, key pool size S and key ring size k. 

The main purpose of finding the probability for a mobile node to share a key in the host 

group is authentication. Therefore the probability needs to be sufficiently high for the 

mobile node to authenticate itself to the new group. This formula also helps to find the 

probabilities of mobile sensor node authentication at different positions in the host group 

which we will revisit in section 6.3.9. 

5.3 Summary 

In this chapter we have described in detail all layers of our protocol stack. We began by 

describing our pre-design investigations. These investigations are important part of our 

research, which resulted in the identification of some core information needed to help us 

towards the development of an efficient protocol. In the detailed design section we 

described each of the four layers. For the first and second layers, key management and 

secure data aggregation, we described the basic key management and secure data 

algorithms together. Then we explained the third layer, secure group leader selection, 

where we have presented our novel formula for new secure group leader selection. In the 
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fourth layer we presented a key management solution for MSNs and an authentication 

model for mobile sensor nodes. 
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Chapter Six: SADI-GKM Implementation and 
Evaluation 

6.1 Introduction 

The previous chapter described the model of our novel SADI-GKM protocol for WSNs. 
In this chapter we present the evaluation and implementation of our work. As our work is 
divided into four different layers, we have therefore evaluated the performance of each of 
these layers separately and compared them with existing proposed schemes from the 
literature. We describe the performance evaluation process and discuss the different 

simulation scenarios used to show the performance of each layer of our protocol. To 

begin, we have implemented the first layer of SADI-GKM and tested its resilience 

against node capture attacks using different topologies (tree, grid and random mesh). The 

purpose of this is to determine the level of topology independence by simulating node 

capture attack using various topologies. We also aim to show that it is more resilient 

against node capture and replication attacks than existing schemes by simulating node 

captures and detecting the fraction of total communication comprised for different 

schemes in WSN. Further we have implemented the second layer (secure data 

aggregation) to establish the impact on energy use of various encryption schemes during 

secure data aggregation. We simulate each encryption technique and run them over a 

number of cycles to compare energy use. For the third layer (secure group leader 

selection) we aim to show the group leader selection scheme is efficient by simulating the 

process with a variety of factors to establish optimum values such as selection frequency. 

Finally the fourth layer (key management for MSNs) of our proposed protocol extends 

the protocol for MSNs- We test the applicability of key management in mobile 

environment. 
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6.2 Implementation Phases and Simulation Framework 

We have written our simulation framework and undertaken our project implementation in 
Java (JDK. 1.6). As described earlier our protocol contains four different layers, each 
performing a different function. Each layer has been implemented as a distinct program 
with links to the programs of the other layers. The first step of our implementation was 
topology creation, since we needed to test our proposed solution on different topologies. 
For this we have implemented tree, grid and random mesh topologies. Furthermore we 
have implemented an adaptive routing algorithm on the top of these topologies. The 
advantage of using Java is that it has its own built-in security packages for encryption and 
decryption. We will explain in detail about the topology, routing and security packages in 
later sub-sections. 

Phase 1: Topology Creation 

(a) Tree Topology Setup 

As discussed in section 5.2.1, we organise the entire WSN into groups of sensor nodes. 
Each group has 100 sensor nodes and is structured as a tree topology. Each sensor node is 

connected to its parent and between one and five child sensor nodes. The number of child 

sensor nodes for each sensor node is selected randomly. Figure 6-1 shows 100 sensor 

nodes organised in such a tree topology. Algorithm 6-1 describes the tree construction 

process. In the first step we select the total number of sensor nodes. In the second step the 

tree construction process selects a single node as the parent node for the entire group; 

then a random function will select the number of its child sensor nodes (between a 

minimum of one and a maximum of five). Further every child node will be selected as a 

parent node to select its child nodes. This process runs repeatedly until all sensor nodes 

have been assigned children. Moreover for the simulation process we assume every child 

node shares a key with its parent node. 
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Figure 6-1: 100 sensor nodes in a random tree topology. 

int u=O; 
for(int i=O; i<tn; i++) I // tn is number of total nodes in group 

if (totalnodes>O) f // if all nodes are assigned as child nodes 
n[il. parent=p; // assigning parent node 
r=no. nextInt(max)+l; 
n[i]. left=node 

- 
c+l; assigning left most child 

for(int j=O; j<r; j++) assigning child nodes 
//child assign 
if(tp<total_n) Change if you want to change number of Childs 

tp=++node_c; tp is temp, variable 
n[i] child(u]=tp; 
if(r==j+l) //Assign Slib of every node 

n(i] slib[u]=O; 
else 

n(i] slib[u]=tp+l; 

u++; 

n[ij. right=node_c; // assigning right most child 
totalnodes-=r; 
U=O; 
P++; 

Algorithm 6-1: Random tree topology construction with maximum five child nodes. 

(b) Grid Topology Setup 

This process is used to organise the entire WSN in a grid topology formation. We follow 

a similar process to that of the tree topology, managing the entire WSN in groups of 100 

sensor nodes. In a grid of 100 sensor nodes every sensor node has a maximum of four and 

a minimum of two neighbouring sensor nodes, as shown in Figure 6-2. The java code for 

constructing this grid topology and assigning keys to relative sensor nodes are presented 

in Algorithm 6-2. 
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Figure 6-2: 100 sensor nodes in a grid topology. 

Random n=new Randomo; 
for(int u=C; u<100; u++) simulation run times 

for(r=O; r<Max; r++) 
for(c=O; c<Max; c++) 

if ((r==Min && c==Min) 11 (r==Min && c==Max-1) 
11 (r==Max-1 && c==Max-1) 

a[rlfcl=2; check=1; 
I 

else if ((r<max-1 && (c==Min 11 c==Max-1)) 
11 (c<max-I && (r==Min 11 r==Max-1))) 
a[rl[cl=3; check=2; 

else 
a [r] (c]=4; check=3; 

11 (r==Max-1 && c==Min) 

Algorithm 6-2: Grid topology construction with maximum four and minimum two 

neighbouring nodes. 

, (-I Random Mesh Topology Setup IV 

The setup of the random mesh topology is different from those of the tree and grid 

topologies. In a random mesh topology we select neighbouring sensor nodes on the basis 

of radio ranges between sensor nodes. Effectively, all sensor nodes coming within the 

radio range of a sensor node will form its neighbours. Sensor nodes in every group are 

randomly deployed and assigned geographical coordinates (x, y) as shown in Algorithm 

6-3. We assume that the radio range of every sensor node is 40 m. The geographical area 

of each group is 150x 150 m2 containing 100 sensor nodes. Every sensor node in a group 

will establish communication links with its neighbouring sensor nodes failing in the range 
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of 40 m. Figure 6-3 shows the random mesh topology in a group. The pseudo code for 

constructing this random mesh topology is presented in Algorithm 6-3. 

Figure 6-3: 100 sensor nodes in a random mesh topology. 
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for (int i=O; i<Max; i++) Initializing sensor nodes 
ne[i]=new Nodeo 

Random n=new Randomo; 
int x=O, y=O, check=O, ct=0; 
for(int i=O; i<Max*2; i++) // Deploy nodes randomly: 

x=n. nextInt(Field); // Position of sensor nodes 
y=n. nextInt(Field); 
for(int j=O; j<Max; j++) 

if (row[jl==x && col[jl==y) I 
check=l; j+=100; // Break this loop 
I 

if (check==O) 
if(ct<Max) 

row[ctl=x; col[ctl=y; ct++; 

else i+=Max*3; 

else check=O; 

assign random coordinates 

I 
for(int i=O; i<Max; i++) tempr[il=row(i]; tempc[i]=col(i]; 
for(int s=O; s<500; s++) // Simulations runs 

//Reassign the nodes to same positions 
for(int i=O; i<Max; i++) I 

row[i]=tempr[i]; col[i]=tempc[i); 

Establishing the links with neighbouring nodes 
for(int i=O; i<Max; i++) ( 

rr=row[i]; cc=col[i]; 
for(int j=O; j<Max; j++) 

r=row[j]; c=col[j]; 
if (! (r==rr && c==cc)) 

if ((r>=rr-range && c>=cc) && (r>=rr-range && c<=cc+range) 
&& (r<rr && c>cc) && (r<=rr && c<=cc+range)) 

count++; ne[i1. r(j1=row[j1; ne(i]. c[j)=col[j]; 

else if ( (r>=rr-range && c<=cc) && (r>=rr-range && c>=cc-range) 
(r<=rr && c>=cc-range) && (r<=rr && c<=cc) 

count++; ne [i] r [j I=row(j I; ne [i] c[jl=col[j I 

else if ( (r>=rr && c>=cc-range) && (r<=rr+range && c<=cc) 
&& (r<=rr+range && C<=cc) && (r>rr && c<=Cc) 

count++; ne[i] r [j] =row[j I; ne[i] c[jl=col [j] ; 

else if ( (r>=rr && c>cc) && (r<=rr+range && c>=cc) && (r<=rr+range 

&& c<=cc+range) && (r<=rr+range && c<=cc+range)) 

count++; ne [i] r[j I=row[j I; ne[i] c[i I=col [i I; 

) // closing if used to stop duplication 
//closing loop 

node[i]=count; count=O; 
//closing for loop 

//closing for loop 

Algorithm 6-3: Random mesh topology construction. 

Phase 2: Routing Algorithms 

We have used the adaptive routing given in (166,162] during our implementation. This 

routing algorithm will find a suitable neighbour, which will help to route data towards the 

sink. 
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We have chosen this adaptive routing algorithm due to ever changing traffic in our 
simulated networks. We have assigned a Directional Value (DV) to each sensor node. 
This Directional Value helps to route data towards the sink or a group leader sensor node, 
and helps the sink or group leader to find the location of a source sensor node. In all cases 
the final destination will be the sink or a group leader sensor node, so each sensor node 
knows in which direction to send its packets. Using our routing algorithm a sensor node 
can compute a suitable direction towards the sink or its group leader sensor node. The 
best route depends on the minimum Directional Value and the maximum energy available. 
As global routing has a huge amount of overhead and cannot be practically applied to 

WSNs [166], it is appropriate to use a local routing. The method to be presented below 

makes use of local information for routing data, including the remaining power of a 

sensor node, the number of its neighbours, the number of hops between the source and 
destination nodes9 and the sum of the remaining power of the next neighbours. 

The routing algorithm given below routes the data from different directions towards the 

sink or a group leader sensor node: 

So, Source row 
So, Source column 
Der Destination row 
Dec Destination column 
Sir Sink row 
sic Sink column 

If De, = Si, AND De, = Si, then 
This is the Sink or Group leader 

Else 
If ISo, -Si, l > IDe, -Si, l OR ISo,, -Si, l > IDe, -Si, l then 

Send data in this direction 
Else 

Stop data in this direction 
End if 

End if 

t 

Figure 64: All of the possible directions the algorithm can use to route data. 
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We have tested the above algorithm with the settings shown in Figures 6-5. It should be 

noted that in the algorithm, a destination node refers to a source node neighbour, which 
may not be the sink or group leader sensor node. We use Figure 6-5 as an example to 

explain how the algorithm works. In this example, we use the notation (group leader ID, 

source node x, source node y) to represent a position of a sensor node in the topology. 
Suppose that sensor node (1,1,1) wants to send data to group leader (1,3,3). Now the 

source sensor node (1,1,1) can either select sensor node (1,1,2) or (1,2,1) as a destination 

node because both nodes can forward the data to the group leader. If node (1,1,2) is 

selected,, it will receive the data from (1,1,1) and then become a source sensor node to 

forward the received data to another node. Node (1,1,2) has three neighbouring sensor 

nodes but can only select node (1,1,3) or (1,2,2) for sending the data forward because 

these two neighbouring sensor nodes are leading towards or closer to the group leader 

sensor node. Suppose that (1,1,3) is selected as a destination. When (1,1,3) receives the 

data, it will then act as a source. Similarly (1,1,3) has three neighbours but only two of 

them, (1,1,4) and (1,2,3), could lead towards the group leader. At this point the algorithm 

will select node (1,2,3) as a destination instead of (1,1,4), because (1,2,3) is closer to the 

group leader than (1,1,4). Similarly node (1,2,3) becomes a source and will send the 

received data to node(1,3,3) which in this case is the group leader sensor node. 
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Figure 6-5: 25 nodes arranged in a grid including a group leader [1621. 
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Phase 3: Radio Model 

We use the same radio model as LEACH [3-28], which is widely used by many 
researchers [167 - 171]. Currently, there is a great deal of research in the area Of low- 
energy radios. Different assumptions about radio characteristics, including energy 
dissipation in transmit and receive modes, will change the advantages of different 

protocols. In our work, we assume a simple model where the radio dissipates E,,,, = 50 

nJ/bit to run the transmitter or receiver circuitry and c "MP = 100 pJ/b it/m 2 for the transmit 

amplifier to achieve an acceptable EbIN,, (see Figure 6-6 and Table 6-1). We also assume 
a d2 energy loss due to channel transmission (where d is the distance of transmission). 
Thus, to transmit a k-bit message with a distance d, the radio would expend the following 

energy based on this radio model [139,167 - 171]: 

ET, (k, d) = ET,,,,, (k) + ET,,. p (k, d) 

In other words, the energy required is the sum of the energy needed to run the transmitter 

circuitry for k bits and the energy needed for the transmit amplifier to allow the k-bit 

message to be sent a distance d. Since the transmitter circuitry requirements remain 

constant per bit, and the amplifier requirements are proportional to the square of the 

distance to be transmitted, we can see that this is equivalent to the following energy 

requirements. 

ET, (k, a) ý (EelecXk)+(Campxkxcf) (1) 

To receive this message, the radio expends the following: 

ER,, ER., 
-elec 

In this case the energy requirements are just those of the receiver circuitry, which remain 

constant per bit received. Hence we can see that this is equivalent to the following energy 

requirements. 
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ER, (k) == Eele, xk (2) 

--- 
ET 

ecrr: ),, Li 

k 

Figure 6-6: First order radio model [1391. 

ET, (k, d) is required in order to calculate the cost of transmitting the packets over 
distanced and ER, (k) value is important in order to get the receiving cost of a packet. 

Operation Energy Dissipated 

Transmitter Electronics (ETx-elec) 

Receiver Electronics (ER,, jec) 50 nJ/bit 
(ETx-elec= ERx-elec =Eelec) 

Transmit Amplifier 100 pJ/bit/m 
2 

Table 6-1: Radio characteristics [1391. 

Phase 4: Security Implementation Library 

We have used the java security library for our key management protocol implementation. 

During implementation the important functionalities needed were to generate keys, and to 

encrypt and decrypt data using these keys. We have generated the keys using hash. 

Furthermore we used two different methods for data encryption and decryption: blowfish 
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and homomorphic cryptography. The process for homomorphic encryption was explained 
earlier in chapter three. Every sensor node in the network has three main cryptography- 
related functions along with their other capabilities: generate_key () to produce a new 
key, encrypt () for data encryption and decrypt () for data decryption. 

Phase 5: Sensor Node and Packet Definitions 

During the implementation we have defined a Node class which contains various methods 

and attributes. These implemented methods include: 

* Sense () : Used by every node for sensing its environment. 

9 Neighbours (): Finds and stores information about its neighbouring sensor 

nodes. 

*S end (): Sends data packets to a destination node. 

9 Receive () : Receives data packets from a sender node. 

9 Find_route () : Finds an energy efficient route, which implements our 

routing algorithm. 

9 Aggregate () : Used by group leader nodes to aggregate collected data. 

o Generate_key () : Used by sensor nodes to produce new keys. 

oEncr yp t Used for data encryption. 

o De cr yp t Used for data decryption. 

Along with these fitrictions there are a number of attributes, including energy, trust, 

number ofhopsftom group leader node, and number ofneighbouring nodes. 

Furthermore we have also defined a Packet class. Each instance of the Packet class 

contains data and its destination address. The packet size can be different for different 

applications according to the nature and size of the sensed data- For example in an 

application where sensor nodes need to sense the temperature of the environment, aI 

byte (8 bit) data may be enough. However this one byte represents the data in its 

unencrypted form. Therefore after encryption the data packet size may increase. In our 
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case, every packet contains encrypted data, a hash value (of the encrypted data, 

authentication value, and sender node ID and time stamp), the sender sensor node ID and 
its time stamp. The size of the encrypted data depends on the encryption algorithm used, 
such as blowfish or DES. 

Phase 6: Network and Security Assumptions 

We assume a static and synchronized WSN initially. The sink, acting as a key server 
knowing all the groups' master keys, is assumed to be a PC, laptop or computer with 
indefinite power capabilities. Each group leader sensor node acts as an aggregator and 

router sensor node for communication with other groups. Sensor nodes can be deployed 

via aerial scattering in outdoor applications. However in indoor applications sensor nodes 

can be installed manually and their immediate neighbouring sensor nodes will be known 

in advance according to the application requirements. 

We assume an adversary can eavesdrop on all traffic, inject packets, or replay older 

messages. If a sensor node is physically compromised, all the information it holds will be 

known to the attacker. However, the base station or sink cannot be compromised. 

6.3 Performance Evaluation and Simulation 

In this section, we analyze our proposed scheme in detail. For analysis, we adopt similar 

methods to those described in Du et al. [78]. We evaluate our proposed scheme against 

the following criteria that represent desirable characteristics in a key distribution scheme 

for WSNs: stronger resilience against node capture, forward and backward secrecy, 

resilience against replication attacks, secure data aggregation, memory overhead, 

communication overhead and connectivity. 

We have considered the energy consumption of data processing (encryption, decryption 

and aggregation), and that of sending and receiving packets. Further detail was given in 

section 6.2. 

In the next section we focus mainly on node capture attacks and secure data aggregation, 

providing detailed information about our proposed protocol's resilience. In the evaluation 
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we make no assumptions about the topology used for communication inside a group, as 
our proposed solution is structure and density independent. As part of the comparison, we 
have simulated the SADI-GKM protocol using three different topologies: tree, grid, and 
random mesh. 

63.1 Node Capture Attacks 

In this section we check the performance of our SADI-GKM protocol against node 
capture attacks. DGKE has shown different resilience to node capture attacks for 
different topologies, highlighting its topology dependence [ 163]. However, in contrast to 
this we are able to show that our SADI-GKM Protocol generates similar results with 
different topologies to prove it is topology independent. This is because in SADI-GKM 

every sensor node uses a single key for encryption and does not share keys with any 
neighbouring node, therefore compromise of any single node in a network will not help 

an adversary to compromise the communication of other sensor nodes. SADI-GKM key 

sharing method does not depend on the structure of the topology. However in DGKE 

every sensor node used multiple keys for encryption according to the number of its 

neighbouring sensor nodes as described in section 5.1.1. Consequently DGKE behaves 

differently when used in different topologies. A summary of these results is shown in 

Figure 6-7, illustrating the relative structure independence of the protocol. 

As a further performance analysis against node capture attacks we implemented our 

protocol using grid and mesh topologies and compare it against existing grid and mesh- 
based schemes in the following sections. Finally we present the performance of our 

proposed protocol in various different scenarios. 
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Figure 6-7: Effect of node capture attacks on DGKE and SADI-GKM for different 

topologies. 

(a) SADI-GKM Protocol Performance Using Grid Topology 

To evaluate the performance of our scheme using grid topologies, we compare our results 

with PIKE 2D [76] and DGKE grid-based key management protocols. We consider PIKE 

2D since it is a well established and widely known protocol that uses a unit distance 

bidirectional communication model. Consequently, we were able to use the same 

simulation and WSN settings for our SADI-GKM protocol, PIKE 2D and DGKE. PIKE 

and DGKE were simulated on a flat, square deployment field. Although we note that 

there are other functional differences between the various protocols, our focus of concern 

is primarily on that of security and our objective is therefore to compare the protocols 

based on this metric (resilience against node capture attacks), rather than other aspects of 

their functionality. 

We have used the following configuration during the simulations. The WSN is based on 

5000 sensor nodes. The link density at each sensor node is two to four sensor nodes. We 

take the top right, top left, bottom right and bottom left edge sensor nodes to be group 
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leaders for different groups. During the simulation, if a group leader is compromised, we 
assume that the entire group communication is compromised as the group leader node 
holds a master key. Note that we didn't consider the second, third and fourth layers of our 
protocol at this stage. The simulations involved 50 groups of sensor nodes, with each 
group comprised of 100 sensor nodes. The results are based on averaged runs of 500 

simulations. A detailed explanation of the simulation with code is given in [6] 

The results illustrated in Figure 6-8 show that our SADI-GKM protocol provides better 

resilience against node capture attacks. Through a comparison of the three algorithms, we 

can see that this improved performance is primarily as a result of fewer keys being shared 

on average between sensor nodes in our proposed protocol as compared to DGKE and 
PIKE 2D. This reinforces the first observation of DGKE that sharing keys with 

neighbouring sensor nodes for data encryption and decryption helps node capture attacks 

to compromise the entire WSN. 

For these results, the proportion of compromised communications is based on the number 

of compromised links as a fraction of the total links in the simulation. 
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Figure 6-8: Comparison of probability of total communication compromise in grid 

topology. 
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(b) SADI-GKM Protocol Performance Using Random Mesh Topology 

For the performance evaluation of the SADI-GKM protocol using a random topology 
(random mesh), we compared our results with the group-based key management protocol 
Group-based EG [74] and DGKE random mesh. We chose the Group-based EG scheme 

since the scheme organises the WSN into groups with each group being organised using 
the random mesh topology. The Group-based EG scheme assumes a key pool size of 
10,000, which is divided into 200 smaller, equal-sized key pools with 500 keys for each 

smaller key pool. In order to ensure comparable results, we have used similar simulation 

and network settings for DGKE and our proposed protocol as were available for Group- 

based EG. 

The simulation settings are different from the PIKE 2D and DGKE grid, as the Group- 

based EG scheme uses a 10,000 sensor nodes WSN for the simulation and the link 

density of every sensor node is random. 

To compare our approach with Group-based EG and DGKE we have used a similar 

configuration. We assume that there are a total of 10,000 sensor nodes deployed in a 

IOOOXIOOO m2 area. These sensor nodes are divided into 100 deployment groups with 

100 sensor nodes in each group. The internal communication structure of every group 

will be distinct from other groups. We assume a radio range of R= 40m. Every sensor 

node will find its neighbouring sensor nodes within a 40 metre radio range, thereby 

dictating the link density. The results are based on averaged runs of 500 simulations. 

Figure 6-9 shows that the SADI-GKM protocol clearly has better resilience against node 

capture attacks in mesh topologies. 
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Figure 6-9: Comparison of probability of total communication compromise in 

random mesh topology. 

Again, this is partly a result of the way keys are distributed between sensor nodes. As we 
have already noted, the Group-based EG scheme utilises a key pool in order to allow keys 

to be shared between sensor nodes. This has certain advantages in terms of memory 

usage, where a sensor node is unable to hold a unique key for every other sensor node in 

the WSN. It also marginally increases security during the WSN deployment stage, 

avoiding the need to use a master key for all sensor nodes in a group. However, the 

memory benefits for group-based systems are less pronounced, and the consequence of 

using a key pool is greater key sharing across multiple sensor nodes. This compares 

against our own scheme where key sharing is restricted to pairs of sensor nodes, 

providing the increased resilience shown by the simulation results. 

We can see in Figure 6-8 that after compromising 250 sensor nodes 10% of 

communication is compromised in the network size of 5000 sensor nodes using grid 

topology. Furthermore in Figure 6-9 after compromising 250 sensor nodes 5% of 

communication is compromised in the network size of 10,000 senor nodes using random 

mesh topology. These results also prove SADI-GKM topology independency. The 
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difference in fraction of communication compromise in both figures is because of 
different network size. 

Finally we compare the SADI-GKM protocol random mesh results with other similar 
existing schemes Random Key Pool (RKP Du et al. ) [78] and State-Based Key 
Management [172]. The State-Based Key Management scheme improves on the results of 
others as shown in Figure 6-10. 
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Figure 6-10: Comparison of probability of total communication compromise with 

other existing scheme. 

Although our proposed solution is a group based solution, we have only considered peer 

to peer communication inside the groups. In contrast to our solution, the other schemes 

compared against provide the added functionality of secure peer to peer communication 

for the entire sensor network. However as we shall see in the following section this 

comes at a cost in terms of scalability, memory overhead and processing. In situations 

where such ftinctionality is not needed, our solution therefore provides important benefits. 
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(c) Resilience Against Node Capture Attacks With or Without Using Groups 

In this section we have undertaken an analysis as to whether WSNs are more robust 
against node capture attacks either with or without using groups. We have implemented 
the SAD]-GKM protocol in both group-based and non-group-based WSNs using a 
random mesh topology. Figure 6-11 presents the effect of node capture attacks on WSNs 
both with and without groups using SADI-GKM, and the probabilities of group leader 

compromise using different topologies are shown in Figure 6-12. 

We can see from Figure 6-12 that the probabilities of group leader compromise are 

similar across the different topologies. The effect of grouping therefore remains the same 

using different topologies in the case of the physical compromise of the group leader 

sensor nodes. 
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Figure 6-11: Node capture attacks in group and non-group SADI-GKM. 

The results for the non-group based solution are better than those for the group-based 

solution. An important reason for using groups is that of scalability. Otherwise our 

proposed protocol produces better results without using groups. Therefore in small-scale 

WSNs we can use our proposed protocol with greater efficiency. 
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Figure 6-12: Probability of compromising group leader in different topologies. 

In summary, our solution can easily be used in small and large-scale WSNs with high 

resilience against node capture attacks, compared to the other solutions that we have 

tested against. Our simulations show the influence of these three parameters, which were 
highlighted initially by DGKE: 

The structure (topology) of the WSN 

The density of the sensor nodes 

Sharing keys with neighbouring sensor nodes used for encryption and decryption. 

In our proposed protocol we have avoided the influence of these three parameters, 

thereby obtaining significantly improved results in terms of resilience against node 

capture attacks, memory overhead, processing and connectivity. 

6.3.2 Replication Attacks 

To prevent replication attacks we have used time stamps at two steps in our algorithms. 

First, each source sensor node encrypts a time stamp with the collected sensed data, to 
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prevent replication attacks between the source sensor node and destination (the group 
leader sensor node or sink). Second, a sender sensor node sends a time stamp TSID, with 
the value Xi, so that the receiver sensor node can authenticate the sender node, protecting 
against replication attacks at each hop. 

We will explain this process using an example. Suppose sensor node B is an enemy 
sensor node and acts as if it is a normal group member. Now sensor node A sends 
information to sensor node B. At the first step A encrypts its sensed data along with a 
time stamp using the unique key KGI,, Di. At the second step the encrypted data Mi together 
with the values VGI and JDj as well as time stamp TSjDj are hashed together and assigned 
to Xj. As we know, VGI is shared between all member sensor nodes, and KGjjDj is different 
for every sensor node in the group. Finally A sends Xj, Mi, M and TS, to B (the enemy 
sensor node). To launch a replication attack, B will act as A, using A's ID. In other words, 
B starts forwarding the same encrypted data Mi using ID, fi-om A but using a new time 

stamp. We assume that B has value VG, and A's Mi. Although this is sufficient to 

convince intermediate sensor nodes, the group leader can finally detect this attack by 

checking the data freshness, since B is unable to produce a fresh Mi without knowing A's 

encryption key shared only between A and its group leader. 

Unfortunately there is an energy overhead that may result from the forwarding of 

replicated packets by intermediate sensor nodes that may allow the potential for a denial 

of service attack. Our intention has been to safeguard data confidentiality and integrity, 

while minimising the overhead of having to store multiple keys at each node. In 

particular, providing stronger authentication at each individual node would incur 

additional overheads without totally removing the potential for denial of service attacks. 

Nonetheless, while we don't consider it further here, we do acknowledge that providing 

stronger authentication at each step can reduce the impact and potential for such attacks. 

Furthermore our proposed protocol has the capability to add more layers and integrate 

with the existing four layers. The new layers can have different functional ities, for 

example prevention of denial of service attacks. 
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6.3.3 Secure Data Aggregation and Communication Overhead 

in this section we present the energy consumption during the implementation of SADI- 

GKM with adaptive routing for WSNs. The simulations involved groups of 100 sensor 

nodes using a grid topology with one group leader sensor node. The initial energy of all 

sensor nodes is set to I Joule. We assume that all sensor nodes in the group will 

continually sense and send information to the group leader and that the group leader will 

aggregate this data and send it toward the sink. Once all sensor nodes have successfully 

sent information to the group leader it will have completed one cycle (100 events). Our 

simulation results are based on 20 to 700 cycles in a group of sensor nodes. Note that 

during this analysis we have not considered the authentication cost at every hop. 

However we present results with authentication costs in the next section. 

During evaluation we have considered a number of different cases in order to establish 

the energy requirements for various levels of security functionality. As defined by the 

SADI-GKM protocol, the general structure of the WSN for these various cases is shown 

in Figure 6-13. 
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Figure 6-13: Overview of aggregation functionality provided in various cases by 

nodes in the SADI-GKM protocol. 
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SADI-GKM provides two different levels of confidentiality services (cases) at the group 
leader node according to the available resources and confidentiality requirements of 
different applications: 

Case 1: Data can only be decrypted at the group leader sensor node, aggregated and re- 
encrypted using a master key before being sent to the sink. 

Case 2: Data can be aggregated in an encrypted form without decryption and 
subsequently sent to the sink. 

We have implemented Case I in three different forms. In the first form (No-Security) we 
remove all security features in order to establish the exact cost of SADI-GKM during 

communication. Therefore the cost of "No-Security" is only the cost of routing and 
aggregation at the group leader sensor node, as shown in Figure 6-14. The packet size in 

this first form for each event is 24 bits (e. g. 8 bits for sensed temperature data and 16 bits 
for source node IDi). 

In the second form every sensor node in the group encrypts its sensed data using the key 

KGI,, Di as described in Section 5.2. Furthermore the group leader sensor node will decrypt 

all received data and calculate the final aggregated result. The aggregated result will then 

be re-encrypted using the master key MkGj and sent to the sink. In this second form we 

use the Blowfish algorithm for encryption and decryption which increases the size of the 

packet to 208 bits (192 bits of encrypted data and 16 bits of source node ID, ). The third 

form is similar to the second form but in this case we have used homomorphic encryption 

(as discussed in Chapter 3) instead of Blowfish for encrypting and decrypting the data. 

The simulation results for all these forms are shown in Figure 6-14. We can clearly see 

that using Blowfish encryption (since it takes a variable-length key, from 32 bits to 448 

bits, making it ideal for a variety of uses), the group leader sensor node suffers complete 

energy loss after 440 cycles. 
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Figure 6-14: Cost of SADI-GKM using a group of 100 nodes in a grid formation. 

Figure 6-14 clearly shows how the load on the group leader sensor node increases as we 

apply increased security (confidentiality) measures. 

In Case 2 every sensor node ID, has two keys: KGI,, Di shared with the group leader sensor 

node and Ksl,, Di shared with the sink. In the first step a sensor node encrypts its data using 
key Ksj,, Di. In addition the encrypted data is re-encrypted along with a time stamp using 
KGI,, Di. Consequently encryption occurs twice at the source sensor node. This additional 

encryption is used to provide resilience against replication attacks. Once the group leader 

sensor node receives a packet it will decrypt it using the master key MkGj and the source 

node ID,. Subsequently, the group leader aggregates the encrypted data, encrypts the 

aggregated result using master key MkGj, and sends it to the sink. 

We have also implemented Case 2 using the homomorphic and Blowfish encryption 

algorithms. However as described earlier, encryption happens twice at a source sensor 

node using the keys shared with the sink (Ksjja) and group leader (KGjjDj). In the first 

form we use Blowfish twice for encryption with keys Ksl,, D, and KGjjDj. In the second 

form we use homomorphic (using KsjjDj) and Blowfish (using & 
,, D, ) algorithms together. 

Blowfish is used for the second encryption, since it is necessary to encrypt the time stamp 
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with the encrypted data at the source sensor node in order to ensure resilience against 
replication attacks. The packet sizes used for the two forrns are 208 bits (192 bits of 
double encrypted data and 16 bits of source node ID, ) and 400 bits (384 bits of double 

encrypted data and 16 bits of source node ID, ) respectively. The packet sizes for these 
two forms are different because in the latter we have applied Blowfish twice. As we are 
using a 160 bit key length, the Blowfish encrypted data size will always be a multiple of 
192 bits. Adding the timestamp to the initially encrypted Blowfish data in the latter case 
therefore extends the size of the encrypted data to 384 bits in length. The results for this 

are shown in Figure 6-15. 
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Figure 6-15: Cost of secure data aggregation using Blowfish and Homomorphic 

encryptions. 

Figure 6-16 shows the energy consumptions of the group leader in Cases I and 2 for 

SADI-GKM with increased group sizes. In all cases the result is established for a 100 

cycle run. We can see from this how the load on the group leader increases as the group 

size increases. This is a clear consequence of the increased data that must be aggregated 

as the group size increases. However, it also highlights how the prevention of replication 
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attacks in Case 2 affects the level of the energy used by the group leader sensor node, in 
comparison to that of Case 1. 
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Figure 6-16: Cost of SADI-GKM using different group sizes (100 cycles for each 

group size). 

6.3.4 Costs of Authentication and Data Freshness 

In the previous section we have described the implementation of the second layer along 

with the first layer of our protocol. Since we assumed all sensor nodes are trusted, we 

therefore didn't make use of authentication and didn't include the cost of authentication 
in our analysis. In this section we will add the extra cost of authentication and checking 

of data freshness. In Figure 6-17 we have presented the costs of homomorphic encryption 

with and without authentication, where the first case is more costly than the second. The 

reason for the cost increase in the first case is due to the increase in the packet size as a 

result of adding hash value Xi and time stamp TS, The value X, is produced using the hash 

of encypted data M, value VGI (the authentication value shared by all member sensor 

nodes), ID, and the time stamp TS, (used for data freshness and to prevent a replication 

attack) as shown in Algorithm 6-2. In this experiment, the group size is 100 sensor nodes, 
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and the packet size 34 bytes (24 bytes of encrypted data, 2 bytes of ID, 4 bytes for the 
time stamp and 4 bytes for the authentication value X). 
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Figure 6-17: Energy consumption of the entire group with and without 

authentication using Homomorp ic encryption. 

The net cost of authentication for the entire group of sensor nodes after running n cycles 

is shown in the Figure 6-18 below. 
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Figure 6-18: Costs of authentication for the entire group of sensor nodes after 

running n number cycles. 

6.3.5 Forward and Backward Secrecy 

Our proposed key management protocol is able to provide forward and backward secrecy 
due to the fact that every sensor node in each group has a different key for data 

encryption. We can justify this as follows. 

Joining a Group: When a sensor node intends to join a group GI, it will follow a similar 

process to that of "Pre-deployment " as explained in Section 4.1. The new sensor node 

will be supplied with a fresh key &jjDj for encryption, the value VGI for authentication 

and a node Mi. The new node must be deployed within the target group according to the 

position of the group in the WSN- Once the sensor node has been successfully deployed 

within the group it will be allowed to communicate with member sensor nodes in that 

group. Additionally, backward secrecy is achieved since all sensor nodes in the group 

have distinct encryption keys from the new sensor node's key. Consequently all nodes in 

the group are independent in terms of data secrecY/confidentiality. The data can only be 
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encrypted at each source sensor node using its unique key and cannot thereafter be 
decrypted by any other member sensor nodes except the group leader. 

Leaving a Group: Suppose a sensor node dies due to power loss or enemy capture. This 
action will have no affect on the other sensor nodes in the group in terms of data 

secrecy/confidentiality. Suppose the enemy has captured the sensor node and has 

successfully retrieved the keys &,,, Di, VGI, and the sensor node's M. Although the enemy 
sensor node is able to launch a replication attack using VGI, it has no access to the data 
from other sensor nodes during communication, and forward secrecy is therefore 

achieved. 

6.3.6 Memory Overhead 

In this section we compare our proposed SADI-GKM protocol with the Group-based EG 
[741, PIKE [76] and DGKE [163] in terms of memory overhead. The memory overhead 
for PIKE-213 is + where n is the total number of sensor nodes, and DGKE requires 

only nk:! S d keys where nk is the number of keys and d is the density of sensor nodes. The 

SADI-GKM protocol is more flexible in terms of memory overhead since every sensor 

node in the WSN has two keys: one for encryption and another for authentication. The 

group size doesn't affect memory overhead in our scheme, whereas the number of keys 

stored in each sensor node by PIKE and Group-based EG increases as the size or number 

of groups increases. Group-based EG stores 50 keys on average in every sensor node in a 

group on the basis of a 40m radio range. In DGKE the number of keys depends only on 

the number of neighbours a sensor node has, but our proposed SADI-GKM protocol is 

density independent, namely, the number of neighbouring sensor nodes has no effect on 

memory use. 

6.3.7 Connectivity 

A particular advantage of our scheme is that we are able to achieve absolute 

unconditional connectivity in any size of group. Li et al. [80] also achieve 100% 
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connectivity [135] but their 100% connectivity is conditional. As stated in their paper 
[80], their scheme achieves full connectivity only when 55 keys are assigned in each 
group. Additionally, the size of group doesn't affect the performance of our scheme 
either, unlike those solutions such as the static key pool based idea and other group-based 

schemes. However the keys used for communication links are different in the key pool 
based idea as compared to other schemes. We note that the impact of performance of the 
key pool based idea is reduced for authentication in mobile sensor networks because a 

mobile sensor node can roam and authenticate itself by checking keys with different host 

nodes within a group. 

6.3.8 Secure Group Leader Selection 

We have implemented and undertaken performance evaluations of our group leader 

selection scheme. We have also performed a comparison of the scheme with other 

proposed schemes. We have implemented our group leader selection scheme on a grid 

topology. The packet size used during our implementation is 31 bytes, which include 24 

bytes of encrypted data (using homomorphic and Blowfish encryption), 2 bytes for a 

node ID, 4 byes for a time stamp and I byte for an authentication value. We have used 

the same routing algorithm as described in section 6.2. 

As defined in the previous chapter, we have used four different parameters in our group 

leader selection formula: energy, number of neighbouring sensor nodes, distance ftom 

the current group leader and trust. Although we include trust in the calculation, we are 

not proposing any scheme in this project to calculate a trust value for every sensor node. 

Therefore during the evaluation we have used constant trust values for every sensor node 

and assumed all nodes are trusted. Any proposed solution for finding the trust values of 

sensor nodes can be easily integrated into the formula. 

For the group leader selection formula we evaluated various cases, including: 

Case 1: In this case we have considered a group of 25 sensor nodes. The topology we 

have used is a grid topology with a fixed distance of 20 meters between sensor nodes. 

The initial energy of all sensor nodes is set to one Joule. Consequently the total initial 
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energy of a group is 25 Joules. As described in Chapter five, in our group leader selection 
scheme we only involve the neighbouring sensor nodes of the current (outgoing) group 
leader in the selection process. In contrast, existing proposed schemes consider the entire 
group in the selection process. To make an appropriate comparison, we have also 
considered a similar process within our SADI-GKM third layer, allowing us to test the 

case of involving all sensor nodes in the selection process as well as the case of just 
involving neighbouring sensor nodes. During this experiment the group leader selection 

process will take place ten times, each of which happens after a fixed number of cycles. 
One cycle constitutes all sensor nodes in a group sending one packet to the group leader. 

When one cycle completes the group leader will have received 24 packets from all 

member sensor nodes plus one packet from the group leader sensor node itself and send it 

toward the sink. Among other group leader selection/election schemes, LEACH [ 139] 

only considers energy as a factor during group leader or cluster head selection, whereas 
Wen et al. [140] considers both energy and the number of neighbouring sensor nodes in 

the selection process. We consider LEACH and Wen et al. 's since both are well 

established and widely known protocols for group leader selection in WSNs. In Figure 6- 

19 we have presented results for LEACH, Wen et al. 's scheme, the SADI-GKM All 

scheme (meaning that all sensor nodes participated in the selection process) and the 

standard SADI-GKM scheme (for which only neighbouring sensor nodes participated in 

the selection process). 
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Figure 6-19: Group energy consumptions with 25 sensor nodes for n cycles. 

In the first set of experiments we have evaluated all the four methods for group leader 

selection using 50 cycles. After every 50 cycles a new group leader is selected and this 

process will be done ten times. In other words, once the group leader receives 1250 

packets (25x5O) it will initiate the new group leader selection process. Furthermore, ten 

times group leader selection process will run where each selection starts after fifty cycles. 

In the second set of experiments we have considered 100 cycles. In this case the new 

group leader selection process will start after 100 cycles (100x25 = 2500 packets 

received by the current group leader). Furthermore the group leader selection process wi II 

run ten times, where each selection is initiated after 100 cycles of the simulation. During 

all these experiments we have considered the energy cost of group leader selection. There 

are certain numbers of communication steps that happen during the group leader selection 

process, as described below: 

* The group Leader sends a selection process packet to all/neighbouring sensor 

nodes. 

151 

0 50 100 200 300 400 500 



Chapter six: SADI- GKM Implementation and Evaluation 

All/neighbouring sensor nodes receive the selection process messages. 
All/neighbouring sensor nodes send their weighting factors to the current group 
leader. 

The group leader receives all weighting factors from all/neighbouring sensor 
nodes. 

* The group leader sends the selected new group leader ID to all member sensor 
nodes sensor nodes. 
The current group leader will send information (the master key and keys shared 
with other groups) to the new group leader. 

e All sensor nodes receive the new group leader ID. 

All these steps will remain the same for the rest of the cases. 
In Figure 6-20 we can see that SADI-GKM has consumed less energy as compared to all 
the other schemes to prolong group life time. Results in Figure 6-20 demonstrate that 

using LEACH and Wen et al, entire group energy runs out after 10 cycles (I Ox 100 = 
10,000 packets) and using SADI-GKM entire group energy finish after 25 cycles 
(25xI00 = 25,000 packet). It means SADI-GKM shows 60% better performance to 

prolong group and WSN life as compare to existing schemes. One of the main reasons for 

SADI-GKM reduced energy consumption is due to the fact that fewer sensor nodes need 

to participate in the selection process. As pointed out in Chapter five, packet and group 

sizes have a direct impact on the energy consumption for the group leader selection 

process. This can be further supported by the next case where we have increased the 

group size. 

Case 2: In this case we have considered a group of 100 sensor nodes. As with Case 1, we 

have used a grid topology with a fixed distance of 20 meters between nodes. The initial 

energy of each sensor node is one Joule. Consequently the total initial energy of the 

group is 100 Joules. During the experiments of Case 2 the group leader selection process 

will take place 50 times after a fixed number of cycles. In this case one cycle means all 

sensor nodes in the group will send one packet to the group leader sensor node. When 

152 



Chapter six: SADI-GKM 1mplementation and Evaluation 

one cycle completes the group leader will have received 99 packets from its member 
sensor nodes plus one packet from the group leader itself for data aggregation. 
In the first set of experiments we have evaluated the four methods for group leader 

selection using 5 cycles. This means that after every 5 cycles a new group leader sensor 
node will be selected. Once the group leader sensor node has received 500 packets 
(100x5) it will initiate the new group leader selection process. In the second set of 
experiments we have considered 10 cycles, so that the new group leader selection process 

starts after every 10 cycles (I Ox 100 = 1000 packets received by the current group leader). 

This experiment was run until 50 rounds of new group leader selection had occurred. 
In Figure 6-20 we can clearly see the effect of the larger group on the group leader 

selection. Using SADI-GKM All, LEACH and Wen et al. 's method, the entire group 

energy was consumed after just 15 cycles. The reason for this higher energy consumption 
is that 50 rounds of new group leader selection are applied, in addition to the larger group 

size. Most of the energy was consumed during the selection processes. Therefore we 

must be particularly careful about how to operate the selection process for large groups. 

From Figure 6-20, it is clear that our SADI-GKM is more energy-efficient. 
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Figure 6-20: Group energy consumption with 100 sensor nodes using different 

schemes. 

Another finding from the experiments is that we need to find a careful balance between 

the numbers of group leader selection rounds and cycles. It would be unwise to start a 

new group leader selection process after just a few cycles, as the group leader selection 

process costs significantly in terms of energy. Therefore we should find optimum values, 

which will be different for different group sizes. In Case 3 below we have run 60 

different experiments in an attempt to establish different energy consumption figures. 

Case 3: In this case, the group size is 100 sensor nodes, the total initial energy of the 

group is 100 Joules, and the packet size is 31 bytes. For each experiment we run m cycles 

for each selection process, with the selection process occurring n times in total, written as 

(m, n) where m=61-n. In this experiment we have started m= 60 and n=1. Furthermore 

we reduce m by one and increase n by one in each experiment. For example in the first 

experiment (60,1) we have run 60 cycles for each selection process, with the selection 
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process occurring one time in total. In the second experiment (59,2) we have run 59 
cycles for each group leader selection process, with the selection process occurring two 
times in total. Similarly in the third experiment (58,3) three selection processes have 
taken place after each 58 cycles. This continues until (1,60), which means we have run I 

cycle for each selection process, with the selection process occurring 60 times in total. In 
this experiment we have only used SADI-GKM, i. e., only the neighbouring sensor nodes 
of the current group leader participate in the selection process. The experiment results are 
shown in Figure 6-21. 
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Figure 6-21: Energy consumption for numbers of group leader selections versus 

numbers of cycles. 

Using this experiment we can establish the optimum values for the number of group 

leader selections versus the number of cycles to reduce energy overhead for any group 

size. To understand the results in Figure 6-21, we use both Figure 6-21 and Figure 6-22 

for explanation. From these we can identify the optimum values of group leader selection 
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and cycles for a group of 100 sensor nodes. The main aim is to select optimum values 
which can provide a longer overall group lifespan, or maximum output from the group in 
terms of the amount of data sent. In Figure 6-22 we can see the number of data packets 
sent to the group leader. However these cumulative packets do not include the packets 
sent out during the selection process. In Figure 6-21, for the result for (1,60) where after 
each cycle (I cycle is equivalent to 100 packets sent) a group leader selection process 
runs and this process will run 60 times, the final group energy was 93.8 Joules (the total 
energy consumed in the process of (1,60) is 6.13 Joules) and a total of 6094 packets were 
sent to the group leader. However for (60,1) where the group leader selection process 
runs one time after sixty cycles, the final group energy was 98.7 (the total energy 
consumed in the process of (60,1) is 1.23 Joules) and a total of 11404 packets were sent 
to the group leader. We can see clearly that in the latter case less energy was consumed 
due to running a single group leader process. In the former case (1,60) more energy was 
consumed due to running extra selection processes where each selection process costs 
extra energy. Therefore we need to find optimum values of group leader selection and 
cycles for a group of a given size to balance energy consumption and prolong group life. 

In contrast, after running (31,30) and (26,35), the final group energy remaining was 
38.75 Joules and 38.92 Joules respectively, and the total packets sent were 95704 and 
94154 respectively. From this we can establish that the highest performance value for a 
100 sensor node group is with 31 rounds/30 cycles. 

The reason we want to balance the cycles with the number of group leader selections is to 

increase the overall availability of the group. This is because running many cycles on a 

group leader node can increase the chances of it dieing and encouraging such action can 

cause more sensor nodes to die, which will lead the entire group to the point where sensor 

nodes will be unable to communicate with the rest of the sensor network even though 

there will still be some active sensor nodes. Therefore we need to create a balanced 

energy consumption across all of the sensor nodes to increase the overall group life. This 

was a major motivation behind our proposed solution. In other words even though 

selecting a new group leader costs energy it is still better as compare to single sensor 

node to be a group leader for longer period which misbalances the energy consumption of 

156 



Chapter six: SADI-GKMImplemeniation and Evaluaiion 

entire group and results in more energy lost. This argument is discussed with help of 
Figure 6-22. 

105000 
100000 
95000 
90000 
85000 
80000 
75000 
70000 
65000 

0.60000 
M 55000 

50000 
45000 

0.40000 
35000 
30000 
25000 E 

0 20000 
Z 15000 

10000 
5000 

0 

Is Number of data packets seýnt 

Figure 6-22: Number of data packets sent after n number of group leader selection 

process. 

The experiments presented so far are for the energy consumptions of one large group. We 

have also conducted another set of experiments for a comparison of energy consumptions 

between a single group and multiple sub-groups. This shows a significant difference as 

indicated in Figure 6-23. During the first experiment we have used one group of 36 nodes 

and in the second experiment, 4 subgroups with 9 sensor nodes for each. In the first 

experiment data aggregation takes place at a single group leader sensor node, whereas in 

the second experiment all the four subgroups aggregate data locally and send them to the 

main group leader sensor node which further aggregates the data from the four subgroup 

leaders. The main reason for the reduction of energy consumptions in the second 

experiment is due to the reduction in the number of transmissions towards the main group 

leader sensor node. This set of experiments has been run using different cycles (every 

single sensor node senses an event and sends it towards the group/subgroup leader). 
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Figure 6-23: Energy consumptions for data aggregation using a single group and 

multiple subgroups respectively. 

6.3.9 Key Management for MSNs 

In Chapter five we proposed a key management scheme for NISNs based on SADI-GKM. 

According to SADI-GKM, nodes in a group are unable to communicate directly with 
those in other groups, in order to contain the spread of potential damage caused by 

attacks. This raises the question of how a mobile node in NISNs can authenticate itself 

when it roams from one group to another. Therefore Layer 4 incorporates additional 
functions which include key configuration to allow mobile sensor nodes to authenticate 

themselves. 

In this section we need to find the probability of key sharing in the host group when a 

guest mobile sensor node roams into it. It is likely that the mobile node will have more 

than one sensor node within its range in the host group. Whether the mobile node is 

allowed to communicate with only one or more neighbouring sensor nodes depends on 

the security policy in place. In the previous chapter we presented a formula to find the 

probability that a mobile sensor node will share a secure communication link with at least 

one sensor node, given a sensor node density of d. To validate the formula, we have 
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carried out experiments for the following cases: 

Case 1: Increasing the Number of Nodes in a Host Group 
In this case we have found the probability of establishing a secure link between a mobile 
sensor node and a member sensor node in its host group. As described in section 5.2.3.2, 

every sensor node is assigned 75 keys from the key pool for authentication and separate 
keys for encryption. In this experiment we have assumed that the geographical area of the 
host group is 200x2OO m2 and the radio range of each node is 20 meters. Figure 6-24 

shows the different probabilities of establishing links for different group sizes. Increasing 

the number of nodes in the host group will increase the probability of key sharing for the 

guest mobile node. 
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Figure 6-24: Probabilities of establishing links for a mobile sensor node in different 

host group sizes. 

Case 2: Probability of a Mobile Node in a Host Group during Roaming 

In this case we need to find the probability for a mobile sensor node to roam from one 

side to another side of its host group. In this experiment the radio range of each sensor 

node is 20 meters, the geographical area of the host group is 200x2OO m2, there is a total 
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of 100 nodes in the host group, and the speed of the mobile node is I meter/second. As 
the mobile node moves to the centre of the group the density (number of neighbouring 
nodes) of the mobile sensor node increases,, which also increases the probability of key 

establishment being possible. During this simulation we have deployed 100 sensor nodes 
randomly into the 200x2OO rn 2 group area, and then checked the probability that the 

mobile sensor node at its current position is able to share at least one key out of density D 

(neighbouring sensor nodes). For every position of the mobile sensor node (moving in 

from one comer of the group and moving out from the opposite comer) we have run the 

simulation 10,, 000,000 times, each time we have also changed all sensor node positions in 

the group to find an accurate probability. Figure 6-25 shows the results from these 

experiments, where we can see that if the mobile sensor node is close to a boundary edge 
(e. g. when the mobile sensor node roams into the group) it has the probability 0.3. 

Furthermore after roaming 35 meters inside the group the probability of key 

establishment increases to 0.75. Similarly when the mobile sensor node roams towards 

the opposite boundary of the group the probability of key establishment again reduces. 

Furthermore the energy cost of the host group will increase when more guest mobile 

nodes arrive into the host group. 
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Figure 6-25: Mobile sensor node probabilities of key sharing with host group 

member nodes during roaming. 
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6.4 Discussion 

As we know WSNs is scalable and a type of ad hoc networks where nodes will frequently 
join or leave due to energy depletion or mobile nature. This brings frequent changes in 
topology which affect the security of entire WSN. Our simulations suggest that SADI- 
GKM is topology and density independent and changes in topology will therefore has 
less effect as compare to other schemes. In particular, the structure and density 
independence helps to reduce computation costs in maintaining the network topology 

when new nodes join or leave a group/network for example in mobile sensor networks 

In considering security we focus especially on node capture attack due to its unique 

nature and its strong post-attack effects on the entire WSN. In such an attack the 

adversary may be interested to discover more information from the WSN by physically 

compromising a sensor node, reprogramming the sensor node and placing it back in the 

WSN as a genuine sensor node. This presents a high risk for data confidentiality and 
integrity. Due the nature of node capture attack it is very hard to provide a perfect 

solution. However its consequences can be minimized. We have studied and analysed 

node capture attack behaviour in different scenarios which makes us able to establish 

some precautions, as mentioned in section 5.1, to provide better resilience. We believe in 

such attacks the user will always prefer to protect their data's confidentiality at any cost 

even if the node is physically compromised. SADI-GKM has successfully achieved better 

resilience against node capture attacks by keeping data confidentiality at a high priority 

as shown in section 6.3.1. However it is impossible in a scalable application to keep and 

process all of the data in its encrypted form to achieve high confidentiality. Data 

aggregation is required in order to reduce the communication overhead. To reduce the 

risk that data can be comprised during the aggregation process SADI-GKM provides a 

secure data aggregation scheme using homomorphic encryption as mentioned in section 

5.2.1 and its performance is shown in section 6.3.3. In homomorphic encryption data is 

aggregated in encrypted form which helps to maintain data confidentially and integrity. 

However malicious nodes can send false encrypted values to disarray the aggregated 

results. It remains an open challenge as to how to authenticate or check data in its 

encrypted form. 

161 



Chapter six: SADI-GKMlmplemenlation and Evaluation 

Similarly if an aggregator node is comprised or stops functioning due to depleted energy, 
there should be a mechanism to select or elect a new aggregator node to keep the group 
connected with the rest of the WSN. The selection process needs to be energy efficient 
and secure. In case an adversary node is selected as an aggregator or group leader it will 
not only compromise the communication of this entire group but also try to disorder the 
rest of the network. SADI-GKM provides an efficient group leader selection scheme as 
compared to existing schemes as shown in section 6.3.8. However in MSNs if a group 
leader is mobile it will increase communication overheads and also make the selection 
process difficult. Consequently security challenges in MSNs are more difficult to handle. 
Therefore we have extended SADI-GKM toward MSNs. However security in MSNs has 

many important unexplored challenges and many open research issues. 

6.5 Summary 

In this chapter, we have presented the implementation phases, simulation framework, 

analysis, results and performance evaluation of our protocol. First we have explained the 

implementation phases including topology implementations, routing algorithms and 

security. Subsequently we have evaluated the SADI-GKM performance against node 

capture attacks using various topologies, both with and without the use of groups. We 

have also described our implementation of secure data aggregation using homomorphic 

encryption, secure group leader selection and finally key management for MSNs. We 

have demonstrated through simulations that our proposed protocol has good resilience 

against node capture and replication attacks compared to other existing schemes, and that 

our novel group leader selection scheme shows better performance than existing group 

leader selection schemes. 
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Chapter Seven: Conclusion and Future Work 

This thesis has presented a new key management protocol, SADI-GKM, to fulfil the 

proactive security needs of WSNs. This protocol is an integration of different novel 
layers (basic key management, secure data aggregation, secure group leader selection and 
key management) that we have developed during our research. The aim of the protocol is 

to provide structure and density independent key management for large scale WSNs, 

which can provide secure communication between source and destination nodes, 

resilience against node capture and replication attacks, secure data aggregation, secure 

group leader selection and key management for MSNs. 

This chapter provides a summary and conclusion of our work together with future 

research in the subject area. It is organised as follows. First we present a summary of the 

thesis in Section 7.1. A summary of the SADI-GKM protocol and our main contributions 

are presented in Section 7.2. The comparison of SADI-GKM with existing approaches is 

discussed in Section 7.3. Future work is investigated and proposed in Section 7.4, and 

finally our concluding remarks are provided in Section 7.5. 

7.1 Thesis Summary 

WSN development is an exciting research area due to the constraints involved. The 

reason for the popularity of WSNs is due in part to the small sizes and low costs of 

sensors, their operations and networking behaviours, which enable them to provide 

significant advantages for many applications that would not have been possible in the 

past. Battlefield surveillance, forest fire detection, smart environments and environmental 

control in office buildings are well known examples of their applications. 

A WSN is composed of a large number of sensor nodes that are densely deployed either 

inside the phenomenon or very close to it. The positions of sensor nodes need not be 
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engineered or predetermined. This allows random deployments in inaccessible terrains or 
during disaster relief operations. On the other hand this also means that WSN protocols 
and algorithms must possess self-organizing capabilities. Another unique feature of 
WSNs involves the cooperative efforts of sensor nodes. Sensor nodes are fitted with on 
board processors and they can use their processing abilities to locally carry out simple 
computations and transmit only required and partially processed data. In the future WSNs 
will form an integral part of our environment and lives. 

There are two main components in a WSN: sensor nodes and the sink. Sensor nodes can 
be categorized as electronic sensors, electron ic-portable or low cost sensors and 
mechanical sensors. All these types of sensor nodes have different sensing capabilities 

The sink in a WSN can be a computer, laptop or a sensor node which gathers infon-nation 

or data from the other sensor nodes and provides this to users or forwards it to other 

networks, such as a local ad hoc network or the Internet. In other words the functionality 

of the sink in a WSN is similar to that of a server in a traditional network. In almost all 
WSNs data are routed toward the sink and the hops close to that sink become heavily 

involved in packet forwarding and thus their batteries get depleted rather quickly. 

WSNs are different from traditional networks and present a new set of properties. 

Typically the structure of a traditional network will remain the same in all its applications 

while a WSN's structure will change according to its application. 

Secure communication between network components is always an issue. Researchers are 

continuously inventing new methods to provide more and more secure forms of 

communication. Many key management protocols have been developed in the past for 

traditional wired and wireless networks. Transfer of networking technology from wired to 

wireless increases potential security threats, ranging from passive eavesdropping to active 

impersonation, message replay and distortion. In WSNs we have the same challenges, but 

in addition the limited resources of sensor nodes pose the biggest challenge. As a result, 

we are unable to directly use traditional networking techniques for WSNs. For example, 

asymmetric cryptography may need to be avoided wherever possible due to its demands 

on processor resources. 
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Our work focuses on the design of a structure and density independent key management 
protocol stack (SADI-GKM) for large scale WSNs. This protocol can be used as a 
proactive security solution for WSNs, which consists of different layers for different 
security services. All these layers are integrated with each other to provide better secure 
communication between source and destination nodes. SADI-GKM provides better 
resilience against node capture and replication attacks, secure data aggregation, secure 
leader selection and key management for MSNs using fewer resources. 

In this thesis we have presented our work on developing and evaluating the SADI-GKM 
protocol, and justifying the above capabilities. In order to achieve this we included the 
following materials: 

Our introduction to the area in Chapter I discussed the wider context and outlined the 

problem of secure communication in large scale WSNs. It includes the definition of 
WSNs, their main applications and current WSN projects. It also describes the 

communication architecture and components of sensor nodes. We also briefly describe 

the importance of security in WSNs. Chapter I also highlights the consequences of node 

capture attacks, other interlink attacks and security vulnerabilities. 

In Chapter 2 we have given a general overview of challenges in WSNs, including: fault 

tolerance, sensor network topology, routing, mobility and scalability. Furthermore we 
have specifically describes the challenges and possible attacks in WSNs which include: 

data confidentially, data integrity, authentication, key establishment, availability, privacy, 

secure routing, secure group management, intrusion detection and secure data 

aggregation. At the end of chapter we have given an overview of security in MSNs. 

In Chapter 3, we have surveyed the literature and related works relating to key 

management, secure data aggregation, group leader election/selection and key 

management for MSNs. We have presented and discussed the existing solutions of key 

management for static WSNs. These solutions were classified into five different types 

includes: key pool based key management, session based key management, hierarchical 

based key management, key management for heterogeneous sensor networks and group 

based key management. All these solutions place emphasis on the important issue of 

providing high resilience against node capture attacks and providing better secure 
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communication between source and destination. This chapter has pointed out the main 
drawbacks of existing key management solutions. We found that all these solutions are 
structure dependent and any change in the structure directly affects the security of the 
WSN. Furthermore in key pool based key management a few compromised sensor nodes 
could lead to the compromise of the entire WSN. Hierarchical based key management 
solutions are more prone to node capture attacks, and session based key management 

solutions are not scalable. 

Later in the chapter we have described related works concerning secure data aggregation 

and its importance. Secure data aggregation is vital in applications where very sensitive 
data are communicated through sensor nodes. The compromise of an aggregator node can 
be a significant risk to data confidentiality. Therefore data aggregation should be 

performed on encrypted data without decryption to improve data confidentiality. 
Furthermore we have presented related works about secure group leader selection and 

also the work on key management for MSNs. 

Chapter 4 presents the design of our protocol SADI-GKM including its four layers. First 

it describes the background of the protocol design to highlight necessary requirements. 

Subsequently it presents our research objectives that form a comprehensive set of 

schemes. We have also identified issues and challenges that are important when 

designing an effective key management protocol for large scale WSNs. This chapter 

highlights the importance of providing an integrated proactive security solution and 

explains how our four protocol layers are integrated with each other in order to achieve 

this. 

In Chapter 5 the different layers of our protocol stack have been fully described in detail. 

We began by describing our pre-design investigations. This section provides a detailed 

analysis for identifying some core information needed to help us toward the development 

of an efficient and improved protocol design. In the detailed design section we described 

each layer of our protocol. We began by looking at the first and second layers, key 

management and secure data aggregation, where we described the basic key 

management and secure data algorithms together. Then we explained the third layer, 
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secure group leader selection, where we have presented our novel formula for new group 
leader selection. In the fourth layer we presented a key management solution for MSNs. 

Chapter 6 presents the implementation phases, simulation framework, analysis. results 
and performance evaluation of our protocol. First we explained the implementation 
phases including topology implementations, routing algorithms and securit-ý'- 
Subsequently we evaluated the SADI-GKM performance against node capture attacks 
using various topologies, both with and without the use of groups. We then described our 
implementation of secure data aggregation using homomorphic encryption, secure group 
leader selection and key management for MSNs. 

Finally, suggestions for future work and conclusions are presented in this chapter. 

7.2 Comparison with Existing Approaches 

As mentioned in Chapter 4, the main objective of our proposed protocol SADI-GKM is 

to provide structure independent proactive security solutions for WSNs. The four layers 

of SADI-GKM offer high resilience against node capture and replay attacks, better data 

confidentiality, more efficient secure group leader selection and key management for 

MSNs. SADI-GKM is a component based protocol and easily extendable through the 

addition of more layers. Its current four layers are integrated with each other as a chain, 

making it more effective overall. In contrast, current solutions are more focused on single 

problems. 

The most notable key management solutions for WSNs are probabilistic key management 

solutions [72][75][76][78][125][126][128] and group key management solutions 

[77][130][145]. All of them have taken node capture attacks as a high priority. In these 

solutions the physical compromise of a few sensor nodes can help an adversary to 

compromise the communication of the entire WSN. In contrast, SADI-GKM provides 

better resilience by avoiding key sharing (used for encrypting and decrypting data) with 

neighbouring sensor nodes. We have compared the resilience of SADI-GKM against 

node capture attacks with probabilistic and group key management results. SADI-GKM 
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has shown better performance against these existing schemes, while using fewer 
resources. 

In addition we have improved the performance of SADI-GKM by applying secure data 
aggregation. We have implemented secure data aggregation using Blowfish and 
homomorphic encryption. Furthermore we have implemented the third layer of our 
protocol for secure group leader selection. For this we have used four selection 
parameters: energy, number of neighbouring sensor nodes, position of a node in a group 
and trust, whereas existing schemes only consider energy and/or the number of 
neighbouring sensor nodes. Our comparison through simulation shows that our SADI- 
GKM group leader selection scheme is more balanced and uses fewer resources as 
compared to other schemes. Finally we have presented simulation results for key 

management in MSNs. 

7.3 Thesis Contributions 

In this section we have organised our contributions in two parts. First we present those 

contributions which were achieved during the pre-design analysis of current WSN 

security issues. In the second part we describe our remaining contributions. This thesis 

contributes primarily to the field of security and key management in WSNs. 

Contributions -A 

This part includes two main novel contributions: 

e The first is the finding that the topology of a WSN, the density of sensor nodes 

and the level of key sharing among neighbouring sensor nodes used for 

encryption and decryption have a direct relationship with the security of the WSN- 

For example, a tree topology is less secure as compared to a grid or random mesh 

topology when it is subject to node capture attacks. Additionally, current key 

management schemes are structure dependent and any change in the structure of 

the WSN directly impacts on the security. Furthermore sharing keys for 
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encryption and decryption with neighbouring sensor nodes can put data 
confidentiality at risk, especially if there is a high threat of node capture attacks in 
a specific application where an adversary can compromise sensor nodes 
physically. Careful selection of these three parameters before proposing any, 
security scheme can reduce the risk of large-scale damage that might result from 
node capture attacks [33]. The results may be of significant benefit to the future 
development of WSN security technologies. 

The second contribution is the finding that the position of a group leader has a 
direct effect on the performance of the sensor group and can increase the 
communication overhead dramatically. Therefore it is important that we should be 

careful and consider group leader positions during the selection of a new group 
leader. We have presented related experimental results in Chapter five. 

Contributions -B 

We have proposed a novel key management protocol stack consisting of different layers 

which are integrated with each other. This protocol provides proactive security solutions 

to different threats in WSNs. Specifically our novel contributions include: 

The first layer of our protocol represents an important contribution to the subject 

are. This layer has responsibility to pre-establish keys between sensor nodes and 

provides basic rules and regulations which are further integrated with all the other 

layers. This key management layer further operates in two phases: a key pre- 

establishment phase and a data transmission phase. These two phases are 

described in detail in Chapters four and five. Furthermore this layer is topology 

independent, i. e., it can work with various topologies. This has been evaluated, 

without integration with the other layers, using different topologies both with and 

without group structures, and compared against existing key management 

schemes. The comparison results show a significant improvement in resilience 

against node capture attacks, memory overhead and connectivity. 
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As described in earlier chapters, WSNs are highly scalable networks, deployed 
with potentially thousands or even greater numbers of sensor nodes. Consequently, 
a potentially huge amount of communication may happen during any operational 
task. Therefore data aggregation is vital in order to reduce the communication 
overhead. However aggregator nodes can be a high risk to data confidentiality. 

To address the above challenge, the second layer of our protocol provides secure 
data aggregation by aggregating encrypted data without decryption at group 
leader nodes using homomorphic encryption. In our proposed solution we have 

provided different aggregation solutions according to the requirements of data 

confidentiality [62][117]. In our first solution data are decrypted at group leader 

nodes, aggregated, re-encrypted and sent towards the sink. The advantage in this 

scheme is that the group leaders can check the freshness and accuracy of the data 

received from their member sensor nodes before aggregating them. However in 

the event that a group leader or an aggregator node becomes compromised, this 

can compromise the data confidentiality of all member sensor nodes in the group. 
Therefore we have proposed the second method that allows data to be aggregated 
in an encrypted form to provide better data confidentiality. The requirement of 

secure data aggregation in any application depends upon its nature and data 

sensitivity. As we have described earlier our intention is to propose an integrated 

proactive security solution. Therefore the first and second layers are integrated 

with each other, allowing the two layers to provide better resilience against 

multiple threats. Furthermore we have tested the first and second layers together. 

* In the third layer of our protocol we have proposed a novel secure group leader 

selection method which is part of our key management protocol. In our proposed 

method an old group leader sensor node will select a new group leader sensor 

node from its neighbouring sensor nodes based on a number of weighting factors. 

These weighting factors are calculated using the available energy at each 

candidate sensor node, its level of trust, its distance from the current group leader 

and the number of its neighbours. The sensor node with the highest calculated 

value will be selected as the new group leader sensor node. Unlike other group 
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leader selection schemes we do not involve all group member sensor nodes in the 
selection process, which significantly reduces the level of communication 
overhead. The energy cost of the selection process increases as the number of 
participant sensor nodes in the selection process increases. 

In the fourth layer of our protocol we have proposed a key management scheme 
for MSNs based on all the previous layers. As described earlier, mobility in 
WSNs brings additional strong security challenges. We have also defined a 
security policy for MSNs which has basic rules for mobile sensor nodes when 

roaming from one group to another. In this solution we have blended our solution 

with a probabilistic key management technique. We have used probabilistic key 

distribution only for mobile sensor node authentication when a sensor node roams 
from one group to another. The host group treats the guest mobile sensor node 

according to a given security policy. For our proposed protocol, all the layers are 
integrated with each other so as to provide a better proactive solution for static 

and mobile WSNs. 

7.4 Future Work 

So far in this chapter we have recapped the project aims, main findings and results, and 

considered the novel contributions of our work. For future research our current work can 

be extended in several directions. More functionality can be incorporated into the current 

layers, and also completely new layers with new security solutions could be added. As we 

have described earlier our protocol offers proactive security solutions. Therefore in the 

future work these solutions could be integrated with detective and reactive security 

solutions. The outcome of such integration will be a more effective security protocol for 

WSNs, where more layers can be added and removed according to the security 

requirements of different applications. 
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7.4.1 Secure Data Aggregation 

Secure data aggregation is handled by the second layer of our protocol. We provide two 
different types of aggregation scheme, one with encrypted data and the other without. In 
the scheme where data are decrypted before aggregation at aggregator sensor nodes, it is 

possible to establish whether any junk data have been sent by a malicious sensor node. 
This scheme provides a benefit in this case, but as a consequence data confidentiality 
could be weakened in case an aggregator node becomes compromised. However, the 

scheme where data aggregation takes place without decryption provides a benefit in 

maintaining better data confidentiality, but the injection of random encrypted data by a 

malicious node can lead to incorrect aggregated results. Therefore in the future work the 

secure data aggregation scheme needs to be extended by adding functionality able to 

check the authenticity of data in its encrypted form. This will reduce the risk of incorrect 

results where a malicious sensor node exists in the WSN. However, increasing the 

security will inevitably increase resource consumptions. Therefore it is an important issue 

for the future work to investigate in order to balance these two concerns. 

Furthermore in the future work it is important to investigate how effective the integration 

of our proactive solutions with reactive security solutions is in terms of tackling security 

attacks where malicious nodes authenticate themselves to a WSN and inject invalid data. 

Finally it is also interesting to consider the use of mobile aggregator nodes for secure data 

aggregation. 

7.4.2 Group Leader Selection 

In our current work we have proposed a new group leader selection scheme which forms 

part of the third layer of our protocol. For the future work, ftirther investigatory research 

relating to certain parameters is required. The first parameter to be investigated is the 

position of a group leader. In our current work we have only considered static WSNs and 

given high priorities to those sensor nodes which are closer to the existing (outgoing) 

group leader sensor node, in the selection process. However suppose that a selected group 

leader is a mobile sensor node able to roam within the group. This action can seriousl,, 
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affect the performance of the group, especially in the case of a free roaming sensor node. 
Therefore a different method needs to be devised for the management of mobile sensor 
nodes acting as group leaders. 

It will be very useful to investigate current proposed schemes for node trust values, which 
are an important parameter of our group leader selection scheme, to find whether current 
proposed schemes work efficiently with the SADI-GKM scheme, they do have any 
impacts on performance on SADI-GKM, or a new trust evaluation scheme should be 

proposed. Furthermore the future work needs to propose a solution to find that the values 
sent by member sensor nodes for group leader selection are accurate or not. For example 
an adversary or any selfish node may want to become a group leader so it can send false 

information to the current group leader. 

Additionally in the future work it will be interesting to establish the performance of the 

current scheme in different types of WSNs and using different topologies. 

7.4.3 Key Management for MSNs 

An important challenge for the security of MSNs is how to make use of their limited 

resources to achieve scalability and anywhere security in a cost-effective manner. As 

described in Chapter 3, mobile sensor nodes may have different types of roaming 

behaviour. In the future research it will be interesting to investigate the relationships 

between different types of sensor node roaming and various security requirements. This 

research will help to identify important parameters needed for developing new security 

solutions for MSNs. 

7.4.4 Future Security Models for WSNs 

In the future work, more layers can be added into our protocol to provide security 

countermeasures against other security threats such as Black Hole, Sybil and many other 

routing attacks. Furthermore to create a best security model for WSNs in the future, it is 

important to integrate SADI-GKM with detective and reactive security solutions. During 

the development of security model, it is better to analysis the performance of current 
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reactive security schemes with SADI-GKM protocol together before integrating these 
components. There is a chance that current reactive solutions might not show good 
performance when combined with a proactive security scheme. This might happen in the 
case where a solution has been designed specifically for one problem space or application. 
in addition there should be a detective mechanism working along with the proactive part 
of the protocol. Whenever a threat is detected, the reactive security mechanism should 
become active. We believe such a self organised security model for WSNs will provide 
better security. However the research in this area is immature and there are difficult 

challenges remaining. We believe our current novel research contributions will help in 

the future development of secure WSNs. 

7.5 Concluding Remarks 

Recent advances in micro, electro and mechanical systems technologies, wireless 
communication and digital electronics have enabled the development of low cost, low 

power and multifunctional sensor nodes that are small in size and communicate over 

short distances. These tiny sensor nodes, which consist of data sensing, processing and 

communication components, leverage the idea of WSNs. The reason for WSN's 

popularity is due in part to the small sizes and low costs of sensors, their operations and 
the networking behaviours, which enable them to provide significant advantages for 

many applications that would not have been possible in the past. 

Alongside energy efficient communication protocols we require a balanced security 

solution guarding against possible security threats in WSNs. It's interesting to note that 

WSNs face not only the same security challenges as traditional networks (LAN, WAN, 

MAN and etc. ) but also additional difficulties in the limited resources of sensor nodes. As 

a result, we are unable to use traditional techniques for WSNs. A challenging and distinct 

security problem in WSNs is node capture attacks, where an adversary gains full control 

over a sensor node through direct physical access to it. This can lead to a compromise in 

the communication of the entire WSN. The compromised sensor node can be an 

aggregator node, a cluster head node or a normal sensor node. Therefore we should 

consider such threats as a high risk to communication and data confidential ity/security. 
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Furthermore in case a group leader sensor node suffers complete resource depletion, or is 
compromised, the selection of a new group leader in a secure way is vital. 

In contrast to all existing work, we have proposed a novel protocol SADI-GKM for 
structure and density independent group based key management for large-scale WSNs- 
This protocol is designed to provide multiple security services such as improved secure 
communication in static and mobile WSNs, secure data aggregation, data confidentiality, 
secure group leader selection, resilience against node capture and replication attacks, and 
protection against malicious nodes from sending random encrypted data in an aggregated 
form. SADI-GKM provides these services using reduced memory and processing 
overheads as well as high connectivity as compared to existing schemes. In particular, the 

structure and density independence helps to reduce computation costs in maintaining the 

network topology when new nodes join or leave a group. 

We have analysed and evaluated the proposed protocol using simulation techniques. Our 

evaluation was focused on resilience against node capture and replay attacks, power 

consumption reduction through the use of secure data aggregation, energy cost reduction 
for secure group leader selection, and energy cost reduction for the key management of 

MSNs. By comparing our results to those of other solutions available in the literature, our 

work provides better resilience against node capture attacks, replication attack, efficient 

secure data aggregation for data confidentiality, energy efficient and group leader 

selection scheme. The experiments have shown that our protocol is scalable and structure 

independent. 

SADI-GKM can be immediately and efficiently used in indoor applications for example 

monitoring building and factories for fire, pipe leakage and hidden moisture and also in 

health sector. In out door applications, it can be used in traffic monitoring and monitoring 

entire city for better fire rescue systems. In future application its can be used in 

application to monitor forest and large group areas but efficient deployment mechanism 

is required before implementation. 

Research in WSNs, especially in the WSN security, is still immature. There are still many 

research challenges to be addressed in order to implement WSNs realistically in our dailý' 
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life. We believe that our novel protocol SADI-GKM and investigatory research findings 

will help toward the future secure development of WSNs. 
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