Brandt, SD, Kavanagh, PV, Westphal, F, Elliott, SP, Wallach, J, Stratford, A, Nichols, DE and Halberstadt, AL

Return of the lysergamides. Part III: Analytical characterization of N6-ethyl-6-norlysergic acid diethylamide (ETH-LAD) and 1-propionyl ETH-LAD (1P-ETH-LAD)

http://researchonline.ljmu.ac.uk/6073/

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Brandt, SD, Kavanagh, PV, Westphal, F, Elliott, SP, Wallach, J, Stratford, A, Nichols, DE and Halberstadt, AL (2017) Return of the lysergamides. Part III: Analytical characterization of N6-ethyl-6-norlysergic acid diethylamide (ETH-LAD) and 1-propionyl ETH-LAD (1P-ETH-LAD). Drug Testing and
Return of the lysergamides. Part III: Analytical characterization of N^6-ethyl-6-norlysergic acid diethylamide (ETH-LAD) and 1-propionyl ETH-LAD (1P-ETH-LAD)

Simon D. Brandt, Pierce V. Kavanagh, Folker Westphal, Simon P. Elliott, Jason Wallach, Alexander Stratford, David E. Nichols, Adam L. Halberstadt

a School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK

b Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James Hospital, Dublin 8, Ireland

c State Bureau of Criminal Investigation Schleswig-Holstein, Section Narcotics/Toxicology, Mühlenweg 166, D-24116 Kiel, Germany

d ROAR Forensics, Malvern Hills Science Park, Geraldine Road, WR14 3SZ, UK

e Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, 600 South 43rd Street, Philadelphia, PA 19104, USA

f Synex Synthetics BV, Poortweg 4, 2612 PA Delft, The Netherlands

g Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27599, USA

h Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0804, USA

* Correspondence to: Simon D. Brandt, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK. E-Mail: s.brandt@ljmu.ac.uk
<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed EI-MS key fragmentation pathways for ETH-LAD</td>
<td>S3</td>
</tr>
<tr>
<td>Proposed EI-MS key fragmentation pathways for 1P-ETH-LAD</td>
<td>S4</td>
</tr>
<tr>
<td>Proposed EI-MS fragment ions for m/z 192 and m/z 265 (1P-ETH-LAD)</td>
<td>S5</td>
</tr>
<tr>
<td>GC-MS analysis of ETH-LAD hemitartrate and GC-induced formation of three additional isomers</td>
<td>S6</td>
</tr>
<tr>
<td>IR of ETH-LAD hemitartrate</td>
<td>S7</td>
</tr>
<tr>
<td>GC-sIR of ETH-LAD isomer I</td>
<td>S8</td>
</tr>
<tr>
<td>GC-sIR of ETH-LAD isomer III</td>
<td>S9</td>
</tr>
<tr>
<td>GC-sIR of ETH-LAD isomer IV</td>
<td>S10</td>
</tr>
<tr>
<td>Overlaid partial GC-sIR of ETH-LAD isomers I, III and IV</td>
<td>S11</td>
</tr>
<tr>
<td>IR of 1P-ETH-LAD hemitartrate</td>
<td>S12</td>
</tr>
<tr>
<td>GC-sIR of 1P-ETH-LAD</td>
<td>S13</td>
</tr>
<tr>
<td>HPLC-UV (DAD) spectra of ETH-LAD and 1P-ETH-LAD</td>
<td>S14</td>
</tr>
<tr>
<td>1P-ETH-LAD stability in human serum at 37°C and analysis by LC-ESI-Q-MS</td>
<td>S15–S17</td>
</tr>
<tr>
<td>H NMR ETH-LAD hemitartrate</td>
<td>S18–S20</td>
</tr>
<tr>
<td>C NMR of ETH-LAD hemitartrate</td>
<td>S21</td>
</tr>
<tr>
<td>HSQC of ETH-LAD hemitartrate</td>
<td>S22–S24</td>
</tr>
<tr>
<td>HMBC of ETH-LAD hemitartrate</td>
<td>S25–S31</td>
</tr>
<tr>
<td>H NMR 1P-ETH-LAD hemitartrate</td>
<td>S32–S34</td>
</tr>
<tr>
<td>C NMR of 1P-ETH-LAD hemitartrate</td>
<td>S35</td>
</tr>
<tr>
<td>HSQC of 1P-ETH-LAD hemitartrate</td>
<td>S36–S38</td>
</tr>
<tr>
<td>HMBC of 1P-ETH-LAD hemitartrate</td>
<td>S39–S42</td>
</tr>
</tbody>
</table>
Drug Testing and Analysis – Brandt et al. – Supporting Information

![Graph showing infrared spectra and GC-EI-MS analysis of ETH-LAD isomers.](Image)

ETH-LAD Isomer I base (GC-sIR)
ETH-LAD Isomer II (IR not detectable) (GC-sIR)
ETH-LAD Isomer III base (GC-sIR)
ETH-LAD Isomer IV base (GC-sIR)
Liquid chromatography diode array detection

A Dionex 3000 Ultimate liquid chromatography system coupled to a UV diode array detector (Thermo Fisher, St. Albans, UK) was used for analysis using a Phenomenex Synergi Fusion column (150 mm × 2 mm, 4 μm) that was protected by a 4 mm × 3 mm Phenomenex Synergi Fusion guard column (Phenomenex, Cheshire, UK). The Mobile phases were 70% acetonitrile with 25 mM of triethylammonium phosphate buffer (TEAP) and aqueous TEAP (25 mM) buffer. The gradient elution commenced with 4% acetonitrile and ramped to 70% acetonitrile in 15 min and held for 3 min, resulting in a total acquisition time of 18 min at a flow rate of 0.6 mL/min. The diode array detection window was set at 200 nm–595 nm (collection rate 2 Hz).
1P-ETH-LAD incubation (10 μg/mL) in human serum at 37°C.

Fifty μL and 950 μL (acetonitrile/water, 1/1 + 0.1 % formic acid); centrifuged at 18,000 rpm for 3 min, then passed through a Nylon spin filter (0.2 μm). Samples were further diluted for LC-MS: 50 μL of the above and 950 μL (acetonitrile/water, 1/1 + 0.1 % formic acid).

Serum (blank)

Serum Spiked with 1P-ETH-LAD 10 μg/mL at 0 h

Serum Spiked with 1P-ETH-LAD 10 μg/mL at 1 h
Serum spiked with 1P-ETH-LAD 10 μg/mL at 2 h

Serum spiked with 1P-ETH-LAD 10 μg/mL at 3 h

Serum spiked with 1P-ETH-LAD 10 μg/mL at 4 h
Serum Spiked with 1P-ETH-LAD 10 μg/mL at 5 h

Serum Spiked with 1P-ETH-LAD 10 μg/mL at 5 h

Serum Spiked with 1P-ETH-LAD 10 μg/mL at 6 h

Serum Spiked with 1P-ETH-LAD 10 μg/mL at 6 h

Serum Spiked with 1P-ETH-LAD 10 μg/mL at 24 h

Serum Spiked with 1P-ETH-LAD 10 μg/mL at 24 h

LC-Q-MS SIM m/z 338 (ETH-LAD)
Fragmentor voltage: 50 V

LC-Q-MS SIM m/z 394 (1P-ETH-LAD)
Fragmentor voltage: 50 V
ETH-LAD hemitartrate
1H-NMR (400 MHz)
d$_6$-DMSO
ETHALAD hemitartrate
HMQC
d_6-DMSO

TA = Tartaric acid
Drug Testing and Analysis – Brandt et al. – Supporting Information

ETH-LAD hemitartrate
HMBC
δ_{f}-DMSO

TA = Tartaric acid
^{1}P-ETH-LAD hemitartrate

^{1}H-NMR (400 MHz)
d_{6}-DMSO
1P-ETH-LAD hemitartrate

13C-NMR (150 MHz)

δ-DMSO

TA = Tartaric acid
1H-ETH-LAD hemitartrate
HSQC
d$_6$-DMSO
Drug Testing and Analysis – Brandt et al. – Supporting Information

1H-NMR of 1P-ETH-LAD hemitartrate
HMBC
d$_6$-DMSO

$\text{TA} = \text{Tartaric acid}$