
Modeling and Trading the Greek Stock Market with
Artificial Intelligence Models

Andreas Karathanasopoulos

Liverpool Business School

A thesis submitted in partial fulfillment of the requirements
of Liverpool John Moores University for the degree of

Doctor of Philosophy

Declaration

I declare that with the exception of the assistance
acknowledged, this dissertation is the result of an original
investigation and that it has not been accepted or currently
submitted in candidate for any other degree.

Committee

Supervisory Team

Prof. Christian Dunis (Director of Studies)

Jason Laws (1st Supervisor)

Examination Team

Prof. Spiridon Lukothanassis (External)
(University of Patras, Department of Computer

Engineering & Informatics)

Dr Chris Mulhearn (Internal)
(Liverpool John Moores University, Liverpool Business

School)

Acknowledgments

I would like to take this opportunity to thank first and
foremost, my Director of Studies; Professor Christian
Dunis, whose help and guidance have been invaluable,
over the past 2 years he has become a good friend.

I would also like to thank my Supervisor and long-time
mentor Jason Laws for his help and guidance, especially
in giving me the opportunity to start on this road.

Finally, I would like to thank my colleagues and friends
Georgios Sermpinis and Kostandinos Theofilatos for their
moral support over the past years.

Abstract:The main motivation for this thesis is to introduce some new

methodologies for the prediction of the directional movement of financial assets with

an application to the ASE20 Greek stock index. Specifically, we use some alternative

computational methodologies named Evolutionary Support Vector Machine (ESVM),

Gene Expression programming, Genetic Programming Algorithms and 2 hybrid

combinations of linear and no linear models for modeling and trading the ASE20

Greek stock index using as inputs previous values of the ASE20 index and of four

other financial indices. For comparison purposes, the trading performance of the

ESVM stock predictor, Gene Expression Programming, Genetic Programming

Algorithms and the 2 Hybrid combination methodologies have been benchmarked

with four traditional strategies (a na'we strategy, a Buy and Hold strategy, a MACD

and an ARMA models), and a Multilayer Pereceptron (MLP) neural network model.

As it turns out, the proposed methodologies produced a higher trading performance

in terms of annualized return and information ratio, while providing information about

the relationship between the ASE20 index and other foreign indices.

CHAPTER 1

1.1 Introduction

The development of accurate forecasting techniques is critical to economists,

investors and risk analysts. This task is getting more complex as financial markets

are getting increasingly interconnected and interdependent. The traditional statistical

techniques, on which market forecasters were relying in previous years, seem to fail

to capture this moving interrelationship among market variables. This context has

led to a continuous search of techniques capable of identifying and capturing the

nonlinearities, the discontinuities and the high frequency multi-polynomial

components characterizing financial time series today. Classes of such techniques

that have provided promising results in previous years are Combinations of Neural

Networks, Genetic Programming Algorithms, Gene Expression Programming and

Support Vector Machines.

This thesis should be of interest to both hedgers and speculators who want to

explore the use of alternative non linear models. An accurate prediction of the future

stock market pattern will give them a considerable advantage and allow them to

generate attractive return/risk profiles. Morevover, this thesis can contribute to the

academic studies as it provides empirical evidents over the forecasting and trading

abilities of a wide variety of non linear models over the mean of the ASE 20 Greek

index. Also all the forecasts were evaluated through financial and trading criteria

which makes it differ from most similar academic studies. Furhhermore, this thesis

contributes to financial research by introducing a new technique that combines

Support Vector machines with Genetic Algorithms providing the most profitable

results.

1.2 Motivation of the Thesis

The motivation of this thesis is to fill the hole in the literature and to provide empirical

evidence of the utility of the models mentioned above in financial forecasting and

trading applications. In order to achieve this, we benchmark our models not only with

some traditional statistical and technical techniques but also with some other state-

of-the-art NNs designs. Therefore, we will be able to validate if the theoretical

advantages of our architectures compared to the more traditional NNs models are

translated in more accurate/profitable forecasts. In order to achieve this our forecasts

are evaluated through financial terms while in the literature most applications

evaluate their financial forecasts only through statistical means. Moreover, we will

2

explore the utility of our architectures if we feed them not only with multivariate but

also with autoregressive series as inputs. Furthermore we will be able to draw more

solid conclusions on the forecasting ability of our models especially against our

statistical autoregressive benchmarks as HONNs RNNs and MLP Neural Network

models. Lastly, this research aims to provide the first empircal evidents over the

forecasting power of Artificial intelligent models in a forecasting one day ahead

context something that will further dinstiguish our research from previous similar

studies and add originality to our application.

1.3 Contribution to the Knowledge

In this dissertation we test and evaluate the forecasting and trading ability of the

most promising new Neural Networks architectures combining them with

autoregressive models (in our case ARMA model), Genetic Programming

Algorithms, Gene Expression Programming and Support Vector Machines. We

explore the utility of their performance in forecasting the mean in financial series.

More specifically the contributions to knowledge of this dissertation are divided in 5

categories.

1) Evaluating the forecasting and trading performance of Hybrid ARMA Neural

Network.

In chapter 4 we test and evaluate the performance of Hybrid Arma Neural Network in

forecasting the ASE 20 Greek index using as inputs autoregressive series. In order

to further improve the trading performance of our models we apply trading strategies

using confirmation filters and leverage.

3

2) Evaluating the forecasting and trading performance of Mixed ARMA Neural

Network.

In chapter 5 we test and evaluate the performance of Mixed Arma Neural Network in

forecasting the ASE 20 Greek index using as inputs autoregressive series. In order

to further improve the trading performance of our models we apply trading strategies

using confirmation filters and leverage.

3) Evaluating the forecasting and trading performance of Genetic

Programming Algorithm.

In chapter 6 we test and evaluate the performance of Genetic Programming

Algorithm in forecasting the ASE 20 Greek index using as inputs autoregressive

series. In order to further improve the trading performance of our models we apply

trading strategies using confirmation filters and leverage.

4) Evaluating the forecasting and trading performance of Gene Expression

Architecture.

In chapter 7 we test and evaluate the performance of Gene Expression in forecasting

the ASE 20 Greek index using as inputs autoregressive series. In order to further

improve the trading performance of our models we apply trading strategies using

confirmation filters and leverage.

5) Evaluating the forecasting and trading performance of Support Vector

Machines.

In chapter 8 we test and evaluate the performance of Support Vector Machines in

forecasting the ASE 20 Greek index using as inputs autoregressive series. In order

to further improve the trading performance of our models we apply trading strategies

using confirmation filters and leverage.

4

1.4 Structure of the Dissertation

Much of the content of this dissertation has either been accepted for

publication, presented at conferences or has been submitted for publication at

a peer-reviewed academic journals.

Therefore the structure of the thesis comprises self contained chapters, each with its

own focus. While the focus of each chapter follows a logical progression there may

be some unavoidable repetitions between each chapter, however this has been kept

in a minimum with each model only being described once. The references have been

concentrated at the end of the thesis. The layout of the thesis is the presentation of 5

research papers. They make up the chapters as shown below:

Chapter 4 - 'Modelling and Trading the Greek Stock Market with Hybrid ARMA-

Neural Network Models'. This paper has been presented at the Forecasting Financial

Markets 2009 conference in Luxembourg (23 to 26 May 2009) and after referees

comments is currently in the last stage of the reviewing process for potential

publication in 'Quantitative Finance'.

Chapter 5 - 'Modelling and Trading the Greek Stock Market with Mixed Neural

Network Models'. This paper has been presented at the Forecasting Financial

Markets 2010 conference in Hannover (21 to 23 May 2010) and has been accepted

for publication in the 'Journal of Applied Financial Economics'.

Chapter 6 - 'GP Algorithm versus Hybrid and Mixed Neural Networks'. This paper

has been presented at the Global Financial Markets 2010 conference in Azores (21

5

to 23 July 2010) and after referees comments is currently in the last stage of the

reviewing process for potential publication in 'European Journal of Finace'.

Chapter 7 - 'Modelling and Trading the Greek Stock Market with Gene Expression

and Genetic Programing Algorithms'. This paper will be presented at the second

international conference of Finance in Rdodes (15 to 17 June 2011) and is currently

being reviewed by 'European Journal of Forecasting'.

Chapter 8 - 'Stock Market Prediction Using Evolutionary Support Vector Machines:

An Application to the ASE20 Index'. This paper has been presented at the

Forecasting Financial Markets 2011 conference in Marseilles (27 to 29 May 2011)

and is currently being reviewed by the 'European Journal of finance' for potential

publication.

6

CHAPTER 2

Literature Review

In this chapter we present the literature relevent to the Hybrid Neural Networks,

Mixed Neural Networks, Genetic Programming Algorithm, Gene Expression

Programming and Support Vector Machines models used on this thesis and the

applications of them in financial forecasting context.

Combining different models can increase the chance to capture different patterns in

the data and improve forecasting performance. Several empirical studies have

already suggested that by combining several different models, forecasting accuracy

can often be improved over an individual model. Using hybrid models or combining

several models has become a common practice to improve the forecasting accuracy

since the well-known M-competition (Makridakis et al.(1982)) in which combinations

of forecasts from more than one model often led to improved forecasting

performance. The basic idea of the model combination in forecasting is to use each

model's unique feature to capture different patterns in the data. Both theoretical and

empirical findings suggest that combining different methods can be an effective and

efficient way to improve forecasts (Makridakis (1989), Newbold et al. (1974), Palm et

al. (1992)). Research in time series forecasting argues that predictive performance

improves the combined models. (Bishop (1994), Clemen (1989), Hansen et al.

(2003), Hibbert et al. (2000), Terui et al. (2002), Tseng et al. (2002), Zhang, (2003),

Zhang et al. (2005)).

The reason for combining models comes from the assumption that either one cannot

identify the true data generating process (Terui and Von Dyke. (2002)) or that a

single model may not be sufficient to identify all the characteristics of the time series

7

(Zhang (2003)). Moreover the use of hybrid neural network has not been used until

the moment that scientists started to investigate not only the benefits of Hybrid

Neural Networks against other statistical methods but also the differences between

different combinations of Hybrid Neural Networks with other statistical models

following the Hybrid GARCH-NN approach Wang (2007) and the Hybrid ARIMAI

ARCH-NN of Fatima and Hussain (2008). Abraham et al. (2002) analysed the 24-

month stock data for NASDAQ-100 main indices. Their hybrid system is Neuro-

Fuzzy, a combination of neural network and fuzzy logic system. Lastly Andreou et al.

(2006) propose knowledge-oriented neural network models combining

nonparametric with parametric models (Black -Scholes) for option price data.

GP was first developed by Barricelli (1954) as evolutionary algorithms. Progressively

into the 1960's and 1970's these 'evolutionary algorithms' became more commonly

known and recognized as optimization methods. In particular, Rechenberg (1971)

and his research team were able to solve complex engineering problems through the

application of optimization methods as documented in his 1971 PhD thesis.

Furthermore Holland (1975) was another influential figure in the 1970's However,

Fogel et al. (1964) are among the earliest practitioners pioneering in GP

methodology. They apply evolutionary algorithms to the problem of discovering finite-

state automata. In the development of GP methodology it was later adapted to the

Markov decision making process. More importantly the first evidence of GP as the

'tree based' method that we are familiar with in modern financial forecasting was

provided by Cramer (1985). More recently, Cramer's work has been expanded

further by John R. Koza (1990), Koza (1992), Koza (1994), Koza (1998) and Koza et

8

al. (1999, 2003) who apply these methodologies to complex optimization and search

problems.

Although GP has now been established as a credible and respected technique this

was not always the case. For example in the 1990's GP was considered

incomprehensible. Enter the 2000's and the theory of GP has seen progressive and

formidable growth. This has particularly been the case in the area of probabilistic

models as GP has been incorporated with schema theories and Markov chain

models. A variety of Genetic Programming applications is shown in the papers

below: Winkler (2004), Winkler et al. (2004a, b), Madar et al. (2004, 2005), Willis et

al. (1997), Tsang et al. (1998), Fukunaga and Stechert (1998) and Werner and

Fogarty (2001).

GEP was first introduced by Ferreira (2001). Ferreira (2001, 2006) concludes saying

that GEP is the latest addition to a family of Evolutionary Algorithms that provides

financial practitioners with a further insight into artificial intelligence remedying the

shortfalls attributed to traditional Genetic Algorithms (GAs) and Genetic

Programming Algorithms (GP). In comparison to the GA and GP applications, the

GEP proves to be superior due to the mere fact that it clearly distinguishes the

differences between the genotype 1 and the phenotype/ of individuals within a

population. For instance, whilst a traditional GA classifies individuals as symbolic

strings of fixed size (i.e. chromosomes) and GP classifies its individuals as non-

linear comprising of different shapes and sizes (tree like structures); the GEP

encompasses a combination of both. Hence Fereirra (2001) stresses that GEP

represents not only an individual's genotype, in the form of chromosomes, but also

1 The genotype is an individual's full hereditary i.nformation representing its exact genetic makeup.
2 The. phenotypes .ar~ .the ~bserved properties of an individual such as development and behaviour. These are largely
determined from an Individual s genotype.

9

its phenotype as a tree like structure of expressions in order to establish fitness.

GEP is a new evolutionary technique and its applications so far is quite limited

However, it has been suceesfully applied in some real life problems like Lopez and

Weinert (2004), Margny and EI-Semman (2005) and Dehuri and Cho (2008).

The ESVM model combines genetic algorithms with Support Vector Machines. To

the best of our knowledge, this is the first time that genetic algorithms have been

combined with Support Vector Machines for the problem of modeling and trading

financial indices. Until now many approaches have been based on Support Vector

Machines for the modeling of financial time series. In 2003, two applications on SVM

financial time series forecasting were developed. In Cao et al. (2003), SVMs are

applied to the problem of forecasting several futures contracts from the Chicago

Mercantile Market showing the superiority of SVMs over Back Propagation and

regularized Radial Basis Function Neural Networks. In Kim (2003), SVMs are used

to predict the direction of change in the daily Korean composite stock index and they

are benchmarked against Back Propagation Neural Networks and Case Base

Reasoning. The experimental results show that SVMs outperform the other methods

and that they should be considered as a promising methodology for financial time-

series forecasting. In 2005, Huang et al. use SVM for predicting the directional

movement of the NIKKEI 225 index with very promising results. Lastly in Ince et al.

(2008), Support Vector Regression is applied to the short-term forecasting of ten

financial indices from the NASDAQ and outperforms all other traditional forecasting

methods used.

The aim of the first 5 applications of this thesis is to provide empirical evidentce

around the utility of Combined Neural Networks, Genetic Programming Algorithms,

10

Gene Expression Programming and Evolutionary Support Vector Machines in

forecasting the mean of financial series with autoregressive and multivariate series.

In our research we evaluate our forecasts also with financial means and thus

providing more solid conclusions around the financial utility of our models.

11

CHAPTER 3

Models in the Study

The forecasting methodologies used on this thesis are Neural Networks, Hybrid

Neural Networks, Mixed Neural Networks, Genetic Programming Algorithms, Gene

Expression Programming and Support Vector Machines. The Benchmark models

used to compare our above architectures are ARMA model, MACD, a Naive strategy

plus a Buy and Hold strategy. All these models are used to forecast the returns of

the ASE 20 Greek index.

3.1 The Multi-Layer Perceptron

A standard MLP has at least three layers. The first layer is called the input layer (the

number of its nodes corresponds to the number of explanatory variables). The last

layer is called the output layer (the number of its nodes corresponds to the number

of response variables). An intermediary layer of nodes, the hidden layer, separates

the input from the output layer. Its number of nodes defines the amount of complexity

the model is capable of fitting. In addition, the input and hidden layer contain an extra

node, called the bias node. This node has a fixed value of one and has the same

function as the intercept in traditional regression models. Normally, each node of one

layer has connections to all the other nodes of the next layer.

The network processes information as follows: the input nodes introduce the

explanatory variables to the network, without any processing. Since each node

connection represents a weight factor, the information reaches a single hidden layer

node as the weighted sum of its inputs. Each node of the hidden layer passes the

12

information through a nonlinear activation function and passes it on to the output

layer if the calculated value is above a threshold.

The network architecture of a 'standard' Multi-Layer Perceptron looks as presented

in figure 1:

MLP

Yt

Fig. 1:A single output, fully connected MLP model

where:

X/"l (n = 1,2,···,k + 1) are the model inputs (including the input bias node) at time t

~rm]
(m = 1,2,..., j + 1) are the hidden nodes outputs (including the hidden bias node)

is the MLP model output

are the network weights

o is the transfer sigmoid function: S(x) = 1 , [1]
1+ e-X

o
is a linear function: [2]

The error function to be minimised is:

13

3.2 The Recurrent Network

Our next model is the recurrent neural network. While a complete explanation of

RNN models is beyond the scope of this thesis, we present below a brief explanation

of the significant differences between RNN and MLP architectures. For an exact

specification of the recurrent network, see Elman (1990).

A simple recurrent network has activation feedback, which embodies short-term

memory. The advantages of using recurrent networks over feedforward networks, for

modelling non-linear time series, has been well documented in the past. However as

described in Tenti (1996) "the main disadvantage of RNNs is that they require

substantially more connections, and more memory in simulation, than standard

backpropagation networks" (p.569), thus resulting in a substantial increase in

computational time. However having said this RNNs can yield better results in

comparison to simple MLPs due to the additional memory inputs.

3.2.1 The RNN Architecture

A simple illustration of the architecture of an Elman RNN is presented below.

14

[I]
X.
}

[2] uY]
Xj

}

[3] Yt
Xj

u.,[I] U .[2]}-
}

o.;[2]}-

Fig. 2: Elman Recurrent neural network architecture with two nodes on the hidden

layer.

where:

In) () [I] [2]
XI n = 1,2,,, ·,k + 1 I Ut .u, are the model inputs (including the input bias

node) at time t

is the recurrent model output

d [f] [n] (12k 1)t (/ = 1,2) and WI n = , ,. .. , + are the network weights

is the output of the hidden nodes at time t

o is the transfer sigmoid function: s(x) = 1 ,
1+e-x

[4]

o is the linear output function: F(x) = Ix; [5]

15

The error function to be minimised is:

[6]

In short, the RNN architecture can provide more accurate outputs because the

inputs are potentially taken from all previous values (see inputs V J_tl and ~_/21 in

the figure above).

3.3 Higher Order Neural Networks
Higher Order Neural Networks (HONNs) were first introduced by Giles and Maxwell

(1987) and were called "Tensor Networks". For Zhang et al. (2002), a significant

advantage of HONNs is that "HONN models are able to provide some rationale for

the simulations they produce and thus can be regarded as "open box" rather then

"black box". Moreover, HONNs are able to simulate higher frequency, higher order

non-linear data, and consequently provide superior simulations compared to those

produced by ANNs (Artificial Neural Networks)" (p. 188).

3.3.1 The HONNs Architecture

While they have already experienced some success in the field of pattern recognition

and associative recall', HONNs have not yet been widely used in finance. The

architecture of a three input second order HONN is shown below:

3 Associative recall is the act of associating two seemingly unrelated entities, such as smell and
colour. For more information see Karayiannis and Venetsanopoulos (1994).

16

Xo

X1

Xo X2
X1 XOX1
X2 XOX2
1

Fig. 3: Left, MLP with three inputs and two hidden nodes; right, second order
HONN with three inputs

where:

1
HONN

X/"l (n = 1,2,..·,k + 1) are the model inputs (including the input bias node) at time t

Y, is the HONNs model output

U jk are the network weights

are the model inputs.

o is the transfer sigmoid function: S{x) = 1_ ,
1+e x

o is a linear function:

The error function to be minimised is:

[7]

[8]

E(u jk , W j) = ~ t &, - y, (U)k 'W I with y, being the target value [9]

HONNs use joint activation functions; this technique reduces the need to establish

the relationship between inputs when training. Furthermore this reduces the number

17

of free weights and means that HONNs can be faster to train than MLPs. However,

because the number of inputs can be very large for higher order architectures,

orders of 4 and over are rarely used.

Another advantage of the reduction of free weights means that the problems of

overfitting and local optima affecting the results can be largely avoided, Knowles et.

al. (2005). For a complete description of HONNs see Giles and Maxwell (1987).

3.4 Neural Networks and Hybrid Neural Networks

Neural networks exist in several forms in the literature. The most popular

architecture is the Multi-Layer Perceptron (MLP).

A standard neural network has at least three layers. The first layer is called the input

layer (the number of its nodes corresponds to the number of explanatory variables).

The last layer is called the output layer (the number of its nodes corresponds to the

number of response variables). An intermediary layer of nodes, the hidden layer,

separates the input from the output layer. Its number of nodes defines the amount of

complexity the model is capable of fitting. In addition, the input and hidden layer

contain an extra node, called the bias node. This node has a fixed value of one and

has the same function as the intercept in traditional regression models. Normally,

each node of one layer has connections to all the other nodes of the next layer.

The network processes information as follows: the input nodes contain the value of

the explanatory variables. Since each node connection represents a weight factor,

18

the information reaches a single hidden layer node as the weighted sum of its inputs.

Each node of the hidden layer passes the information through a nonlinear activation

function and passes it on to the output layer if the calculated value is above a

threshold.

The training of the network (which is the adjustment of its weights in the way that the

network maps the input value of the training data to the corresponding output value)

starts with randomly chosen weights and proceeds by applying a learning algorithm

called backpropagation of errors" (Shapiro (2000». The learning algorithm simply

tries to find those weights which minimize an error function (normally the sum of all

squared differences between target and actual values). Since networks with

sufficient hidden nodes are able to learn the training data (as well as their outliers

and their noise) by heart, it is crucial to stop the training procedure at the right time

to prevent overfitting (this is called 'early stopping'). This can be achieved by dividing

the dataset into 3 subsets respectively called the training and test sets used for

simulating the data currently available to fit and tune the model and the validation set

used for simulating future values. The network parameters are then estimated by

fitting the training data using the above mentioned iterative procedure

(backpropagation of errors). The iteration length is optimised by maximising the

forecasting accuracy for the test dataset. Our networks, which are specially

designed for financial purposes, will stop training when the profit of our forecasts in

the test sub-period is maximized. Then the predictive value of the model is evaluated

applying it to the validation dataset (out-of-sample dataset).

"Backpropaqation networks are the most common multi-layer networks and are the most commonly
used type in financial time series forecasting (Kaastra and Boyd (1996».

19

There is a range of combination techniques that can be applied to forecasting the

attempt to overcome some deficiencies of single models. The combining method

aims at reducing the risk of using an inappropriate model by combining several to

reduce the risk of failure. Typically this is done because the underlying process

cannot easily be determined (Hibon et al. (2005)).

Combining methods involves using several redundant models designed for the same

function, where the diversity of the components is thought important (Brown et al.

2005). The procedure of making a hybrid forecasting time series model can be

achieved by combining an ARMA process in order to learn the linear component of

the conditional mean pattern with an Artificial Neural Network process designed to

learn its nonlinear elements. The construction of the hybrid ARMA-Neural Network

model in details is in the figure below and in figure 5 (page 20)

r
Predicted Data

ARMAModel
To extract linear
elements in DGP*

Original or
Transformed data

D
Save ARMA
Residuals to check
for potentional
nonlinearities In

DGP

Hybrid ARMA-NN Neural Network
Model ¢J ¢JForecasted
Forecasted Residuals Residuals
+Forecasted Returns

*DGP= Data Generating Process

Fig. 4: The architecture of Hybrid ARMA-Neural Network Model

20

3.4.1 THE HYBRID HONN, MLP, RNN, ARCHITECTURE

Neural :\
Netw?rM;
I

Hybrid :\
HONN/MlP/RNN "

\" FORECAST. .::
...., , ':::.., , .

I

11

Forecasted
Residuals':

ForecastedResldua~
+ Forecasted Retur~s

.. /.............. : ; _.; ;..

Fig. 5: The architecture of Hybrid ARMA-Neural Network Model

The methodology we follow to construct the Hybrid ARMA-Neural Network is divided

in 3 steps. In a first step we take the residuals from the ARMA model. In a second

step, we forecast the residuals with our Neural Network model. In a third step we

create the Hybrid model by adding the forecasted returns from the ARMA model with

the forecasted residuals from the second step.

3.5 Neural Networks and Mixed Neural Networks

Neural networks exist in several forms in the literature. The most popular

architecture is the Multi-Layer Percepton (MLP).

A standard neural network has at least three layers. The first layer is called the input

layer (the number of its nodes corresponds to the number of explanatory variables).

The last layer is called the output layer (the number of its nodes corresponds to the

number of response variables). An intermediary layer of nodes, the hidden layer,

separates the input from the output layer. Its number of nodes defines the amount of

complexity the model is capable of fitting. In addition, the input and hidden layer

21

contain an extra node, called the bias node. This node has a fixed value of one and

has the same function as the intercept in traditional regression models. Normally,

each node of one layer has connections to all the other nodes of the next layer.

The network processes information as follows: the input nodes contain the value of

the explanatory variables. Since each node connection represents a weight factor,

the information reaches a single hidden layer node as the weighted sum of its inputs.

Each node of the hidden layer passes the information through a nonlinear activation

function and passes it on to the output layer if the calculated value is above a

threshold.

The training of the network (which is the adjustment of its weights in the way that the

network maps the input value of the training data to the corresponding output value)

starts with randomly chosen weights and proceeds by applying a learning algorithm

called backpropagation of errors" (Shapiro (2000». The learning algorithm simply

tries to find those weights which minimize an error function (normally the sum of all

squared differences between target and actual values). Since networks with

sufficient hidden nodes are able to learn the training data (as well as their outliers

and their noise) by heart, it is crucial to stop the training procedure at the right time

to prevent overfitting (this is called 'early stopping'). This can be achieved by dividing

the dataset into 3 subsets respectively called the training and test sets used for

simulating the data currently available to fit and tune the model and the validation set

used for simulating future values. The network parameters are then estimated by

fitting the training data using the above mentioned iterative procedure

5Backpropagation networks are the most common multi-layer networks and are the most commonly
used type in financial time series forecasting (Kaastra and Boyd (1996)).

22

(backpropagation of errors). The iteration length is optimised by maximising the

forecasting accuracy for the test dataset. Our networks, which are specially

designed for financial purposes, will stop training when the profit of our forecasts in

the test sub-period is maximized. Then the predictive value of the model is evaluated

applying it to the validation dataset (out-of-sample dataset).

There is a range of combination techniques that can be applied to forecasting the

attempt to overcome some deficiencies of single models. The combining method

aims at reducing the risk of using an inappropriate model by combining several to

reduce the risk of failure. Typically this is done because the underlying process

cannot easily be determined (Hibon et al. (2005».

Combining methods involves using several redundant models designed for the same

function, where the diversity of the components is to be thought important (Brown et

al. 2005). The procedure of making a mixed forecasting time series model can be

achieved by combining an ARMA process in order to learn the linear component of

the conditional mean pattern with an Artificial Neural Network process designed to

learn its nonlinear elements. The construction of the Mixed ARMA-Neural Network

model is detailed is in figure 6 below.

3.5.1 The Mixed HONN, MLP, RNN, Architecture

23

Original or
transformed data

Outputn
Mixed ARMA-NNR
forecast

ARMA model to
extract linear
elements in DGP*

Neural Network
Regression Model

Other in~uts

*DGP= Data Generating Process

ARMA Forecasted
Returns

D
Saved ARMA
forecasted returns as
NNR model input

Fig. 6: The architecture of Mixed Neural Network Model

The methodology we follow to construct the Mixed ARMA-NNR model is divided into

2 steps. In the first step the ASE 20 index is modelled with a traditional ARMA

model. In the second step the forecasted returns of the ARMA model are used as an

input to the neural networks for forecasting the selected time series.

3.6 The Genetic Programming Algorithm

For the purpose of our research, the GP application is coded and implemented to

evolve tree based structures that present models (sub trees) of input - output. In the

design phase of our GP application we focused primarily on execution time

optimization as well as limiting the 'bloat effect'. The bloat effect is similar to the

issue of overfitting experienced in Neural Networks however in our case we run a

risk of continuously increasing and expanding the tree size. This algorithm is run in a

steady state in that a single member of the population is replaced at a time.

Furthermore, our GP application reproduces newer models replacing the weaker

24

ones in the population, according to their fitness. Reasoning behind the decision to

use a steady state algorithm is justified as they hold a greater selection strength and

genetic drift over other algorithms such as a typical generational GAs. Additionally,

steady state algorithms also offer exceptional multiprocessing capabilities.

In our application of the genetic programming we utilize formulas to evolve algebraic

expressions that enable the analysis I optimization of results in a 'tree like structure'.

This genetic tree structure consists of nodes (depicted as circles in the diagram

below) which are essentially functions that perform actions within this structure.

Furthermore, these functions are in place to generate output signals. On the other

hand, the squares in the tree signify terminal functions representing the end of a

function once the most superior sub tree (model) is achieved. For example, the

below tree structure (model) is characterized by the algebraic expression 4.0/x1 (t-1)

+ In(x2(t-2». In this case there is one output and the terminal nodes are constant at

4. Additionally, the outputs are expressed by x1(t-1) and x2(t-2). In the execution of

the genetic algorithm it has to be understood that each individual in the population

correspond to a single sub tree structure. Each of these sub trees are limited by the

predefined maximum tree size set to 6 in our application.

A o
D

Function t;ymhol!
Non-terminal node

Terminal symbol /
T erminal node

4.0

Fig. 7: Example of a tree structure

25

Koza (1998) summarises the functionality aspect of the GP algorithm in the following

steps:

(1) The generation of an initial population of randomly constructed models is

developed with each model being represented in a tree like structure as

discussed previously. Additionally, the evolutionary algorithm represents each

chromosome of the population as a tree of variable length (Le. total number of

functions and terminals) or a maximum depth of the model tree. The process of

randomly reproducing each variable of the population is completed once all of

these functions of the tree are terminal symbols. However, until the process is

halted by these 'terminal symbols' then the tree like structure of chromosomes

continues to multiply (grow) with each generation as the population expands to

not only include the parents but also their offspring. This is achieved by

crossover and mutation operators. On the whole, it also has to be understood

that the majority of these models produced in the initial population are, in most

cases, unsatisfactory when tested for their performance with some individual

models 'fitting' better than others. However, one of the virtues offered by Genetic

Programming is that they exploit and manipulate these differences until the best

fitting models, in terms of least error, are produced.

(2) Following this initial generation of randomly selected models a random subset

(sub tree) of the population is then selected for a tournament. Hence this process

is known as a tournament selection phase. This process (tournament procedure)

is essentially a selection mechanism to decipher which individuals from the

population are to be selected for reproduction to develop the next generation.

26

(3) An evaluation of the members of this subset is then carried out and assigned a

fitness value. As stated by Koza (1998) the fitness cases are either selected at

random or in some structured manner (e.g. at regular intervals). In our

application, as mentioned briefly in the first step, the fitness value is defined as

the mean squared error (MSE) with the lowest MSE being targeted as the best.

Furthermore, the fitness may be measured in terms of the sum of the absolute

value of the differences between the output produced by the model and/or the

desired output (Le. the Minkowski distance) or, alternatively, the square root of

the sum of the squared errors (Le. the Euclidean distance).

(4) Following the establishment of fitness values the tournament winners are then

determined. To reiterate, the winners of this scenario are the models with the

lower MSE.

(5) Having identified the tournament winners in the previous step we then proceed

by exposing the models to two genetic operators known as mutations and

crossovers. Both operators are discussed in more detail below:

Mutation: This is the creation of a new model that is mutated randomly from an

existing one as circled in the diagram below (1*). This one mutation point is

indiscriminately chosen as an independent point and the resulting sub-tree is to be

omitted. From this resulting sub-tree, another new sub-tree (2*) is then reproduced

using the same procedure that was initially implemented to create the original

27

random population. Although this was the procedure we implemented for mutation

there are also a number of alternative methods that are explored in other research.

-o o
o, o

/

0000

Fig. 8: Mutation tree structure example

Crossover. This operator creates two new models from existing models by

genetically recombining randomly chosen parts of them. This is achieved by using

the crossover operation applied at a randomly chosen crossover point within each

model. Due to the fact that entire sub-trees are swapped (from point 1* to point 2*

and from points 3* to 4*), the crossover operation produces models as offsprings.

Furthermore, the models are selected based on their fitness and the crossover

allocates future trials to regions of the search space whose models contain parts

from superior models. As a full explanation of crossovers is beyond the scope of this

paper please refer to Koza (1992) for more details.

28

o
/~

/ <,o
I".08

Fig. 9: Crossover family tree like structure example

(6) The population is then altered with the tournament losers being replaced by the

winners (superior) offspring.

(7) Provided the termination criterion (depicted as the symbol "?' in the following flow

of stages) is not reached, the algorithm returns to step 2 and these steps are

repeated until the predefined termination criterion for genetic programming is

satisfied. In our study we have set the termination criterion to 100,000 at which

point the cycles are stopped and forecasted results can be obtained.

(8) Ultimately, this protocol produces the best individual (model) of the population as

a result.

29

The generation of an
initial population

Evaluation

Selection

Reproduction

New Generation

End

*note: the symbol I?' is the termination criterion which iterates or terminates the
procedure of GP.

Fig. 10: The architecture of Genetic Programming Algorithm

3.6.1 Settings for Genetic Programming Parameters (See
Appendix A.1.1 0)

The parameters used for the optimization of our individual models are defined in

order to yield better results and are specified as follows:

1. Population size 200. The population size is the total number of randomly

chosen models in our experiment. This number can be altered however in our

specific case we found that it was more beneficial (in terms of annualised

30

returns) to set the population to 200 individuals. Each individual model has a

tree structure composed of a set of functions and terminals. In summary,

every model is a mathematical equation which participates in the program

until the GP produces the best individual program.

2. Maximum tree depth 6. The maximum tree depth is the maximum length of

each model (of each tree structure). In neural networks this is commonly

known as hidden nodes. The depth depends on the functions and terminals of

each individual model.

3. Tournament size 4. Tournament size is the size of models in the subset.

Through trial and error we found this to be the most appropriate size.

4. Crossover trial 1. Crossover trial means the number of generations that we let

the genetic programming algorithm to run. Crossover is achieved by creating

two new offspring models for the new population by randomly recombining

parts from two selected parents. In this experiment we have one crossover

trial per generation.

S. Mutation probability 0.75. The mutation probability is the probability that can

mutate parts of individual models from an existing one. Specifically mutation is

performed by randomly selecting a parent with a probability related to its

fitness, after that mutation randomly changes one or more genes representing

part of the solution it encodes. Due to the fact that the population is 200

models, we use a relatively large probability. The mutation probability extends

from an initial 0.1 and finishes at 0.9.

31

3.7 The Gene Expression Programming

As mentioned before the models in GEP are symbolic strings of fixed length

representing an organism's genome (chromosome/genotype), but these simple

entities are encoded as non linear entities of different sizes and shapes determining

an organism's fitness (expression trees/phenotype). GEP chromosomes are made

up of multiple genes spanning equal lengths across the structure of the

chromosome. Each gene is comprised of a head (detailing symbols specific to

functions and terminals) and a tail (only includes terminals). For a mathematical

representation please refer to the below:

t=(n-l)h+l [10]

Where:

h == the head length of the gene.

t == the tail length of the gene.

n == total number of arguments within the tunction" (maximum arity)

As an inference the set of terminals included within both the heads and tails of the

chromosomes contain constants as well as case specific variables. In addition,

regardless of the fact that each of the genes is equal and fixed in size they hold the

capacity to code for multiple and varied expression trees (ET). For example, the

structure of GEP is able to cope in circumstances when the first element of a gene is

terminal producing a single node as well as when multiple nodes ('sub-trees'

reproduced by functions) are produced in search for eventual terminality. In contrast

e This is determined by the user. In most cases a function will either be a Boolean function or any mathematical function that is
suited to a specific problem.

32

with its predecessors, GEP does not require the rejecting of invalid individuals from

the population, as valid ETs are always generated. Thus, each gene encodes an ET

and in situations where multiple generation arise, GEP codes for sub ETs with

interlinking functions to enable reproduction of generations. Furthermore, the

expression of each ET is enabled by an Open Reading Frame (ORF) which assists

in the decoding process. Additionally, while the ORF is initiated at the beginning of

each gene it has to be understood that the eventual terminal points are not always

determined to be located at the end of the gene

Although it is crucial to understand the workings of a GEP it is also just as important

to understand its step by step process of evolution. This is depicted in the diagram

below.

Create Chromosomes for Initial Population

Prepare New Programs of Next Generation

Fig. 11: Flow chart of Gene Expression Algorithm

33

The different steps of the algorithm from the above diagram are explained in more

detail as follows:

1. Creation of Initial Population

Similar to other evolutionary algorithms, GEP randomly generates an initial

population from populations of individuals and all succeeding populations are

spawned from this initial population. In the spawning of new generations genetic

operators evolve each of the individuals by 'mating' them with other individuals in the

population. These genetic operators are deciphered by the nature of the problem

which one wants to solve. Genetic operators may include (but are not limited to) '+',

"_",,*, and 'T symbols for mathematical models and 'And', 'Or', 'Nand', 'Nor', 'Xor',

'Nxor', '<', '>', '< or ='. and '> or =' for logical expressions as explained by Ferreira

(2001). Therefore, the terminals and functions (symbols) may vary from problem to

problem. Other intricacies such as gene size also have to be specified by the user at

this stage.

2. Express chromosomes

In this step we progress by developing expression trees from our chromosomes. The

structure of each ET is in such a way that the root or the first node corresponds with

beginning of each gene. The resulting offspring evolved from the first node is

dependent on the number of arguments. In this process of evolution the functions

may have numerous arguments however the terminals have an arity of zero. Each of

the resulting offspring's characteristics is populated in nodes ordered from left to

right. This process is concluded once terminal nodes are established.

34

3. Execute each program

We are now ready to generate the initial population and develop resulting ETs. This

is explained by Ferreira (2001).

4. Evaluate fitness

In order to create an accurate model suited to our forecasting requirements it is

imperative that a function which minimizes error and improves accuracy is used.

Therefore, in order to evolve our initial population in line with our target market we

must clearly define the goal of our model. Ultimately, this 'fitness function'

determines the optimality of our solution. In our application, as mentioned before in

the GP algorithm, the fitness value is defined as the mean squared error (MSE)] with

the lowest MSE being targeted as the best. However, on the odd occasion some of

the individuals that are generated randomly to create our initial population provide

suitable solutions and hence arrive at terminal functions. More often than not though,

individuals for the initial population provide poor candidates for the purpose of the

investigation and require further evolution to achieve terminal values.

5. Keep best Program

In our GEP model the main principal during the process of evolution is the

generation of offspring from two superior individuals to achieve 'elitism'. As a

consequence the best individuals from the parent generation produce offsprings in

future generations with the most desirable traits whilst the individuals with less

desirable traits are removed. On this basis our model minimizes error and

maintains superior forecasting abilities. As explained in greater detail by Ferreira

(2001), elitism is the cloning of the best chromosome(s)/individual(s) to the next

35

population (also called generation). Furthermore, the role of 'elitism' (via suited

genetic operators) enables the selection of fitter individuals without eliminating the

entire population.

6. Selection

The selection of individuals based on their 'fitness' is carried out during the

'tournament' selection for reproduction and modification. This process selects the

individuals at random with the superior ones being chosen for genetic modification in

order to create new generations. The intensity of competition is dictated by the

tournament size which is adjusted and set by the practitioner. The greater the

tournament size the more competitive the selection process and therefore weaker

individuals are less likely to compete.

7. Reproduction

In the reproduction of future generations we have to consider the types of genetic

operators which make this 'evolution' possible. Specifically we apply the genetic

operators known as mutation and recombination as explained below.

Mutation: This is the creation of a new model that is mutated randomly from an

existing one as circled in the first diagram below. This one mutation point is

indiscriminately chosen as an independent point and the resulting chromosome is to

be omitted. From this resulting chromosome, another new chromosome is then

reproduced using the same procedure that was initially implemented to create the

original random population. Although this was the procedure we implemented for

36

mutation there are also a number of alternative methods that are explored in other

research like the second diagram below.

SIngle CnrOl1"'1QSlOm e mutati 0 n

1*
(' 1*

)

, I

Fig. 12:Mutation chromosome structure example

Single cbremeserne muta,tlons
~ 1 ~,

Deletion Inversion

Fig. 13: Mutation chromosome structure examples

• Recombination: in contrast to our mutation operator this process is not

executed at random. Instead the parent chromosomes are matched and split

up or 'spliced' at identical points in order to determine recombination points.

The subsequent spliced parts of each of the genes are then exchanged

between the two selected chromosomes on the basis of probability. This

37

results into two new individuals as a result of genetic engineering. Note that

during reproduction it is the chromosomes of the individuals, not the

expression trees (ETs) that are reproduced with modification and transmitted

to the next generation.

Par9l1.s:

O'lidrm:

Fig. 14: Chromosome recombination structure example

8. Prepare new programs of the next generation

At this step, we replace the tournament losers with the new individuals created by

reproduction in the population.

9. Termination criterion

We check if the termination criterion is fulfilled, if it is not we return to step 2. As a

termination criterion we used a maximum number of 100.000 generations during

which the GEP was left to run.

10. Results

As a result we return the best individual ever found during the evolution process.

38

3.7.1 Settings for Gene Expression Programming
Parameters (See Appendix A.1.1 O)

1. Population size 1000. The population size is the total number of randomly

chosen models in our experiment. This number can be altered however in our

specific case we found that it was more beneficial (in terms of annualised

returns) to set the population to 1000 individuals. Each individual model has a

tree structure composed of a set of functions and terminals. In summary,

every model is a mathematical equation which participates in the program

until the GEP produces the best individual program.

2. Tournament size 20. Tournament size is the size of models in the subset.

Through trial and error we found this to be the most appropriate size.

3. Type of recombination: two points recombination. In two-point recombination

the parent chromosomes are paired and two

points are randomly chosen by which both chromosomes are split. The

material between the recombination points is then exchanged between the

two chromosomes, forming two new daughter chromosomes.

4. Head length 50. The head length is the size of the part of the GEP

chromosome which is called "head". The value of this parameter determines

the maximum size of the models that the GEP will produce.

5. Mutation probability 0.75. The mutation probability is the probability that can

mutate parts of individual models from an existing one. Specifically mutation is

performed by randomly selecting a parent with a probability related to its

fitness, after that mutation randomly changes one or more genes representing

part of the solution it encodes. Due to the fact that the population is 1000

39

models, we use a relatively large probability. The mutation probability is

tested over a range from 0.1 to 0.9.

3.8 Support Vector Machines

Support vector machines (SVM) are a group of supervised learning methods that can

be applied to classification or regression. SVMs represent an extension to nonlinear

models of the generalized algorithm developed by Vapnik (2000). They have

developed into a very active research area and have already been applied to many

scientific problems. Specifically, SVM have already been applied in many prediction

and classification problems in finance and economics (Ince et al. (2008), Cao et al.

(2003), Huang et al. (2005), Kim (2003» although they are still far from mainstream

and the few financial applications so far have only been published in statistical

learning and artificial intelligence journals.

SVM models were originally defined for the classification of linearly separable

classes of objects. For any particular linear separable set of two-class objects SVM

are able to find the optimal hyperplanes that separates them providing the bigger

margin area between the two hyperplanes. The mathematical explanation of this

ability is described in section 3.8.1.

SVM can also be used to separate classes that cannot be separated with a linear

classifier. In such cases, the coordinates of the objects are mapped into a feature

space using nonlinear functions. The feature space in which every object is projected

is a high-dimensional space in which the two classes can be separated with a linear

classifier. This procedure is explained mathematically in section 3.8.2.

40

3.8.1. Linear separability of data and Linear SVMs

Suppose we are given a set of examples {Xl'yll ..., (x!'YI), where r, F RN and

y, E (±1) are the input patterns and their class labels, respectively. In this section

we assume that the two classes of the classification problem are linearly separable

(which is not usually the case). In this case, we can find an optimal weight vector "'0

such that !Il-\'Dif is minimum (in order to maximize the margin 11 = 21f.~'DI of

separation (Scholkopf et al. (1999)) and Yi ,. (wo" Xi + bll)? 1, i - 1, ...• l.

The support vectors are the training examples Xi that satisfy the equality, Le.

Yi (wD • Xi + bll» = 1 . They define two hyperplanes. The one hyperplane goes through

the support vectors of one class and the other through the support vectors of the

other class. The distance between the two hyperplanes is maximized when the norm

of the weight vector ,,",'0 r is minimum. This minimization can be realized by

maximizing the following function with respect to the variables a, (Lagrange

multipliers) in Vapnik (2000):

[11]

l

~ai.)'i = 0
subject to the constraints: 0 -s a, and ,=1 . If ai > 0 then Xi corresponds to

a support vector. The classification of an unknown vector x is obtained by

computing:

[12]

and the sum only takes into account Ns S 1 nonzero support vectors (i.e. training set

vectors _1", whose 0, are nonzero). Clearly, after the training, the classification can

41

be accomplished efficiently by taking the dot product of the optimum weight vector

Wo with the input vector x.

3.8.2 Non-linear Separability of data and Non-Linear SVMs

Cases in which the data is not linearly separable, like in financial modeling problems,

are handled by introducing slack variables ((1' (2' (1) with {i ~ 0 such that

I

misclassified points, which have their corresponding ~i > 1.Thus, ~ {i is an upper

bound on the number of training errors. The corresponding generalization of the

concept of optimal separating hyperplane is obtained by the solution of the following

optimization problem:

Minimize ~w * w + C * L~=l(i [13]

subject to

[14]

The control of the learning capacity is achieved by the minimization of the first part of

Eq. (13) while the purpose of the second term is to punish for misclassification

errors. The parameter C is a kind of regularization parameter that controls the

tradeoff between learning capacity and training set errors. Clearly, a large C

corresponds to assigning a higher penalty to training errors and at the same time

increasing the generalization ability of our classifier.

Finally, the case of nonlinear SVMs should be considered. The input data in this

case are mapped into a high-dimensional feature space through some nonlinear

mapping et> chosen a priori (Cortes et al. (1995), Scholkopf et al. (1999)). The optimal

separating hyperplanes are then constructed in this space.

42

The corresponding optimization problem is obtained from Eq. (11) by substituting x

by its mapping z = et>(x)in the feature space, i.e. the maximization of W(a). Also, the

constraint 0 Sa" becomes 0S a, se (assuming the nonseparable case). When it

is possible to derive a proper kernel functional K such that

K(x i,xi) =< <PUit <P(xi) > the mapping et>is not explicitly used. Conversely, given a

symmetric positive kernel K(x, y), Mercer's theorem, in Scholkopf et 81. (2002), states

that there exists a mapping <t> such that Ku.y) =< <Pui),<P(xi) > " By designing a

kernel K that satisfies Mercer's condition, the training algorithm is reformulated to the

maximization of

! !!

W(a) =L ai - ~LLai • aj. K(x~,Xj)·)'i • v,
f=l i=lj=l [15]

!

Iai .Yi = 0
with the constraints 0 -s ai se, and f=o and the decision function becomes

!

FCx) = son (~a,.J',' KCx.x,)+ b,)
[16]

With different expressions for inner products K(x,xi) we can construct different

learning machines with arbitrary types of decision surfaces (nonlinear in input

space). The best known kernel types are the polynomial and the radial basis.

Polynomial kernels specify polynomials of any fixed order d for the inner product in

the corresponding feature space, i.e.,

[17]

and the Radial Basis Function kernel has the form

[18]

The Radial basis function (RBF) kernels construct decision functions of the form:

z

Fu) = son (~ ai '}'i • exp(- oamma * Ilx - x .112+ b.J)
[19]

43

In the case of the RBF kernel type, the SVM training algorithm determines the

centers (support vectors) Xi, the corresponding weights aj and the threshold bOoThis

kernel nonlinearly maps samples into a higher dimensional space so it, unlike the

linear kernel, can handle the case when the relation between class labels and

attributes is nonlinear. In our approach, we used the Radial Basis Kernel Function

because of its higher reliability in finding optimal classification solutions in most

practical situations (Kerthi et al. (2003». The second reason is the number of

hyperparameters which influences the complexity of model selection. The polynomial

kernel has more hyperparameters than the RBF kernel and thus it needs a more

complex procedure for its parameter optimization procedure.

3.8.3 The Evolutionary SVM (ESVM) Stock Predictor

In this section, we describe the proposed methodology. The ESVM stock predictor is

a hybrid method of GAs and SVMs specialized for trading financial assets.

When using SVMs, two major decisions must be made. The feature subset used as

input to the classifier and the SVM parameters must be optimized. In order to

optimize both, we used Gas for the first time which are a heuristic evolutionary

technique known for its potential in hard optimization problems.

GAs (Holland (1995» are search algorithms inspired by the principle of natural

selection. They are useful and efficient if the search space is big and complicated or

there is not any available mathematical analysis of the problem. A population of

candidate solutions, called chromosomes, is optimized via a number of evolutionary

cycles and genetic operations, such as crossovers or mutations. Chromosomes

consist of genes, which are the optimizing parameters. At each iteration (generation),

a fitness function is used to evaluate each chromosome, measuring the quality of the

44

corresponding solution, and the fittest chromosomes are selected to survive. This

evolutionary process is continued until some termination criteria are met. It has been

shown that GAs can deal with large search spaces and do not get trapped in local

optimal solutions like other search algorithms, in Holland (1995).

In our approach, we use a simple GA where each chromosome comprises feature

genes that encode the best feature subset and parameter genes that encode the

best choice of parameters. The parameters which are optimized using GA are the

parameters C and gamma used by Support Vector Machines. As described in the

previous section the parameter C is a kind of regularization parameter, that controls

the tradeoff between learning capacity and training set errors and gamma is a

parameter of the RBF Kernel function.

For the genetic algorithm used in our wrapper methodology, the one-point crossover

and the mutation operators were used. One-point crossover creates two offspring

from every two parents. The parents are selected at random, a crossover point c., is

selected at random, and two offspring are made by both concatenating the genes

that precede Cx in the first parent with those that follow (and include) c, in the second

parent. The probability for selecting an individual as a parent for the crossover

operator to be applied is named as crossover probability. The offspring produced by

the crossover operator replace their parents in the population. The mutation operator

places random values in randomly selected genes with a certain probability named

as mutation probability. Mutation operator is very important for avoiding local optima

and exploring a larger surface of the search space. Crossover and mutation

probabilities for the GA where set to 0.9 and 0.1 respectively. Crossover is used in

hope that new chromosomes will have good parts of old chromosomes and maybe

the new chromosomes will be better. However it is good to leave some part of

45

population survive to next generation. This is the reason a high (but not equal to one)

crossover probability was used. As already mentioned, mutation is made to prevent

falling GA into local extreme, but it should not occur very often, because then GA will

in fact change to random search. That is the main reason why a small mutation

probability was applied.

For the selection step of the GA, roulette selection (Holland (1995)) was used. In

roulette selection chromosomes are selected according to their fitness. The better

the chromosomes are, the more chances to be selected they have. In our approach,

elitism was used to raise the evolutionary pressure in better solutions and to

accelerate the evolution. By using elitism, we assured that the best solution is copied

without changes to the new population, so the best solution found can survive at the

end of every generation. The fitness function is defined as in equation [20]:

fitness = accuracy + accumulated _ return [20]

where accuracy is the SVM accuracy in the in sample test set and

accumulated_return is the accumulated return of the SVM in the sample test set. We

chose this fitness function in order to balance the accuracy and financial

effectiveness of the classifiers. The size of the initial population was set to 30

chromosomes and the termination criterion is the maximum number of 50

generations to be reached combined with a termination method that stops the

evolution when the population is deemed as converged. The population is deemed

as converged when the average fitness across the current population is less than 5%

away from the best fitness of the current population. Specifically, when the average

fitness across the current population is less than 5% away from the best fitness of

the population, the diversity of the population is very low and evolving it for more

46

generations is unlikely to produce different and better individuals than the existing

ones or the ones already examined by the algorithm in previous generations. The

flowchart of the proposed methodology is depicted in detail in Figure 15.

The ESVM is applied to the problem of forecasting the one day ahead direction of

ASE-20 Greek stock index and then trading it. In Figure 15 we present an example

of the performance of the best member of the population in every generation. In the

vertical axes the performance is measured using the fitness function (20). In Figure

16 we present the total performance of the population in every generation of a single

run. In order to compute the total performance of every population, the performances

of the individuals (using equation 20) are summed .. From Figures 16 and 17 one can

easily observe that our methodology converges after approximately 25 generations

and that using different termination criteria would not improve our performance.

47

DATA

Fig. 15: Flowchart of ESVM methodology
Performance of best member in e\oeJYgeneration

1.3,---'---'---'r=============9

1.2

1.25

1.15

"g 1.1
ttl

I
CL

1.05

0.95

0.9

0.85O'---.L
S
-___.J1-:-0--1.L

5
-___.J2-:-0--2.LS-___.J30--3:"5,---___.J4':-0--4~5'----:50

Generation

Fig. 16: Performance of the best member of the population in every generation of a
single run

48

Sum of performances of members of eloery generation

28

26

~ 24

'Si 22
Cl.

5 10 15 20 25 30 35 40 45 50
Generation

Fig. 17: Total performance of the population in every generation of a single run

The inputs that are selected in the best execution of the ESVM. The parameter C

and gamma were set by the ESVM to 2.82 and 274.374 respectively. This

comparatively small value for the parameter C forces the ESVM not to overfit the

training data and thus to enhance its performance over the out-of- sample dataset.

Explanatory variables for our ESVM model can be seen in the appendix. (A.1.2)

By further examining our results we conclude that data from the FTSE100 index are

not retained by the ESVM directional predictor even if it is strongly related to ASE20

index. The conclusion from this is that one cannot select inputs to be used in a

machine learning algorithm like the ESVM by resorting to a simple method like linear

correlation. Simple linear methods cannot capture the complex multiple correlations

that exist between the different inputs and only a more sophisticated and powerful

technique like GAs can achieve this hard task.

3.9 Benchmark Models

49

In this chapter, we benchmark our neural network models with 4 traditional

strategies, namely an autoregressive moving average model (ARMA), a moving

average convergence/divergence technical model (MACD) a na"ive strategy and a

buy and hold strategy.

3.9.1 Na"ivestrategy

The natve strategy simply takes the most recent period change as the best

prediction of the future change. The model is defined by:

A

~+I =~ [21]

Where is the actual rate of return at period t
A

~+I is the forecast rate of return for the next period

The performance of the strategy is evaluated in terms of trading performance via a

simulated trading strategy.

3.9.2 Moving Average

The moving average model is defined as:

M = (y, + Y,-I + ~-2 +...+ Y,-n+1)
I

n [22]

Where MI is the moving average at time t

n is the number of terms in the moving average

~ is the actual rate of return at period t

The MACD strategy used is quite simple. Two moving average series are created

with different moving average lengths. The decision rule for taking positions in the

market is straightforward. Positions are taken if the moving averages intersect. If the

50

short-term moving average intersects the long-term moving average from below a

'long' position is taken. Conversely, if the long-term moving average is intersected

from above a 'short' position is taken'.

The forecaster must use judgement when determining the number of periods n on

which to base the moving averages. The combination that performed best over the

in-sample sub-period was retained for out-ot-sample evaluation. The model selected

was a combination of the ASE 20 and its 7-day moving average, namely n = 1 and 7

respectively or a (1, 7) combination. The performance of this strategy is evaluated

solely in terms of trading performance.

3.9.3 ARMA Model

Autoregressive moving average models (ARMA) assume that the value of a time

series depends on its previous values (the autoregressive component) and on

previous residual values (the moving average component)".

The ARMA model takes the form:

[23]

where is the dependent variable at time t

1';-1' 1';-2' and 1';-p are the lagged dependent variable

tPo, tPI' ¢2' and ¢p are regression coefficients

&, is the residual term

&1-1' &'-2' and e.; are previous values of the residual

7A 'long' ASE 20 position means buying the index at the current price, while a 'short' position means
selling the index at the current price.
8 For a full discussion on the procedure, refer to Box et al. (1994) or Pindyck and Rubinfeld (1998).

51

are weights.

Using as a guide the correlogram in the training and the test sub periods we have

chosen a restricted ARMA (7, 7) model. All of its coefficients are significant at the

99% confidence interval. The null hypothesis that all coefficients (except the

constant) are not significantly different from zero is rejected at the 99% confidence

interval (see Appendix A.1.1).

The selected ARMA model takes the form:

J"t = 2.90' 10-4 + 0.376 r:-I - 0.245Yt-3 - 0.679Yt-7 + 0.374Et-1 - 0.270Et-3 -0.677Et-7 [24]

The model selected was retained for out-of-sample estimation. The performance of

the strategy is evaluated in terms of traditional forecasting accuracy and in terms of

trading pertormance".

3.9.4 Buy and Hold strategy

Buying the index (asset) at the beginning of the review period and selling it back at

the end.

BHret. = Rt

3.10.1. The ASE 20 Greek Index and Related Financial Data

For chapters 4 - 7 we use the same data period and for the sake of conciseness we

have provided reference to appendix 1 for data segregation (A.1.3), a histogram of

returns (A.1.5), a graph of our total dataset (a.1.4) and finally the explanatory

variables used as inputs for each of our models (A.1.2). In chapter 8 we expand our

dataset to include 2009 and 2010 data and as a result we directly refer to them in our
text.

9 Statistical measures are given in section 4.3 below.

52

For Futures contracts on the FTSE/ASE-20 that are traded in derivatives markets the

underlying asset is the blue chip index FTSE/ASE-20. The FTSE/ASE-20 index is

based on the 20 largest ASE stocks. It was developed in 1997 by the partnership of

ASE with FTSE International and is already established benchmark. It represents

over 50% of ASE's total capitalisation and currently has a heavier weight on banking,

telecommunication and energy stocks.

The futures contract on the index FTSE/ASE-20 is cash settled in the sense that the

difference between the traded price of the contract and the closing price of the index

on the expiration day of the contract is settled between the counterparties in cash.

As a matter of fact, as the price of the contract changes daily, it is cash settled on a

daily basis, up until the expiration of the contract.

The futures contract is traded in index points, while the monetary value of the

contract is calculated by multiplying the futures price by the multiplier 5 EUR per

point. For example, a contract trading at 1,400 points has a value of 7,000 EUR.

The ASE 20 Futures is therefore a tradable level which makes our application more

realistic and this is the series that we investigate in this thesis 10. For further insight

into our data segregation and a graph of our entire data set please refer to the

appendix (A.1.3).

The observed ASE 20 time series is non-normal (Jarque-Bera statistics confirms this

at the 99% confidence interval) containing slight skewness and high kurtosis. It is

10 We examine the ASE 20 since its first trading day on 21 January 2001 and until 31 December
2008, using the continuous data available from datastream. '

53

also non-stationary and we decided to transform the ASE 20 series into stationary

series of rates of return11. A histogram depicting a summary of statistics can be seen

in appendix A.1.5.

Given the price level P1, P2,,,.,Pt, the rate of return at time t is formed by:

R, = (!l_)-l
i.,

[25]

As inputs to our networks and based on the autocorrelation function and some

ARMA experiments we selected 2 sets of autoregressive and moving average terms

of the ASE 20 returns and the 1-day Riskmetrics volatility series. Explanatory

variables for our traditional neural networks as well as our Hybrid Neural Networks

are presented in the appendix (A.1.2)

In order to train the neural networks we further divided our dataset as seen in

appendix A.1.3.

11 Confirmation of its stationary property is obtained at the 1% significance level by both the
Augmented Dickey Fuller (ADF) and Phillips-Perron (PP) test statistics.

54

CHAPTER4

Modelling and Trading the Greek Stock Market with Hybrid
ARMA-Neural Network Models

Overview

The motivation for this chapter is to investigate the use of alternative novel neural

network architectures when applied to the task of forecasting and trading the ASE 20

Greek Index using only autoregressive terms as inputs. This is done by

benchmarking the forecasting performance of six different neural network designs

representing a Higher Order Neural Network (HONN), a Recurrent Network (RNN), a

classic Multilayer Perceptron (MLP), a Hybrid Higher Order Neural Network, a Hybrid

Recurrent Neural Network and a Hybrid Multilayer Perceptron Neural Network with

some traditional techniques, either statistical such as a an autoregressive moving

average model (ARMA), or technical such as a moving average

convergence/divergence model (MACD), plus a natve trading strategy. More

specifically, the trading performance of all models is investigated in a forecast and

trading simulation on ASE 20 fixing time series over the period 2001-2008 using the

last one and a half year for out-of-sample testing. We use the ASE 20 daily fixing as

many financial institutions are ready to trade at this level and it is therefore possible

to leave orders with a bank for business to be transacted on that basis.

As it turns out, the Hybrid-HONNs do remarkably well and outperform all other

models in a simple trading simulation exercise. However, when more sophisticated

trading strategies using confirmation filters and leverage are applied, the Hybrid-

HONN network produces better results and outperforms all other neural network and

traditional statistical models in terms of annualised return.

55

4.1. Introduction

The use of intelligent systems for market predictions has been widely established.

This chapter deals with the application of hybridized computing techniques for

forecasting the Greek stock market. The development of accurate techniques is

critical to economists, investors and analysts. This task is getting more and more

complex as financial markets are getting increasingly interconnected and

interdependent. The traditional statistical methods, on which forecasters were reliant

in recent years, seem to fail to capture the interrelationship between market

variables. This paper investigates methods capable of identifying and capturing all

the discontinuities, the nonlinearities and the high frequency multipolynomial

components characterizing the financial series today. A model category that

promises such effective results is the combination of autoregressive models such as

ARMA model with Neural Networks named Hybrid-Neural Network model. Many

researchers have argued that combining several models for forecasting gives better

estimates by taking advantage of each model's capabilities when comparing them

with single time series models.

The motivation for this thesis is to investigate the use of several new neural networks

techniques combined with ARMA model in order to overcome these limitations using

autoregressive terms as inputs. This is done by benchmarking six different neural

network architectures representing a Multilayer Perceptron (MLP), a Higher Order

Neural Network (HONN), a Recurrent Neural Network (RNN), a Hybrid Higher order

Neural Network, a Hybrid Recurrent Neural Network and a Hybrid Multilayer

Perceptron Neural Network Their trading performance on the ASE 20 time series is

56

investigated and is compared with some traditional statistical or technical methods

such as an autoregressive moving average (ARMA) model or a moving average

convergence/divergence (MACD) model, and a naive trading strategy.

As it turns out, the Hybrid-HONN demonstrates a remarkable performance and

outperforms all other models in a simple trading simulation exercise. On the other

hand, when more sophisticated trading strategies using confirmation filters and

leverage are applied, HONNs outperform all models in terms of annualised return.

Our conclusion corroborates those of Lindemann et al. (2004) and Dunis et al.

(2008b) where HONNs also demonstrate a forecasting superiority on the EUR/USD

series over more traditional techniques such as a MACD and a narve strategy.

However, the RNN which performed remarkably well, show a disappointing

performance in this research: this may be due to their inability to provide good

enough results when only autoregressive terms are used as inputs.

4.2 Methodology

A complete description of our Hybrid Neural Network architectures used on this

application plus the benchmark models is on chapter 3. As it is standard in the

literature, in order to evaluate statistically our forecasts, the RMSE, the MAE, the

MAPE and the Theil-U statistics are computed. The RMSE and MAE statistics are

scale-dependent measures but give a basis to compare volatility forecasts with the

realised volatility while the MAPE and the Theil-U statistics are independent of the

scale of the variables. In particular, the Theil-U statistic is constructed in such a way

that it necessarily lies between zero and one, with zero indicating a perfect fit. A

57

more detailed description of these measures can be found on Pindyck and Rubinfeld

(1998), Theil (1966) and Dunis and Chen (2005) while their mathematical formulas

are on Appendix A.1.6. For all four of the error statistics retained (RMSE, MAE,

MAPE and Theil-U) the lower the output, the better the forecasting accuracy of the

model concerned. In the table below we present our results for the out of sample

period.

x NAIVE x MACe ARM A MLf! RNN HONNx

RMSE 0.0329 0.0254 0.0239 0.0470 0.0241 0.0240
MAE 0.0234 0.0174 0.0161 0.0163 0.0170 0.0299
MAPE 811.13% 393.44% 115.00% 106.97% 275.23% 679.96%

THEIL-U 0.6863 0.7534 0.9446 0.9661 0.8287 0.7289

Hybrid-MLF~ Hybrld-RNN Hybrld-HONN
RMSE 0.0238 0.0237 0.0237
MAE 0.0160 0.0160 0.0159
MAPE 113.19% 112.83% 113.00%
THEIL-U 0.8891 0.8873 0.8868

Table 1:Out-of-sample statistical performance

As can be seen in Appendix A.1.7 for the in-sample period, Hybrid-HONNs

outperform all other models and present the most accurate forecasts in statistical

terms in both in and out-of-sample periods although the difference wit the other

models is very small. It seems that their ability to capture higher order correlations

gave them a considerable advantage compared to the other models. Hybrid-RNNs

come second and Hybrid-MLPs come third in our statistical evaluation in both

periods. Furthermore, it is worth noting that the time that we need to train our

HONNs was less than the time needed for the RNNs and the MLPs.

4.3 Empirical Trading Simulation Results

58

The trading performance of all the models considered in the validation subset is

presented in the table below. We choose the network with the higher profit in the test

sub-period. Our trading strategy applied is simple and identical for all the models: go

or stay long when the forecast return is above zero and go or stay short when the

forecast return is below zero. Appendix A.1.8 provides the performance of all the

NNs in the training and the test sub-periods while Appendix A.1.9 and A.1.6 provide

the characteristics of our networks and the performance measures respectively. The

Hybrid-RNNs are trained with gradient descent as for the Hybrid-MLPs. However,

the increase in the number of weights, as mentioned before, makes the training

process extremely slow: to derive our results, we needed about ten times the time

needed with the Hybrid-MLPs. As shown in table 2 below, the Hybrid-RNN has a

lower performance compared to the Hybrid-MLP model and Hybrid-HONN.

11.42% 17.63% 7.68% 22.99% 22.51% 26.75%

Taken

36.70% 38.12% 38.13% 38.11% 38.11% 38.10%

-49.41% -50.63% -36.50% -36.26% -36.22% -38.71%

119 38 72 105 147 98

Table 2: Trading performance results

We can see that Hybrid-HONNs perform significantly better than the Hybrid-MLPs

and the Hybrid-RNNs and significantly better than the standard neural network

59

architectures despite larger drawdowns. Learning first the linear component of the

data generating process before applying a neural network to learn its nonlinear

elements definitely appears to add value in this application.

4.3.1 Trading Costs and Leverage

Up to now, we have presented the trading results of all our models without

considering transaction costs. Since some of our models trade quite often, taking

transaction costs into account might change the whole picture. Following Dunis et al.

(2008a), we checked for potential improvements to our models through the

application of confirmation filters. Confirmation filters are trading strategies devised

to filter out those trades with expected returns below the 0.14% transaction cost.

These trading strategies examine how the models behave if we introduce a threshold

d around zero. They suggest to go long when the forecast is above d and to go short

when the forecast is below d. It just so happens that the Hybrid ARMA-Neural

Network models perform best without any filter. This is also the case of the MLP and

HONN models. Still, the application of confirmation filters to the benchmark models

and the RNN model could have led to these models outperforming the Hybrid, MLP

HONN models. This is not the case in order to conserve space, these results are not

shown here but they are available from the authors.

According to the Athens Stock Exchange, transaction costs for financial institutions

and fund managers dealing a minimum of 143 contracts or 1 million Euros is 10

Euros per contract (round trip). Dividing this transaction cost of the 143 contracts by

average size deal (1 million Euros) gives us an average transaction cost for large

players of 14 basis points (1 base point=1/100 of 1%) or 0.14% per position.

60

36.70% 38.12% 38.13% 38.11% 38.11% 38.10%

11.42% 17.63% 7.68% 22.99% 22.51% 26.75%

-49.41% -50.63% -36.50% -36.26% -36.22% -38.71%

119 38 72 105 147 98

Transaction costs 16.66% 5.32% 10.08% 14.7% 20.58% 13.72%

Annualised Return -5.24% 12.31% -2.4% 8.29% 1.93% 13.03%
(including costs)

Table 3: Out-of-sample results with transaction costs

We can see that, after transaction costs, the Hybrid-HONN network outperforms all

the other strategies based on the annualised return. The Hybrid-MLP strategy

performs also well and presents the second best performance in terms of annualized

return. It's worth mentioning the good performance of HONN and MLP model. On the

other hand, the Na'ive strategy and the ARMA model seem to be unable to fully

exploit the introduction of the modified trading strategy. Furthermore the RNN which

also performed well before the introduction of the trading strategy seems also

capable of exploiting it. However, the time used to derive these results with the

HONN network is half that needed with RNNs and the MLPs.

61

4.3.2 Leverage to Exploit High Information Ratios

In order to further improve the trading performance of our models we introduce a

"level of confidence" to our forecasts, i.e. a leverage based on the test sub-period.

For the natve model, which presents a negative return we do not apply leverage. The

leverage factors applied are calculated in such a way that each model has a

common volatility of 20%12 on the test data set.

The transaction costs are calculated by taking 0.14% per position into account, while

the cost of leverage (interest payments for the additional capital) is calculated at 4%

p.a. (that is 0.016% per trading day"). Our final results are presented in table 4

below.

36.70% 40.03% 38.13% 40.28% 40.21% 40.31%

11.42% 18.51% 7.68% 24.30% 23.75% 28.30%

-49.41% -53.16% -36.50% -38.32% -38.21% -40.96%

1.050 1.057 1.055 1.058

Taken 119 38 72 105 147 98

and 16.66% 5.6% 10.08% 15.02% 20.88% 14.04%

-5.24% 12.9% -2.4% 9.28% 2.87% 14.26%

12 Since most of the models have a volatility of about 20%, we have chosen this level as our basis.
The leverage factors retained are given in table 8 below.
13 The interest costs are calculated by considering a 4% interest rate p.a. divided by 252 trading days.
In reality, leverage costs also apply during non-trading days so that we should calculate the interest
costs using 360 days per year. But for the sake of simplicity, we use the approximation of 252 trading
days t? s~read the leverage cost~ of non-trading days equally over the trading days. This
approximation prevents us from keeping track of how many non-trading days we hold a position.

62

o s)0 H),brld·MLR Hybrld·RNN Hybrld ..HONN
, :0\8 ; ,

~ S;?!,'S 12 ; ill !0 0 , 0

" , 0ii "Jif) 2"

Information Ratio (excluding 0.86 0.81 0.94
costs)
Annua/ised Volatility (excluding 40.14% 40.30% 40.24%
costs)
Annualised Return (excluding 34.57% 32.50% 37.71%
costs)
Maximum Drawdown (excluding -62.24% -62.48% -62.46%
costs)
Leverage Factor 1.054 1.058 1.057

Positions Taken (annua/ised) 94 93 94
Transaction and leverage costs 13.9% 13.34% 13.9%
Annua/ised Return (including 20.67% 19.16% 23.21%
costs)

Table 4: Trading performance - final results

As can be seen from table 4, Hybrid-HONNs continue to demonstrate a superior

trading performance despite significant drawdowns. The Hybrid-MLP strategy also

performs well and presents the second higher annualised return. In general, we

observe that all models are able to gain extra profits from the leverage as the

increased transaction costs seem to counter any benefits. Again it is worth

mentioning, that the time needed to train the HONN and the Hybrid-HONN network

was considerably shorter compared with that needed for the MLP, Hybrid-MLP, RNN

and the Hybrid-RNN networks.

4.4 Concluding Remarks

In this chapter, we apply Multi-layer Perceptron, Recurrent, Higher Order, Hybrid-

Multilayer Perceptron, Hybrid-Recurrent and Hybrid-Higher Order Neural Networks

to a one-day-ahead forecasting and trading task of the ASE 20 fixing series with only

autoregressive terms as inputs. We use a narve, a MACD and an ARMA model as

benchmarks. We develop these different prediction models over the period January

63

2001 - August 2007 and validate their out-of-sample trading efficiency over the

following period from September 2007 through December 2008.

The Hybrid-HONNs demonstrated the higher trading performance in terms of

annualised return and Information ratio before transaction costs and elaborate

trading strategies are applied. When refined trading strategies are applied and

transaction costs are considered again the Hybrid-HONNs manage to outperform all

other models achieving the highest annualised return. Moreover, the Hybrid-MLPs

and the Hybrid-RNNs models performed remarkably well and seem to have an ability

in providing good forecasts when autoregressive series are only used as inputs.

It is also important to note that the Hybrid-HONN network which presents the best

performance needs less training time than Hybrid-RNN and Hybrid-MLP network

architectures, a much desirable feature in a real-life quantitative investment and

trading environment: in the circumstances, our results should go some way towards

convincing a growing number of quantitative fund managers to experiment beyond

the bounds of traditional statistical and neural network models. In particular, the

strategy consisting of modelling in a first stage the linear component of a financial

time series and then applying a neural network to learn its nonlinear elements

appears quite promising.

64

CHAPTER 5

Modelling and Trading the Greek Stock Market with Mixed
Neural Network Models

Overview

In this chapter, a mixed methodology that combines both the ARMA and NN models

is proposed to take advantage of the unique strength of ARMA and NN models in

linear and nonlinear modelling. Experimental results with real data sets indicate that

the combined model can be an effective way to improve forecasting accuracy

achieved by either of the models used separately. The motivation for this chapter is

to investigate the use of alternative novel neural network architectures when applied

to the task of forecasting and trading the ASE 20 Greek Index using only

autoregressive terms as inputs. This is done by benchmarking the forecasting

performance of six different neural network designs representing a Higher Order

Neural Network (HONN), a Recurrent Network (RNN), a classic Multilayer Percepton

(MLP), a Mixed Higher Order Neural Network, a Mixed Recurrent Neural Network

and a Mixed Multilayer Percepton Neural Network with some traditional techniques,

either statistical such as a an autoregressive moving average model (ARMA), or

technical such as a moving average convergence/divergence model (MACD), plus a

natve trading strategy. More specifically, the trading performance of all models is

investigated in a forecast and trading simulation on ASE 20 fixing time series over

the period 2001-2008 using the last one and a half year for out-of-sample testing.

We use the ASE 20 daily fixing as many financial institutions are ready to trade at

this level and it is therefore possible to leave orders with a bank for business to be

transacted on that basis.

65

As it turns out, the Mixed-HONNs do remarkably well and outperform all other

models in a simple trading simulation exercise. However, when more sophisticated

trading strategies using confirmation filters and leverage are applied, the Mixed-MLP

network produces better results and outperforms all other neural network and

traditional statistical models in terms of annualised return. On the other hand the

Hybrid-HONNs shows a superiority after all sophisticated strategies have been used

in terms of annualised return as Dunis et al. (2010a) mention in a recent paper.

5.1 Introduction

The use of intelligent systems for market predictions has been widely established.

This paper deals with the application of mixed computing techniques for forecasting

the Greek stock market. The development of accurate techniques is critical to

economists, investors and analysts. This task is getting more and more complex as

financial markets are getting increasingly interconnected and interdependent. The

traditional statistical methods, on which forecasters were reliant in recent years,

seem to fail to capture the interrelationship between market variables. This chapter

investigates methods capable of identifying and capturing all the discontinuities, the

nonlinearities and the high frequency multipolynomial components characterizing the

financial series today. A model category that promises such effective results is the

combination of autoregressive models such as ARMA model with Neural Networks

named Mixed-Neural Network model. Many researchers have argued that combining

several models for forecasting gives better estimates by taking advantage of each

model's capabilities when comparing them with single time series models.

The motivation for this chapter is to investigate the use of several new neural

66

networks techniques combined with ARMA model in order to overcome these

limitations using autoregressive terms as inputs. This is done by benchmarking six

different neural network architectures representing a Multilayer Percepton (MLP), a

Higher Order Neural Network (HONN), a Recurrent Neural Network (RNN), a Mixed

Higher order Neural Network, a Mixed Recurrent Neural Network and a Mixed

Multilayer Percepton Neural Network Their trading performance on the ASE 20 time

series is investigated and is compared with some traditional statistical or technical

methods such as an autoregressive moving average (ARMA) model or a moving

average convergence/divergence (MACD) model, and a narve trading strategy.

As it turns out, the Mixed-HONN demonstrates a remarkable performance and

outperforms all other models in a simple trading simulation exercise. On the other

hand, when more sophisticated trading strategies using confirmation filters and

leverage are applied, Mixed MLPs outperform all models in terms of annualised

return. Our conclusion colloborates those of Lindemann et al. (2004) and Dunis et al.

(2008b) where HONNs also demonstrate a forecasting superiority on the EUR/USD

series over more traditional techniques such as a MACD and a naive strategy.

However, the RNN which performed remarkably well, show a disappointing

performance in this research: this may be due to their inability to provide good

enough results when only autoregressive terms are used as inputs.

5.2 Methodology

A complete description of our Mixed Neural Network architectures used on this

application plus the benchmark models is on chapter 3. As it is standard in the

literature, in order to evaluate statistically our forecasts, the RMSE, the MAE, the

67

MAPE and the Theil-U statistics are computed. The RMSE and MAE statistics are

scale-dependent measures but give a basis to compare volatility forecasts with the

realised volatility while the MAPE and the Theil-U statistics are independent of the

scale of the variables. In particular, the Theil-U statistic is constructed in such a way

that it necessarily lies between zero and one, with zero indicating a perfect fit. A

more detailed description of these measures can be found on Pindyck and Rubinfeld

(1998), Theil (1966) and Dunis and Chen (2005) while their mathematical formulae

are in Appendix A.1.6. For all four error statistics retained (RMSE, MAE, MAPE and

Theil-U) the lower the output, the better the forecasting accuracy of the model

concerned. In the table below we present our results for the out-of-sample period.

NAIVE MAce ARMA MlP RNN HONN
RMSE 0.0329 0.0254 0.0239 0.0470 0.0241 0.0240

MAE 0.0234 0.0174 0.0161 0.0163 0.0170 0.0299

MAPE 811.13% 393.44% 115.00% 106.97% 275.23% 679.96%
THEIL-U 0.6863 0.7534 0.9446 0.9661 0.8287 0.7289

Mixed MlP Mixed RNN Mixed HONN

RMSE 0.0240 0.0512 0.0240
MAE 0.0162 0.0189 0.0163
MAPE 107.06% 135.13% 103.56%
THEIL-U 0.9762 0.7318 0.9826

Table 5: Out-or-sample statistical performance

As can be seen in Appendix A.1.7 for the in-sample period, Mixed-HONNs seems

to outperform all other models and present the most accurate forecasts in statistical

terms in both in and out-of-sample periods. It seems that their ability to capture

higher order correlations gives them an considerable advantage compared to the

other models. Mixed-MLPs come second and Mixed-RNNs come third in our

statistical evaluation in both periods. Furthermore, it is worth noting that the time that

68

we need to train our HONNs was less than the time needed for the RNNs and the

MLPs.

5.3 Empirical Trading Simulation Results

The trading performance of all the models considered in the validation subset is

presented in the table below. We select the ARMA model with the higher profit in the

in-sample period and choose the network with the higher profit in the test sub-period.

Our trading strategy applied is simple and identical for all the models: go or stay long

when the forecast return is above zero and go or stay short when the forecast return

is below zero. Appendix A.1.8 provides the performance of all the NNs in the training

and the test sub-periods while Appendix A.1.9 and A.1.10 provide the characteristics

of our networks and A.1.6 the performance measures. The Mixed-RNNs are trained

with gradient descent as for the Mixed-MLPs. However, the increase in the number

of weights, as mentioned before, makes the training process extremely slow: to

derive our results, we needed for the mixed-RNNs about ten times the time needed

with the Mixed-MLPs. As shown in table 6 below, the Mixed-RNN has a lower

performance compared to the Mixed-MLP model and Mixed-HONN

NAIVE MACe ARMA MLF» RNN HONN
Information Ratio

0.32 0.46 0.20 0.60 0.59 0.70(excluding costs)
Annua/ised Volatility

36.70% 38.12% 38.13% 38.11% 38.11%(excluding costs) 38.10%

Annua/ised Return
11.42% 17.63% 7.68%(excluding costs) 22.99% 22.51% 26.75%

Maximum Drawdown
-49.41% -50.63%(excluding costs) -36.50% -36.26% -36.22% -38.71%

Positions Taken
119

(annualised) 38 72 105 147 98

MiXed MLR Mixed RNN Mixed HONN
•

Information Ratio (excluding costs) 0.83 0.78 0.91

Annualised Volatility (excluding costs) 38.08% 38.09% 38.07%

Annualised Return (excluding costs) 31.79% 29.63% 34.75%

Maximum Drawdown (excluding costs) -26.29% -27.94% -28.20%

Positions Taken (annua/ised) 41 57 65

Table 6: Trading performance results

We can see that Mixed-HONNs perform significantly better than the Mixed-MLPs

and the Mixed-NNs and significantly better than the standard neural network

architectures. Learning first the linear component of the data generating process

before applying a neural network to learn its nonlinear elements definitely appears to

add value in this application. Comparing the recent paper of Dunis et al. (2010a) we

notice that Hybrid-NNR models outperform in terms of information ratio Mixed-NN

models. However much higher drawdowns, possibly linked to the higher trading

frequency of the Hybrid models compared with the mixed models presented here.

5.3.1 Trading Costs and Leverage

Up to now, we have presented the trading results of all our models without

considering transaction costs. Since some of our models trade quite often, taking

transaction costs into account might change the whole picture. Following Dunis et al.

(2008a), we check for potentional improvements to our models through the

application of confirmation filters. Confirmation filters are trading strategies devised

to filter out those trades with expected returns below a threshold d around zero. They

suggest to go long when the forecast is above d and to go short when the forecast is

below d. It just so happens that the Mixed ARMA-Neural Network models perform

best without any filter. This is also the case of the MLP and HONN models. Still, the

application of confirmation filters to the benchmark models and the RNN model could

70

have led to these models outperforming the Mixed, MLP HONN models. This is not

the case in order to conserve space, these results are not shown here but they are

available from the authors.

5.3.2 Transaction Costs

According to the Athens Stock Exchange, transaction costs for financial institutions

and fund managers dealing a minimum of 143 contracts or 1 million Euros is 10

Euros per contract (round trip). Dividing this transaction cost of the 143 contracts by

average size deal (1 million Euros) gives us an average transaction cost for large

players of 14 basis points (1 base point=1/100 of 1%) or 0.14% per position.

NAIVE MACD ARMA MLP RNN HONri

Information Ratio 0.32 0.46 0.20 0.60 0.59 0.70
(excluding costs)
Annua/ised Volatility 36.70% 38.12% 38.13% 38.11% 38.11% 38.10%
(excluding costs)
Annualised Return 11.42% 17.63% 7.68% 22.99% 22.51% 26.75%
(excluding costs)
Maximum Drawdown -49.41% -50.63% -36.50% -36.26% -36.22% -38.71%
(excluding costs)
Positions Taken 119 38 72 105 147 98
(annua/ised)
Transaction costs 16.66% 5.32% 10.08% 14.7% 20.58% 13.72%
Annua/ised Return -5.24% 12.31% -2.4% 8.29% 1.93% 13.03%
(including costs)

Mixed MLP MIxed RNN MIxed HONN

Information Ratio (excluding costs) 0.83 0.78 0.91
Annua/ised Volatility (excluding costs) 38.08% 38.09% 38.07%
Annua/ised Return (excluding costs) 31.79% 29.63% 34.75%
Maximum Drawdown (excluding costs) -26.29% -27.94% -28.20%
Positions Taken (annua/ised) 41 57 65
Transaction costs 5.74% 7.98% 9.1%
Annualised Return (including costs) 26.05% 21.65% 25.65%

71

Table 7: Out-of-sample results with transaction costs

We can see that, after transaction costs, the Mixed-MLP network outperforms all the

other strategies based on the annualised return closely followed by the Mixed-HONN

strategy. On the other hand, the naive strategy and the ARMA model produce

negative results after transaction costs are taken into account. The HONN and

MACD achieve decent returns, yet well below those produced by our mixed ARMA-

NN models.

5.3.3 Leverage to Exploit High Information Ratios

In order to further improve the trading performance of our models we introduce a

"level of confidence" to our forecasts, i.e. a leverage based on the test sub-period.

For the natve model, which presents a negative return we do not apply leverage. The

leverage factors applied are calculated in such a way that each model has a

common volatility of 20%14 on the test data set.

The transaction costs are calculated by taking 0.14% per position into account, while

the cost of leverage (interest payments for the additional capital) is calculated at 4%

p.a. (that is 0.016% per trading day"). Our final results are presented in table 8

below.

NAive MACD ARM A MLP RNN HONN
Information Ratio 0.32 0.70 0.20 0.60 0.59 0.70
(excluding costs)
Annualised Volatility 36.70% 40.03% 38.13% 40.28% 40.21% 40.31%
(excluding costs)

14 Since most of the models have a volatility of about 20%, we have chosen this level as our basis.
The leverage factors retained are given in table 8 below.
15 The .interest costs are calculated by c~nsidering a 4% interest rate p.a. divided by 252 trading days.
In reality, leverage costs also apply dunng non-trading days so that we should calculate the interest
costs using 360 days per year. But for the sake of simplicity, we use the approximation of 252 trading
days t? s~read the leverage cost~ of non-trading days equally over the trading days. This
approximation prevents us from keeping track of how many non-trading days we hold a position.

72

Annualised Return 11.42% 18.51% 7.68% 24.30% 23.75% 28.30%
(excluding costs)
Maximum Drawdown -49.41% -53.16% -36.50% -38.32% -38.21% -40.96%
(excluding costs)
Leverage Factor - 1.050 - 1.057 1.055 1.058

Positions Taken 119 38 72 105 147 98
(annualised)
Transaction and 16.66% 5.60% 10.08% 15.02% 20.88% 14.04%
leverage costs
Annualised Return -5.24% 12.90% -2.40% 9.28% 2.87% 14.26%
(including costs)

Mlxed ..MLf~ Mixed-RNN Mlxed ..HONN
, «

Information Ratio (excluding 0.83 0.78 0.91
costs)
Annualised Volatility (excluding 40.22% 40.22% 40.17%
costs)
Annualised Return (excluding 33.57% 31.29% 36.67%
costs)
Maximum Drawdown (excluding -27.76% -29.50% -29.75%
costs)
Leverage Factor 1.056 1.056 1.055

Positions Taken (annualised) 41 57 65
Transaction and leverage costs 6.052% 8.30% 9.40%

Annualised Return (including 27.51% 23.00% 27.27%
costs)

Table 8: Trading performance - final results

As can be seen from table 8, Mixed-MLPs continue to demonstrate a superior

trading performance despite significant drawdowns. The Mixed-HONN strategy also

performs well and presents the second highest annualised return. In general, we

observe that all models are able to gain extra profits from the leverage as the

increased costs are outweighed by the benefits of trading somewhat higher volumes.

Again it is worth mentioning, that the time needed to train the HONN and the Mixed-

HONN network was considerably shorter compared with that needed for the MLP,

Mixed-MLP, RNN and the Mixed-RNN networks.

73

5.4 CONCLUDING REMARKS

In this chapter, we apply Multi-layer Percepton, Recurrent, Higher Order, Mixed-

Multilayer Percepton, Mixed-Recurrent and Mixed-Higher Order neural networks to a

one-day-ahead forecasting and trading task of the ASE 20 fixing series with only

autoregressive terms as inputs. We use a na'ive strategy, a MACD and an ARMA

model as benchmarks. We develop these different prediction models over the period

January 2001 - August 2007 and validate their out-of-sample trading efficiency over

the following period from September 2007 through December 2008.

The Mixed-HONNs demonstrates a higher trading performance in terms of

annualised return and information ratio before transaction costs and more elaborate

trading strategies are applied. When refined trading strategies are applied and

transaction costs are considered the Mixed-MLPs manage to outperform all other

models achieving the highest annualised return. The Mixed-HONNs and the Mixed-

RNNs models perform remarkably as well and seem to have an ability in providing

good forecasts when autoregressive series are only used as inputs.

It is also important to note that the Mixed-HONN network which presents a very

close second best performance needs less training time than Mixed-RNN and Mixed-

MLP network architectures, a much desirable feature in a real-life quantitative

investment and trading environment: in the circumstances, our results should go

some way towards convincing a growing number of quantitative fund managers to

experiment beyond the bounds of traditional statistical and neural network models. In

particular, the strategy consisting of modelling in a first stage the linear component of

a financial time series and then applying a neural network to learn its nonlinear

elements appears quite promising.

74

CHAPTER 6

GP Algorithm versus Hybrid and Mixed Neural Networks

Overview

In the current chapter we present an integrated genetic programming environment,

called java GP Modelling. The java GP Modelling environment is an implementation

of the steady-state genetic programming algorithm. That algorithm evolves tree

based structures that represent models of input - output relation of a system. The

motivation of this chapter is to compare the GP algorithm with neural network

architectures when applied to the task of forecasting and trading the ASE 20 Greek

Index using only autoregressive terms as inputs. This is done by benchmarking the

forecasting performance of the GP algorithm and 6 different ARMA-Neural Network

combination designs representing a Hybrid, Mixed Higher Order Neural Network

(HONN), a Hybrid, Mixed Recurrent Network (RNN), a Hybrid, Mixed classic

Multilayer Perceptron (MLP) with some traditional techniques, either statistical such

as a an autoregressive moving average model (ARMA), or technical such as a

moving average convergence/divergence model (MACD), plus a natve trading

strategy. More specifically, the trading performance of all models is investigated in a

forecast and trading simulation on ASE 20 time series closing prices over the period

2001-2008 using the last one and a half years for out-of-sample testing. We use the

ASE 20 daily series as many financial institutions are ready to trade at this level and

it is therefore possible to leave orders with a bank for business to be transacted on

that basis.

75

As it turns out, the GP model does remarkably well and outperforms all other models

in a simple trading simulation exercise. This is also the case when more

sophisticated trading strategies using confirmation filters and leverage are applied,

as the GP model still produces better results and outperforms all other neural

network and traditional statistical models in terms of annualised return.

6.1 Introduction

The use of artificial intelligence for the purpose of forecasting market movements

has been widely reviewed in academia. This study is a comparative analysis of the

results yielded from utilizing a Genetic Programming Algorithm and various

traditional Neural Network computing techniques when forecasting the Greek stock

market. Additionally, we endeavour to develop more accurate and sophisticated

techniques in order to increase the performance of our trading simulation. Due to the

convergence and unification of global financial markets in recent years, this

forecasting task has become increasingly challenging. Furthermore, traditional

econometric methods on which forecasters have previously been reliant no longer

satisfy the demands of market participants as they struggle to capture integrating

features associated with today's markets. As discussed by Lisboa et 81 (2000),

neural networks are an emergent technology with an increasing number of real-world

applications offering a unique aspect to the world of financial forecasting.

Nevertheless, some practitioners have tainted the virtues of neural networks with

scepticism criticising their capacity to forecast and highlighting their limitations.

Hence, this work investigates a new, contemporary and more proficient method of

forecasting that is capable of identifying and dealing with discontinuities,

nonlinearities and high frequency multi-polynomial components which are all

76

prevalent in financial series of today's markets. This model is most commonly known

as the Genetic Programming (GP) algorithm.

GP Algorithms are domain-independent problem-solving techniques that are run in

various environments. These environments are structured in a manner which

approximates problems in order to produce forecasts at a high level of accuracy. GP

can be categorized in the forecasting bracket known in the finance world as

'Evolutionary Algorithms'. The basis for this type of problem - solving technique

derives from the Darwinian principle of reproduction and survival of the fittest.

Additionally, GP is also similar to the biological genetic operations such as crossover

and mutation. More importantly, Koza (1990, 1992) stress that GP addresses and

quantifies complex issues as an automated process via programming, which enables

computers to process and solve problems.

The Darwinian aspect of GP applies the theory of evolution to a population of

computer programs of varying sizes and shapes. For instance, GP starts with an

initial population of thousands or even millions of randomly generated computer

programs. These programs comprise of programmatic elements built to apply the

fundamental principles of biological evolution in order to create a new (and often

improved) population of programs. As mentioned previously, the creation of this new

population is generated in a domain-independent system applying the Darwinian

theory of natural selection under the principal known as survival of the fittest. An

analogue of the naturally-occurring genetic operation of sexual recombination

(crossover), and occasional mutation, the crossover operation is designed to create

syntactically valid offspring programs (given closure amongst the set of

programmatic ingredients). GP combines the expressive high-level symbolic

77

representations of computer programs with the near-optimal efficiency of learning of

Holland's (1975) genetic algorithm in order to produce highly accurate outputs. Koza

(1998) mentioned that a computer program that solves or at the very least

approximates a given problem often emerges from this process. Dissimilar to other

models such as neural networks, GP does not require any prior knowledge of a

model's structure for the purpose of system modelling. Alternatively, GP evolves a

system model with parameter values that best fit specific data without manipulating

the data to fit 'predefined' model structures as many other preceding forecasting

methods tend to do. In other words, GP creates an initial population of models and

evolves using genetic operators in order to calculate the mathematical expression

which best fits the specified data input into the system. Furthermore, GP

simultaneously searches for and refines a model's parameters and ultimately its

structure.

The motivation for this chapter is to investigate the use of GP algorithm and several

neural networks techniques combined with ARMA models in order to improve the

forecasting performance using autoregressive terms as inputs. This is achieved by

comparing six benchmark neural network combined architectures with a forecast

produced by the GP Algorithm. Most notably, classic neural networks as Multilayer

Perceptron (MLP), Higher Order Neural Network (HONN), Recurrent Neural Network

(RNN), autoregressive moving average model (ARMA), or technical models such as

a moving average convergence/divergence model (MACD), plus a natve trading

strategy are all reviewed as benchmark methods.

From the analysis it emerges that the GP algorithm demonstrates a remarkable

performance and outperforms all other models in a simple trading simulation

78

exercise. This is also true when more sophisticated trading strategies are utilized

with the application of confirmation filters and leverages as GP still demonstrates

superior forecasting ability in terms of annualised return. It is worth mentioning the

second best performance of the Hybrid HONNs and the Mixed HONNs. Dunis et al.

(2010a, b) stress that the combination of neural networks can produce better

forecasts compared with alternative techniques. Furthermore the Hybrid MLP and

the Mixed MLP also perform well. Also, the RNNs which historically have performed

remarkably well display less impressive forecasting potential in this research. It is

observed that this might be due to the fact that they have an inability to provide

accurate results when only autoregressive terms are used as inputs.

The remainder of the chapter is organised as follows. An overview of the different

neural network models and Genetic Programming algorithm is given in section 6.2.

Section 6.3 displays the empirical results of all the models considered and

investigates the possibility of improving their performance with the application of

more sophisticated trading strategies. Ultimately, Section 6.4 provides some

concluding remarks.

6.2 Methodology

A complete description of our Genetic Programming Algorithm used on this

application plus the benchmark models is in chapter 3.

6.3 Empirical Trading Simulation Results

The trading performance of all the models considered in the validation subset is

presented in the table below. We choose the network with the higher profit in the test

sub-period. Our trading strategy applied is simple and identical for all the models: go

79

or stay long when the forecast return is above zero and go or stay short when the

forecast return is below zero. Appendix A.1.8 provides the performance of all the

NNs and the GP Algorithm in the training and the test sub-periods while both

Appendix A ..1.9 and A.1.10 provide the characteristics of our models and and A.1.6

shows the performance measures. The Hybrid-RNNs, Mixed-RNNs are trained with

gradient descent as for the Hybrid-MLPs and Mixed-MLPs. However, the increase in

the number of weights, as mentioned before, makes the training process extremely

slow: to derive our results, we needed about ten times the time needed with the

Hybrid-MLPs and Mixed-MLPs. As shown in table 9 below, the Mixed-RNN, Hybrid-

RNN have a slightly lower performance compared to the Hybrid-MLP, Hybrid-HONN,

Mixed-MLP, Mixed-HONN and GP algorithm.

11.42%

38.12% 38.13% 38.11% 38.11% 38.10%

0.46

36.70%

17.63% 7.68% 22.99% 22.51% 26.75%

-49.41% -50.63% -36.50% -36.26% -36.22% -38.71%

119 38 72 105 147 98

Mixed MLP Mixed RNN Mixed HONN
Information Ratio (excluding costs) 0.83 0.78 0.91
Annualised Volatility (excluding costs) 38.08% 38.09% 38.07%
Annua/ised Return (excluding costs) 31.79% 29.63% 34.75%
Maximum Drawdown (excluding costs) -26.29% -27.94% -28.20%
Positions Taken (annua/ised) 41 57 65

80

RN

GP AlgorithmlP 008

, , iii

Information Ratio (excluding costs) 1.03
Annualised Volatility (excluding costs) 38.04%

Annualised Return (excluding costs) 39.33%
Maximum Drawdown (excluding costs) -28.20%

Positions Taken (ann ualis ed) 67

Table 9: Trading performance results

We can see that the GP algorithm performs significantly better than the Hybrid-

HONNs, Hybrid-MLPs, Mixed HONNs, Mixed MLPs Hybrid-RNNs, and the Mixed-

RNNs with similar sorts of drawdowns, and significantly better than the standard

neural network architectures.

Up to now, we have presented the trading results of all our models without

considering transaction costs. Since some of our models trade quite often, taking

transaction costs into account might change the whole picture. Following Dunis et al.

(2008a), we check for potential improvements to our models through the application

of confirmation filters. Confirmation filters are trading strategies devised to filter out

those trades with expected returns below a threshold d around zero. They suggest to

go long when the forecast is above d and to go short when the forecast is below d. It

just so happens that the Mixed ARMA-Neural Network models perform best without

any filter. This is also the case of the MLP and HONN models. Still, the application of

confirmation filters to the benchmark models and the RNN model could have led to

these models outperforming the Mixed, MLP HONN models. This is not the case

however but, in order to conserve space, these results are not shown here but they

are available from the authors.

81

6.3.1 Transaction Costs

According to the Athens Stock Exchange, transaction costs for financial institutions

and fund managers dealing a minimum of 143 contracts or 1 million Euros is 10

Euros per contract (round trip). Dividing this transaction cost of the 143 contracts by

average size deal (1 million Euros) gives us an average transaction cost for large

players of 14 basis points (1 basis point= 1/100 of 1%) or 0.14% per position.

36.70% 38.12% 38.13% 38.11% 38.11% 38.10%

11.42% 17.63% 7.68% 22.99% 22.51% 26.75%

-50.63% -36.50% -36.26% -36.22% -38.71%

119 38 72 105 147 98

Transaction costs 15.47% 4.94% 9.36% 13.6 19.11% 12.74%
Annua/ised Return -4.05% 12.69% -1.68% 9.35% 3.40% 14.01%

(including costs)

12.22%

Mixed MLP Mixed RNN Mixed HONN

Information Ratio (excluding costs) 0.83 0.78 0.91
Annua/ised Volatility (excluding costs) 38.08% 38.09% 38.07%
Annua/ised Return (excluding costs) 31.79% 29.63% 34.75%
Maximum Drawdown (excluding costs) -26.29% -27.94% -28.20%
Positions Taken (annualised) 41 57 65
Transaction costs 5.74% 7.98% 9.10%
Annualised Return (including costs) 26.05% 21.65% 25.65%

82

GP Algorithm
0

,

Information Ratio (excluding costs) 1.03

Annualised Volatility (excluding costs) 38.04%

Annualised Return (excluding costs) 39.33%

Maximum Drawdown (excluding costs) -28.20%

Positions Taken (annualised) 67
Transaction costs 9.40%

Annualised Return (including costs) 29.93%

Table 10: Out-of-sample results with transaction costs

We can see that, after transaction costs, the GP algorithm model outperforms all the

other strategies based on the annualized net return closely followed by the Mixed-

MLP, the Mixed HONN and the Hybrid HONNs strategy. On the other hand, the

natve strategy and the ARMA model produce negative results after transaction costs

are taken into account. The HONN and MACD achieve decent returns, yet well

below those produced by our best models.

6.3.2 Leverage to Exploit High Sharpe Ratios

In order to further improve the trading performance of our models we introduce a

"level of confidence" to our forecasts, Le. a leverage based on the test sub-period.

For the natve model, which presents a negative return we do not apply leverage. The

leverage factors applied are calculated in such a way that each model has a

common volatility of 20%16 on the test data set.

The transaction costs are calculated by taking 0.14% per position into account, while

the cost of leverage (interest payments for the additional capital) is calculated at 4%

p.a. (that is 0.016% per trading day"), Our final results are presented in table 11

below.

16 Since most of the models have a volatility of about 20%, we have chosen this level as our basis.
The leverage factors retained are given in table 8.
H The interest costs are calculated by c~nsidering a 4% interest rate p.a. divided by 252 trading days.
In reality, leverage costs also apply durinq non-trading days so that we should calculate the interest

83

NAive MAce ARMA MLP RNN HONN

Information Ratio 0.32 0.70 0.20 0.60 0.59 0.70

(excluding costs)
Annualised Volatility 36.70% 40.03% 38.13% 40.28% 40.21% 40.31%

(excluding costs)
Annualised Return 11.42% 18.51% 7.68% 24.30% 23.75% 28.30%

(excludina costs)
Maximum Drawdown -49.41% -53.16% -36.50% -38.32% -38.21% -40.96%

(excludina costs)
Leverage Factor - 1.050 - 1.057 1.055 1.058

Positions Taken 119 38 72 105 147 98

(annualised)
Transaction and 15.47% 4.94% 9.36% 13.65% 19.11% 12.74%

leverage costs
Annualised Return -4.05% 13.57% -1.68% 10.65% 4.64% 15.56%

(including costs)

Hybrld-MLP Hybrid-RNN Hybrld-HONN

Information Ratio (excluding costs) 0.86 0.81 0.94

Annualised Volatility (excluding costs) 40.14% 40.30% 40.24%

Annualised Return (excluding costs) 34.57% 32.50% 37.71%

Maximum Drawdown (excluding costs) -62.24% -62.48% -62.46%

Leverage Factor 1.054 1.058 1.057

Positions Taken (annua/ised) 94 93 94

Transaction and leverage costs 12.22% 12.1% 12.22%

Annualised Return (including costs) 12.35% 20.4% 24.89

Mlxed-MLP Mlxed ..RNN Mlxed"HONN

Information Ratio (excluding costs) 0.83 0.78 0.91

Annualised Volatility (excluding costs) 40.22% 40.22% 40.17%

Annualised Return (excluding costs) 33.57% 31.29% 36.67%

Maximum Drawdown (excluding costs) -27.76% -29.50% -29.75%

Leverage Factor 1.056 1.056 1.055

Positions Taken (annualised) 41 57 65

Transaction and leverage costs 6.052% 8.30% 9.40%

Annualised Return (including costs) 27.51% 23.00% 27.27%

costs using 360 days per year. But for the sake of s~mplicity,we use the approximation of 252 trading
days t? spread the leverage cost~ of non-trading days equally over the trading days. This
approximation prevents us from keeping track of how many non-trading days we hold a position.

84

GP Algorithm
ss

Information Ratio (excluding costs) 1.03
AnnuaJised Volatility (excluding costs) 41.84%
Annua/ised Return (excluding costs) 43.26%
Maximum Drawdown (excluding costs) -31.02%
Leverage Factor 1.10
Positions Taken (annua/ised) 67
Transaction and leverage costs 9.95%
Annua/ised Return (including costs) 33.34%

Table 11: Trading performance - final results

As can be seen from table 11, the GP algorithm continues to demonstrate a superior

trading performance despite significant drawdowns. The Mixed HONN, the Mixed

MLP and the Hybrid HONN strategies also perform well and presents high

annualised returns. In general, we observe that all models are able to gain extra

profits from the leverage as the increased transaction costs countered by increased

performance Again it is worth mentioning, that the time needed to train the HONN,

the Hybrid-HONN and the Mixed-HONN network was considerably shorter compared

with that needed for the MLP, Hybrid-MLP, Mixed-MLP, RNN, Mixed-RNN and the

Hybrid-RNN networks.

6.4 CONCLUDING REMARKS

In this chapter, we apply a Genetic Programming algorithm, Multi-layer Perceptron,

Recurrent, Higher Order, Mixed-Multilayer Perceptron, Mixed-Recurrent, Mixed-

Higher Order neural networks, Hybrid-Multilayer Perceptron, Hybrid-Recurrent,

Hybrid-Higher Order neural networks to a one-day-ahead forecasting and trading

task of the ASE 20 fixing series with only autoregressive terms as inputs. We use a

85

natve strategy, a MACD and an ARMA model as benchmarks. We develop these

different prediction models over the period January 2001 - August 2007 and validate

their out-of-sample trading efficiency over the following period from September 2007

through December 2008.

The GP algorithm demonstrates a higher trading performance in terms of annualised

return and information ratio before transaction costs. When more elaborate trading

strategies are applied and transaction costs are considered the GP algorithm again

continues to outperform all other models achieving the highest annualised return.

The Mixed-HONNs, the Mixed-RNNs and the Hybrid-HONNs models perform

remarkably as well and seem to have ability in providing good forecasts when

autoregressive series are only used as inputs.

It is also important to note that the Mixed-MLP network which presents a very close

second best performance needs less training time than the GP algorithm, a much

desirable feature in a real-life quantitative investment and trading environment. In the

circumstances, our results should go some way towards convincing a growing

number of quantitative fund managers to experiment beyond the bounds of

traditional statistical and neural network models. In particular, the strategies

consisting of modelling in a first stage the linear component of a financial time series

and then applying a neural network to learn its nonlinear elements and the use of

Genetic Programming appear quite promising.

86

CHAPTER 7

Modelling and Trading the Greek Stock Market with Gene
Expression and Genetic Programing Algorithms

Overview

In this chapter we present an application of Gene Expression Programming

Environment in modelling the ASE 20 Greek Index compared with an integrated

genetic programming environment, called GP Modelling. The Gene Expression

Programming (GEP) is a new evolutionary algorithm that evolves computer

programs (they can take many forms: mathematical expressions, neural networks,

decision trees, logical expressions and so on). The computer programs of GEP

irrespective of their complexity are all encoded in linear chromosomes. Then the

linear chromosomes are expressed or translated into expression trees. Thus, in GEP

the genotype (the linear chromosomes) and the phenotype (the expression trees)

are different entities (both structurally and functionally).The GP Modelling

environment is an implementation of the steady-state genetic programming

algorithm. That algorithm evolves tree based structures that represent models of

input - output relation of a system. The motivation of this chapter is to compare the

GP Algorithm with another new forecasting application named GEP Algorithm when

applied to the task of predicting and trading the ASE 20 Greek Index using only

autoregressive terms as inputs. This is done by benchmarking the forecasting

performance of the GP and GEP with some more traditional techniques, either

statistical such as an autoregressive moving average model (ARMA) or technical

such as a moving average convergence/divergence model (MACO), plus a natve

trading strategy and a Multylayer Percepton neural Network .. More specifically, the

87

trading performance of all models is investigated in a forecast and trading simulation

on ASE 20 time series closing prices over the period 2001-2008 using the last one

and a half year for out-of-sample testing. We use the ASE 20 daily series as many

financial institutions are ready to trade at this level and it is therefore possible to

leave orders with a bank for business to be transacted on that basis.

As it turns out, the GEP model does remarkably well and outperforms all other

models in a simple trading simulation exercise. This is also the case when more

sophisticated trading strategies using confirmation filters and leverage are applied,

as the GEP model still produces better results and outperforms the GP and

traditional statistical models in terms of annualised return.

7.1 Introduction

The use of artificial intelligence for the purpose of forecasting market movements

has been widely reviewed in academia. This study is a comparative analysis of the

results yielded utilizing by a Gene Expression Programming (GEP) Algorithm and a

Genetic Programming (GP) Algorithm when forecasting the Greek stock market.

Additionally, we endeavour to develop more accurate and sophisticated techniques

in order to increase the performance of our trading simulation. However, due to the

convergence and unification of global financial markets in recent years, this task has

become increasingly challenging. Furthermore, traditional econometric methods on

which forecasters have previously been reliant no longer satisfy the demands of

market participants as they struggle to capture new features associated with today's

markets. Hence, this paper investigates two new, contemporary and more proficient

methods of forecasting that are capable of identifying and dealing with

88

discontinuities, nonlinearities and high frequency multi-polynomial components which

are all prevalent in financial series of today's markets. These models are most

commonly known as the Gene Expression Programming and Genetic Programming

Algorithm.

GP Algorithms and GEP are domain-independent problem-solving techniques that

are run in various environments. These environments are structured in a manner

which approximates problems in order to produce forecasts at a high level of

accuracy. GP and GEP can be categorized in the forecasting bracket known in the

finance world as 'Evolutionary Algorithms'. The basis for this type of problem -

solving techniques derive from the Darwinian principle of reproduction and sutvivel ot

the fittest. Additionally, they are also similar to the biological genetic operations such

as crossover recombination and mutation. More importantly, Koza (1990, 1992)

underlines that GP and GEP address and quantify complex issues as an automated

process via programming, which enable computers to process and solve problems.

The Darwinian aspect of GP and GEP apply the theory of evolution to a population of

computer programs of varying sizes and shapes. For instance, GP and GEP start

with an initial population of thousands or even millions of randomly generated

computer programs. These programs comprise of programmatic elements built to

apply the fundamental principles of biological evolution in order to create a new (and

often improved) population of programs. As mentioned previously, the creation of

this new population is generated in a domain-independent system applying the

Darwinian Theory (1859) of natural selection under the principal known as sutvivet of

the fittest: an analogue of the naturally-occurring genetic operation of sexual

recombination (crossover), and occasional mutation. The crossover operation is

89

designed to create syntactically valid offspring programs. GP combines the

expressive high-level symbolic representations of computer programs with the near-

optimal efficiency of learning of Holland's (1975) genetic algorithm in order to

produce highly accurate outputs. Koza (1998) mentioned that a computer program

that solves or at the very least approximates a given problem often emerges from

this process. Dissimilar to other models GP do not require any prior knowledge of a

model's structure for the purpose of system modelling. Alternatively, GP evolves a

system model with parameter values that best fit specific data without manipulating

the data to fit 'predefined' model structures as many other forecasting methods tend

to do. In other words, GP creates an initial population of models and evolves using

genetic operators in order to calculate the mathematical expression which best fits

the specified data input into the system. Furthermore, GP simultaneously searches

for and refines a model's parameters and ultimately its structure.

On the other hand the GEP process begins with the random generation of the linear

chromosomes (or individuals) of the initial population. Then the chromosomes are

expressed as Expression Trees (ETs) and the fitness of each individual is evaluated.

After that, the individuals are selected according to their fitness in order to be

modified by genetic operators and reproduce the new population. The individuals of

this new population are, in turn, subjected to the same developmental process:

expression of the chromosomes, evaluation, selection according to fitness and

reproduction with modification. The process is repeated for a certain number of

generations or until a good solution has been found.

Accordingly, the motivation for this chapter is to investigate the use of GP algorithm

and GEP in order to improve the forecasting performance using autoregressive

90

terms as inputs. This is achieved by comparing the two genetic methods with

benchmark technical methods such as a moving average convergence/divergence

model (MACD), a naive trading strategy plus an MLP model.

From the analysis it emerges that the GEP algorithm demonstrates a remarkable

performance and outperforms all other models in a simple trading simulation

exercise. However once more sophisticated trading strategies are utilized with the

application of confirmation filters and leverages again the GEP algorithm

demonstrates superior forecasting ability in terms of annualised return.

7.2 Methodology

A complete description of our Mixed Neural Network architectures used on this

application plus the benchmark models is in chapter 3.

7.3 Empirical Trading Simulation Results

The trading performance of all the models considered in the validation subset is

presented in the table below. We choose the model with the higher profit in the test

sub-period. Our trading strategy applied is simple and identical for all the models: go

or stay long when the forecast return is above zero and go or stay short when the

forecast return is below zero. Appendix A.1.8 provides the performance of the GEP

and the GP Algorithm in the training and the test sub-periods while Appendices

A.1.9, and A.1.6 provide the characteristics of our models and the performance

measures respectively. As shown in table 12 below, the ARMA model and the naive

strategy have a lower performance compared to the GEP, GP Algorithm and the

MLP.

91

y MtP GP Algorithm
ii''' 0i~B 0'& '" I

Information Ratio (excluding 0.60
1.03

costs)
Annualised Volatility (excluding 38.11%

38.04%

costs)
Annualised Return (excluding 22.99%

39.33%

costs)
Maximum Drawdown (excluding -36.26%

-28.2%

costs)
Positions Taken (annualised) 105 67

NAIVE MACe ARMA Gene
!i

, Expression
Information Ratio

(excluding
0.32 0.46 0.20 1.16

costs)
Annualised Volatility

(excluding 36.70% 38.12% 38.13% 38.01%
costs)

Annua/ised Return
(excluding 11.42% 17.63% 7.68% 44.16%

costs)
Maximum Drawdown -49.41% - - -28.20%
(excluding costs) 50.63% 36.50%
Positions Taken

119 38 72 71
(annualised)

Table 12: Trading petformance results

We can see that the GEP performs significantly better than the GP Algorithm, and

the MLP significantly better than the other standard benchmark models despite

larger drawdowns.

Up to now, we have presented the trading results of all our models without

considering transaction costs. Since some of our models trade quite often, taking

transaction costs into account might change the whole picture. Following Dunis et al.

92

(2010), we check for potential improvements to our models through the application of

confirmation filters. In our analysis we explored the effect of different thresholds

however the results produced were only marginal improvements and for this reason

we have decided not to include them in our empirical results.

7.3.1 Transaction Costs

According to the Athens Stock Exchange, transaction costs for financial institutions

and fund managers dealing a minimum of 143 contracts or 1 million Euros is 10

Euros per contract (round trip). Dividing this transaction cost of the 143 contracts by

the average size deal (1 million Euros) gives us an average transaction cost for large

players of 14 basis points or 0.14% per position.

GP Algorithm
MLl)

Information Ratio (excluding costs) 0.60 1.03

Annua/ised Volatility (excluding costs) 38.11% 38.04%

Annualised Return (excluding costs) 22.99% 39.33%

Maximum Drawdown (excluding costs) -36.26% -28.2%

Positions Taken (annua/ised) 105 67

Transaction costs 13.65% 9.40%

Annualised Return (including costs) 9.35% 29.93%

38.12% 38.13%

7.68%

38.01%

11.42% 17.63% 44.16%

93

Maximum Drawdown -49.41% - -36.50% -28.20%
(excluding costs) 50.63%

Positions Taken 119 38 72 71
(annualised)

Transaction costs 15.47% 4.94% 9.36% 9.94%

Annua/ised Return -4.05% 12.69% -1.68% 34.22%
(including costs)

Table 13: out-or-sample results with transaction costs

We can see that, after transaction costs, the GEP model outperforms all the other

strategies based on the annualized return. It is closely followed by the GP Algorithm

strategy. On the other hand, the natve strategy and the ARMA model produce

negative results after transaction costs are taken into account. The MLP achieves

decent returns, yet well below those produced by the GP and GEP models.

7.3.2 Leverage to Exploit High Sharpe Ratios

In order to further improve the trading performance of our models we introduce a

"level of confidence" to our forecasts, Le. a leverage based on the test sub-period.

For the natve model, which presents a negative return we do not apply leverage. The

leverage factors applied are calculated in such a way that each model has a

common volatility of 20%18on the test data set.

The transaction costs are calculated by taking 0.14% per position into account, while

the cost of leverage (interest payments for the additional capital) is calculated at 4%

p.a. (that is 0.016% per trading day"), Our final results are presented in table 14

below.

18 Since most of the models have a volatility of about 20%, we have chosen this level as our basis.
The leverage factors retained are given in table 6.
19 The interest costs are calculated by considering a 4% interest rate p.a. divided by 252 trading days.
In reality, leverage costs also apply during non-trading days so that we should calculate the interest
costs using 360 days per year. But for the sake of s!mplicity, we use the approximation of 252 trading
days t? s~read the leverage cost~ of non-trading days equally over the trading days. This
approximation prevents us from keepmg track of how many non-trading days we hold a position.

94

MLPc GP Algorithm
« y

"
M ,

" 0 B

Information Ratio (excluding costs) 0.60 1.03

Annualised Volatility (excluding costs) 40.28% 41.84%

Annualised Return (excluding costs) 24.30% 43.26%

Maximum Drawdown (excluding costs) -38.32% -31.02%

Leverage Factor 1.057 1.1
Positions Taken (annualised) 105 67

Transaction and leverage costs 13.65% 9.95%

Annualised Return (including costs) 10.65% 33.31%

NAIVE MACD ARMA Gene
« ss Expression, ,

Information Ratio 0.32 0.70 0.20 1.16

(excluding costs)
Annua/ised Volatility 36.70% 40.03% 38.13% 39.15%
(excluding costs)
Annua/ised Return 11.42% 18.51% 7.68% 45.48%
(excluding costs)
Maximum Drawdown -49.41% -53.16% -36.50% -29.04%
(excluding costs)
Leverage Factor - 1.050 - 1.03

Positions Taken 119 38 72 71

(annua/ised)
Transaction and 15.47% 4.94% 9.36% 10.11%
leverage costs
Annua/ised Return -4.05% 13.57% -1.68% 35.37%
(including costs)

Table 14: Trading performance - final results

As can be seen from table 14, the GEP model continues to demonstrate a superior

trading performance despite significant drawdowns. The GP strategy also performs

well and presents the second higher annualised returns. In general, we observe that

all models are able to gain extra profits, albeit marginally, from the leverage as the

increased transaction costs seem to counter most of the benefits. Again it is worth

mentioning that the time needed to train the GEP and the GP is almost a quarter of

an hour.

95

7.4 CONCLUDING REMARKS

In this chapter, we apply Genetic Programming to a one-day-ahead forecasting and

trading task of the ASE 20 fixing series with only autoregressive terms as inputs. We

use a nalve strategy, a MACD and an ARMA model as benchmarks. We develop

these different prediction models over the period January 2001 - August 2007 and

validate their out-of-sample trading efficiency over the following period from

September 2007 through December 2008.

The GEP algorithm demonstrates a higher trading performance in terms of

annualised return and information ratio before transaction costs and when more

elaborate trading strategies are applied. When refined trading strategies are applied

and transaction costs are considered the GEP algorithm again continues to

outperform all other models achieving the highest annualised return. The GP

algorithm model performs remarkably as well and seems to provide good forecasts

when autoregressive series are only used as inputs.

It is also important to note that the GP which presents a very close second best

performance needs less training time than the GEP algorithm, a much desirable

feature in a real-life quantitative investment and trading environment: in the

circumstances, our results should go some way towards convincing a growing

number of quantitative fund managers to experiment beyond the bounds of

traditional statistical models and GAs. In particular, the strategies using the GEP and

GP algorithms appear quite promising.

96

CHAPTER8

Stock Market Prediction Using Evolutionary Support
Vector Machines: An Application to the ASE20 Index

Overview

The main motivation for this chapter is to introduce a novel hybrid method for the

prediction of the directional movement of financial assets with an application to the

ASE20 Greek stock index. Specifically, we use an alternative computational

methodology named Evolutionary Support Vector Machine (ESVM) for modeling and

trading the ASE20 Greek stock index using as inputs previous values of the ASE20

index and of four other financial indices. The proposed hybrid method consists of a

combination of genetic algorithms with support vector machines. For comparison

purposes, the trading performance of the ESVM stock predictor is benchmarked with

four traditional strategies (a natve strategy, a Buy and Hold strategy, a MACD and an

ARMA models), and a MLP neural network model. As it turns out, the proposed

methodology produces a higher trading performance in terms of annualized return

and information ratio, while providing information about the relationship between the

ASE20 index and other foreign indices.

8.1 Introduction

Stock market analysis is an area of growing quantitative financial applications.

Modeling and trading financial indices remains nowadays a very challenging open

problem for the scientific community. Forecasting financial time series is a difficult

task because of their complexity and their nonlinear, dynamic and noisy behaviour.

97

Traditional methods such as ARMA models and moving average models fail to

capture the complexity and the nonlinearities that exist in financial time series.

Neural network approaches have given satisfactory results but there is clearly a

need for more sophisticated techniques and approaches than the existing ones.

The purpose of this chapter is to present a novel method for the prediction of the

directional movement of financial assets with an application to the ASE20 Greek

stock index. In order to predict the movement direction of the index our Evolutionary

Support Vector Machine (ESVM) model uses as inputs previous values of the ASE20

index and of other financial indices. Therefore, our paper also tries to investigate the

relationship between the ASE20, DAX30, Nikkei225, S&P500 and FTSE100 stock

market indices.

The chosen methodology designed and developed for predicting the directional

movement of the ASE20 index is the ESVM model which is a hybrid method of

Genetic Algorithms and Support Vector Machines. Genetic algorithm [14] is an

evolutionary heuristic optimization algorithm which has been proved to perform

extremely well in practical difficult problems where the search space is big and

complicated. Support Vector Machine (SVM) is a supervised learning technique used

for data analysis and pattern recognition mainly in classification problems. In our

hybrid methodology, a genetic algorithm is used to optimize the SVM parameters

and to find the optimal feature subset.

The ESVM stock predictor is benchmarked with four traditional methods (natve

strategy, MACD strategy, ARMA plus a Multilayer Perceptron neural network) and

the results obtained seem very promising in terms of annualized return and

information ratio.

98

8.2 The ASE20 Index and Related Financial Data

The blue chip index FTSE/ASE20 is the underlying asset for futures contracts on this

index that are traded in derivatives markets. The ASE20 index is based on the 20

largest ASE stocks. It was developed in 1997 in partnership between ASE and FTSE

International and is now the established benchmark for the Greek stock market. It

represents over 50% of ASE's total capitalization and currently has a heavier weight

on banking, telecommunication and energy stocks.

The ASE20 index is traded as a futures contract that is cash settled upon maturity of

the contract with the value of the index fluctuating on a daily basis. The cash

settlement of this index is simply determined by calculating the difference between

the traded price and the closing price of the index on the expiration day of the

contract. Furthermore, settlement is reached between each of the participating

counterparties. Whilst the futures contract is traded in index points the monetary

value of the contract is calculated by multiplying the futures price by the multiple of 5

euro per point. For example, a contract trading at 1,400 points is valued at 7,000

EUR.

The ASE20 futures contract is therefore suited to institutional trading which justifies

its choice for this empirical application.

99

30·JO ...----------------------------

sao -~-------------------------
o -~ _

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Fig. 18: The ASE-20 Greek stock index

In order to train our models, we divide our dataset as follows:

Name of Period Trading Days Beginning End
Total Dataset 2456 1 January 2001 31 May 2010

Training Dataset 1986 1 January 2001 11 August
2008

Validation Set 470 12 August 2008 31 May 2010

Table 15: Total dataset

The observed ASE20 time series is non-normal (Jarque-Bera statistics confirms this

at the 99% confidence interval) containing slight skewness and high kurtosis. It is

also non-stationary and we decided to transform the ASE20 series into stationary

series of rates of returrr".

Given the price level P1, P2, ... P« the rate of return at time t is given by Eq. (25):

20 The percentage return is linearly additive but the log return is not linearly additive across portfolio
components.

100

900-..-------------,

800

700

500

400

300

Series: RETURNS
Sample 1 2455
Observations 2455

Mean
Median
Maximum
Mil'll mum
Std. De".
Skewness

-0000245
0000000
0.108214
-0093318
0.017134
0.081592

Kurtosis 7.961940

Jarque-Bera 2521.232
Probability 0000000

100

O~--f"""~'"
-0.10 -0.05 0.05 0.10-0.00

Fig. 19: ASE20 returns summary statistics (total dataset)

As inputs to our algorithms and our networks, we selected 18 different inputs

described in detail in Table 16 below.

Number Variable L~g_
1 Athens Composite all share return 1
2 Athens Composite all share return 2
3 Athens Composite all share return 3
4 Athens Composite all share return 4
5 Athens Composite all share return 5
6 Athens Composite all share return "-

6
Athens Composite all share return

.-
7 7
8 Athens Composite all share return 8
9 Athens Composite all share return 9-
10 Athens Composite all share return 10

Dax30 index return
._

11 2
12 10 days moving average of Dax30 index return

.-
2

13 Nikkei 225 index return 1-
14 10 days moving average of Nikkei 225 index return 1
15 FTSE 100 index return 2
16 10 days moving average of FTSE 100 return 2-
17 S&P 500 index return 2-
18 10 days moving average of S&P 500 return

.. -.
2

Table 16: Explanatory variables

In order to train the ESVM we further divided our dataset as follows:

101

Name of Period Trading Beginning End
Days

Total Dataset 2456 1 January 2001 31 Mai 2010

Training Dataset 1526 1 January 2001 6 November
2006

Test Dataset 460 7 November 2006 11 August
2008

Validation Set 470 12 August 2008 31 Mai 2010

Table 17:SVM combined with Genetic Algorithm Oatasets

In Figure 20 we show the Greek stock index for the out-of- sample period.

2000

1800

1600

1400

1200

1000

800

600
400

200

0

8/12/2008 2009 2010 31/05/2010

Fig. 20: The ASE-20 Greek stock index (out-of-sample validation period)

As inputs in our forecasting models except from previous values of the ASE20 stock

index, we used previous values from other important financial indices. The financial

indices which were used are the following:

• DAX30 Index: The DAX30 (Deutscher Aktien IndeX, formerly Deutscher

Aktien-Index) is the blue chip stock market index consisting of the 30 largest

German companies in terms of order book volume and market capitalization

trading on the Frankfurt Stock Exchange. Prices are taken from the electronic

Xetra trading system.

102

• S&P500 Index: The Standard & Poor's 500 index is a basket of 500 stocks

weighted by market value, and its performance is thought to be representative

of the US stock market as a whole. Over 70% of all U.S. equity is tracked by

the S&P500 which selects companies based upon market size, liquidity and

sector. Most of the companies in the index are solid mid cap or large cap

corporations.

• FTSE100 Index: The FTSE100 consists of the 100 largest companies by

market capitalization on the London Stock Exchange. The composition of the

FTSE 100 is reviewed quarterly.

• NIKKEI225 index: The Nikkei225 is the benchmark index for the Tokyo Stock

Exchange (TSE). It is a price-weighted average (the unit is yen) consisting of

225 Japanese companies, and the components are reviewed once a year.

Currently, the NIKKEI225 is the most widely quoted average of Japanese

equities.

8.2.1 Examining the Relation between the ASE20 Index and
other Financial Indices

In order to examine the relationship between the ASE20 index and the other financial

indices we first compute the covariance between the ASE20 index values, the value

of the previous day's closing price of the other financial index and the value of the

moving average for the 10 previous closing prices. In Table 18 we present these

results.

Financial Indices
Significance

Pearson correlations (two level
and Moving Averages tailed) with ASE-20 index (2-tail~~

DAX30 index -0.008 0.679

103

10-day DAX30 Moving Average 0.025 0.210
NIKKEI225 index -0.035 0.080

10-day NIKKEI225 Moving 0.009 0.666
Average

FTSE100 index -0.008 0.702
10-day FTSE100 Moving 0.019

Average 0.048
S&P500 -0.037 0.065

10-day S&P500 Moving 0.092
Average 0.034

Table 18: Pearson correlations of foreign indices with the ASE20 index

Pearson's correlation measures the linear association between two variables. The

values of the correlation coefficient range from -1 to 1. The sign of the correlation

coefficient indicates the direction of the relationship (positive or negative). The

absolute value of the correlation coefficient indicates the strength, with larger

absolute values indicating stronger relationships. The significance level (or p-value)

is the probability of obtaining results as extreme as the one observed. If the

significance level is very small (for example 0.05) then the correlation is significant

and the two variables are linearly related. If the significance level is relatively large

(for example, 0.50) then the correlation is not significant and the two variables are

not linearly related. We can easily observe that NIKKEI225, S&P500 indices and the

10-day moving averages of FTSE100 and S&P100 indices are according to

Pearson's correlation the most linearly correlated with the ASE20 Greek stock index.

These conclusions encourage us to continue investigating the impact of foreign

indices on the Greek stock market. In order to capture the complex, non-linear

relations between foreign financial indices and ASE-20 index, the novel wrapper

methodology presented in chapter 3 was applied.

104

8.3Methodology

A complete description of our Support Vector Machines used on this application plus

the benchmark models is in chapter 3.

8.4 Empirical Trading Simulation Results

In this section we present the results of the proposed methodology applied to trading

the ASE20 Greek stock index. These results are compared with the results of the

retained benchmark models.The trading performance of all the models considered in

the out-of-sample subset is presented in the table below. Our trading strategy for the

proposed methodology is simply the output of the best classifier found. Specifically,

we go or stay long if the ESVM model forecasts a positive movement and go or stay

short when a negative direction is forecast. The trading strategy applied in

benchmark models is simple and identical for all of them: go or stay long when the

forecast return is above zero and go or stay short when the forecast return is below

zero. Because of the stochastic nature of the proposed methodology a simple run is

not enough to measure its performance. This is the reason why ten runs where

executed and the mean results are presented in the next tables.

Buy NAIVE MACD ARM A MLP ESVM
and
Hold

Information Ratio -0.86 1.12 0.13 0.44 1.09 1.65
(excluding

costs)
CorrectDirectional 45.11% 47.02% 47.45% 45.96% 50.00% 52.77

ChanQ9
Annualised 44.29% 42.75% 44.35% 44.39 44.25% 44.12%
Volatility %

(excluding costs)
Annualised -38.05% 47.78% 5.97% 19.36 48.44% 72.71%

Return (excluding %

105

costs)
Maximum -87.24% - -46.26% - -33.75% -44.12%
Drawdown 32.27% 42.15

(excluding costs) %
Positions Taken 1 120 42 125 84 98
(annua/ised)

Table 19: Out of sample trading performance results

We can see that the ESVM model performs significantly better than the other

benchmark methods in terms of information ratio and annualized return. The naive

method outperforms other methods in terms of annualized volatility and maximum

drawdown but the differences with the ESVM predictor are insignificant. In terms of

positions taken the MACD model and Buy and Hold strategy trade less than all the

other methods.

8.4.1 Trading Costs and Leverage

Up to now, we have presented the trading results of all our models without

considering transaction costs. Since some of our models trade quite often, taking

transaction costs into account might change the whole picture.

We therefore introduce transaction costs as well as leverage for each model. The

aim is to devise a trading strategy that takes advantage of the relatively lower

volatility of the return profile of some models compared to others.

8.4.2 Transaction costs

According to the Athens Stock Exchange, transaction costs for financial institutions

and fund managers dealing a minimum of 143 contracts or 1 million Euros is 10

Euros per contract (round trip). Dividing this transaction cost of the 143 contracts by

106

the average size deal (1 million Euros) gives us an average transaction cost for large

players of 14 basis points or 0.14% per position.

NAIVE MACD ARMA MLP ESVM

Annualised
Return 47.78% 5.97% 19.36% 48.44% 72.71%
(excluding
costs)
Positions Taken 120 42 125 84 98
(annualised)
Transaction 16.80% 5.88% 17.50% 11.76% 13.72%
costs
Annualised
Return 30.98% 0.09% 1.86% 36.68% 58.99%
(including costs)

Table 20: Out-or-sample results with transaction costs

From Table 20 one can easily see that even when considering transaction costs, the

ESVM predictor still significantly outperforms all other benchmark trading strategies

in terms of annualized return.

8.4.3 Leverage to Exploit High Information Ratios

In order to further improve the trading performance of our models we introduce a

"level of confidence" to our forecasts, Le. a leverage based on the test sub-period.

The leverage factors applied are calculated in such a way that each model has a

common volatility of 20%21on the test data set.

The transaction costs are calculated by taking 0.14% per position into account, while

the cost of leverage (interest payments for the additional capital) is calculated at 4%

21 Since most of the models have a volatility of about 20%, we have chosen this level as our basis.
The leverage factors retained are given in table 8.

107

NAIVE MACD ARMA MLP ESVM

Information Ratio 1.12 0.13 0.44 1.06 1.65
(excluding costs)
Annualised
Volatility 46.17% 46.57% 48.77% 46.91% 50.74%

(excluding costs)
Annualized Return 51.60% 6.27% 21.30% 51.35% 83.62%
(excluding costs)
Maximum -
Drawdown -34.85% -49.15% -46.36% -35.77% 32.02%
(excluding costs)
Leverage Factor 1.08 1.05 1.10 1.06 1.15

Positions Taken 120 42 125 84 98

p.a. (that is 0.016% per trading da/2). Our final results are presented in table 21

below.

Table 21 clearly shows that even when considering leverage, the ESVM model still

significantly outperforms all other benchmark trading strategies in terms of

annualized return.

22 The interest costs are calculated by considering a 4% interest rate p.a. divided by 252 trading days.
In reality, leverage costs also apply during non-trading days so that we should calculate the interest
costs using 360 days per year. But for the sake of simplicity, we use the approximation of 252 trading
days to spread the leverage cost~ of non-trading days equally over the trading days. This
approximation prevents us from keeping track of how many non-trading days we hold a position.

108

(annualized)
Transaction and 17.40% 6.25% 18.25% 12.21% 14.84%leverage costs
Annualized Return 34.20% 0.02% 21.11% 39.14% 68.78%(including costs)

Table 21: Out-of-sample trading performance - Final results

From Table 21, it is easily observed that even considering more advance trading

techniques like leverage, ESVM predictor still outperforms significantly all other

benchmark trading strategies in terms of annualized return and information ratio.

8.5 Concluding Remarks

In the present chapter, we introduce a new hybrid methodology which combines

genetic algorithms and support vector machines and applies it to the problem of

forecasting the next day movement of the ASE20 Greek stock index. For

comparative purposes we also apply a natve trading strategy, a MACD strategy, an

ARMA modeling approach and a MLP neural network. Previous values of the ASE20

index and of other important financial indices are used as inputs for our models.

The proposed ESVM methodology produces the highest trading performance in

terms of annualized return and information ratio before transaction costs. When

leverage and transaction costs are considered, the ESVM model continues to

outperform all other benchmark models achieving higher values for the annualized

return and information ratio.

It is also important to note that the ESVM methodology was able to uncover relations

between the ASE20 stock index and the DAX, the NIKKEI225 and the S&P500 while

showing that the FTSE100 index movements do not affect significantly the Greek

stock market. These results come in contrast with the results of the linear Pearson

109

correlations presented in Table 18. One possible explanation for this contradiction is

that the information given to our models by the FTSE100 index is probably the same

as the information contained in the other selected inputs. Using highly correlated

inputs that hold mutual information has been shown to deteriorate the performance

of classifiers [21]. Furthermore, simple linear methods like Pearson correlation

cannot capture the complex non-linear multiple correlations that exist between the

different inputs and only a more sophisticated and powerful technique like GAs can

achieve this hard task. The ESVM predictor, by using a wrapper methodology for

selecting the optimal feature subset, manages to handle these correlations

effectively and this is probably one of the reasons for achieving such promising

results.

These obviously need to be confirmed and the application of the ESVM methodology

for modeling and trading other financial assets is the next necessary step for our

research. Also, the application of the approach proposed by Papadimitriou and

Terzidis [22] for deriving a fuzzy rule explanation of our strategy could possibly allow

one to more fully understand the impact of every input in the final predictions.

110

CHAPTER 9

General Conclusions

The general motivation of this thesis was to provide empirical evidence on the utility

of Combined Neural Networks, Genetic Programming Algorithms, Gene Expression

Programming and Support Vector Machines in financial forecasting and trading

applications. In order to achieve this, we benchmarked the above models not only

with some traditional statistical and technical techniques but also with some other

state-of-the-art NNs designs. Therefore, we were able to validate if the theoretical

advantages of these techniques compared to the more traditional NNs models are

translated into more accurate/profitable forecasts.

In the chapter 4 the Hybrid-HONNs demonstrated the higher trading performance in

terms of annualised return and Information ratio before transaction costs and

elaborate trading strategies are applied. When refined trading strategies are applied

and transaction costs are considered again the Hybrid-HONNs manage to

outperform all other models achieving the highest annualised return. Moreover, the

Hybrid-MLPs and the Hybrid-RNNs models performed remarkably well and seem to

have ability in providing good forecasts when autoregressive series are only used as

inputs.

Moreover in chapter 5 the Mixed-HONNs demonstrates a higher trading performance

in terms of annualised return and information ratio before transaction costs and more

elaborate trading strategies are applied. When refined trading strategies are applied

and transaction costs are considered the Mixed-MLPs manage to outperform all

other models achieving the highest annualised return. The Mixed-HONNs and the

111

Mixed-RNNs models perform remarkably as well and seem to have an ability in

providing good forecasts when autoregressive series are only used as inputs.

In chapter 6 the GP algorithm demonstrates a higher trading performance in terms of

annualised return and information ratio before transaction costs. When more

elaborate trading strategies are applied and transaction costs are considered the GP

algorithm again continues to outperform all other models achieving the highest

annualised return. The Mixed-HONNs, the Mixed-RNNs and the Hybrid-HONNs

models perform remarkably as well and seem to have ability in providing good

forecasts when autoregressive series are only used as inputs.

In chapter 7 the GEP algorithm demonstrates a higher trading performance in terms

of annualised return and information ratio before transaction costs and when more

elaborate trading strategies are applied. When refined trading strategies are applied

and transaction costs are considered the GEP algorithm again continues to

outperform all other models achieving the highest annualised return. The GP

algorithm model performs remarkably as well and seems to provide good forecasts

when autoregressive series are only used as inputs.

Lastly in chapter 8 the proposed ESVM methodology produces the highest trading

performance in terms of annualized return and information ratio before transaction

costs. When leverage and transaction costs are considered, the ESVM model

continues to outperform all other benchmark models achieving higher values for the

annualized return and information ratio.

It is also important to note that the ESVM methodology was able to uncover relations

between the ASE 20 stock index and the DAX, the NIKKEI225 and the S&P500

while showing that the FTSE100 index movements do not affect significantly the

Greek stock market.

112

The above mentioned empirical evidence allows us to argue with confidence that

combined Neural Networks, Genetic Programming Algorithms, Gene Expression

Programming and Support Vector Machines can provide accurate and extremely

profitable forecasts. Their performance seems superior to that of the HONN MLP

and RNN models and of the linear ARMA and MACD techniques. Moreover, we

note that the time needed to train Genetic Programming Algorithms, Gene

Expression Programming and Support Vector Machines was more than the time

needed for RNN MLP and HONN networks. In general, our results should go some

way towards convincing quantitative risk and fund managers to use to alternative

non-linear techniques such as Genetic Programming Support Vector Machines and

Gene Expression Programming as they seem to generate higher return/risk profiles.

Finally in few words my findings through my Phd carrier show that the models that i

have used in my research gave us promising and remarkable results. Considering

the annualised returns,the proposed models are sorted as follows: first the ESVM,

second the Gene Expression Programming, third the Genetic Programming

Algorithm, fourth the Mixed model and the last is the Hybrid model.

It is worth mentioning that my research in that area will continue with the following

papers: 1. Studying the performance of trading models in shock periods. 2.

Exploration of interpretable strategies using hybrid evolutionary fuzzy rules methods

and 3. Modeling and trading the exchange rates with computational intelligent

models.

113

REFERENCES
Abraham, A, B., Ajith, A., Baikunth, N. and Mahanti, P, K. (2002), 'Hybrid Intelligent
system for Stock Market Analysis', Computational Science, Springer-Verlag
Germany, Vassil n. Alexandrov et aI, 337-345.

Andreou, P, C., Charalambous, C. and Martzoukos, H, S. (2006), 'Knowledge
Artificial Neural Networks to Enhanced Parametric Option Pricing', Research Paper
Department of Public and Business Administration, University of Cyprus.

Barricelli, N. A., (1954), 'Esempi Numerici di Processi di Evoluzione', Methodos, 45-
68.

Bishop, C., (1994) 'Mixture Density Networks'. Neural Computing Research Group
Report: NCRG/94/004, 1-25.

Brown, G., Wyatt, J., Harris, R., and Yao, X. (2005) 'Diversity Creation Methods: A
Survey and Categorization', Information Fusion, 6, 5-20.

Cao L. and Tay F., Support Vector Machine With Adaptive Parameters in Financial
Time Series Forecasting, IEEE Transactions on Neural Networks, Vol. 14, No.6,
2003, p.p. 1506 - 1518.

Clemen, R., (1989). 'Combining Forecasts: A Review and Annotated Bibliography',
International Journal of Forecasting, 5, 559-583.

Cortes C. and Vapnik V. N., Support Vector Networks, Machine Learning, Vol. 20,
1995,pp. 1-25.

Cramer, N. L., (1985), 'A Representation for the Adaptive Generation of Simple
Sequential Programs', in Proceedings of an International Conference on Genetic
Algorithms and the Applications, Grefenstette, John J., (ed.), Carnegie Mellon
University.

Darwin, C., (1859), 'On the Origin of Species', London, John Murray.

Dehuri, S. and Cho S. B., (2008), 'Multi-Objective Classification Rule Mining Using
Gene Expression', Third International Conference on Convergence and Hybrid
Information.

Dunis, C., Laws, J. and Sermpinis, G. (2008a) 'Higher Order and Recurrent Neural
Architectures for Trading the EUR/USD Exchange Rate', CIBEF Working Papers.
Available at www.cibef.com

114

http://www.cibef.com

Dunis, C., Laws, J. and Sermpinis, G. (2008b) 'Modelling and Trading the EUR/USD
Exchange Rate at the ECB Fixing, CIBEF Working Papers. Available at
www.cibef.com

Dunis, C. and Chen, Y. (2005), 'Alternative Volatility Models for Risk Management
and Trading: Application to the EUR/USD and USD/JPY Rates' Derivative Use,
Trading & Regulation, 11, 2, 126-156

Dunis, C., Laws, j and Karathanasopoulos A. (2010a), 'Modelling and Trading the
Greek Stock Market with Hybrid ARMA-Neural Network Models', CIBEF Working
Papers. Available at www.cibef.com

Dunis, C., Laws, J. and Karathanasopoulos A. (2010), 'GP Algorithm versus Hybrid
and Mixed Neural Networks', CIBEF Working Papers, Available at www.cibef.com.

Elman, J. L. (1990), 'Finding Structure in Time', Cognitive Science, 14, 179-211.

Fatima, S. and Hussain, G., (2008) 'Statistical Models of KSE100 Index Using Hybrid
Financial Systems', Neurocomputing, 7, 2742-2746.

Ferreira C., (2001), 'Gene Expression Programming: A New Adaptive Algorithm for
Solving Problems', Complex Systems, 13,87-129.

Ferreira C. (2006), Gene Expression Programming: Mathematical Modeling by an
ArtificiallntelJigence, Springer, 2nd edition, San Francisko.

Fogel L. J., Owens A. J., and Walsh, M. J. (1964) 'On the Evolution of Artificial
Intelligence', Proceedings of the Fifth National Symposium on Human Factors in
Electronics, IEEE, San Diego, 63-76.

Fukunaga, A. and Stechert, A. (1998), 'Evolving Nonlinear Predictive Models for
Lossless Image Compression with Genetic Programming', Genetic Programming
1998: Proceedings of the Third Annual Conference, Morgan Kaufmann Wisconsin,
95 -102.

Giles, L. and Maxwell, T. (1987) 'Learning, Invariance and Generalization in Higher
Order Neural Networks', Applied Optics, 26, 4972-4978.

Greg, T. and Hu, S. (1999), 'Forecasting GOP Growth Using Artificial Neural
Network', Working Paper, Bank of Canada, 99-3.

Hansen, J. and Nelson, R., (2003) 'Time-Series Analysis with Neural Networks and
ARIMA-Neural Network Hybrids', Journal of Experimental and Theoretical Artificial
Intelligence, 15 (3),315-330.

115

http://www.cibef.com
http://www.cibef.com
http://www.cibef.com.

Hibbert, H., Pedreira, C. and Souza, R., (2000) 'Combining Neural Networks and
ARIMA Models for Hourly Temperature Forecast', Proceedings of International
Conference on Neural Networks (IJCNN 2000), 414-419.

Hibon, M. and Evgeniou. T., (2005) 'To Combine or not to Combine: Selecting
among Forecasts and their Combinations', International Journal of Forecasting, 22,
15-24.

Holland J.H. (1975), Adaptation in Natural and Artificial System, The University of
Michigan Press, Ann Arbor.

Holland J., Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial Intelligence, Cambridge, Mass: MIT
Press, 1995.

Huang W., Nakamori Y. and Wang S., Forecasting Stock Market Movement
Direction With Support Vector Machine, Computers & Operations Research, Vol. 32,
2005,pp.2513-2522.

Ince H. and Trafalis T., Short Term Forecasting with Support Vector Machines and
Application to Stock Price Prediction, International Journal of General Systems, Vol.
37, No. 6,2008, pp.677-687.

Kaastra, I. and Boyd, M. (1996), 'Designing a Neural Network for Forecasting
Financial and Economic Time Series', Neurocomputing, 10,215-236.

Kerthi, S. and Lin, C. J., Asymptotic Behaviors of Support Vector Machines with
Gaussian Kernel, Neural Computation, Vol. 15,2003, pp. 1667-1689.

Kim K., Financial Time Series Forecasting Using Support Vector Machines,
Neurocomputing, Vol. 55, 2q03, pp. 307-319.

Knowles, A., Hussein, A., Deredy, W., Lisboa, P. and Dunis, C. L. (2009), 'Higher-
Order Neural Networks with Bayesian Confidence Measure for Prediction of
EUR/USD Exchange Rate', Artificial Higher Order Neural networks for Economic and
Business, 1,48-59, CIBEF Working Papers. Available at www.cibef.com.

Koza, J.R. (1990), 'Genetic Programming: A Paradigm for Genetically Breeding
Populations of Computer Programs to Solve Problems', Stanford University
Computer Science Department.

Koza, J.R. (1992), Genetic Programming: On the Programming of Computers by
Means of Natural Selection, Cambridge MIT Press

Koza, J.R. (1994), Genetic Programming II: Automatic Discovery of Reusable
Programs, Cambridge MIT Press

116

http://www.cibef.com.

Koza J.R. (1998), 'Genetic Programming', In Williams, J. G. and Kent, A., (eds.),
Encyclopedia of Computer Science and Technology. New York, NY: Marcel-Dekker.
39, (Supplement 24), 29-43.

Koza, J.R., Bennett, F.H., Andre, D. and Keane, M.A., (1999), Genetic Programming
11/: Darwinian Invention and Problem Solving', San Francisco, Morgan Kaufmann.

Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J. and Lanza, G. (2003),
Genetic Programming IV: Routine Human-Competitive Machine Intelligence, Kluwer
Academic Publishers.

Lindemann, A., Dunis, C, and Lisboa P. (2004), 'Level Estimation, Classification and
Probability Distribution Architectures for Trading the EUR/USD Exchange Rate'.
Neural Network Computing & Applications, 14, 3,256-271.

Lisboa, P. J. G. and Vellido, A. (2000), 'Business Applications of Neural Networks',
vii-xxii, in P. J. G. Lisboa, B. Edisbury and A. Vellido [eds.] Business Applications of
Neural Networks: The State-of-the-Art of Real-World Applications, World Scientific,
Singapore.

Lopez, H. S. and Weinert, W. R. (2004), 'An Enhanced Gene Expression
Programming Approach for Symbolic Regression Problems', International Journal of
Applied Mathematics in Computer Science, 14,375-384.

Madar, J., Abonyi, F. and Szeifert, F. (2005) 'Genetic Programming for the
Identification of Nonlinear Input-Output Models', Industrial and Engineering
Chemistry Research. p.o Box 158 Veszprem 8201 Hungary

Madar, J., Abonyi, F. and Szeifert, F. (2004) 'Genetic Programming for System
Identification', Intelligent Systems Design and Applications (ISDA). University of
Veszprem, Hungary

Makridakis, S., Anderson A., Carbone, R, Fildes, R, Hibdon, M., Lewandowski, R.,
Newton, J., Parzen, E. and Winkler, R, (1982) The Accuracy of Extrapolation (Time
Series) Methods: Results of a Forecasting Competition', Journal of Forecasting, 1,
111-153.

Makridakis, S., (1989) 'Why Combining Works?', International Journal of
Forecasting, 5,601-603.

Margny, M. H. and EI-Semman I. E., (2005) 'Extracting Logical Classification Rules
with Expression Programming: Micro Array Case Study', AIML 05 , Conference 19-
21 December, Cairo, Egypt.

Newbold, ~. and Granger, C. yv. ~., (1974) 'Experience with Forecasting Univariate
Time Series and the Combination of Forecasts (with discussion)', Journal of
Statistics, 137, 131-164.

117

Palm, F.C. and Zellner, A., (1992) 'To Combine or not to Combine? Issues of
Combining Forecasts', Journal of Forecasting, 11,687-701.

Papadimitriou,S. and Terzidis, K., Efficient and Interpretable Fuzzy Classifiers from Data
with SupportVector Learning,Intelligent Data Analysis, Vol. 9, 2005, pp. 527-550.

Pindyck, R. and Rubinfeld, D. (1998), Econometric Models and Economic Forecasts,
4thedition, McGraw-Hili, New York.

Rechenberg, I. (1971), 'Evolutionsstrategie - Optimierung Technischer Systeme
nach Prinzipien der Biologischen Evolution', (PhD thesis). Reprinted by Fromman-
Holzboog (1973).

Redding, N., Kowalczyk, A. and Downs, T. (1993), 'Constructive Higher-Order
Network Algorithm that is Polynomial Time', Neural Networks, 6, 997-1010.

Shapiro, A. F. (2000), 'A Hitchhiker's Guide to the Techniques of Adaptive Nonlinear
Models', Insurance, Mathematics and Economics, 26, 119-132.

Scholkopf B., Mika S., Burges J. C., Knirsch P., Muller K.-R., Ratsch G. and Smola
A., Input Space Versus Feature Space In Kernel-Based Methods, IEEE
Transactions on Neural Networks, Vol. 10, No.5, 1999, p.p. 1000 - 1017.

Scholkopf B. and Smola A. J., Learning with Kernels: Support Vector Machines,
Regularization and Beyond, Cambridge, Mass: MIT Press, 2002.

Tenti, P. (1996), 'Forecasting Foreign Exchange Rates Using Recurrent Neural
Networks', Applied Artificial Intelligence, 10, 567-581.

Terui, N. and van Dijk, H. (2002) 'Combined Forecasts from Linear and Nonlinear
Time Series Models', International Journal of Forecasting, 18,421-438.

Theil, H (1996), 'Applied Economic Forecasting, North-Holland, Amsterdam,
Netherlands.

Tsang, E. P. K., Butler J. M. and Li, J. (1998), 'EDDIE Beats the Bookies', Journal of
Software Practice and Experience, Wiley, 28, (10),1033-1043.

Tseng, F.M., Yu, H.C. and Tzeng, G.H., (2002) 'Combining Neural Network Model
with Seasonal Time Series ARIMA Model', Technological Forecasting and Social
Change, 69, 71-87.

Vapnik V. N., The Nature of Statistical Learning Theory, Springer, 2000, United
States of Amrica.

Wang, Y. F., (200~) 'Nonlinear Neural Network Forecasting Model for Stock Index
Option Price: Hybrid GJR-GARCH Approach', Expert Systems with Applications,
475-484.

118

Werner, J. C. and Fogarty, T. C. (2001), 'Genetic Programming Applied to Collagen
Disease & Thrombosis', South Bank University, London

Willis, M.J., Hiden, H. G., Marenbach, P., McKay, B, and Montague, G. A.(1997),
'Genetic Programming: An Introduction and Survey of Applications', Second
International Conference on Genetic Algorithms in Engineering Systems, 314 - 319.

Winkler, S. (2004), 'Identifying Nonlinear Model Structures Using Genetic
Programming'. Diploma Thesis, Institute of Systems Theory and Simulation,
Johannes Kepler University Linz, Austria.

Winkler, S., Affenzeller, M. and Wagner, S. (2004a), 'New Methods for the
Identification of Nonlinear Model Structures Based Upon Genetic Programming
Techniques', Proceedings of the 15th International Conference on Systems Science,
1,386-393.

Winkler, S., Affenzeller, M. and Wagner, S. (2004b), 'Identifying Nonlinear Model
Structures Using Genetic Programming Techniques', Cybernetics and Systems, 689-
694.

Zhang, M., Xu, S., X. and Fulcher, J. (2002), 'Neuron-Adaptive Higher Order Neural-
Network Models for Automated Financial Data Modelling', IEEE Transactions on
Neural Networks, 13, 1, 188-204.

Zhang, G.P., (2003) Time Series Forecasting Using a Hybrid ARIMA and Neural
Network Model', Neurocomputing, 50, 159-175.

Zhang, G. P., and Qi, M., (2005) 'Neural Network Forecasting for Seasonal and
Trend Time Series', European Journal of Operational Research, 160 (2), 501-514.

119

APPENDIX

A.1.1 ARMA Model

The output of the ARMA model used in this paper is presented below.

Dependent Variable: RETURNS
Method: Least Squares
Date: 03/17/09 Time: 22:18
Sample (adjusted): 8 1738
Included observations: 1731 after adjustments
Convergence achieved after 37 iterations
Backcast: 1 7

Variable Coefficient Std. Error t-Statistic Prob.

C 0.000290 0.000303 0.956602 0.3389
AR(1) 0.375505 0.052705 7.124626 0.0000
AR(3) -0.244662 0.024991 -9.789999 0.0000
AR(7) -0.678906 0.044902 -15.11958 0.0000
MA(1) -0.374290 0.053055 -7.054702 0.0000
MA(3) 0.269470 0.026409 10.20353 0.0000
MA(7) 0.677169 0.044295 15.28785 0.0000

R-squared 0.026582 Mean dependent var 0.000288
Adjusted R-squared 0.023194 S.D. dependentvar 0.012549
S. E. of regression 0.012403 Akaike info criterion -5.937710
Sum squared resid 0.265213 Schwarz criterion -5.915645
Log likelihood 5146.088 F-statistic 7.846483
Durbin-Watson stat 1.856760 Prob(F-statistic) 0.000000

Inverted AR Roots .89-.44i .89+.44i .31-.92i .31+.92i
-.54+.70i -.54-.70i -.93

Inverted MA Roots .88-.45i .88+.45i .31-.92i .31+.92i
-.54+.70i -.54-.70i -.94

Table 22: The ARMA model benchmark

120

A.1.2 Explanatory variables for our Models

1
2
3
4
5
6
7
8
9
10
11

Athens Composite all share return
Athens Composite all share return
Athens Composite all share return
Athens Composite all share return
Athens Composite all share return
Athens Composite all share return
Athens Composite all share return
Moving Average of the Athens Composite all share return
Athens Composite all share return
Athens Composite all share return
Moving Average of the Athens Composite all share return

1
3
6
8
10
13
14
15
16
18
19

Table 23: Explanatory variables for traditional Neural Networks

Number Variable ta
1
2
3
4
5
6
7
8
9
10
11
12
13

Athens Composite all share return
Athens Composite all share return
Athens Composite all share return
Athens Composite all share return
Athens Composite all share return
Athens Composite all share return
Athens Composite all share return
Athens Composite all share return
Moving Average of the Athens Composite all share return
Athens Composite all share return
Athens Composite all share return
Moving Average of the Athens Composite all share return
l-day Riskmetrics Volatility

1
3
5
7
8
9
12
13
14
15
16
17
1

Table 24: Explanatory variables for Hybrid Neural Networks

121

1 Athens Composite all share return 1
2 Athens Composite all share return 2
3 Athens Composite all share return 4
4 Athens Composite all share return 5
5 Athens Composite all share return 7
6 Athens Composite all share return 9
7 Moving Average of the Athens Composite all share return 10
8 Athens Composite all share return 13
9 Athens Composite all share return 14
10 Athens Composite all share return 15
11 Moving Average of the Athens Composite all share return 16
12 Athens Composite all share return 17

Table 25: Explanatory variables for Mixed Neural Networks

Number Variable Lag
1 Athens Composite all share return N 1
2 Athens Composite all share return N 3
3 Athens Composite all share return N 5
4 Athens Composite all share return N 7
5 Athens Composite all share return N 8
6 Athens Composite all share return N 10
7 Dax30 index return N 2
8 10 day_smoving average of Dax30 index return N 2
9 10 days moving average of Nikkei 225 index return N 1
10 S&P 500 index return N 2
11 10 days moving average of S&P 500 return N 2

Table 26: Input variables selected by ESVM model

A.1.3 Data Segregation

Tl'111dina011'1 6ealtlllina Em1
Name or PeriOd

Total Dataset
Training Dataset
Out- of- sample Datasettt/alldatton Set)

2087 21 January 200 I
1719 29 January 2001
349 31 August 12007

3 1 December 2008
30 August 2007

3 1 December 2008

Table 27: The ASE 20 dataset

122

21 January 2001

Total Dataset
Training Dataset
Test Dataset
Out-of- sample Dataset (Validation Set)

1373
346
349

29 January 2001
04 May 2006

31 August 2007

03 May2006
30 August 2007

31 December 2008

Table 28: The Neural Networks datasets

A1.4 Graph of Entire Dataset

2850

2600

2350

2100

1850

1600

1350

S50

600
1/1/2001 28/7/2005 18/9/2006 10/11/2007 31/12/.I0(JB16/4/2003 6/6/200423/2/2002

Fig. 21: ASE 20 fixing prices (total dataset).

A.1.5 Histogram of Returns

800~--~

700

600

500

400

300

200

Jarque-Bera 3691.056
Probability 0.000000

Series: RETURNS
Sample 1 2087
Observations 2087

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

-0.000240
0.000000
0.108214
-0.093318
0.015088
-0.036670
9.514666

100

0-4-.----1""'...,.......,.....,.....
-0.10 -0.00 0.05-0.05 o. 0

Fig. 22: ASE 20 returns summary statistics (total dataset).

123

A.1.6 Performance Measures

The performance measures are calculated as follows:
Performanc
e Measure Description

Cumulative
Return

RA = 252 *_!_ ±R,
N 1=1

with R, being the daily return
N

RC = LR,

Annualised
Return

1=1

Maximum
Drawdown

(TA =..)252 * _1_*I(R, -Rf
N -1 1=1

IR= RA
(TA

Maximum negative value of L (R,) over the

period

MD = i=I,..~~7.....N(tR))
)=1

Annualised
Volatility

Information
Ratio

Table 29: Trading simulation performance measures

A.1.7 Statistical Results in the Training and Test Sub-Periods

NAIVE MACD ARMA MLP RNN HONN
RMSE 0.0125 0.0131 0.0124 0.0153 0.0237 0.0141
MAE 0.0125 0.0097 0.0090 0.0111 0.0119 0.0103
MAPE 456.56% 235.17% 117.82% 371.57% 329.88% 234.72%
ITHEIL-U 0.6781 0.7459 0.8643 0.6842 0.7174 0.6938

H_ybrid-MLP Hybrid-RNN Hvbrid-HONN
RMSE 0.0118 0.0122 0.0118
MAE 0.0086 0.0082 0.0081
MAPE 108.93% 128.02% 124.91%
THEIL-U 0.7226 0.776 0.6862

Mixed MLP Mixed RNN Mixed HONN
RMSE 0.0127 0.0205 0.0189
MAE 0.0091 0.0116 0.0126
MAPE 111.34% 285.99% 355.95%
THEIL-U 0.7881 0.7105 0.6989

Table 30: In-sample statistical performance

124

A.1.8 Empirical Results in the Training and Test Sub-Periods

NAIVE MACD ARMA MLP RNN HONN
Information Ratio (excluding costs) 1.55 1.24 1.24 1.57 1.53 1.61
~nnualised Volatility (excluding costs) 19.32% 19.49% 19.83% 19.60% 19.60% 19.59%
Iftnnua/ised Return (excluding costs) 29.86% 24.29% 24.66% 30.72% 30.02% 31.56%
Maximum Drawdown (excluding costs) -23.39% -25.42% -26.70% -27.52% -34.66% -39.70%
Positions Taken (annua/ised) 114 34 50 86 81 108

Hybrid-
Hybrid-MLP Hybrid-RNN HONN

Information Ratio (excluding costs) 2.13 2.01 2.26
Annua/ised Volatility __{excluding costs) 19.42% 19.44% 19.40%
Iftnnua/ised Return (excluding costs) 41.35% 39.01% 43.77%
Maximum Drawdown (excluding costs) -37.20% -26.86% -37.20%
Positions Taken (annua/ised) 102 79 77

Mixed-MLP Mixed-RNN Mixed-HONN
Information Ratio (excluding costs) 2.07 1.93 2.11
Annua/ised Volatility (excluding costs) 19.45% 19.47% 19.44%
IJ,nnua/isedReturn (excluding costs) 40.17% 37.57% 41.12%
Maximum Drawdown (excluding costs) -37.89% -41.47% -37.52
Positions Taken (annua/ised) 46 68 47

MLP GP GEP
Information Ratio (excluding costs) 0.60 2.19 2.34
IAnnua/ised Volatility (excluding costs) 38.11% 19.33% 19.31%
IAnnualised Return (excluding costs) 22.99% 42.24% 45.19%
Maximum Drawdown (excluding costs) -36.26% -31.23% -28.07%
Positions Taken (annua/ised) 50 52

Table 31: In-sample trading performance

A.1.9 Networks Characteristics

We present below the characteristics of the networks with the best trading
performance on the test sub-period for the different architectures.

Parameters MLP RNN HONNs
Learning algorithm Gradient descent Gradient descent Gradient descent
Learning rate 0.001 0.001 0.001
Momentum 0.003 0.003 0.003
Iteration steps 1500 1500 1000
Initialisation of weights N(O,1) N(O,1) N(O,1)
Input nodes 11 11 11
Hidden nodes (1Iayer) 7 6 0
Output node 1 1 1

Table 32: Network Characteristics for Traditional Neural Networks

125

Parameters Hybrid-MLP Hybrid-RNN Hybrid-HONNs

Learning algorithm Gradient descent Gradient descent Gradient descent
Learning rate 0.001 0.001 0.001
Momentum 0.003 0.003 0.003
Iteration steps 1500 1500 1000
Initialisation of weights N(0,1) N(0,1) N(0,1)
Input nodes 13 13 13
Hidden nodes (1Iayer) 6 7 0
Output node 1 1 1

Table 33: Network characteristics for Hybrid Neural Networks

Parameters Mixed-MLP Mixed-RNN Mixed-HONN

Learning algorithm Gradient descent Gradient descent Gradient descent
Learning rate 0.001 0.001 0.001
Momentum 0.003 0.003 0.003
Iteration steps 1500 1500 1000
Initialisation of weights N(0,1l_ N(0,1) Nl0,11
Input nodes 13 13 13
Hidden nodes (1Iayer) 6 7 0
Output node 1 1 1

Table 34: Network characteristics for Mixed Neural Network

A.1.10 Genetic Programming Characteristics

We present below the characteristics of the Genetic Programming Algorithm with the
best trading performance on the test sub-period.

Population Size: 200
Max tree depth: 6
Function Set: +, -, ., I, A, 10.2,10.3,10.1/2, 10.1/3, Exp, If,sin,

cos, tan
Fitness evaluation function: Mean Squared Error
Tournament Size: 4
Crossover trials: 1
Mutation Probability: 0,75

Table 43: Genetic Programming characteristics
Population Size: 1000
Head length: 6
Constants' range: [-3, 3]
Function Set: +, -, *. I, A, 10.2,10.3,10.1/2, 10.1/3, Exp, If,sin,

cos, tan
Fitness evaluation function: Mean Squared Error
Tournament Size: 20
Type of recombination: Two point
Mutation Probability: 0,75

Table 35: Gene Expression Programming Characteristics

126

A.2.1 ARMA Model
The output of the ARMA model used in this paper is presented below.

Dependent Variable: RETURNS
Method: Least Squares
Date: 10/18/10 Time: 13:23
Sample (adjusted): 22 1895
Included observations: 1874 after adjustments
Convergence achieved after 14 iterations
8ackcast: 1 21

Variable

C
AR(2)
AR(7)
AR(15)
AR(21)
MA(2)
MA(7)
MA(15)
MA(21)

Coefficient Std. Error t-Statistic Prob.

0.000173 0.000290 0.594784 0.5521
-0.048839 0.009521 -5.129866 0.0000
-1.201091 0.047436 -25.32030 0.0000
0.028249 0.005333 5.296766 0.0000
0.260213 0.040526 6A20878 0.0000
0.062896 0.011921 5.276268 0.0000
1.188975 0.047036 25.27820 0.0000
-0.036059 0.007143 -5.048213 0.0000
-0.263141 0.038319 -6.867106 0.0000

0.032286 Mean dependent var 0.000176
0.028135 S.D. dependentvar 0.012792
0.012611 Akaike info criterion -5.903711
0.296602 Schwarz criterion -5.877125
5540.777 F-statistic 7.777859
1.876937 Prob(F-statistic) 0.000000

.88 .88+.44i .88-A4i .86-A1 i
.86+A1i .55-.69i .55+.69i .22+.97i
.22-.97i .20-.92i .20+.92i -.19+.86i
-.19-.86i -.60+.79i -.60-.79i -.61-.73i
-.61+.73i -.79+.38i -.79-.38i -.97+.04i
-.97-.04i

.88 .87+A4i .87-A4i .87+AOi
.87-AOi .55+.69i .55-.69i .23+.97i
.23-.97i .20+.93i .20-.93i -.19-.86i
-.19+.86i -.59-.80i -.59+.80i -.62+.72i
-.62-.72i -.79+.38i -.79-.38i -.97+.04i
-.97-.04i

R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat

Inverted AR Roots

Inverted MA Roots

Table 36: The ARMA model benchmark

127

A.2.2 Empirical Results in the Training and Test Sub-Periods

MLP ESVM
Information Ratio (excluding costs) 2.41 1.79
',Annualised Volatility (excluding costs) 20.78% 20.89%
[Annualised Return (excluding costs) 50.01% 37.38%
Maximum Drawdown (excluding costs) -25.25% -20.82%

NAIVE MACD ARMA Buy &Hold
Information Ratio (excluding costs) 1.20 1.05 1.58 0.11
IAnnualised Volatility (excluding costs) 20.45% 20.86% 20.88% 21.12%
[Annualised Return (excluding costs) 24.60% 21.96% 32.93% 2.36%
Maximum Drawdown (excluding costs) -38.87% -26.27% -23.47% -96.35%

Table 37: In-sample trading performance

A.2.3 ESVMCharacteristics

population Size: 30
Selection type: Roulette Wheel Selection
Elitism: Best member of every population is maintained in the

next generation
Crossover Probability: 0.9
Mutation Probability: 0.1

Table 38: ESVM Parameters

A.2.4 Networks Characteristics

We present below the characteristics of the networks with the best trading
performance on the test sub-period for the different architectures.

Parameters MLP

Learning algorithm Gradient descent

Learning rate 0.001
Momentum 0.003
Iteration steps 1500
Initialisation of weights N10,1)
Input nodes 18
Hidden nodes 1_1Iayer) 9
Output node 1

Table 39: Characteristics for Multylayer Perceptron

128

A.2.5 Abbreviation list

ANN = Artificial Neural Network

ARMA = Autoregressive Moving Average

ESVM = Evolutionary Support Vector Machine

GA = Genetic Algorithm

GEP = Gene Expression Programming

GP = Genetic Programming

HONN = Higher Order Neural Network

MA = Moving Average

MLP = Multylayer Perceptron

RNN = Recurrent Neural Network

129

