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Abstract 

This is the first of two papers associated with materials characterisation methods based on hardness testing. This 

paper presents a method to determine the area function of the Berkovich indenter used in nanoindentation hardness 

tests. The geometry and hence projected area of the indenter is known to affect the force-displacement response 

of a material during the loading and unloading stages. It is therefore important that the projected area is accurately 

defined to ensure determination of correct material hardness values.  It is shown that values for the projected area 

determined from numerical methods applied to experimental data differ from values predicted inversely from 

theory based on the assumption of perfect tip geometry. This difference is attributed principally to a blunting of 

the tip, presenting as a tip radius. A simulation of the nanoindentation hardness test system is developed using 

finite element modelling (FEM) methods. Solutions for a range of load indentation curves obtained from 

experiment with fused silica are determined from best fit analyses using the root mean square error objective 

function (RMSE). A linear regression method is subsequently developed and used to estimate the area function. 

A parametric study of simulation and experimental results has been completed to verify the FEM and to assess 

the influence of varying tip curvature on force-displacement response during the loading and unloading stages 

and is summarily reported. A new method of analysis for determination of area function is proposed for use with 

numerical based simulations, which for the first time, accommodates variation in tip geometry and which is shown 

to deliver improved agreement with nanoindentation experimental results. The second paper will focus on the 

study of the tip geometry of the Vickers micro-indenter.  
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1 INTRODUCTION 

Nanoindentation techniques are widely used to investigate the mechanical behaviour of a broad range of materials 

at the nanoscale. The load–displacement relationship is obtained from a plot of recorded information on forces 

and depth. The results of such tests [1 – 4] among many others are used to determine the elastic-plastic material 

properties: yield stress (σy), Young’s Modulus (E), work hardening exponent (n) and hardness H. Several methods 

have been developed to analyse the loading-unloading curves of nanoindentation tests, the most important being 

those of [2, 3]. According to Oliver and Pharr, the reduced modulus Er, and the hardness are obtained  

𝐻 =  
𝑃𝑚𝑎𝑥

𝐴
                                                                            (1) 

𝑆𝑠 =
2𝛿

√𝜋
𝐸𝑟 √𝐴                                                                 (2) 

𝐸 =  
1−𝜈2

𝐸
+  

1−𝜈𝑖
2

𝐸𝑖
                                                  (3) 

where  𝑃𝑚𝑎𝑥  is the maximum indentation load, A is the projected contact area, 𝑆𝑠 is stiffness at maximum 

indentation depth, and 𝛿 is a correction factor of the indenter uniaxial symmetry [5] . E and ν are the Young’s 

Modulus and Poisson ratio for the test material, 𝐸𝑖 and 𝜈𝑖  are the Young’s Modulus and Poisson’s ratio for the 

indenter. 
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Due to inconsistency in manufacture and because of wear through use in measurements, the indenter tip will 

invariably possess a finite radius of curvature. When the indentation depth is small, most, if not all, of the contact 

occurs in the highest spherical depth range, and the real contact area is different from that assumed for the indenter. 

In the case of nanoindentation tests, where penetration depth is comparatively small, this difference has a greater 

effect on accuracy. Therefore, in such a case, the area function needs to be calibrated for a range of indentation 

depths. Moreover, in the FEM simulation of nanoindentation and microindentation processes, the corresponding 

indenter tip radius needs to be fully specified in order to obtain a precise and simple geometrical shape of indenter. 

Experimental investigations conducted over many years on many material systems have shown that the projected 

area A is an important parameter for obtaining mechanical properties. The projected area is considered to be a 

function of contact depth, f (ℎ𝑐) - obtained by calculating the shape of the indenter at intervals of contact depth. 

A calibration method has been proposed to estimate f (ℎ𝑐) prior to analysis of the projected area [3]. The estimation 

employs a pre-defined material of a known Young’s Modulus and also takes into account compliance of the load 

structure. The area function is then estimated from the best fit for the A versus ℎ𝑐 data using the relationship: 

𝐴(ℎ𝑐) = 𝐶0ℎ𝑐
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                          (4) 

-where ℎ𝑐 is the contact depth, 𝐶𝑂 is the tip geometry coefficient (𝐶𝑂= 24.5 for a perfect Berkovich indenter, 𝐶1 −
 𝐶5are variable coefficients obtained from the indentation instrument at the calibration stage through a best fit of 

the experimental data. The Oliver and Pharr method is reported to be highly accurate in determining the area 

function of both simple and complex imprint shapes, however, in the actual application it is very difficult to 

understand the physical meaning of the coefficients introduced in Eq. (4).  

Oliver and Pharr 1992 focussed on the calibration process to determine the area function; other researchers have 

suggested imaging techniques of the residual imprint for obtaining the tip geometry. Transmission electron 

microscopy (TEM) was employed by [2] who adapted a method developed earlier by [6] using two-stage carbon 

replicas to determine the indenter shape calibration. McElhaney [7] advocated a new indenter tip geometry 

calibration technique based on measurement of the compliance of both contacts and use of scanning electron 

microscopy (SEM) measurements for the areas of large indentations. Hermann [8] proposed a method to determine 

the indenter area function from direct measurements obtained using a scanning force microscope (SFM). The 

SFM data for tungsten and fused silica reference materials were reported to exhibit good agreement with results 

obtained from the compliance method of Oliver and Pharr. 

The mathematical analysis of the load-displacement curve such as that described by Oliver and Pharr is relatively 

difficult for a complex material model and hence the strength of the interactions of the system are difficult to 

discern. However finite element modelling simulations are now more commonly employed to aid in the analysis 

of mechanical properties over a wide range of material systems using load-displacement curves obtained from 

experiment.  

In this study, the area function was determined from continuous stiffness measurement (CSM) Berkovich 

nanoindentation tests with fused silica. It was reasonably assumed that the test material possessed a load-

independent hardness. A FEM simulation was developed in order to aid determination of tip radius curvature and 

inclination angle distortion. The area function was analysed using experimental data coupled with FEM, and the 

deviation from the perfect Berkovich geometry was determined. The deviation being attributed to indenter tip 

blunting and inclination angle distortion. The developed FEM was subsequently adapted with a root mean square 

optimization algorithm in order to obtain the most accurate values of tip geometry for a range of target curvatures 

and apex angle. The method results in a best match (curve fitting) of both numerical and experimental results for 

a minimum value of objective function. This new approach, summarised in the flowchart of Figure 1, will be 

shown to improve the correlation between measurement and theory. 

 

 

 

 



 

Figure 1 Flowchart of the global approach to determination of Berkovich indenter tip geometry and inclination 

angle 

The flowchart in Figure 1 shows the global approach to determination of Berkovich indenter tip geometry and 

inclination angle. The approach associates experimental results, numerical results and an optimization algorithm 

with the FEM in order to obtain the optimal value for a wide range of simulation space and target parameters 

leading to a best match between experiment and theory (minimum objective function). Within this approach a 

parametric study was undertaken to determine the tip radius and inclination angle for a given set of indentation 

data using script programming language (python) interfaced with ABAQUS FEM. In this arrangement, the 

programme automatically searches for a range of values of tip radius and inclination angle until minimum 

convergence of load displacement is achieved. In the searching process, the input data was transformed to a 

discrete form with equally spaced points at each indentation depth (indentation points). At each indentation point 

the objective function values are calculated for each set of tip radius and inclination angle using a predefined 

program in Microsoft Excel. The final objective function was determined by the sum of objective functions at 

each indentation point. The final tip geometry is given by the minimum objective function value, defined as the 

optimal solution. 

 

2 NANOINDENTATION TESTS: EXPERIMENTAL PROCEDURE  

A fused silica sample was employed as the test specimen.  The specimen was prepared to standard metallographic 

and nanoindentation test specification. The specimens were mounted using a hot compression thermosetting resin, 

machine type: Struers Prontopress-2. The specimen was positioned in the press mount, and the resin was added 

to a pre-defined level. Heat and pressure were then applied to set the specimen. The mounted specimen was finish 

prepared by wet grinding using a Metaserv rotary grinding machine with abrasive papers of grade P120 to fine 

grade P1200A. Nanoindentation experiments were carried out using a calibrated Nanoindenter CSM equipped 

with a standard Berkovich indenter. For each loading unloading cycle, an approach speed of 3000 nm/min and 

dwell time of 3 seconds at each load interval was programmed. Tests were carried out at ten pre-determined 

maximum load values in the range 6.5-250 mN. Three indentation tests were performed at each load, the average 

of the group results are presented in this study with thermal drift neglected. Typical load indentation curves 

obtained from this experimental work are shown in Figure 2 and Figure 3.  



 

Figure 2 Typical loading- unloading curves for fused silica 

 

Figure 3 Typical loading- unloading curves for fused silica 

 

3 NANOINDENATTION TESTS: RESULTS AND DISCUSSION 

Fused silica was selected as the reference material because it has elastic isentropic properties and presents no 

significant plow profile (pile-up), for an indentation ratio of 
ℎ𝑓

ℎ𝑚𝑎𝑥
< 0.7 - such properties can be expected to give 

an accurate projected area result from the Oliver and Pharr method. Beyond this value the correlation deteriorates 

[9, 10]. 

The method to determine the area function is based on the assumption of (a) load independent hardness for an 

elastic plastic material and (b) an elastic modulus independent of indentation depth. 

Substitute Eq. (1) in Eq. (2) to give 
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Based on the assumptions of (a) and (b) above 
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The Oliver and Pharr method proposes the load frame and specimens as two springs in series 

      𝐶𝑇 =  𝐶𝑆 +  𝐶𝐹                                                                                                       (7) 

where 𝐶𝑇 is the total compliance and is the sum ofcompliance of the specimen   𝐶𝑆and compliance of the frame 

structure, 𝐶𝐹. Based on the guiding principle given in Annex B of ISO14577-2 [11] it is possible to calculate the 
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indenter area function following the series of equations expressed therein. The specimen compliance during the 

elastic contact is specified by the inverse of the contact stiffness, and the total compliance is determined by the 

inverse of the initial region of the experimental unloading slope 

1

ST
=

1

SS
+  CF                                                                                                        (8) 

Substitute Eq. (5), and Eq. (6) into Eq. (8) gives 

1

𝑆𝑇
=  𝛽 

1

√𝑃𝑚𝑎𝑥
 +  𝐶𝐹                                                                                            (9) 

To calculate the contact stiffness at maximum load 𝑆𝑇, Oliver and Pharr suggested that the first portion of the 

experimental unloading curve can be fitted to a power law mathematical expression 

𝑃 =  𝛼 (ℎ − ℎ𝑓)𝑚 (10)                                                                           (10) 

-where h is the indentation depth, ℎ𝑓 is the final indentation depth obtained by curve fitting, 𝛼 and m are constants 

and can be determined using a least squares fit. The initial experimental unloading slope will be then obtained by 

differentiating Eq. (10) at maximum indentation depth 

𝑆𝑇 = (
𝑑𝑝

𝑑ℎ
)

ℎ𝑚𝑎𝑥

= 𝑚𝛼 (ℎ − ℎ𝑓)
𝑚−1

                                                               (11) 

Different indentation loads were applied to the fused silica specimens and the load displacement curves were 

analysed using Eq. (10) and Eq. (11) to determine the slope of the initial unloading curve  𝑆𝑇. Figure 4 shows the 

relation between the initial loading curve 𝑆𝑇 and maximum applied load,  𝑃𝑚𝑎𝑥 . As displayed, there exists a very 

good linear relationship between the inverse of the slope of the initial unloading curve, 1/𝑆𝑇 and the inverse of the 

square root of maximum load(1 𝑃𝑚𝑎𝑥)⁄ 0.5
.  The linear regression fitted data obtained from Eq. (8) gives 𝐶𝐹 = 

0.128 nm/mN, and 𝛽 = 32.05nm/mN. The load frame compliance shows a reasonable value for an instrumented 

nanoindentation measurement when compared with published data, for example:  𝐶𝐹 = 0.196 nm mN⁄  [12] , 

and  CF = 0.1 nm/mN, [13]. 

 

 

Figure 4  Relation between 1 / 𝑆𝑇  and (1 𝑃𝑚𝑎𝑥)⁄ 0.5
 

 

4 THEORETICAL DEVELOPMENT 

4.1 Berkovich Indenter Correction Factor 

The value of the correction factor 𝛿 has a great effect on the elastic modulus, hardness and contact area function. 

For a small deformation of an elastic-plastic material caused by an indenter of a rigid asymmetric smooth profile, 

the value of  𝛿  is approximately unity, however for a Berkovich indenter with non-symmetric 

profile, the value of 𝛿 should be carefully considered in order to achieve a high accuracy in properties of hardness 

and Young’s modulus. The latest studies have shown that for an elastic-plastic material and a perfectly elastic 

deformation by a rigid cone all estimated values of 𝛿 deviate from unity due to departures from the small strain 



approximation. King [14] used a numerical method to study the effect of flat ended punches on the elastic material. 

The analysis showed that 𝛿 has a value of approximately 1.034 for a triangular punch and approximately 1.012 

for a square based indenter. Vlassak and Nix [15] proposed a new numerical method using a triangular punch; 

and found a higher value of 𝛿 equal to 1.058. Hay [16] employed both an analytical technique and FEM to examine 

the deformation of elastic material by a conical indenter with a half induced angle of 70.3o, results show that in 

the case of Poisson’s ratio of 0.3, 𝛿 deviates from unity by 0.067. They developed the following expression to 

calculate 𝛿 based on the conical indenter, induced angle size and Poisson’s ratio 

𝛿 = 𝜋
[ 
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                                                                           (12) 

From the review of previous works and removing the value derived from a flat half space, values for 𝛿 lie in the 

range 1.022 <𝛿<1.083. However the value of 𝛿= 1.05 is considered a best target for this study given the possible 

error has a minimum value of approximately ± 0.05. 

4.2 Contact Area of a Berkovich Indenter 

Determining the tip area function is essential to calculate the hardness and Young’s modulus of the indented 

material, [3, 8]. There are different methods described in ISO 14577-4 that explain the procedure for tip area 

function calibration based on the mechanical properties of the indented material and prior understanding of the 

frame compliance. 

The Young’s Modulus and Poisson’s ratio for fused silica are: E = 70.2 GPa and 𝜈 =0.22 respectively, [17]. The 

properties of the Berkovich indenter used in the experiment were Young’s Modulus, Ei = 1147 GPa and Poisson’s 

ratio 𝜈I = 0.07 (as shown in the CSM data sheet). Based on this information the reduced modulus Er from Eq. (3) 

was calculated to be 69.15 GPa. The hardness of the fused silica material employed in experiments was found 

from Eq. (6) to be H = 6.96 GPa and β = 32.057 nm/mN. Using this hardness value and value of β, the projected 

area can then be calculated using Eq. (1). It is first necessary to determine the contact depth hc at each load for the 

relationship between hc and Pmax. 

The contact depth ℎ𝑐  is given by the expression. 

ℎ𝑐 =  ℎ𝑚𝑎𝑥 − 𝜀
𝑃𝑚𝑎𝑥

𝑆𝑠
                                                                                 (13) 

-where 𝜀 is a constant depending on indenter geometry. The contact depth was calculated based on the Oliver 

Pharr least square fitting procedure taking into account the correction factor. The exponent m, appearing in the 

Oliver Pharr method was calculated from curve fitting the first portion of the unloading curve and it has a great 

effect on the value of 𝜀 as indicated from Eq. (14).  

𝜀 = 𝑚 [1 − 
2∆ (

𝑚

2(𝑚−1)
)

√𝜋∆(
𝑚

2(𝑚−1)
)

(𝑚 − 1)]                                                          (14) 

Over the expected range of 1.2<m<1.6, the value of  𝜀 has been found to change in magnitude. The two values: 

𝜀= 0.75 proposed by Oliver Pharr and 𝜀= 0.785 proposed by [13, 18] were reported as the maximum limits for 𝜀 

variation. 

Figure 5 shows the relationship between the unloading curve exponent m, and the maximum indentation depth 

with a fused silica specimen. A systematic relationship was observed where the exponent m, increased with a 

decrease in maximum indentation depth for an elastic-perfectly plastic material and the trend line remains 

relatively constant at maximum depths greater than 1000nm. These results agree with results obtained by [3, 9].   



 

Figure 5 Relationship between the unloading curve exponent, m, and the maximum indentation depth for fused 

silica material 

The hardness number obtained from Eq. (1) was used to calculate the projected contact area A as a function of the 

contact depth hc, Eq. (13) and the results are shown in Figure 6. A linear relationship between√𝐴  and ℎ𝑐 for the 

actual and a perfect indenter is evident from the regression analysis.  

 

Figure 6 Tip area function values for a Berkovich tip determined from experiment compared to those for a perfect 

indenter 

The Berkovich indenter is usually modelled as a rigid body with a perfect pyramidal shape having a half induced 

angle 𝜑 of 70.3o , the projected contact area / depth relationship proposed by [2] is: 

𝐴𝑝 =  𝜋 ℎ𝑐
2𝑡𝑎𝑛2𝜑 = 24.5ℎ𝑐

2                                                                       (15) 

As demonstrated in Figure 7, the actual indenter is in practice never an ideal indenter due to tip blunting. In the 

case of a non-perfect indenter, the indenter area functions as described by [18] and [19], can be determined from 

𝐴𝑃 = 𝐶 (ℎ𝑐 + ℎ𝑑)2                                                                                          (16) 

Where ℎ𝑑  is the distance between the blunted edge and the cone-end as is shown in Figure 6. This distance is 

affected by the modification of indenter inclination angle. The expression for 𝐴𝑃  in Eq. (16) is the projected area 

for a conical shape satisfying ℎ𝑐 > 𝜕. Regression analysis data shown in Figure 6 were obtained according to Eq. 

(16) using Sigma plot software, yielding values of 𝐶 = 30.55and ℎ𝑑 = 12.5. 

The projected area of the spherical part 𝐴𝑃𝑆 of the indenter was calculated using Pythagorean theory 

for the case of ℎ𝑐 ≤ 𝜕 
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Figure 7 Schematic diagram shows the geometry of blunt indenter 

The radius r of the spherical area is given by 

𝐴𝑃𝑆 = 𝜋 𝑟2                                                                                                          (17) 

𝑟2 =  𝑅2 − (𝑅 − ℎ𝑐)2                                                                                     (18) 

ℎ𝑑 =  
𝑅

𝑠𝑖𝑛𝜑
− 𝑅                                                                                                   (19) 

Substituting Eq. (18) into Eq. (17), the area function for the spherical parts are given by 

𝐴𝑃𝑆 = 𝜋 ℎ𝑐(2𝑅 − ℎ𝑐)                                                                                      (20) 

In this study a series of nanoindentation experimental tests were performed at different indentation loads. However, 

the spherical part of the area function was neglected based on the very reasonable assumption of all applied loads 

being performed with ℎ𝑐 > 𝜕. 

The deviation in the area function results may be due to indenter tip blunting and this is supported from analysis 

of the hd value obtained from the curve best fitting, ℎ𝑑 = 12.5.   

Troyona and Martin [18] consider the value of ℎ𝑑 to be approximately 6.5 nm for the case of a blunted Berkovich 

indenter with half induced angle of 70.30 and tip radius of 105 nm. Takeshi [20] determined the distance for four 

different materials using four different indenters and found it to vary in the range 6.1nm< hd < 28.8 nm. However 

tip roundness is not the only factor found to contribute to deviations in values of the area function of an actual 

indenter. Deformation due to the concentrated residual field stress during indentation will also have effect on the 

half induced angle, φ resulting in change in the value of the constant C. The difference can be noted physically in 

Eq. (16) between the two values determined from experiment, C = 30.55, and theory, C=24.56.  

 

5 TIP RADIUS VALUES FROM THE FEM APPROACH 

Numerical simulations were performed using commercial ABAQUS finite element code. This code was developed 

to simulate the Berkovich indentation test. The Berkovich indenter geometry is that of three sided pyramid with 

total included angle of 142.3 degrees. The Berkovich indenter was modelled as a 2-D asymmetric feature with a 

spherical cap having a specific tip radius. Figure 8- (a) shows the tip radius modelled with values of projected 

area function and contact depth obtained from experiment data for a real indenter. As is shown in Fig 8- (b) the 

specimen was modelled with a linear axisymmetric triangular element type (CAX4R). All specimen sizes used in 

the simulation were greater than 10 times the maximum indentation depth, which is satisfactorily large, in order 

to avoid any specimen size effect and boundary effect [21]. The lower surface of the specimens was fixed for all 

degrees of freedom and one side face was symmetrically fixed in the y-direction. The contact constraint between 

the indenter and material was defined as the ‘master surface (indenter)’ and ‘slave surface (material)’ interaction 

with a normal contact, to allow the master surface to move and contact the material at all time during the simulation. 

The contact direction is then obtained in relation to the master surface. 

Mesh density under the indenter tip was refined in order to achieve the deformation and stress gradients during 

indentation to a very high accuracy. The indentation method was simulated in two alternating steps. During the 



loading step the indenter was moved in the z-direction in ramp mode and penetrated the specimen until the 

maximum depth was achieved. The reaction force was recorded at a reference point representing the overall load 

on the specimen. During the unloading step the indenter was returned to the initial position and same reference 

point. The loading curve represents the resistance of the material, while the difference between loading and 

unloading represents the energy loss [22]. Nano-indentation finite element modelling was performed based on the 

assumption of there being no exponent to the value of strain hardening of the material. Commonly, amorphous 

materials do not present a predictable strain hardening behaviour [17, 23]. As a consequence, the fused silica was 

assumed to be an isotropic, linear elastic-perfectly plastic material. 

 

 

 

 

 

 

 

Figure 8 (a) and (b) Finite element boundary condition and mesh density of the indentation process 

 

5.1 Numerical Simulation of Berkovich Indentation Process 

The tip radius calculation using best fitting regression analysis of experimental results is very difficult for the 

Berkovich indenter type due to the size of tip radius (100 nm -200 nm)-which is considered large if compared 

with the other indenter tip radii. Since the mechanical properties of fused silica are known from the prior 

instrumented indentation tests, these data were used as input parameters to the FEM simulation. The elastic 

modulus, estimated from experimental data was E = 69.91GPa. This value is very close to the value used by [17] 

of E = 70.1GPa. The yield strength is calculated from a parametric study of the FEM simulations, matching the 

force displacement curve to the one obtained from a typical experimental result [17]. This analysis delivered a 

value of  𝜎𝑦 = 6.1GPa, closely matching the value reported by [17] of 𝜎𝑦 = 5.8 GPa. 

The effect of tip radius on the load displacement curves is shown in Figure 9 and is consistent with conventional 

understanding that a blunted tip will require greater force to penetrate a stated material when compared to a sharp 

indenter. Furthermore, the loading curve of the elastic-perfectly plastic material is more strongly affected by tip 

roundness if compared with the unloading curve. Yu [24] reported that the accuracy of mechanical property 

measurement is principally affected by tip radius blunting especially in nanoindentation. Wang [25] reported that 

the change in the tip radius results in significant effect on the load displacement data. The authors found the load 

to increase with a larger tip radius at the same maximum indentation depth. 

 



 

Figure 9 Effect of tip radius on the load displacement curves of fused silica 

 

6 OPTIMIZATION METHOD FOR BERKOVICH INDENTER AREA FUNCTION  

A series of FEM simulations were performed for a Berkovich indenter using a wide range of tip radii and indenter 

inclination angle. Load displacement curves from numerical modelling were compared with experimental results 

at different indentation load, with best match results obtained employing an objective function. Many optimization 

methods have been used by researchers to predict the best parameters using single- or multi- objective functions, 

for example [26, 27]. The main purpose of optimization techniques in our context is to achieve a best fit between 

the load displacement curve obtained from real measurement results and the curve obtained from numerical 

analysis. The objective function used in this study is the mean square root error (RMSE). The RMSE value is 

obtained from determining the difference between experimental and numerical loads for the nano-indentation test 

Eq. (21) 

𝑀𝐼𝑁𝑂𝐹 =  [
1

𝑁
∑ (𝐹𝑒𝑥𝑝−𝑙

𝑖 − 𝐹𝑛𝑢𝑚−𝑙
𝑖 )

2
+

1

𝑁
∑ (𝐹𝑒𝑥𝑝−𝑢𝑙

𝑖 − 𝐹𝑛𝑢𝑚−𝑢𝑙
𝑖 )

2𝑁
𝑖=1

𝑁
𝑖=1 ]

1/2

                           (21) 

-where 𝐹𝑒𝑥𝑝−𝑙
𝑖  is the measured Force applied in loading at a particular depth,𝐹𝑛𝑢𝑚−𝑙

𝑖  is the value of Force obtained 

from theory for the loading section of the curve at the same depth predicted by FEM,  𝐹𝑒𝑥𝑝−𝑢𝑙
𝑖  is the measured 

Force in unloading at a particular depth, 𝐹𝑛𝑢𝑚−𝑢𝑙
𝑖  is the value of Force obtained from theory for the unloading 

section of the curve at the same depth predicted by FEM, and N is the number of sampling points in each test.  

Figure 10 shows the comparison between the load displacement curve for numerical theory and experimental 

results for three different maximum loads. The two curves exhibit good correlation and only a minor deviation 

occurs in small loads due to the elastic-perfectly plastic material constitutive material law used in the FEM, which 

is not fully adequate in explaining the behaviour of fused silica material. 

Gadelrab [17]reported that the Drucker–Prager model of material densification is more appropriate than the full 

plastic model in the nanoindentation of fused silica. However, the overall effect of this deviation on the Young’s 

modulus and yield stress is extremely small and thus is ignored in this study. The minimum objective function 

was determined for the case of tip radius equal to 175 nm, and inclination angle of the Berkovich indenter being 

within the given tolerance of 69.50±0.150. 
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Fig.10 Comparison between numerical and experimental curves using optimal tip geometry 

 

7 AREA FUNCTION VALUES FROM THE FEM APPROACH 

Figure 11a shows the 2-D asymmetric FEM employed to calculate the projected area function between the indenter 

and the specimen. To conduct this method, the nanoindentation load displacement data on the practical reference 

material with known Young’s modulus and Poisson ratio, as well as the corresponding properties of the indenter 

have to be available. The indenter geometry of tip radius and inclination angle is modelled corresponding to the 

dimensions obtained using the algorithm developed in previous section. 

Figure 11b shows the indenter tip calibration methodology according to guidelines given in Annex B of ISO14577, 

taking into consideration the Young's modulus and Poisson’s ratio of a reference material and  𝐶𝑓  ≅ 0. The 

projected area and contact depth were calculated using the following series of equations  

𝐴𝑃 =  𝜋 𝑟𝑐
2                                                                                                         (22) 

 

𝐶𝑡 = 𝐶𝑠 = 𝑡𝑎𝑛𝜃 𝑤ℎ𝑒𝑛 𝐶𝑓  ≅ 0                                                                     (23) 

𝐶𝑡 = |
𝑑ℎ

𝑑𝑝
|

𝑃𝑚𝑎𝑥

=  
√𝜋

2 𝐸𝑟√𝐴𝑃

                                                                           (24) 

ℎ𝑐 =  ℎ𝑚𝑎𝑥 − 𝜀𝑃𝑚𝑎𝑥𝐶𝑡                                                                                    (25) 

A series of FEM simulations were carried out at various indentation loads enabling the indenter projected 

area 𝐴𝑃 to be plotted against contact depth ℎ𝑐 for the examined fused silica reference material. The indenter area 

function values, determined from the tip geometry and area function algorithm, exhibit only a small dispersion, 

with the corresponding scatter satisfying ISO14577K-D. Bouzakis [28] reported that nanoindentation FEM 

supported simulation were carried out using a trial and error methodology, enabling the determination of materials 

stress-strain constitutive laws and an accurate mathematical explanation of corresponding indenter tip geometry. 
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Figure 11 (a) Screenshot of 2-D asymmetric, FEM (b) Indenter tip calibration methodology used to calculate the 

projected area function  

 

Figure 12 shows the comparison of the indenter projected areas 𝐴𝑃versus the contact depth ℎ𝑐 , according to 

experimental results and the developed tip geometry FEM algorithm, for the examined reference material. A close 

correlation is observed between the numerical and experimental data. This informs us that an accurate value of 

tip geometry and area function can be predicted using the developed FEM based algorithm and reference material. 

The area function obtained from fitting experimental force displacement curves is found to be larger than the tip 

metrology from the FEM results. Outcomes of the numerical optimization are also very similar to those obtained 

with the experimental results, and further, both results yield an area function significantly larger than that for a 

‘perfect’ Berkovich indenter, experimental results and the developed tip geometry FEM based algorithm 

 

 

Figure 12 Comparison of the indenter projected areas 𝐴𝑃versus the contact depth ℎ𝑐 

 

Under all load conditions in this study the elastic modulus determined for fused silica was found to be the same. 

Based on our findings, indenter calibration using fused silica is deemed a reliable method and overcomes many 

of the problems encountered with other common materials during indentation testing [29]. 

 

8 CONCLUSIONS 

Results of nanoindentation measurements for fused silica were analysed and compared with theory. It was found 

that a linear relationship exists between the total measured compliance, i.e. the inverse of the measured initial 

unloading slope, 1/𝑆𝑇 , and the inverse square root of the peak load (1 𝑃𝑚𝑎𝑥)⁄ 0.5
. In the case of a known reduced 

modulus, Er, the hardness of the test material can be obtained directly from the slope of the fitted 1/𝑆𝑇 vs 

(1 𝑃𝑚𝑎𝑥)⁄ 0.5
straight line. Using the hardness value found from this relationship the projected contact area, A can 

be determined. Finally, the area function is established by analysing the variation of the projected contact area 

with the contact depth, hc. 



An important finding in this study is that deviations in the value of the Berkovich indenter area function 

determined from measurement compared to those for an indenter of perfect geometry may be attributed to the 

factors: tip blunting and inclination angle deformation, -attributes which are included in the new analysis. 

An FEM based algorithm was developed to determine tip geometry and indenter area functions. A parametric 

study of the simulations allowed a methodology to be developed for calculation of indenter tip geometry and 

inclination angle, taking into consideration both the Young’s modulus and the hardness of reference materials. In 

this way, the exact contact between the indenter and the specimens can be determined. The calculated indenter 

area function according to this method is almost identical to the corresponding one expected from ISO14577-4, 

using fused silica as reference material. A close correlation is observed between the numerical and experimental 

data for indenter projected areas 𝐴𝑃versus the contact depth  ℎ𝑐 . 

These outcomes are important for the analysis and characterisation of materials based on both nano- and micro-

hardness tests, which is the subject of Part II. 
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