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Abstract 

Classical and Recurrent novae (CNe/RNe) are interacting close binary systems in 

which mass is transferred from a donor star to the surface of an accreting compact 

companion resulting in an outburst. Their study is important for our understanding of 

several branches of modem day astrophysics. 

The work presented in this thesis has focused on three particular topics: (i) Nova 

V458 Vulpeculae and its surrounding planetary nebula; (ii) Detailed nova light curves 

from the Solar Mass Ejection Imager (SMEI); and (iii) V1721 Aquilae, an usually 

fast, luminous, and highly extinguished nova. A brief account is also given of more 

generalised work on novae in M31, and areas for future investigation are discussed. 

Nova V458 Vulpeculae is one of only two novae observed to lie within a planetary neb­

ula (PN). Due to the outburst a light echo effect within the PN is experienced. Using 

Ha data taken over four years the illumination of the PN with time has been examined 

and a 3D visualisation obtained. Comparison of light echo data from PN models gen­

erated with the morphokinematical modelling tool XS5 to observed PN light echo data 

indicate the presence of a PN with a bipolar external shell and an elliptical internal 

shell. Results have also confirmed that the PN is at a distance of 13 kpc. 

SMEI is a space-borne instrument based on-board the Coriolis satellite. It provides 

precision visible-light photometry of point sources down to 8th magnitude and near 

complete sky-map coverage at 102-minute cadence. Using SMEI data detailed light 

curves of novae have been obtained which offer unprecedented temporal resolution 
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around, and especially before, maximum light, a phase of the nova eruption normally 

not covered by ground-based observations. They have allowed the exploration of fun­

damental parameters for individual objects including the epoch of the initial explosion, 

the reality and duration of any pre-maximum halt, the presence of secondary maxima, 

speed of decline of the initial light curve, plus precise timing of the onset of dust for­

mation. The SMEI data archive undoubtedly holds a plethora of transient events and 

variable stars. A code designed to search for such events has been created and imple­

mented on four years of SMEI data from one of its three cameras generating over 1500 

variable objects, some of which were un-catalogued and are potentially very interest­

ing. 

Finally data on the unusually fast and luminous Nova V1721 Aquilae has been exam­

ined. Pre-outburst NIR images from the 2MASS catalogue revealed the presence of a 

progenitor system, the absolute magnitudes and colours of which suggested the object 

to have a sub-giant secondary, and so belong to the U Sco class of RNe. Post-outburst 

spectra of the object revealed the presence of triple-peaked Ha and 01 profiles. Spec­

tral fitting of these profiles indicated a high ejection velocity of 3350 km S-I. The 

triple-peaked nature of the Ha profile suggested that the accretion disc of the system 

is viewed face-on. This is supported by models created in XS5, which also indicated 

an axis ratio of rv 1.4 for the ejecta. 
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Chapter 1 

Introduction to Novae 

1.1 Historical Overview 

Nova/rom the Latin word novus meaning "new" 

Novae were once thought to be new stars as they suddenly brightened in the night 

sky and then gradually faded away. The first records indicating the observation of 

novae were produced by Chinese astronomers as early as 200 BC. The observation of 

these unusual events then spread to other countries in the Far East where they were 

interpreted to be of astrological importance (Duerbeck, 2008). A detailed overview 

of Chinese, Korean, Japanese, European, and Arab celestial listings may be found in 

Stephenson & Green (2002) 

With time interest in these mysterious objects increased and in 1786 the earliest known 

catalogue of objects which were seen to have "either disappeared, changed in bright­

ness, or were new ones" was created (Pigott & Englefield, 1786). Within this list of 51 

objects 12 were confirmed variables, four of which were novae, and the remaining 39 

were yet to be authenticated. 

During the early part of the 19th century increasing numbers of novae were found 

as a result of a large influx of amateur astronomer observations. However, in 1892 

1 
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systematic photographic monitoring of the sky began and the detection of novae started 

to boom. This was then accelerated with the introduction of the IP21 photomultiplier 

in the mid-1940s, increasing the sensitivity of photoelectric photometry and allowing 

for the detection of objects much fainter than those previously observed. 

Although novae were known of and detected by astronomers for many centuries it was 

only in the 20th century that the physical interpretation of these objects developed. 

The understanding of nova theory was sparked by three major findings: (1) Schatzman 

(1951) discovered that 3He could trigger thermonuclear runaways (TNRs); (2) Walker 

(1954) discovered the binarity of DQ Herculis; (3) Kraft (1964) confirmed that all 

novae occur in binary star systems. The evidence for this revelation came both from 

spectroscopic studies (using the Hale reflector), which indicated periodically varying 

radial velocities, and from intensive photometric examination. Additional optical stud­

ies of novae then led to an increased understanding of the white dwarf (WD) primary 

and accretion disc components of a nova system, with observations in the NIR between 

the 1970s and 1980s revealing the secondary donor star. More information about the 

WD component was then obtained via UV satellite observations (e.g. IUE and Hub­

ble), with X-ray satellites revealing a new population of X-ray binaries in the 1970s. 

Finally the strong magnetic fields present in some nova systems were then revealed via 

polarisation studies. 

Today the detection of novae is still carried out largely by the amateur astronomer 

community, and communication between these groups and professional astronomers 

is vital and aided via various web-based resources. The increased sensitivity of CCDs 

along with the quick response of telescopes especially robotic facilities (e.g. Liverpool 

Telescope, Faulkes Telescope North/South) means that the best information possible 

about a nova outburst may be obtained over multiple wavebands. The use of satellites 

and all-sky data surveys also provides a method in which to search for pre- and early 

outburst information along with the detection of otherwise undiscovered novae. How­

ever, even with all the advances made a full understanding these fascinating objects is 

still far from reach. 
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Scientific knowledge is in perpetual evolution; it finds itself changed from one day to 

the next - Jean Piaget. 

1.2 Classical Novae 

Classical Novae (CNe) belong to the Cataclysmic Variable (CV) class of objects. These 

are interacting close binary systems in which mass is transferred from a donor star to 

the surface of an accreting compact companion leading to a variety of behaviours, 

the most noticeable of which is outbursts (see Bode, 2010; Bode & Evans, 2008, for 

review). A typical CN system consists of a white dwarf (WD) primary and a cooler 

lower mass main sequence star known as the secondary (spectral type ranging from F 

to M). The dimensions of a binary system are determined via its orbital period (Porb) 

and the mass of its components. Binary separation is usually less than a few solar 

radii with Porb less than half a day (typically hours). Porb can be used to determine 

the nature of the secondary star for example systems with a Porb ~ 8 hours will have 

more evolved secondaries, rather than main sequence stars (Nelson et al., 2004). The 

Porb of a Roche lobe-filling (see the end of this Section) main sequence star is given in 

Equation 1.1 (Warner, 1995) where A12 is the mass of the secondary, 

(1.1) 

The observed masses of WDs within CNe systems range between 0.5 M0 and 1.4 M0, 

the latter being the Chandrasekhar (1931) limit however, the lower limit is thought to 

be due to a selection effect as novae with higher mass WDs have a greater number of 

outbursts with higher peak luminosities. 

The close proximity of the WD to its companion leads to significant interaction. The 

secondary becomes tidally distorted by the gravitational field of the WD causing the 

secondary to rotate synchronously with the orbital revolution and eliminating any ec­

centricity of its orbit. The total potential at any point in the system can be expressed as 
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the sum of the total gravitational potential and the effective potential of the centrifugal 

force, this is known as the Roche potential. Each star is said to be situated within a 

Roche lobe, this is the largest closed equipotential which can contain the mass of the 

star. Particles within the lobe experience the Roche potential, outside they do not and 

are lost from the system. Between the primary and secondary there is a point at which 

the forces acting on a particle exactly balance, known as the inner Lagrangian point 

(Ll )' There are four other Lagrangian points which satisfy the same condition (see Fig­

ure 1.1). As the secondary expands it fills its Roche lobe and reaches L1 . Here gas can 

escape from its atmosphere and onto the Roche lobe of the primary (see Figure 1.1). 

Only the secondary fills its Roche lobe making the system a semi-detached binary. 

Figure 1.1: Schematic view in the equatorial plane of a semi-detached binary system with 
equipotential lines and Lagrange points indicated. The secondary star fills its Roche lobe. 
Adapted from Carrier et al. (2003). 

The rate at which mass is lost from the secondary is given in Equation 1.2 (Warner, 

1995) 
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(1.2) 

where Q is the effective cross section of the stream leaving LJ, PLI is the density at Ll 

averaged over the cross section and Cs is the isothermal sound speed. 

Material leaves the secondary as a stream and passes by the WO (unless the WO has a 

strong magnetic field, see Section 1.6). The trajectory of the stream lies in the orbital 

plane of the binary and eventually it collides with itself within the Roche lobe of the 

primary, close to the WO. The supersonic speeds of the material shocks the gas to a 

high temperature, radiating away a large amount of kinetic energy. Angular momentum 

is conserved however, and the lowest energy orbit is formed i.e. a circle. Successive 

collisions of particles in the gas lead to radiative dissipation of energy and cause the 

gas to spiral inwards. However, in order to conserve angular momentum particles must 

also move outward spreading the ring into a disc (see Figure 1.2). The disc size is 

limited by the tidal forces of the secondary and the maximum disc radius allowed is 

about 90% of the WD's Roche lobe radius (Pringle & Wade, 1985). 

1.3 Thermonuclear Runaway 

The nova outburst is caused by a thermonuclear runaway. Previous evolutionary pro­

cesses have stripped the primary star of its original hydrogen envelope leaving an ex­

posed WO. If the mass of the WD is less than 0.5 M0 the core consists of mainly 

helium, masses between 0.5 M0 and 1.2 M0 have carbon and oxygen cores, whilst 

masses > 1 M0 contain oxygen and neon (Smith, 2007). Accreted material (mainly 

H) from the secondary star builds up in a layer on the surface of the WO. The bottom of 

this layer is hot and dense allowing electron degeneracy pressure to dominate. As the 

temperature in this layer increases H-buming can occur via two processes, the proton­

proton chain (p-p chain; p + p -+ d + e+ + Ve; Schatzman, 1958) and CNO cycles. The 

p-p chain is important during the accretion phase of the outburst where the amount of 

accreted material is determined, but it is the CNO cycle that powers the final stages of 
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Figure 1.2: Schematic illustration of the formation of a ring and its evolution into a disc. Image 
from Verbunt (1982). 

the thermonuclear runaway (TNR). 

The pressure of a degenerate gas is largely independent of the temperature (n, thus the 

energy released in H-buming leads to a dramatic increase in T (C:CNO ex T18) with no 

expansion of the hot material, this leads to a TNR. Eventually the Fermi temperature is 

reached at the base of the envelope and the degeneracy is lifted causing the H-rich en­

velope to expand explosively forrrung a shock wave. The energy of the explosion ejects 

the H-rich envelope as a wind with outer layers being blown away by radiation pres­

sure, once again leaving an exposed WD. This shock wave along with radiative-driven 

mass loss creates an expanding atmosphere of high absolute magnitude at maximum 

light. The mass loss decreases as the energy continues to be released causing a decline 

in the visual output. The average ejection velocity for CNe is ~ 103 km S- 1 (Starrfield 

et al., 2008) with a mean ejected mass of ~ 2x 10- 4 M0 (Gehrz et al., 1998). Novae 
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are the main producers of 13C, 15N, and 170 in the interstellar medium (ISM) as ma­

terial ejected from the WD contains significant amounts of these and similar isotopes. 

CNe are indeed one source of metallicity enrichment in the ISM. 

The binary nature of a nova system is reflected in the form of its ejecta, which arises 

from a bipolar wind and/or anisotropic irradiation of the ejecta shell. Observed axial 

symmetry and dumpiness of ejecta can only be explained via a binary system where 

the transfer of angular momentum and energy between the expanding shell and the 

secondary causes the aforementioned effects (Lloyd et aI., 1997). Spectroscopic stud­

ies also indicate a binary nature through periodically varying radial velocities (Warner, 

2008). 

The quantity of accreted mass required for TNR is a function of the WD mass, lumi­

nosity, accreted mass composition, and the evolutionary history of the WD (Townsley 

& Bildsten, 2004). If mixing has occurred between the WD core and the accreted en­

velope then the opacity of the nuclear burning layer will increase and the time to TNR 

will be reduced, along with the mass required for triggering and the mass ejected on 

outburst. If the WD has a higher surface temperature and so more luminous (younger 

or not at quiescence after a previous outburst) then TNR can occur earlier and less 

mass is accreted. The critical mass for ignition as a function of WD mass is given in 

Equation 1.3 assuming all other parameters are constant (Starrfield et aI., 2008) 

p. . _ G.MWDMcrit 
cnt - 4 R4 ' 

7r WD 
(1.3) 

where Jovfcrit is the ignition mass and Pcrit is the critical pressure assumed as ~ 1020 

dyne cm-2• A critical pressure must be reached within at the base of the accreted layer 

before TNR can occur. For a WD near the Chandrasekhar limit A1crit < 10-5 M0' 

for a lower mass WD, e.g. 0.5 Me!) Afcrit > 10-2 Me!) (Starrfield et aI., 2008). WDs 

spend most of their lives accreting material from the secondary at time-averaged rates 

of (M) ~ 10-11 - 10-9 Me!) ye1 (Howell et aI., 2001). 

CNe are predicted to undergo outbursts once every 104-105 years (Hemanz, 2005). 
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The total radiant output of a single nova outburst is in the range of 1045 
- 1046 erg with 

outburst amplitudes of approximately 10-20 magnitudes, absolute blue magnitudes of 

MB = - 8 at maximum, and a limit of around -9.5MB for the very fastest and most 

luminous CNe (Shafter et a1., 2009, and references therein). 

1.4 Photometric Evolution 

The most common way to classify and examine novae is through their light curves. 

This is the plotting of an object's luminosity with time. An idealized light curve is 

shown in Figure 1.3. 

Figure 1.3: Morphology of a nova light curve, from McLaughlin (1960) 

1.4.1 Nova Speed Class 

As indicated in Figure 1.3 most novae tend to rise rapidly (within one to three) days. 

This initial rise however, is not observed well enough to classify the nova, but its 

decline from maximum is. Novae are classified according to the number of days (t) 

that they take to decline n magnitudes from maximum, thus they are split into "speed 
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classes". These classes were first introduced by Gaposchkin (1957) and are given in 

Table 1.1. The table gives t2, but t3 may also be used. 

Table 1.1: Speed classes of nova light curves as given by Gaposchkin (1957), where t2 is the 
number of days the nova takes to decline two magnitudes from maximum, and mv the rate of 
magnitude decline. 

Speed Class t2 (days) mv (mag d- I ) 

Very fast <10 >0.20 
Fast 11-25 0.18-0.08 

Moderately fast 26-80 0.07-0.025 
Slow 81-150 0.024-0.013 

Very Slow 151-250 0.013-0.008 

As the nova declines it gets bluer, decaying slower in B than in V. This was interpreted 

by van den Bergh & Younger (1987) who formulated Equation lA, 

logt2(V) = O.953(±O.013) .10gt2(B). (104) 

Novae have bolometric luminosities which are all at or above the Eddington Luminos­

ity (Equation 1.5 - defined as the point where the gravitational force inwards equals 

the continuum radiation force outwards); 

(1.5) 

The speed class can therefore be related to the initial generation of energy which is a 

function of the WD mass. 

1.4.2 Light Curves 

Each nova has its own unique optical light curve. However, they do share some com­

mon features and these are listed below (see Section 1.13 for problems regarding the 

standard nova light curve morphology). 

o Pre-maximum halt: This occurs one to two magnitudes below maximum on the 

initial rise. The duration of the halt is related to the speed class of the nova (see 
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Section 1.4.1) lasting a few hours for fast novae (KT Eri, V598 Pup) and up to 

months for slow (HR Del, VI548 Aql, V723 Cas, and DO Aql). However, there 

is some controversy on the relation between speed class and pre-maximum halt 

duration as work by Kato et al. (2002) found that the rapidly evolving nova V 463 

Scuti possessed a 24 day halt in its 2000 outburst. Based on this it was suggested 

that long pre-maximum halts may be more widely distributed amongst the speed 

classes than previously thought. 

The physical reason behind the pre-maximum halt is not yet understood although 

several theories exist. Orio & Shaviv (1993) proposed that the pre-maximum 

halt is caused by a local or partial thermonuclear runaway on the surface of the 

WD. Hachisu & Kato (2004) were able to reproduce the long pre-maximum halt 

observed in V723 Cas and V463 Sct through the use of a steady-state optically 

thick wind model. Within this model they found that with WDs which have 

large enough H-rich envelopes the star expands to R ~ 100 R0 , decreasing 

the surface temperature to Teff :S 7000 K. The WD atmosphere is then said to 

mimic a supergiant. With changes in photospheric radius and temperature being 

insignificant compared to the increase in envelope mass the visual magnitude is 

saturated leading to the pre-maximum halt. This explanation however can only 

be applied to very specific nova systems and so a more general explanation to 

the pre-maximum halt still remains elusive. 

o Rise to peak magnitude: This typically takes 1-2 days for fast novae from the 

pre-maximum halt and weeks for slow. The point of maximum is short-lived, 

lasting hours for fast novae and a couple of days for slow. Schmidt (1957) finds 

that the rate of the rise to maximum is correlated with the rate of decline after 

maximum. The time taken to rise the last two magnitudes is given in Equa­

tion 1.6 

logtr ,2 = -0.3 + 0.7 ·logt2 = -0.5 ·logt3. (1.6) 

D Decline from maximum: As indicated in Figure 1.3, initial decline from max­

imum tends to be quite smooth for fast novae. Slow novae however may expe­

rience brightness variations of up to two magnitudes over time-scales of 1-20 
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days. When the nova is ~ 3-4 magnitudes below maximum 3 different types of 

behaviour can occur. This is called the "transition phase", usually lasting un­

til 6m ~ 6 mags below peak. The changes in magnitude occurring within the 

light curve are correlated with the system line intensities and velocities (Payne­

Gaposchkin, 1964), and overall the spectrum changes from stellar to nebular. 

The different types of light curve behaviour that can occur within transition are 

listed below. 

1. A deep minimum of 7-10 magnitudes lasting for months or years which is 

then followed by a decline extrapolated from the pre-transition phase (e.g. 

DQ Her, T Aur, LW Serlo 

2. Large quasi-periodic oscillations with amplitudes of 1-2 mags (e.g. V603 

Aql-12 days, GK Per-5 days, DK Lac-25 days; Pejcha, 2009). 

3. No variation; this occurs for many novae especially the very fast or fast 

speed classes (e.g. CP Pup, V1500 Cyg, V1668 Cyg). 

The observation of a deep minimum in the opticallight curve is due to the forma­

tion of dust (grains'" 111m) within the ejected gas. This effect was initially un­

derstood through the infrared study of FH Ser by Hyland & Neugebauer (1970). 

With non-dust forming novae, the transition phase is regarded as the point in the 

eruption at which the stellar system components are revealed due to the ejecta 

becoming optically thin (Bath, 1978). Transition phenomena at visual wave­

lengths in these systems may therefore be understood in terms of changes in the 

physical properties of the underlying system. 

1.4.3 Maximum Magnitude Rate of Decline Relationship 

There is a relation between the maximum absolute magnitude (M) of a nova outburst 

and its rate of decline (tn ). This is called the Maximum Magnitude Rate of Decline 

(MMRD) relationship and can be used to ascertain the distance to the nova. It was first 

noted by Hubble (1929), and calibrated by Mclaughlin (1945). The linear form of the 
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MMRD is given in Equation 1.7 (Mclaughlin, 1945). 

(1.7) 

where M is the absolute magnitude at maximum, n = 2 or 3, and an and bn are MMRD 

constants given in Table 1.2. 

Table 1.2: MMRD constants taken from Warner (2008) and references therein. 

M n an bn Reference 

pg 3 -11.3 
B 3 -10.67(± 0.30) 
V 2 -10.70(± 0.30) 
V 2 -11.32(± 0.44) 
V 3 -11.99(± 0.56) 

2.4 
1.80(±0.20) 
2.41(±0.23) 
2.55(±0.32) 
2.54(±0.35) 

de Vaucouleurs (1978) 
Pfau (1976) 

Cohen (1985) 
Downes & Duerbeck (2000) 
Downes & Duerbeck (2000) 

Buscombe & de Vaucouleurs (1955) also noted that novae of all speed classes have the 

same absolute magnitude 15 days after maximum. This is represented in Equation 1.8. 

However, it is not thought as reliable as the MMRD relation (see Damley et aI., 2006). 

(A1v) = -5.2 ± 0.1. (1.8) 

One of the most important potential applications for novae is their use as distance indi­

cators (Galactic and extragalactic). This is due to their high peak luminosities (AlB> 

-9.5 Shafter et aI., 2009) and frequency (see Section 1.10). The absolute magnitude 

(M) can then be used within Equation 1.9 (distance modulus) below, in order to cal­

culate the distance (d) to the object in parsecs, with m being the apparent or observed 

magnitude and Av the extinction. 

m - M = 510g d - 5 + Av. 0.9) 

The relations in Equations 1.7 and 1.8 however, have various issues of uncertainty 

which are discussed in Section 1.13. 
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1.5 Recurrent Novae 

Recurrent novae (RNe) are a subset of CVs similar to CNe, but have more that one 

observed outburst with recurrence time-scales of 10-100 years. There are currently 

10 confirmed Galactic RNe (Schaefer, 2010). The RN system consists of a WD and 

an evolved main sequence, sub-giant or giant secondary star. The basic triggering 

and explosion mechanism of RNe is the same as for CNe, but there are some distinct 

differences in the properties of this subgroup. In order to reconcile the short quies­

cence period of a RN with TNR the WDs within the system are believed to be hotter, 

more massive (close to the Chandrasekhar limit), and have larger mass accretion rates 

(>::;d0-8_1O-7 Mev yc1) than CNe (Gansicke et aI., 2002; Kato, 1991; Starrfield et aI., 

1985). RNe are a very heterogeneous group however, they can be grouped into three 

distinct SUbtypes (Bode, 201 0; Evans et aI., 2008). 

o RS Opb: These contain red giant secondaries and have a high rate of mass trans­

fer, which causes a high outburst frequency. They are fast novae with a decline 

rate of ~ 0.3 mag day-1 (Anupama & Mikolajewska, 1999) and possess a long 

Porb (~ few hundred days). Their outburst spectrum contains broad emission 

lines which decrease over time. Initial ejection velocities are given as Vexp ~ 

4000 km S-l, the deceleration of the expansion velocity is due to interaction of 

the ejecta with the red giant wind material. Typical mass ejected by these RNe 

is ~ 3 - 4 X 10-6 M0 (Bohigas et al., 1989). Models created for these long 

period RNe indicate that a high mass WD is required in order to achieve the 

observational effects indicated in their light curves. The models also find that 

after outburst not all accreted material has been ejected (e.g. Hemanz & Jose, 

2008). Evidence of the accretion disc can be found in the optical light curve of 

these objects through a secondary maxima (as in the case ofT CrB) or a plateau 

in the decline phase (RS Oph; Hachisu et al., 2006). During quiescence optical 

emission in these systems are dominated by the secondary component. Group 

members: RS Oph, T CrB, V3890 Sgr, and V745 Sco. 
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o U Seo: These have evolved secondaries and are some of the fastest novae ob­

served. The quiescent spectra of this group is dominated by He-lines unlike 

CNe. Group members:U Sco, V394 CrA, V2487 Oph. 

o T Pyx: These are RNe which show a slow decay with a short Porb' Group 

members: T Pyx, CI Aql, and 1M Nor. 

The latter two subtypes of RNe given are short Porb systems which have more evolved 

main-sequence or sub-giant secondaries. They are heterogeneous in nature when com­

pared to the long Porb RS Oph type RNe. The short Porb systems can be split into 

two further groups based on similarities during outburst and quiescence. The first con­

sists of the very fast novae with exceptionally high ejection velocities (initial FWHM 

rv 10000 km S-l for U Sco - Sekiguchi et aI., 1988), ejecta masses of 10-7 M0 (as 

noted by Williams, 1992, for U Sco), and very fast spectral evolution (see Section 1.8). 

The second group consists of the slow novae with Vexp ~ 800-2500 km S-l, spectral 

evolution similar to CNe (see Section 1.8), and ejecta masses of 10-5 M0. 

Models based on observations of RNe predict that they retain some of their accreted 

mass after outburst (e.g. Hernanz & Jose, 2008; Starrfield et aI., 1985). Due to this 

it has been suggested that RNe may be the progenitors of Type la Supernovae (SNe 

la) as repeated cycle of accretion and ejection may one day lead to a WD with a mass 

reaching the Chandrasekhar limit i.e. MWD 2: MCh' This is discussed further in Sec­

tion 1.12. 

1.6 Magnetic Novae 

So far systems where the strength of the magnetic field on the WD is negligible have 

been considered. However, at least 25% of all known CV shave WDs with moderate 

to strong magnetic fields (Wickramasinghe & Ferrario, 2000). Magnetic WDs in CVs 

were first detected via polarization measurements. The field strength can be measured 

via Zeeman splitting of absorption lines from the WD or via humps in the spectrum at 
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optical or infrared wavelengths. These humps are due to the harmonics of cyclotron 

emission as electrons spiral down the magnetic field lines on to the WD. Two types of 

magnetic systems are considered. 

D Polars: The magnetic field of the WD strong (B ~ 107 G). Members of the 

polar group include V1500 Cyg, VI432 Aql, BY Cam and CD Ind. The strong 

magnetic field of the WD interacts with the weaker field of the secondary, forcing 

synchronization of the WD with Porb through magnetic linkage. In these systems 

no accretion disc forms. Instead, ionized material is accreted from the secondary 

and on encountering the magnetosphere it becomes "tied" to the field lines and 

directed along them, creating an accretion stream. The material accelerates as 

it falls eventually creating a shock at the top of the accretion column, near a 

magnetic pole. The energy released from the system is enough to make it an 

X-ray source (see Cropper, 1990, for more details on Polars). 

D Intermediate Polars (IPs): The magnetic field of the WD ranges between 106 :::; 

B :::; 107 G. In this case the magnetic field is not strong enough to force the WD 

to spin with Porb' The WD also has a smaller magnetosphere and so an accretion 

disc may form outside of it. Material accreted meets the magnetosphere at all 

points on the inner edge of the disc and so produces an accretion curtain rather 

than a stream (Cropper, 1990). Due to the presence of a disc some IPs show 

dwarf nova type outbursts. The mass of the disc is less than that of non-magnetic 

novae. A list of known polars and their eruptions is given in Table 1.3. 

1. 7 Dwarf Novae 

The standard Dwarf Novae (DNe) are U Geminorum (U Gem) stars, named after the 

prototype observed in 1855 (Warner, 1995). DNe have semi-regular outbursts with 

amplitudes ranging from 2-6 magnitudes, outburst durations of a few days to 20 days, 

and recurrence time-scales which can be as short as weeks or as long as years (Osaki, 
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Table 1.3: Novae that are intermediate polars. Table reproduced from Warner (2008) and 
references therein. 

Nova Eruption P orb (h) Prot (s) 

V533 Her 1963 5.04 64 
DQHer 1934 4.65 71 

V375 Sct 1975 258 
GKPer 1901 47.92 351 
DDCir 1999 2.34 670 
HZ Pup 1963 5.11 1212 
APCru 1936 5.12 1837 
RRCha 1953 3.37 1950 
GIMon 1918 4.32 2916 

V1425 Aql 1995 5.42 5188 
V697 Sco 1941 4.49 11916 

1996; Sterken & Jaschek, 1996). With DNe the energy source of the outburst is the 

gravitational field of the WD. Mass from the secondary is stored in the disc and when 

dense enough it is transferred rapidly onto the WD. This process releases a vast amount 

of energy as material falls down the deep gravitational potential well. The actual pro­

cesses that occur however are a lot more complicated than this brief explanation, but it 

is fair to say that the mechanism for the outburst is disc instability (Osaki, 1974). 

1.7.1 Dwarf Nova light curves 

The light curves of DNe contain a number of small amplitude variations which can 

occur on time-scales of seconds to minutes. These variations are due to changes in 

the amount of surface area visible on the tidally distorted secondary, eclipses, and pre­

eclipse humps, which are due to the bright spot where the accretion stream runs into 

the disc. 

1.7.2 Dwarf Nova Subclasses 

DNe have three main recognised subclasses. 

1. SS Cygni (SS Cyg) stars: These systems have Porb > 3 hours and exhibit regular 
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quasi-periodic outbursts with typical intervals of 30-100 days with each lasting 

about 3-10 days. 

2. Z Camelopardalis (Z Cam) stars: These systems have outbursts every 10-30 days 

and Porb > 3 hours (Sterken & Jaschek, 1996). They alternate between periods 

of normal outburst and non-outburstl"standstills". At a standstill the star remains 

at a point about 0.7 mag below maximum; this can last for months. 

3. SU Ursae Major (SU UMa) stars: These have mainly normal outbursts (lasting 

a few days) but do experience occasional super-outbursts. These super-outbursts 

last longer (5 times normal outburst duration) and are of greater amplitude (at 

least a magnitude greater). During a super-outburst the light-curve has super­

humps which drift in orbital phase. This is characteristic of an elliptical disc 

with the long axis precessing around the orbit. 

1.8 Spectroscopic Observations 

Spectral analysis of novae (CNe, RNe, magnetic, or DNe) is extremely important as it 

provides a method by which to better understand the geometry/structure of the system, 

the evolution of the nova ejecta, surface nuclear reactions, gas ejection mechanisms, 

and the formation of dust. Spectra of CNe and RNe can be interpreted as arising from 

a two-component gas, one which is a discreet shell associated with the outburst and the 

other a continuous wind that follows the outburst. Both of these components are sites 

of emission line formation. 

A large amount of material is ejected from the surface of the WD at outburst. However, 

the material remaining on the WD has a high enough temperature to allow further sur­

face nuclear reactions to occur in equilibrium. These can last for months maintaining 

LEdd. The energy generation causes the expansion of the surface and the formation 

of an extended atmosphere which can engulf the secondary, this is called a common 

envelope (CE). Mechanisms that drive the wind from the extended atmosphere are 

the frictional dissipation of energy from the secondary star (MacDonald, 1980) and the 
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radiation pressure from the luminous WD remnant (Bath & Shaviv, 1976). It is the sur­

face nuclear reactions and the wind which then determine the spectrum emitted after 

outburst. At maximum the extended atmosphere has a Trad of less than 10,000 K, and 

so the excitation level is low. As the wind mass loss rate decreases the photospheric 

radius shrinks and Trad increases, and so the excitation level goes up and eventually 

coronal lines can be emitted. With time the surface nuclear reactions stop and Trad 

decreases along with the excitation level (Williams, 1992). 

All novae show the progressive development of four systems of absorption lines and 

five of emission. These phases of spectral evolution are called the Pre-Maximum, 

Principal, Diffuse Enhanced, Orion, Nebular, and Post-Nova. Within the Principal 

Spectrum the average velocities of the absorption lines correlate with the speed class. 

McLaughlin (1960) found that the velocities can be represented by, 

logVej [kms-I] = 3.70 - 0.5 ·logt3 [days] = 3.57 - 0.5 ·logt2 [days]. (1.10) 

From the Diffuse Enhanced spectrum average velocities maybe found from, 

logVej [kms-I] = 3.81- 0.41·1ogt3 [days] = 3.71- 0.4 ·logt2 [days]. (1.11) 

Novae can be classified by their spectra. This depends upon which non-Balmer emis­

sion lines are strongest within 3500 A -7500 A during the first few days after outburst. 

There are two main spectral classes of novae: those which have prominent Fe II lines, 

and those which have prominent He/N lines. The spectral properties of the two classes 

and how they evolve are discussed below and presented in Figure 1.6, as defined by 

Williams (1992). 

1. Fe II Novae 

o Spectra arise predominantly from a wind. 

o P Cygni type absorption profiles are present in Balmer and Fe II lines. 

o Spectral development is slower than HeIN novae f'V few weeks. 
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Figure 1.4: Novae with typical Fe II spectra (Williams, 1992) 

o Emission lines are narrower than He/N novae (HWZI < 2,500 kIn S-l). 

o Low ionization fluorescence lines in the red e.g. Fe II lines at 1.69 and 

1.741{tm. 

o Forbidden lines are present - auroral [N II], [011], [0 III] and [0 I]. 

o On evolution to the nebular phase forbidden lines may develop that are 

similar to those of a Galactic nebula, although some become neon novae 

producing strong lines of [Ne III] or [Ne V]. 

2. HelN Novae 

o Spectra arise predominantly from a shell ejected at maximum light. 

o Not as homogeneous as the Fe II group. 
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Figure 1.5: Novae with typical HelN spectra (Williams, 1992) 

D Evolve faster than Fe II novae. 

D Excitation levels of emission lines are higher than Fe II novae. 

D Broader lines than the Fe II novae (HWZI ~ 5000 km S-1). 

D Line peaks are flat-topped or saddle shaped, and jagged. 

D Absorption components not usually present in optical spectra. 

D Intensity of He II A4686 becomes greater than H,B. 

D Flat blueish continuum. 

20 

D On evolution to the nebular phase the line spectra either fade quickly into 

the continuum and show no forbidden lines, have strong coronal forbidden 

lines, or become neon novae. 

There are some types of novae that can change spectral classes during the early permit-
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Figure 1.6: Evolution of the two spectral classes of novae from the permitted spectrum to the 
nebular spectrum (Williams, 1992) 

ted emission line phase. These are known as hybrid novae, some may evolve from an 

Fe II nova into a He/N nova, whereas others may have emission from both components 

at the same time. 

Some years after outburst (maybe decades) the ejected shell may become spatially 

resolved allowing spectroscopy of the individual components of the ejecta and imaging 

of the expanding shell in the light of individual spectral lines, to be obtained. Examples 

are DQ Her, GK Per and CP Pup (see O'Brien & Bode, 2008, for a review). 

The type of spectrum produced by a RN depends upon whether it is a short or long 

period system. With long period RNe the early phase spectra have permitted lines and 

coronal lines develop by the time it has faded 2-3 magnitudes from maximum. When 

entering the nebular phase these lines fade. At quiescence (see Section 1.9) the optical 

spectrum is dominated by that of the secondary with emission lines due to H I and 

He I. He II is not present but lines of Fe II, Ca II and 0 II 8446 A are except in T 

CrB. Group 1 of the short period RNe have very fast spectral evolutions with high 

ionisation and no forbidden lines, thus their spectral evolution are like that of a He/N 

CNe. At quiescence the spectra is dominated by He II lines and weak H lines if any. He 

enrichment is thought to be due to material accreted from the evolved main sequence 

secondary. Group 2 early spectra contain H I, Fe II, N III and 0 I lines with P Cyg 

profiles. The spectra evolve from being Fe II dominant to He/N dominant and thus are 
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similar to a hybrid nova (Evans et aI., 2008). 

1.9 Observations of Novae in Quiescence 

It is as important to observe nova systems at minimum (i.e quiescence) as it is to 

observe them at maximum. It is during this "quiet" phase that many properties about 

the nova system itself are revealed (e.g. that they are binary systems where material is 

transferred from a late-type star to a WD). 

Within a nova binary system the mass transfer rate (AI) is high, and the surface tem­

perature (Teff ) of the primary is ~ 50,000 K. After eruption the temperature of the 

primary has increased causing an escalation in the irradiation of the secondary leading 

to an expansion of its atmosphere and higher AI. Teff and AI are dependent on each 

other and as the primary cools if decreases as ro: (a ~ 0.43, Kovetz et aI., 1988) for 

about a century after outburst. The system is then thought to enter in to a very low if 
state where in some cases if effectively reaches zero, causing the system to pass into 

"hibernation". Mass transfer is eventually restored after loss of angular momentum 

from the system, through magnetic braking or gravitational radiation. This is the ex­

pected evolutionary scenario for binary systems with P orb 2: 4 hr. However the theory 

of hibernation is speculative and evidence by Somers et ai. (1996) suggests that this 

does not happen for at least 200 yrs. One argument in support of this low if phase is 

given by the fact that no novae noted in Oriental records over two thousand years ago 

are observable today (Shara, 1989). 

If the binary separation of the system is small, i.e. Porb ~ 4 hr, then the primary is pre­

vented from cooling below Teff due to enhanced irradiative heating of the secondary 

by the primary and the hot central region of the disc. This results in a greatly enhanced 

if and a high if equilibrium is re-established after eruption (Warner, 2002). It is this 

effect which results in many novae having similar magnitudes before and after an out­

burst (Robinson, 1975). This self-sustained high AI may be maintained for centuries 

slowing the cooling of the WO, delaying DN outbursts, and preventing descent into 
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hibernation (Warner, 2002). 

During quiescence a nova system may experience several optical effects such as reflec­

tion, quasi-periodic oscillations, and super-humps. Reflection effects are where large 

amplitude (1.1-1.2 mag) variations are observed and are thought to occur in systems 

where there has been a recent eruption and the accretion disc does not dominate the 

luminosity of the system. Quasi-periodic oscillations are thought to be caused by ver­

tical thickening of the accretion disc which is moving near the inner edge of the disc as 

a wave. This reflects and obscures radiation from the central source. Super-humps are 

thought to be caused by an eccentric shaped accretion disc (Warner & Woudt, 2003). 

Robinson (1975) also found that many nova light curves demonstrated a rise of 0.25-

1.5 magnitudes 1 to 15 years before an eruption event thus enabling anticipation of 

an outburst. This work however has been cast in to doubt by Collazzi et al. (2009) 

who after re-examination of old literature found that four of the five novae which were 

claimed to have pre-eruption rises were due to mistakes. Examination of 22 nova 

eruptions within Collazzi et al. (2009) using original archival photographic plates did 

however reveal two novae (V533 Her and V1500 Cyg) with significant pre-eruption 

rises. Unfortunately it is evident that this signal is not found with all novae. This is 

due to the fact that pre-outburst light does not consist of one source but three: the WD 

primary, late-type secondary, and the accretion disc. It is not clear which of these three 

is the producer of the pre-eruption rise, however it must be the dominant source if it 

is to be detected. Work by Adamakis et al. (2011) using wavelet analysis however, 

has indicated that it is possible to find a signal which may be used to predict a nova 

outburst and these authors have presented such a study using RS Ophiuchi. 

1.9.1 Accretion Discs and Inclination 

At quiescence the luminosity of the accretion disc tends to dominate the system in the 

optical. Thus when obtaining the absolute magnitude (Mv) of a nova remnant it is 

important to take the disc and its inclination into account. To obtain a fuller picture, 

the contribution of the secondary at minimum must also be considered. 
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The accretion disc inclination can be obtained directly if an eclipse is observed. This is 

found however in very few nova systems. The equivalent widths (~V) of emission lines 

produced from these systems are correlated with the disc inclination. It has been shown 

by Warner (1986) that systems viewed edge-on have much larger relative line strengths 

than those seen face-on. This correlation is shown in Figure 1.7 and thought to be due 

to reduction in continuum brightness as the disc is seen at larger inclinations. It should 

be noted that the secondary's contribution to (W) should be taken into account to 

obtain accurate inclination angles. When considering the effect that inclination has on 

the A1v of the system Warner (1986) finds a strong correlation (see Figure 1.8). 

Figure 1.7: Correlation between emission-line equivalent width (W) and inclination for Ha, 
H,8 and He II 4686 A. Image taken from Warner (1986). 

This correlation shows that the absolute magnitude of a nova system in quiescence 

is actually accretion disc inclination dependent. At maximum the relation does not 

hold as the accretion disc is no longer the dominant source of luminosity. Using the 
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Figure 1.8: Correlation between absolute magnitude lvlv and inclination. Curve shown here is 
simply a fit to the data. Image taken from Warner (1986). 

ON U Geminorum Paczynski & Schwarzenberg-Czemy (1980) established a relation 

between the inclination of the accretion disc and Mv. this is given in Equations 1.12 

and 1.13. 

A (.) 1 L( i)disc 
wA1v Z = -2.5· og (L. )' 

dISC 

(1.12) 

= -2.51og [cos(i) + ~cos2(i)1, (1.13) 

where a limb-darkening coefficient of 0.6 has been used. 
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For face-on systems no contribution from the secondary is expected for Porb ~ 12 hr. 

However systems at a higher inclination and with shorter orbital periods the secondary 

may be detectable. Only GK Per (Porb = 48 hrs) is known to require a correction for 

secondary contamination at minimum as the system contains a sub-giant, this is also 

the case for some types of RNe. 

1.9.2 Secondary stars and mass transfer rates 

The mass-transfer rate (if) of a eN system along with the nature of the secondary 

star may be estimated through the use of infrared (IR) colours. The position of a nova 

system on a (J-H) vs. (H-K) colour-colour diagram is determined in part by the nature 

of the secondary star. Systems with main-sequence stars will occupy a different region 

to those with a giant counterpart. In a system containing a main-sequence star the 

accretion disc dominates the luminosity adding a significant overall blue contribution. 

With systems containing a giant, the red contribution of the secondary and blue con­

tribution of the disc are comparable, thus causing a different occupation region of the 

colour-colour diagram. Using this method it is also possible to determine the presence 

of suspected RNe. 

As stated previously the optical luminosity of a system containing a main-sequence 

secondary star is dominated primarily by the flux of the accretion disc. If AI is high 

then the effect is to make the system appear blue. If the if were to fall the disc 

would cool making the system redder and the flux from the secondary would start to 

make a significant contribution to the IR colours, also reddening the system. There 

are therefore several factors which effect the position of a nova system on a IR colour­

colour diagram; 

1. The mass of the secondary (1\f2)/its spectral type. 

2. The mass-transfer rate M. 

3. The reddening towards the system, EB- V. 
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4. The inclination of the disc i. 

5. The mass of the primary. 

The effect of the primary is found to be negligible and the inclination ofthe disc is only 

seen to playa part if it is approaching face-on (i.e. i ~ 30°). Taking the reddening of 

the system into account it is therefore possible to obtain the nature of the secondary and 

the AI of the system. Such work has been conducted by Weight et al. (1994). Spectral 

types between K5-M5 and AI values from 10-11 - 10-6 Me;) yr-1 are presented in 

Figure 1.9 from which one can in principle read off both the spectral type and the 

expected M. Their work indicated that a change in if from 10-8 to 10-9 Me;) yC 1 

results in an increase in (1-K) of ~ 0.2 magnitudes. 

Figure 1.9: (l-ll) vs. (H-K) diagram for novae in quiescence. Filled circles-CNe; filled squares­
known RNe and symbiotic novae; open circles-data for old novae examined within Harrison 
(1992). Grid represents combinations of dwarf secondaries and accretion discs having spectral 
types and log if as indicated. The regions occupied by giants. sub-giants (data from Lee. 
1970) and Miras are also given. Data is de-reddened for interstellar extinction; arrow represents 
dereddening vector of Av = 1. Image taken from Weight et al. (1994). 

They also found that AI decreased by no more than 70% in the first century after 

outburst, thus finding no evidence for the onset of hibernation. 
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1.10 Populations and Frequency of Outbursts 

Various surveys have attempted to measure the outburst rate of Galactic CNe over the 

past century. Such work was done by Duerbeck (1990) who accounted for non-uniform 

time coverage of the novae and his results are presented in Table 1.4. 

Table 1.4: Average rate of nova discovery. From work presented in Duerbeck (1990) 
mv (max mag) Discovery rate (yr 1) mv (max mag) Discovery rate (yr 1) 

< 1 0.004 4-5 0.05 
1-2 0.002 5-6 0.14 
2-3 0.004 6-7 0.47 
3-4 0.003 7-8 0.58 

The results above however are greatly affected by lack of detection, selection effects, 

and interstellar extinction. This point is made clear when the mean detected Galactic 

Nova rate calculated from Table 1.4 is 3 yc1, whereas investigations such as Shafter 

(2002) derive a total Galactic rate of 30 ± 10 yr-1, once all aforementioned effects 

have been taken into account. 

Galactic novae tend to populate the Galactic bulge and plane as indicated in Fig­

ure 1.10. However, studies by della Valle et al. (1992) have indicated that fast novae are 

found at z < 100 pc and associated with the disc (Population I environment) whereas 

slow novae are found up to z ~ 1000 pc and associated with the Galactic Bulge (Popu­

lation II environment). This finding is consistent with novae observed in extragalactic 

systems such as M31 (Capaccioli et al., 1989). The occurrence of dual populations of 

novae may be caused by differences in the progenitor. High and low z novae differ 

in their speed class and maximum magnitude at outburst. The important parameters 

which govern the speed class of a nova are its WD mass and magnetic field strength. 

If the WD is more massive the nova outburst is faster and brighter therefore nova sys­

tems containing higher mass WDs could be concentrated closer to the disc. Evidence 

for this has been produced by de Kool (1992). If the WD is not very massive (~ 0.9 

Mev; Orio et al., 1992) but has a high magnetic field (106 Gauss) the mass loss may be 

accelerated and thus it appear as a fast novae, without the higher luminosity at maxi­

mum. These systems may also belong to the disc and thus further study is required in 
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Figure 1.10: Distribution of CNe in Galactic coordinates, with the Galactic core at the centre 
ofthe diagram and increasing longitude towards the left. Filled circles give the location of 132 
fast novae, open circles are 40 slow novae, crosses are 58 unclassified novae and small dots are 
58 uncertain novae. Data are from Downes et al. (2005); image taken from Warner (2008). 

order to fully understand the bimodal distribution of novae with stellar population. 

1.11 Extragalactic novae 

Much has been learnt from the study of novae with the Galaxy. However, Galactic 

data are not ideal for establishing population characteristics of novae. This is due to 

the influence of various selection effects. The study of extragalactic novae is important 

in order to understand nova populations including the dual nova progenitor hypothesis 

(see Section 1.10). 

The discovery of novae outside of the Milky Way began in the early 20th century with 

work by Ritchey (1917) leading the way. The first systematic survey of extragalactic 

novae was conducted by Hubble (1929) using the Andromeda galaxy (M31) where 

he made 63 nova discoveries. From his work he derived an overall galactic nova rate 

of rv 30 yr-I. In comparison with modern day studies, M31 is seen to have a high 

global nova rate of 65~~g ye l (Darnley et aI., 2004, 2006). Examination of the nova 

distribution by authors such as Capaccioli et al. (1989) and more recently Damley 

et al. (2006) reveal that the nova rate of the bulge of M31 is greater than that of the 
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disc. This pattern has also been confirmed for M8t in which the spatial distribution 

of novae follows the bulge light much better than the disc or total light (Neill et aI., 

2004). 

An explanation for the distribution of novae within M31 was proposed by Ciardullo 

et al. (1987). They suggested that many nova binary systems were created in the glob­

ular clusters of M31 and were later injected into the bulge via three body interactions 

in clusters and/or the tidal disruptions of clusters. This has led to the search for novae 

within globular clusters, with limited success (see Shafter & Quimby, 2007; Shara & 

Zurek, 2002). 

In order to compare nova rates of different galaxies the rate for each galaxy must 

be normalised by the stellar mass contained in the galaxy. This can be done via the 

use of the galaxy's K band magnitude, as novae are found within an evolved stellar 

population. The normalised nova rates are called Luminosity Specific Nova Rates 

(LSNR - Ciardullo et aI., 1990b). The LSNR has allowed astrophysicists to conclude 

that nova rates should increase in galaxies with active star formation, providing support 

for the results found by della Valle et al. (1992). 

Due to the high outburst luminosities of novae (-7 < Mv < -10) and their frequency, 

novae are of great interest as distance indicators. They are on average two magnitudes 

brighter than Cepheids, and are found in both Population I and II environments. The 

scatter on the Galactic MMRD relation, due to difficulty in measuring accurate dis­

tances to novae, can be improved via the observation of novae within external galaxies 

such as M31. Although a linear relation given in Equation 1.7 above worked for Galac­

tic novae, more complicated relations are proposed from extragalactic data (della Valle 

& Livio, 1995). 

1.32 -logt2 
Mv = -7.92 - 0.81· arctan ( 0.23 ), (1.14) 

The use of novae as distance indicators however, is not wide spread. This is due to lack 

of adequate observations in which the peak and decline of the nova is well observed 
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and so inadequate t2 and t3 times are obtained. The effect of stellar population on nova 

properties also complicates the MMRD relation and questions its universality. 

1.12 Progenitors of Type Ia Supernova 

Type la supernovae are one of the most energetic transient events in the Universe, 

releasing rv 1051 erg of energy at outburst. They are characterized by a lack of Hand 

He in their spectra during outburst, a clear Si II absorption line at 6150 A, and Fe 

emission in their late-time spectra. 

SN la are of major astrophysical importance. Understanding of these objects will aid 

in determining metallicity evolution and the star-formation history of galaxies. The 

objects also act as standard candles allowing distance determination on cosmologi­

cal scales (red-shift z > 1; Filippenko, 1997). For this reason they are significant in 

cosmology as they are used to measure the expansion history of the Universe. The evo­

lution of their peak luminosity as one looks back to the early Universe may however 

depend upon the nature of the progenitor, which is still poorly understood. 

Evidence (listed below) suggests that SNe Ia are due to the explosion of CO WDs 

which have exceeded MCh (see Nugent et at, 2011). 

D The total energy released is consistent with that released in the C+O to Fe con­

version. 

D The maximum light spectra of SNe Ia contain no H lines, which is characteristic 

of a WD that has had its envelope stripped away. 

D The light curve of a SN la is in agreement with energy deposition from radioac­

tive decay of Fe-peak elements as expected for the product of CO WD deftagra­

tion (Pritchet et at, 2008). 

There are two standard models for progenitors of SNe la. These are the double degen­

erate (Iben & Tutukov, 1984; Webbink, 1984) and single degenerate (Whelan & Iben, 
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1973) models (DD & SD). 

The double degenerate model: This consists of a close binary system made up of 

two CO WDs (hence no H), which then merge via angular momentum loss due to the 

radiation of gravitational waves. The objects coalesce bringing the overall mass above 

MCh . This final object cannot sustain hydrostatic equilibrium and thus a SN la occurs. 

Possible evidence of the DD scenario is presented by Napiwotzki et a1. (2004) who 

detected three short period WD binaries with masses close to MCh. These systems 

have been estimated to merge within 4 Gyrs to two Hubble times. 

The single degenerate model: This represents a WD accreting matter from an effi­

cient mass-transferring companion star. Eventually enough material is accreted on to 

the WD to bring it to or above MCh, leading to a SN la. Theory finds that the maxi­

mum initial mass a CO WD can have before accretion is ~ 1.1 M0 • If greater than this 

C-ignition can occur and almost the entire star is converted to 0 and Ne before a CO 

core WD configuration is attained (Dominguez et aI., 1993). Thefore the minimum 

mass a WD may need to obtain and retain is an extra 0.3 M0 of material for SN la. It 

is often thought that RNe systems are the progenitors for the SD model as the WD can 

be pushed over its MCh through the gain of material over repeated cycles of the RN 

lifetime. However, with this model there are problems which need to be considered. 

The RN system (particularly those of RS Oph type) contains a lot of H. In order for 

these to be the progenitors of SN Ia somehow this H must not be seen at the time of 

eruption. Another issue is that the average mass accretion rate multiplied by quiescent 

time must be greater than the mass ejected at each eruption in order to obtain a mass 

~MCh. 

Both the DD and SD models have their flaws and although the SD model is currently 

favoured there is no firm conclusion as to the exact progenitor of SNe la. Recent work 

by Li et a1. (2011) when making use of historical imaging obtained at the location 

of SN 201lfeIPTF11kly has found that observations favour either the DD scenario or 

Roche lobe overflow from a sub-giant or main-sequence star rather than a giant. This 

has thrown speculation on to whether systems such as RS Oph and T CrB can led to 

SNla. 
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1.13 Outstanding Problems 

CNe and RNe are second only to gamma ray bursts and supernovae in their energetics 

however, novae are far more frequent in a given galaxy than both. The high outburst lu­

minosities of CNe and RNe make them potentially powerful probes of the evolution of 

binary systems in different (extragalactic) stellar populations, and the rapid formation 

of large amounts of dust in many novae post-outburst makes them unique laboratories 

in which to explore cosmic dust grain formation. Novae also provide an insight into the 

nuclear physics of explosions on degenerate objects; the shaping of nebular remnants, 

with implications for planetary nebulae; ejecta and accretion physics, and elemental 

abundances. 

There are however, many outstanding problems in the nova field, with a selection of 

these listed here. It is the aim of this project to try to address some of these issues in 

the Chapters mentioned below. 

o Supernova Type Ia Progenitors: As discussed in Section 1.12, the exact nature 

of the progenitors of SNe Ia still remain elusive. Through examination of the 

SN Ia rate and the stellar death rate Pritchet et al. (2008) find that the SD route 

to SN Ia can only be made to match the SN Ia rate if WDs are converted to 

SN Ia with a uniform efficiency of I"V 1 %, independent of mass. As low mass 

progenitors are thought to have lower conversion efficiencies they determine that 

the SD model cannot be the only progenitor scenario and that some new theory 

is required to explain observed results. The lack of H or He in the spectra of SN 

Ia is also very unusual as these are the most abundant elements in the secondary 

stars. If either were discovered, the DD scenario would be ruled out. A more 

detailed understanding of individual RNe, and the RN population as a whole, 

will help in determining if the SD model is tenable. 

o Pre-Nova Binary Evolution: During binary evolution, multiple CE stages may 

be entered which can lead to spiral-in phases creating a close binary system. 

However, these CE stages are very complex and not well understood. The under-
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standing of the evolution of binary systems to CNIRN systems maybe increased 

through the study of novae such as OK Persei (Bode et aI., 1987) and V458 

Vulpeculae (Wesson et al., 2008) both of which occurred inside a planetary neb­

ula (PN). Observation and modelling of the morphology of such systems could 

provide a vital insight into pre-outburst evolution. See Chapter 4 for work on 

nova V 458 Vul. 

o Details of the TNR: Many important details of the TNR and the explosion 

mechanism are poorly understood. For example the exact mass required for 

TNR is uncertain as it is dependent upon core material mixing with the accreted 

material. Thus further study of this area is needed. 

o Nova Binary Components: It is important to ascertain the mass and composi­

tion of stars in a nova binary system in order to assess its evolution, likelihood 

of being a SN Ia progenitor, and to refine TNR models. Spectroscopy can de­

termine the mass and composition of a WD via radial velocity and chemical 

abundance measurements respectively. Multi-frequency photometry is required 

to obtain the nature of the secondary and constrain mass accretion rates. The 

measurement of secondary mass however, is greatly influenced by the inclina­

tion of the system. Inclination and other system parameters may be obtained 

through the examination of spatially resolved remnants. These provide clues to 

the progress of the TNR on the WD surface, and remnant shaping mechanisms. 

Accurate distances to systems can also be determined via expansion parallaxes 

which are vital in calculating the energetics ofthe outbursts. Only a few resolved 

remnants have been studied in significant detail and more effort should be put 

into finding such resolved ejecta, taking multi-frequency observations, and the 

creation of 3D simulations. See Chapter 6 for work conducted in this area. 

o Differences between Observations and Theory: There are several current 

theoretical and observational disagreements. One significant difference is the 

ejected mass on outburst. Theoretically determined ejecta masses (e.g. Starrfield 

et al., 2008) can be up to a factor of 10 times smaller than the observationally 

determined masses (see Warner, 1995, Chapter 5). It is important to solve this 
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discrepancy by further observational and theoretical work which will improve 

understanding of the nova outburst and the contribution of novae to the chemical 

evolution of the Galaxy. 

o Distance Indicators: Unfortunately novae are not used widely as extragalactic 

distance indicators. This is due in part to technical factors such as appropriate 

and significant use of telescope time, which is required to obtain nova speed class 

and calibrate their peak luminosity. There is also the nagging question about the 

universality of the MMRD relation, and evidence suggesting that the t 15 relation 

does not even exist (Darnley et aI., 2006). These factors have dampened interest 

in using novae as distance indicators while more systematic studies are required 

(see Section 1.4.3). 

o Relation to Stellar Population: The understanding of nova speed classes in 

different stellar populations comes largely from the light curves of novae in the 

LMC and the bulge of M31, which were contaminated by disc novae. A greater 

number of light curves from both Population I and Population II environments 

are required in order to obtain a more accurate view of speed class distribution of 

novae and give greater statistical significance to measurements made. Only when 

variations in speed class distributions between galaxies are better understood will 

more accurate absolute nova rates be obtained, the abundance of nova systems 

with different stellar populations be explored, and the usefulness of the MMRD 

relationship enhanced (see Sections 1.4.3, 1.10). Work conducted to address this 

issue is given in Chapter 3. 

o General Observational Issues: Photometric and spectroscopic monitoring of 

novae tends to be very sporadic with only slower novae having any reasonable 

coverage. Many phases of evolution (especially the early stages) are missed and 

spectra may not be taken at all. It is not yet clear if there are "advanced symp­

toms" which signal an oncoming outburst. However, there has been investiga­

tion into such signatures with the RN RS Oph which suggest some initial effect 

(Adamakis et aI., 2011). The light curve presented in Section 1.4.2 is unrealistic 

for most novae whose light curves are a lot more variable at all wavelengths and 
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on all time-scales. Work by Duerbeck (1990) also suggests that due to various 

effects (see Section 1.10) many bright novae are being missed each year. This 

claim is further supported by Shafter (2002) where it was found that as many 

as rv 6 CNe per year should have peak magnitudes of 8th mag or brighter. On 

average however only one or two of these bright novae are actually observed. 

Greatly increased numbers of spectral and photometric observations, especially 

in earlier phases of the nova outburst when combined with detailed modelling 

would help to provide an overall better understanding of the outburst. Finally 

sub-millimetre and far infrared observations of novae are very rare and would 

also provide valuable information, particularly on the parameters of the ejecta. 

These issues have been addressed in Chapters 3 and 5. 

In the next Chapter planetary nebulae (PNe) and the role of binary systems in shaping 

them are discussed. The importance of PNe which have had nova eruptions occur 

within them is also examined. 



Chapter 2 

Evolution of Nova Systems and 

Planetary Nebulae 

The first planetary nebula (PN) was observed by Charles Messier in 1764, but it was 

Herschel (1784, 1785) who named them PNe as he found their appearance resembled 

the greenish disc of a planet. As telescopic instrumentation improved nebulae made 

of stars (i.e. galaxies) were separated from those made up of mainly gaseous material. 

PNe were further distinguished from other galactic diffuse nebulae by their definite 

structures and often associated with a central star. In 1864 William Huggins increased 

understanding of these objects through spectroscopy revealing that the spectra of PNe 

are found to be dominated by emission lines, and not the continuum spectrum expected 

for a star or the reflected emission of starlight (Kwok, 2000). 

It was Herschel (1791) who proposed the idea that PNe might be deriving their energy 

from a nearby star. Hubble (1922) expanded on this idea when he found a correlation 

between the magnitude of the central star and the size of the nebula. He stated that the 

emission-line spectrum seen in a PN was due to the absorption of radiation from the 

central star. Improved spectral capabilities led to the discovery that emission lines in 

PNe are broad, or even split and thus indicate the expansion of the nebula. 

At the beginning of the 20th century, PNe were thought of as young stars due to their 
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high temperatures. Curtis (1918) disputed this. finding that PNe were more akin to 

late-type stars. Later Shklovskii (1956) suggested that PNe were the progenitors of 

WDs and the descendants of red giants, understanding that both these stars evolve 

rapidly. However. it was not until Abell & Goldreich (1966) realised that PNe were 

the ejected atmospheres of red giants that the understanding of PNe grew and that their 

role in stellar evolution was better understood (Kwok. 2000). 

2.1 Formation of a Planetary Nebula 

PNe represent a short (104 years) phase of stellar evolution between the asymptotic 

giant branch (AGB) and WD. When stars with initial main sequence masses between 

1.5M0 and 8M0 (Kwok et aI., 2003) reach the end of the AGB phase they undergo 

mass loss at a rate of ~ 10-7 M0 ye1 with stellar wind velocities of 10-15 km S-I. 

This rate of mass loss then suddenly increases in intensity to ~ 10-4 M0 yr-1 (Delfosse 

et aI., 1997). This "super-wind" phase quickly depletes the H-envelope. When the en­

velope mass has fallen below 10-3 - 10-4 M0 the photospheric radius shrinks and the 

effective temperature rises. Mass loss gradually decreases to ~ 10-8 M0 yr-1 and the 

wind speed increases to 200-2000 km S-1 (Perin otto, 1989). This wind ploughs into 

the previously ejected material creating a high-density shell which is ionised by the 

core star. The shell is compressed on both sides by dynamical pressure, developing 

a definite shell structure. This method of PN formation was proposed by Kwok et al. 

(1978) and is called the interacting stellar wind (ISW) model with more recent mod­

ifications made by various authors (e.g. Frank. 1994) re-naming it as the Generalised 

ISW (GISW). The super-wind is thought to depart from spherical symmetry and so the 

resulting nebula is not spherical. This model can explain the PN gas density structure, 

kinematics and morphology (for the main body of the PN) but not the trigger to the 

super-wind or PN geometry. 
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2.2 Morphological Classifications 

PNe are traditionally identified according to their apparent morphology. Curtis (1918) 

attempted morphological classification of PNe based on observational surveys of the 

objects. Clarification of this work has been attempted by Stanghellini & Pasquali 

(1995) and Manchado et al. (1996). Classification is important as it reveals the out­

comes of processes shaping the PNe. There are four basic nebular types: round (R), 

elliptical (E), bipolar (Bp; pair of lobes), and irregular (these tend to be rarer). These 

types may also be split into subgroups. For instance BPs may be split into "butterfly" 

nebulae where the waist is pinched in the centre, or "bi-Iobed" in which a pair of outer 

lobes connects to a central smaller R or E nebula. 

Mechanisms that have been proposed for the formation of density contrasts and so the 

various PN morphologies include the following (see Livio, 1993, for review). 

o Protostellar disc left over from the star formation process. 

o Equatorially compressed outflow. 

o Stellar rotation. 

o Effects of stellar magnetic fields. 

o Action of a binary companion. 

There is currently much debate over whether non-spherical PN morphologies can be 

formed via a single AGB star or if their shaping requires interaction with a companion 

star. Work by Nordhaus et al. (2007) argues that with a single AGB star the magnetic 

field can not be sustained long enough to have any significant effect on the shaping 

of the PN. This is because the field drains the star of angular momentum on short 

time-scales and quenches itself. A source of angular momentum is required and could 

effectively be produced by a stellar or sub-stellar companion. Binary interaction is 

therefore necessary to produce the variety of PN morphologies seen; this is known as 

the "binary hypothesis" (de Marco, 2009). The PN forms during the AGB common 
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(a) (b) 

(c) (d) 

Figure 2.1: Morphologies of PN - (a) Round PN: IC 3568. (b) Elliptical PN: Spirograph 
nebula. (c) Bilobed PN: Hubble 5. (d) lrregular PN: Cat's Eye nebula. All images have 
been taken by the Hubble Space Telescope and are credited to the Hubble Space Telescope 
(http://hubblesite.org) and STScl (http://www.stsci.edu/portall). 
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envelope (CE) phase of the binary system. Binaries which are close enough to inter­

act during the AGB phase have a variety of ways in which they can shape the AGB 

and/or post AGB mass loss. They can do this either directly or indirectly. PNe take 

on different morphologies depending on the binary separation, mass ratio, and several 

other additional parameters. Following work by Soker (1997), de Marco (2009) distin­

guish five types of PN-shaping binary interactions which can be matched to different 

morphologies. 

1. Very wide binaries: The orbital period is larger than the life-time of the PN and 

thus may only produce small-scale features. 

2. Wide binaries: The orbital period is of the same order of the life-time of the PN 

(I"V 100 - 1000 AU) and can produce deviations from axi-symmetry, like jets. 

3. Closer binaries which avoid a CE: Separations in the I"V 100 AU range lead to 

a variety of PN shapes depending on the exact binary separation and mass ratio. 

Such variations include spiral, elliptical, bipolar, and quadrupolar structures. 

4. Common envelope interactions where the binary survives: When an RGB or 

AGB star transfers matter at a rate so high that it can not be accreted by the 

companion a CE interaction occurs. The companion expands, fills its Roche 

lobe and the two stars become engulfed in the primary's envelope. Energy and 

angular momentum are transferred from the secondary to the primary and can . 

unbind the envelope. If the companion can eject the envelope then it forms a 

close binary. The CE interaction is extremely complex and what may result is an 

elliptical or bipolar PN. 

5. Common envelope interactions that result in a merger: If the envelope is not 

ejected then the two stars merge. The companion can become tidally shredded 

as it approaches the primary which results in the formation of a disc which can 

cause the ejection of jets. Due to spinning up of the envelope the resulting PN 

could be elliptical. 
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2.2.1 Haloes 

Surrounding the core PN structure is a faint halo. These haloes were originally dis­

covered by Duncan (1937) and interpreted as the result of multiple PN ejections. We 

now know that the majority (70%) ofPNe have these external structures. The structure 

is believed to reflect a previous history of heavy mass loss during the final stages of 

evolution on the AGB. The halo material is usually contiguous with the main PN shell 

and a tenth of its density. Stanghellini & Pasquali (1995) find that there are three basic 

types of halo morphology. 

1. Detached halo: There is a minimum in the surface brightness between the inner 

PN shell and the outer rim of the halo. 

2. Attached halo: Halo brightness fades gradually from the inner PN shell to the 

the outer edge. 

3. Irregular attached halo: Halo shows irregularities and high ellipticity. 

2.2.2 Microstructure 

Approximately 50% of all PNe also contain "microstructure/fine structure", such as 

knots or jets (see Gon~alves et al., 2001). Below is a description of a few of these 

structures. 

o FLIER: Pair of small ( 0.0 I pc) bright knots of low ionisation gas along the major 

axis. Found mainly in elliptical PNe. They are of low ionisation states and high 

supersonic Doppler shifted velocities (50 Ian S-1 ). FLIER stands for fast low­

ionisation emission regions (Balick et al., 1994). They are enriched with N/O 

and may have been ejected from the central star after the slow wind ejection 

ended. 

o Cometary knots: Dark objects with a luminous cusp representing a high con­

centration of matter and which appear as a silhouette against the background 
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emission. Cusps have tails trailing away from them lying on radial lines pass­

ing between them and the central star, giving them their comet-like appearance. 

Cusps are likely photo-ionised. 

o Jets: Thin usually radial features with no sign of widening. Corkscrew shaped 

jets are often called bipolar rotating episodic jets (BRETS). 

2.3 Novae and Planetary Nebulae 

It is thought that ~ 10%-15% of all PNe contain close binary systems (Bond, 1994). 

As such it is possible a classical nova eruption may be observed within a PN. 

The predicted long recurrence time-scales of CNe (104 - 105 years, Hemanz, 2005) 

means that we would observe and record only a single outburst from each system. An 

indication of how many outbursts a CN system may have undergone is given by the 

presence, or not, of a PN. If a nova is surrounded by a PN this indicates that the binary 

system is experiencing its first outburst as previous eruptions would have swept the PN 

away, or the PN would have simply dissipated during the system's quiescent phase. 

There are however, only two observed novae to occur within a PN. The first of these is 

GK Persei (Bode et aI., 1987) which erupted in 1901, and is not considered a typical 

CN due to the presence of a strong magnetic field making it an IP (see Section 1.6). 

The GK Per nova system is thought to be surrounded by a 105 year old, large (> 40 

arcmin), Bp PN that was formed from a massive secondary star during a CE phase in 

which the WD became a "born again" AGB (Dougherty et at, 1996). The ionisation 

of this PN is thought to be maintained by accretion. The other nova observed to have 

occurred within a PN is V458 Vulpeculae (Wesson et aI., 2008) which is the subject 

of Chapter 3. The outbursts of both GK Per and V458 Vul were accompanied by the 

observation of a light echo in the surrounding material (Couderc, 1939; Kapteyn, 1901; 

Wesson et at, 2008). 
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2.3.1 Light Echoes 

The light echo phenomenon occurs when light from an eruptive variable is scattered 

by dust or re-emitted by gas in its vicinity, reaching the observer at progressively later 

times as the wave of illumination is seen to propagate outwards. For an instantaneous 

light flash, the echo surface at any given time is well approximated by the paraboloid 

given by: 

z = x2 /2ct - ct/2. (2.1) 

where x is the projected distance from the star in the plane of the sky, z is the distance 

along the line of sight, c is the speed of light, and t is the time since outburst. 

Figure 2.2: Anatomy of a light echo caused by dust scattering. (from Bode. 1979). 

The nova's outburst light is reflected from the material at M, P and Q at time t days 

after outburst as illustrated in Figure 2.2. If NM = ct then NQ= ctl2 in order for both 

reflections to be seen at the same time by the distant observer. Therefore Equation 2.1 

can be re-arranged to give Equation 2.2. 

(2.2) 
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If the plane including UV is perpendicular to that of z then the reflection will appear to 

originate in a circle of radius d given in Equation 2.3 (Couderc, 1939). 

(2.3) 

The expansion velocity of this circle (Vd) can then be taken from Equation 2.4 where 

Vd ~ c for all b,t ~ 0 (Couderc, 1939). 

(2.4) 

The appearance of a light echo is governed by the time-dependent brightness of the 

illuminating source, the density and scattering properties of the reflective/re-emitting 

medium, and the distance to the star. 

A light echo effect has also been found with other eruptive objects such as V838 Mono­

cerotis, a nova-like variable which erupted in February 2002 (Crause et aI., 2005), and 

V605 Aquilae which underwent a thermal pulse in 1919 (Pollacco et aI., 1992). The 

observed expansion rate of a light echo eventually yields the nature of the scattering 

material, the distance between the star and the material, and a direct geometric distance 

determination to the system; they have therefore provided valuable information on the 

aforementioned objects. 

In the next Chapter the observation of Galactic and extragalactic novae with the Liver­

pool telescope is discussed. 



Chapter 3 

Observations of Novae with the 

Liverpool Telescope 

Photometric data for selected novae in Section 3.3 have been published within Shafter 

et al. (2011). The data for these novae were obtained by myself via the LT, and quality 

checked each night. Calibration of the data and subsequent generation of light curves 

was carried out by Dr Matthew Darnley (LJMU). Data were then passed onto Prof. 

Allen Shafter (San Diego State University) for further analysis. 
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3.1 The Liverpool Telescope 

The Liverpool Telescope! (LT) is a fully automated robotic telescope located at the 

Roque de Los Muchachos Observatory, La Palma, Spain and operated by the LJMU 

Astrophysics Research Institute (Steele et aI., 2004). The primary science objective of 

the telescope is to enable monitoring observations of variable sources on time-scales of 

minutes to years. The telescope is of an altitude-azimuth design with Ritchey-Chretien 

hyperbolic optics (f/lO focus) achieving a pointing specification of 10 arcsec rms. It 

consists of a 2 m Cassegrain reflector (focal ratio f/3, 0.45 m central bore) and a 0.62 m 

diameter secondary mirror which moves axially for focus. The LT currently has eight 

different instruments in operation and up to five of these instruments may be mounted 

at anyone time. Of these one may be mounted at the "straight through" position with 

the others at side ports which are accessible through a rotating "science fold" tertiary 

mirror. The change time between instruments is f"V 40 seconds. 

Current instrumentation includes an optical imaging CCD camera (RATCam), a fast 

readout imaging polarimeter (RING02), a dual-beam integral-field input spectrograph 

(FRODOspec), a fast-readout camera (RISE), an Infrared-Optical wide field camera 

(10), and three wide field cameras (SKYCamA, SKYCamT, SKYCamZ). All data ob­

tained with the LT are processed via instrument specific pipelines which conduct basic 

instrumental reductions. Calibration frames are updated daily and so the latest avail­

able data are used as standard. Of these instruments, RATCam, FRODOspec, and the 

SKYCams are predominantly used in the investigation of novae. Technical details of 

instruments used within work conducted as part of this thesis are given below. 

3.1.1 RATCam 

RATCam is the LT's optical camera (see Figure 3.2). The detector is a 2048x2048 

pixel CCD camera, with eight core filters (Sloan u', g', r', i', z', Bessell B, V, Ha). The 

field of view of the camera is 4.6 arcmin, where each pixel is 13.5 J.lm and there are 

1 http://telescope.livjm.ac.ukl 
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Figure 3.1: Founder of the Liverpool Telescope Prof. Mike Bode, stands in front of the tele­
scope on La Palma in its fully-opening enclosure 

Figure 3.2: [mage of RATCam on the Liverpool Telescope. 
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0.135 arcseconds per pixel. The readout noise is < 5 electrons and data can be binned 

in either a 1 x 1 (gain 2.34 electrons/count), 2 x 2 (2.13 electrons/count), 3 x 3, or 4 x 4 

mode. Peak quantum efficiency of the instrument is at 500 nm. As stated above basic 

instrumental reductions are applied to all RATCam data before data is passed to the 

user. For RATCam this includes bias subtraction, trimming of the overscan regions 

and flat fielding (a more detailed description of this is given in Section 4.3.1). 

It should be noted that the Ha filter generates weak ghost images from any bright 

sources within a field with the flux of the secondary image being 1 % of the primary. 

3.1.2 SKYCam's 

The "SKYCam" project aims to obtain wide field observations in addition to normal 

LT data. The project consists of three cameras. 

1. SKYCamA: A near all-sky camera on a fixed mount inside the LT enclosure 

able to detect objects down to about 6th magnitude using a 4.5 mm fisheye lens. 

2. SKYCamT: A medium field camera with a field of view (FOV) '" 21°). It is 

located on the LT mount which parallel points with the telescope. Able to detect 

objects down to 12th magnitude using a 35 mm focal length lens. 

3. SKYCamZ: A zoomed field camera (FOV '" 1 0) on the LT mount which points 

parallel with the telescope. Able to detect point sources down to 18th magnitude. 

Data are taken automatically when the enclosure is open, with a 10 second exposure 

once every minute. The data are then dark-subtracted, flat-fielded, and a World Coor­

dinate System (WCS) applied. 
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3.2 Observations of Galactic Novae 

The LT's rapid robotic reaction is very well suited to photometric and spectroscopic 

coverage of novae in outburst and their systematic follow-up2. The observations of 

Galactic novae by the LT can be used to improve various relations and obtain sys­

tem parameters. The MMRD relation and t21t3 times can be improved via the use of 

uncontaminated multi-band photometry, and more accurate distances to the objects de­

termined through the use of spectroscopy and radio imaging, which can for example be 

obtained via eMERLIN3. The causes of nova variability, such as sporadic mass ejec­

tion, may be explored through the investigation of brightness increases which should 

be related to changes in broad-band colour indices, excitation of spectra, and line pro­

files. Flux calibration of spectra via photometry allows a greater understanding of line 

flux evolution, physical conditions, ejected element abundances, and the TNR and its 

relation to the composition and mass of the WD. Within this thesis two Galactic no­

vae have been observed using the LT, the first being nova V458 Vulpeculae (RATCam 

- Ho:) which is the subject of Chapter 4, the second is KT Eridani (SKYCamT) the 

results of which are presented in Section 5.5.1. 

3.3 0 bservations of Extragalactic Novae 

A greater number of extragalactic light curves from both Population I and Population 

II environments are required in order to explore the dual nova progenitor hypothesis 

and to obtain a more accurate view of the speed class distribution of novae, giving 

greater statistical significance to measurements made. Only when variations in speed 

class distributions between galaxies are better understood will more precise absolute 

nova rates be obtained and the usefulness of the MMRD relationship be enhanced (see 

Section 1.11). 

From October 2008 to January 2010 work conducted as part of this thesis exploited 

2 A list of all Galactic novae observed by the LT from 2004 to 2008 can be found at 
http://www.astro.ljmu.ac.uk/ ... rahffablelbigtablef.pdf 

3For information on eMERLIN and its facilities please see http://www.e-merlin.ac.uk/ 
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the evolving photometric capabilities of the LT (via proposals JL09B03, RF08B3, and 

JL08AOl) to obtain better coverage of extragalactic novae through outburst and de­

cline. Additional facilities such as the Faulkes Telescope North (FTN, with similar 

specifications to the LT, sited on Maui) were also used on specific objects of interest. 

A list of the novae observed within this project is given in Tables 3.1 and 3.2. 

Each object was entered into the relevant telescope scheduler on notification of out­

burst. The decline of the object was then monitored carefully to ensure the correct 

location and that it was visible. If three consecutive non-detections were found for any 

one object in anyone filter then that filter was dropped from the observation list until 

the object completely faded. Calibration of the data and the generation of nova light 

curves was carried out by Dr Matthew Darnley. 

Novae marked with a * have been used to provide complementary photometric data 

for acquired spectra on the objects in Shafter et al. (2011). Within this paper a multi­

year (1990 to the end of 2009) spectroscopic and photometric survey of novae in M31 

was conducted. This consisted of 53 spectra of 48 nova candidates. It was found that 

75 (82%) of the novae examined were members of the Fe II spectroscopic class, with 

the remaining 16 (18%) belonging to the He/N (and related) class. These values are 

consistent with those found for Galactic novae. No significant evidence was found 

within the investigation to suggest that the spectroscopic class of a nova depends on 

its spatial position or population within M31, but the distribution of He/N systems was 

slightly more extended than that of the Fe II class. However, evidence of a correlation 

between speed class and ejection velocity (based on line width) was found, this is 

also true for Galactic novae. Photometry of nova events allowed the determination 

of light curve parameters for 47 of the 91 novae with known spectroscopic class in 

M31 (before 201 0). It was confirmed that the more luminous novae faded the fastest, 

and that He/N novae were typically faster and brighter than their Fe II counterparts. 

A weak dependence of nova speed class on position in M31 was also found. In this 

case the spatial distribution of the fastest novae was slightly more extended than that 

of slower novae. 



Table 3.1: List of extragalactic novae observed as part of the work conducted within this thesis with the LT and FfN. Novae marked with a * are used 
within Shafter et al. (201l). 

Nova R.A. (12000.0) Dec (J20oo) Discovery Date UT Discover(s) Telescopes Filters 

M31N 2oo8-IOa* 00:42:44.35 41:54:44.2 200SIl 0/07 . 71 Koichi Nishiyama LT+FTN r', j', z', B, V. Ha 
M3lN 2008-lOb* 00:43:02.42 41:14:09.9 2008110/18.91 Henze et aI. (2008) LT+FTN r', j', z' B, Ha 
M81N 2008-03 09:55:36.11 69:03:22.0 200811 0/21.50 Kasliwal et al. (2008) LT r', i', z', B, V. Ha 

M31N 2oo8-Ua* 00:41 :32.26 41:06:01.2 2008/11/04.72 Koichi Nishiyama and Fujio LT+FTN r', i', z' B, Ha 
Kabashima; K. Homoc; Shafter 
et al. (2008) 

M33N 2009-0la 01:33:40.42 30:25:42.1 2009/01/07.54 Koichi Nishiyama and Fujio LT+FTN r', i', z', B, V. Ha 
Kabashima; Nakano (2009) 

M31N 2oo9-02a 00:43:43.85 41:36:39.9 2009/02106.43 Koichi Nishiyama and Fujio LT+FTN r', j', z', B, V. Ha 
Kabashima; E. Ovcharov et al. 
Ovcharov et aI. (2009b) 

M81N 2009-02a 09:55:35.96 69:01:51.0 2009/02113.40 P60-Fast Transients In Nearby LT+FTN r', i', z', B, V. Ha 
Galaxies (PDF); KasliwaI et aI. 
(2009) 

M31N 2009-02b 00:42:27.77 41:13:42.4 2009/02120.13 Pietsch et aI. (2009a) LT+FTN r', j', z', B, V. Ha 
M31 N 2009-08a * 00:42:58.06 41:17:29.8 2009/08/04.43 Pietsch et al. (2009b) LT+FTN r', i', B, V. Ha 
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Nova R.A. (12000.0) Dec (J2ooo) 

M3lN 2oo9-08b* 00:44:09.91 41:48:51.0 

M3IN 2009-08c 00:42:41.20 41:17:01.7 

M3l N 2oo9-08d* 00:42:46.78 41:15:36.9 

M3IN 2oo9-08e* 00:42:36.23 41:18:01.6 

M31N 2oo9-lOa* 00:45:14.01 42:04:39.1 
M31N 2oo9-10b 00:42:20.77 41:16:44.5 

M31N 2009-1Oc 00:42:45.76 41:15:57.1 
M31N 2009-11a* 00:43:04.76 41:41:08.2 

M31N 2009-12a 00:40: 19.40 41:15:47.6 

M31N 2010-01a 00:42:56.74 41:17:21.0 

Table 3.2: Continuation of Table 3.1. 

Discovery Date UT Discover(s) 

2009/08/09.78 Koichi Nishiyama et el.; Koichi Itagaki; 
Rodriguez-Gil et al. (2009) 

2009/08112.42 Kamil Homoch and P. Zasche; Henze et al. 
(2009) 

2009/08/12.42 Kamil Homoch and P. Zasche; Henze et aI. 
(2009) 

2009/08/25.90 University of Sofia; Ovcharov et a1. 
(2oo9a) 

200911 0/03.62 Koichi Itagaki; Fabrika et a1. (2009b) 
2009/10/11.41 Koichi ltagaki; Koichi Nishiyama and Fu-

jio Kabashima; Nakano & Yusa (2009) 
200911 0/09 .12 Fabrika et a1. (2oo9a) 
2009111/03.56 Koichi Nishiyama and Fujio Kabashima; 

Nishiyama & Kabashima (2009) 
2009112122.49 Koichi Nishiyama and Fujio Kabashima; 

Nishiyama et a1. (2009a) 
201O/0111U3 Burwitz et a1. (2010) 

Telescopes Filters 

LT+FTN r', i', B, V. Ha 

LT+FTN r', i', B, V. Ha 

LT+FTN r', i', B, V. Ha 

LT r', i', B, V. Ha 

LT B, V 
LT B, V 

LT B, V 
LT B, V 

LT B, V 

LT B, V 
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Although the work of Shafter et al. (2011) has allowed the exploration the spatial 

distribution of novae in M31 to a greater extent than previously possible, a full under­

standing of nova populations requires additional spectra and light curve data for novae 

erupting in galaxies spanning a range of morphological types. 

In the next Chapter the examination of Nova V 458 Vulpeculae is discussed. This nova 

occurred within a Planetary Nebula (PN) and has been observed using the LT (and 

various other telescopes) over many epochs revealing the progression of its light echo 

through the surrounding structure. 



Chapter 4 

Nova V458 Vulpeculae 

4.1 Introduction 

V458 Vulpeculae (a = 19h54m24~61, 8 = +200 52'52'!6; J2000) was discovered in 

outburst by Nakano et al. (2007a) on 2007 August 8th at a magnitude of 9.5, reaching 

its peak visual magnitude a few days later at V = 8.1 ± 0.1 (Wesson et al., 2008). 

The object is considered a fast nova with t3 = 21 days. It has an ejection velocity of 

'" 1500-2000 Ian S-I, an outburst amplitude of ~ 10 mags (Wesson et aI., 2008), and 

examination of spectra indicates that it is a hybrid nova (see Section 1.8). A light curve 

of Nova V458 Vul has been generated using data from the Solar Mass Ejection Imager 

(SMEI) and can be found in Section 5.5.2. 

By chance, approximately six weeks before the outburst the nova region was observed 

by the IPHAS survey (Drew et al., 2005) which revealed the presence of a PN sur­

rounding the central system with an Ha magnitude of 18.04 ± 0.02. Due to flash 

ionisation by the nova event, light is being re-emitted by the PN gas creating a light 

echo effect (Couderc, 1939; Kapteyn, 1901, see Section 2.3.1). Based on light travel 

time arguments and the MMRD relation the object has an estimated distance of ~ 13 

kpc (Wesson et al., 2008). The Galactic coordinates ofV458 Vul are Zll = 58.63°, bll = 

-3.61 0. Using Equation 4.1 and taking R as 13 kpc a value of z = -0.8 kpc is obtained. 

55 
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Given the nova's fast classification its situation with the Galaxy is therefore unusual 

(see Section 1.10). Based on a distance of 13 kpc the WD mass is also expected to be 

high. 

z = R· sin (b) [pc] (4.1) 

Measurements of the PN made by Wesson et al. (2008) give an ionized mass of 0.2M0 

and a low expansion velocity of ~ 14 km S-I, consistent with a 14,000 year old PN. 

Nova V458 Vul is a very rare event as it is one of only two novae known to have oc­

curred inside a PN, the other being GK Per (Bode et aI., 1987) which erupted in 1901, 

and is not considered a typical CN due to the presence of a strong magnetic field mak­

ing it an IP (see Section 1.6). V458 Vul may therefore be the first CN system observed 

within a PN providing a unique opportunity in which to examine the PN morphology, 

geometry, and overall evolution of the binary system. This object is therefore worthy 

of the detailed further study, as described here. 

4.2 Observations 

Since 2007, V 458 Vul has been imaged several times by various telescopes producing 

19 epochs of data between 2008 and 2011 4 (see Table 4.1 and images in Appendix A). 

In each case the observation was conducted in Ha, optimizing conditions for system­

atic examination of the extended PN line emission. 

Observations of the PN using the LT made between October 2008 and October 2011 

were conducted as part the work of this thesis. The observing sequence of each epoch 

implemented the use of a 3 x 3 mosaic, consisting of 30" offsets around the central nova 

position. Such a configuration was used in order avoid the effect of ghosts in the Ha 

images (see Section 3.1.1). 

4For a movie showing the progression of the light echo for several of the epochs 
and star subtracted data visit http://www.astro.ljmu.ac.uk!rahINovaVul/movie.htmland 
http://www.astro.ljmu.ac.uk!rahlNovaVullNovaVul.html 
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Table 4.1: Ha observations of Nova V458 Vul and its surrounding PN. 

Date Telescope Instrument N° of images Effective exp 
(yyyy-mm-dd) time (sec) 

2008-05-21 INT WFC 27 4859 
2008-07-28 LT RATCam 60 1800 
2008-08-26 LT RATCam 112 3360 
2008-09-19 NOT ALFOSC.FASU 29 3480 
2008-09-21 LT RATCam 20 3000 
2008-09-30 NOT ALFOSC.FASU 37 1110 
2008-10-06 LT RATCam 27 4050 
2008-11-24 LT RATCam 27 4050 
2009-06-15 WHT ACAM 5 1500 
2009-06-30 LT RATCam 49 3675 
2009-08-18 LT RATCam 18 5400 
2009-09-23 LT RATCam 18 5400 
2009-10-20 LT RATCam 18 5400 
2009-11-14 LT RATCam 18 5400 
2010-07-23 WHT ACAM 15 4500 
2010-08-18 LT RATCam 27 8100 
2011-06-11 LT RATCam 27 8100 
2011-07-01 LT RATCam 27 8100 
2011-10-27 LT RATCam 27 8100 

4.3 Image Pre-processing 

In many cases data received from the LT, INT, NOT and WHT were already pre-

processed by the facilities' own processing pipelines. The relevant pre-processing steps 

implemented by each facility are given below. 

4.3.1 The Liverpool Telescope (LT) 

Details about the LT and its set-up may be found in Section 3.1. As mentioned in 

Section 3.1.1 all RATCam images undergo basic instrumental reduction before they 

are passed onto the user, details of this reduction are given heres. 

5See http://telescope.livjm.ac.uk/InfoffelInst/InstIRATCaml for additional details on the pipeline. 
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1. Bias Subtraction: The structure of the bias is very minimal and as such bias 

subtraction is based on analysis of the under-scan region. RATCam does have a 

small ramp in the bias down each column and so a first order linear regression is 

applied. This is used to determine a fit to the bias counts as a function of pixel 

row number and values are deducted across the image according to this smooth 

function. 

2. Over-scan Trimming: The over-scan regions are trimmed off the frames leaving 

a 2048 x 2048 image assuming binning is not used. 

3. Dark Subtraction: Dark current is deemed insignificant when the camera is at 

a normal operational temperature. Dark subtraction is not therefore performed. 

4. Flat Fielding: A master flat field of appropriate filter and binning is selected 

from the LT library for the current exposure. This library holds reciprocal flat­

fields normalized to unity because of the computational efficiency of mUltiplying 

rather than dividing. The image data are therefore multiplied by the library flat. 

Master flats are updated every 2-3 nights at twilight by taking the median of 3-5 

normalized raw sky-flats for each filterlbinning combination. 

5. Vignetting: Each filter is affected differently by vignetting. The worst effect is 

in the extreme comers of the i' and g' bands where the flux is reduced by up to 

15%. In other bands this effect is only about 5% and falling from the edge. Flat 

fielding generally removes this problem. 

4.3.2 Isaac Newton Telescope (INT) 

The INT is one of a group of telescopes (Isaac Newton Group of Telescopes - ING6) 

operating at the Roque de Los Muchachos Observatory on the island of La Palma. 

Other telescopes within the group include the William Herschel Telescope (WHT - see 

Section 4.3.3) and the Jacobus Kapteyn Telescope (JKT). 

6See http://www.ing.iac.es/for more details on the ING. 
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The optical system of the INT consists of a conventional Cassegrain with a parabolic 

primary mirror of 2.54 m in diameter and a hyperbolic secondary mirror. The focal 

length of the primary is 7.5 m, giving a focal ratio of fl2.94 at the uncorrected pri­

mary focus. When corrected the focal ratio is f/3.29. The telescope currently has two 

instruments in operation: a Wide Field Camera (WFC) and an Intermediate Disper­

sion Spectrograph (IDS). The WFC is an optical mosaic camera for use at the primary 

focus. It consists of four thinned EEV 2kx4k CCDs with a pixel size of 13.5 mi­

crons corresponding to a 0.33 arc seconds/pixel. The coverage of each CCD chip is 

22.8 x 11.4 arcmin, giving a total field size of 0.29 square degrees. Data obtained using 

the INT's WFC was reduced using WFCRED7 (see Irwin & Lewis, 2001), a package 

written specifically for IRAF8• The processing of frames with WFCRED can be broken 

down into the following steps. 

1. Linearity Correction: Data from the WFC is non-linear at some level for each 

chip and comes from the analogue-to-digital converter (ADC). This non-linearity 

varies with time and a correction is therefore required. Values which require 

correction are those which are above a mean bias level which is calculated from 

the over-scan region. 

2. CCD Processing: This is the debiasing and flat fielding. Debiasing is done 

either via subtraction of a mean bias frame (determination of the value in the 

over-scan region and then combining the input frames into a mean frame) or via 

the subtraction of a constant bias value as found from an over-scan region for an 

individual target frame. Flat fielding is applied using a previously defined mean 

flat field frame. 

3. Defringing: The Ha pass-band is not greatly affected by fringing effects. 

4. Squishing: Initial mosaic camera images are large (72 MB each) and processing 

essentially doubles the file size in size. Squishing refers to the clipping of data to 

7http://www.ing.iac.es/astroswlInstSoftlwfcredlmanual.html 
8IRAF is distributed by the National Optical Astronomy Observatory. which is operated by the As­

sociation of Universities for Research in Astronomy (AURA) under cooperative agreement with the 
National Science Foundation. 
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its useful ranges (say -1000 and 80000 counts) and then compression to scaled 

16-bit integers. 

4.3.3 William Herschel Telescope (WHT) 

The WHT is an optical telescope with a parabolic primary mirror 4.2 m in diameter 

and a focal length of 10.5 m (f/2.5). The Auxiliary-port CAMera (ACAM) is mounted 

permanently at a folded cassegrain focus. It has a field of view in imaging mode of 

8.3 arcminutes (0.25 arcseconds/pixel). Most ING filters can be mounted on ACAM9• 

The reduction procedure of the WHT is the same as that discussed in Section 4.3.2. 

The instrumental reduction of the 2009 WHT data was conducted by Professor Boris 

Gaensicke (Department of Physics, University of Warwick). The reduction of the 2010 

data was conducted as part of the work of this thesis using routines in IRAF and the 

procedures documented at the CASU INT Wide Field Survey pipeline processing web­

site lO • 

4.3.4 Nordic Optical Telescope (NOT) 

The NOT is a 2.56 m (focal ratio of f12.0) telescope with Ritchey-Chretien type pri­

mary mirror and altazimuth mounting. The secondary mirror has a diameter of 0.51 

m. As with the ING telescopes the NOT is located at the Observatorio del Roque de 

los Muchachos, La Palma. The Andalucia Faint Object Spectrograph and Camera 11 

(ALFOSC) has a field of view of 6.4 x 6.4 arcminutes consisting of 2048 x 2048 pixels 

with 0.19 arcseconds/pixel. 

All NOT data given in Table 4.1 were provided pre-processed. The instrumental reduc­

tion of the 2008 September 19th data was conducted by Dr Cristiana Zurita (Observato­

rio Astronomico Nacional, Instituto de Astronomfa, Universidad Nacional Autonoma 

de Mexico) with reduction of the 2008 September 30th data conducted by Dr Helena 

9See http://catserver.ing.iac.es/filter/ for a list of compatible filters. 
IOhttp://www.ast.cam.ac.uk! wfcsur/technical/pipeline/ 
Ilhttp://www.not.iac.es/instruments/alfosc/ 
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Uthas (Department of Astronomy, Columbia University). ALFOSC data is bias and 

flat corrected both of which are conducted in a similar manner to that described above. 

4.4 Data Reduction 

The region surrounding Nova V458 Vul's PN is fairly crowded and contains many 

bright stars, as indicated in Figure 4.1. Some of the stars within the field are also 

seen to "contaminate" the PN. The subtraction of all stars for every exposure within 

an epoch was required in order to obtain the PN structure only, and allow its detailed 

examination. In order to achieve this, several procedures were implemented. A de­

scription of each of these procedures is given below. Each step was carried out using 

packages from within the NOAa IRAF environment. 

4.4.1 Image Examination and Alignment 

Upon receiving data for each epoch individual exposures were examined by eye in 

detail to ascertain the quality of the set. Each exposure was judged on factors such as 

seeing and performance of the auto-guider system. Exposures were also checked for 

any major sources of error such as excessive bad pixel columns interfering with the 

region around the PN. On completion of this quality check the exposures were further 

examined using lRAF's daoedit; from this an average FWHM of the stars within an 

exposure was obtained. 

Using IRAF's starfind task and the HWHM calculated from the previously obtained 

FWHM a list of stars was created for every exposure within the epoch's data set. The 

set was then aligned to a chosen reference exposure (the best quality exposure - often 

the central exposure of the mosaic). This alignment was conducted using three IRAF 

packages: xyxymatch to produce lists of matched reference coordinates; geomap to cal­

culate second-order geometric transformations between images; and geotran to apply 

the geometric transforms to the images. These transformed images were then used to 
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Figure 4.1: Image of the PN surrounding Nova V458 Vul and the stars within its field, image size is 282 x 503 pixels. The region bound by the blue box 
is 99 x 99 pixels and represents the size of the images used in the final evaluation of the PN. The regions bound by the red and green boxes are the size 
of the masks applied in later processing (see Section 4.4.4). Image is the sum of each epoch's aligned normalised median combined image (see end of 
Section 4.4.4). 
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produce a summed stacked image and a median stacked image for each epoch via 

IRAF's imcombine task. Summing of exposures was applied such that each star (in­

cluding fainter ones) could be clearly identified within an epoch. A median combined 

image of each epoch was also created for later analysis (see Sections 4.4.3 and 4.4.4). 

Starfind was then implemented on the epoch summed image and the output passed 

through the geoxytran procedure to create individual lists of the same stars for each 

non-transformed exposure within the epoch's data set. It is these stars which require 

subtraction from each exposure such that the data contains the PN only. 

4.4.2 PSF Modelling and Stellar Subtraction 

As stated earlier, to isolate the PN structure within the data and allow for its detailed 

examination, the subtraction of all stars for each non-aligned exposure in an epoch 

was required. A list of stars in each exposure was created as described in Section 4.4.1 

and their subsequent subtraction was carried out using IRAF's DAOPHOT analysis 

sequence. Details on the various steps used within the star subtraction procedure can 

be found within Section 6 of "A Reference Guide to the IRAFIDAOPHOT Package 12". 

Using the reference image established in Section 4.4.1 parameters required for this 

analysis such as sigma (standard deviation ofthe background in counts), datamin (min­

imum good data value in counts), datamax (the maximum good data value in counts), 

and the FWHM were obtained via the doaedit task. Image keyword parameters (read­

noise, gain, exposure, airmass, filter, observational date) required were also taken from 

the reference exposure FITS header. The parameters from the reference were then used 

to calculate the size of subsequent apertures required for the fitting routines, these are 

given below as are standard calculations as defined within the DAOPHOT guide: 

o Centering box width = 2 x FWHM. 

o Inner radius of the sky annulus = 4 x FWHM. 

o Width of the sky annulus = 2.5 x FWHM. 

12See http://iraf.netlirafdocs/daorefman.pdf 
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o Radius of the photometry aperture = FWHM. 

o Maximum radius of the PSF model = 4 x FWHM + 1. 

o PSF model fitting radius = FWHM. 

Within the star subtraction sequence the analytic component of the PSF was set as 

auto allowing computation of the best PSF model. The order of PSF variation was 

also adjusted at this stage to compute the cleanest subtraction, along with the jitsky 

parameter which was set to yes in order to recompute the group sky value during the 

fit. 

Once stars were removed from each exposure within an epoch they were then aligned 

using the previous transformations calculated in Section 4.4.1 and a summed image 

created, again via imcombine. On this summed image starfind was implemented using 

a lower threshold to detect any fainter stars which had previously been missed. The 

output of this procedure was then manipulated via geoxytran to create individual faint 

star lists for each non-aligned initial star-subtracted exposure. Using the previously 

computed PSF model these stars were then removed from the initial star-subtracted 

exposures and the procedure repeated (using a lower threshold value in starfind each 

time) until all detected stars were removed. Once satisfactory subtraction had been 

conducted on each exposure the final star-subtracted exposures were aligned and a 

median combined image created (with a sigclip rejection) for the epoch. 

4.4.3 Alignment of Star-Subtracted Images and Trimming 

For the comparison of each epoch's star-subtracted median image, each image needed 

to be aligned to a reference. To do this transformations based on the non star-subtracted 

median image of each epoch produced in Section 4.4.1 were required. Using these 

images and a similar procedure to that documented in Section 4.4.1 transformations 

were computed, taking the reference epoch to be that containing the largest sized pixels 

(i.e. the INT 2008 May 21 st epoch at 0.33 arcseconds/pixel). These transformation 

parameters were then applied to both the non star-subtracted median image (to be 
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used in Section 4.4.4, see Appendix A) and the star-subtracted median image of each 

epoch. On alignment images were trimmed to a 282x503 pixel region (I"V 2'x 3') 

which corresponded to the image overlap, this enabled a reduction in computational 

time. 

4.4.4 Seeing and Flux Normalization 

The next step required for comparison was the normalization of each epoch's aligned 

star-subtracted median image with regards to both seeing and flux. The processes used 

to do this are described below. For ease aligned non star-subtracted median images 

will now be referred to as ANSM images and aligned star-subtracted median images 

as ASSM. 

o Seeing: For each epoch's ANSM image starfind was conducted to produce a list 

of 20 bright stars and their HWHM. Taking the image with the worst seeing to be 

that with the highest HWHM (the LT July 2008 image with a value of2.9 pixels) 

a scaling factor was calculated for every other epoch. This was calculated using 

Equation 4.2 below 

(4.2) 

where A is highest HWHM, B is the HWHM of the image being examined, and 

C the scaling factor. Using IRAF's gauss task and taking C as the sigma of the 

Gaussian function in pixels each epoch's ANSM and ASSM image were then 

adjusted for seeing. The resultant seeing-corrected images are now referred to 

as SANSM and SASSM images. 

o Flux normalization: This was implemented in two stages and used aperture 

photometry within Starlink's Gaia \3 • 

I. For every epoch SANSM image a set of 30 specific stars (the same ones 

for each image) were examined using aperture photometry where the same 

J3GAIA is a derivative of the Skycat catalogue and image display tool, developed as part of the VLT 
project at ESQ. Skycat and GAIA are free software under the terms of the GNU copyright. 
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aperture parameters were applied each time. The number of counts for each 

of the 30 stars in an image were obtained and plotted against the counts of 

the same set of stars for a chosen reference SANSM image, allowing a 

gradient and intercept to be obtained with re pect to the reference. Using 

these values and IRAF's imarith ta k both the SANSM and SASSM images 

were then normalized with respect to the reference based on tellar flux ( ee 

Figure 4.2). The resultant stellar flux-corrected images are referred to a 

SfSANSM and SfSASSM respectively. 
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Figure 4.2: Plot illustrating calibration of stellar flux from one epoch's SANSM image 
to a reference SANSM image. 
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2. The background flux of each epoch's SfSASSM image also needed to be 

taken into account. To do this Gaia's image region technique was used to 

obtain the statistics of 10 specific background regions within each epoch's 

SfSANSM image. Taking the mean value of these regions the background 

was subtracted away from each SfSASSM image including the reference 

(via imarith) in order to obtain an almost zero background flux, resulting 

in an aligned normalised star-subtracted median image for each epoch. 

On completion of this task each epoch's aligned normalised star-subtracted median 

image was trimmed to a small 99 x 99 pixel region centred on the nova. A region 

of IOx61 pixels was then masked out of each epoch's image to remove any diffuse 

light remaining within the image from the bright neighbouring star. This task was 

implemented using IRAF's imreplace task setting the mask to zero. A second region 

centred on the nova location (6x6 pixels) was also masked in order to remove any 

affects from the PSF subtraction of the central system (see Figure 4.1 for the location 

of these regions). It is these images which were then used for further analysis of the 

PN (see Appendix A). 

4.5 Examination of the fuo Dimensional system 

Using the resultant aligned normalised star-subtracted median image from each epoch 

(Section 4.4.4) a summed image was created in IRAF via the imcombine task. This 

enabled detailed examination of the PN and revealed the presence of up to nine knots 

and at least two filamentary structures (see Figure 4.3). Here a knot is defined as region 

which appears to have a definite structure and to be brighter than the surrounding 

medium, with filaments defined as "wispy" structures fainter than the knots. Of these, 

knots 3 and 5 may be separated further into smaller knots. The location of the brightest 

point in a given knot was obtained via the imcentroid task in IRAF. Each of these knots 

and their positions with respect to the nova position are given in Table 4.2. 

Individual examination of each knot region (see Figure 4.4) using the image regions 
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Figure 4.3: Summed image of aligned normali ed star-subtracted PN data. The image how 
the location of each knot and filamentary structure referred to in the text. 
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3.3" 

N 

E=J 
Figure 4.4: Summed image of aligned normalised star-subtracted PN data. The image how 
the location of each knot region sampled in Gaia. This sampling wa conducted on individual 
epochs not the summed image presented here. 
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Table 4.2: Estimated distance of each knot on the sky from the nova location. 

Knot Distance from star (") Error on Distance (") Peak brightness 

1 10.17 0.03 September 2008 
2 9.14 0.02 October 2008 
3a 5.65 0.01 November 2008 
3b 5.58 0.01 
4 6.15 0.02 Mid 2009 
5a 4.60 0.01 Late 2009 
5b 5.20 0.01 
5c 5.95 0.01 
5d 3.62 0.01 
5e 7.37 0.01 November 2008 
6 10.47 0.03 October 2008 
7 8.41 0.03 September 2008 
8 5.76 0.02 August 2008 
9 3.15 0.01 Mid 2009 

task in Gaia on each epoch's aligned normalised star-subtracted median image has 

revealed several things about the illumination of the PN by the light echo. The SE 

equatorial structure (knot 9) reaches is brightest around mid-2009 after which it starts 

to decline; this pattern seems to be matched by knot 4. The NW equatorial structure 

appears much more "bulgy" (5a, b, c and e) and seems to brighten a little later to­

wards the end of 2009 (see Figure 4.5). Whilst the propagation of light through the SE 

equatorial knot is most evident, the NW equatorial structures do brighten significantly. 

Using the location of knot 9 and knot 5a (see Table 4.2) a distance between the knots 

of f"V 7.7" is derived, this may act as an estimate for the minor axis of a possible bilobal 

structure. Knots found in the extreme north and south (1, 2, 3, 6, 7, and 8) of the PN all 

become more dominant between August 2008 and November 2008 (see Figure 4.6), 

with a separation of 17.55" between knots 2 and 9. It should be noted that within this 

analysis only LT data were used as these were the most consistent on comparison of 

background flux. 

The almost mirror symmetrical illumination of the PN would suggest that the axis of 

symmetry (polar) is in the plane of the sky and that the PN is not face-on (where face­

on i = 0°) but rather side-on (i = 90°) to the observer in the sky. However, a face-on PN 
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Figure 4.5 : Plot showing the counts of equatorial regions 9, 5 and 4 in LT normalised star­
subtracted median images for each epoch. Black squares: knot 5d; blue triangle : knot 5e; 
green open square: knots 5a15b/5c; red open triangle: knot 9; pink crosses: knot 4. [t should 
be noted that this is a preliminary reduction and as such does not include error analysi . 
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Figure 4.6: Plot showing the counts of polar regions 1, 2, 3, 6, 7, and 8 (see Figure 4.4) in 
LT normalised star-subtracted median images for each epoch. Black square: knot 1; blue 
triangles: knot 2; green open squares: knots 3a/3b; red open triangles: knot 6; black eros e : 
knot 7; pink stars: knot 8. It should be noted that this is a preliminary reduction and as uch 
does not include error analysis. 
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Figure 4.7: Summed image of aligned normalised star-subtracted PN data indicating the po i­
tion angle of the system in the plane of the sky. Angles written are given in degrees. 
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with a clumpy structure can not be ruled out, although a PN with symmetrical clumps 

is unlikely. An almost side-on PN may be the cause of the time delay between the 

brightening of the equatorial knots 9 and 5. This delay could however be caused by 

the proper motion of the binary system itself if the system moves in the SE direction; 

further investigation would be required to confirm this. Using knots 5 and 9 a position 

angle (taken from North to East) of 25-35° on the sky may be inferred for the PN 

(see Figure 4.7). As the knots north and south of the nova location appear to brighten 

at the same time and before the equatorial knots reach their peak this would suggest 

that these are associated with the poles of an internal structure rather than that of the 

structure which includes the equatorial knots 5 and 9. 

4.6 Three Dimensional Visualisation of the System 

By studying the illumination of the PN with time it is possible to obtain a 3D recon­

struction of its morphology as each image provides a one-off map of the PN material 

for a given light echo paraboloid. 

Assuming that the PN luminosity is dominated by the light echo, the line-of-sight dis­

placement (z) for each aligned normalised star-subtracted median epoch image has 

been calculated based on the light echo model presented in Section 4.1 using Equa­

tion 2.1. These data have been used to construct a 3D visualisation of the illuminated 

PN in the C programming language using the cfitsio package. This 3D visualisation 

can be displayed via Starlink's Gaia package allowing the user to obtain a "God's eye 

view" of the PN. 

Due to the time intervals between each epoch, a linear and cubic b-spline interpola­

tion were conducted across the data to aid in the examination of the PN. The non­

interpolated 3D visualisation is presented in Figure 4.8. Within the 3D FITS cube the 

focus of each parabola (and the location of the nova) is taken as the centre of the cube. 

Examination of the counts at each radial point from the nova centre within the created 

3D FITS cube reveals several things. This examination was conducted using a distance 
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Figure 4.8: Left: The XY axis of the PN data representing what the observer would see on the plane of the sky. Here North is left and East is down. 
Right: The ZY axis of the PN data representing the distance along the line-of-sight to each point on the paraboloids. It should be noted that for the 
purposes of this image the nova centred mask has not been applied. 
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of 13 kpc (Wesson et aI. , 2008) to calculate the physical size of the PN in pc. 

1. The radial displacement vs counts plot in Figure 4.9 indicates four dominant 

peaks representing the four clusters of epoch data (08, 09,10,11) and provides 

evidence of the propagation of the light echo through the PN. Each peak on its 

own has a complex structure with the brightest knots contributing the most. 
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Figure 4.9: Radial displacement versus count plot for the all epoch within the 3D FITS 
cube. Plot indicates the progression of the light echo through the PN. 

2. Examination of the radial displacement of the bright peaks in 30 degree lices 

of the x-y plane (see Figure 4.10) indicates that the system is not face-on as if it 

was the plot produced would present a circular hape. This plot al 0 enabled the 
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determination of a probable axis ratio of 1.3 (major/minor). However, this will 

be heavily affected by the inclination of the system and should not therefore be 

relied upon at this stage. It is noted that the inner most data of this plot should 

be ignored as this will be most affected by any residual of the nova subtraction 

not covered by the nova centred mask and affected by the mask itself. 
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Figure 4.10: X and Y component of the radial displacement for dominant peaks found 
within 30 degree slices of Figure 4.9. Black triangles represent 2008 data, red stars 
2009, green squares 2010, and blue crosses 201l. 

The observed expansion rate of the light echo will eventually yield the nature of the 

scattering material, the distance between the star and the material, and a direct geo­

metric distance determination to the system itself from the Earth. 
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4.7 Modelling of the Planetary Nebula using XSS 

In order to ascertain the geometry of the PN and confirm parameters suggested by 

Section 4.5 a morphokinematical modelling tool called XS5 has been utilised. XS5 

was written and developed by Harman et al. (2003) with the original goal of creating 

and combining 3D geometrical shapes (spheres, ellipsoids, hour-glasslbipolar struc­

tures, see Figures 4.1 la, 4.11b, and 4.11c for examples) for comparison to observed 

PN structures. Within the software, the designed shapes can be rotated to match the 

position angle (PAl) and inclination (lNI) of the observed nebula. Fundamental pa­

rameters of the model may also be adjusted such as the semi-major (AlA - for a bipo­

lar structure this is defined as the distance between waist and the pole) and semi-minor 

axis (BIA - for a bipolar structure this is defined as half the size of the waist) values, 

equatorial and polar ring width, polar ring angle, flux of the equatorial ring, polar ring, 

and background. Additional features may also be included such as seeing conditions, 

field size, filter bandpass, heliocentric radial velocity, and random clumpiness. A sim­

ulation of a spectrometer slit may also be placed across the generated model at any 

position angle and position velocity arrays created which can be compared to observed 

spectra. As well as being used to model PNe it may also be used to model novae ejecta 

(see Section 6.5). 

The XS5 tool is written in the C programming language and uses the QTI4 graphical 

interface. In order to translate a model into an image, the code utilizes the NASNJPL 

library tool called Hierarchical Equal Area isoLatitude Pixelization (HEALPix)15. This 

tool allows the pixeliztion of a sphere and the calculation of () and ¢ (equivalent to 

longitude and latitude). The resolution of the sphere can be adjusted to generate either 

a coarse or fine grid allowing fast or slow computation. HEALPix sets each pixel of 

the sphere such that it has an equal area which is equivalent to an equal solid angle. 

Emission (via a flux) is assigned to each pixel dependent on its value of ¢. This method 

of assigning flux takes into account equatorial and polar emission enhancements later 

on. Each point of the generated sphere is then extruded into a chosen model shape 

14http://qt-project.org/ 
15http://healpix.jpl.nasa.gov/index.shtml 
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(a) (b) 

(c) 

Figure 4.11: Models generated using XS5 with a box size of99 pixels (0.33 arc econds/pixel) 
and a seeing of 2.9" applied. Here North is up and East is left. Position angle and inclination 
of each model were chosen as 0° (North to East) and 90° respectively; "uniform" illumination 
was applied for each. (a) Circle - AlA = IS", BIA = IS". (b) Ellipse - AlA = IS", BIA = 
7.5". (c) Bipolar structure - AlA = IS", B lA = 7.5" 
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(sphere, ellipse, bipolarlhour-glass) by giving each point a shape dependent radius and 

<p coordinate. resulting in a three dimensional Cartesian coordinate for any point of the 

chosen model shape. Although the flux through each pixel remains the same (the same 

solid angle is still drawn out with respect to the origin), the number of counts per unit 

area for that pixel will drop when the radius increases and visa versa. 

For rotation to occur a solid body matrix transformation is applied to rotate the model 

to the correct orientation (this is given by a used specified position angle - PA 1 and 

inclination - INl) on the sky. 

To create a light echo the radial distance (r) of each point (with a line-of-sight distance 

z) from the origin is calculated. The Equation 4.3 is then used to determine the epoch 

of the image, 

ric - zlc = epoch. (4.3) 

This epoch is equivalent to the time it takes the light to travel to a point on the created 

model and then to the observer minus the time it takes for the light to travel from origin 

to the observer only. 

Within XS5 a nova light-curve is modelled via the use of two half Gaussians for which 

the user is able to define the HWHM. The rising Gaussian HWHM is defined by a 

parameter called RISE and falling Gaussian by FALL, each are defined with respect to 

the nova peak. 

4.7.1 Modelling Trials: A Single Shell Structure 

Using the XS5 gui, PN models were generated. For the purposes of this work. the 

field of view for all models was set as 99x99 pixels corresponding to approximately 

33" x 33" on the sky and a seeing of 2.9" applied. These parameters were chosen such 

that they matched16 those of the aligned normalised star-subtracted images produced 

16It should be noted that the 2.9" used was based on HWHM of the seeing corrected observed data 
in pixels (see Section 4.4.4). The seeing that should have been applied to the modelled data is 1.9" 
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in Section 4.4.4 (these will now be referred to as the observed PN light echo data). A 

"uniform" illumination for the entire model was assumed for each generated PN (note 

that the distribution of flux is not uniform but dependent on the distance of each point 

from the nova centre, see Section 4.7 for further explanation) and a distance of 13 kpc 

(taken from Wesson et al., 2008). The parameters which govern the creation of the 

light echo were adjusted such that the rise was set to one day with the fall initially 

set as 60 days. A 60 day fall was chosen as work by Ciardullo et al. (1990a) finds 

that the median time for a nova to decline three magnitudes in Ha is ""'240 days with 

a decrease of 0.0125 mag/day. Using a linear decline as assumed in Ciardullo et al. 

(1990a) the HWHM of the fall-off of the light curve (to.75 ) is equal to 60 days. The 

passage of the light echo through the model was then calculated within XS5 for each 

epoch given in Section 4.2 and light echo images generated. These images were then 

placed within the 3D visualisation code and comparison of modelled and observed 3D 

data conducted by eye. 

With the above configuration of XS5 an initial series of spherical structures were cre­

ated with diameters ranging from 2" to 18" (two arcsecond increments), based on initial 

measurements made in Section 4.5. It soon became evident however, that a spherical 

structure was unable to produce key observed features in the PN such as the equato­

rial and polar knots. Ellipsoidal structures were then examined using semi-major axes 

(AlA) between 6"-20" (two arc second increments) and semi-minor axes (B lA) of 2"-

12" (two arcsecond increments for each). Again key features of the PN morphology 

were not reproduced in these models. 

Based on these trials it was deemed that a bipolar structure would be more appropri­

ate. Using parameters obtained via visual inspection in Section 4.5 a bipolar PN was 

constructed with AlA = 9", BIA = 4" (axis ratio = 2.25), PAl = 30°, and INI = 90°. 

This PN model is displayed in Figure 4.l2(a) with Figures 4.l2(b), 4.12(c), & 4.12(d) 

(2.9x2x0.33). This over estimate in seeing which has been applied to all modelled data, however is 
thought not to significantly influence the outcome of any results obtained for the following reasons: 1. 
What is being modelled is extended emission and what is being reproduced is the very brightest parts, 
which will be minimally affected by the seeing, 2. Within the brute force test conducted in Section 4.7.2 
the difference in size between geometric parameters i.e (AlA, B lA, A2A, and B2A) is 2 arcseconds so 
the test itself was not sensitive to the additional one arcsecond spread. 
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representing the passage of the light echo through the PN at day 286, 419, and 777 

after nova peak. 

(a) (b) 

(c) (d) 

Figure 4.12: (a) Bipolar PN model created using XS5 with " uniform" illumination and set at 
a distance of 13 kpc with the following additional parameters: AlA = 9/1, BIA = 4/1, PAl = 
30°, and INl = 90°, RISE = I day, FALL = 60 days, and a seeing of 2.9/1 applied. (b) Light­
echo observed from specified model 286 days after nova peak. (c) Light-echo observed from 
specified model 419 days after nova peak. (d) Light-echo observed from specified model 777 
days after nova peak. Note that in each image North is left and East is down. 

As previously, the light echoes generated for each epoch were then placed into the 

3D visualisation code described in Section 4.6 and a 3D fits cube created. Vi ual 

examination of the 3D composite images was then conducted. Figure 4.13(a) and 

Figure 4.14(a) show the XY and XZ projection of the observed PN light echo data re­

spectively at a distance 13 kpc, with Figure 4. 13(b) and Figure 4.l4(b) representing the 

model light echo data created in XS5 using the parameters stated above. Examination 
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of Figures 4.13(a) and 4.13(b) indicates that although the model may reproduce the 

equatorial regions relatively well, filamentary structures and the knots furthest from 

the nova centre are not reproduced. Comparison of Figures 4.l4(a) and 4.14(b) also 

indicates that the observed propagation of the light echo through the modelled PN is 

too fast with the light echo breaking out of the structure very early on. The images 

indicate that the chosen semi-major and semi-minor axis values are too small and/or 

that the PN may be situated at a distance further than that calculated within Wesson 

et al. (2008). 

To investigate the effect of increasing the distance to the PN a series of models were 

created in XS5 using the same parameters stated previously but with distances of 15 

kpc (Figures 4.1Sb and 4.15f), 17 kpc (Figures 4.1Sc and 4.15g), and 19 kpc (Fig­

ures 4.15d and 4.15h). These figures reveal that by increasing the distance the light 

echo breaks out of the back of the structure at a later time. However even at 19 kpc a 

reasonable model of the PN is still not reproduced. 

Alternatively, to investigate the effect of increasing the size of the semi-major and 

semi-minor axes these parameters were doubled giving A 1 A = 18" and B 1 A = 8". PN 

models were then generated, keeping all previously defined parameters the same. The 

results of light echo data for these models are presented in Figure 4.16(b) and Fig­

ure 4.17(b). Examination of Figures 4.16(a) and 4.16(b) suggests that a larger major 

and minor axis is better at reproducing the equatorial and filamentary structures, but 

not as effective in reproducing knots closer to the nova centre. Comparison of Fig­

ures 4.17(a) and 4.17(b) indicates that although the light echo does not break out of the 

structure, its propagation is still too fast with it reaching the polar caps of the model ear­

lier than that potentially observed. By increasing the distance to the modelled PN (see 

Figures 4.18) a more accurate propagation is obtained. These investigations suggest 

that a small structure (with AlA and B lA values obtained in Section 4.5) encompassed 

by a larger structure may be required to reproduce all features observed in the PN data 

and place it at a reasonable distance (see end of this section for explanation of this). 
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Figure 4 .13: (a) XY axis projection of the observed PN light echo data. (b) XY axi projection 
of the light echo data created from the modelled PN via XS5 . In the e images and all following 
model images generated North is left and East is down in the XY plane. 
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(a) 

(b) 

Figure 4.14: (a) XZ axis projection of the observed PN light echo data. (b) XZ axis projection 
of the light echo data created from the modelled PN via XSS. 
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Figure 4.15: Top row: XY axis (North is left and East is down) projection of light echo data for (a) Observed PN at 13 kpc. (b) XS5 modelled PN at 15 
kpc. (c) XS5 modelled PN at 17 kpc. (d) XS5 modelled PN at 19 kpc. Bottom row: XZ axis projection of light echo data for (e) Observed PN at 13 kpc. 
(f) XS5 modelled PN at 15 kpc. (g) XS5 modelled PN at 17 kpc. (h) XS5 modelled PN at 19 kpc. 
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(a) 

(b) 

Figure 4.16: (a) XY axis projection of the observed PN light echo data. (b) XY axis projection 
of the light echo data created from the modelled PN via XS5 with AlA = 18" and BIA = 8". 
North is left and East i down. 
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(a) 

(b) 

Figure 4.17: (a) XZ axis projection of the observed PN light echo data. (b) XZ axi projection 
of the light echo data created from the modelled PN via XS5 with AlA = 18" and B lA = 8". 
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Figure 4.18: Same as Figures 4.15 but using a semi-major axis of 18" and semi-minor axis of 8". 
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Table 4.3: Parameters used within X2 tests. 
Test 1: PAl=30°, INl=90°, DIST=13 kpc, FALL=60 days, RISE=l day 

AlA" I 5, 10, 15,20,25,30,35,40 
BIA" 2,4,6,8, 10, 12, 14, 16, 18,20,25,30,35 

Test 2: AlA & BIA first 50 combinations from Test 1 
DIST=13 kpc, FALL=60 days, RISE=l day 

PAlO 24,26,28,30,32,34,36,38,40 
INI ° 70, 75, 80, 85, 90 
Test 3: PIA, INl, AlA & BIA first 50 combinations from Test 2 

FALL=60 days, RISE=1 day 

DIST(pc) 2000,4000,6000,8000,10000,12000 
13000, 15000, 17000, 18000, 19000 

90 

In order to explore a range of bipolar morphologies at a range of distances, a series 

of tests were conducted in which various geometric parameters were adjusted (see 

Table 4.3). Quantitative comparison of the observed PN light echo data to XS5 light 

echo data generated from models was achieved through the calculation ofaX2 (where 

each point was uniformly weighted) for the composite 3D modelled and observed data 

images. Test 1 fixed PAl, INl, DIST, FALL, and RISE, but adjusted AlA and BIA 

parameters as stated in Table 4.3. The results of this test were then sorted in ascending 

order of the X2 and the top 50 configurations passed onto Test 2. Within Test 2 the PA I 

and INI were then adjusted (parameters given again in Table 4.3) and again the top 50 

configurations passed on to Test 3 which assessed the distance to the PN. 

From these tests the lowest X2 was achieved with the following PN configuration: PA I 

= 30°, INI = 90°, AlA = 20", BIA =4", DIST = 19 kpc, RISE = I day, and FALL = 

60 days. This would suggest that the PN has a very tight-waist and an axis ratio of 5. 

Comparison of the modelled PN light echo data (Figure 4.19d) to the observed PN light 

echo data (Figure 4.19c) finds that even at this distance the light echo is propagating 

through the PN model too fast leaving the equatorial structure too soon. The correct 

light echo observation would only occur if the structure were at distances greater than 

25 kpc which is improbable as at this distance the nova would be placed 1.6 kpc below 

the Galactic plane making its situation even more unusual (see Section 4.1). At 25 kpc 

the nova would also have to be at least four times more luminous. An alternative to 

this is if it possessed a distance of 19 kpc and the structure has an axis ratio of 2.5. 
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(a) (b) 

(c) (d) 

Figure 4.19: Top row: XY axis (North is left East is down) projection of light echo data for 
(a) Observed PN at 19 kpc. (b) XS5 modelled PN at 19 kpc. Bottom row: XZ axi projection 
of light echo data for (e) Observed PN at 19 kpc. (f) XS5 modelled PN at 19 kpc. 

This suggests that the PN parameters obtained from the initial run are incorrect. As in 

previous models, polar knots are still not reproduced (see Figures 4.19a and 4.19b for 

comparison) and as stated earlier the PN may therefore require an internal as well as 

an external sheU to produced aU observed features and situate the structure at a more 

probable distance. 
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4.7.2 Modelling Trials: Internal and External Shell Structure 

It is evident that both internal and external structures/shells are required to successfully 

model the observed PN. As mentioned in Section 2.2 the morphologies of PNe are far 

from simple. Many PNe exhibit multiple shells (Chu, 1989; Chu et al., 1987), multi­

polar structures, highly collimated outflows, micro-structures, and peculiar geometries 

which may not be easily explained with simplistic models and multiple physical pro­

cesses occurring at the same time may be required. 

When combining internal and external shells however, the flux ratio of the internal to 

the external needs to be taken into account. A lower flux for the internal structure 

would suggest that the material is of a lower density and as such less light is emitted 

back to the observer. If the flux is higher than that of the external shell the material 

would be considered relatively more dense. 

Separate internal (semi-major axis defined as A2A, semi-minor as B2A) and external 

structures were created in XS5 with the internal shape set as an ellipse for simplicity 

and the external remaining as a bipolar structure. The internal structure was set such 

that its inclination and position angle would always match that of the external as this 

seems the most likely scenario. The flux of the internal structure was also adjusted 

such that it was a multiple factor of that chosen for the external (see Table 4.4). The 

light echo data for both the internal and external structures was passed through to the 

3D visualisation code where they were co-added and a combined flux file created. 

The outputted file was then compared to observed PN light echo data (set at the same 

distance), which was also passed through the 3D visualisation code, and a X2 (again 

each point was uniformly weighted) calculated. Just under 5 million PN models were 

created using a series of for loops and the parameters given in Table 4.4. It should be 

noted that the FALL time of the second Gaussian was allowed to vary to compensate 

for the linear decline assumption made previously. This is a brute force approach to 

obtaining the best fit PN morphology and as such computational time was large. In 

order to reduce computational time a slightly coarser grid was applied to construct 

the model in XS5 (see Section 4.7). Comparison of trial results using the fine and 
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Table 4.4: Parameters used within brute force X2 test. 

FALL (days) 
DIST (pc) 

BIA" 
FLUX factor 

A2A" 
B2A" 

Test All: RISE=1 day 

40,60,80,100 
1000,2000,3000,5000,10000,11000,12000 

13000, 14000, 15000, 16000, 17000,18000, 19000 
26,28,30,32,34 
70,75,80,85,90 

14, 16, 18,20,22,24,26 
2,4,6,8,10,12,14,16,18,20 

0.05,0.1,0.2,0.25,0.33,0.5, 1,2,3,4,5 
8,10,12,14,16,18,20 

2,4,6,8, 10, 12, 14, 16, 18 

coarse grid indicated a scatter in the X2 of only 0.001 and a decrease in computational 

time by a factor of four. This method of creating PN models was independent of other 

parameters, unlike that presented in Section 4.7.1. However the work conducted within 

Section 4.7.1 refined the choice of PAl, INI, AlA, and B1A values used. 

A histogram of the X2 modelling results obtained via the brute force test is presented 

in Figure 4.20. This test has found only a relatively small number of low X2 models, 

with the best PN defined by the following parameters: PAl = 28°, INI = 90°, AlA = 

20", BIA = 6", A2A = 16", B2A = 4", FLUX ratio = 0.20, FALL = 80 days, DIST 

= 13 kpc17 • The PN model is displayed in Figure 4.21(a) where seeing has not been 

applied and Figure 4.21(b) where the 2.9" seeing has been applied. Light echo data for 

this modelled PN is also given in Figures 4.22(b), 4.22(c), 4.22(e), and 4.22(f) along 

with the observed PN light echo data at 13 kpc (Figures 4.22a and 4.22d). 

It should be noted that parameters obtained via modelling in XS5 define the limits of 

the geometry and not the geometry of the PN itself. In order to obtain major and minor 

axis values measurements of the structure were made on Figure 4.21 (b) i.e. the PN the 

observer would see. This has resulted in a minor axis of rv 16" and approximate major 

axis of rv 41" giving an axis ratio of rv 3. Measurements of the internal structure are 

difficult to obtain and without the light echo this structure will have gone unnoticed. 

17These results are preliminary and will suffer from the same error as mentioned in footnote 16 (page 
80). However, for the reasons mentioned within the previous footnote the conculsions are believed to be 
valid within the uncertainties of the analysis. 



4.7. Modelling of the Planetary Nebula using XS5 94 

>, 
U 
C 
Q) 

:::J 
0-
Q) 
'-

LL 

---~--

<D 

o r-r---'---r-I--'---'---'---'---'---'---'---~--~--' 

If) 

o 
x 

CXJ 

If) 

0 

x 
to 

If) 

0 

x 
'<;j-

If) 

o 
X 

N 

-

f-- -

--

-
l 

o ~~~~~~~wwlillwwllllw~lillwwlill~lilllllwlll~llI ~rm~mnwll~I" ~1IIT~nl~~~ 
5x10- 11 10-10 1.5x10- 10 

Chi Sq uored 

Figure 4.20: Histogram of X2 modelling results. 
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(a) 

(b) 

Figure 4.21: (a) Lowest X2 XS5 generated PN model. Seeing has not been applied. (b) Same 
as previous but with a 2.9" seeing applied. Within these images North is left and Ea t i down. 
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(a) (b) (c) 

(d) (e) (f) 

Figure 4.22: Top row: XY axis (North left East down) projection of light echo data for (a) Observed PN data at 13 kpc. (b) XS5 modelled PN. (c) Same 
as b but using display parameters identical to those used within Figures 4.19. Bottom row: XZ axis projection of light echo data for Cd) Observed PN 
data at 13 kpc. (e) XS5 modelled PN. (0 Same set up as c. 
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The data presented in Figures 4.22(b/e) and 4.22(c/f) indicate that although some polar 

features are observed, dominant knots 2 and 3 are not and the propagation of the light 

echo still seems inaccurate. The PN model generated is therefore imperfect. In order 

to refine the parameters of the PN model and allow further testing, the first 1 % of 

the lowest X2 configurations generated from the brute force test were analysed. Thi 

revealed the following dominant parameters: DIST = 14 kpc, FALL = 100 days, PA I 

= 28°, INI = 90°, AlA = 22", B lA = 6", A2A = 14", B2A = 4", Flux = 0.20. The 

major results of the DIST analysis are presented in Figure 4.23. On the assumption 

of a normalised distribution (which may not be the case) a Gaussian has been fit to 

the data and a distance of 13.6 ± 0.9 kpc derived. It is noted that this may not be an 

accurate distance determination. 

4 x 10' 

,.. - 13.8208 

S1GUA - 0.892792 

2><10' 

1><10' 

10 
Distance (kpc) 

15 20 

Figure 4.23: Histogram of DIST values for the fir t 1 % of lowe t X2 PN configurations. A 
Gaussian (in green) has been fit to the data with mean distance and one sigma error displayed. 

An additional brute force test i currently being conducted with refined parameters 

based upon the results presented above (see Section 7.2.1). 
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4.8 Discussion and Conclusion 

The PN surrounding Nova V458 Vul has been observed in Ha over the past four years 

by the INT, LT (most prominently), NOT, and WHT. Examination of star-subtracted 

images has revealed the progression of the light echo through the PN illuminating sev­

eral features such as knots and filamentary structures. Inspection of these knots, their 

location from the nova (at the centre of each image), and peak time of illumination, has 

suggested the presence of both internal and external shells. This hypothesis has been 

supported through the creation of several single shell structures of various morpholo­

gies in XS5 which failed to reproduce observed features on the passing of a light echo 

through the model. 

A novel way of displaying the light echo data was created in the C programming lan­

guage, in which each data frame is projected onto its equivalent paraboloid in time. 

Examination of the compiled 3D data cube clearly illustrated the progression of the 

light echo through the PN and has provided a unique way of comparison between ob­

served and modelled data. 

Given the failure of a single shell to reproduced the PN a brute force test using a range 

of fundamental parameters was implemented using a bipolar external structure and an 

ellipsoidal internal structure in XS5. This test compared the light echoes generated for, 

just under five million PN configurations to the observed light echo data, conducting 

a X2 test in order to obtain the best structure. The results of this test suggest a tight­

waisted external shell (axis ratio 3.3) AlA = 20". B lA = 6". with a more diffuse and 

so fainter (Flux ratio = 0.20) internal shell (axis ratio of 4) A2A = 16", B2A = 4". 

Generation of this PN model with the applied seeing however, gives an axis ratio for 

the bipolar external shell as f"V 3 with the internal structure not observed. The position 

angle of the system was found to be 28° (measured North to East) and inclination of 

90° obtained. The fall-off time for the light echo was also found to be 80 days, slightly 

longer than that given in Ciardullo et al. (1990a) which is also not unexpected as this 

assumed a linear decline. The distance to the PN using this configuration was found 

to be 13 kpc which is in agreement with Wesson et al. (2008). On application of a 
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Gaussian to the distances obtained for the top 1 % of PN configurations a value of 13.6 

± 0.9 kpc was derived. This however assumes a normalised distribution which may 

not be the case and can not be taken as a true value. 

As stated in Section 2.2 bipolar PNe may be split into "butterfly" nebulae where the 

waist is pinched in the centre, or "bi-Iobed" structures in which a pair of outer lobes 

connects to a central smaller spherical or equatorial nebula. In the case of the PN 

surrounding Nova V458 Vul a relatively tight-waisted bi-Iobed classification seems 

appropriate. The PN model generated however is not perfect and further work to obtain 

a more accurate structure is required. The results presented here were created using 

very coarse parameters and refinement of the brute force test is being conducted using 

the most dominant parameters found within the first 1 % of the initial results. This will 

enable a more accurate PN structure to be obtained. On creation of the PN several 

assumption were also made which include "uniform" illumination of each structure, 

an elliptical internal shell, and that the internal shell has the same position angle as the 

external. All assumptions made require investigation (see Section 7.2.1). The effect of 

the masked region applied to the nova location within each observed PN image along 

with the effect of any residual caused by PSF subtraction of the nova itself must also be 

taken into consideration and may account for observed differences within the central 

region of the PN model. 

Corradi & Schwarz (1995) estimate that only ~ 11% of all PNe are bipolars and that 

this class of PN is produced by more massive progenitors (M :::; 1.5M0 ) than other 

classes. Bipolar structures are said to be formed by a generalized wind-blown bubble 

(Frank, 1999, GWBB,) where a spherical, fast, weak wind is blown into a previously 

ejected axi-symmetrical slow wind, which is assumed to have a higher density near the 

equatorial plane. This higher density wind forces the fast wind to "blow" a prolate neb­

ula, with the major axis along the symmetry axis. If the equatorial to polar density ratio 

is very high, a bipolar nebula is formed. This sort of formation model however only 

produces elliptical PNe or bipolar PNe with wide waists and not the tighter-waisted 

PNe. To form such a bipolar system a collimated fast wind (CFW, see Soker & Rappa­

port, 2000) is needed and caused by dense gas in the equatorial plane surrounding the 
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wind blowing star e.g. an accretion disc (see Soker, 2002). Tight-waisted bipolar PNe 

are therefore thought to require both fast and slow winds blowing together at some 

stage. These two winds may also interact creating various features (see Soker, 2002; 

Soker & Rappaport, 2000). 

Two pre-nova evolutionary scenarios for Nova V458 Vul have been suggested by Wes­

son et al. (2008). The first considers a GK Per like system where the PN originated 

from a massive secondary star during a CE phase, and the ionization of the nebula 

is maintained by the accretion disc. The second scenario considers a more canonical 

model where the ionization is due to the central PN star. However, there are vari­

ous issues with both cases (see Wesson et al., 2008) and further work on evolutionary 

scenarios needs to be conducted. 

In the next Chapter, light curves of novae generated using data from the Solar Mass 

Ejection Imager (SMEI), a space-based differential photometer, are presented along 

with their subsequent analysis. 



Chapter 5 

Investigation of Novae with the Solar 

Mass Ejection Imager (SMEI) 

The contents of this Chapter up to Section 5.5.2 are published within Hounsell et al. 

(201Oa) in collaboration with Prof. Michael Bode (LJMU), Dr Paul Hick (Univer­

sity of California San Diego - UCSD), Dr Andrew Buffington (UCSD), Dr Bernie 

Jackson (UCSD), John Clover (UCSD), Prof. Allen Shafter (San Diego State Univer­

sity - SDSU), Dr Matthew Darnley (LJMU), Neil Mawson (LJMU), Prof. lain Steele 

(LJMU), Prof. Aneurin Evans (Keele University), Dr Stuart Eyres (University of Cen­

tral Lancashire), and Dr Tim O'Brien (University of Manchester). The paper was writ­

ten by myself with the supervision and input on specific novae by Prof. Michael Bode 

and Dr Matthew Darnley. I obtained, reduced, and analysed all nova data from the 

SMEI archive using pipelines which were written by Dr Paul Hick and John Clover. 

SkyCamT data were obtained and reduced by Neil Mawson and Prof. lain Steele. 

Work on T Pyxidis has been published on-line within Hounsell et al. (2011b). 
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5.1 Introduction 

Based on an extrapolation of the observed nova density in the solar neighbourhood, 

Shafter (1997) has estimated a Galactic nova rate of approximately 35 yc1• Of these 

an average of roughly one CN per year has been observed to reach mv = 8 or brighter 

(see Figure 2 of Shafter, 2002). Since these historical observations are clearly incom­

plete at mv = 8, the actual number of novae reaching this brightness is expected to be 

significantly higher (see also Warner, 2008). It is therefore suggested that many bright 

novae are being missed each year. 

With the advent of all-sky missions, ground and space-based, there is new hope for 

detecting a more complete sample of novae. Although the detection of transient events 

may not be the original science objective of these missions, their archives could hold 

a wealth of data on many events. These observations may contain great detail and 

provide data on many previously poorly examined, and so understood, phases of evo­

lution. Examination of these archives is therefore exceptionally important. One such 

space-based all-sky mission is SMEI. 

5.2 The Coriolis Satellite and SMEI 

The Coriolis spacecraft (Figure 5.1 a) is home to two instruments: a rotating radiometer 

called Windsat (intended to measure ocean winds), and an all-sky Solar Mass Ejection 

Imager (SMEI). Launched by the United States Department of Defence on 2003 Jan­

uary 6th from Vandenberg AFB on a Titan II booster (Figure 5.tb), the spacecraft 

operates within a Sun-synchronous polar terminator orbit. This orbit is nearly circular, 

840 km above the surface of the Earth, and has an inclination of 98° relative to the 

equatorial plane (Eyles et aI., 2003). 

The SMEI instrument is a joint effort between the University of Birmingham (UK), 

the University of California San Diego (UCSD, USA), Rutherford Laboratory (UK), 

the Air Force Research Laboratory Space Vehicles Directorate (USA), Boston Univer-
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sity (USA), and Boston College (USA). It consists of three baffled CCO cameras (see 

Figure 5.5) each with a 600 x 30 field of view, combining to sweep out a 1600 arc of 

sky (Hick et aI., 2007). The SMEI cameras and their fields of view are directed ap­

proximately 300 above the local horizon, avoiding light from the Earth, and unlight 

reflecting from the rotating Windsat antenna. Each camera has an aperture area of 1.76 

cm2 and alignment of the cameras is such that Camera 1 points away from the Sun, 

Camera 3 towards the Sun, and Camera 2 covering the section in-between. With this 

configuration SMEI maps out nearly the entire sky with each l02-minute orbit of the 

spacecraft. 

(a) (b) 

Figure 5.1: (a) Coriolis spacecraft with SMEI instrument on-board prior to launch. The three 
camera baffles (red circles) are seen in the lower portion of the spacecraft. (b) Titan Illaunch 
of the Coriolis spacecraft on 2003 January 6th . 

SMEI is specifically designed to map large-scale variation in heliospheric electron 

densities from Earth orbit by observing the Thomson-scattered sunlight from solar 
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wind electrons in the heliosphere. The instrument is intended to view and forecast the 

arrival of solar coronal mass ejections (CMEs), co-rotating structures, and solar wind 

density variations (Jackson et aI., 2004). To do this SMEI is operated as a high preci­

sion differential photometer (Buffington et aI., 2006, 2007; Jackson et aI., 2004) with 

a peak quantum efficiency at approximately 700 nm (corresponding roughly to an "R" 

photometric band) and a FWHM of rv 300 nm. The SMEI CCD readout noise is given 

as rv 14 e- rms, which is deemed insignificant when the SMEI cameras are operated at 

their design temperature of -30°C. Cameras 1 and 2 reached this temperature success­

fully. However, Camera 3, the Sun-wards facing camera, did not and currently operates 

at a temperature between -lOoC and 3°C. The SMEI instrument was designed such 

that stray light background is carefully controlled providing a photometric sky signal 

which does not vary significantly over the time interval of the heliospheric structures 

being measured. 

As the instrument orbits the Earth, the 3° narrow dimension of the cameras sweeps 

across the sky (see Figure 5.2) taking continuous 4 second exposures, mapping nearly 

the entire sky within each orbit. A specific sky location is inside the field of view 

for typically a minute or more (depending on camera and sky location). With a 4 

second exposure this implies that about a dozen or more separate measurements from 

sequential CCD frames are available for each sidereal skybin. These are combined 

to provide one measurement per orbit, approximately 1500 frames per camera per 

orbit are available to compose a full-sky-map. Point sources can be and are fit from 

these sidereal maps (see Section 5.3). An example of a sky-map produced by SMEI 

is given in Figure 5.3. The orbit geometry and the requirement to prevent the cameras 

from receiving direct sunlight account for the 20° diameter Sunward and smaller anti­

Sunward exclusion zones. 



Figure 5.2: SMEI 3° x 60° image frames from each of the three camera arranged in order furthest from the Sun. In each frame the Sun is located towards 
the left. Image adapted from Jackson et al. (2004). 
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Figure 5.3: Hammer-Aitoff projection sky-map created from a full orbit's worth of frames. A typical composite map consists of'" 4500 individual frames 
(1500 from each camera). The Sun is at the centre of the map with the ecliptic plane along the horizontal axis. Bright features are labelled on the map. 
Blank areas are regions excluded from the composite map either because they were not accessible to the cameras during the orbit, were too close to the 
Sun and so too bright (shutter of Camera 3 closed), or contaminated by high energy particle enhancements (slash in upper left of image). This image has 
been taken from Jackson et al. (2004). 
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5.2.1 SMEI Design Requirements 

In order to isolate the faint Thomson-scattered sunlight, much larger white-light contri­

butions must be taken into account. Such contributions include: background light from 

the Sun, Moon and Earth scattered into the SMEI field of view; light from the zodiacal 

dust cloud; and starlight (individual point sources such as bright stars and planets, and 

a mottled contribution to the diffuse sky brightness refereed to as the sidereal back­

ground). Each of these must be determined and removed. The estimated contribution 

of these signals as a function of elongation from the Sun is given in Figure 5.4 (taken 

from Jackson et aI., 2004), with the Sun having an equivalent brightness of 4x 1014 

S10 units. 

The optics of SMEI are fast (rv fl1). In order to provide a reproducible photometric 

response, an unresolved point image occupies approximately 200 CCD pixels (rv 112 

a square degree). The response in this square degree from other sources must be con­

stant or slowly-varying (to a fraction of an S 1 0 unit) such that heliospheric structures 

can be separated. During the time of observation of a sidereal location an accurate 

measurement of the stars must be obtained along with the background sky brightness. 

To prevent the sidereal and zodiacal light from overwhelming the fainter heliospheric 

signal the differential photometer specification must be better than that required to re­

move stellar signals alone. Therefore the differential photometric specification for all 

signals incident on the SMEI focal plane at 90° elongation in one square degree of sky 

in a single camera passage has been set at 0.1 % (Jackson et aI., 2004). 

To ensure that this specification is met the SMEI baffle was created as indicated in Fig­

ure 5.5. The baffle was designed to reduce unwanted sources of noise, including scat­

tered light from the space instrumentation and Earth shine. However, the baffles prove 

unsuccessful if a camera is pointing towards the Sun and the solar limb approaches 

within 18° - 2r of the camera's narrow and wide field of view respectively. It should 

also be noted that certain regions in the sky near the Moon, bright stars, variables, and 

planets, may also exceed the 0.1 % specification. 

SMEI pixels are prevented from saturation by two factors. The first is that the exposure 
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Figure 5.4: Surface brightness versus solar elongation for zodiacal and tar light (Cox, A. N., 
2000), and of expected CME brightness extrapolated from Helios measurements. A calculation 
of an ambient medium having a density of 10 e- cm- 3 at I AU and an inver e-square density 
drop-off within solar distance is also shown (image taken from Jackson et aI. , 2004). 

Figure 5.5: Schematic of SMEI baffle with scale in centimetres. Apertures are numbered ZO 
to Z8 in advancing distance towards incident light along the baffle centreline. Top image i the 
narrow dimension, bottom image is the wide dimension (Image adapted from Jackson et a1., 
2004). 
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time of a single CCD frame is limited to 4 sec and the second is the fact that images 

from the camera are intentionally defocused. The point sources are extended into a 

fish like shape spreading the light over 200 CCD pixels ("'" 112 a square degree). The 

electron full-well capacity of SMEI is 350,000. 

5.2.2 SMEI Data Accumulation 

SMEI data is stored on the Coriolis satellite in a solid-state recorder (SSR) until X­

band downlink to the ground. It is then processed and sent to various institutions 

for analysis. The SSR can hold 12 hrs of data until it is overwritten. On-board a 

single CCD frame are 1272x256 pixels (mode 0) with a pixel size of about 0.05°. 

Due to telemetry considerations the CCD frames are re-binned on-board to 4x4 pixels 

(318 x 64 - mode 2). Unfortunately due to the higher operating temperature of Camera 

3 (which points at the Sun) the camera has been forced to operate in a 2x2 binning 

mode (636x 128 -mode 1) rather than the 4x4 mode of Cameras 1 and 2, resulting in 

"science mode" resolutions of 0.2° and 0.1 ° respectively. Mode 0 frames are used for 

calibration purposes only. 

5.2.3 SMEI Data Processing 

The processing steps used at UCSD to convert the raw CCD images into photometri­

cally accurate white-light sky-maps consist of procedures that perform quality checks, 

correct the data for instrumental and non-heliospheric effects, and create all-sky im­

ages for each orbit. The end result is a set of sky-map images that can be presented in 

any convenient sky coordinate system such as Sun-Centred Hammer-Aitoff or "fish­

eye". The UCSD processing uses 32-bit computing, Fortran, C++, and interactive data 

language (IDL) programming. The basic steps required for conditioning are given 

below with the first seven items applied to individual CCD frames and the last three 

applied to single orbit maps. More detail on each of these steps can be found within 

Jackson et a1. (2004) and Hick et a1. (2005). 
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1. Integration of new data into the SMEI database: Data is downloaded at a rate 

of4 OB a day. 

2. Identification and removal of corrupted data frames: Frames may retain 

telemetry and other errors and are therefore checked. Frames are determined 

bad and removed if they have anomalous values of electronic offset and dark 

current. Frames are also removed if a large amount of the image is saturated by 

the Sun, Moon, or other bright sources (see below). 

3. Pixel Pattern Removal: A pixel pattern, including hot pixels, is created using 

weekly on-orbit calibrations and subtracted from the SMEI data frames. 

4. Removal of electronic offset (pedestal) and temperature dependent dark 

current pattern: The pedestal is determined from two 4-pixel wide columns 

found to the right and left edge of mode 0 frames (2 or I columns in mode I 

and 2 respectively). The dark current is determined from a set of neighbouring 

4-pixel wide columns which are covered. These columns may be affected by 

cosmic rays and so a cut-off threshold is determined empirically based on the 

median value. This value varies with camera and mode, but remains constant 

throughout the mission. 

5. Particle Detection and Saturation: If a pixel value is significantly higher than 

its surrounding eight pixels then these pixels are removed (constructed in such a 

way as to not act on stars). If the pixel-to-pixel response variation is excessive 

then many particles may have hit and the frame itself removed. 

6. Flat field, optical, and geometric corrections: Flat fields were were deter­

mined for each camera prior to flight to a '" 1 % accuracy using an exposure 

of a uniformly-illuminated white cloth. These flat fields have been improved to 

the 0.1 % differential photometric specification through on-board analysis, and 

the analysis of long term trends in the stellar background. The viewing per­

spective and pixel-per-pixel observed surface brightness increases towards the 

inside of the CCD frame arcs (see Figure 5.2) are also included here, separately 
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and analytically. These are geometric effects and not caused by CCD response 

variations. 

7. Indexing and removal of cosmic rays, space debris, and bad pixels: This 

is the registration and averaging of frames for placement onto a high-resolution 

sidereal grid using spacecraft pointing information. The pointing of the space­

craft is determined to within '" 0.01 0 using the spacecraft quatemions which 

average 20 measurements throughout the 4 second exposure. Further accuracy 

is obtained using stars, bringing the pointing to'" 0.0040 for 4x4 binned pixels. 

The sky-maps are achieved using an Hierarchical Triangular Mesh (HTM) grid 

(Kunszt et aI., 2001) with an angular resolution of 0.1 o. The pixels of the frames 

are "indexed" by placing them into the appropriate triangles in the HTM grid. 

Every 0.050 pixel in mode 0 (0.10 in mode I, and 0.20 in mode 2) makes up sev­

eral triangles. Each HTM triangle is a sidereal location on the sky and made up 

of a dozen or so frame contributions. These multiple contributions of the same 

location can be used to flag up cosmic rays, space debris, hot pixels, and "flipper 

pixels" (most evident in Camera 3). 

8. Formation of a set of sidereal maps of sky brightness: On completion of 

indexing a full-sky HTM grid is assembled, and a planar representation of the sky 

is made using an equatorial grid (RA and Dec; J2000). The angular resolution 

of these maps is 0.10 and consists of a rectangular map of the equatorial region 

from -600 to +600 Dec (3600x 1200 bins), and two polar maps for regions above 

and below ± 500 Dec (800x800 bins). These maps retain the original SMEI 

data frame resolution as well as the PSF orientation which is stored for later use. 

Other sky-maps (e.g. Sun-centred Hammer-Aitoff and fisheye) with different 

coordinate systems are obtained from these maps. 

9. Removal of zodiacal light and sidereal sky brightness: Removal of the zodia­

cal light is done through the subtraction of a Sun-centred model which approxi­

mates its angular shape and brightness. Bright point sources are removed via PSF 

subtraction (see Section 5.3). Signals from the sidereal sky (fainter stars, Milky 

Way, nebulae, and galaxies) must be subtracted from each orbit's sky-map. The 
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sidereal background is removed via the subtraction of an average sidereal orbit 

map. This map consists of 34 median combined day orbit maps (from which zo­

diacallight and bright stars have already been removed) taken bi-monthly over 

a six year period. Only Cameras 1 and 2 were used in the construction of the 

sidereal orbit map as Camera 3 suffers from greater noise. 

10. Provision of derivative data products for use in further analysis: As well as 

providing data on original items of interest, SMEI is capable of providing stellar 

time series of point sources with a 102-minute time resolution, reliably detecting 

brightness changes down to mSMEI '" 8 (see Section 5.3.1). 

5.3 Fitting Point Sources in SMEI maps 

To achieve the photometric precision of SMEI (0.1 % differential photometry per square 

degree), point sources brighter than 6th magnitude must be fit and subtracted from the 

all-sky maps. Subtraction is conducted on the composite images and not individual 

CCO frames. The UCSD SMEI database contains a list (12000 position and apparent 

magnitude) of 5600 sources expected to be brighter than 6th magnitude in the SMEI 

sky-maps, taking into account the SMEI band pass (i.e. mSMEI < 6, see end of this 

Section). The brightest planets have also been added to this list (Venus, Mars, Jupiter, 

and Saturn). 

As stated in Section 5.2.3 the final output of the SMEI procedure is three maps, the 

largest containing the equatorial region (3600 x 1200 bins), and two smaller maps con­

taining the poles (800x 800 bins). Each map has an angular resolution of 0.10. Within 

each map the shape and size of a bright star is influenced by three factors: 

1. A given star is made up of the average of a dozen sequential frames, where the 

star crosses the field of view at an angle of I () 1< 300 from the optical axis of the 

camera, therefore the PSF width varies as cosO. 

2. The orbital plane of the Sun-synchronous orbit rotates 3600 over a year and so 
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Figure 5.6: "Standard stars" (PSFs) for cameras 1, 2, and 3 (left to right). For each camera 
a 2° x 2° square is shown. The cross indicates the location of the centroid for the brightness 
distribution. The standard star is constructed with an angular resolution of 0.025°. The effective 
non-zero area of the PSF is 1.18 square degrees for Camera I , 1.32 for Camera 2, and 1.03 for 
Camera 3. In these images North is up. Image taken from Hick el a!. (2007). 

the PSF rotates around its centroid in the ky-map a well. 

3. The map projection distorts the PSF depending on it location in the sky-map. 

The standard PSF used for fitting was created via the ob ervation of many bright i 0 -

lated stars over a year (see Hick et al., 2007). For the elected ky-maps the tar 

were superimposed and averaged after background subtraction and correction for the 

above three effects. The resulting PSF shape ha a full width of approximately 1°, is 

highly asymmetric, and "fish-like" in appearance; thi i caused by comatic and pher­

ical aberrations of the optics (Hick et aI., 2007). The PSF for each camera i given in 

Figure 5.6. 

As stated above the orientation of the PSF on the sidereal sky rotate over 360° during 

the course of a year. Near the poles this change is near uniform rotation, but away from 

the poles it becomes increasingly non uniform. An example of thi rotation i shown 

in Figures 5.7(a) and (b). The orientation of the PSF for every star can be calculated 

knowing the spacecraft pointing information and the star location. 

The width of the PSF is inversely proportional to cos(} as the position incr a e fr m 

the optical axis of the camera in the long dimension of the field of view. Only the 

width perpendicular to the PSF symmetry axis is affected, i.e. along the () direction. 

Therefore the PSF of a star becomes narrower the further from the optical axis it gets. 
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Figure 5.7: The Orion constellation from SMEI all-sky-maps as viewed by Camera l. Left: 
(a) Orbit from 2005 November 10 at 03:24:54 UT. Right: (b) Orbit from 2006 January 19 at 
176:37:21 UT. Rotation of the PSFs is due to rotation of the spacecraft orbit relative to the 
sidereal background. The grey-scale is set to saturate at 1000 ADU. Only HD 33111 and 8 0ri 
are not saturated. The map covers the area 75 0 < a <950

, _130 < 8 < I 10. J mage taken from 
Hick et al. (2007). 

5.3.1 Least-Squares Fit of a Point Source 

Point sources (stars and the brightest planets) are fitted to the tandard PS u ing 

a least-squares fitting procedure implemented in IDL Hick et al. ( ee 2007, routine 

named smei-star -fit). In its simplest form the fit provides an analytic solution for a pla­

nar background and the brightness of the point source under examination (with re pect 

to the "standard star"). Within this fit, PSF centroid, width (scaling factor of co - 18), 

and orientation must be taken into account. An area around each tar is u ed within the 

least-squares fit and includes all sky-bins that map to equivalent location in ide the 

effective area of the PSF. An additional area is also used , which extend out a certain 

radius from the centroid (wing radius). This is to ensure that enough sky-bin are u ed 

to fit the background, and that these are safely away from the PSF it elf. At the ex­

pense of a substantial increase in computational resources the quality of the fit can be 

improved by iteratively fitting the PSF centroid, width, and orientation (see Hick et a1., 

2005,2007, for further details). 
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As described in Buffington et a1. (2007) a bright-star calibration of the SMEI data was 

conducted. This calibration was made via the comparison of the surface brightness 

response of SMEI to the SOHO-LASCO C3 coronograph using measurements of 17 

bright « 4.5 magnitude) stars observed by both instruments. Theses stars were not 

known variables and had no neighbouring stars brighter than 6th magnitude within 1 0 

on the sky. The SMEI and LASCO C3 coronograph data are per-pixel electron counts 

gathered from the CCD within a certain integration time, with SMEI these counts are 

referred to as analogue-to-digital units (ADUs). A common surface brightness unit 

to use is an S 10 unit, this is defined here as the equivalent number of 10th visual­

magnitude G-type stars per square degree. The 17 stars used with the Buffington et a1. 

(2007) analysis were not solar-type G stars, but their spectral types were known and 

spectra available (Neckel & Labs, 1984; Pickles, 1998). The visual magnitude of each 

star was corrected by the ratio of the star's spectrum to that of the Sun, integrated over 

~ and multiplied by the appropriate CCD response and mirror reflectivity versus ~. 

The resulting "mSMEI" then connects SMEI's observed number of ADUs to the S 10 

brightness scale. It was found that one S 10 unit = 0.46 ± 0.02 ADUs. The conversion 

of a star's brightness to mSMEI is given in Equation 5.1 18
, 

-2.5 .log(F/G) - a 
mSMEI = b (5.1 ) 

where F is equal to the brightness of the examined star (with respect to the "standard": 

/I/std ), G the gain of the camera, and calibration constants with values of 1.65 and 0.99 

represent a and b respectively. 

5.3.2 Star crowding 

A star of interest is considered crowded when it lies less than one PSF width from an­

other bright star (typically 6th magnitude or brighter). In order to fit and remove such 

stars a simultaneous fit must be done (i.e. multiple stars in a single fit). Currently the 

lSSee http://supercat.ucsd.edul'''poncholhelp/smei/SMELframes.htmlfor all SMEI IDL documenta­
tion and calculations. 
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simultaneous fitting of stars is conducted when stellar separation is within 0.25° - 1.0° 

(originally the maximum was set as 0.75° and this value was used in Section 5.5.1). 

In this instance the brightness contributions of the two stars can be separated and con­

tamination of the sources is considered minimal. However, if stellar separation is less 

than 0.25° the stars can not be separated. The brighter star is fit first and is assumed 

to include the brightness of the fainter star (which is not fit at all), the source is then 

considered to be contaminated. The SMEI pipeline is currently able to fit four bright 

stars simultaneously using the least-squares fit, therefore many crowded regions of the 

sky such as close to the Galactic plane, are off-limits 19
• The surrounding region of each 

point of interest must therefore be assessed on an object-by-object basis for levels of 

potential contamination. 

If a star of interest has a bright neighbour which is at a distance greater than 1.0° this 

may also be included in the fitting procedure but subtraction will occur as normal i.e 

the brightest star fit first and then the fainter. This may be important in removing any 

stray light from the bright star in the fit of the fainter star, and so contamination. 

5.4 Finding Novae with SMEI 

As noted above, SMEI can reliably detect brightness changes in point sources down 

to mSMEI '" 8 (see Section 5.3.1 for details on mSMEd. Therefore one class of optical 

variables that are potentially within the detection limit of SMEI is novae. The results of 

Shafter (2002) indicate that as many as rv 6 CNe per year are then potentially dctectable 

by SMEI. The high cadence of SMEI along with its ability to monitor objects appearing 

closer to the Sun than is possible from ground-based observations, makes it feasible 

not only to constrain the observed nova rate, but also to measure nova light curves near 

and especially before maximum light with unprecedented temporal resolution. 

For the purpose of this work a supplementary star catalogue was addcd to the UCSD 

SMEI data base. This catalogue contains the names, co-ordinates, and discovery mag-

19For example. the lowest Galactic latitude where a nova has been detected without contamination is 
1.5° 
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nitudes of 62 CNe and 3 RNe (RS Oph, U Scorpii, T Pyxidis) with eruptions dating 

between 2003 and 2011 (see Appendix B). As an initial trial, 22 of the brightest novae 

were examined. The choice of these 22 novae was based on whether they were visible 

above the background noise within the SMEI sky-maps around peak. 

5.4.1 Data Processing 

The processes required for the examination and subsequent creation of the nova light 

curves within the SMEI data archive are discussed below. 

Visual Inspection 

Individual novae and their surrounding region were visually inspected within the com­

posite sky-maps produced by the SMEI data pipeline. This was achieved using a tool 

provided in the SMEI data analysis software called qsmei..sky. This tool enables the 

user to determine several important factors: 

1. Confirmation of the nova outburst: The tool allows the user to examine the 

object from one orbit to the next. An animated gif may also be constructed at 

the location to further assess if there is a brightness increase of the object with 

respect to the surrounding environment. If the nova event was not seen within 

these images the object was dismissed, either because the event was too faint, or 

that the object was located within a region crowded by many bright stars and so 

its outburst is made indistinguishable. 

2. The camera the object is located within during the outburst: The user may 

also determine if and when there is any overlap of this location between the 

cameras. 

3. The identification and location of any bright stars surrounding the nova: If 

these bright stars are far enough away to be accounted for within a simultane­

ous fit or if they are too close and so become a source of contamination (see 
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Section 5.3.2). 

4. Identification of bad orbits during the nova outburst: These orbits are re­

moved from the time-series once a fit conducted. An orbit may be considered 

bad for several reasons. These include: close passage of a bright planet or space 

debris to the nova; high energy particle bombardment of the frame; an approach­

ing Sunwards or anti-Sunwards mask that affects the area surrounding the nova 

which would be used for the fit; and engineering issues with the instrument itself. 

Once points 1 to 3 were undertaken an initial fit for a nova could be constructed and 

this fit evaluated (see Section 5.4.1). The final point listed above was then implemented 

on the resulting time-series. 

Parameter Adjustment 

The photometry of each nova was obtained using the extended least-squares fit de­

scribed in Section 5.3.1. This procedure implemented the iterative fitting of PSF cen­

troid (ji:ccentroid), width (the direction cosine angles, fixfovangle), and orientation 

(the PSF rotation angle,fix-psjangie). Zodiacal (rmzld) and sidereal background light 

(rmbkgnd) were also taken into account during the fitting stage. The fitted value for 

the flux of the nova (and neighbouring stars where applicable) was then converted into 

an unfiltered SMEI apparent magnitude (mSMEI) using Equation 5.1, and its error cal­

culated using photon counting statistics and error laws. Within the fitting procedure 

several parameters may be adjusted or defined in order to achieve the best fit and so 

produce the best nova light curve. 

For any fit the area used to sample the surrounding stellar region (wing radius) from the 

PSF centriod (see Section 5.3.1) is often set as auto_wing. The value of this parameter 

is however is dependent upon the magnitude listed for the nova within the catalogue 

(see Equation 5.2). These values are often discovery magnitudes and as such not al­

ways appropriate. The size of the region may therefore be adjusted to a user specified 

radius using the wingJadius command. The size of the chosen wing radius may also 
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be dependant on what is within the surrounding stellar region. 

auto_wing = 0.10. (3 - mSMEI) + 1.4 [degrees]. (5.2) 

A smaller wing radius may be appropriate under the following circumstances: 

1. If the object is close to several bright stars and a smaller surrounding stellar 

region would reduce their contamination in the fit. 

2. If the object is close to a masked region and a smaller radius is required so as to 

not include this mask. 

The choice of wing radius is assessed via visual inspection and examination of certain 

parameters produced on fitting ofthe nova when using varying radii. These parameters 

are as follows: 

1. Correlation Coefficient of the Fit (cvrnin): For every orbit within the specified 

time period the object is fit and a correlation coefficient is calculated (correlation 

to the SMEI PSFl"standard star"). For novae with peak magnitudes brighter 

than mSMEI = 7 a threshold value of 0.6 is used, where data below this limit 

are removed. For novae with peak magnitudes at or below mSMEI = 7 a lower 

limit of 0.4 is used, with the understanding that the errors on this data will be far 

greater. Each light curve produced with a certain wing radius is assessed on the 

basis of the number of points above and below the relevant cut-off value. 

2. Pixels inside the PSF (n.Jitpsf): The number of pixels inside the PSF can be a 

good indicator of whether the object in question is being affected by a masked 

region or transition into another camera. If the number of pixels varies signifi­

cantly it may be wise to opt for a smaller wing radius in order to prevent overlap 

of the sampling region and the masked/transition region. 

3. Background Constant (back_consO: The background constant is a measure of 

fitted background. For bright novae the edges of PSF fitted do not spread far 
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enough, meaning that not all of the nova light is accounted for in the fit and may 

be included within the wing radius and so the fitted background. Examination of 

this background indicates this under- or over-subtraction (depending on the ob­

ject). In some cases this affect may be reduced by applying a larger wing radius. 

However, the size of the radius applied is also dependent on the surrounding 

region as described above (Le. bright stars or masks). 

Consideration of the above properties as well as the surrounding nova region deter­

mined the wing radius used for the fit. 

If a simultaneous fit was required, additional parameters could also be modified. These 

includeskip..distand include..dist, which specify the angular distance from the object of 

interests centriod in which additional objects can be fit or ignored. These are typically 

set at 0.25° and 1.0° respectively. Although both parameters can be increased only 

includellist can be successfully reduced (see Section 5.3.2). On the simultaneous 

fitting of multiple objects fix-centroid will adjust the centroid of the group of objects 

whilst keeping the relative location of the objects fixed (as implied by the catalogue 

positions). Using this centroiding can be very important when correcting for pointing 

errors, which affect all objects in a group in the same way. An additional parameter 

may also be used calledfiLpattern. In this case the centroids of all objects in the group 

are adjusted individually thus changing the relative locations of the objects. 

If a nova were seen to pass from one camera to the next the effect of this transition is 

taken into account using an additional fit parameter called clean_edge. 

Once an object was fit, bad data (corrupt orbits and low correlation values) were re­

moved. The resulting nova light curves obtained through this process are presented in 

Section 5.5. 
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5.5 Nova Light Curves 

In total 13 erupting novae were detected and investigated in further detail. The re­

maining 9 novae were not clearly detected due to several effects. Many of these novae 

have low (mag"" 7 - 9) peak magnitudes making detection difficult, some were missed 

due to technical difficulties with the imager itself, or due to transient stray light from 

the Sun and/or planets (e.g. the U Sco 2010 outburst, Schaefer, 2010, was missed due 

to its location within the 20° mask of the Sun), finally a few novae were located in 

such densely populated regions that obtaining accurate photometry of the object was 

impossible. 

Four of the 13 novae detected produced highly detailed nova light curves. These 

four uniquely detailed light curves are discussed in Section 5.5.1 and are the subject 

of Hounsell et al. (201Oa,b). The additional 9 novae detected are discussed in Sec­

tion 5.5.2. With the outburst of T Pyxidis in 2011 (see Hounsell et aI., 20 11 b) this 

object was then added to the 5MBI list of novae and investigated in detail, the results 

of which are presented in Section 5.5.1. 

5.5.1 Light Curves: First Class Data 

The light curves presented in this section are unprecedented in their detail and present 

data on phases that previously were both poorly covered observationally, and are poorly 

understood. Table 5.1 summarises the main findings. 

RS Ophiuchi 

RS Ophiuchi is a recurrent nova (see Section 1.5) whose latest outburst was first 

observed by Narumi et al. (2006) on 2006 February 12.83 UT (MJD 53778.83) at 

mv = 4.5. The 2006 outburst was observed in great detail across the electromagnetic 

spectrum (see A. Evans, M. F. Bode, T. J. O'Brien, & M. J. Damley, 2008, and refer­

ences therein). Of particular note was the interaction of the high velocity ejecta with 
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the pre-existing wind of the red giant in the system, leading to the rapid establishment 

of strong shocks (e.g. Bode et al., 2006). 

RS Oph showed a very rapid rise to maximum in the SMEI data (see Figure 5.8), in­

creasing in brightness by 2.3 magnitudes in 0.9 days. This value is measured using 

the first reliable detection of the nova on its rise to maximum and the peak magnitude 

itself. The SMEI light curve shows clear evidence of a pre-maximum halt (see inset 

in Figure 5.8) starting 2006 February 12.31 UT (MJD 53778.31) and lasting just a few 

hours with a mean mSMEI = 4.50 ± 0.05 (defined as the mean magnitude over the 

duration of the halt, quoted error is the RMS scatter). The duration of the halt (for RS 

Oph, V598 Pup, and KT Eri, see below) is taken to be the time between the first and 

third change in the gradient of the rising light curve and is appropriate for the speed 

of the nova as proposed by e.g. Payne-Gaposchkin (1964). Note that this halt (and 

subsequent ones in other novae - see below) looks like a temporary reversal in the light 

curve and may be related to a change in mass loss rate this however, needs to be in­

vestigated in detail. Peak brightness of the nova was reached on 2006 February 12.94 

(MJD 53778.94) ±0.04 UT at mSMEI = 3.87 ± 0.01. It is noted that the peak magni­

tude derived from the SMEI data is over half a magnitude brighter than ground-based 

estimates. This discrepancy may be caused by a slight over-subtraction within the fit of 

the SMEI PSF or the fact that the ground-based observations are visual magnitude es­

timates, compared to the broader band of SMEI, or both. After peak, the nova declined 

very rapidly with t2 = 7.9 days (see Section 1.4.1) 

RS Oph remains the only nova to be detected at outburst with the Swift Burst Alert 

Telescope (BAT; Bode et al., 2006; Senziani et aI., 2008). It was clearly detected in 

the 14-25 keY channel for rv 5 days around discovery, with a marginal detection in the 

25-50 keY band at this time. Figure 5.8 shows the BAT 14-25 keY results over-plotted 

on the SMEI data. It is apparent that the initial rise of the optical and hard X-ray is 

coincident within the temporal uncertainty. As the hard X-ray emission is thought to 

arise from the interaction of the fastest moving ejecta with the pre-outburst wind of the 

red giant (Bode et aI., 2006), the coincidence of the onset of the outburst as seen in 

the optical with that found in the BAT data implies that significant high velocity mass 
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loss occurs very early in the outburst itself. As the optical peak may indicate the time 

of highest mass loss rate from the surface of the WD, one might reasonably expect 

[tmaxlBAT .2: [tmaxlSMEI as appears to be the case here. 
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Figure 5.8: SMEI light curve of RS Oph (black squares) in term of "SMEr magnitude" ( ee 
Buffington et aI., 2007) versus time (left-hand y-axis). Over-plotted (grey) are the Swift BAT 
14-25 keY data from Bode et al. (2006, right-hand y-axis), the grey da hed line indicate zero 
flux on the right-hand y-axis. The star represents the discovery magnitude of the nova taken 
from Narurru et at. (2006). The triangle is the peak magnitude Ii ted by the AAYS020. The ap­
parent discrepancy between ground-based and SMEI magnitudes i di cu ed in Section 5.5.1 . 
An arrow is used to indicate the latest observed magnitude of the nova before ri se, according to 
the AFOEy2l data set. The inset shows the rising portion of the light curve with an expanded 
time scale. 

20 American Association of Variable Star Observers - http://mira.aavso.org/tmp/data5167.txt 
21 Association Francaise des Observateurs d'Etoiles Varuables - http://cdsarc.u- trasbgJr/afoev/oph/r 
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V1280 Scorpii 

V1280 Sco was discovered in outburst by Yamaoka et al. (2007b) on 2007 Febru­

ary 4.86 UT (MJD 54135.86) at an unfiltered magnitude of 9.9. Twelve days later it 

reached visual maximum quoted as mv = 3.79 (Munari et al., 2007b). Although the 

initial rise of the nova is lost in the SMEI data, due to transient stray light from the 

Sun, and from Jupiter as it moves across the sky, Figure 5.10 shows that the climb 

to maximum on 2007 February 16th is very slow with the first recorded SMEI point 

occurring on 2007 February 13.61 UT (MJD 54144.61) at mSMEI = 6.19 ± 0.03. It 

takes 2.54 days for the light curve to rise by approximately two magnitudes to peak. 

The slow rise of the nova is consistent with the 12 day rise noted by various authors 

(e.g. Chesneau et aI., 2008). 

Canonically, the supposed pre-maximum halt is defined as occurring one to two magni­

tudes below peak optical brightness (see Warner, 2008, and references therein). With 

this in mind there appears to be a halt before the first maximum of Vl280 Sco last­

ing 0.42 days (duration of halt is defined here as the time between the first and second 

change in gradient ofthe rising light curve) with a mean mSMEI = 5.231 ±0.003. How­

ever, there is evidence of an earlier plateau in the nova light curve, but which is not 

within the magnitude range expected. Peak visual magnitude occurred on 2007 Febru­

ary 16.15 (MJD 54147.15) ±0.04 UT with mSMEI = 4.00 ± 0.01 (see Figure 5.10). 

The nova then experienced two major episodes of re-brightening peaking at Febru­

ary 17.34 (MJD 54148.34) ± 0.04 UT and 19.18 (MJD 54150.18) ±O.04 UT, with 

mSMEI = 4.23 ± 0.01 and 4.13 ± 0.01 respectively. The existing published visual 

light curves lack such fine detail (see Figure 5.9 taken from Das et aI., 2008). Data 

from the "n of the Sky"22 project are superimposed in Figure 5.10. These are white 

light unfiltered magnitudes, confirming the SMEI calibration and following the gen­

eral trend of the light curve. Note that the discrepancy between the last "11" of the Sky" 

data point and the SMEI data is probably due to the fact that at this point the detection 

is being made well below SMEI's limiting magnitude threshold. Overall, the SMEI 

data contain the best known pre-maximum values for the nova from a homogeneous 

22http://grb.fuw.edu.pl/pi/index.html 
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observational set and illustrate the current lack of coverage of this phase of evolution. 

The subsequent decay of the SMEI light curve is marked by a distinct change in decline 

rate in visual light on 2007 February 26.4 (MJD 54157.37) ± 0.1 UT (see inset in 

Figure 5.10) at mSMEI = 5.14 ± 0.02. The overall decline that then ensues is thought 

to be the effect of rapid formation of dust in the nova ejecta (Das et aI., 2008; Rudy 

et aI., 2007) . 
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Figure 5.9: Ground-based early V-band light curve of V1280 Sco. Data taken from the Das 
et at. (2008) light curve which was in tum created using data from the AFEOV. 

The change in slope on February 26.4 UT may be identified with the onset of large­

scale dust formation. Chesneau et al. (2008) note that the first unambiguou evidence 
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Figure 5.10: SMEJ light curve of V1280 Sco (black square ), superimposed (gray tars) are 
data from the "7r of the Sky" project. The inset show the region around the light curve break 
which is associated with the onsel of dust formation . The solid line shows the fit to the pre­
break SMEJ light curve and it extrapolation. Note that the discrepancy between the la t "7r of 
the Sky" data point and the SMEI data is probably due to the fact that at this point the detection 
is being made well below SMEI's limiting magnitude threshold. 

of dust emission dominating the near-i nfrared spectra j on March 7 th , but they suggest 

that the absence of obvious emission in the spectrum of February 26.97 UT (MJD 

54157.97) does not rule out the presence even at that stage of an extended optically 

thin dust shell. Certainly, the change in light curve slope on February 26.4 UT i a 

subtle effect that can only be derived from photometry with the temporal sampling and 

small intrinsic scatter of the SMEI data. As noted, the rise to maximum light was very 
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slow. From consideration of infrared photometry of the fireball expansion phase, Das 

et al. (2008) find that the outburst commenced f'V 2.35 days before discovery, on 2007 

February 2.5 UT (MJD 54133.5). Assuming that extensive mass loss began at this 

time, from the SMEI results, this gives the condensation time of dust grains from the 

ejecta as tc ,...., 24 days. This time-scale, together with the observed ejection velocity 

(,...., 600 km S-I, Das et al., 2008) and an assumed condensation temperature of dust 

grains (Tc = 1200K, Evans & Rawlings, 2008; Gehrz, 2008) leads to an estimate of the 

nova's luminosity at this time, assuming the nucleation centres act as black bodies as 

Taking this as the Eddington luminosity ofthe WD (e.g. Gehrz, 2008, Equation 5.4) in 

turn implies AfwD = 0.6 M0 . 

(5.4) 

The equilibrium temperature of the nucleation centres may be higher than that of a 

black body for the same L* and distance from the nova, hence AfwD is likely to be 

an upper limit. This compares with the AfwD = 1 to 1.25 Me;) estimated by Das et al. 

(2008) from consideration of the time-scale of mass loss, plus outburst amplitude A, 

and expansion velocity vexpo These authors admit however that such a high mass es­

timate is incompatible with what appears spectroscopically to be an explosion on a 

carbon-oxygen WD, for which the estimate made here of MWD would be compatible. 

The derived L* and a spectrum near maximum light akin to that of an F star (Bolomet­

ric Correction f'V 0) gives Atv = -6.2. Taking the line-of-sight (interstellar) extinction 

to be Av = 1.2 ± 0.3 (Chesneau et al., 2008) and mvax = 4 yields a distance to the 

nova of d = 630 ± 100 pc, roughly half that derived by Chesneau et al. (2008). A 

linear extrapolation of the nova light curve is used between 2007 February 20.59 UT 

(MJD 54151.59) and 26.59 UT (MJD 54157.59) in order to determine t3. The data for 
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the extrapolation are taken after the last re-brightening event, but before the dust break 

(i.e. removing the influence of dust formation) shown in Figure 5.10. A t3 value of 

f'V 34 days is determined, i.e. an estimated decline of 0.1 magnitude per day. From the 

MMRD relation given in Downes & Duerbeck (2000), A/v f'V -8. However, the appli­

cability of the MMRD is questionable in the context of such gross variability around 

maximum light, followed by a slow and steady decline. 

V598 Puppis 

V598 Pup was discovered by Read et al. (2007) in the XMM-Newton slew survey on 

2007 October 9.0 UT (MJD 54382) as a transient X-ray source, designated XMMSLI 

J070542.7-381442. It was later identified as a nova by Torres et al. (2007) whilst trying 

to identify the object's optical counterpart. The peak visual magnitude was noted by 

Pojmanski et al. (2007) as mv < 4 on 2007 June 5.968 UT (MJD 54256.968) (see 

Figure 5.11). 

From the SMEI data shown in Figure 5.12, the rise to maximum is found to be very 

steep with the nova increasing 4.1 magnitudes within 2.8 days. A pre-maximum halt 

is indicated on 2007 June 3.82 UT (MJD 54254.82) with a mean mSMEI = 5.2 ± 0.1 

and duration a few hours (see inset in Figure 5.12). The nova then rose to its peak 

visual magnitude of mSMEI = 3.46 ± 0.01 on 2007 June 6.29 (MJD 54257.29) ±O.O·1 

UT. Decline from maximum also appears steep. However a section of this decline 

phase has been missed in the SMEI data due to a failure of the star tracker, causing the 

spacecraft to assume a Sun-pointing mode. This failure lasted f'V 21 days. An estimate 

of t2 using an extrapolated linear fit to the initial decline of the nova (between 2007 

June 6.29 [MJD 54257.29] and 8.33 [MJD 54259.33] UT) yields t2 = 4.3 days. 

It should be noted that V598 Pup is located close (f'V 0.1°) to HD 54153, a 6th magni­

tude star. In order to reduce the star's effect on the nova, a forced simultaneous fit was 

conducted. This procedure is ideally suitable for larger stellar separations (between 

0.25° - 1.0°, see Section 5.3.2 for further details) and thus cannot consistently remove 

the contaminating star especially as the nova starts to fade. The variability seen in 
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the light curve of Figure 5.12 at later times (MJD 2: 54280) is therefore most likely 

due to contamination from the nearby bright star and problems occurring in the fitting 

procedure. 
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Figure 5.11: Ground-based V-band light curve of V598 Pup reproduced from data in Pojmanski 
et al. (2007). 
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KT Eridani 

KT Eri was discovered on 2009 November 25.536 UT (MJD 55160.536) by Itagaki 

(2009) with an unfiltered CCD magnitude of 8.1. Like V598 Pup, KT Eri was missed 

at peak brightness and only discovered a considerable time later. Its outburst was found 

in pre-discovery images with a peak visual magnitude given as 5.4 on 2009 November 

14.63 UT (MJD 55149.63, Yamaoka et aI., 2009, see Figure 5.13 for AAVSO light 

curve). 
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Figure 5.13: Light curve of KT Eri using V-band data taken from the AAVSO. 
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Pre- and post-outburst data for this object have been obtained by SMEI (Hounsell et aI., 

2010b) and the SkyCamT (SCT) instrument which is mounted to parallel-point with 
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the main beam of the LT (Steele et aI., 2004, see also Section 3.1.2 for further details). 

The LTSCT camera operates continuously throughout the night, taking a 10 second 

exposure once per minute in the direction of the main telescope pointing, giving a 

limiting magnitude of rv 12. As with SMEI, the data are unfiltered (i.e. white light) 

and are calibrated with respect to four bright isolated USNO-B stars in the field of 

view. 

The SMEI and LT light curves are shown in Figure 5.14. SMEI data indicate the 

initial rise of the nova is steep (rising 3.0 magnitudes over 1.6 days) first being clearly 

detected in outburst on 2009 November 13.12 UT (MJD 55148.12) with mSMEl = 

8.44 ± 0.09. Evidence of a pre-maximum halt occurring on 2009 November 13.83 

(MJD 55148.83) ±0.04 UT with a mean mSMEI = 6.04 ± 0.07 is given by SMEI 

with LTSCT observations adding two important points to the coverage of the halt (see 

inset in Figure 5.14). The duration of this halt is again only a few hours. SMEI 

observations indicate that the nova reached maximum light on 2009 November 14.67 

(MJD 55149.67) ±0.04 UT with mSMEI = 5.42 ± 0.02. LTSCT observations bracket 

the peak seen with SMEI. The nova then subsequently declined rapidly with t2 = 6.6 

days confirming KT Eri as a very fast nova (Warner, 2008). The last reliable SMEI 

detection of the nova occurred on 2009 November 27.23 (MJD 55162.23) ±0.04 UT 

at mSMEI = 8.3 ± 0.1. LTSCT observations extend the optical coverage of the light 

curve until 2010 January 19.85 UT (MJD 55215.85). The LTSCT data also confirm 

the calibration of the SMEI photometry and general trends in the resulting light curve. 

Similar results are also found within "rr of the Sky" data. 

KT Eri has been detected as a radio source (O'Brien et aI., 2010) and a luminous 

soft X-ray source (Bode et aI., 2010). Attention has been drawn to the similarities 

of its optical spectral and X-ray evolution to that of the recurrent nova LMC 2009a 

(Bode et aI., 2010). Its outburst has also been associated with a highly variable stellar 

progenitor at mag rv 15 showing evidence for pre-outburst circumstellar material and 

with similarities to the soft X-ray transient CSS081 007:030559+054715 (Drake et aI., 

2009). It is noted that the very fast decline and relatively low amplitude of the outburst 

(A rv 10 mags) place KT Eri in an anomalous position on the A vs speed class diagram 
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for CNe (e.g. Warner, 2008), but much more in line with that for recurrent novae such 

as U Sco (Schaefer, 2010). 

6 

Q) 

"0 
;j ..., 
'2 
OIl 

'" ::::E 
...., 
~ 8 Q) .... 

'" 0. 
0. 
< 
C;j 
::::E 
if) 

10 

~ ., 
'\ 

55150 

i 
~\ 

\ 

55160 55170 

I 

I 
I 

9 

I 

I 
I 

I 
I 

1 0 ~~~~1~~~~~~~~~ 
55 148.5 55 149 55 149.5 

MJD 

55180 55190 55200 55210 
MJD 

55220 

Figure 5.14: SMEI (black squares) light curve of KT Eri wi th Liverpool Tele cope Sky amT 
data superimposed (grey stars - see Section 5.5.1 for detail). SMEI and LTSCT data seem 
to be in good agreement with each other confirming statements made within Buffington el al. 
(2007). The inset shows the rising portion of the light curve with an expanded lime cale 

T Pyxidis 

The 2011 outburst of T Pyx was discovered at a vi ual magnitude of 13.0 on 20] I 

April 14.29 UT (MJD 55665.29; taken as t = 0 days; Waagan et aI. , 2011). This i the 

first outburst of T Pyx since 1966 December 7t h , with previous recorded outbur t in 
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1890, 1902, 1920, and 1944. 

Swift XRT observations of the nova began on 2011 April 14.59 UT (MJD 55665.59; t 

= 0.3 days) with initial data indicating a soft spectrum (Kuulkers et aI., 2011). Addi­

tional spectra of the nova were subsequently obtained by the Southern African Large 

Telescope (SALT) using the RSS spectrograph on April 15.89 UT (MJD 55666.89; t 

= 1.6 days; Nordsieck & Shara, 2011), and a detection made in the radio using the 

EVLA on May 1.10 UT (MJD 55682.10; t = 16.8 days; Chomiuk et aI., 2011). The 

mean reddening of the object is given as Es-v = 0.44 ± 0.18 (Shore et aI., 20 II). 

The first reliable detection of the nova outburst by SMEI occurred at the end of the 

rapid rise seen in AAVSO data, at mSMEI = 8.80± 0.10 on 2011 April 15.84 UT (MJD 

55666.84; t = 1.6 days, see Figure 5.15). Following the initial SMEI detection, the light 

curve rose very slowly over the following 12 days, reaching an average magnitude of 

approximately 7.98 on 2011 April 27th (MJD 55678.34; t = 13.1 days). During this 

almost "plateau" phase, quasi-periodic variations were observed, with peak-to-peak 

times varying between one and two days. The amplitudes of these variations ranged 

between 0.35 and 0.50 mags. 

Following this plateau phase there was a gap in the SMEI data (due to instrumental 

problems) lasting "-' 1.4 days, after which the light curve was seen to rise more steeply 

to mSMEI = 6.88± 0.04 on 2011 May 5.31 UT (MJD 55686.31; t = 21.0 days). It 

subsequently declined to mSMEI = 7.43± 0.05 on 2011 May 8.35 UT (MJD 55689.35; 

t = 24.1 days) and then rose again to mSMEI = 6.78± 0.04 on 2011 May 10.53 UT 

(MJD 55691.53; t = 26.2 days). The amplitude of these variations ranged between 

0.55 and 0.65 magnitudes. A further rise occurred after the latter peak where the nova 

reached an optical peak of mSMEI = 6.33± 0.03 on 2011 May 12.23 (MJD 55693.23; 

t = 27.9 days). This peak occurred in conjunction with the predicted peak presented in 

the nova light curve template of Schaefer (2010), based on the 1966 observation. 

The variations seen in the SMEI light curve during its rise are similar to those found 

by Schaefer (2010) who reported "rapid" oscillations in the 1966 outburst light curve 

(Landolt, 1970) with amplitudes of approximately 0.5 to 1.0 magnitudes, on a time-
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Figure 5.15: SMEI light curve of T Pyx. The light curve clearly shows 0 ci llation and light 
curve ends as the nova approaches the Sun-wards excl u ion zone ( ee Section 5.2 for further 
details. 

scale of about a day. The oscillations within the SMEI data were tudied in detail u -

ing Starlink's PERIOD23 package. Period were determined u ing a cia ical di creet 

Fourier Transform on the data which sum the mean- quare amplitude of the re ult 

to form a power spectrum. A period range between 0.04 - 100 day wa explored and 

instrumental aliases considered within the analysis u ing a data window technique. 

The data window depend on the manner in which the sampling of the the ignal was 

performed and does not depend on the signal it elf. The lower plot of Figure 5.16 

indicates several possible period with the rna t dominant being ju t under two day . 

However, the presence of everal other peaks around the 0.5 day region mean that no 

23Information on PERIOD may be found at http://www.slarlink.rl.ac.ukJdoc /sun I 67.htxlsun I 67.html 
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clear period may be derived. 
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Figure 5.16: Period determination of T Pyx using Fourier analy i . Data windowing re ult 
(top), power spectrum result (middle), and ratio of power spectrum to data window (bottom). 
The bottom plot indicates that there is a period under half a day and another under two day . 

The last reliable detection of the nova by SMEI wa at m SMEI = 7.26± 0.05 on 20 11 

June 2.32 UT (MID 55714.32; t =49.03 days). After this point the nova appr ached the 

Sun-mask exclusion zone and further detection proved unreli able and then impo able 

as it entered the masked region . Thi has prevented the calculation of a t2 time. Due 

to the nature of the light curve it is also difficult to determine the ex i tence of a pre­

maximum halt and thus such data are not provided within Table 5.1. 



Table 5.1: Derived light curve parameters. 
Name Onset of Outburst Time of Maximum Peak SMEI t2 t3 Pre-max halt du- Pre-max halt ~msMEI ~t from halt to wing radius 

yyyy/mmldd ±0.04 yyyy/mmldd ±0.O4 magnitude (days) (days) ration (days)>I< mean magni- from halt to peak (days) (deg) 
days days tude peak<P 

RSOph 2006/02112.03 2006102112.94 3.87 ±0.Dl 7.9 0.14 4.50±0.05 0.63 0.49 1.25 
VI280Sco 2007/02116.15 4.oo±0.Ol 2I.3t 34.3t 0.42 5.231±0.003 1.23 0.49 1.25 
V598 Pup 2007/06/3.47 2007/06/06.29 3.46±0.01 4.3° 0.28 5.2±O.l 1.74 2.19 1.4 
KTEri 2009/11/13.12 2009/11114.67 5.42 ±0.02 6.6 13.6* 0.14 6.04±0.07 0.63 0.71 1.25 
TPyx 2011/04/15.84 2011105/12.23 6.33 ±0.03 1.4 

'I1The duration of the halt is taken to be the time between the first and third change in the gradient of the rising light curve for RS Oph, V598 

Pup and KT Eri. With V1280 Sco it is taken to be the time between the first and second change in gradient ofthe rising light curve. 

tP ~m from halt to peak is calculated using the mean magnitude of the pre-maximum halt 

tUsing an extrapolation ignoring dust extinction (see text for details) 

°Using a linear extrapolation of the initial decline (see text for details) 

*Using the extrapolation of SMEI and LT data. 
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5.5.2 Light Curves: Second Class Data 

The light curves presented in this section are much fainter than those given in Sec­

tion 5.5.1. Many of these objects have peak magnitudes at or around 8th magnitude, 

below which detection is unreliable. The light curves derived, although more noisy 

than those of the first class data above, have however provided precise dates for the 

peak, outburst magnitudes, and in many cases decay time. 

All light curves were generated using the extended least-squares fitting routine de­

scribed in Section 5.3.1 however, data produced for each object were processed in a 

slightly more automated manner than described in Section 5.4.1. For each nova, light 

curves were generated using wing radii set to auto_wing 1.2, 1.3 and 1.4 respectively. 

Due to the faintness of each nova and crowding in some areas, simultaneous fitting of 

the nova and any close bright stars was conducted, along with the fitting of other bright 

stars within rv 10 _20 where appropriate. Via a combination of cshell scripts each file 

was then assessed on several criteria, these are described below. 

1. Points must have a correlation coefficient greater than 0.4, those that did were 

passed to a separate file for further evaluation. 

2. Points from the output file of step 1 were then assessed on the combined RA and 

Dec difference from the nova catalogue position. Only those with a combined 

difference ~ 0.10 were kept and again written to a separate file. This step was 

conducted to prevent data points resulting from large jumps in position (caused 

by centroiding during the fit) being counted. This jump may be caused due to 

the fitting of a residual from a nearby bright star which may have been poorly 

subtracted during the multiple fitting routine. If the nova is very faint the residual 

may be fit rather than the nova, this becomes more of an issue as the nova fades. 

3. The output file from step 2 was then assessed on the number of points used 

within the PSF fitting area. To do this the mean npsfvalue was calculated and an 

allowance of ± 20 was applied. These points were then written to a final file. 

The wing radius for each nova was then chosen based on the final file which possessed 
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the highest number of "valid" points. Visual inspection of the SMEI images for data 

within the chosen nova file was then conducted and any bad orbit data removed. The 

resultant light curves and a general overview of each nova are given below with Ta­

ble 5.2 summarising the main findings. 

V11S7 Scorpii 

Nova Vl187 Sco (n = 17h29m18~81, 8 = -31°46'01':5; J2000) was discovered prior 

to peak at mv = 9.9 on 2004 August 2.07 UT (MJD 53219.07) using data from the 

All Sky Automated Survey (ASAS)-3 patrol. It subsequently rose to a peak magnitude 

of mv = 7.42 on 2004 August 3.58 UT (MJD 53220.58 Yamaoka, 2004). The initial 

decline gives t2 = 8.7 and t3 = 15 days (Lynch et aI., 2006), making V 1187 Sco a very 

fast nova. Near-IR spectroscopic observations of the object by (Lynch et aI., 2006) 

indicated the development of a nova explosion on an ONeMg WD which did not form 

dust before entering its nebular phase. The emission lines found within the spectra 

were complex, double-peaked profiles. Using the double emission lines of III, Lynch 

et al. (2006) modelled the nova ejecta finding a ring or partial sphere-like emitting 

region. An extinction of Av = 4.68 ± 0.24 was derived using 01 lines in combination 

with the optical spectra, and with this a distance of at 4.9 ± 0.5 k pc via the MMRD 

relation. 

Using data from the SMEI archive a light curve for Nova VI187 Sco was created (see 

Figure 5.17). The SMEI data give the peak of the nova as mSMEI = 6.87 ± 0.01 

on 2004 August 3.77 ±0.04 UT (MJD 53220.77). This is 0.55 magnitudes brighter 

and 0.19 days later than the peak given in the lower time resolution Yamaoka (2004). 

The difference in declining brightness between the SMEI light curve and that of the 

AAVSO data (see Figure 5.17) may be caused by several factors; the first may be due 

to a difference in band-pass as the SMEI instrument is more sensitive in the R-band 

than the V; the second and most likely cause is due to contamination of the data by 

several bright neighbouring stars, and although simultaneous fitting was conducted 

along with the fitting of additional bright stars in the larger surrounding region, some 
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contamination may have still remained. The approximated t2 time of the SMEI data i 

rv 9.4 days. This is similar to results presented in Lynch et al. (2006), and agrees with 

the very fast nova classification. The SMEI light curve al 0 reveals several 0 cillation 

in the data as the nova declines. Due to the faintne s of the object and the limitation 

of the SMEI detection at this range the reality of such 0 cillation may be que tioned. 
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V2467 Cygni 

Nova V2467 Cyg (a = 20h28m12~47, 8 = +41°48'36':4; 12000) was discovered by 

A. Tago at mv = 7.4 (Nakano et aI., 2007c) on 2007 March 15.8 UT (MJD 54174.8), it 

then proceeded to a peak magnitude of 6.7 on 2007 March 16.77 UT (MJD 54175.77). 

An early spectrum of the nova obtained on 2007 March 16.8 UT (MJD 54175.8) in­

dicated an expansion velocity of", 1200 km s-1 and an Fe II-type nova classification 

(Munari et aI., 2007a). A distance of 1.5 - 4 kpc was calculated for the nova (via 

MMRD), with an outburst amplitude of f"V 12 mag (Steeghs et aI., 2007). This distance 

coincides with the 2.2 ± 0.2 kpc distance estimates made by Hachisu & Kato (2010) 

using a modified version of the MMRD relation. 

The transition phase of the object was seen to start in 2007 April after fading approxi­

mately 4 magnitudes. Within this phase, six quasi-periodic oscillations were observed 

with periods from 19 to 25 days and amplitudes of ~ 0.7 magnitudes. Swierczynski 

et al. (2010) proposed that the period found within the optical light curve and changes 

found in the subsequent X-ray detections, could only be explained if the system were 

an IP. 

Using data from the SMEI archive a light curve for nova V2467 Cyg was created (see 

Figures 5.19 & 5.18). The SMEI data shows the initial rise of the nova which is very 

steep rising 2.81 magnitudes in approximately 2 days. Within this rise to peak no pre­

maximum haIt is found mainly due to a lack of data around 8.5 magnitudes. The peak 

magnitude of the nova is given as mSMEI = 6.24 ± 0.03 on 2007 March 16.56 ±0.O·1 

UT (MJD 54175.56), this is 0.46 magnitudes brighter and 0.21 days earlier than the 

peak given in Nakano et al. (2007c). As indicated in Figure 5.19 the decay of the SMEI 

light curve coincides best with that of the R-band AAVSO data. The approximated t2 

time of the SMEI data is f"V 8 days and classifies the nova as very fast. 
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Figure 5.18: SMEJ light curve (filled black squares) of V2467 Cyg indicating the peak of the 
nova and its initial decline. The inset shows the SMEI data alone wi th error bar . The blue 
open triangles represent Visual data, the green crosses V-band data, and the filled red triangles 
R-band data; these data are from the AAVSO. 
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V 458 Vulpeculae 

Nova V458 Vul was discovered in outburst by Nakano et a1. (2007a) at a magnitude 

of 9.5 on 2007 August 8th, reaching its peak visual magnitude a few days later at 

V = 8.1 ± 0.1 (Wesson et aI., 2008). The nova's t3 time is given as 21 days and it 

is therefore classified as a fast nova. The decline of the object was disrupted by two 

re-brightenings, the first occurring 20 days after maximum. Spectra taken after the 

outburst revealed the nova to be of the hybrid spectral class (Poggiani, 2010), with 

early spectra being of the Fe II type and later spectra indicating a HelN nova. This 

nova was seen to occur within a PN and is the subject of Chapter 4. 

The light curve of Nova V458 Vul produced by the SMEI data set (see Figure 5.20) 

indicates that there are two bright peaks separated by a fainter rise. The magnitude 

and times of each peak are given as mSMEI = 7.96 ± 0.07 on 007 August 9.79 ± 
0.04 UT (MJD 54321.79), mSMEI = 8.30 ± 0.08 on 2007 August 11.48 ± 0.04 UT 

(MJD 54323.48), and mSMEI = 7.94 ± 0.07 on 2007 August 13.66 ± 0.04 UT (MJD 

54325.66). The SMEI data are again seen to match R-band data better than Vor VIs 

data (see Figure 5.20). AAVSO data indiCate that the peak V-band magnitude reached 

by the nova was mv = 8.13 ± 0.003 on 2007 August 9.42 UT (MJD 54321.43), the 

first peak detected by SMEI is therefore seen to coincide well with the V-band data. 

However, SMEI data indicate that this is not the brightest magnitude observed and that 

the maximum occurs later. 

V597 Puppis 

Nova V597 Pup was discovered in outburst by Pereira et al. (2007) at a visual mag­

nitude of 7.5 on 2007 November 14th, reaching a peak visual magnitude of mv = 6.4 

on 2007 November 14.48 UT (MJD 554418.48). The nova then declined rapidly with 

a t2 = 2.5 days (Naik et a1., 2009), making it one of the fastest novae recorded, with 

only V838 Her and MU Ser being faster. Naik et al. (2009) classified the nova as a 

HelN-type with a WD close to the Chandrasekhar limit. A pre-eruption detection is 

found within the Digitized Sky 
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Survey (Pereira et aI., 2007) with a source at V rv 20, that coincide with the nova 

position. Continued monitoring of the object by Warner & Woudt (2009) revealed the 

nova as an IP in the orbital period gap (Porb = 2.67 hrs), with a rotational period of 8.7 

minutes. Observation of the object a year after outburst also revealed the presence of a 

deep secondary eclipse caused by the passage of the optically thick disc in front of the 

irradiated side of the secondary star. The object i considered unique as it the first CV 

found to have this deep eclipse. Using a modified MMRD relation Hachi u & Kato 

(2010) derived a distance to the object of 16 ± 2 kpc. 
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Figure 5.21: SMEI light curve (filled black squares) of V597 Pup. The open blue triangles 
represent Visual data, the green crosses V-band data; these data are from the AAVSO. The 
inset is of the SMEI data only with error bars. Within this inset SMEI data with a correlation 
coefficient between 0.3-0.4 have been allowed for completeness; these point are given without 
error bars. These data may show evidence for a pre-maximum halt. 

The light curve created using the 5MBI data set indicates the latter part of the initial 

rise, peak, and early decline (see Figure 5.21). Examination of the initial rise data 

hints at the possibility of a pre-maximum halt, but a some of these data are of a lower 

correlation coefficient (between 0.3 and 0.4 - due in part to the limiting magnitude of 

5MBI; slightly larger npsfand combined RA and Dec value were also used here) this 

can not be confirmed. The peak of the light curve is given as mSMEI = 6.91 ± 0.04 

on 2007 November 14.68 ± UT (MID 554418.68). The decline of the nova is seen to 
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be exceptionally fast with a t2 of 2.3 days; this is similar to that given in Naik et al. 

(2009), confirming the very fast classification. 

V 459 Vulpeculae 

Nova V459 Vul (0 = 19h4smOS~S7, 8 = +21°15'26':8; J2000) was discovered inde­

pendently by Hiroshi Kaneda and Akihiko Tago (Nakano et a1., 2007b, 2008a) at an 

average unfiltered magnitude of 8.7 on 2007 December 25.35 UT (MJD 54459.35) and 

2007 December 26.38 UT (MJD 54460.38) respectively. Spectroscopic observation of 

the object by Yamaoka et al. (2007a) revealed the presence of several Fe II multiplets 

making V459 Vul an Fe II-type nova. A candidate progenitor with mr '" 20 was iden­

tified in the red POSS-II plates, but no IR counterpart was found within 2MASS. The 

progenitor magnitude found suggests an outburst amplitude of 12.5 magnitudes (Hen­

den & Munari, 2008). The maximum magnitude ofV459 Vul was mv = 7.58 on 2007 

December 27.25 (MJD 54461.25) with t2 and t3 times given as 18 ± 2 days and 30 ± 2 

days respectively (Poggiani, 2010). Using photometric data, Poggi ani (2010) went on 

to obtain an extinction of Av = 2.75 ± 0.38, an absolute magnitude range between -8.7 

and -7.7, and as such a distance range of 2.3 - 5 kpc (MMRD). The absolute magnitude 

at maximum is related to the mass of the WD (A/wD Livio, 1992; Warner, 1995) via 

Equation 5.5, 

A/wD 
AlB rv A/v = -S.3 - 10.0· log M0 (5.5) 

from which a WD mass in the range of 0.9 - 1.1 M0 was also derived (Poggiani, 2010). 

The light curve obtained by SMEI is given in Figure 5.22. Although the initial rise of 

the nova appears to be caught by the instrument no pre-maximum halt can be clearly 

observed as the data are sparse during this time and of poor quality. The peak magni­

tude of the light curve is given as mSMEI = 6.51 ± 0.03 on 2007 December 27.96 ± 

0.04 UT (MJD 54461.96), and the nova is seen to decline with a t2 rv 16.2 days. The 

SMEI peak is 1.07 magnitudes brighter and 0.71 days later than that giv~n in Poggiani 

(2010) and with the estimated t2 value being slightly smaller. The difference in t2 
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Figure 5.22: SMEI light curve (filled black squares) of V459 Vul. The open blue triangle 
represent Visual data, the green crosses V-band data, and the filled red triangle R-band data; 
these data are from the AAVSO. The inset is of the SMEI data on ly with error bars. 

time may be due to the difference in the band-pa s, indicated through the matching of 

SMEI and R-band AAVSO data. The SMEI light curve also indicate that there may 

be several osculations in the decline however, as the data is quite cattered at thi point 

their reality is questionable although the R-band data doe eem to follow the same 

oscillatory pattern. 
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V2491 Cygni 

The discovery of Nova V2491 Cyg was presented in (Nakano et a1.. 2008b). The 

nova reached maximum at my = 7.45 ± 0.05 on 2008 April 11.37 ± 0.01 UT (M1D 

54567.37 Munari et a1.. 2011b). Spectra indicated that it belongs to the He/N class of 

novae (Helton et aI., 2008b). V2491 Cyg has a rapid optical decline with a t2 = 4.8 

days and as such is classified as a very fast nova (Darnley et a1.. 2011; Munari et a1.. 

2011b). Approximately 15 days after outburst a secondary maxima was observed with 

an my = 9.49 ± 0.03. Based on the spectra of the nova many authors (e.g. Tomov 

et al.. 2008) believe that the object is in fact a RN. Using the interstellar Na I line a 

reddening of EB- y = 0.23 ± 0.01 was found which led to a distance determination of 

14 kpc via the MMRD relation (Munari et a1.. 2011b). 

Unfortunately SMEI was only able to detect a few points around the peak of the nova, 

these data are presented in Figure 5.23. The peak magnitude is given as mSr.1E1 = 

7.45 ± 0.05 on 2008 April 10.75 UT (M1D 54566.75). slightly earlier than that given 

in Munari et a1. (2011b) but matching quite nicely the unfiltered magnitude of 7.7 on 

2008 April 10.8 UT (M1D 54566.8) presented in Nakano et a1. (2008b). 

QYMuscae 

QY Mus (0: = 13h16m36~44, 8 = -67°36'47':8; 12000) was discovered by Liller 

et al. (2008). at a magnitude of 8.6 on 2008 September 28.998 UT (M1D 54737.998). 

The nova then reached a peak unfiltered magnitude of 8.1 on 2008 September 30.40 

UT (M1D 54739.40). Nova classification was determined using low-resolution spectra 

which indicated the presence of a single broad Ho: emission line. 

The SMEI light curve (see Figure 5.24) indicates that the nova reached a peak magni­

tude of mSMEI = 6.85 ± 0.04 on 2008 September 29.34 ± 0.07 UT (M1D 54738.34). 

The peak magnitude given by SMEI is significantly brighter than the AAVSO data. 

which again may be due to differences in the V-band sensitivity of the instruments. 

However. on examination of the location of the nova within the SMEI sky-maps the 
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differences between the data sets is most likely cau ed by neighbouring bright lar 

(again simultaneous fitting of these object wa conducted along with the fitt ing f 

additional bright stars in the larger urrounding region). The decay the M J light 

curve is quite consistent with the AAVSO data. However, the catter in the M fli ght 

curve is evident and due both problems in fitting the ource, a it goe below the lim­

iting SMEJ magnitude, and contamination fro m the urrounding bright tar. he t2 

time of the nova as given by SMEI i difficult to determine due to the scatter of the 

light curve however, it can be estimated a '" 9 day , indicating the nova a very fa l. 
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V5580 Sagittarii 

Nova V5580 Sgr was discovered by Liller (2008) at a magnitude of approximately 

8.0 on 2008 November 29.04 UT (MID 54799.04). The variable wa aJ 0 pre ent on 

November 23.037 UT (MJD 54793.037) at a magnitude of approximately 10.3, but 

was not visible (mag> 11.0) on November 20.035 (MID 54793.035). The object i 

located at Q = 18h22mOl~39 , 6 = -28°02'39/~.8; J2000) . 

Although the nova may be detected within the SMEI data only a few reliable point 
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were obtained due to the passage of Venus and its poor subtraction. The peak mag­

nitude found for the object is at mSMEI = 7.01 ± 0.04 on 2008 November 30.85 VT 

(MJD 54800.85). This coincides well with that mentioned in Liller (2008). 

VSS83 Sagittarii 

This nova has been observed by both SMEI and the Solar TErrestrial RElations Ob­

servatory (STEREO) Heliospheric Imager. A review of STEREO and the light curve 

generated for this object is discussed in Section 5.6. 

V5583 Sgr is a fast eN which was discovered by Nishiyama et a1. (2009b) at a magni­

tude of7.7 on 2009 August 6.5 UT (MJD 55049.5). Hachisu & Kato (2010) determine 

an absolute magnitude of A1v = 0.5 and a distance of 11 kpc. 

The object is detected in SMEI on 2009 August 1.44 VT (MJD 55044.44) at mSMEI = 

8.65 ± 0.10. It is then seen to rise (Figure 5.25) to a peak magnitude of mSMEI = 

6.94±0.05 on 2009 August 7.08 VT (MJD 55050.08). A peakofmsMEI = 6.82±0.0·1 

is noted on 2009 August 6.80 VT (MJD 55049.80), however due to its briefness and the 

subsequent light curve pattern it is not believed to be the optical peak and to be caused 

by some other, perhaps instrumental, effect. A pre-maximum halt may be present on 

2009 August 6th at an average of mSMEI = 7.2. However this does not seem to fit in 

with the 1-2 magnitudes below maximum range that has been generally proposed for 

the halt (see Section 1.4.2). Approximately one day after maximum the object seems to 

enter a "plateau" phase which lasts for 1.76 days with an average mSMEI = 7.55, after 

which the light curve declines. It should be noted that data with a correlation coefficient 

:::; 0.4 have been used in Figure 5.25 (and again slightly larger npsJ and combined RA 

and Dec values). Within this figure data points with a correlation coefficient above 0.3 

are represented by stars and data with a correlation coefficient value between 0.2 and 

0.3 by squares. Although correlation coefficients much lower than standard have been 

used, the pattern of the light curve is evident and the scatter seems minimal, supporting 

their use. 
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Table 5.2: Derived light curve parameters of second class data. 
Name 

V1187 Sco 
V2467 Cyg 
V458 Vul 
V597 Pup 
V459 Vul 
V2491 Cyg 
QYMus 
V5580 Sgr 
V5583 Sgr 

Time of Maximum Peak SMEI t2 wing radius 
yyyy/mm/dd ±0.04 days magnitude (days) (deg)24 

2004/08/3.77 6.87 ± 0.04 9.4 auto_wing 
2007/03/16.56 6.24 ± 0.03 8.0 auto_wing 
2007/08/13.66 7.94 ± 0.07 auto_wing 
2007/11114.68 6.91 ± 0.04 2.3 1.3 
2007/12/27.96 6.51 ± 0.03 16.2 auto_wing 
2008/04/10.75 7.45 ± 0.05 1.3 
2008/09/29.34 6.85 ± 0.04 '" 9 auto_wing 
2008/11130.85 7.01 ± 0.04 auto_wing 
2009/08/7.08 6.94 ± 0.05 1.4 

5.6 Solar TErrestrial RElations Observatory 

(STEREO) Heliospheric Imager 
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STEREO is a NASA-funded mission intended to study the propagation of CMEs from 

the Sun into the heliosphere out to around 1 AU. It consists of two spacecrafts which 

were launched on 2006 October 26th from the Cape Canaveral Air Force Station in 

Florida. STEREO-A (the leading craft - ahead) is at a distance of 0.96 AU from the 

Sun, and STEREO-B (the lagging craft - behind) at 1.08 AU. During the course of the 

mission the orbit of STEREO-A varies over 0.95-0.97 AU with a period ~ I yr, and 

STEREO-B over 1.00-1.09 AU. The orbital configuration of the crafts are such that 

each one recedes from the Earth by 22.5° a year as measured by the spacecraft-Sun­

Earth angle. Mounted on the sides of each of these widely separated spacecraft are 

five remote-sensing instruments; an Extreme Ultra Violet Imager (EUVI), two corono­

graphs (COR-l & COR-2) with FOVs '" 4° from the Sun, and two telescopes known 

as the Heliospheric Imagers (HI) which are wide-angle visible light imagers. The III 

instruments like SMEI have an incorporated baffeled design to eliminate scattered light 

so as to better observe CME's. Each HI instrument consists of two cameras 111-1 (FOV 

'" 20°) and HI-2 (FOV '" 70°) and are off-pointed from the Sun by 14.0° and 53.7° 

respectively, with optical axes aligned in the ecliptic plane. The configuration of the 

24See Section 5.4.1 for information on auto_wing. 
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Figure 5.26: A cross sectional view through the HI instrument showing the field -of-view of 
the two telescopes. Image taken from Eyle et al. (2009). 

cameras are such that there is coverage over solar elongation angle 4.0° to 88.7°. HI 

instruments have been performing scientific ob ervation since early 2007. A well a 

observing CME's one of the original science objective of the STEREO mi ion wa 

also to conduct stellar variability tudies. The HI camera are able to continuou Iy 

monitor sources down to l3 th magnitude for period of 20 (HI-I) to 70 day (HI-2). 

The quantum efficiency reache peak (93%) at around 550 nm but drop to 23o/c and 

30% at 300 and 900 nm respectively (Eyle et al., 2009). 

During operation it was noted that the PSF of HI-2B i broader and mor a ymmetric 

than that of HI-2A. This has caused a spreading of the stars in the image. The cau e of 

this problem is thought to be due to manufacturing or a embly i ue with the HI-B 

lens. The degraded PSF of the HI-2 instrument has implications on the detailed ex­

amination of point sources and models are being created to correct for the PSF. An 

additional complication to observing ources within the data i cau ed by occa ional 

and random discontinuities in the pointing of HI- IB relative to the pacecraft attitude 

solutions by up to 0. ]% .2°. The discontinuities u ually manifest themselves a tep 

in plots of pointing attitude again t time. Sometimes however, the pointing di conti-
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Table 5.3: Performance specifications of the HI instrument taken from Eyles et al. (2009). 

Specification HI· 1 HI·2 
Direction of centre of FOV from Sun centre 14.0° 53.r 
AngularFOV 20° 70° 
Angular range 4-24° 18.7-88.7 ° . 
CCD pixel size 35 arc sec 2 arcmin 
Image array (2x2 binning) lO24xlO24 1024x 1024 
Image bin size 70 arcsec 4 arcmin 
Spectral band-pass 630-730 nm 400-1000 nm 
Exposure time 40 s 50 s 
Exposures per summed image sequence .30 99 
Summed image cadence 40 min 2 hr 
Brightness sensitivity (Bo = solar disc) 3x lO-I5Bo 3x IO-16Bo 
Stray-light rejection (outer edge of field) 3x IO-I3Bo IO- I4Bo 

nuities occur during the exposures. This causes stars in the image to be smeared, have 

trails, or even split. The reason for this issue is thought to be the fact that HI-B faces 

into the direction of motion of STEREO-B, leading to the impact of dust particles on 

the instrument. It is not yet clear if a similar issue is found with 11I-2B due to the 

degradation of the PSF. Originally the pointing of the instruments was calculated us­

ing preflight instrumental offsets from the STEREO spacecraft along with spacecraft 

attitude data. Work conducted by Brown et al. (2009) has been used to improve the 

pointing of the HI instruments by matching known catalogue stars to those identified 

in the background of HI images and adjusting the pointing parameters to optimise 

the fit between the predicted and observed star positions. The method described in 

Brown et a1. (2009) essentially avoids any problems in data analysis due to the point­

ing discontinuities as the HI cameras are used as star trackers and the images become 

self-calibrating. The issue of pointing now only becomes a problem in a few percent 

of images were stars are significantly smeared and improved attitude solutions can not 

be obtained, these images are flagged and not used in analysis. 
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Data from the STEREO imagers are made available via the UK Solar System Data 

Centre (UKSSDC). Each HI image is the sum of many shorter full-resolution (2048 

x 2048 pixel) exposures that have each been "cleaned" to remove cosmic-rays which 

would otherwise dominate the final summed image. The resultant images are then 

binned to 1024 xl 024 pixels and transmitted to Earth. For calibration purposes a small 

number of full resolution single exposures (of a few seconds) are downloaded. 

STEREO data analysis is conducted using IDL and the solarsoft libraries25, with cal­

ibration of the HI data carried out using secchLprep.pro. The steps involved in the 

calibration and processing of STEREO data are described within "Working with data 

from the NASA STEREO Heliospheric Imager an essential guidc"26. 

To remove stars from the HI images a routine called hLremove...starjield.pro is initiated 

(see above guide for further details). It processes the images with no prior knowledge 

of what stars are in the FOV. Stars in the data are simply identified by analysing the 

,;2 (divergence of the gradient) field of the image. A successive overrelaxation (SOR) 

method is then used to reconstruct only the pixels where the stars were identified. The 

user is able to determine what the minimum intensity star the program is able to detcct 

via a threshold value which is set to 1.0 as a default. The lower the threshold, the 

fainter the stars removed, but the more pixels required for reconstruction and so longer 

the processing time. 

5.6.2 STEREO Observations of V5583 Sagittarii 

Using STEREO data, a light curve of V5583 Sgr has been generated by Daniel Holds­

worth (UCLan). STEREO data have been scaled to SMEI by the subtraction of two 

magnitudes. This comparison indicates that the peaks are roughly in the same position. 

and that the initial declines are similar. However, small sections of the rise phase do 

25http://www.lmsal.comlsolarsoftlindex_old.html 
26See http://www.stereo.rl.ac.ukIDocumentsIHLuser_guideju)y.pdf 
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differ as well as the decline below one magnitude from maximum (see Figure 5.27 

and 5.28). These discrepancies could be caused by differences in the re ponse func­

tion of the instruments (STEREO peaks around 550 nm and is skewed towards the 

redllR, SMEI peaks at 700 nm) or because calibration for the HI STEREO camera are 

incomplete. Further complications could also be caused by the unu ual PS 's of both 

the SMEI and the HI instruments and differences in pixel ize. 
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5.7 Detection of Transients and Variable objects 

With 8.5 years of all-sky white light photometry the SMEI data archive undoubtedly 

a hosts a plethora of transient events and variable objects which are within the instru­

ment's detection limit. These sources may either be those which are already known of 

and catalogued, or they could be previously undetected objects. Discussed below are 

searches which have been conducted by other research groups for some transient and 

variable events, along with investigations which have been conducted as part of the 

work within this thesis. 

5.7.1 Previous Detection of Transients and Variables in SMEI by 

Other Groups 

As well as members of the SMEI team at UCSD, there are other groups that have also 

realised the potential of the SMEI data. 

Gamma Ray Bursts 

Previous work has been conducted by the UCSD group in the detection of gamma 

ray bursts (GRBs). In Buffington et al. (2006) a list of 91 classical (soft gamma­

ray repeaters were excluded) GRB bursts between 2003 February 6th and 2005 April 

6
th were considered. From this list SMEI was able to provide upper limits for the 

optical afterglow of 58 bursts. These afterglows occur tens of minutes after the burst 

when different shocked regions emit optically and so remain long enough for SMEI 

detection. The paper indicated that whilst SMEI cannot compete with the sensitivity 

of instruments such as UVOT on Swift or ground based telescopes like ROTSE-II, 

SMEI observations may still be relevant, especially if these telescopes are unable to 

observe particular events. 
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Variable Objects 

In work conducted by Spreckley & Stevens (2007) three years of all-sky photometry 

from the SMEI data archive were obtained and 13,000 light curves of stars brighter 

than 6th magnitude (here it is assumed that the author means roughly 4000 stars per 

SMEI camera as there are only'" 5600 stars known to be brighter than 6th magnitude) 

were produced. Of these, 1600 were achieved with ~ 1 % precision. The main research 

focus of this group was to search for and obtain exoplanet transiting signals within the 

SMEI data. In order to create a light curve for each object over the three year base 

line, aperture photometry was performed using a modified version of the OAOPIIOT 

(Stetson, 1987) routines in IRAF. Outputted light curves were then corrected for the 

degradation of the CCO over this time period and the PSF corrected for its dependence 

on position across the CCO. A box fitting least squares fit (BLS) method (Kovacs et al., 

2002) was then implemented on each light curve to search for transiting exoplanet sig­

nals with better than 1 % precision. A custom written algorithm was then implemented. 

This work however found no transit-like signals. 

Other specific objects or type of object have also been investigated using the SMEI 

data. For example within Spreckley & Stevens (2008) the period and amplitude changes 

of Polaris (0 UMi) were examined between 2003 and 2007; Tarrant et al. (2007) in­

vestigated the red giant Arcturus, and Clover et al. (2011) analysed the light curve of 

Epsilon Aurigae. 

5.7.2 Current Search for Transients and Variables 

As part of the work conducted within this thesis a search for transient objects and 

variable stars is being implemented using SMEI data from UCSO. 

The equatorial and polar maps produced by SMEI can be processed to generate what 

will now be referred to as variable maps (see Figure 5.29). These are maps from 

which zodiacal light, sidereal background, and the list of 5600 bright stars above 6th 

magnitude have been subtracted. The subtraction of these stars was conducted using 



Figure 5 .29: A SMEI equatorial map from which zodiacal light, sidereal background, and the 5600 stars brighter than 6th magnitude have been subtracted. 
With in this map the effects of poor stellar subtraction may be observed along with tails created by bright stars when near a cameras edge. 
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the non-iterative centroiding routine mentioned in Section 5.3.1. Anything which is 

left over within the variable maps should therefore be an object which has increased 

or decreased from its quiescent magnitude, i.e. a transient event or variable star. There 

are however a few issues within these maps which can prove that statement to be false; 

these are listed below. 

o The non-iterative least squares fitting of stars brighter than 6th magnitude means 

that their subtraction/sky replacement is poor. For very bright stars a residual of 

the object may be left behind which will then appear in the variable maps and 

act as a false positive. This issue is addressed in step 5 of the code used to search 

for variable objects as described below. 

o Bright stars which are located near the edge of a camera may "leak" and create 

tails in the image. On subtraction of this bright star the tail will still remain, 

again potentially leading to false positives. 

The code used to detect and fit candidate objects within the variable maps is known 

as smei-findpnt. The code was written by Paul Hick (Supercomputer Center, UCSD) 

in IDL, with testing and adjustment/refining of the code conducted as part of the work 

within this thesis. The various procedures implemented on the variable maps along 

with important parameters are described below (a full copy of the code can be found 

in Appendix C). 

1. Large scale smoothing of variable maps: The map is smoothed by subtracting 

a running mean for an go wide box. This takes out variations over spatial scales 

much larger than the PSF. This step mainly serves to create local maxima that 

are more easily sorted, i.e. it makes it easier to process maxima, descending in 

brightness. 

2. Small scale smoothing of variable maps: The map now smoothed with a run­

ning mean of 10 which is the full width of the PSF. This step reduces the noise of 

the maps, and avoided picking up every noise spike as a separate local maxima. 

An example of a smoothed map may be seen in Figure 5.30. 



Figure 5.30: A SMEI equatorial map from which zodiacal light, sidereal background, and the 5600 stars brighter than 6th magnitude have been 
subtracted, and which has undergone smoothing. 
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3. Preparing a list of candidate objects: In this step the a list of all local maxima 

within the variable map is constructed with the brightest given first. The number 

of local maxima which may be found can be controlled by the user specifying 

a number of key words, however on testing this proves inefficient and step one 

seems to be the best way in which to control the output. 

4. Fitting of candidate maxima: It is within this step that objects which look 

like point sources (i.e. the SMEI PSF) are fit using the default fitting procedure 

(smei...star jit) described in Section 5.3.1. The main key word to control with 

this step is fix_centroid, with the default case being when fix_centroid is off. In 

this case the PSF is fit only once at the location of each candidate maximum. 

With fix_centroid on an iterative procedure is used to find the location in the map 

near the candidate maximum that provides the best fit (the highest correlation 

between the object in the sky-map and the standard SMEI PSF). The advantage 

of NOT setting fix....centroid is that there is a significant reduction in processing 

time (close to a factor of 10). The disadvantage is that the quality of the PSF 

fitting is much worse, which might lead to good objects going unnoticed due to a 

lower correlation coefficient. As a consequence of this step all candidate objects 

from step 3 may be sorted according to their correlation coefficient value, with 

those possessing the highest correlation coefficient listed first. The difference 

between using (or not using) fix_centroid is that the candidates will be sorted 

differently. 

5. Retention of the best fitting objects only: The number of candidates for a 

certain variable map can easily be over 1400. Here the correlation coefficient 

keyword cvmin is used to retain only those objects which have a cvmin above 

a certain threshold. The default value for cvmin is 0.7, this higher value will 

typically eliminate 70% - 80% of the candidate objects leaving only those which 

are more likely to be valid objects. It is in this step however that the effect of 

using or not using fix_centroid in step 4 becomes evident. As the correlation 

coefficients are different (lower whenfix..centroid is not used), a different set of 

candidate objects is retained. If cvmin=0.7 when fix..centroid is not used then 
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under half the number of candidates will be detected and as stated above these 

will not necessarily be the same objects that were detected previously. When not 

applying fix_centroid cvmin must be lower than 0.7. Choosing a cvmin value is a 

compromise between the detection of real objects and noise. On testing a cvmin 

value of 0.6 seems to produce the best results with the number of candidates 

detected only marginally greater than results obtained when using fix-eentroid 

and a cvmin=0.7. On comparison of objects detected using both methods there 

is a greater than 70% overlap. Also note that when looking at individual output 

files the order of the candidates will be different to those pr~duced when using 

fix_centroid and candidates may also appear in later files within the time series. 

Note that if cvmin=-1 is used, all objects are retained. 

6. Match against catalogue stars: This step is optional. It is not done by default, 

but can be switched on using the keyword use_catalogue. Within this step the 

locations of the candidate maxima from step 5 are compared against the locations 

of the 5600 stars brighter than 6th magnitude (i.e. the SMEI star catalogue). If 

a candidate object is found within 0.5° of a catalogue star, then the object found 

is most likely the result of a bad-subtraction. In this case the candidate object 

will be listed in the output file under the name of the catalogued star. Note that 

this is not a positive or negative identification; it just indicates the proximity of 

a catalogue star. A low value of cvmin should not be used in combination with 

the use_catalogue keyword as checking a long list of candidate objects against 

the SMEI star catalogue will drastically increase processing time. 

7. Write output file: The output files contains the results of the fits for all candi­

date objects, sorted in descending order of correlation coefficient. For candidate 

objects which lie in the overlapping area between the polar maps (north pole -

NP, and south - SP) and the equatorial map (EQ; between 50° and 60° declina­

tion north and south) there will be two records in the output file: one for the 

object seen in the EQ map, the other in one of the polar maps. This needs to be 

taken into account when analysing the content of the file. The names assigned to 

each candidate object indicate in which map the object was detected, EQ, NP or 
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SP; followed by an integer that counts the number of objects. Note that the same 

object will have a different name in output files for different sky-maps. In order 

to obtain individual object files entries must be matched by RA and Dec. 

Initial Analysis 

A simpler version of this code, using now dated zodiacal models and fitting routines, 

was implemented by Paul Hick on four years' worth of data from Camera 2 several 

years ago. As an initial test the results of this run were passed through a code written 

by Daniel Harman (LJMU), with input based on work conducted within this thesis. 

The code is designed to sift through files output from the smei-findpnt procedure and 

sort each candidate object into a separate object file based on RA and Dec. This code 

was written in Qt create and named smei...sort. A description of smeLwrt is given 

below. 

o A sphere of N pixels is created using HEALPix (see Section 4.7 for description) 

with each pixel representing an area of 0.5 0 and having an assigned RA and Dec. 

o The output files of smei-findpnt are read into the program and candidate objects 

placed within the their corresponding positions on the virtual sphere. 

o The number of "hits" within a pixel are counted, and an object files generated 

for that position if the number of hits is greater than a certain threshold value. 

o The flux within a given object file is determined not only from the pixel with the 

highest number of hits but also from the surrounding 8 neighbouring pixels. This 

is to accommodate for any scatter on position that may be encountered due to 

centroiding issues (Le. if fix.-eentroid is off). The object file generated indicates 

if the flux at a certain time is from the central pixel or from a neighbour. 

o Once individual object files have been generated each position is passed through 

the General Catalogue of Variable Stars27 (GCVS) to see if there is a correspond-

27http://www.sai.msu.sulgcvs/gcvs/index.htm 
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ing object at that location of the sky and thus indicate if the object is already 

catalogued. 

Implementation of smeLsort on the resultant smei--findpnt data led to the creation of 

over 1500 object files. Examination of these data revealed that the majority of objects 

were within the GCVS and/or were the result of poor subtraction of the bright SMEI 

catalogued stars. Some objects however, remained unidentified. A sample of such 

interesting objects can be found within Figures 5.31,5.32 and 5.33. These data have 

not been "cleaned" with regards to correlation coefficient, n-psf, or position but are raw 

data taken from the above described process. A more through investigation of each 

object and its surrounding environment is required to validate the object as a variable 

and ensure that it is not caused by some of the false positive issues mentioned earlier. 

It should be noted that on further investigation the object shown in Figure 5.32(b) does 

repeat with a five year period but these peaks are of a lower brightness than the one 

shown here. 

For comparison of the old and new versions of the smei--findpnt code light curves of 

Nova V1280 Sco were generated using both. These can be found in Figure 5.34. 

The light curve generated using the newer version of the smei--findpnt code (black 

squares) described in Section 5.7.2 is fractionally brighter than that generated using 

the old smei--findpnt code (red triangles). Both of these light curves were generated 

withfix-rentroid on. The increase in brightness is not unexpected and probably due to 

the use of improved zodiacal light models. In the third light curve the newer version of 

the smei--findpnt code is used but with fix_centroid switched off to indicate the scatter 

increase (blue squares). 

5.8 Discussion and Conclusion 

This work has enabled unprecedentedly detailed observation of the rise to maximum 

for all five novae within the first class data of Section 5.5.1, and the precise date of 

maximum for each nova within this and Section 5.5.2. In tum, it has provided signifi-
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cant, detailed, and undeniable evidence for the existence of the previou Iy con trover ial 

pre-maximum halt, with accurate times of occurrence, duration and magnitude below 

peak given. The reality of this halt in all three of the fa t novae ob erved in detail 

(and possibly in a slightly different form in the slow nova V1 280 Sco as described in 

Section 5.5.1) is a challenge to detailed model of the nova outbur t. Fr m Table 5.1 it 

may also be noted that there does not eem to be a correlation between the propertie 

of the pre-maximum halt (.6.msMEI, .6.t, number of magnitude below maximum, and 

time before peak) and the properties of the nova or it eruption ( peed cIa ), although 

the sample size is admittedly smaJl at present. 

The time of each nova's peak optical brightness has been derived with pr viou Iy un­

obtainable accuracy, marking as it does the time of greate t extent of the p eudoph -

tospheric radius in each object. Perhap the mo t intriguing feature ar und maximum 

light are displayed by V1280 Sco where two re-brightening may be a ciat d with 

Figure 5.3 1: (a) Object detected at a = 02h 33m 528 6 = + 55°29'27"; 12000. 
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epochs of enhanced rna s Joss from the WD urface. What the m chani m i that w uld 

lead to such enhancements during the TNR i a matter of conjectur . Within th initial 

decline of each nova light curve mall 0 cillation can al 0 be en. 

OveraJ1 , this initial investigation of the SMEJ data archive ha pr ven h wimp rtant 

it is to examine all-sky data with regards to tran ient event . A with th ca, e f b th 

novae V598 Pup and KT Eri, even the brighte t (naked eye) novae may b mi 

conventional ground-based ob erving techniques, Warner (1989, 200 ,and r 

therein) reached the same conclusion. Shafter (2002) timate that a many a 

novae with maxima brighter than 8th magnitude may occur each year, in l ad f the 

one or two typically observed. This estimate sugge t that over 5 n vae may b 

found within the SMEI data archive, 60-80% of which wil l be unknown. Ther for the 

SMEI archival data will continue to be investigated, earching for pr violl Iy known 

and unknown transient events from 2003 to 2011 (see Section 5.7.2 for detail n th 
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method of detection and Section 7.2.2 for future work planned). 

In collaboration with UCSD a code to search for all transient and variable events within 

the SMEI data archive has been tested and updated. An initial search was conducted 

on four years of SMEI data from Camera 2 using an older version of the code leading 

to the creation of over 1500 object files some of which are unidentified and may be po­

tentially very interesting. Initialisation of the improved code over all 8.5 year's worth 

of data and all cameras will be conducted imminently (see Section 7.2.2). Overall, 

the data provided by SMEI may well have opened a new chapter in the observation 

and understanding of novae, and further investigation into the transient and variable 

population within the SMEI data may well prove significant. 

In the next Chapter, work conducted upon Nova V1721 Aquilae is presented. This is 

an unusually fast, luminous, and highly extinguished nova. 



Chapter 6 

A very luminous, highly extinguislled, 

very fast nova - V1721 Aquilae (2008) 

The content of this chapter is published within Hounsell et al. (20 II a) in collaboration 

with Dr Matthew Damley (LJMU), Prof. Michael Bode (UMU), Dr Daniel Ilarman 

(LJMU), Dr Lorren Helton (SOFIA Science Centerffhe University of Minnesota), and 

Dr Greg Schwarz (West-Chester University/American Astronomical Society). The pa­

per was written by myself with the input of Dr Matthew Damley and Prof. Michael 

Bode. Post-outburst spectra were provided by Dr Lorren Helton and Dr Greg Schwarz. 

These spectra and all other data were analysed by myself to obtain results presented. 

174 
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6.1 Introduction 

Nova VI721 Aquilae (0: = 19h06m28~58, 8 = +7°06'44'!3; 12000) was discovered on 

2008 September 22.5 UT by K. Itagkai. The outburst was confirmed on 2008 Septem­

ber 22.586 UT and reached a peak unfiltered magnitude of 14.0. Discovery of the 

nova was given in Yamaoka et al. (2008) along with an initial spectral investigation. 

Post-outburst spectra were obtained on 2008 September 25.19 and 25.25 UT using the 

Steward Observatory Bok 2.29 m telescope on Kitt Peak via the Boller & Chivens 

optical spectrograph (details of the instrumental set-up can be found in Section 6.3). 

Initial analysis of the spectra revealed a broad triple-peaked Ho: emission profile with a 

FWHM of 6450 km S-I, along with 01 7773 A and 01 8446 A structures (lielton et al., 

2008a). The ejecta velocities derived from the initial analysis of the spectra were very 

high indeed for a typical CN and there was initial suspicion that it may be a supernova 

(Prof. S. J. Smartt, Queen's University Belfast - private communication). Spectra also 

indicated that extinction towards the object was high and by comparison to other novae 

during similar evolutionary phases was estimated to be Av ~ 9.3. lIence, the distance 

to the nova was initially derived as 5 kpc, by assuming at maximum Mv ~ -9 (lichon 

et al., 2008a). Due to the faintness of the source at maximum and its rapid decline, 

further follow-up spectroscopy of the object was not possible. 

6.2 Distance Determination 

After outburst, V 1721 Aql continued to be monitored photometrically until 2008 Oc­

tober 6 UT (results are reproduced in Figure 6.1). These data indicate that t2 ~ (3 

days for the nova, classifying it as very fast CPayne-Gaposchkin, 1964). Using these 

data and the MMRD relation with parameters from Downes & Duerbeck (2000), an 

absolute magnitude at peak of Afv = -9.4 ± 0.5 is calculated. 

The extinction towards V 1721 Aql is thought to be extremely high, with an estimate 

of Av ~ 9.3 given in Helton et al. (2008a). This however, is based purely upon 

comparisons with other novae at a similar early evolutionary state. In order to obtain 



6.3. Post-Outburst Spectra 176 
-------~-----------------~---~-----~~----~-

an independent extinction estimate Rowles & Froebrich (2009) extinction maps were 

used which have a high spatial resolution and are able to detect a greater number of 

small-scale high extinction cores compared to other maps. These extinction maps are 

generated using 100 nearest-neighbour stars and give an Av = 11.6 ± 0.2, much 

higher than the original estimate. Using the more accurate extinction from Rowles & 

Froebrich (2009), a distance to V1n} Aql of 2.2 ± 0.6 kpc is derived. 

The Galactic coordinates ofV1721 Aql are III ~ 41°, bll ~ -0.1°. Using Equation 4.1 

a value of z = - 2.5 pc is obtained. This indicates that Vln} Aql is located very close 

to the Galactic plane, and in a region of the sky in which it is typically very difficult to 

observe novae because of high extinction along the line of sight. 

6.3 Post-Outburst Spectra 

Post-outburst spectra were obtained on 2008 September 25.19 and 25.25 UT using the 

Steward Observatory Bok 2.29m telescope on Kitt Peak with the Boller & Chivens 

optical spectrograph, and are presented in Figures 6.2 and 6.3. The "Blue" set-up 

utilised a 400 I mm- l pt order grating with a UV blocking filter to prevent order 

contamination below tv 3600 A. The spectral coverage was from tv 3600A to tv 6750 

A at a spectral resolution of roughly 2.8 A pixel-I. The "Red" set-up was identical but 

with the grating centred near 7600 A providing coverage from f'V GOOOA to rv 9200 

A and with a blocking filter effective below 4800 A. Flat fielding was performed using 

a continuum arc lamp. Red observations at wavelengths beyond tv 7700 A are subject 

to fringing effects arising at the CCD that are unable to be corrected by flat fielding. 

The effect of this fringing on the data depends upon the target position on the sky and 

the target intensity. Wavelength calibration was performed using He-Ar-Ne calibration 

lamps at each target position. The spectroscopic standard Wolf 1346 was used for flux 

calibration. Spectra have also been corrected for heliocentric velocity and reddening 

(Av = 11.6). All data reduction was performed in IRAF following standard optical 

data reduction procedures. Continua were modelled and subtracted using a 3 degree 

28 Availabl~ from http://oorurLkusastro.kyoto-u.ac.jp 
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polynomial in Starlink's Splaf9 package. 

The Blue spectrum of V 1721 Aql is presented in Figure 6.2. It is important to note that 

this spectrum is devoid of detectable emission lines blue-wards of Ha, likely owing 

to the very high extinction. Because of the absence of H,8 emission in the spectrum, 

a lower limit on the extinction is obtained using the Balmer decrement for Case B HI 

recombination and the observed intensity ratio of Ha and H,8 (see Equations 6.1, 6.2, 

6.3, and 6.4, where IHaol IHf30 is the emitted ratio of intensities, 11l001III/l is the observed 

ratio of intensities, j(Ha) and j(H,8) the emitted frequency of the components, C a 

constant, and TV the interstellar extinction in the V band). 

(6.1) 

IHa = IHno e(-C[!(Ha)-!(H/l)j) 

IH/l IH/lo 
(6.2) 

TV = Cf(V) (6.3) 

TV ~Av (6.4) 

It must be noted that this spectrum is taken early in the nova outburst and although the 

nova is very fast, conditions may not yet be those of Case B. However, from Equa­

tions 6.1 to 6.3 a lower limit of Av ~ 8 is estimated. This value is consistent with both 

the above determinations of Av and helps to confirm that the extinction is indeed high. 

The Red spectrum of VI721 Aql is shown in Figure 6.3 and indicates the presence 

of a triple-peaked Ha emission line along with emission structures corresponding 

to 01 7773 A and 01 8446 A. It is necessary to determine if the "boxy" structure 

around Ha consists of purely Ha or combined lines of Ha + [N II] 6482, 6548, 6584, 

29Information on Splat can be found at http://star-www.dur.ac.uklpdraperlsp\at/sp\ut.html 
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6611 A. However, although [N II] is expected in the spectra, this early in the outburst 

the [N II] line strength is unlikely to be significant in comparison to Ha and so an un­

likely contributor to the boxy structure. The absence of [N II] altogether may simply be 

owing to the fact that the nova has indeed been caught at maximum and these lines tend 

to develop a little later in the outburst. For example, the fast, potentially U Sco-like 

nova V2491 eyg showed evidence of [N II] 4.62 days after peak magnitude, with these 

lines becoming more defined 32.7 to 108 days after peak (Munari et aI., 201Ic). The 

lack of [N II] 5755 A at shorter wavelengths also contradicts the idea of a strong N II 

presence, although this line may have been missed due to a combination of the object's 

rapid evolution and high extinction. Additionally, the observed emission peaks at the 

blue and red edge of the Ha profile in V 1721 Aql are nearly symmetric and expected 

positions of potential [N II] contaminants are not. 

A relative velocity diagram of the Ha, 01 7773 A, and 01 8446 A structures is given in 

Figure 6.4. This diagram indicates that the Ha and 01 lines contain similar weak 

blue/strong red wing morphologies. However, the lin central peak is much more 

prominent and may arise in an emitting region distinct from the other components 

of the emission profile. The velocity shifts of the three components are also similar 

which supports the hypothesis that the Ho: structure consists of lin emission only. 

In order to identify any potential emission lines that may be contaminating the lin 

structure a spectral fit of the region (using the Red spectrum, Figure 6.3) was con­

ducted using STSDAS's30 Specjit, the results of which are presented in Figure 6.5 

and Table 6.1. It should be noted that the central Ho: peak was fit by two separate 

Gaussians with the second component added as a correction to the first in compen­

sation for the oversimplification of the fit; a possible physical explanation for this is 

given in Section 6.6. The 01 8446 A structure has also been fit, with these results 

presented in Figure 6.6 and Table 6.2. It is evident that fringing occurs within the 

spectra at wavelengths .2: 8000 A. The effect of this fringing has been to contribute 

to components 2 and 5 found in Figure 6.6 and to create fine structure short-ward of 

30STSDAS is a product of the Space Telescope Science Institute, which is operated by AURA for 
NASA. 
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the central structure of the 01 8446 A line profile i mo t likely relatively flat. 
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Table 6.1: Wavelength, FWHM, and relative velocity of fitted components of the triple-peaked 
Ha structure presented in Figure 6.5. 

Gaussian Wavelength (A) 

1 6493±3 
2 6563±1 
3 6563± 1 
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Figure 6.5: Observed Ha structure (black line) with the sum of Spec fit Gau sian component 
(red line). The blue lines represent separate Gaussian components. See Section 6.6 for further 
discussion. The lower plot shows the residual to the fit. 
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Table 6.2: Wavelength, FWHM, and relative velocity of primary fitted components of the triple 
peaked 01 8446 A structure presented in Figure 6.6. 

Gaussian Wavelength (A) FWHM (Ian S- l) 

1 8358.7± O.5 111O±40 
3 8447± 1 3200±200 
6 8541.9±0.4 930±30 
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Figure 6.6: Observed OI 8446 A structure (black line) with the sum of Specfil Gau ian compo­
nents (red line). The blue line represent eparate Gau ian components. Gau ian 4 repre ent 
a spectral artifact. Gaussians 2 and 5 represent component within the profile that are partially 
caused by fringing. Grey Gau sian represent fine structure cau ed by fringing effect . All 
fringing effects required fitting in order to produce the be t overall match with ob ervalion . 
The lower plot shows the residual to the fit. 
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Although there are slight inherent differences in the strengths of the redlblue peaks in 

the profiles of the 01 7773 and 8446 A features, the intrinsic shape before fringing 

effects of the 8446 A feature is likely very similar to the 7773 A feature, as illustrated 

in Figure 6.4. The fitting of the 01 7773 A profile has not been conducted as this 

structure has been severely truncated on the blue edge by an atmospheric absorption 

feature. 

No other spectral lines expected to be found in novae match the wavelengths presented 

within Tables 6.1 and 6.2. Given this, and that the blue and red wings of the Ha, 01 

7773 A, and 01 8446 A profiles are similar, it can be concluded that these structures 

consist of Ho: and 01 only. Combining the relative velocities of Iia Gaussians 1 and 4 

a mean expansion velocity of Vexp = 3400 ± 200kms-1 is determined. The structure 

of each line profile may also suggest something about the nova ejecta geometry (see 

Section 6.5 for further discussion). 

On examination of both Blue and Red spectra, no evidence of Fe IV[Fe II] was found. 

This could be caused by the faintness of the spectra, noting the high extinction to the 

object, and hence the high noise level. There is some evidence of I leI 700 I A and 

NI 8680, 8703, 8711 A emission, however due again to noise within the spectra and 

fringing effects at these longer wavelengths, it is difficult to calculate their significance. 

Exact spectral classification of the object according to the Williams (1992) system 

therefore remains elusive. 

6.4 Pre-Outburst Identification 

Pre-outburst images of a source at the location of V 1721 Aql are found within the 

2MASS catalogue31
, with NIR co-ordinates given as 0: = 19"06m28'~60, 6 = + 7°06' 41'~46; 

12000. Observed 2MASS apparent magnitudes and colours of the NIR source located 

at the position of the nova can be found in Table 6.3. This table also contains dc­

reddened colours using the extinction value Av = 11.6 ± 0.2. 

31 Available from http://irsa.ipac.caltech.edulapplications/Gator/ 
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Table 6.3: 2MASS apparent and absolute magnitudes of the V 1721 Aql progenitor (candidate), 
colours, and de-reddened colours of the NIR source located at the position of the nova. The 
extinction towards the nova has been taken as Ay = 11.6, and its distance as 2.2 kpc. 

Filter Apparent Absolute Colour Value De-reddened 
magnitude Magnitude Value 

J 16.6 ± 0.2 1.8 ± 0.6 J-Ks 2.0 ± 0.2 0.1 ± 0.2 
H 15.5 ± 0.1 1.7 ± 0.6 J-H 1.2 ± 0.2 0.0 ± 0.2 
Ks 14.7 ± 0.1 1.7 ± 0.6 H-Ks 0.8 ± 0.2 0.1 ± 0.2 

-

(a) (b) 

Figure 6.7: (a) 2MASS Ks band pre-outburst image. The nova i found within the enlr 
the black markers. (b) Unfiltered discovery image taken by K. Itagka on 2008 September 22nd 
at the Itagaki Astronomical Observatory. The nova is found within the centre of the black 
markers. 

The VI721 Aql discovery image32 and 2MASS J(s image were aligned and compared 

via IRAF packages. Based on the stellar density within the 2MASS Ks pre-outburst 

image, the probability of a chance alignment at least as close as that found between th 

nova and the 2MASS object is less than 1%. The archival 2MASS Ks band image i 

presented in Figure 6.7(a) and the discovery image presented in Figure 6.7(b). 

32 Available from http://www.astroalert.su/200S/09124/nova-aql-200S 
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6.5 The Nature of the Secondary 

There are several factors that contribute to the observed NIR colours of a nova system 

in quiescence, (i) the spectral type ofthe secondary and evolutionary phase, (ii) the rate 

of mass transfer Af, (iii) the extinction Av , (iv) the accretion disc and its inclination 

i, and (v) the mass of the primary. In CNe one would expect that the effect of the 

emission from the WD on the NIR colours to be negligible, and the accretion disc to 

only provide a significant contribution to the emission when i ;S 30°, where an angle of 

i = 900 is defined as an edge-on accretion disc (Weight et aI., 1994). The location of a 

quiescent nova on a NIR two-colour diagram (H - /(8' J - H) is therefore an important 

determinant of the nature of the secondary star in the system (see Section 1.9.2 for 

further discussion on this area). 

The NIR apparent colours of the vlnl Aql nova system in quiescence are shown in 

Figure 6.8. The system's colours occupy a region which contains the RN V745 Sco, 

which has a giant secondary with an M5+ III spectral type, and the suspected recurrent 

V 1172 Sgr (Weight et a1., 1994), which is also thought to contain a giant secondary. 

The extinction of these novae however is much lower than that of VI721 Aql (for 

V745 Sco Av = 3.1 ± 0.6; Schaefer, 2010). Nova Vlni Aql's occupancy of this 

region is merely coincidental and does not indicate that it is a RN-Iike system. Nova 

Aql's de-reddening vector is indicated with a red line, the arrow head on this line rep­

resents an extinction value of Av = 11.6; the surrounding red region represents the 

error circle of the corrected colours. The de-reddened quiescent NIR colours of the 

V1721 Aql nova system lie within a region occupied by many quiescent CNe. Assum­

ing that the NIR emission of the nova system is dominated by the secondary, Figure 6.8 

indicates that its spectral type is that of a late F-G (possibly K) main sequence star. 

However, the inclination of the accretion disc must be taken into account and if it is 

less than 300 (approaching face-on to the observer) then its contribution to the NIR 

colours would be to cause a significant blue-wards offset. 

The line profiles observed in the nova spectra, and resultant high velocities, would 

suggest that the inclination of the disc within the binary system is low (face-on). The 
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Figure 6.8: NIR colour-colour diagram of quiescent c1as ical nova ystem reproduced from 
Figures 4 & 7 in Hoard et a1. (2002) using Table I of their data. The figure i adj u led to 
include the quiescent 2MASS colours of the nova VI721 Aql Y tern. The light cro -hatched 
area represents NIR colours of main sequence star with the den er cra -hatched area rep­
resenting the giant branch (see references within Hoard et aI. , 2002). The black point how 
individual nova systems and are coded according to the time since outbur t, T , a follows; filled 
squares: T < 25 years; filled triangles: T = 25 - 50 year ; open triangles: T = 50 - 75 year : 
filled circles: T = 75 - 100 years; open circles: T > 100 year . The star- haped point are 
the recurrent nova systems. The nova systems pre ented here have not been corrected for ex­
tinction as in most cases the reddening is not accurately known, but it i a umed to be mall 
to negligible in the NIR for most Galactic nova systems. The large point for individual nova 
systems have la uncertainties of ~ 0.1 magnitudes; smaller points have I a uncertai ntie of > 
0.1 magnitudes. The red cross represents the observed quie cent NIR colour of the V 172 1 Aql 
nova system. The red line indicates the system's reddening vector with the arrowhead indicat­
ing its NIR colours once corrected for an extinction of Av = 11.6. The region enclosed by the 
red cross-hatching indicates a11 colours the nova system could po sess within the error circle of 
Ay = 11.6 ± 0.2. A de-reddening vector corresponding to Ay = 3 i also shown. 
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blue and red peaks seen within the Ha and 01 structures would therefore be the result 

of material ejected along the poles towards and away from the observer (observations 

and shaping models predict that the minor axis of a remnant lies in the disc plane; 

Porter et al., 1998; Slavin et al., 1995). This inclination however would mean that the 

contribution by the disc to the NIR colours is significant. Taking this blue contribution 

into account shifts the NIR system colours along the main sequence and into the sub­

giant region. Based on the speed and luminosity of the nova, the object may therefore 

be thought of as a U Sco-type RN system. Comparisons at quiescence between the 

absolute J band magnitudes and H-Ks colours of VI721 Aql (see Table 6.3), U Sco 

(MJ = 1.3 ± 0.4, H - Ks = 0.0 ± 0.133), and V2491 Cyg (M, = 1.0 ± 0.3, Damley 

et al., 2011, a suspected recurrent nova belonging to the U Sco class) support this 

argument as they all possess similar absolute J magnitudes and occupy the same region 

of space in an equivalent colour magnitude diagram around the sub-giant branch. The 

probability of a red giant as the secondary can also be ruled out as the J band absolute 

magnitude of the system would have to be approximately five magnitudes brighter. 

Given the speed of decline ofthe nova, work by Slavin et al. (1995) would suggest that 

the axis ratio (ratio of semi-major to semi-minor axis) of Nova V 1721 AqJ's ejected 

shell is low (~ 1). The nova ejecta may therefore be modelled by an approximately 

spherical shell with discreet randomly distributed knots of brighter emission. Using 

XSS34, the morphological and kinematical modelling programme (Harman et al., 2003) 

for producing 3D representations of astrophysical shells, synthetic images, and spectra 

(see Section 4.7 for detailed discussion on this programme) Nova VI721 Aql's ejecta 

was modelled. The modelling was conducted by calculating the expected emission 

line profiles from models of the ejecta distribution and comparing them to observed 

profiles, specifically Ha. As stated in Section 4.7 the XS5 program allows the user to 

generate a geometrical shape, such as an ellipsoid or an hour-glasslbipolar structure, 

which can be rotated and inclined. By adjusting additional parameters, such as the 

major and minor axis lengths, the FWHM of line profiles from the shell, the polar axis 

33Photometry taken from (Hanes, 1985). distance and extinction taken from (Schaefer. 2010). 
34It should be noted that the version of XS5 used here to generate models of the nova ejecta is 

precursor of the one used in Chapter 4. 
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emission gradient, and the expansion velocity, the output emission line profile can be 

altered until a match with observations is achieved. Models of the nova ejecta with 

axis ratios between 1.0 and 2.0 (at 0.1 increments) were created. The results of this 

program are presented in Figures 6.9 and 6.10. 

Figure 6.9(c) presents two modelled spectra compared to the observed Ha structure. 

The red spectrum is that of a spherical shell, axis ratio of I and the blue spectrum is of 

an ellipsoidal-like shell with an axis ratio of 1.4. Both shells are smooth with uniform 

emission, and the inclination of the system is such that the central accretion disc is 

face-on. Figure 6.10(c) illustrates the results from the same two structures with the 

same inclination, but this time there is a slight emission enhancement in the equatorial 

region. From these modelled spectra it would seem that an ellipsoidal-like morphology 

may actually be more suited to the VI721 Aql ejecta, however there is far too little 

information to make a strong argument for this. It may be noted that this higher axis 

ratio is contradictory to expectations in Slavin et al. (1995). However, recent work 

on the 2010 outburst of U Sco by Drake & Orlando (2010) has indicated that nova 

ejecta can be significantly shaped by circumbinary gas and/or a high accretion disc gas 

density. Reproducing the stronger red peak of the Ha emission line profile has also not 

been possible. This could be due to clumps in the ejecta, but more detailed data and 

modelling are needed to explore this further. 

6.6 Discussion and Conclusion 

The results presented throughout this Chapter indicate that V 1721 Aql is a very fast 

nova (t2 rv 6 days) and very luminous (Atv = -9.4 ± 0.5). The extinction of the object 

is high, Av = 11.6 ± 0.2 as the nova is very close to the Galactic plane. Based on the 

value of Av , the distance to the nova is estimated to be 2.2 ± 0.6 kpc 

Pre-outburst NIR colours of the nova have been compared to other novae in quiescence 

(all post-outburst) and the NIR colours of main sequence and giant stars. The results 

indicate that, when de-reddened, the nova occupies a region of the colour-colour phase-
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Figure 6.9: (a) Plan view of modelled nova ejecta with an axi ratio of l. The hell i mooth 
with uniform emission. (b) Plan view of modelled nova ejecta with an axi ratio of 1.4. Inclina­
tion of the system is such that the accretion disc is face-on to the ob erver, the shell i smooth 
with uniform emission . (c) Relative velocity diagram of the ob erved Ha (black) tructure and 
the two modelled systems created in XS5. The red line represents the sy tern with an axi ratio 
of I , the blue line represents the system with an axis ratio of 1.4. The difference between the 
modelled and observed line profiles is given in the lower part of the diagram. 
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Figure 6.10: (a) Plan view of modelled nova ejecta with an axis ratio of 1. Inclination of 
the system is such that the accretion disc is face-on to the observer and the shell i mooth 
with a slight emission enhancement within the equatorial region. (b) Plan view of modelled 
nova ejecta with an axis ratio of 1.4. Inclination of the ystem i uch that the accretion di c 
is face-on to the observer, the shell is smooth with a light emis ion enhancement within the 
equatorial region. (c) Relative velocity diagram of the observed Ha (black) structure and the 
two modelled systems created in XSS. The red line repre ents the system with an axi ratio 
of 1, the blue line represents the system with an axis ratio of 1.4. The difference between the 
modelled and observed line profiles is given in the lower part of the diagram. 
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space in which most CNe are found and appears to have a late (F-M) main sequence 

secondary or a sub-giant. However, the possibility ofVI721 Aql being a RN cannot be 

ruled out, only that it does not appear to contain a giant secondary and can therefore not 

belong to the RS Oph or T CrB class of recurrent. The U Sco class of RNe however, 

consists of an evolved main sequence or sub-giant secondary, much like eNe, and like 

VI721 Aql, these novae are very fast. Similarities in absolute J band magnitudes at 

quiescence between VI721 Aql, U Sco, and V2491 Cyg (suspected U Sco member) 

also indicate that this object may be a U Sco-type RN. 

Post-outburst spectra of VI721 Aql revealed boxy structures around lin, 01 7773 

A, and 01 8446 A. It is interesting to note that similar complex lin profiles have been 

observed in other fast novae such as the 1999 outburst of U Sco (lijima, 2002), and 

nova V2672 Oph (2009, Munari et aI., 201Ia), a suspected U Sco-type object. Exam­

ination indicates that the features in V 1721 Aql are not contaminated significantly by 

other emission lines. The structure of the line emission would suggest that material 

is being ejected from the poles of the nova shell moving towards and away from the 

observer, leading to the blue and red wing emission seen. This would indicate that the 

disc of the binary is face-on, an argument which is also supported when considering the 

high observed ejecta velocities of the system. If the accretion disc were edge-on, con­

cealed velocities would be greater than those observed and this is unlikely. A face-on 

accretion disc is also more likely when considering the physical reasons for Gaussian 3 

of Figure 6.5. This feature may represent a narrow core of lin emission, in which case 

what is observed is H recombination emission both from the expanding ejecta, which 

gives rise to the broad overall emission, and emission from a re-established accretion 

disc, or possibly even a disc that was never completely disrupted. 

With a face-on accretion disc the hotter inner region of the disc is exposed possibly 

giving a significant blue contribution to the NIR colours of the nova and thus seri­

ously affecting previous spectral classification of the secondary. The speed of decline 

of the nova also suggests that the nova shell itself has a low axis ratio so that it is 

almost spherical. Basic models generated by XS5 to reproduce the lIn line profile, 

however, produce a best fit when using an ellipsoidal-like shell with an axis ratio 1.4. 
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The departure from a spherical shell is most likely due to the nature of the explosion 

environment (circumbinary material and/or high density disc gas; Drake & Orlando, 

2010). The model shell produced is smooth with a slight emission enhancement within 

the equatorial region, again implying a face-on central accretion disc. 

Relative velocity shifts found via spectral fitting of the Ha and 01 emission are com­

parable to those presented in Helton et al. (2008a) and an ejecta expansion velocity of 

Vexp = 3400± 200 km s-1 along the line of sight is estimated. This Vexp is, perhaps, 

more consistent with that of a fast classical nova system rather than fast recurrent no­

vae, which tend to have slightly higher expansion velocities of Vexp ;::: 4000 km S-l 

(Evans et al., 2008). 

There is no evidence of emission blue-wards of the Ha structure. This is likely due 

to the high extinction towards the nova. An alternative explanation is that the nova 

is of the Fe II class and at this stage the shell is still optically thick. Ilowever, no 

dominant lines of Fe II or [Fe II] are present within the spectra. These lines may not 

have developed yet or may have been lost within the noise of the spectra. Therefore, 

an Fe II classification cannot be ruled out. Although Fe II novae tend to be slower than 

VI72I Aql. 

The spectra show no conclusive evidence of He and N emission. This may also be 

due to the low signal-to-noise level within the spectra and the high extinction. No 

absorption features are seen in the spectra. This is unusual as absorption lines within 

the optically thick expansion stage are expected. 

In conclusion the precise nova sub-class of this object remains elusive, and the results 

of this work suggest two possibilities. The first is that this is a highly energetic lumi­

nous and fast classical nova with a main sequence secondary of spectral type F-M, and 

that any Fe II lines that may have been observable (i.e it may have been too early for 

them to have developed) within the nova spectra have simply been extinguished. The 

second possibility is that this is a U Sco-type RN and that evidence of Ile/N within the 

spectra is lost due to the high extinction. The latter scenario may prove itself within 

the next few decades and therefore this object is one that merits continued monitoring 
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for future outbursts. 

Within the next Chapter a summary of this thesis is presented along with planned future 

work. 



Chapter 7 

Summary and Future Work 

7.1 Summary of Thesis Research 

The results of the research conducted within this thesis are discussed below. 

7.1.1 Examination of Extragalactic Novae 

Using the Liverpool Telescope and Faulkes Telescope North, photometry of extragalac­

tic novae was obtained over a three year period. Each observation was quality checked 

with many of the M31 novae observed used within Shafter et a!. (20 II). This paper 

examined the distribution of various speed and spectroscopic classes of novae within 

M31 in an attempt to fully understand nova populations within the galaxy. 

7.1.2 The Planetary Nebula Surrounding Nova V458 Vulpeculae 

The shapes observed in many planetary nebulae (PNe) are thought to be caused by 

binary systems and their evolution, with various system components and parameters 

leading to certain morphologies. The observation and modelling of PNe which have 

had novae occur within them provide a vital insight into pre-outburst nova evolution. 

The outbursts of both GK Per (Bode et aI., 1987) and V 458 Vul (Wesson et a!., 2008) 
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occurred in PNe and were accompanied by light echoes (Couderc, 1939; Kapteyn, 

1901; Wesson et al., 2008). Light from the eruptive variable is scattered by dust or 

re-emitted by gas in its vicinity, reaching the Earth at progressively later times as the 

wave of illumination is seen to propagate outwards. For astronomical purposes each 

echo surface is well approximated by a paraboloid. 

Using the LT, 14 epochs of Hex imaging of Nova V458 Vul were obtained after out­

burst. Data were also obtained from the INT, NOT, and WHT (observations made by 

groups outside of the ARI), giving a total of 19 epochs between July 2008 and October 

2011. As described in this thesis all data have been reduced and field stars subtracted 

via PSF modelling in IRAF to isolate the PN. A C-Ianguage code was then used to 

combine the resultant images into a 3D FITS data cube with each image projected on 

to its appropriate paraboloid echo surface. Using XS5 a series of PN structures were 

generated over a range of geometric parameters and distances, and the passage of the 

light echo through these structures modelled. Through the comparison of the observed 

PN light echo data to the modelled PN light echo data a brute force X2 test was con­

ducted and a PN structure with the following parameters obtained: PA I = 28°, IN I = 

90°, AlA = 20", BIA = 6", A2A = 16", B2A = 4", FLUX ratio = 0.20, FALL = 80 

days, DIST = 13 kpC35 • Here the external shell is modelled as a bipolar structure and 

the internal as an ellipsoid. It should be noted that the distance derived is consistent 

with results presented in Wesson et at. (2008). On application of a Gaussian to the 

distances obtained for the top 1 % of PN configurations a value of 13.6 ± 0.9 kpc was 

derived. This however assumes a normalised distribution which may not be the case 

and can not be taken as a true value. The PN model was generated using a very coarse 

set of parameters and based on these initial results an additional brute force test is cur­

rently being conducted using much a much finer parameter space (see Section 7.2.1 for 

future work on this object). 

35 Again it should be noted that these results are preliminary and will suITer from the same error 
as mentioned in footnote 16 (page 80). However, for the reasons mentioned within footnote 16 the 
conculsions are believed to be valid within the uncertainties of the analysis. 
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7.1.3 Nova Aquilae (2008) 

In collaboration with Dr G. Schwarz (West-Chester University/American Astronom­

ical Society) and Dr L. A. Helton (SOFIA Science Center/University of Minnesota), 

Nova VI72I Aql was studied. Within this investigation available pre- and post-outburst 

photometry and post-outburst spectroscopy (obtained by the Steward Observatory Bok 

2.29m telescope on Kitt peak via the Boller & Chivens optical spectrograph) were used 

to conclude that the object is a very fast, luminous, and highly extinguished (Av = 11.6 

± 0.2) nova system with an average ejection velocity of 3350 km S-1, Pre-outburst NIR 

colours from the 2MASS point source catalogue indicated that at quiescence the object 

is similar to many quiescent classical novae and appears to have a main sequence/sub­

giant secondary rather than a giant counterpart. Based on the speed of decline of the 

nova and its emission line profiles it was hypothesised that the axis ratio of the nova 

ejecta is rv 1.4 and that its inclination is such that the central binary accretion disc 

is face-on to the observer. As such, the accretion disc's blue contribution to the sys­

tem's NIR quiescent colours may be significant. Simple models of the nova ejecta 

were constructed using the morphological modelling code XS5, and the results sup­

ported the above hypothesis. Precise spectral classification of this object proved to be 

exceptionally difficult owing to low signal-to-noise levels and high extinction, which 

has eliminated all evidence of any HelN or Fe II emission within the spectra. Two pos­

sibilities are suggested for the nature of VI721 Aql: that it is a U Seo type RN with a 

sub-giant secondary or, less likely, that it is a highly energetic bright and fast classical 

nova with a main sequence secondary. Future monitoring of the object for possible RN 

episodes may be worthwhile, as would archival searches for previous outbursts. 

The results of this work have been published in Hounsell et al. (2011 a) and it has been 

extended in Darnley et al. (2012) where NIR colours and absolute magnitudes are used 

to indicate the separations between the various subclasses of RNe (T Pyx, U Sco, RS 

Oph) and between CNe. Further NIR observations of novae pre- and post-outburst 

would refine accretion disc inclination and colour change relations and thus aid in the 

fundamental classification of system secondary and nova type. 
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An important topic within the nova field today is the relation between ejecta shape 

and speed class. Slavin et al. (1995) find that fast novae should be modelled by ran­

domly distributed clumps of ejecta superimposed on a spherical shell, whilst slow no­

vae should have a more structured ellipsoid remnant with rings of enhanced emission. 

Recent work by Drake & Orlando (2010) on the ejecta of U Sco however suggests that 

the ejecta shape is much more influenced by environmental factors such as circum­

stellar material and the gas density and mass of the accretion disc, rather than the 

speed class. A similar conclusion has been reached through the modelling V 1721 

Aql's ejecta as described within Hounsell et al. (2011a). It is evident that more de­

tailed investigations of additional ejecta novae where possible are required to further 

test this hypothesis. 

7.1.4 Examination of Novae using data from the Solar l\Jass Ejec­

tion Imager (Sl\fEI) 

In collaboration with Dr B. V. Jackson, Dr A. Buffington, Dr P. Hick, and J. M. Clover 

of the University of California San Diego (UCSD) and Prof. A. W. Shafter of San 

Diego State University (SDSU, USA) exceptionally detailed light curves of three CNe 

(KT Eri, Vl280 Sco, V598 Pup) and two RNe (RS Oph and T Pyx) were obtained and 

analysed (Hounsell et al., 201Ib). These light curves have been derived using data from 

SMEl, a space-borne instrument based on-board the Coriolis satellite (in operation 

since 2003, Buffington et al., 2007; Eyles et al., 2003; Jackson et aI., 2(04). SMEI 

provides near complete sky-map coverage with precision visible-light photometry at 

102-minute cadence, and was originally designed to map coronal mass ejections from 

the Sun (Buffington et al., 2007; Jackson et al., 2004). As a by-product of its original 

purpose the instrument is able to detect brightness changes in point sources down to 

I"V 8th magnitude. Light curves were obtained by fitting each nova to a standard PSF 

using a least-squares fitting procedure implemented in IDL (Hick et at., 2005,2007). 

The light curves derived from the SMEI sky-maps offer unprecedented temporal res­

olution around, and especially before, maximum light, a phase of the nova eruption 
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normally not covered by ground-based observations. They have allowed the explo­

ration of fundamental parameters for individual objects induding the epoch of the 

initial explosion, the reality and duration of any pre-maximum halt (found in all fast 

novae examined), the presence of secondary maxima, speed of decline of the initial 

light curve, plus precise timing of the onset of dust formation (in Vl280 Sco) leading 

to estimation of the bolometric luminosity, WD mass and object distance. 

The undeniable evidence provided by these light curves for the existence of the pre­

viously controversial pre-maximum halt, with accurate times of occurrence, duration, 

and magnitude below peak given is a challenge to detailed models of the nova outburst. 

This work has also indicated that there does not seem to be a correlation between the 

properties of the pre-maximum halt (DomS~1EI' Dot, number of magnitudes below maxi­

mum, and time before peak) and the properties of the nova or its eruption (speed class), 

although the sample size is admittedly small at present. 

For KT Eri, Liverpool Telescope SkyCamT data confirm important features of the 

SMEI light curve. The overall results for KT Eri add weight to the proposed similari­

ties between it and RNe rather than to CNe. In RS Oph, comparison with hard X-ray 

data from the 2006 outburst implies that the onset of the outburst coincides with ex­

tensive high-velocity mass loss. It is also noted that two of the four novae detected 

(V598 Pup and KT Eri) were only discovered by ground-based observers weeks or 

months after maximum light, yet these novae reached peak magnitudes of 3.46 and 

5.42, respectively. This emphasizes the fact that many bright novae per year are still 

overlooked, particularly those of the very fast speed class. The results of this work 

were published as a collaborative paper in Hounsell et al. (20IOa). 

A number of fainter novae were also examined the using SMEI data and where possible 

accurate dates and magnitudes for peak, along with decline time obtained. The light 

curves of these novae not only illustrate any small variations they may experience. but 

also highlight the limitations of the SMEI detector. 

In collaboration with UCSD a code to search for transient and variable events within 

the SMEI sky-maps has been updated and will soon be implemented. An initial search 
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conducted on four years of SME! data from Camera 2 generated over 1500 object 

files. Examination of these data revealed that the majority of objects were within the 

GCVS and/or were the result of poor subtraction of the bright SMEI catalogued stars. 

Some objects however remained unidentified and are potentially very interesting (see 

Section 5.7.2). 

Overall, the data provided by SMEI may well have opened a new chapter in our obser­

vation and understanding of novae. The work conducted on SMEI has also highlighted 

how important it is to examine all-sky data from a variety of sources with regards to 

transient events and variable objects in general. 

7.2 Future Work to be Conducted 

Future work to be conducted on areas of research presented within this thesis are dis­

cussed below. 

7.2.1 Modelling of the PN Surrounding V458 Vulpeculae 

Although a PN structure with an ellipsoidal internal shell and bipolar external shell 

have been derived, refinement of this structure's geometric parameters is required. This 

is currently being conducted using values derived from the results of the brute force 

test presented in Section 4.7.236 (see Table 4.4). The results of this secondary test 

should produce a more accurate PN model. 

Within the brute force test, several assumptions were made, the most prominent of 

which being the assumption that the internal shell is an ellipsoid. This shape was 

chosen for simplicity. However, for completion additional tests should be implemented 

using both spherical and bipolar structures. The position angle of the internal shell 

should also be allowed to alter from that of the external. A "uniform" illumination 

of each shell was also assumed again for simplicity, but this may not be the case and 

36Results of the first initial brute force test are also being recomputed using the correct seeing of 1.9" 
to confirm previously obtained results. 
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Table 7.1: Refined parameters used within X2 test. 

Test Refine: RISE=1 day 

FALL (days) 75 8085 9095 100 105 
nIST(pc) 12500,12750,13000,13250,13500 

13750, 14000, 14250, 14500, 14750 

IN1° 
AlA" 
BIA" 

FLUX factor 
A2A" 
B2A" 

27,28,29,30,31 
85,86,87,88,89,90 
18,19,20,21,22,23 

4,5,6,7,8 
0.1,0.15,0.2,0.25 
11, 12, 13, 14, 15 

3,4,5,6 
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further testing may be required. On completion of all additional tests a similar model 

will be constructed in Shape (Steffen & Lopez, 2006)37 for comparison. It may also 

be appropriate to reproduce the stellar environment of the modelled PN, i.e with the 

central nova system and surrounding bright stars added. This will aid in the validation 

of the PN model. 

Within this work a halo to the PN has not been observed. This could be as a conse­

quence of the image processing used, or that it is simply too faint. Ilowever, over time 

the halo may become illuminated by the light echo (if it has not yet already been) allow­

ing further analysis of the system. Additional observations of the object are therefore 

required. 

Results of this work are being written up for publication in MNRAS. 

7.2.2 The SMEI Data Archive 

The future work to be conducted on the SMEI data set in the collaboration between 

LJMU and UCSD can be divided into three sections. 

1. Search for undetected bright Galactic novae: As mentioned in Section 5.8 

Shafter (2002) estimates that as many as six novae with maxima brighter than 

8th magnitude may occur each year. However, of these only one or two tend to 

37http://www.astrosen.unam.mxJshape/ 
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be observed, and these are discovered mainly by the amateur community. The 

estimate provided by Shafter (2002) suggest that over 50 novae may be found 

within the SMEI data archive, 60-80% of which will be unknown. Examination 

ofthe SMEI archive for such bright novae will potentially enable a more accurate 

determination of the nova rate within our Galaxy and their distribution. 

2. Search for exotic transients: Work by various authors (e.g. Kasliwal & Kulka­

rni, 2009) has indicated that there is a clear luminosity gap between novae and 

SNe (see Figure 7.1). Surveys such as the Catalina Real-Time Transient Survey 

(CRTS), the Palomar Transient Factory (PTF), and Pan-STARRS are exploring 

this gap looking at Galactic and Extragalactic objects. On a Galactic scale how­

ever SMEI with its high cadence may provide invaluable data. Work by Yaron 

et al. (2005) and Shara et al. (20 I 0) has indicated that the ranges of WD masses, 

temperatures, and accretion rates that can be numerically applied to produce no­

vae are broader than previously thought. This means that there may be "extreme 

novae" within galaxies with eruption luminosities, metallicities, ejecta masses 

and velocities significantly greater or smaller than currently observed. A search 

of the SMEI archive may reveal several of these "extreme novae as well as pre­

viously undetected exotic luminous transients found within the luminosity gap. 

3. Examination and detection of variables: Obtaining light curves of varinblc 

objects over long time-scales typical of the photometric behaviour of the variable 

star gives us information on the physical processes which are responsible for 

the observed brightness and colour variations. SMEI is able to produce an 8.5 

year base-line for such variables with very high cadence and high photometric 

accuracy and thus potentially producing very valuable data. Initial analysis (see 

Section 5.7.2) has indicated that several of the variables that may be detected by 

SMEI may not be found within the GCVS and will be previously unidentified. 

In order to find bright novae, exotic transients, and variable stars (catalogued and un­

catalogued) smei-findpnt described in Section 5.7.2 will be implemented on all 8.5 

years of SMEI data for all three cameras. This will be conducted withficcenrroid on 
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Figure 7.1 : R-band peak magnitude as a function of characteri tic decay time- cale (typically 
the time to fade from peak by 2 magnitude) for luminou optical tran ient and variable . 
Filled boxes mark well- tudied classes with a large number of known member (c ia ical no­
vae, Type la supernovae [SNe la] , core-collapse supernovae [CCSNe], luminous blue variable 
[LBVs]). Vertically hatched boxes show classes for which only few (S; 4) candidate member 
have been suggested so far (luminou red novae, tidal disruption flare, luminou upernovae). 
Horizontally hatched boxes are classes wruch are believed to exist, but have not yet been de­
tected (orphan afterglows of short- and long GRB ). The po ition of theoretically predicted 
events (fall-back supernovae, macronovae, .Ia supernovae [.Ja]) are indicated by empty boxe . 
The brightest transient (on-axis afterglows of GRB ) and events detectable predominantly in 
the Milky Way (e.g., dwarf novae) are omitted for clarity Region indicate the general location 
of each class and are not exclusive. The color of each box corre pond to the mean g - r color 
at peak (blue, g - r < Omag; green, 0 < g - r < I mag; red, g - r > I mag. Tmage and adapted 
caption taken from Rau et a1. (2009). 
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in order to obtain the greatest accuracy in position (rms 0.05°) for the candidate objects 

detected. 

To sort candidates found by smei-findpnt into their individual object files a modified 

version of the smeLsort program (see Section 5.7.2) will be written in C or IDL. This 

code will not only sort objects via RA and Dec but will also exclude regions around 

the edge of cameras within a 1 ° radius (and the Sunwards and anti-Sunward masks) 

preventing the detection of tails caused by bright objects and so false positives (see list 

of issues in Section 5.7.2). Multiple detections of the same object within the upper 

and lower regions of the EQ, SP, and NP maps must also be taken into account within 

this code and will be done via a search of matching RA and Dec (± 0.1°). When such 

an event Occurs the NP or SP detection will be deleted leaving only the EQ detection, 

unless the EQ detection lies within Camera 3 (the camera suffering from the worst 

degeneration, see Section 5.2) in which case the NP or SP detection will be kept. 

Whilst conducting the initial analysis discussed in Section 5.7.2 it was noted that tran­

sients such as novae were not originally detected. This was because the threshold 

for the number of hits per HEALPix pixel was set too high ('" 100). By lowering 

this threshold, novae were detected. When constructing the modified version of the 

smei....sort code pixels which are found to have limited number of sequential hits (say 

20-200) will create object files which are flagged as possible transients. This flagging 

will enable quick identification of possibly interesting objects. 

On creation of individual object files and initial flagging, files will then be passed 

through a peak finding code which is currently in construction using C. Within this 

code a peak is defined based on the number of sequential hits above or below a certain 

number of sigma from the weighted mean of the data. Objects may then be flagged 

based on the number of peaks detected and the number of sigma that the maximum 

peak value lies above the mean. This will then enable a simple classification of objects. 

Single-peaked objects detected with this method will be examined in greater detail 

within the SMEI archive. Using the raw data (maps in which the bright stars, zodia­

cal model, and sidereal background have not been subtracted) a visual inspection of 
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the maps will be conducted over the time line of the event, along with examination 

of surrounding region for bright stars. A new light curve of the object will then be 

generated from the raw maps using the method described in Section 5.3. This will 

create the best light curve for the object under examination. Based on the morphology 

of the light curve generated, nova classification may be applied. However, follow-up 

observations of the object in quiescence may be required and can be obtained via the 

LT and additional facilities. 

For variable objects with mUltiple peaks over the SMEI time-line such visual inspec­

tion and fitting from the raw SMEI maps will prove impossible. For such situations 

the scatter of each light curve must be measured and spurious points removed via a 

comparison to this value. For long base-line light curves the degradation of each cam­

era over the years and any offsets between cameras must also be taken into account. 

To obtain a measure of this degradation and of the offset light curves of bright non­

varying stars will be created for the entire 8.5 year span and calibration calculations 

constructed for application to each variable object. It has been noted within Buffington 

et al. (2007) that the response of each camera is seen to diminish at about 1.6% per 

year. This however is expected to be much larger for Camera 3. 

Only when all light curves have been created and corrected, the position of each object 

will then be run through the GCVS and other catalogues as before and possible iden­

tification obtained. Objects which are not found within the GCVS etc. will warrant 

further more detailed investigation with other facilities such as the LT. 

As mentioned earlier, the non-iterative fitting of the brighter than 6th magnitude stars 

and their position has left residuals within the variable maps. Iterative fitting of these 

objects is currently being conducted via the supercomputer facility at UCSD. This 

procedure should produce variable maps of greater quality, containing less residuals 

and so false positives. This procedure however may take some time, and as such the 

initial search for objects will be conducted on the variable maps which are currently 

in possession. Fitting of the bright objects from the raw data using the supercomputer 

will also produce detailed light curves allowing examination of variable objects at and 

above 6th magnitude within the SMEI catalogue list. 
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In Section 5.3.2 it was noted that star crowding with the SMEI data can become an 

issue especially within a few degrees of the Galactic plane. As such novae within this 

region may be missed. As well as fitting each PSF via the least squares fit an alternative 

method may be implemented using the raw SMEI maps. Such a method could involve 

the use of IRAP's DAOPHOT routines as mentioned in Spreckley & Stevens (2007) or 

via Starlink's SExtracto?8. As such time-series of all objects as well as the brighter 

than 6th magnitude may be obtained as well as the fainter uncatalogued SMEI objects. 

Such a method may also take into account the quality of the data (weighting the value 

of the star flux obtained by the background flux sampled) and thus reduce the number 

of corrections to be applied to each light curve. The additional methods mentioned 

will also allow the examination of the 6th magnitude and brighter variables within the 

raw maps. These methods, however will again require more time and thought. 

Complementary data of certain objects extending down to 13 th magnitude may also be 

obtained through the used of STEREO HI as described in Section 5.6. 

The SMEI archive could be harbouring many fascinating objects the physics of which 

may be of vital importance in the understanding many astrophysical processes. This 

archive therefore warrants thorough further examination. 

38http://sextractor.sourceforge.netl 
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Appendix A 

Nova V458 Vul Images 

Within this appendix images on the left-hand side are the median combined images 

produced from each epoch which have then been aligned to the reference. These im­

ages have not been normalised to each other nor undergone star subtraction. The im­

ages on the right-hand side are the star subtracted, median combined images from each 

epoch which have been aligned to the reference and normalised. Masks mentioned in 

Section 4.4.4 are evident within each right-hand side image. 
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(a) (b) 

Figure A.I: 2008-05-2 1 data taken by the INT (a) n-pr . ed gi n nlr 

on Nova V458 Vul. (b) Star ubtracted normali d imag 

(a) (b 

Figure A.2: Same a igur A. I e pt 2 - 7-2 dtlln wk n by III 

(a) b 

Figure A.3: Same a igure A.I c pt 2008-0 -2 data tak n b III 



(a) (b) 

Figure A.4: Same a Figure A.l except 2008-09-19 data taken by the NOT. 

(a) (b) 

Figure A.5: Same as Figure A.l except 2008-09-21 data taken by the L . 

(a) (b) 

Figure A.6: Same as Figure A.I except 2008-09-30 data taken by the NOT. 



(a) (b) 

Figure A7: Same a Figure Al except 2008-10-06 data taken by the LT. 

(a) (b) 

Figure A.8: Same as Figure Al except 2008- 11-24 data taken by the LT. 

(a) (b) 

Figure A.9: Same a Figure A.I except 2009-06-15 data taken by the WHT. 



(a) (b) 

Figure A. 10: Same a Figure A.I except 2009-06-30 data taken by the LT. 

(a) (b) 

Figure A. II: Same as Figure A.I except 2009-08-18 data taken by the LT. 

(a) (b) 

Figure A.l2: Same a Figure A.I except 2009-09-23 data taken by the LT. 



(a) (b) 

Figure A.l3: Same as Figure A.l except 2009-10-20 data taken by the LT. 

(a) (b) 

Figure A.14: Same as Figure A.I except 2009-11-14 data taken by the LT. 

(a) (b) 

Figure A.15: Same as Figure A.I except 2010-07-23 data taken by the WHT. 



(a) (b) 

Figure A.I6: Same as Figure A.I except 2010-08-18 data taken by the LT. 

(a) (b) 

Figure A.17: Same as Figure A.I except 201 1-06-11 data taken by the LT. 

(a) (b) 

Figure A.l8: Same as Figure A.I except 2011-07-01 data taken by the LT. 



(a) (b) 

Figure A.19: Same as Figure A.I except 2011-07-01 data taken by the LT. 

(a) (b) 

Figure A.20: Same as Figure A.I except 2011-10-27 data taken by the LT. 



Appendix B 

Known novae within the SMEI 

database 

The following tables present a list of all known novae within the UCSD SMEI database. 

Novae marked with a * have provided detailed light curves under investigation (see 

Section 5.5.1). Novae marked with a t are fainter and have produced the less detailed 

light curves presented in Section 5.5.2. 
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Table B.l: Classical and Recurrent Novae listed within the UCSD SMEI data base - continued in the next three tables. 
I Name I Year I M~l1th I Discovery Qate (UT) I R.A (J2000) , Dec (12000) , Discovery Magnitude , Re~rence to Discovery_ --I Visible J 

-

V4745 Sgr 2003 4 25.73 18:40:2.54 -33:26:55.1 8.9 N. Brown; M. Yamamoto No 
V25730ph 2003 7 10.60 17: 19: 14.9 -27:22:35.2 11.4 A. Takao; V. Tabur No 
V0475 Sct 2003 8 28.58 18:49:37.62 -09:33:50.3 8.4 H. Nishimura No data 
V5113 Sgr 2003 9 17.52 18:10:10.42 -27:45:35.2 9.2 N.Brown No 
DECir 2003 10 9.00 15: 17:52.48 -61:57:16.4 7.7 W. Liller No 
V5114 Sgr 2004 3 15.82 18: 19:32.29 -28:35:35.7 9.4 H. Nishimura; W. Liller; Y. Nakamura No 
V2574 Oph 2004 4 14.80 17:38:45.49 -23:28:18.5 11.1 A. Takao; Y. Nakamura No 
V1l86 Sco 2004 7 3.15 17: 12:51.28 -30:56:37.6 12 G. Pojmanski No 
V1187 Scot 2004 8 3.58 17:29:18.81 -31:46:01.5 7.4 A. Takao Yes 
V0574 Pup 2004 11 20.67 07:41:53.56 -27:06:38.3 7.6 A. Tago; Y. Sakurai No 
V2361 Cyg 2005 2 10.85 20:09: 19.05 39:48:52 9.7 H. Nishimura No 
V0382 Nor 2005 3 13.31 16:19:44.74 -51 :34:53.1 9.4 W. Liller No 
V5115 Sgr 2005 3 28.78 18: 16:58.96 -25:56:38.9 8.7 H. Nishimura; Y. Sakurai No 
V0378 Ser 2005 3 21.37 17:49:24.57 -12:59:59.2 11.8 G. Pojmanski No 
V1663 Aqi 2005 6 9.24 19:05:12.5 05:14:12 11 G. Pojmanski No 
V5116 Sgr 2005 7 4.05 18: 17:50.77 -30:26:31.2 8 W. Liller No 
Vl188 Sco 2005 7 25.28 17:44:21.59 -34:16:35.7 9.1 G. Pojmanski; H. Nishimura No 



I Name I Year] ~()Ilth I Diseoveryp(lteJUTtLR.A (J2ooo) I Dee (J20001J-OlScovery MagnitudeiDlscover(s) _---=-LVJsaiJle -:1 
-

VI047 Cen 2005 8 1.03 13:20:49.74 -62:37:50.5 8.5 W. Liller No 
V476 Set 2005 9 30.52 18:32:4.75 -06:43:34.3 10.3 A. Takao; K. Haseda No 
V477 Set 2005 10 11.03 18:38:42.93 -12:16:15.6 12 G. Pojrnanski No 
V2575 Oph 2006 2 9.39 17:33: 13.06 -24:21:07.1 12.1 G. Pojmanski No 
RS Oph* 2006 2 12.83 17:50:13.20 -06:42:28.48 4.5 H. Narumi Yes 
V5117 Sgr 2006 2 17.37 17:58:52.61 -36:47:36.2 9 W. Liller No 
V2362Cyg 2006 4 2.81 21:11:32.34 44:48:03.9 10.5 H. Nishimura No 
V25760ph 2006 4 6.57 17:15:33 -29:09:09.9 10.5 P. Williams No 
V1065 Cen 2007 1 23.35 11 :43: 10.33 -58:04:04.3 8.2 W. Liller No 
V1280 Seo* 2007 2 4.90 16:57:41.2 -32:20:35.8 9.4 Y. Sakurai; Y. Nakamura Yes 
V1281 Seo 2007 2 19.86 16:56:59.35 -35:21:50.2 9.3 Y. Nakamura; H. Nishimura Yes but faint 
V2467 Cygt 2007 3 15.79 20:28: 12.52 41:48:36.5 7.4 A. Tago Yes but faint 
V26150ph 2007 3 19.81 17:42:44 -23:49:35.1 10.2 H. Nishimura No 
V5558 Sgr 2007 4 14.78 18:10:18.27 -18:46:52.1 10.3 Y. Sakurai Yes but faint 
V390Nor 2007 6 15.09 16:32: 11.51 -45:09: 13.4 9.4 W. Liller No 
V458 Vult 2007 8 4.54 19:54:24.64 20:52:51.7 9.5 H.Abe Yes 



prame _ J Year I Montll r Discovery Date (UT) L~A (J2000) I Dec (j2000) I Discovery Magnitude T Dlscover(s) I Visab~1 
V597 Pup T 2007 8 14.21 08:16:18.01 -34:15:24.1 7 A. Pereira Yes 
V598 Pup* 2007 8 8.00 07:05:42.51 -38:14:39.3 10.3 Read et aI. (x-ray) Yes 
V459 Vult 2007 12 25.35 19:48:8.84 21:15:26.8 8.7 Kaneda Yes but faint 
V2468 Cyg 2008 I 7.80 19:58:33.39 29:52:6.5 8.2 Kaneda No 
NRTrA 2008 4 1.73 16:18:48.21 -60:27:48.9 9.2 Brown No 
V2491 Cygt 2008 4 10.73 19:43:1.96 32:19:13.8 7.7 Nishiyama, Kabashima Yes 
V5579 Sgr 2008 4 18.78 18:05:58.88 -27:13:56 8.4 Nishiyama, Kabashima No data 
V26700ph 2008 5 25.69 17:39:50.93 -23:50:0.9 10.3 Haseda et al. No 
V26710ph 2008 5 31.61 17:33:29.67 -27:01:16.4 11.3 Nishiyama, Kabashima No 
V1309 Sco 2008 9 2.46 17:57:32.93 -30:43: 10.1 9.5 Nishiyama, Kabashima No 
VI721 Aql 2008 9 22.5 19:06:28.58 07:06:44.3 14 Itagaki No 
QYMust 2008 9 29 13: 16:36.44 -67:36:47.8 8.6 Liller Yes but faint 
V679 Car 2008 II 26.26 11:13:53.79 -61:13:48.2 7.6 Malek No 
V5580 Sgrt 2008 II 29.04 18:22:01.5 -28:02:39.6 8 Liller Yes but faint 
V5581 Sgr 2009 4 21.68 17:44:08.48 -26:05:47.4 12.5 Nishiyama, Kabashima No 
V5582 Sgr 2009 2 23.95 17:45:05.4 -20:03:21.5 11.5 Sun, Gao No 



~a.me---I Year I MonthJ D1scove-ryDate(UT)·1 R.A (J2000) I Dec (J20QOU DiScovery Magnitude I Disc0v.erSSL I Visable 

V1213 Cen 2009 5 8.24 13:31:15.77 -63:57:38.6 8.5 Pojmanski. Szczygiel. Pilecki No 
V5583 Sgrt 2009 8 6.49 18:07:07.67 -33:46:33.9 7.7 Nishiyama. Kabashima et al. Yes but faint 
V26720ph 2009 8 16.52 17:38:19.68 -26:44:14 10 Itagaki No 
V5584 Sgr 2009 10 26.44 18:31:32.79 -16:19:7.5 9.3 Nishiyama, Kabashima Yes 
V496 Set 2009 10 8.37 18:43:45.65 -07:36:41.5 8.8 Nishimura Yes but faint 
KT Eri* 2009 11 25.55 04:47:54.21 -10:10:43.1 8.1 Itagaki Yes 
VI722Aql 2009 12 14.40 19:14:09.73 15:16:34.7 10.9 Nishiyama. Kabashima No 
V26730ph 2010 1 15.86 17:39:40.94 -21:39:47.9 8.8 Nishimura No data 
V5585 Sgr 2010 1 20.72 18:07:26.95 -29:00:43.6 8.5 Seach No data 
USeo 2010 1 28.43 16:22:30.80 -17:52:43.2 7.85 B.G. Harris. S. Dvorak No data 
V26740ph 2010 2 18.85 17:26:32.19 -28:49:36.3 9.4 Nishimura No 
V1310 Seo 2010 2 20.86 17:06:07.53 -3714:27.4 10.5 Nishiyama. Kabashima No 
V5586 Sgr 2010 4 23.78 17:53:02.99 -28:12:19.4 11.2 Nishiyama. Kabashima No 
V1311 Sco 2010 4 25.79 16:55:13.16 -38:03:46.9 8.6 Nishiyama. Kabashima No 
VI723 Aql 2010 9 11.49 18:47:38.38 -03:47:14.1 12.4 Nishiyama. Kabashima No data 
TPyx* 20!~ 4 14.29 09:04:41.50 -32:22:47.5 13.0 M. Linnolt Yes 

------



Appendix C 

Point Source Code: smeiJindpnt 

This appendix contains the documented IDL code for the smeiJindpnt program. This 

program was written by Dr Paul Hick (UCSD) with testing and modification conducted 

as part of the work of this thesis. 
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;+ ;NAME: 

smeLfindpnt 

; PURPOSE: 

Originally created to look for point sources in the star-subtracted 

equ files to find unknown objects (i.e. objects not included in the 

SMEI star catalogues). 

To run this program access is needed to the 'equ' files, If keyword 

luse_catalogue is set then also access to the 'sky' files is required. 

;CATEGORY: 

smeilucsdlcameralidl/star 

;CALLING SEQUENCE: 

PRO smeLfindpnt, wanted.map , $ 

camera = camera, $ 

from.mode = from.mode , $ 

to.mode = to.mode , $ 

destination = destination, $ 

fix_centroid = fix_centroid, $ 

cvrnin = cvrnin , $ 

use_catalogue= use_catalogue, $ 

npeak = npeak , $ 

silent = silent, $ 

_extra = _extra 

;INPUTS: 

wanted.map array[n]; type: string, time structure or integer 

passed to href=smeLgetfile=. 

Selects skymap files to be processed. 

Usually this is a pair of times (start time and 

stop time) to process all maps inside a period 

of time. 

;OPTIONAL INPUT PARAMETERS: 



camera=camera 

scalar; type: integer; default: 2 

camera id (1,2,3). The default camera 2 has the 

most sky real estate. 

from..mode=from..mode 

to..mode=to..mode 

scalar; type: string; default: 'equ' 

selects the type of skymap to be used. 

Can also be used to 'sky' to work from the 

unsubtracted maps, but that doesn't make much 

sense since these maps still contain all the 

catalogue stars. 

scalar; type: string; default: 'bol' 

This is only used in the naming convention for 

the output 'pnt' files: the names will look like: 

c2boLYYYY -DOY llhmmss.pnt 

where YYYY -DOY llhmmss is the start time of 

a SMEI orbit, taken from the associated 

'equ' file 

destination=destination 

scalar; type: string; default: $TUB 

destination directory of output file 

fix_centroid=fix_centroid 

cvmin=cvmin 

if set, this turns on the 'fix_centroid' option in the 

smeLstaLfit, i.e. the centroid position of the new 

object is iteratively improved. This gives better 

results at the expense of a substantial increase in 

processing time. 

scalar; type: float; default: 0.7 



luse_catalogue 

npeak=npeak 

silent=silent 

;OUTPUTS: 

Only new objects with a PSF correlation 

coefficient greater than cvmin will be written to 

the output files 

If set, an attempt is made to match unknown 

objects against objects in the SMEI catalogue. 

This will pick up 'unknown'objects at the 

location of a SMEI catalogue object, usually 

indicating that the catalogue star was 

imperfectly subtracted. This keyword can 

increase processing time significantly 

especially if combined with a low cvmin value. 

scalar; type: integer; default: none, i.e. no limit 

passed to href=smeLfindpeaks=. 

Can be used to limit the number of objects on the 

initial list of local maxima in the skymap, that 

are further investagated by smeLstaLfit. 

Probably best avoided (see PROCEDURE) 

scalar; type: integer; default: 0 

higher values suppress more informational 

messages 

Files in destination directory 

;INCLUDE: 

@compile_opt.pro ; On error, return to caller 

;CALLS: 

InitVar, smeLfilename, smeLfilepath, smeLgetfile, hide_env 



BadValue. smeLsky. TimeSet. sphere_distance, smeLstarJit 

;PROCEDURE: 

The equ files have all SMEI catalogue stars (presumably all stars 

brighter than 6th magnitude), the sidereal background and the 

zodiacal dust cloud subtracted. 

The search procedure consists of the following steps: 

1. Smoothing of skymaps. 

First the map is smoothed by subtracting a running mean for an 8 degree wide box. 

This takes out variations over spatial scales much larger than the PSF. This step 

mainly serves to create local maxima that are more easily sorted, i.e. it makes 

it easier to process maxima starting with the highest and working down from there. 

The second step is to apply a smoothing using a running mean of 1 degree, the full 

width of the SMEI PSF. This reduces the noise in the maps, and avoids picking 

up every noise spike as a separate local maxima. 

2. Prepare a list of candidate objects. 

In this step the procedure FindPeaks is used to make a list of all the local 

maxima in the skymap, listing the highest ones first. 

The number of local maxima can be controlled with a number of keywords 

(see href=FindPeaks= for details). This should not really be necessary: 

step 1 has proven to be the simplest way to control the output from 

FindPeaks. 

3. Fit all the candidate maxima to the PSF using href=smeLstaLfit=. 

This step uses the default star fitting procedure for SMEI to identify 



those objects on the candidate list that look like point sources (i.e. 

look like the SMEI PSF). 

The main keyword to control this step is lfix_centroid. 

The default mode is NOT to use this keyword. In that case the PSF is fit 

once at the location of each candidate maximum. If lfix-centroid is ON, 

then an iterative procedure is used to find the location in the skymap 

near the candidate maximum that provides the best fit (the highest 

correlation between the object in the skymap and the standard SMEI PSF). 

The advantage of NOT setting lfix-centroid is a significant reduction 

in processing time (close to a factor of 10). The disadvantage is that 

the quality of the PSF fitting is worse, which might lead to good objects 

going unnoticed because the correlation is much worse. 

The result of step 3 is that all the candidate objects from step 2 

can be classified by sorting on the correlation coefficient of 

of the PSF fit. The difference between using (or not using) lfix-centroid 

is that the candidates will be sorted differently. 

4. Retain the best fitting objects only 

At this stage the keyword cvmin is used to only retain objects that 

resulted in a correlation coefficient higher than cvmin (0.7 by default). 

The total list of candidates for one skymap can easily be on the order 

of 1400 or so. A significant fraction of the correlation coefficient 

(often 70-80%) of the candidates will be quite low, so it makes sense 

to reduce the search space by focusing on the higher correlations. 

Note that at this stage the effect of using (or not using) fix_centroid 

in step 3 becomes evident: since the correlation coefficients are different 



(lower when fix_centroid is not used), a different set of candidate objects 

is retained. If cvmin=0.7 when fix-centroid is not used then 

under half the number of candidates will be detected and as 

stated above these will not necessarily be the same objects 

that were detected previously. 

When not applying fix_centroid cvmin must be lower than 0.7. 

Choosing a cvmin value is a compromise between the detection 

of real objects and noise. 

On testing a cvmin value of 0.6 seems to produce the best results 

with the number of candidates detected only marginally greater 

than results obtained when using fix_centroid and a 

cvmin=0.7. On comparison of objects detected using both 

methods there is a greater than 70% overlap. Also note that 

when looking at individual output files the order of the 

candidates will be different to those produced when using 

fix_centroid and candidates may also appear in later files 

within the time series. 

Note that if cvmin=-1 is used, all objects are retained. 

This results in significantly larger output files though of 

on average 1400 objects. This may be an issue later on when 

trying to identify real object candidates. 

5. Match against catalogue stars 

This step is optional. By default it is not done, but it can be switched 

on with keyword luse_catalogue. 

The locations of the candidate maxima from step 4 (after trimming the list 

using cvmin), is compared against the locations in the SMEI star 



catalogues. If a catalogue star is found whitin 0.5 degrees of a 

candidate object, most likely the object found is the results of 

a badly-subtracted catalogue star. In this case the candidate 

object will be listed in the output file under the name of the candidate 

object. Note that this is not a positive indentification; it just indicates 

the proximity of a catalogue star. 

Using a low value of cvmin in combination with fuse_catalogue keyword is 

not advisable: checking a long list of candidate objects against the SMEI 

star catalogue will drastically increase processing time. 

6. Write output file 

The output files contains the results of the fits for all candidate 

Objects, sorted by correlation (the best one first). 

Note that for objects located in the overlapping area between the polar 

maps and the equatorial map (approximately between 50 and 60 degrees 

declination north and south there will be two records in the output file: 

one for the object seen in the equatorial map, the other in one of the 

polar maps. This needs to be taken into account when analyzing the 

content of the input file (e.g. when counting the number of hits for 

a given object in a sequences of skymaps). 

The names of the objects indicated in which map the object was detected, 

EQ (for the equatorial map), NP and SP for north and south polar map, 

respectively; followed by an integer that counts the number of objects. 

Note that the same object will have a different name in output files 

for different skymaps. Entries will need to be matched by RA and dec. 

;MODIFICATION HISTORY: 



FEB-2008, Paul Hick (UCSDfCASS) 

NOV-2011, Paul Hick (UCSDfCASS; pphick@ucsd.edu) 

Thorough review of code; added documentation. 

Most significant change to the code was the removal of the zodiacal 

dust cloud subtraction. The equ file now contain maps with the zld 

already subtracted, so this is not needed anymore. 

Reduced dependence on 'sky' files. These are needed now only if 

keyword fuse_catalogue is used. 

InitVar, camera, 2 

InitVar, from..mode, 'equ' 

InitVar, to..mode , 'bol' 

InitVar, destination, getenv('TUB') 

InitVar, fix_centroid, /key 

InitVar, cvmin , 0.7 

InitVar, use_catalogue, /key 

InitVar, silent, 0 

; Pick up list of SMEI skymaps. 

given..map = smeLgetfile(wanted..map, $ 

camera = camera, $ 

mode = from..mode , $ 

count = count, $ 

_extra = _extra) 

; No maps found? Then stop. 

IF count EQ 0 THEN $ 



RETURN 

IF silent LE 3 THEN message, /info, strcompress(collnt'/rem)+ \ 

, '+fromJIlode+' map(s)' 

bad val = BadVallle(O.O) 

missing = bad val 

dpr = l80.01!pi 

large_smooth= 81 

smalLsmooth= II 

mindist = 10 

relative = 1 

fraction = 0.20 

flat = ([1.0,0.02])[relative] 

FOR imap=O,collnt-l DO BEGIN; Loop over all skymaps 

TO = TimeSystem(lsilent) 

eqllfile = givenJl1ap[imap] 

equhide = hide_env(equfile) 

equtime = smeLfilename( equfile,camera=camera,postfix=postfix) 

; 'skyfile' is used only to fit catalogue stars to be matched against the unknown 



; objects found in 'equfile' 

skyfile = smeLfilepath( equtime,camera=camera,postfix=postfix,mode=' sky' jfull) 

eelfile = smeLfilepath( equtime,camera=camera,postfix=postfix,mode=' eel' jfuII) 

bolfile = filepath(root=destination,smeLfilename(equtime,camera=camera, 

mode=toJIlode,type=' .txt'» 

IF silent LE 2 THEN message, /info, equhide 

; The psfn-.Sky, fovx_sky and time_sky array are low-res (720 x 360) arrays 

smeLsky, equfile, /psfn , sky=psfn_sky, /noplot, camera=camera, /usetime, /exists, /de­

grees, hdr=hdr 

smeLsky, equfile, /fovx , sky=foVLSky, /noplot, camera=camera, /usetime, /exists, /de­

grees 

destroyvar, tmp 

smeLsky, equfile, /orbsecs, sky=time_sky, /noplot, camera=camera, /usetime, /exists, 

extenJlo=tmp 

torigin = TimeSet( fxpar(headfits(equfile,exten=tmp),'TORIGIN') ) 

destroyvar, new _star 

====================== 

FOR jrnap=0,2 DO BEGIN; Equatorial, north pole, south pole 



ikeys = [0,0,0] 

ikeys[jmap] = 1 

ckeys = ['eq','np','sp'] 

smeLsky, equfile, $ ; Get star-subtracted skymap 

equatraw = ikeys[O] , $ 

northraw = ikeys[l] , $ 

southraw = ikeys[2] , $ 

sky = sky, $ 

nbin = 1 , $ 

Inoplot, $ 

hdr = hdr, $ 

camera = camera, $ 

lusetime, $ 

lexact 

hdr = hdr[O] 

IF jmap EQ ° THEN tt = TimeSet(smei=hdr.orbit) 

rr = cvsmei(from-ITlap='MAP' ,fromJllode=ckeys[jmap],/toJllap,toJllode \ 

='lores' ,1silent) 

rr = round(rr) ; Nearest lowres grid point 

; Direction cosine angle for all bins in hires sky map 

fovx = fovLsky[reform(rr[O, *]),reform(rr[ 1, *])] 



; This removes a small section of sky near the edge of the fov in the long dimension. 

; This area tends to be filled with residuals from bad subtractions resulting from 

; stars so close to edge that the PSFs are only partially present, or heavily deformed. 

i = where(finite(sky) AND abs(fovx) GT 29) 

IF i[O] NE -1 THEN sky[i] = BadValue(sky) 

; Skip empty maps 

i = where(finite(sky» 

IF i[O] EQ -1 THEN continue 

; 1. Smooth the sky maps. 

sky -= smooth(sky,large_smooth'/nan) ; Subtract large scale smoothed map 

sky = smooth(sky,smaILsmooth'/nan) ; Smooth over I-deg 

; Find local maxima (as array indices into skymap) 

rr = FindPeaks(sky, mindist=mindist, fiat=fiat, relative=relative, $ 

fraction=fraction, count=nfit, npeak=npeak) 

rr = ArrayLocation(rr,dim=size(sky,/dim» 

rr = cvsmei(fromJIlap=rr,mode=ckeys[jmap],/to_equatorial,/degrees'/silent) 

rr = AngleUnits(from_degrees=rr, Ito_almanac, Isinglesign) 



rr = float(rr) 

rr[2, *, *] += rr[3, *, *]/1000.0 

rr = rr[0:2, *, *] 

starJist = replicate(smeLstarJist,nfit) 

starJist.name = strupcase(ckeysUmap])+string(fonnat='(I4.4)', lindgen(nfit)+ 1)+' , 

star Jist.ra = refonn(rr[* ,0, *]) 

star Jist.dec = refonn(rr[*, 1, *]) 

; Try to fit local maxima with PSF 

; with lfix-centroid set 

smeLstarJit, equfile , $ 

northpole = ikeys[1] , $ 

southpole = ikeys[2] , $ 

star Jist = star Jist, $ 

Idegrees , $ 

psLmap = psfn_sky , $ 

fovxJl1ap = fovx_sky , $ 

timeJl1ap = time_sky , $ 

tori gin = tori gin , $ 

luse_weights, $ 

lauto_wing, $ 

fix_centroid=fix_centroid , $ 

starJit = starJit , $ 



starJnfo = i , $ 

Isilent 

; Save info for equatorial map 

IF jmap EQ 0 THEN starJnfo = i 

; Add centroid offset to centroid position 

; Map RA back to range [0,360] 

star jit.radec += star jit.dradec 

star jit.radec[O] = AngleRange(star Jit.radec[O] ,/degrees) 

star Jit.dradec = 0 

; Retain only stars with correlation better than cvmin 

i = where(starJit.cvfit GT cvmin,nfit) 

IF nfit EQ 0 THEN continue 

; If use_catalogue is NOT set then no more work needs to be done. 

IF NOT use_catalogue THEN BEGIN 

boost, new _star, star Jit 

continue 

ENDIF 

; use_catalogue IS set. 

; Continue by trying to match each of the objects against the 



; list of catalogues star. If a catalogue star is found within 

; 0.5 a degree or so, we are probably picking up a catalogue 

; object that was subtracted imperfectly. 

; Give the object the name of the catalogue star 

; This step is very time consuming if cvmin is set very low, 

; which is why the use_catalogue keyword was introduced. 

star_fit = star_fit[i] 

; Check for stars already on the star catalogue. Quite a few 

; of the stars just detected are probably stars that were not 

; fitted very well (due to bad quatemions for instance). 

star_cat = smeLstar jnfo(lgeLstruct,count=ncat) 

caLpos = smeLstar jnfo(star _cat,lradec,ldegrees) 

fiLpos = starJit.radec 

IF nfit GT 1 THEN BEGIN 

caLpos = SuperArray(caLpos,nfit,after=2) 

fiLpos = SuperArray(fiLpos,ncat,after=l) 

ENDIF 

; Elongations of new stars vs catalogue stars 

elo = sphere_distance(caLpos,fiLpos,ldegrees) ; array[ncat,nfit] 

destroyvar, caLpos, fiLpoS 



; Find catalogue star closes to new stars 

tmp = min(elo,p,dim=l) ; p = array[nfit] 

p = ArrayLocation(p,dim=[ncat,nfitD 

p = refonn(p[O,*]) 

; Closest catalogue stars 

star_cat = star _cat[p] 

; Fit closest stars in original (unsubtracted) skymap 

; with lfix_centroid set to get the best possible location 

;names = star _cat. name 

smeLstar Jit, skyfile , $ 

northpole = ikeys[ 1] , $ 

south pole = ikeys[2] , $ 

starJist = star_cat, $ 

Idegrees, $ 

psLmap = psfn_sky , $ 

foyxJl1ap = foYx_sky , $ 

timeJIlap = time_sky , $ 

tori gin = tori gin , $ 

luse_ weights, $ 

lauto_wing , $ 



fix_centroid=fix_centroid • $ 

count = counLcat • $ 

star _fit = close_cat. $ 

max_stars = 1 • $ 

starJemove = replicate(O,nfit), $ 

star jndex = star jndex • $ 

skip_dist = 0.0 • $ 

incLdist = 0.0 • $ 

/silent 

IF counLcat EQ 0 THEN continue 

staLcat = star_cat[starjndex] 

star_fit = star _fit[starjndex] 

; Add centroid offset to centroid position 

c1ose_cat.radec += c1ose_cat.dradec 

close_cat.radec[O] = AngleRange(close_cat.radec[O],/degrees) 

c1ose_cat.dradec = 0 

elo = sphere_distance( star _fit.radec.close_cat.radec,ldegrees) 

p = where(elo LT O.S.n) 

FOR i=O.n-l DO BEGIN 

q = p[i] 

print, starJit[q].name,'=' ,close_cat[q].name,' @ , ,elo[q],' deg' 

starJit[q].name = close_cat[q].name 



ENDFOR 

boost, new_star, starJit 

END FOR 

; Write the output file with candidate objects 

; Objects are written sorted by correlation coefficient (high first). 

i = n_elements(new _star) 

IF i NE 0 THEN BEGIN 

message, /info, 'writing' +hide_env(bolfile)+' (' +strcompress(i'/rem)+' stars)' 

smeLstar _writepnt, bolfile, new _star[reverse(sort(new -star.cvfit))], star Jnfo=star Jnfo 

ENDIF 

END FOR 

RETURN & END 


