Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

In Silico Prediction of Organ Level Toxicity: Linking Chemistry to Adverse Effects

Cronin, MTD and Enoch, SJ and Mellor, CL and Przybylak, KR and Richarz, AN and Madden, JC (2017) In Silico Prediction of Organ Level Toxicity: Linking Chemistry to Adverse Effects. Toxicological Research, 33 (3). pp. 173-182. ISSN 1976-8257

[img] Text
tr-33-173.pdf - Published Version

Download (173kB)

Abstract

In silico methods to predict toxicity include the use of (Quantitative) Structure-Activity Relationships ((Q)SARs as well as grouping (category formation) allowing for read-across. A challenging area for in silico modelling is the prediction of chronic toxicity and the No Observed (Adverse) Effect Level (NO(A)EL) in particular. A proposed solution to the prediction of chronic toxicity is to consider organ level effects, as opposed to modelling the NO(A)EL itself. This study has focussed on the use of structural alerts to identify potential liver toxicants. In silico profilers, or groups of structural alerts, were developed based on mechanisms of action and informed by current knowledge of Adverse Outcome Pathways. These profilers are robust and can be coded computationally to allow for prediction. However, they do not cover all mechanisms or modes of liver toxicity and recommendations for the improvement of these approaches are given.

Item Type: Article
Subjects: Q Science > QD Chemistry
R Medicine > RS Pharmacy and materia medica
Divisions: Pharmacy & Biomolecular Sciences
Publisher: The Korean Society of Toxicology
Date Deposited: 06 Apr 2017 08:14
Last Modified: 11 Aug 2017 08:38
URI: http://researchonline.ljmu.ac.uk/id/eprint/6208

Actions (login required)

View Item View Item