Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

The multi-port berth allocation problem with speed optimization and emission considerations

Venturini, G and Iris, Ç and Kontovas, CA and Larsen, A (2017) The multi-port berth allocation problem with speed optimization and emission considerations. Transportation Research Part D: Transport and Environment, 54. pp. 142-159. ISSN 1361-9209

[img] Text
TRD_2016_538_R1.pdf - Accepted Version
Restricted to Repository staff only until 17 May 2019.
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (679kB)

Abstract

The container shipping industry faces many interrelated challenges and opportunities, as its role in the global trading system has become increasingly important over the last decades. On the one side, collaboration between port terminals and shipping liners can lead to costs savings and help achieve a sustainable supply chain, and on the other side, the optimization of operations and sailing times leads to reductions in bunker consumption and, thus, to fuel cost and air emissions reductions. To that effect, there is an increasing need to address the integration opportunities and environmental issues related to container shipping through optimization. This paper focuses on the well known Berth Allocation Problem (BAP), an optimization problem assigning berthing times and positions to vessels in container terminals. We introduce a novel mathematical formulation that extends the classical BAP to cover multiple ports in a shipping network under the assumption of strong cooperation between shipping lines and terminals. Speed is optimized on all sailing legs between ports, demonstrating the effect of speed optimization in reducing the total time of the operation, as well as total fuel consumption and emissions. Furthermore, the model implementation shows that an accurate speed discretization can result in far better economic and environmental results.

Item Type: Article
Uncontrolled Keywords: 1205 Urban And Regional Planning, 1507 Transportation And Freight Services, 0502 Environmental Science And Management
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering
Divisions: Maritime and Mechanical Engineering
Publisher: Elsevier
Date Deposited: 24 May 2017 11:46
Last Modified: 07 Sep 2017 13:05
DOI or Identification number: 10.1016/j.trd.2017.05.002
URI: http://researchonline.ljmu.ac.uk/id/eprint/6580

Actions (login required)

View Item View Item