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Abstract 7 

Cave sediments may contain important long-term records of past environments and human activity.  8 

Pollen provides key evidence, since it disperses widely and is relatively durable. We still know 9 

relatively little about the dispersal of pollen into caves, and its preservation within cave sediments, 10 

compared with our relatively detailed knowledge of pollen taphonomy in other sedimentary 11 

environments.  Pollen taphonomy in caves is dependent on a variety of transport pathways and 12 

seems to be very contingent on local circumstance.  The airfall component of cave pollen 13 

assemblages often seems comparable with airfall spectra in the landscape outside the cave, but 14 

bees, birds and bats may transport considerable quantities of pollen into caves, and the entrance-15 

flora may also be significant.  Cave sediments are rarely waterlogged and pollen within them can be 16 

subject tomicrobial and chemical degradation.   Sedimentation in caves is often episodic, with 17 

episodes of storage and deposition, sometimes redeposition of sediment, which means that 18 

biostratinomic, preservational, factors become very significant.  Comparison with sequences outside 19 

caves is difficult because few caves are found in landscapes where there are comparable pollen 20 

records from lakes and bogs.  Here we review the factors affecting cave pollen taphonomy and 21 

hence the reliability of palynological analysis of sediments from caves, with suggestions for future 22 

investigation. 23 

 24 
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 27 

1. Introduction 28 

Cave sediment sequences often accumulated over hundreds of thousands of years (e.g. Bouzouggar 29 

et al. 2007; Douka et al. 2014; McFarlane & Lundberg 2005).  They contain important sedimentary 30 

evidence for environmental change plus archaeological and palaeobiological  materials indicating 31 

cultural practises and environmental change – including lithics, animal bones, mollusc shell, eggshell, 32 

pollen, plant macro-remainssuch as seeds and charcoal (e.g. McBurney, 1967; Bailey & Woodward 33 

1997; Barker 2012, 2016; Bouzouggar et al. 2007). With multidisciplinary study of cave sequences, 34 

we can piece together a relatively rounded understanding of the sequence of human activity and its 35 

changing environmental context.   36 
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Pollen assemblages are, in potentia, a key line of evidence in the study of cave sequences.  Pollen 37 

assemblages from non-cave depositional environments such as bogs and lakes are used widely to 38 

infer past environments (Faegri & Iversen 1975; Faegri et al. 1989; Moore et al. 1991).  Pollen thus 39 

provides a potential link between the cave and its wider landscape context, because pollen grains 40 

and spores, which are produced by plants living in the landscape outside the cave, are known to 41 

disperse widely by both wind, insect and vertebrate vectors (Englund 1993; Nason et al. 1996; Hunt 42 

& Rushworth 2005; Jha et al. 2010; Šikoparija et al. 2013).   This dispersal may take pollen into caves 43 

where they may be preserved by being buried in accreting sediments.   Although pollen has been 44 

used in an increasing number of cave investigations (e.g. Schutrumpf 1939; Derville & Firtion 1951; 45 

Welten 1954, 1956; Van Campo & Leroi-Gourhan 1956; Anderson 1955; Donner & Kurten 1958; 46 

Martin 1961; Bryant 1974; Leroi-Gourhan 1975; Gale & Hunt 1985; Gale et al. 1993; Carrion et al. 47 

2001; Caseldine et al. 2008; Djamali et al. 2011; Festi et al. 2016; Gatta et al 2016; Hunt et al. 2016; 48 

Linstadter et al. 2016), our knowledge of the how representative of outside environments cave 49 

pollen assemblages might be is still fairly insubstantial, relative to our understanding of taphonomic 50 

processes in bogs and lakes, which are often the preferred environments for pollen research in 51 

regions where they exist.  This matters because without a robust understanding of taphonomy it is 52 

not completely clear how much of the pollen signal reflects environmental events in the world 53 

outside the cave, and how much reflects taphonomic processes, in any given case.  This paper 54 

therefore reviews the state of the art in cave pollen taphonomy, identifies wide-scale trends and 55 

patterns and suggests research directions for the future. 56 

 57 

2. The concept(s) of Taphonomy 58 

The term ‘taphonomy’ was coined by Efremov (1940). It is the science of the route by which living 59 

organisms become fossilised (Behrensmayer & Kidwell 1985).  Pollen taphonomy can be 60 

conceptualised as the processes of necrolysis (by which organic materials such as pollen grains are 61 

generated and dispersed), biostratinomy (in which they are transported, deposited and buried) and 62 

diagenesis (in which buried materials come into equilibrium with the burial environment after 63 

deposition).  Thus, pollen taphonomy includes a sequence of necrolytic processes through which 64 

pollen grains are generated in the male organs of plants, and dispersed by vectors such as insects, 65 

birds, mammals, wind and water.  Then follow biostratinomic processes, firstly of transport in the 66 

environment by these and other vectors, then deposition, burial and preservation resulting from a 67 

variety of sedimentary and diagenetic processes (Fig. 1).     68 

 69 

FIG 1 ABOUT HERE 70 

 71 

2. Necrolysis: Pollen dispersal  72 

In nature, plants produce pollen and disperse it to other plants (in most cases: there are a few self-73 

pollinators) as part of their reproductive cycle. Dispersal is generally either by wind (anemophilous 74 

pollen such as pine, oak and grass) or by animal vectors such as bees, flies or beetles (entomophilous 75 

pollen such as that of the daisy family [Asteraceae]) bats and birds (zoophilous pollen such as the 76 



mangrove Sonneratia), although a few taxa, such as the marine eel-grasses, have pollen grains 77 

without preservable exines that disperse in water.  78 

 79 

3. Biostratinomy 80 

Pollen can be dispersed into caves by the vectors utilised by the plants (wind, insects, bats and birds 81 

in particular), but it may also enter caves by indirect means, carried by secondary vectors or 82 

processes after original deposition in the landscape.  A variety of transport pathways, very 83 

contingent on local circumstance, are known from studies of pollen taphonomy in caves (e.g. Van 84 

Campo & Leroi-Gourhan, 1956; Dimbleby 1985; Burney & Burney, 1993; Coles & Gilbertson, 1994; 85 

Prieto & Carrión, 1999; Navarro Camacho et al., 2000; Navarro et al., 2001; Navarro et al., 2002; 86 

Hunt & Rushworth, 2005; Simpson & Hunt, 2009; de Porras et al., 2011). These biostratinomic 87 

processes are usually regarded as a linear sequence, but pollen grains are durable enough and some 88 

cave environments sufficiently dynamic geomorphologically that recycling can occur.  This means 89 

that sediments and their contained pollen can be eroded and redeposited (Hunt et al. 2015) on more 90 

than one occasion in the history of a pollen grain.   91 

Biostratinomic processes include: 92 

3.1 Direct fallout from the cave entrance flora.  93 

At Creswell Crags, in caves such as C7 and Dog Hole Cave, spores derived from the cave-entrance 94 

fern flora comprised between a 25 and 40% of the annual palynological fallout (Coles & Gilbertson 95 

1994).  This phenomenon seems to be most marked in small humid caves subject to little human 96 

activity, with luxuriant cave-mouth vegetation.  It is less marked in larger caves, and in caves where 97 

the cave-mouth flora is restricted at Creswell (Coles & Gilbertson 1994).In the wet tropical forest 98 

zone, fern spores, derived mostly from the entrance flora are between 20 and 40% of the total 99 

annual fallout in the very large cave-mouth of the Great Cave of Niah (Hunt et al. in press). The 100 

contribution of the entrance flora seems less marked or absent in arid-zone caves where the 101 

entrance flora is sparse or absent and other vectors and processes predominate (e.g. Weinstein 102 

1987; Simpson 2016). 103 

3.2 By aeolian transport from more distant vegetation. 104 

This may be either from pollen dispersal by parent plants or from the resuspension and transport by 105 

wind of previously-deposited material.  Airfall of pollen in caves after aeolian dispersal and transport 106 

from parent plants is very widely reported (e.g. Derville & Firtion 1954; van Campo & Leroi-Gourhan 107 

1956; Weinstein 1987; Coles & Gilbertson 1994; Navarro et al. 2001; Hunt & Rushworth 2005; de 108 

Porras et al. 2011; Fiacconi & Hunt 2015, 2016).  The airfall component of cave pollen assemblages is 109 

often closely comparable with airfall spectra in the landscape close outside the cave (e.g. Coles & 110 

Gilbertson 1993; Hunt & Rushworth 2005; de Porras et al. 2011; Fiacconi & Hunt 2016).  Total pollen 111 

accumulation figures from airfall, when measured, tend to be remarkably low in caves, generally at 112 

least one order of magnitude lower than accumulation rates outside the caves concerned (Table 1).  113 

In general, the proportion of anemophilous pollen as a percentage of total pollen accumulation in 114 

the entrance zone of caves is comparable with that accumulating close outside the cave (e.g. Coles & 115 

Gilbertson 1994; Hunt & Rushworth 2005; De Porras et al. 2011; Fiacconi & Hunt 2016).  In many 116 



sac-like caves, the percentage of anemophilous pollen generally declines away from the cave mouth, 117 

particularly in caves that are narrow for their length (van Campo & Leroi-Gourhan 1956; Coles & 118 

Gilbertson 1994; de Porras et al. 2011; Fiacconi & Hunt 2016, Fig.2).  Other patterns may occur in 119 

more geomorphologically-complex systems (van Campo & Leroi-Gourhan 1956; Fiacconi & Hunt 120 

2016) or where transport of pollen by vertebrates predominates (e.g. Navarro et al. 2001; de Porras 121 

2011).  Resuspension and aeolian transport of previously-deposited material is rarely reported, 122 

mostly from cold-stage sediments of loessic origin in what are today temperate-zone caves (e.g. 123 

Coles & Hunt 1985; Gale & Hunt 1985). 124 

 125 

FIG 2 ABOUT HERE 126 

 127 

TABLE 1 ABOUT HERE 128 

 129 

3.3 In drip water from the land surface above, and in sinking streams from more distant catchments.   130 

Drip water sometimes contains large amounts of pollen (e.g. Genty et al. 2001; Simpson 2016) but 131 

this is not always the case.  No pollen was found in drip water in cave C7 at Creswell Crags (Coles and 132 

Gilbertson 1994) or in caves in mesic forest in New York State (Burney & Piggott Burney 1993), while 133 

drip waters analysed by Fiacconi & Hunt (2016) at Shanidar Cave contained very little or no pollen. 134 

There may be a filtering effect in biologically-active and relatively organic-rich epikarst zones, as at 135 

Creswell and in New York State.  On the other hand, moss growing on seeps at Caf Sidar contained 136 

heterogeneous assemblages interpreted by Fiacconi & Hunt (2016) as largely generated by parent-137 

plants growing close to the inlets to the conduits leading to these seeps. Peterson (1976) 138 

demonstrated the transport of pollen through streamways up to 0.8 km into the vadose Mammoth 139 

Cave system in Kentucky.  The pollen became increasingly degraded as it passed down the 140 

streamway channel, but Peterson (1976) argued that the pollen load in the streamway reflected 141 

closely the vegetation in the catchment of the sinking stream. Lycopodium spores were used as 142 

tracers in karst groundwater before the advent of dye-tracing (e.g. Atkinson 1968) thus indicating 143 

that palynomorphs may be transported several kilometres underground in phreatic systems.  It must 144 

be noted that river waters sometimes contain rather taphonomically-biased assemblages (e.g. Hunt 145 

1987) and alluvial sediments outside caves often contain assemblages showing a strong taphonomic 146 

imprint (e.g. Fall 1987; Hunt 1987), so care must be taken in interpreting pollen from waterlain 147 

sediments in caves.   148 

3.4 Within debris/mud flows and surface wash entering the cave.  149 

A considerable proportion of sediments in many caves in the temperate zone originate from mud- 150 

and debris flows and these sediments are not uncommon even in tropical caves (e.g. Gilbertson et 151 

al. 2005).  To our knowledge, no-one has sampled an active mass movement within a cave for 152 

palynology.  Recycled palynomorphs were found in a mudflow deposit in a Swiss cave (Welten 1954) 153 

and pollen was found in mudflow deposits in the Great Cave of Niah, where consistent assemblages 154 

within the mudflow unit suggest that materials had been homogenised by the mudflow processes 155 



(Hunt et al. 2012).  It is likely that mass-movement deposits elsewhere in caves will also contain 156 

pollen. Similarly, we are not aware of taphonomic studies of the pollen load in sheet-wash or rill 157 

flows entering caves. Simpson (2016) has sampled Holocene deposits resulting from these 158 

mechanisms at the Haua Fteah, Libya and they do not seem to be distinguishable palynologically 159 

from near-contemporary deposits resulting from other processes.   160 

3.5 By vertebrates.  161 

Transport by vertebrates is very locally-contingent because the spatial distribution of animal 162 

behaviour in caves appears to be very highly patterned, for instance by roosting and denning 163 

behaviour (Fig 3).  Among others, Scott (1987), Carrión et al. (2001), González-Seampériz et al. 164 

(2003) and Djamali (2011) suggest that hyaena coprolites from caves contain pollen indicative of the 165 

general vegetation around the cave.  A similar case has been argued for coprolites of giant ground 166 

sloths in North American caves (Martin et al. 1961; Thompson et al. 1980), rat droppings in a Libyan 167 

cave (Gale et al. 1993) and for sheep droppings (de Porras et al. 2011).  This is likely to be the case 168 

also for other taxa (e.g. Ingram 1969). Among the vertebrates, birds and bats which roost within the 169 

cave may be very significant as vectors of pollen e.g. Hunt & Rushworth (2005) recorded an influx of 170 

up to 1427 pollen grains per cm2 per year below swiftlet nests at Niah. This is not always the case, 171 

however, as pigeons at Shanidar appear to import little pollen in their droppings (Fiacconi & Hunt 172 

2016).  Ground-living animals such as foxes, badgers,  porcupines and rodents may be significant 173 

importers of pollen (Bramwell et al. 1984, Diot 1991; Burney & Piggott Burney 1993; de Porras et al. 174 

2015).  175 

 176 

FIGURE 3 ABOUT HERE 177 

 178 

Another source of pollen within the organic deposits is represented by rodent middens, including 179 

those made by packrats, hyrax and other species. Packrats (Neotoma) are small rodents, with twenty 180 

one species present in different habitats from Canada to Nicaragua (Betancourt et al., 1990). These 181 

animals collect vegetal material in an area up to 50 m from their dens, and this is cemented together 182 

by urine and preserved as a midden. Packrat middens are interesting because of their content of 183 

plant macrofossils and pollen grains and they can also be dated using the radiocarbon method. In 184 

dry caves, they can be preserved for thousands of years (Thompson and Anderson, 2000). The 185 

provenance of the plants used in construction is local but the pollen can be both from local and 186 

regional sources and the contribution of the two different sources is still poorly understood. Issues 187 

with the use of packrat middens in vegetational reconstruction are often related to the taphonomic 188 

processes of their formation and to post-depositional episodes such as erosion, rockfalls and 189 

collapse into crevices, which can produce a relocation of the middens in the stratigraphy (Wells, 190 

1976). Hall & Risking (2010) note that Juniperus pollen can be over-represented in packrat middens 191 

because the animals gather and eat the male cones.   192 

Hyraxes (Procavia capensis) also produce middens. Carrión et al. (1999a) presented a palynological 193 

record from a hyrax midden from South Africa, explaining that these middens are different from the 194 

ones of other species as Neotoma or Petromus typicus (Dassie Rat) as they constitute a 195 



stratigraphically coherent section. It has been demonstrated that the pollen found in these middens 196 

may not be strongly influenced by animal diet and it can produce a good representation of the 197 

surrounding vegetation as there is a close correspondence between the pollen composition in the 198 

samples and the composition of the vegetation in the area.  Likewise, de Porras et al. (2015) showed 199 

that rodent middens in Chile contained pollen assemblages representative of the local vegetation.  200 

A special case particularly notable in Mediterranean countries, North Africa and the Middle East are 201 

fumier deposits – thick, layered accumulations of dung and ash from partially-burnt dung resulting 202 

from domesticates such as sheep, goats and cattle stalled within caves.  These contain pollen (e.g. 203 

Esposito & Burjachs 2016) which has been brought into the cave in gut contents (guano, dung), and 204 

on fur and feet.  Pollen assemblages often reflect the vegetation where the animals have grazed, 205 

rather than that growing immediately around the cave (Fig. 4).  206 

 207 

FIGURE 4 ABOUT HERE 208 

 209 

3.6 By invertebrates. 210 

Several groups of insects nest in caves – bees and wasps particularly.  Bees nesting in caves are 211 

known to accumulate pollen, particularly entomophilous taxa such as Asteraceae and Lactucae 212 

(Bottema 1975).  In general, in the surface sediments of sac-shaped caves not subject to major 213 

vertebrate activity, entomophilous pollen rises in percentage terms towards the rear of the cave 214 

(Fiacconi & Hunt 2016).  Solitary wasps sometimes line their nest-burrows with polleniferous mud, 215 

collected outside the cave (Hunt & Rushworth 2005). 216 

 217 

3.7 On or by people. 218 

People bring pollen into caves in numerous ways.  Pollen can be introduced on feet, skin, hair and 219 

clothing.  Vegetation carried into a cave for animal fodder, bedding or food may carry pollen with it 220 

and in particular inflorescences brought into the cave for food, medicine, ornament or ritual may 221 

contain pollen (e.g. Leroi-Gourhan 1975; Hunt et al. 2012).  Pollen may be introduced on the fur or in 222 

the gut contents of animals brought into the cave for food (Coles et al. 1989).  Caves have also been 223 

used as latrines and pollen may be contained in human coprolites (e.g. Bryant 1974; Schoenwetter 224 

1974; Rhode 2003; Dean 2006; Hunt et al. 2011).  It has been noted that surface sediments of caves 225 

frequented by people may contain higher concentrations of pollen than sediments in those caves 226 

where people are rarely present (van Campo & Leroi-Gourhan 1956), but this is not always the case 227 

– the surface sediments of Shanidar Cave (which receives thousands of tourists per year) required a 228 

heavy liquid step to produce countable assemblages, but this was not required for other caves in the 229 

same region which are rarely, if ever, visited (Fiacconi & Hunt 2016). 230 

 231 

3.8 Overview 232 



The above discussion suggests that evaluation of the pattern of pollen accumulation in caves before 233 

excavation starts is a very worthwhile investment of time and resources since it is likely to identify 234 

sampling localities where pollen accumulation approximates to areas outside the cave. In general, 235 

the research cited suggests that areas close to the cave mouth are likely to provide samples with less 236 

marked taphonomic bias than those in the rear of the cave (Fig. 3).  Pollen dispersed by wind is also 237 

likely to be more abundant in this entrance-zone than it will be toward the rear of the cave.  Areas 238 

beneath bat and bird roosts and drips should be avoided if possible. 239 

 240 

4. Sedimentation in caves and diagenetic factors 241 

Issues relating to pollen deterioration on archaeological sites, including caves, are discussed by 242 

Bryant & Hall (1993).  Since cave sediments are rarely waterlogged, degradation of organic matter, 243 

including pollen, is likely to happen at times.  The saturation of cave sediments by ammonia, which 244 

happens in some guano-rich tropical caves, seems however to lead to very well-preserved pollen, as 245 

at Niah Cave (Hunt et al. 2016). On the other hand, experimental studies and field experience both 246 

suggest that episodic wetting and drying of cave sediments and some forms of human activity such 247 

as burning both lead to extremely poor pollen preservation (Campbell 1991; Bryant & Hall 1993; 248 

Navarro et al. 2001).  249 

While cave surface sediments often contain pollen assemblages very similar to those accumulating 250 

outside caves, there are reasons to suspect that some subfossil assemblages from caves have 251 

acquired a strong taphonomic imprint.  In particular, pollen of durable taxa – Lactucae, Pinus, fern 252 

spores, Tilia are sometimes more common in cave sediments than is ecologically likely (e.g. 253 

Bramwell et al. 1984; Bottema 1975).  This ‘over-representation’ is perhaps more likely to reflect 254 

preferential destruction of less durable taxa within the cave sediments rather than biostratinomic 255 

factors.  It has been known for many years (e.g. Havinga, 1984) that not all pollen grains are equally 256 

durable to decay processes.  Further, it is becoming apparent that the type of degradation is also 257 

important, with microbial activity seeming to lead to different results than attack by oxidising 258 

chemicals (e.g. Hopkins 2010; Marquer et al. 2010; although see Lebreton et al. 2010).  This is 259 

possible in caves where lime-rich environments are conducive to microbial activity (Bryant & Hall 260 

1993), although pollen in stalagmites is often well-preserved (Burney & Piggott Burney 1993; 261 

Caseldine et al. 2008).   262 

Sedimentation in caves is often episodic (Gale & Hunt 1985) with sediment storage, erosion and 263 

redeposition sometimes very frequent  but can be identified only by high resolution dating (Hunt et 264 

al. 2015).  In this situation, biostratinomic, preservational, factors become very significant since 265 

erosion and resedimentation of pollen will provide opportunities for repeated microbial and 266 

oxidative breakdown of pollen grains.   Identifying the products of these biostratinomic and 267 

preservational factors becomes critical in deciphering the pollen record.  Episodes of very slow 268 

sedimentation may lead to extremely high pollen concentrations and ‘telescoped’ assemblages 269 

where whole interglacials are represented by no more than 10 cm of sediment accretion (Hunt & 270 

Gale 1986).   Episodes of non-deposition can be recognised by sudden changes in pollen assemblages 271 

and displacements in age-depth curves (Hunt et al. 2015, 2016).  At present, the observation of 272 

ecologically-incoherent assemblages or assemblages rich in durable taxa seem the best indicators of 273 

taphonomic complexity as a result of erosion and re-sedimentation.    274 



 275 

5. Paired and comparative studies 276 

Cave pollen records come from karst areas where lakes or bogs to provide comparisons are 277 

infrequent and where there may not be available well-dated sediments for comparative studies (e.g. 278 

Caseldine et al. 2008).  A few studies have been done where cave sequences are located close to 279 

non-cave sites which have also been sampled for pollen, for instance the Younger Dryas and Early 280 

Holocene sequence at Kirkhead Cave, UK (Gale & Hunt 1985) shows very similar assemblages to 281 

nearby lacustrine sequences (Oldfield 1963), except that high fern spores reflect the cave-entrance 282 

flora. Similarly, there are parallels between swamp, cave and hyrax dung deposits in later Holocene 283 

deposits in the Karoo, South Africa (Scott et al. 2005).  Finally, a recent article by Iriarte-Chiapusso et 284 

al. (2016) reconstructed the Cantrabrian Gravettian by comparing the data recorded by caves, used 285 

so far for the palaeoenvironmental reconstruction of this period, with new data becoming available 286 

from open air sites in the region.  In this case, they argued that data from open-air sites helped to 287 

improve the biased picture based on the information from caves. Further paired studies are highly 288 

desirable to demonstrate the robustness of cave pollen records. 289 

Where multidisciplinary investigations have been carried out, we may evaluate the reliability of 290 

pollen assemblages through comparison with other indicators of palaeoenvironmental change.  291 

There are, of course, issues relating to what we ‘see’ with any given class of indicator, both in terms 292 

of resolution and reach.  The resolution of pollen data can be quite fine-grained in circumstances 293 

where distinctive plant taxa are close to their ecological tolerances.  Oxygen isotopes of stalagmites, 294 

may, however have finer resolution, with errors of less than a degree Celsius, but some groups, such 295 

as the mammals, generally enable recognition of only rather broad habitat categories.    In terms of 296 

reach, pollen reflects vegetation usually within a few tens to hundreds of metres from a cave, 297 

sometimes closer (Weinstein 1983; Coles & Gilbertson 1994; de Porras et al. 2011) so is typically 298 

greater than, for instance molluscs, which typically occupy very small home ranges.  Nevertheless, in 299 

general changes in pollen assemblages will be accompanied by changes in other indicators.  This can 300 

be seen, for instance at La Riera, Spain (Strauss et al. 1981), where the beginning of the Holocene is 301 

indicated by pollen, mammals and land snails, and at Carihuela Cave (Spain) where the pollen record 302 

parallels the sediment and micromammal sequence (Carrion et al. 1999).  303 

 304 

6. Conclusions 305 

Pollen in cave sediments can provide important evidence for the palaeoecology of karst regions 306 

where other types of site may be very sparse. The pollen record in caves is particularly important 307 

because of the great chronological depth of many cave sequences, and because the pollen record in 308 

caves may be closely related to archaeological evidence for human activity and to evidence provided 309 

by other palaeoecological and sedimentary indicators.  Pollen may provide direct evidence for some 310 

patterns of human behaviour, such as the import of inflorescences into caves but is most important 311 

in providing high-resolution palaeoenvironmental recontstruction.  312 

Reliability is perhaps difficult to quantify with certainty, but studies in a variety of biomes in caves 313 

with simple morphology have shown that in general the pollen and spores reaching floors of cave 314 



entrances are representative of vegetation in the immediate environs of the cave.  The 315 

representation of anemophilous taxa then declines towards the rear of simple caves in a fairly 316 

predictable way.  There are exceptions to these patterns in more geomorphologically-complex caves 317 

and where vertebrates (including people) using the cave as a latrine or activity area are eating or 318 

gathering vegetation some distance away from the cave.  Guano and similar materials will generally 319 

be visible to sedimentological or geochemical investigations, however, so the pollen associated with 320 

materials of this sort can be treated as potentially unrepresentative of local vegetation. Other 321 

taphonomic effects relating to sedimentation or diagenesis may be indicated through the 322 

assemblages themselves and particularly through disproportionate percentages of durable taxa, 323 

with supporting evidence from sedimentological techniques, particularly micromorphology. Many 324 

issues relating to taphonomy can be avoided, or at least minimised, by taphonomic evaluation of the 325 

site and selection of sampling sites within areas dominated by relatively simple pollen fallout near 326 

the mouth of the cave.  Given these constraints, pollen from caves can indeed be said to be reliable. 327 

Further systematic investigations are still needed of pollen taphonomy in complex cave systems, of 328 

some of the less well-understood sedimentary mechanisms such as mudflows, and of pollen 329 

degradation in cave environments.  It would also be highly desirable if high-quality inside-outside 330 

paired studies took place, where cave pollen records were compared to sequences from nearby 331 

localities such as lakes or bogs.  332 
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 624 

CAPTIONS TO FIGURES 625 

Figure 1.  Sketch of taphonomic pathway from vegetation outside caves to the subfossil pollen 626 

assemblages in cave deposits 627 

 628 

Figure 2.  Plot of differences in the % anemophilous pollen between the front and the rear of the 629 

cave against cave geometry (as summarised by the cave length/breadth ratio) from sac-like caves in 630 

Kurdish Iraq. This shows that the proportion of anemophilous pollen declines most markedly from 631 

the front to the rear of caves which are long relative to their breadth (r2=0.7572). Data from the 632 



Cueva del Moro I and II from Navarro et al. (2001) is plotted to show that a similar pattern may hold 633 

in Spanish caves, but this is not included in the calculation of the trendline. 634 

 635 

Figure 3.  Pollen taphonomic summary for the Great Cave of Niah (data from Hunt & Rushworth 636 

2005; Hunt et al. 2016).  Mangrove and riverine taxa is disproportionally represented in the pollen 637 

accumulating under the nesting zone, where it arrives mostly in guano, reflecting the feeding 638 

behaviour of the bats and swiftlets over coastal and riverine vegetation communities. ‘Hell Trench’ – 639 

the area from which stratigraphic pollen work (Hunt et al. 2016) was done in the cave – lies in the 640 

front of the airfall zone, in the topographic low between the entrance talus/flowstone rampart and 641 

the guano mound which dominates the rear of the cave. 642 



 643 

Figure 4. At the Haua Fteah, Libya, subrecent fumier deposits are dominated by Cistus and Arbutus, 644 

reflecting sheep, goats and cattle grazing in wadis where vegetation is dominated by these maquis 645 

species, several km away from the cave. Pollen traps and sticky slides suggest that the local airfall 646 

pollen is dominated by Juniperus and Poaceae (Simpson & Hunt 2009; Simpson 2016). 647 



 648 

CAPTIONS TO TABLES 649 

Table 1: Airfall pollen accumulation rates in caves compared with pollen influx figures outside the 650 

same caves 651 

Vegetation type Cave pollen influx: 

pollen grains per 

cm2 per year 

External pollen 

influx: pollen 

grains per cm2 per 

year 

Author 

Temperate woodland, 

shrubs and 

herbaceous vegetation 

84-488 7800 Coles & Gilbertson (1994) 

Mesic temperate 

forest 

61-1685 8605-48200 Burney & Piggott Burney (1993) 

Herb-rich steppe with 

some trees 

4-6 n/a Fiacconi & Hunt (in press) 

Wet lowland tropical 

forest 

62-225 n/a Hunt & Rushworth (2005) 
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