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Abstract—Maintaining the balance between convergence and
diversity plays a vital role in multi-objective evolutionary algo-
rithms (MOEAs). However, most MOEAs cannot reach a satisfy-
ing balance, especially when solving problems having complicated
pareto optimal sets. In this paper, we present a modified co-
operative co-evolution approach for achieving better convergence
and diversity simultaneously (namely DPP2). In DPP2, while
populations are trying to achieve both criteria, the priority
being set for these criteria will be different. One population
focuses on achieving better convergence (by using pareto-based
ranking scheme), while the other is for ensuring the population
diversity (by using the decomposition-based method). After that,
we use a cooperation mechanism to integrate the two populations
and create a new combined population with hopes of having
both characteristics (i.e. converged and diverse). Performance
of DPP2 is examined on the well-known benchmarks of multi-
objective optimization problems (MOPs) using the hypervolume
(HV), the generational distance (GD), the inverted generational
distance (IGD) metrics. In comparison with the original version
DPP algorithm, experimental results indicated that DPP2 can
significantly outperform DPP on the benchmark problems with
stable results.

Index Terms—Dual-population, Co-Evolution, Co-operative,
convergence, diversity.

I. INTRODUCTION

Most real world problems are with more than one objective.
These objectives are often conflicted with each other and
their degree of importance might be the same. Therefore,
it is difficult to find an exact solution (i.e. it is impossible
to optimize all the objectives simultaneously). Instead, a set
of optimal solutions (called pareto-optimal solutions) will be
selected. Finding as many pareto-optimal solutions as possible
plays a crucial role in multi-objective optimization. However,
to get all such solutions is a time-consuming task. Instead,
algorithms will try to find a set of solutions that satisfies
simultaneously both criteria: as close as possible to the pareto-
optimal front and as diverse as possible.

In pareto-based algorithms (e.g. NSGA-II and SPEA2), the
convergence is considered first and the diversity second. In
indicator-based algorithms (e.g. IBEA [1]), DNMOEA/HI [2],
both convergence and diversity are simultaneously considered
by using an indicator like hypervolume (HV). However, their
biggest drawback is the large computational complexity (par-
ticularly when the number of objectives is large). Another
way to balance convergence and diversity is to apply a

decomposition-based approach (e.g. MOEA/D [3] and MSOPS
[4]) which decomposes a complex MOP into a number of sub-
problems and solve them in a collaborative manner [5]. In
other work, Bui et al [6] proposed a direction-based approach,
call DMEA, to maintain a set of non-dominated solutions (the
size of this set is depending on users).

Generally, it is difficult to solve MOPs (particularly with
balancing convergence and diversity) if only one single al-
gorithm is used. Another approach is that many algorithms
are used in conjunction. In [7], authors proposed a multi-
algorithm named MABNI, based on NSGA-II and IBEA for
balancing convergence and diversity. In [8] authors presented a
new hybrid learning algorithm based on a Co-evolutionary al-
gorithm (CoEA) with dual populations for designing RBFNN
models with feature selection. The first population aims to
discover the most important input features of RBNNs, while
the other tends to find the optimal RBFNN structure. In [9] a
2-population co-operative CoEA was presented where the first
population is evolved using SPEA2 and the second one uses
DEMO/GDE3 with the fitness sharing mechanism. Generally
speaking, most CoEAs use co-operative mechanism between
multiple populations to solve MOPs.

Inspired by the work done by Ke Li et.al. [10], where they
used a dual-population co-operative co-evolution paradigm
(DPP) to deal with convergence and diversity simultaneously.
In their study, two populations are used. One population
uses a pareto-based mechanism to maintain a repository of
solutions with a satisfied convergence. The solutions of this
population are randomly spread. The other population uses
a decomposition-based mechanism to preserve diversity. In
order to guarantee this trait, solutions in this population are
uniformly populated. Finally, the authors used a restricted mat-
ing selection (RMS) mechanism to coordinate the interaction
between two co-evolving populations. In RMS, there are two
mating parents; one is selected in the first population and
the other is selected in the second one. Each parent will be
restricted by selecting from its neighboring sub-regions with a
large probability. This may lead to the possibility that the one
in the first population may not be found (due to its random
spread), to address this situation, RMS uses an alternative
one in the second population. As a result, both of mating
parents are taken from the same population. It makes the co-
evolutionary mechanism becomes no meaning anymore. That



is the point for this paper to contribute, in which another
mating selection mechanism will be presented.

The rest of this paper is organized as follow. In Section 2,
related works are presented including the preliminary concepts
and the DPP algorithm. Afterward, the detail of proposed
method is illustrated step by step in Section 3. Then, experi-
mental results and discussions are given in Section 4. Finally,
conclusions and future works are given in Section 5.

II. RELATED WORKS

A. Preliminary concepts

A multi-objective optimization problem (MOP) can be de-
fined as follows:

Minimize:

F (x) = (f1(x), ..., fm(x))T (1)

Subject to: gi(x) ≤ 0;∀i = 1, ..., p. hj(x) = 0;∀j =
1, ..., q.

Where, a solution x = (x1, ..., xn) ∈ Ω is the decision
variable space or simply the decision space. gi(x) and hj(x)
are called constraint functions. If any solution x satisfies all
constraints and variable bounds, it is known as a feasible
solution, otherwise, it is called an infeasible solution. There
are m objective functions F (x) = (f1(x), ..., fm(x))T ; F :
Ω → <m

+ . where <m
+ is called the objective space. For each

solution x in the decision variable space, there exists a point
in the objective space.
Definition 1. A solution x(1) can dominate another solution
x(2), denoted as x(1) ≺ x(2) if and only if: ∀i ∈ {1, ...,m} :
fi(x

(1)) ≤ fi(x
(2)) and ∃j ∈ {1, ...,m} : fj(x

(1)) < fj(x
(2)).

Definition 2. A feasible solution x∗ ∈ Ω is a pareto optimal
solution if @x ∈ Ω such that x ≺ x∗.
Definition 3. The set of all pareto optimal solutions is called
the pareto set (PS), denoted as PS = {x∗ ∈ Ω | @x ∈ Ω, x ≺
x∗}.
Definition 4. The set of all objective function values corre-
sponding to the solutions in PS is called the pareto front (PF),
denoted as PF = {F (x) | x ∈ PS} .
Definition 5. The ideal objective vector is Z∗ = (f∗

1 , ..., f
∗
m)T .

Where f∗
k is the minimum value of the k-th objective function,

for all k in {1, ..m}.
Definition 6. The nadir objective vector is Znad =
(fnad

1 , ..., fnad
m )T . Where fnad

k is the maximum value of the
k-th objective function, for all k in {1, ..m}.

B. The Dual-population Paradigm (DPP)

The general architecture of DPP [10] is given in Alg.1
and Fig.1. There are two co-evolving populations: the first
population, denoted as Ap, is evolved using the pareto-
based mechanism; the other one, named Ad, is evolved using
the decomposition-based mechanism. These populations will
evolve in parallel. At each generation, they will interact with
each other through a restricted mating selection mechanism
(RMS).

In RMS, two parents are selected to mate using the Co-
operative mechanism. This way, the offspring can inherit all

Algorithm 1: DPP Algorithm
input : Maximum number of generations (M)

Neightborhood Size (T)
Population size (N)

output: Final Poulation P

1 [Ap, Ad] = initializePopulation()
2 m←0
3 while m < M do
4 offspringAp ← ∅
5 for i← 1 to N do
6 Q = ReComMatSelection(Ap,Ad,m,Bm)
7 Child = CoOperativeMating(Q)
8 Mutate(Child);
9 Update Sub-Region index for Child in Ap and

Ad respectively
10 Update Ideal point Z∗ and nadir point Znad

11 Update Ap and Ad

12 m++;
13 end
14 end
15 Return P← Ap ∪Ad

the good features (i.e. the convergence and diversity) from both
parents. This offspring is used to update each of Ap and Ad,
respectively, based on the corresponding archiving mechanism.
Note that, this update step is performed for each sub-region in
every generation. Besides, there are two cases in RMS process.
The first, the selected sub-region in Ap does not contain any
individual. In this case, RMS chooses an alternative one in
the corresponding sub-region in Ad. In the second case, the
selected sub-region in Ap contains more than one individuals,
one of them is randomly selected.

III. THE PROPOSED METHOD

The general diagram of the modified dual-population ap-
proach (DPP2) is given in Fig.1 and the pseudo code of this
algorithm is showed in Alg.2 A more detailed explanation of
DPP will be showed in here.

At the first step, Ap and Ad (for simplicity, they have same
size N) are randomly initialized. N solutions in Ad are evenly
assigned to N sub-regions (according to N unit vectors). Later,
in the process of evolution, each sub-region always has only
one solution. This is to guarantee that Ad always has an even
distribution (i.e. has diversity) in objective space. Whereas, N
solutions in Ap will be randomly assigned to N sub-regions.
This means, more than one solution can be in the same sub-
region and also there are sub-regions that don’t contain any
solutions. Next, each solution specifies T closest neighborhood
sub-regions based on the Euclidean distance between unit
vectors.

As mentioned before. In [10], the authors used an RMS
mechanism to select two mating parents. Ideally, one solution
is selected from Ap and the other is chosen from Ad. However,
there is no guarantee that each solution in Ap is associated with



Fig. 1. Diagram of the DPP algorithm. In the first case, the selected
neighborhood sub-region doesnt contain any solution (the alternative solution
is selected from the corresponding sub-region in Ad), meanwhile, in the
second case, this sub-region contains at least one solution (a random solution
in this sub-region is selected).

a sub-region. Hence, when Ap does not contain any solution
in the selected sub-region, RMS utilizes an alternative solution
from the corresponding sub-region in Ad (see case 1 in Fig.1).
At this time, the offspring is generated from parents in the
same population. As a result, the offspring cannot take the
advantages from both of populations. This might lead to an
imbalance between diversity and convergence.

After the selection process, two mating parents (denoted to
xr2 and xr3) will be selected for the co-operative process. To
generate new offspring from these mating parents, we borrow
the reproduction idea from MOEA/D-DE [4].

One thing to be underlined here is that the new offspring
need to be assigned to a certain sub-region. In this research,
this offspring belongs to the sub-region which has the min-
imum Euclidian distance between its unit vector and the
offspring’s objective vector.

Finally, the new offspring is used to update each of Ap and
Ad, respectively.

In general, the DPP2 has three main differences from the
DPP:

First, when choosing one solution in Ap, instead of just
selecting from a selected neighborhood sub-region we will
select from all T neighborhood sub-regions. By doing this,
the probability of finding one solution in Ap will be much
higher than in RMS.

Second, in case all T neighborhood sub-regions do not
contain any solution. Instead choosing alternative solution in
Ad, we randomly select a solution in Ap. By this way, the
offspring is generated from parents in the different populations

so they can take all advantages from both of parents (i.e. the
diversity and the convergence).

Third, the update procedure of Ap is different from the origi-
nal DPP. In particular, whenever a new offspring is generated,
it will be stored in an offspring list (i.e. offSpringAp in
Alg.2) instead of being updated right away to Ap. After a
generation finishes, offSpringAp will be combined with Ap

and we use the crowding distance sorting method (CDSM)
in the combined population to select N best solutions for
the new population. The reason for this approach is that
the CDSM is a really time-consuming method. Assume that
the maximum number of generation is M=300.000 and the
population size is N= 300 then there are 300.000 new offspring
generated. Thus, the CDSM will be called 300.000 times in
DPP. Meanwhile, 1000 is the number for DPP2. Apparently,
with this new update mechanism, the computing time has been
greatly reduced (i.e. N times).

In summary, based on the above discussion, we can con-
clude that DPP2, in principle, has many potentials in tackling
this kind of problems.

IV. EXPERIMENTS

In the original paper, the authors compared the DPP algo-
rithm with baseline algorithms (i.e. NSGA-II and MOEA/D-
DE). In this research, we focus on comparing the proposed
algorithm DPP2 with the original algorithms DPP.

Algorithm 2: DPP2 algorithm
input : Maximum number of generations (M)

Neightborhood Size (T)
Population size (N)

output: Final Poulation P

1 [Ap, Ad] = initializePopulation()
2 W = InitializeUniformWeight()
3 B = InitializeNeighborhood()
4 Z∗ = InitializeIdealPoint()
5 Znad = InitializeNadirPoint()
6 m←0
7 while m < M do
8 offspringAp ← ∅
9 for i← 1 to N do

10 Q= RMS2 (Ap, Ad, m, Bm)
11 Child = CoOperativeMating(Q)
12 Mutate(Child);
13 Update Sub-Region index for Child
14 Update Ideal point Z∗ and nadir point Znad

15 Update Ad

16 Add Child to offspringAp
17 m++;
18 end
19 U = Union(offspringAp, Ap)
20 Ap = crowdingDistanceSelection(U)
21 end



Algorithm 3: RMS2(Ap,Ad,m,Bm)
input : Ap (Pareto-based archive)

Ad (Decomposition-based archive)
m: current subregion index
Bm: A Set contains neighborhood indexes of

current subregion.
T: the neightborhood size;
N: the Population size

output: Two mating parent(Q).

1 P1 = MatSelectionAp()
2 P2 = MatSelectionAd()
3 ReturnQ = (P1, P2)

Algorithm 4: MatSelectionAp(Ap,m,Bm)
input : Ap(Pareto-based archive)

m: current subregion index
Bm: A Set contains neighborhood indexes of

current subregion.
T: the neightborhood size;
N: the Population size

output: A subregion index.

1 listNeighborAp← ∅
2 if rand < neighborhoodSelectionProbability then

// Select a sub-region index in Ap

3 for i← 0 to T do
4 for j ← 0 to N do
5 if Ap[j] ∈ Bm[i] then
6 Return j;
7 end
8 end
9 end

10 end
11 else
12 Randomly select an index from {1, 2, ..., N}
13 end

Algorithm 5: MatSelectionAd(Ad,m,Bm)
input : Ad(Decomposition-based archive)

m: current subregion index
Bm: A Set contains neighborhood indexes of

current subregion.
T: the neightborhood size;
N: the Population size

output: a subregion index.

1 if rand < neighborhoodSelectionProbability then
2 Randomly select an index from Bm

3 end
4 else
5 Randomly select an index from {1, 2, ..., N}
6 end

A. Test problem

In order to evaluate the performance of the proposed
method, both of algorithms are tested on ZDT [12], DTLZ-
series [12], WFG [12] and UF [13].

B. Performance metrics

There are several performance metrics to measure various
performance aspects of MOEAs such as generational distance
(GD) [11], spacing metric (SP) [11], hypervolume (HV) [14]
and inverted generational distance (IGD) [15], or stability [13].
GD evaluates the convergence; SP evaluates the uniformity;
IGD, as well as HV evaluates both of the convergence and
the diversity of a solution set. In this research, we will use
IGD, GD and HV as key metrics. It is important to note that
the larger HV value is, the better quality of a solution is. In
contrast to HV, a low value of IGD and GD is desirable.

C. Parameters settings of MOEAs

The parameters of NSGA-II and MOEA/D-DE are set as
Table I. Each algorithm is launched 20 times for each test
instance. The population size is set N=300 and a maximum
number of generation is set M=300.000.

TABLE I
THE PARAMETER SETTING OF THE MOEAS

MOEAs Parameters settings
NSGA-II pc=0.9, pm=1/nvariables; µc =20; µm=20

MOEA/D-DE pm=1/ nvariables, µm=20, CR=1.0, F=0.5,
σ=0.9, T=20, “rand/1/bin”; nreplaced=2

D. Experimental results and discussions

The performance comparisons are presented from Table II
to Table V via the mean and standard deviation values. The
best mean metric value is highlighted.

In Table II , we conduct the comparison between DPP2
and DPP using the GD metric. In ZDT instances, DPP gives
GD values with numerical precision of 10−1, whereas the DPP
reached to 10−5. In UF instances, DPP2 give results better than
DPP about 102 times with UF1, UF2, UF3 and 101 time with
others. In WFG instances, in general, DPP2 achieves better
GD metric values about 102 than DPP. Finally, with the DLTZ
instances, DPP2 shows better performance than DPP about 103

times (except 101 in the case of DTLZ4).
From the results, we can see that DPP2 shows better

performance than DPP in all instances in terms of convergence.
In particular, DPP2 outperforms DPP in ZDT and DTLZ
series.

Table III provides the performance comparisons of DPP2
and DPP using HV metric. Similar to the observation in Table
II, DPP2 achieves better metric values in all of comparisons
and DPP2 outperforms DPP in ZDT and WFG series.



TABLE II
GD. MEAN AND STANDARD DEVIATION

DPP DPP2
ZDT1 1.753648e − 011.5e−03 3.816960e − 052.6e−06

ZDT2 2.589376e − 011.7e−03 2.886810e − 054.0e−07

ZDT3 1.065891e − 011.4e−03 5.289977e − 053.5e−07

ZDT4 9.182252e + 001.1e−01 3.467797e − 051.1e−06

ZDT6 4.724667e − 011.1e−03 2.671673e − 053.4e−08

UF1 1.335208e − 012.1e−03 1.720110e − 042.6e−04

UF2 6.449769e − 021.1e−03 6.337553e − 042.5e−04

UF3 1.436763e − 012.2e−03 6.135835e − 044.5e−04

UF4 1.331551e − 026.9e−05 3.750404e − 032.4e−04

UF5 4.467954e − 012.7e−03 2.016716e − 028.8e−03

UF6 5.984329e − 015.5e−03 1.146247e − 024.3e−03

UF7 1.385920e − 011.4e−03 4.490829e − 047.9e−04

UF8 4.209743e − 016.9e−03 4.377499e − 023.2e−02

UF9 4.380817e − 019.3e−03 1.214498e − 015.5e−02

UF10 1.896500e + 003.2e−02 8.642352e − 025.1e−02

WFG1 3.018711e − 026.8e−05 1.054068e − 041.8e−07

WFG2 2.432470e − 026.5e−04 3.164339e − 049.7e−08

WFG3 1.745607e − 022.6e−04 1.158201e − 047.2e−08

WFG4 1.067246e − 021.7e−04 4.390308e − 045.1e−06

WFG5 1.716240e − 022.2e−04 1.566477e − 032.9e−06

WFG6 1.876775e − 022.4e−04 1.779998e − 041.4e−07

WFG7 1.358835e − 022.5e−04 1.847863e − 042.7e−07

WFG8 2.162389e − 023.7e−04 5.499032e − 033.7e−03

WFG9 2.171889e − 023.3e−04 5.143616e − 043.3e−06

DTLZ1 2.426916e + 014.9e−01 3.945053e − 042.4e−06

DTLZ2 4.921139e − 026.9e−04 4.137693e − 047.0e−06

DTLZ3 6.254630e + 019.1e−01 6.590347e − 049.8e−06

DTLZ4 5.080821e − 028.4e−04 3.491099e − 032.9e−05

DTLZ5 6.189454e − 021.5e−03 1.495443e − 041.1e−06

DTLZ6 6.427798e − 016.1e−03 3.282463e − 049.2e−08

DTLZ7 2.154503e − 012.1e−03 7.528934e − 044.2e−05

TABLE III
HV. MEAN AND STANDARD DEVIATION

DPP DPP2
ZDT1 3.996240e − 028.1e−02 6.648521e − 014.4e−05

ZDT2 1.791135e − 058.0e−05 3.315724e − 014.0e−05

ZDT3 7.759302e − 032.2e−02 5.162230e − 019.9e−06

ZDT4 0.000000e + 000.0e+00 6.649724e − 018.8e−06

ZDT6 1.513068e − 052.7e−05 4.047281e − 012.2e−07

UF1 6.400829e − 031.2e−02 6.635530e − 012.4e−04

UF2 1.910077e − 012.3e−02 6.570243e − 013.2e−03

UF3 5.080904e − 041.2e−03 6.490813e − 011.6e−02

UF4 1.197737e − 013.8e−03 2.450716e − 015.5e−03

UF5 0.000000e + 000.0e+00 8.646766e − 028.3e−02

UF6 0.000000e + 000.0e+00 2.045398e − 011.0e−01

UF7 2.768829e − 039.5e−03 4.949293e − 012.6e−03

UF8 0.000000e + 000.0e+00 3.155399e − 011.6e−02

UF9 0.000000e + 000.0e+00 6.204633e − 015.8e−02

UF10 0.000000e + 000.0e+00 5.960499e − 022.7e−02

WFG1 4.530206e − 021.8e−03 6.348506e − 012.1e−04

WFG2 3.850254e − 012.0e−02 5.646771e − 011.2e−05

WFG3 3.238837e − 011.2e−02 4.980028e − 014.5e−06

WFG4 1.309644e − 016.4e−03 2.212260e − 011.1e−04

WFG5 1.041140e − 016.2e−03 1.981450e − 011.0e−05

WFG6 9.195614e − 028.5e−03 2.128722e − 014.2e−06

WFG7 1.042489e − 016.6e−03 2.128553e − 015.7e−06

WFG8 7.370458e − 025.1e−03 1.730381e − 012.6e−02

WFG9 1.373612e − 011.6e−02 2.438651e − 016.3e−05

DTLZ1 0.000000e + 000.0e+00 7.849109e − 013.6e−04

DTLZ2 9.580321e − 021.5e−02 4.184846e − 017.7e−04

DTLZ3 0.000000e + 000.0e+00 4.187471e − 011.0e−03

DTLZ4 4.071083e − 021.5e−02 4.118296e − 012.2e−02

DTLZ5 3.329375e − 033.0e−03 9.469711e − 025.7e−06

DTLZ6 0.000000e + 000.0e+00 9.566277e − 028.1e−07

DTLZ7 8.433473e − 024.1e−02 2.723934e − 012.1e−02

In summary, from the results, we can see that DPP2 shows
better performance more than DPP in all instances. These
observations demonstrate the effective of the modified dual-
population paradigm when taking into account all neighbor-
hood sub-regions instead of using only random sub-region like

TABLE IV
IGD. MEAN AND STANDARD DEVIATION

DPP DPP2
ZDT1 1.467296e − 022.9e−03 5.553788e − 051.7e−07

ZDT2 2.518171e − 027.8e−03 4.660187e − 054.9e−08

ZDT3 1.386081e − 023.0e−03 8.861649e − 055.4e−07

ZDT4 9.770826e − 011.8e−01 5.900098e − 053.3e−07

ZDT6 2.702415e − 023.3e−03 4.627856e − 053.9e−09

UF1 2.757694e − 023.8e−03 7.137613e − 057.6e−06

UF2 1.315680e − 025.2e−04 4.182316e − 041.6e−04

UF3 2.729877e − 023.0e−03 6.285715e − 048.8e−04

UF4 5.606466e − 031.2e−04 1.955271e − 031.4e−04

UF5 8.764953e − 019.3e−02 6.882732e − 021.5e−02

UF6 1.139303e − 012.1e−02 6.071352e − 036.1e−03

UF7 2.919063e − 024.9e−03 2.521310e − 043.7e−04

UF8 2.162162e − 024.7e−03 1.201758e − 032.0e−04

UF9 1.876371e − 024.0e−03 1.416785e − 037.5e−04

UF10 1.002259e − 011.4e−02 4.870078e − 036.2e−04

WFG1 1.803620e − 021.1e−04 2.678682e − 041.5e−05

WFG2 1.139491e − 021.2e−03 6.028959e − 049.1e−06

WFG3 4.125034e − 033.6e−04 5.478467e − 057.7e−08

WFG4 1.905605e − 031.3e−04 6.323277e − 053.9e−06

WFG5 4.206134e − 032.8e−04 9.326983e − 045.2e−07

WFG6 5.724722e − 035.9e−04 9.139314e − 059.8e−08

WFG7 1.979212e − 031.8e−04 4.054533e − 051.6e−08

WFG8 6.701183e − 033.1e−04 2.362629e − 031.1e−03

WFG9 1.808642e − 032.7e−04 4.074258e − 051.9e−07

DTLZ1 2.953435e − 017.0e−02 3.474254e − 041.1e−06

DTLZ2 3.253742e − 031.7e−04 4.306460e − 042.0e−06

DTLZ3 2.822716e + 002.6e−01 7.225804e − 044.3e−06

DTLZ4 4.216476e − 031.7e−04 8.112918e − 041.9e−04

DTLZ5 7.508758e − 046.8e−05 1.519963e − 051.2e−07

DTLZ6 1.357017e − 023.6e−03 3.453052e − 052.9e−08

DTLZ7 2.453883e − 025.3e−03 6.889806e − 037.7e−03

in RMS mechanism.

V. CONCLUSIONS

In this paper, a modified dual-population based co-
evolutionary approach (DPP2) is presented. In DPP2, two
populations are simultaneously maintained, one based on the
Pareto-based technique to achieve better convergence and the
other based on the decomposition-based technique to preserve
diversity. These populations interact with each other via a new
restricted competitive mating selection mechanism (RMS2)
and a co-operative mechanism. The performance of the pro-
posed algorithm is compared with the original version DPP on
the 4 series test instances via GD, HV, IGD and IGD+ metrics.
The empirical results demonstrated the effectiveness of new
co-operative co-evolutionary approach for achieving a balance
between convergence and diversity on the test instances.

This is just our preliminary study, a series of other co-
evolutionary variants with more better results on other bench-
mark problems will be tested and presented in the near future.
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