4-Fluoroamphetamine (4-FA)
Critical Review Report

Agenda Item 4.3

Expert Committee on Drug Dependence
Thirty-ninth Meeting
Geneva, 6-10 November 2017
Contents

Acknowledgements... 4

Summary.. 5

1. Substance identification ... 6
 A. International Nonproprietary Name (INN)... 6
 B. Chemical Abstract Service (CAS) Registry Number ... 6
 C. Other Chemical Names ... 6
 D. Trade Names .. 6
 E. Street Names .. 6
 F. Physical Appearance ... 6
 G. WHO Review History ... 7

2. Chemistry .. 7
 A. Chemical Name ... 7
 B. Chemical Structure ... 7
 C. Stereoisomers .. 7
 D. Methods and Ease of Illicit Manufacturing .. 7
 E. Chemical Properties ... 8
 F. Identification and Analysis ... 8

3. Ease of Convertibility Into Controlled Substances ... 9

4. General Pharmacology .. 9
 A. Routes of administration and dosage .. 9
 B. Pharmacokinetics ... 9
 C. Pharmacodynamics ... 10

5. Toxicology .. 16

6. Adverse Reactions in Humans ... 16

7. Dependence Potential ... 21
 A. Animal Studies .. 21
 B. Human Studies ... 21

8. Abuse Potential .. 21
 A. Animal Studies .. 21
 B. Human Studies ... 21

9. Therapeutic Applications and Extent of Therapeutic Use and Epidemiology of Medical
 Use ... 22

10. Listing on the WHO Model List of Essential Medicines ... 22

11. Marketing Authorizations (as a Medicinal Product) ... 22

12. Industrial Use .. 22
13. **Non-Medical Use, Abuse and Dependence** ...22

14. **Nature and Magnitude of Public Health Problems Related to Misuse, Abuse and Dependence** ...22

15. **Licit Production, Consumption and International Trade** ..23

16. **Illicit Manufacture and Traffic and Related Information** ...23

17. **Current International Controls and Their Impact** ..25

18. **Current and Past National Controls** ..25

19. **Other Medical and Scientific Matters Relevant for a Recommendation on the Scheduling of the Substance** ..26

References..27

Annex 2: Studies associated with the detection and chemical analysis of 4-fluoroamphetamine (amongst other substances) published in the scientific literature. ..36
Acknowledgements

This report has been drafted under the responsibility of the WHO Secretariat, Department of Essential Medicines and Health Products, Teams of Innovation, Access and Use and Policy, Governance and Knowledge. The WHO Secretariat would like to thank the following people for their contribution in producing this review report: Dr. Simon Brandt, United Kingdom (literature review and drafting) Dr. Dilkushi Poovendran, Geneva, Switzerland (questionnaire analysis and report drafting) and Dr. Stephanie Kershaw, Adelaide, Australia (review report editing, questionnaire analysis and report drafting).

WHO would like to thank the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) for providing information on 4-fluoroamphetamine collected from the European Union Early Warning System, which includes data reported by the Reitox National Focal Points in the EU Member States, Turkey, and Norway.
Summary

1-(4-Fluorophenyl)propan-2-amine (4-fluoroamphetamine, 4-FA) underwent a critical review in November 2015 at the 37th meeting of the WHO Expert Committee on Drug Dependence. The Committee recommended that 4-FA not be placed under international control at that time due to insufficiency of data regarding dependence, abuse and risks to public health but be kept under surveillance. This review represents an update.

4-FA is a psychomotor stimulant first synthesized in the early 1940s. The European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) received the first formal notification of the detection of 4-FA in Europe in December 2008 although its presence has been noted since at least 2007. In Europe, it has been found in tablets sold as ‘ecstasy’/MDMA, paste or powder sold as amphetamine. It has also been detected as an adulterant present in other illicit controlled substances. The EMCDDA has been notified of seizures from various locations in Europe since 2008. In the Netherlands, 4-FA has recently established itself as a drug of choice (powdered form, tablets and capsules) in a subpopulation of recreational drug users associated with clubs and music festivals. 4-FA appears to be most commonly administered orally or by nasal insufflation (snorting).

Data indicate that 4-FA may be able to inhibit monoamine oxidase and that it functions as a substrate-type releasing agent of dopamine, norepinephrine and serotonin. It has been shown to display amphetamine-like features in vivo and in vitro, which suggests that abuse liability might extend to humans. Further research is warranted to investigate the extent to which 4-FA displays a potential dependence in both animals in humans. Case report data in the scientific literature that unambiguously confirm a causal relationship between adverse effects of 4-FA and its presence in biofluids are limited to only a relatively small number of cases. In cases where this information is available, reported clinical features were associated with those of a sympathomimetic toxidrome. Information about a global perspective is missing. However, reports received from data monitoring systems in the Netherlands indicate increased use and popularity alongside increased numbers of notifications associated with severe adverse drug effects including serious cardiovascular toxicity.

Following a risk assessment carried out by the Dutch Centre for the Assessment and Monitoring of new drugs (CAM), it was concluded that the risk to individual health was small to moderate but with high risk for acute toxicity especially in subpopulations associated with clubbing. The risk to public health was deemed moderate to large based on rising trends in use number of health incidents. The overall risk score of 4-FA was considered high, which led to 4-FA being placed under legislative control.
1. Substance identification

A. International Nonproprietary Name (INN)

Not available.

B. Chemical Abstract Service (CAS) Registry Number

- 459-02-9 (free base)
- 64609-06-9 (hydrochloride salt)
- 72522-20-4 ((αR)-free base)
- 788123-23-9 ((αS)-free base)
- 127515-13-3 ((αS)- hydrochloride salt)
- 72522-24-8 ((αR)- hydrochloride salt)
- 1419922-92-1 (1,2,3,4,5,6-13C6-free base)
- 59963-24-5 (D-mannopyranose, 1-(hydrogen sulfate))
- 153506-17-3 (4-(fluoro-18F))
- 72522-20-4 (L-leucine, N-acetyl- compd. with (αR)-4-fluoro-α-methylbenzeneethanamine, 1:1)
- 788123-23-9 (L-leucine, N-acetyl- compd. with (αS)-4-fluoro-α-methylbenzeneethanamine, 1:1)
- 1782279-11-1 (ds-hydrochloride salt)
- 1783027-85-9 (ds-free base)

C. Other Chemical Names

1-(4-Fluorophenyl)-2-propanamine, 1-(p-fluorophenyl)-2-aminopropane, 2-amino-1-(4'-fluorophenyl)propane, 2-amino-1-(4'-fluorophenyl)propane, 2-amino-(p-fluorophenyl)propane, p-fluoro-α-methylphenethylylamine, 2-(4-fluorophenyl)-1-methylethylamine, 2-(4-fluorophenyl)-1-methyl-ethylamine, α-methyl-β-(4-fluorophenyl)ethylamine, α-methyl-β-(p-fluorophenyl)ethylamine, α-methyl-p-fluorophenethylamine, 1-(4-fluorophenyl)prop-2-ylamine, 1-(4-fluorophenyl)-2-propylamine, 1-(4-fluorobenzyl)ethylamine, 1-p-fluorophenyl-2-propylamine, p-fluoro-α-methylphenethylamine, para-fluoro-α-methyl-phenethylamine, 4-fluoro-α-methylphenethylamine, 4-fluoroamphetamine, p-fluoroamphetamine, parafuoroamphetamine, PFA, 4-F-A, PAL-303, p-FA, P-FMP, 4-FMP, 4FMP, 4-FA.

D. Trade Names

Not available.

E. Street Names

Flux, Fifa. 4-Fluo, Flo, RDJ, 4-Flava.

F. Physical Appearance

4-Fluoroamphetamine (4-FA) hydrochloride is a white crystalline powder.
G. WHO Review History

4-FA underwent a critical review in November 2015 at the 36th meeting of the WHO Expert Committee on Drug Dependence. The Committee recommended that 4-FA not be placed under international control at that time due to insufficiency of data regarding dependence, abuse and risks to public health but be kept under surveillance.

2. Chemistry

A. Chemical Name

IUPAC Name: 1-(4-Fluorophenyl)propan-2-amine
CA Index Name: 4-Fluoro-α-methyl-benzeneethanamine

B. Chemical Structure

Free base:

\[
\begin{array}{c}
\text{F} \\
\text{CH}_3 \\
\end{array}
\]

Note: Asterisk (*) refers to a chiral centre

Molecular Formula: C\text{9}H\text{12}FN (free base)
Molecular Weight: 153.20 g/mol

C. Stereoisomers

The presence of a chiral center at the α-carbon of the side chain gives rise to the enantiomeric pair of (S)-4-FA and (R)-4-FA, respectively. However, 4-FA is most likely to be available as the racemic mixture.

D. Methods and Ease of Illicit Manufacturing

4-FA may be obtained from a variety of synthetic methods that are commonly employed for the preparation of amphetamine (e.g.). A classic approach might include the use of the 1-(4-fluorophenyl)propan-2-one (4-fluorobenzyl methyl ketone) (a) and exposure to reductive conditions (i) (e.g. using formamide) to give racemic 4-FA (b). Depending on the availability of starting materials, precursor (a) may be obtained from a variety of synthetic procedures. Another common approach includes the reduction of the nitroalkene intermediate 1-fluoro-4-(2-nitroprop-1-en-1-yl)benzene (c) where 4-fluorobenzaldehyde may serve as the starting material. Enantiomerically pure forms of 4-FA have been prepared with the help of enzymes and a number of chemical methods have also been reported. Alternative suggestions for the preparation of 4-FA have been published. The EMCDDA received information in 2009 about some 4-FA samples analyzed by the Forensic Science Service. The presence of specific impurities were associated with the Leuckart synthesis, which pointed to the possible use of 4-fluorobenzyl methyl ketone) (a) as the starting material.
E. Chemical Properties

Melting point

- Hydrochloride salt: 156–157 °C (dry acetone)\(^4\)
- Hydrochloride salt: 152–154 °C\(^6\)
- Hydrochloride salt: 152–154 °C\(^{22}\)
- Hydrochloride salt: 152–154 °C\(^{23}\)
- (α\(S\))-Hydrochloride salt: 195–198 °C\(^6\)
- (α\(R\))-Hydrochloride salt: 195–197 °C\(^6\)
- Hydrochloride salt: 156.9 °C\(^{25}\)

Boiling point

- Free base: 95–96 °C (17 mmHg)\(^4\)
- Free base: 78 °C (10 mmHg) \(^6\)
- Free base: 96 °C (19.5 mmHg)\(^{23}\)
- Free base: 90 °C\(^{22}\)

Solubility

- ~Ten mg/ml in phosphate-buffered saline (pH 7.2); ~20 mg/ml in ethanol; ~30 mg/ml in dimethylformamide and dimethyl sulfoxide.\(^{26}\)

F. Identification and Analysis

Chemical and analytical data are abundantly available. 4-FA has also been employed for analytical purposes and featured in a range of routine methods of analysis associated with forensic and clinical investigations (Annex 2). Analytical challenges, especially when dealing with low concentrations encountered in biological matrices, might arise when attempting to differentiate 4-FA from its other two regioisomers 2-FA and 3-FA. The availability of all three substances used as standard reference material would be recommended.
3. Ease of Convertibility Into Controlled Substances

No information available.

4. General Pharmacology

4-FA is a ring-substituted amphetamine with psychostimulant properties. From a contextual perspective, earlier research involving 4-FA is related to work on substances with pressor effects (e.g. ephedrine derivatives), in addition to research on potential appetite suppressants (e.g. fenfluramine or phenmetrazine) and other substances known to interact with the monoaminergic system, such as L-deprenyl or 4-chloroamphetamine.

A. Routes of administration and dosage

4-FA appears to be most commonly administered orally or by nasal insufflation (snorting) although the latter has also been associated with intense intranasal burning sensations and pain. A case of intravenous injection has also been mentioned in a patient undergoing opioid maintenance treatment. A recent survey of 4-FA users in the Netherlands revealed a range of dosage levels that may be encountered: 50–100 mg (44 participants, 17.6%), 100–150 mg (105 participants, 42.2%), more than 150 mg (48 participants, 19.2%, the remainder did not know). Some anecdotal reports indicate that higher doses might also be used. Somewhat comparable doses have been described for oral administration elsewhere: ‘light’ 50-70 mg, ‘common’ 70-110 mg; ‘heavy’ 115-150. Experience reports, either involving 4-FA alone or in combination with other substances are available, for example, on the Erowid website. Examples can be found in the patent literature where 4-FA was captured as a potential ingredient in pharmaceutical formulations. The analysis of three capsules collected in the Netherlands revealed the presence of 112 mg, 156 mg and 179 mg 4-FA.

B. Pharmacokinetics

Information collected from systematic studies in humans is lacking. 4-FA has been identified as one of several metabolites formed in male Sprague-Dawley rat brain in following subcutaneous and intracerebral of para-fluoro-deprenyl. A transient, i.e. short-lasting, reduction of serotonin levels was observed in male albino Wistar rat brain homogenates after administration of a 0.1 mmol/kg dose. Based on the analysis of drug concentration levels within the first four hours, a half-life of 3.7 h was calculated for 4-FA which compared to about 1 h in the case of amphetamine in the rat brain. Intravenous injection of 4-[18F]A into female CF-1 mice revealed that uptake into brain tissue was detected after 5 minutes (% does/organ: liver > kidneys > lungs > small intestines > brain > spleen) followed by a rapid decline at the 30 min and 60 min mark. Duration of effects obtained from self-reports of 4-FA users: less than 4 hours (57 participants, 22.9%), 4–6 hours (110 participants, 44.2%); 6–8 hours (54 participants, 21.7%) and more than 8 hours (28 participants, 11.2%). Duration of effects (all routes of administration) have also been estimated as follows: 30-90 min for onset, 4-8 h duration and 1-24 hours after effects.
C. Pharmacodynamics

As summarized in Tables 1 and 2, earlier work pointed toward interactions with the monoaminergic system and data obtained from studies in more recent years supports the suggestion that 4-FA functions as a substrate-type releasing agent of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) and that it displays amphetamine-like features in a number of in vivo and in vitro assays. 4-FA induces locomotor activity in mice and is associated with DA release in rat striatum and rat nucleus accumbens.42, 43 Drug discrimination studies performed in rats showed that 4-FA substituted for the 5-HT releaser fenfluramine44 although this was not confirmed in rats trained to discriminate between the 5-HT releasing agents (+)-MBDB, 5-methoxy-6-methyl-2-aminoindan (MMAI) and saline. In this case, 4-FA fully mimicked (+)-amphetamine instead.42 It has recently been shown that 4-FA differed from (+)-amphetamine in its ability to result in higher 5-HT dialysate concentrations. These levels were obtained from rat nucleus accumbens and correlated with diminished motor stimulant activity, which led to the hypothesis that 5-HT release might be able to dampen the stimulant effects of amphetamine-type substances that are mediated by DA.45 Some user reports indicate that 4-FA might show pro-social effects in humans that might share some overlap with MDMA.29, 45 Recent in-vitro investigations involving various monoamine transporter uptake inhibition and release assays suggest that 4-FA displays catecholamine selective properties at NET and DAT with significantly less pronounced interactions with the serotonin transporter SERT (Table 1).

Table 1. 4-FA in-vitro uptake and release data

<table>
<thead>
<tr>
<th></th>
<th>Release (^{b})</th>
<th>Affinity (^{c})</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-FA IC<sub>50</sub>/µM</td>
<td>DAT (K_{i}/µM)</td>
<td>NET (K_{i}/µM)</td>
<td>SERT (K_{i}/µM)</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>1D<sub>50</sub> = 48.7<sup>d</sup></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0.270</td>
<td>0.356</td>
<td>2.352</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>EC<sub>50</sub>/nM 51.5</td>
<td>EC<sub>50</sub>/nM 28.0</td>
<td>EC<sub>50</sub>/nM 939</td>
</tr>
<tr>
<td>0.77</td>
<td>0.42</td>
<td>6.8</td>
<td>--</td>
</tr>
<tr>
<td>9.5</td>
<td>10.3</td>
<td>94.83</td>
<td>--</td>
</tr>
<tr>
<td>3.7</td>
<td>0.2</td>
<td>134</td>
<td>Yes<sup>e</sup></td>
</tr>
<tr>
<td>0.091</td>
<td>0.0426</td>
<td>3.12</td>
<td>Yes<sup>e</sup></td>
</tr>
<tr>
<td></td>
<td>EC<sub>50</sub>/nM 1400, (E_{max} = 96%)</td>
<td>EC<sub>50</sub>/nM 144, (E_{max} = 145%)</td>
<td>EC<sub>50</sub>/nM 11,100, (E_{max} = 99.5%)</td>
</tr>
<tr>
<td>21</td>
<td>1.8</td>
<td>205</td>
<td>--</td>
</tr>
</tbody>
</table>

Additional in-vitro data

| | \(K_{i} \) (µM): 5-HT_{1A} = 4.4; 5-HT_{2A} = 11.3; 5-HT_{2C} = 7.8; \(\alpha_{1A} > 4.9; \alpha_{2A} = 4.4; D_{1} > 12; D_{2} > 20; D_{3} > 17; H_{1} > 13; TAAR₁ = 0.08; TAAR₁ = 0.32; TAAR_{human} = 2.3; 5-HT_{2B} receptor activation: EC₅₀/µM = 11.4; activation efficacy = 49%. |

Rickli et al.50
Comparison with MDMA: \(K_i (\mu M): 5-HT_{1A} = 12.2; 5-HT_{2A} = 5.9; 5-HT_{2C} > 13; \alpha_{1A} > 6; \alpha_{2A} = 15; D_1 > 12; D_2 = 25; D_3 > 17; H_1 > 13; TA_{rat} = 0.37; TA_{mouse} = 2.4; TA_{human} = 14.6. \)

Cytotoxicity: None detected under conditions used.

Release studies in mice using radiolabeled cardiac norepinephrine showed that 4-FA cause dose-dependent release. At the 10 mg/kg level, observed release following amphetamine and \(d\)-methamphetamine administration was comparable.

Inhibition of monoamine oxidase (MAO): 40% inhibition at 1 mM.

Inhibition of phenethylamine N-methyltransferase studied with \(p_{S_{50}} = 3.01\); comparison with tranylcyromine: \(p_{S_{50}} = 4.05\)

Binding to phenylalanyl-tRNA synthetase isolated from E. coli with \(K_i = 0.48\) mM.

Investigations of MAO inhibition (MAOI) using rat brain mitochondria. \(I_{S_{50}}\) value for 4-FA = 16 \(\mu M\) compared to 1.9 \(\mu M\) for 4-chloroamphetamine.

Study with homologous initiating and non-initiating protein synthesis systems using rabbit reticulocyte lysates. 4-FA and amphetamine were observed to inhibit protein synthesis and aminoacylation under the conditions studied.

Investigation of MAO using mitochondrial MAO obtained from whole rat brain homogenates. Fixed concentrations of 100 \(\mu M\) \(^{14}\)C-5-HT (MAO-A) and \(^{14}\)C-phenethylamine (MAO-B) were used as substrates. \(K_i/\mu M (4-FA) = 28 (MAO-A) \) and 240 (MAO-B), competitive inhibition. Comparison: \(K_i/\mu M (amphetamine) = 8.0 (MAO-A) \) and 475 (MAO-B).

G-protein activation was not observed with 4-FA when using a \[^{35}\]S GTP\(\gamma\)S binding assay.

In contrast to number cathinone derivatives, 4-FA and some other amphetamines, did not react with the tetrazolium-based WST-1 reagent when tested in the absence of SH-SY5Y neuroblastoma cells.

4-FA (\(I_{S_{50}} = 113\) \(\mu M\), reduction to 5% at 300 \(\mu M\)) decreased neuronal activity in multi-well microelectrode array recordings obtained from rat cortical neurons; reduction also observed with other substances, e.g. nicotine, GABA, diazepam, MK-801 and methoxetamine.

Cytotoxicity: None detected under conditions used.

Binding and activity at rat, mouse, and human trace amine-associated receptor 1 (TAAR1). Binding \(K_i (\mu M) / \text{activation (EC}_{S_{50}, \mu M}): 0.081 / 0.069 (E_{max} = 78\%) \) (rat); 0.32 / 0.13 (\(E_{max} = 77\%\)) (mouse); binding not determined / 3.5 (\(E_{max} = 67\%)\) (human).

Comparison with MDMA: 0.37 / 1.0 (\(E_{max} = 56\%\)) (rat); 2.4 / 4.0 (\(E_{max} = 71\%\)) (mouse); binding not determined / 35 (\(E_{max} = 26\%)\) (human).

* Ref\(^{43}\); Uptake inhibition studies carried out using rat whole synaptosomes. Ref\(^{44,47}\); rat brain homogenates obtained from CPY Sprague-Dawley rats following synaptosomal preparation procedure published by Snyder and Coyle for uptake inhibition studies.\(^{62}\) Concentrations of \[^3\]HT, \[^3\]HDA and \[^3\]HNE were 0.1 nmol/mL. Ref\(^{50}\); HEK293-hDAT, HEK293-hNET, HEK293-hSERT; \(N\)-methyl-[\(^3\)]H-nisoxetine and indatraline (NET), [\(^3\)]Hclitracipram and indatraline (SERT), [\(^3\)]HWIN35,428 and indatraline (DAT). Ref\(^{42}\); whole brain minus cerebellum (male Sprague-Dawley rats) used for synaptosomal preparations; \[^3\]HT, \[^3\]HDA and \[^3\]HNE (10 nM). Ref\(^{49}\); HEK293-hSERT, HEK293-hNET and HEK293-hDAT. Cells incubated with test compounds for 5 min before the tritiated substrates were added to incubation buffer: 0.03 \(\mu M\) \[^3\]HT and 0.05 \(\mu M\) [\(^3\)]HMP. Ref\(^{51}\); HEK-hDAT, HEK-hNET and HEK-hSERT; \[^3\]HDA (hDAT), \[^3\]HT (hSERT) or \[^3\]HNE (hNET) (20 nM final concentration). Ref\(^{52}\); HEK293-hSERT, HEK293-hNET and HEK293-hDAT; uptake of undisclosed fluorescence substrate, which was not subject to transporter-mediated release when tested using MDMA.

* Ref\(^{2}\); Synaptosomal preparations: rat caudate (for DA release) or whole brain minus cerebellum and caudate (for NE and 5-HT release); \[^3\]HMP; as radioligand for DA and NE release, \[^3\]H-5-HT for 5-HT release measurements. Ref\(^{50}\).
Synaptosomal preparations from male Sprague-Dawley rats; striatum for DA and cortex for 5-HT and NE; re-uptake assay initiated by addition of [3H]DA (63 nM), [3H]5-HT (125 nM), and [3H]NE (125 nM); reaction mixture was incubated at 37 °C for 5 min; for release assays: synaptosomes pre-loaded with [3H]DA, [3H]5-HT, and [3H]NE; release terminated after 5 min ([3H]DA) and 30 min ([3H]5-HT, and [3H]NE). Ref 46: HEK-hDAT, HEK-hNET and HEK-hSERT) using a superfusion approach; cells preloaded with [3H]DA, [3H]5-HT or [3H]NE: normalized to maximal effect of methamphetamine (hDAT, hNET, and hSERT) or p-chloroamphetamine (some hSERT).

Ref 50: [3H]-8-OH-DPAT and indatraline (5-HT1A), [3H]ketanserin and spiperone (5-HT2A), [3H]mesulergine and mianserin (5-HT2C), [3H]prazosin and risperidone (α1 adrenergic receptor), [3H]rauwolscine and phentolamine (α2 adrenergic receptor), [3H]SCH 23390 and butaclamol (DA1), [3H]spiperone and spiperone (DA2 and DA3), [3H]pyrilamine and clozapine (H1) and [3H]-RO5166017 and RO5166017 (TA1). 5-HT2 activation: HEK293-h5-HT2B and FLIPR assay. Ref 51: Binding [125I]RTI-55; HEK-hDAT, HEK-hNET and HEK-hSERT).

Ref 50: Monoamine release expressed as percent reduction of monoamine cell content compared with vehicle (0% = no release; 100% release all monoamines released from the cells). DAT: ~45%, NET: ~40%; SERT: ~50%. Essentially comparable with releasing activity of MDMA.

ToxiLight BioAssay (4 h, 37 °C, incubation with 100 µM test drug).

Ref 5: Injected DL-norepinephrine-7-3H retained by the heart tissue after drug treatment (tail vein injection of the male Swiss white mice); drugs administered subcutaneously after 1 h and mice were sacrificed after 3 h. At 10 mg/kg levels: 4-FA = 50%, amphetamine = 58% and d-methamphetamine = 57%.

Ref 53: Warburg's technique was employed using tyramine as the substrate. Incubation was for 1 h at pH 7 and 37 °C.

Ref 54: Enzyme source: homogenate of whole rabbit adrenals; norepinephrine (40 µM) as substrate and measurement of epinephrine formation; enzyme transfer of methyl group using S-adenosyl-L-methionine (SAM) as co-factor.

Ref 46: [14C]Serotonin as substrate (100 µM); incubation with enzyme) for 20 min at 37 °C.

Ref 60: Cortical neurons from cortex of Wistar rat pups at postnatal day 0-1; cortical cultures consisted mainly of excitatory glutamatergic neurons, inhibitory GABAergic neurons and astrocytes.

Ref 60: Rat cortical neurons using the Neutral Red assay (30 min, 37 °C, incubation with 300 µM and 1 mM test drug).

Ref 61: Binding: HEK293 cells; [3H]RO5166017 as TAAR1 radioligand (not determined for human TAAR1); functional activity (cAMP measurements): endogenous TAAR1 ligands β-PEA, p-tyramine, and tryptamine (Emax = 100%, 94% and 91%).

Table 2. 4-FA in-vivo assays

<table>
<thead>
<tr>
<th>Behaviour</th>
<th>Neurochemistry / physiological responses / etc.</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>Toxicity studies in mice; see Section 5. In dogs and guinea pigs pressor activities were noted whereas depressing effects were observed in rabbits.</td>
<td>Suter and Weston4</td>
</tr>
<tr>
<td>--</td>
<td>Toxicity data from mice; see Section 5; hypertensive effects equivalent to amphetamine; anorectic effects</td>
<td>Beregi et al.23</td>
</tr>
</tbody>
</table>
investigated in the rat at 5 mg/kg; locomotor effects in mice investigated at 10 mg/kg. a

Anorectic dose (mg/kg): rat = 3.5; dog = 2. b Analgesia (mg/kg): mice = 10. b Anticonvulsant action (mg/kg): mice > 20. b Vasopressive action. Rat: increase at 0.25 and 0.5 mg/kg. b

No significant impact on whole rat brain serotonin levels compared to saline. c

Intraperitoneal administration of 5 mg/kg and 10 mg/kg 4-FA in rats trained by the Sidman avoidance conditioning procedure. At the 10 mg/kg dose, bar pressing was disrupted and resulted in death within 6–20 h.

Temporary reduction of whole rat brain serotonin and 5-hydroxyindoleacetic acid levels and tryptophan hydroxylase activity (up to 24 h) whereas 4-chloro and 4-bromoamphetamine caused reductions for up to a week. d

4-FA administration resulted in reduction of serotonin levels in brainstem and telencephalon when pre-treated with iprindole. No changes observed 24 h without pre-treatment. Two weeks later, reductions were observed in both tissue extracts under both treatment conditions. e

Unpublished data were mentioned that 4-FA did not show effects on the central nervous system. Details not reported.

Administration of 14 mg/kg (i.p.) resulted in a 11.1% increase of tryptophan levels in rat brain whereas serotonin and 5-hydroxyindoleacetic acid levels did not change significantly. In comparison, a 10 mg/kg dose of amphetamine led to an increase of 96% with respect to tryptophan. Similarly, serotonin and 5-hydroxyindoleacetic acid levels remained unchanged. f

Anorectic properties of 4-FA comparable to d-amphetamine (ED$_{50}$ = 2.5 vs. 1.8 mg/kg) g

4-FA administration (100 µmol/kg) failed to produce serotonin depletion in rat brain sections 3 days after administration. h

Intracerebroventricular injection of 4-FA (200 µg) resulted in increased levels of serum corticosterone, which pointed toward a mechanism without serotonin involvement since serotonergic neurotoxin administration did not impact on elevation. Dexamethasone pre-treatment (4 mg/kg) 4 h before
<table>
<thead>
<tr>
<th>Measurement Prevented Corticosterone Elevation: ¹</th>
<th>McElroy and Feldman ⁴⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug discrimination: ¹ Rats trained to discriminate fenfluramine (3 mg/kg) and saline. 4-FA (1.0–4.0 mg/kg) was found to substitute; 100% lever selection at 4 mg/kg.</td>
<td>⁴⁻⁺FA (1.0–4.0 mg/kg) was found to substitute; 100% lever selection at 4 mg/kg.</td>
</tr>
<tr>
<td>Drug discrimination: ¹ 4-FA displayed (+)-amphetamine-like discriminative stimulus effects; ED₅₀: 0.23 mg/kg, 1.25 µmol/kg for training drug; 0.43 mg/kg, 2.11 µmol/kg for 4-FA; no substitution observed for (+)-MBDB and MMAI.</td>
<td>Microdialysis (rat striatum): ¹ At 7 mg/kg (i.p.) of 4-FA, increase of extracellular DA levels (849%) 1 h after administration and non-significant decrease in DOPAC; when DA returned to baseline 3 h later, DOPAC and HVA concentrations still decreased. No effects of the 1.75 mg/kg dose. DA levels increases ~250% at 3.5 mg/kg (at 90 and 120 min post-injection); (+)-Amphetamine (2.0 mg/kg, i.p.) significantly increased dialysate DA levels from 30 to 120 min. DOPAC concentration not altered but HVA significantly decreased in DA dialysates at 1.5 h and 2 h following amphetamine injection.</td>
</tr>
<tr>
<td>Self-administration: ² In rhesus monkeys, 4-FA functioned as a positive reinforcer under fixed-ratio (FR) 25 schedule (biphasic dose-response) and progressive-ratio (PR) conditions; reinforcing efficacy (PR schedule) lower than that of d-amphetamine. Potency (FR): 0.3 mg/kg; potency (PR): ED₅₀ = 0.26 µmol/kg/injection; d-amphetamine: ED₅₀ = 0.04 µmol/kg/injection.</td>
<td>Wee et al. ⁷</td>
</tr>
<tr>
<td>Evaluation of anti-Parkinson effects: ³ ⁴-FA reported to significantly reduce haloperidol-induced catalepsy in rats. Conditioned place preference: ³ ⁴-FA did not in behaviour associated with drug dependence.</td>
<td>Nagel and Schmidt ³⁴, ³⁵</td>
</tr>
<tr>
<td>Cortical EEG and EMG: ⁵ ⁴-FA led to increased wakefulness for 7 h after administration; REM and non-REM sleep not detected in 2 h to 6 h following administration.</td>
<td>Uchiyama et al. ⁷²</td>
</tr>
</tbody>
</table>
Locomotor activity: Dialysate DA correlated positively with ambulation and stereotypy whereas dialysate 5-HT correlated positively with stereotypy but not ambulation.

Microdialysis (rat nucleus accumbens): Intravenous administration of 4-FA led to dose-related increases in dialysate: DA ~ 12-fold and 5-HT ~ 15-fold.

Baumann et al. 43

4 Ref 23: male Sprague-Dawley rats; female NMRI mice.

b Ref 53: Anorexia test. Rats: dose at which food intake was reduced by 50% for 2 h when drug administered orally one hour previously; dogs: oral minimum dose delaying food ingestion for 2 h. Analgesia (Haffner’s method in mice): intraperitoneal dose which inhibits reflex of biting the artery clip placed on tail by 50%. Anticonvulsant action: oral dose, which protects 50% of mice from tonic extension; bucco-occipital electroshocks were given (7.5 to 30 V lasting 1 s). Vasopressive action: blood pressure variation in pithed rat in mm Hg following intravenous administration.

c Ref 64: Total radioactivity in the brain of male white Harlan rats was measured 20 min after i.p. injection of 5 μmol DL-5-hydroxytryptophan-3-14C/kg.

d Ref 40: male albino Wistar-derived rats; drugs administered intraperitoneally; drug levels in whole brain determined by methyl orange assay; tryptophan hydroxylase activity in whole brain homogenates assayed spectrofluorometrically; monoamine oxidase inhibition also determined, see Table 2. Serotonin and 5-hydroxyindoleacetic acid levels in whole brain assayed spectrofluorometrically following derivatization.

e Ref 67: Sprague-Dawley rats; intraventricular injection (600 μg) with and without iprindole (10 mg/kg, i.p. one hour before drug administration) treatment; cerebellum was removed to dissect into brainstem and telencephalon-cortical sections.

f Ref 68: Female Wistar rats; brain levels of tryptophan, serotonin and 5-hydroxyindoleacetic acid were determined following sacrifice after 60 min (amphetamine) and 90 min (4-FA), respectively.

g Ref 69: male Long-Evans rats; inhibition of food consumption determined 2 h after oral administration of test drug. Values expressed as percentage of food consumed the preceding day.

h Ref 70: Male albino rats (i.p. drug administration); brain sections B-7, B- and B-9 were isolated three days following administration and stained to determine abnormal staining and extent of neurotoxicity.

i Ref 71: Male albino rats; trunk blood collected one hour after injection (i.c.v.); dexamethasone treatment (inhibition of pituitary ACTH secretion): 4-FA given 1 h before rats were sacrificed (i.p.) and either after dexamethasone (1 mg/kg i.p.) or 4 h after dexamethasone (4 mg/kg i.p.); chronic depletion of brain 5-HT induced by pre-treatment with p-chlorophenylalanine or 5,7-dihydroxytryptamine.

j Ref 44: male albino rats.

k Ref 41: Female CF-1 mice; lateral tail vein injection (0.3-1.5 mCi); tissues removed after 5, 30 and 60 min.

l Ref 42: Male Sprague-Dawley rats; trained with (+)-amphetamine (1 mg/kg, 5.4 μmol/kg (i.p.), (+)-MBDB (1.75 mg/kg, 7.18 μmol/kg (i.p.), MMAP (1.71 mg/kg, μmol/kg (i.p.)). Microdialysis: dialysate collected every 30 min (striatum); i.p. injections of 4-FA HCl at 1.75, 3.5, and 7.0 mg/kg followed by determination of dopamine, DOPAC, and HVA; dialysates collected 1.5 h before and extended 3 h after injection of 4-FA or (+)-amphetamine.

m Ref 7: Seven male rhesus monkeys; FR schedule: baseline dose of cocaine = 0.03 mg/kg/injection; test drugs 0.003–1.0 mg/kg; PR schedule: baseline dose of cocaine maintaining maximum injections = 0.1 or 0.3 mg/kg/injection; test drug available at doses of 0.003–1.0 mg/kg. For FR schedule, mean dose that maintained responding at the peak of the biphasic curve was calculated for potency. For PR schedule, ED50 dose of dose-response function obtained in individual monkey and averaged across monkeys for mean.
Toxicology

Oral administration (white female Cartworth mice): LD$_{0}$ = 15 mg/kg, LD$_{50}$ = 25 mg/kg, LD$_{100}$ = 50 mg/kg.4 Intraperitoneal administration in mice: LD$_{50}$ = 46.4 mg/kg.23,73 and 46 mg/kg, respectively.53 Oral administration (male CD Servier mice): LD$_{50}$ = 150 mg/kg (comparison to d-amphetamine under identical conditions: 120 mg/kg)69 A cytology test with 4-FA did not lead to observations of cytotoxic effects under the conditions studied (4 h incubation at 37°C, drug concentration 100 μM).50 Similarly, another cell viability test studying the exposure of 4-FA to cortical neurons did not affect cell integrity under the investigated conditions (30 min incubation at 37°C, drug concentration 300 μM and 1 mM).60 Data on the effects of 4-FA metabolites are not available.

6. Adverse Reactions in Humans

Tables 3 and 4 provide an overview of fatal and non-fatal intoxications obtained from the scientific literature and from reports received by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). Case report data reported in the scientific literature that unambiguously confirm a causal relationship between adverse 4-FA and presence in biofluids are limited to a relatively low number of cases. In cases where this information is available (e.g.74), sympathomimetic features, typically encountered with some amphetamine-type stimulants, have been observed. A recent study carried out in the Netherlands,29 which included a systematic survey of 4-FA users, who identified the main positive effect and the three most frequent adverse effects, confirmed that adverse effects of 4-FA were consistent psychomotor/entactogen stimulant profile (Table 5).

Dutch drug monitoring systems have received reports on increasing numbers of acute toxicity cases among young people attending large-scale events (median age 23 years). Between January and September 2016, 16% of reported acute toxic effects were associated with 4-FA, which compared to no reports between 2009 and 2011, less than 1% in 2012 and 2013, 2% in 2014, and 11% in 2015. The Dutch Poisons Information Center was also
reported to receive increasing numbers of reports of 4-FA intoxications that increased from two in 2011 to 44 in 2015. Between January and September 2016, 33 reports were received, which included increasing number of reports of adverse drug reactions beyond those commonly observed with amphetamine-like substances (e.g. agitation, tachycardia, hypertension, and hyperthermia), such as pronounced cardiovascular toxicity, severe headache and cerebral hemorrhage but also deaths (analytical only available in some cases). Following a risk assessment carried out by the Dutch Centre for the Assessment and Monitoring of new drugs (CAM), it was concluded that the risk to individual health was small to moderate but with high risk for acute toxicity especially in subpopulations associated with clubbing. The risk to public health was deemed moderate to large based on rising trends in use number of health incidents. The overall risk score of 4-FA was considered high.

<p>| Table 3. Fatal case reports associated with 4-FA published in scientific literature. |</p>
<table>
<thead>
<tr>
<th>Year</th>
<th>Cases</th>
<th>Patient, age</th>
<th>Context/clinically related comments</th>
<th>Notes</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>1</td>
<td>F, 44</td>
<td>HIV-positive, 18 years history of drug dependence undergoing methadone treatment. Death considered due to high level of methadone in combination with 4-FA and amphetamine.</td>
<td>Whole blood analysis: 4-FA 0.58 mg/kg; amphetamine 0.30 mg/kg; diazepam 0.029 mg/kg; oxazepam 0.043 mg/kg, methadone 0.65 mg/kg.</td>
<td>Johansen and Hansen77</td>
</tr>
<tr>
<td>2013</td>
<td>1</td>
<td>Not reported</td>
<td>Not reported.</td>
<td>Detection of 4-FA in one post-mortem blood sample.</td>
<td>Rosano et al.78</td>
</tr>
<tr>
<td>2017</td>
<td>2</td>
<td>Not reported</td>
<td>See also Table 4 (Nugteren-Van Lonkhuyzen et al.75) Analytical confirmation (in blood/urine) in 4 cases. Three of these patients ingested one 4-FA capsule (plus cannabis in 1 patient) and developed severe headache and cerebral hemorrhage. One of these patients died. The fourth patient died due to extensive bowel ischemia following chronic 4-FA use. In this patient and in one of the patients with cerebral hemorrhage, pronounced cardiovascular toxicity was also observed.</td>
<td>Analytical confirmation (blood/urine; details not reported).</td>
<td>Nugteren-Van Lonkhuyzen et al.75</td>
</tr>
</tbody>
</table>

<p>| Table 4. Non-fatal case reports associated with detection of 4-FA reported in the scientific literature.* |</p>
<table>
<thead>
<tr>
<th>Year</th>
<th>Cases</th>
<th>Patient, age</th>
<th>Context/clinically related comments (examples)</th>
<th>Notes</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>14</td>
<td>12 x M, 19-38; 2 x F, 17 and 21</td>
<td>Case history details not reported. Amphetamine also detected in most cases; whole blood 0.049 mg/kg – 0.70 mg/kg; in nine cases, additional drugs were detected, such as several benzodiazepines, tetrahydrocannabinol (THC), ketamine, 4-methylamphetamine and lidocaine.</td>
<td>Cases observed between 2009 – 2011. One rape case and 13 DUID cases. Whole 4-FA blood concentrations in DUID cases between</td>
<td>Johansen and Hansen77</td>
</tr>
<tr>
<td>Year</td>
<td>N</td>
<td>Gender</td>
<td>Age</td>
<td>Symptoms</td>
<td>4-FA Detection</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--------</td>
<td>-----</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>2012</td>
<td>2</td>
<td>Not reported</td>
<td></td>
<td>Case 1: police traffic check and medical examination indicative of sympathomimetic drug use: pupils dilated and delayed contraction in response to light; fingertips trembling; Romberg test showed tremor and swaying; restless behavior. Case 2: symptoms associated with psychostimulants, such as slow pupil light reflex, tremor and restlessness.</td>
<td>DUID cases. 4-FA serum concentrations 350 ng/mL and 475 ng/mL.</td>
</tr>
<tr>
<td>2012</td>
<td>14</td>
<td>Not reported</td>
<td></td>
<td>4-FA was detected in 12 cases subjected to hair analysis.</td>
<td>Calafat et al.</td>
</tr>
<tr>
<td>2013</td>
<td>14</td>
<td>Not reported</td>
<td></td>
<td>Not reported. Urine drug screening of authentic samples obtained from 'addiction treatment clinics' during one year in Sweden.</td>
<td>In combination with 4-FMC (3), 3-FMC (1) and MDPV (1). Total number of urine samples: 1335.</td>
</tr>
<tr>
<td>2013</td>
<td>2</td>
<td>Not reported</td>
<td></td>
<td>Not reported. In 2010, 103 cases received from patients presenting at emergency departments across Sweden.</td>
<td>4-FA detection reported in 2 cases.</td>
</tr>
<tr>
<td>2013</td>
<td>5</td>
<td>Not reported</td>
<td></td>
<td>Not reported. Analysis of 1335 DUID cases.</td>
<td>4-FA detected in whole blood and considered below the legal limit.</td>
</tr>
<tr>
<td>2014</td>
<td>1</td>
<td>M, 18</td>
<td>Abrupt onset of nausea, vomiting, shortness of breath and chest tightness 5 h after drug consumption; received intramuscular naltrexone two days prior to admission as part of opioid addiction treatment program; fluoxetine and trazodone were also taken. 'Reverse takotsubo cardiomyopathy': cardiogenic shock developed requiring invasive management and life support. Acute cardiomyopathy caused by 4-FA catecholamine-induced myocarditis and/or small vessel myocardial ischemia was suggested. It has been suggested that the medication used during treatment might have contributed to triggering the Takotsubo syndrome.</td>
<td>4-FA urine and serum levels 64,000 ng/mL and 118 ng/mL. Also detected in urine: naproxen, fluoxetine, trazodone, naltrexone, nicotine, and cotinine in urine; in serum: 4-FA, naproxen, trazodone, and cotinine.</td>
<td>Al-Abri et al.</td>
</tr>
<tr>
<td>2015</td>
<td>1</td>
<td>M, 27</td>
<td>Patient with history of polysubstance dependence; agitated with non-sensible speech, diaphoresis, dilated pupils, and hyperreflexia without clonus. Vital signs included: heart rate 156 beats/min and rectal temperature 41.4 °C; treatment: dextrose (50 g, i.v.), midazolam (multiple boluses, i.v., 28 mg in total), and submerged in ice water.</td>
<td>Urine tests with EMIT positive for amphetamines and PCP; qualitative serum and urine analysis confirmed presence of 4-FA.</td>
<td>Laskowski et al.</td>
</tr>
</tbody>
</table>

References:
- Al-Abri et al.
- Al-Saffar et al.
- Calafat et al.
- Helander et al.
- Laskowski et al.
<table>
<thead>
<tr>
<th>Year</th>
<th>N</th>
<th>Gender</th>
<th>Description</th>
<th>Analytical Confirmation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>1</td>
<td>M, 35</td>
<td>Routine traffic control; slow coordination, deficiency in concentration, washed-out pronunciation, agitation, restlessness, dry mouth, eyes reddened, and glassy, and pupil abnormalities (slow reaction to light, enlarged pupils). Orders had to be repeated multiple times and the man could not follow long sentences.</td>
<td>Blood sample taken 1 h and 55 min afterwards: THC 0.9 ng/mL; 11-OH-THC < 0.8 ng/mL; THC-COOH 6.8 ng/mL; 4-FA 90.0 ng/mL.</td>
<td>Maas et al.87</td>
</tr>
<tr>
<td>2015</td>
<td>4</td>
<td>Not reported</td>
<td>Tachycardia, headache, dizziness, restlessness, visual disturbances, tremors, agitation, tachypnea, confusion, nausea, vomiting, abdominal pain, dysphagia, neck pain, feeling of fainting.</td>
<td>Reported to the Dutch Poisons Information Centre in 2013.</td>
<td>Hondebrink et al.88</td>
</tr>
<tr>
<td>2016</td>
<td>1</td>
<td>Not reported</td>
<td>Retrospective analysis of 200 urine samples collected consecutively between October 2013 and April 2014 from 82 different opioid-dependent patients.</td>
<td>4-FA, amphetamine, alprazolam, THC-COOH, and zolpidem detected.</td>
<td>Heikaman et al.30</td>
</tr>
<tr>
<td>2016</td>
<td>1</td>
<td>Not reported</td>
<td>Details not reported. 4-FA detected in one out of 34 irregular attendees of drug treatment centre.</td>
<td>4-FA detected, no further details.</td>
<td>Sundström et al.89</td>
</tr>
<tr>
<td>2017</td>
<td>3</td>
<td>M, 21 F, 19 M, 22</td>
<td>Self-reported use of 4-FA. One patient exhibited rhabdomyolysis; hyperthermia, hypertension and tachycardia were commonly observed; one patient consumed 14 tablets as a suicide attempt.</td>
<td>Analytical confirmation not available.</td>
<td>Knippels et al.90</td>
</tr>
<tr>
<td>2017</td>
<td>20</td>
<td>Not reported</td>
<td>See also Table 3 (Lonkhuyzen et al.75). Between January-September 2016, the Dutch Poisons Information Center was consulted about thirty-six 4-FA exposures; follow-up performed in 22 cases with either physician and/or patient. Observed symptoms included restlessness (77%), headache (68%), anxiety (59%), tachycardia (59%), hypertension (50%), confusion, tachypnea, chest pain (all 41%), seizures and coma (both 14%). More pronounced cardiovascular toxicity observed in 11 cases (2 analytically confirmed). These included conduction abnormalities (prolonged QTc or QRS interval, right bundle branch block), acute heart failure and arrhythmias (including bigeminy). One of these patients developed inverted</td>
<td>Analytical confirmation in 6 cases (blood/urine; details not reported)</td>
<td>Nugteren-Van Lonkhuyzen et al.75</td>
</tr>
</tbody>
</table>
Takotsubo cardiomyopathy following intake of two 4-FA capsules with a 30-minute interval (plus 5 units of alcohol, exposures not analytically confirmed). Analytical confirmation (in blood/urine) in 4 cases. Three of these patients ingested one 4-FA capsule (plus cannabis in 1 patient) and developed severe headache and cerebral hemorrhage. One of these patients died. The fourth patient died due to extensive bowel ischemia following chronic 4-FA use. In this patient and in one of the patients with cerebral hemorrhage, pronounced cardiovascular toxicity was also observed.

See also Wijers et al.76

<table>
<thead>
<tr>
<th>Year</th>
<th>N</th>
<th>Age</th>
<th>Symptoms and Details</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>4</td>
<td>Not reported</td>
<td>Analysis of 558 blood samples and 199 oral fluid samples obtained during traffic controls in Belgium between January and August 2015. In one case, blood-red eyes, dry mouth, trembling arms and legs but also equanimity was observed (amphetamine and THC-COOH also detected).</td>
<td>4-FA detected in 3 blood samples and 1 oral fluid sample. All samples also contained other drugs.</td>
</tr>
<tr>
<td>2017</td>
<td>1</td>
<td>F, 18</td>
<td>Presented to emergency department (ED) after drinking two capfuls of "Molly's Mosquito cap"; also reportedly insufflated 110 mg methylphenidate and ingested 800 mg modafinil. Experienced headache, nausea, vomiting, lightheadedness, and diaphoresis. On arrival to emergency department, only complaint was anxiety; clinical feature features were associated with acute dilated cardiomyopathy and myocardial injury.</td>
<td>4-FA detected in urine at 37,000 ng/mL. Concentrations of methylphenidate and modafinil not reported.</td>
</tr>
</tbody>
</table>

a The EMCDDA also received reports about positive identifications of 4-FA in biofluids although case level data are not reported, see Table 7. b Year of publication with allocation of volume and page number; some cases have been encountered before that.

Table 5. Reported positive and adverse effects of 4-FA, adapted from Linsen et al.29

<table>
<thead>
<tr>
<th>Effects</th>
<th>n</th>
<th>%</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stimulatory</td>
<td>145</td>
<td>58.2</td>
<td>51.4–64.3</td>
</tr>
<tr>
<td>Euphoria</td>
<td>69</td>
<td>27.9</td>
<td>22.1–33.3</td>
</tr>
<tr>
<td>Empathic</td>
<td>24</td>
<td>9.6</td>
<td>6.0–13.3</td>
</tr>
<tr>
<td>Sedative</td>
<td>11</td>
<td>4.3</td>
<td>1.1–5.6</td>
</tr>
<tr>
<td>Adverse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difficulty falling asleep</td>
<td>133</td>
<td>53.4</td>
<td>47.4–59.0</td>
</tr>
<tr>
<td>Dry mouth</td>
<td>109</td>
<td>43.8</td>
<td>37.4–50.2</td>
</tr>
<tr>
<td>Jaw tension/cramp</td>
<td>106</td>
<td>42.6</td>
<td>36.2–49.0</td>
</tr>
<tr>
<td>Elevated heartbeat</td>
<td>92</td>
<td>36.9</td>
<td>30.9–43.4</td>
</tr>
<tr>
<td>Sweating/high body temperature</td>
<td>83</td>
<td>33.3</td>
<td>27.7–39.4</td>
</tr>
<tr>
<td>Lowered mood in the days after use</td>
<td>49</td>
<td>19.7</td>
<td>14.9–24.5</td>
</tr>
<tr>
<td>Muscle weakness in days after use</td>
<td>46</td>
<td>18.5</td>
<td>13.7–23.3</td>
</tr>
<tr>
<td>Nausea</td>
<td>17</td>
<td>4.8</td>
<td>3.6–10.0</td>
</tr>
<tr>
<td>The drug had no effect</td>
<td>16</td>
<td>6.4</td>
<td>3.6–9.6</td>
</tr>
<tr>
<td>Tachycardia</td>
<td>29</td>
<td>11.6</td>
<td>8.0–15.7</td>
</tr>
</tbody>
</table>
7. Dependence Potential

A. Animal Studies

As shown in Table 2, self-administration studies in rhesus monkeys indicated that 4-FA functioned as a positive reinforcer under fixed-ratio (FR) 25 schedule (biphasic dose-response) and progressive-ratio (PR) conditions. The reinforcing efficacy (PR schedule) was lower than that of d-amphetamine and it was hypothesized that the 5-HT releasing effects of 4-FA might have negatively impacted on the potency as a reinforcer compared to d-amphetamine. Correspondingly, it was suggested that a DA/5-HT ratio might serve as a potential predictor. Taking into account the EC$_{50}$ values obtained from rat brain synaptosome release assays, the DA/5-HT ratio obtained for 4-FA was 0.05 compared to 0.004 for d-amphetamine, which reflected the higher 5-HT releasing potency of 4-FA.7 An example was found in the patent literature where it was claimed that 4-FA did not display signs of dependence potential based on experiments that assessed conditioned place preference (Sprague-Dawley rats).34, 35 Further studies seem warranted to determine the extent of dependence potential in animals.

B. Human Studies

Data from clinical studies in humans are not available.

8. Abuse Potential

A. Animal Studies

As shown in Tables 2 and 3 and Section 4, limited information is available. From the available data it appears that 4-FA shows classic features associated with other psychomotor stimulants. The available information related to amphetamine-like properties suggests that abuse liability might be extendable to humans. Further studies seem warranted to clarify the similarities and differences that might exist between 4-FA and amphetamine and other amphetamine-type substances.

B. Human Studies

Data from clinical studies in humans are not available.

\begin{tabular}{|l|c|c|c|}
\hline
Headache & 21 & 8.4 & 5.2–12.4 \\
Loss of memory (while intoxicated) & 17 & 6.8 & 4.0–10.4 \\
Unpleasant hallucinations & 3 & 1.2 & 0.0–2.8 \\
Difficulty breathing & 2 & 0.8 & 0.0–2.0 \\
Tolerance (higher dose needed after first use) & 16 & 6.4 & 3.6–9.6 \\
Other & 6 & 2.4 & 1.0–4.6 \\
\hline
\end{tabular}

* Multiple answers were possible for adverse effects; CI = confidence interval. Users of 4-FA have identified pro-social effects similar to MDMA, which was not associated with effects induced by amphetamine.
9. **Therapeutic Applications and Extent of Therapeutic Use and Epidemiology of Medical Use**
 Not applicable.

10. **Listing on the WHO Model List of Essential Medicines**
 4-FA is not listed on the WHO Model List of Essential Medicines (20th List) or the WHO Model List of Essential Medicines for Children (6th List).

11. **Marketing Authorizations (as a Medicinal Product)**
 4-FA was never marketed as a medicinal product.

12. **Industrial Use**
 4-FA has no recorded industrial use.

13. **Non-Medical Use, Abuse and Dependence**
 Use of 4-FA appears to be limited to recreational substance users rather than the general population. The mode of use may involve the combinational use (intentionally or unintentionally) of other drugs and users may be unaware of the exact dose or compound being ingested (by whatever route). Dependence-producing properties in humans have not been studied. The appearance of 4-FA in Europe has been observed since at least 2007. Over the years, it has been found in products sold as ‘ecstasy’/MDMA tablets, amphetamine powder but also as adulterants present in other illicit controlled substances.\(^{28, 29, 45, 88, 93-95}\) However, 4-FA is also available in its own right, either from on-line or off-line retailers and specifically sought after.\(^{38, 96}\)

 Also see Annex 1: Report on WHO questionnaire for review of psychoactive substances.

14. **Nature and Magnitude of Public Health Problems Related to Misuse, Abuse and Dependence**
 Surveys that systematically assess the prevalence of 4-FA use within the general population are not available. Research carried out in the Netherlands suggest that 4-FA, which originally appeared as one of many new psychoactive substances (NPS) (e.g. as an adulterant or as an alternative to reduced availability of substances such as MDMA) has established itself as a substance of choice in a subpopulation of recreational substance users, especially those who might prefer using this substance in a social context.\(^{29, 38, 88}\) In The Netherlands, 4-FA has become increasingly popular amongst users of new psychoactive substances who are associated with participation at music festivals and clubs, which led to increased numbers of incidents with adverse effects and high toxicity, thus, potentially leading to an in increased risk to public health.\(^{38}\) Further studies are indicated to investigate the prevalence of use in other countries. Some detections of 4-FA in biofluids related to roadside testing have been described (Table 3). Dependence-producing properties in humans have not been studied.
Also see Annex 1: Report on WHO questionnaire for review of psychoactive substances.

15. **Licit Production, Consumption and International Trade**

 No data available.

16. **Illicit Manufacture and Traffic and Related Information**

 Information provided to Europol and EMCDDA by European Member States, Turkey and Norway is summarized in Table 6.

 ![Table 6](image)

 Information provided to EMCDDA

 Seizures 2008:

 - Belgium – 2 seizures of powder.
 - Denmark – 2 seizures; 1 sample seized (4 g) containing 1% amphetamine.
 - Netherlands – 4 collected samples of powder; 1 collected sample of capsule; 1 collected sample of liquid; 3 seizures totaling 212 g of powder and 1 seizure of liquid containing also 2C-B and BZP.

 Seizures 2009 (January – June) plus update from 9th Annual EWS meeting, 4-5 June 2009, Lisbon (A. Gallegos and R. Sedefov):

 - Austria – 2 seizures of powder totaling 707 g and 4 collected samples of powder.
 - Belgium – 6 seizures of 33.9 g powder; 1 seizure of 49.79 g of paste/sticky powder and 1 seizure of tablets.
 - Croatia: 4 seizure of white powder also containing amphetamine traces, caffeine, mannitol and creatine.
 - Denmark – 5 seizures; one seizure of 4 g white powder that also contained 1% amphetamine.
 - Estonia – 1 seizure of 0.32 g powder.
 - Finland – 1 seizure of 12 tablets (Forensic Laboratory) and 2 seizures of powder/capsule, 5g/3units (Customs)
 - France – 8 seizures of powder, 3115 g
 - Germany – seizure between November 2008 and June 2009: in one case, 60 kg of amphetamine were seized, 14 of which were a mixture of amphetamine and 4-FA; two seizures of a ‘few grams’ of powder and one seizure of 1 kg.
 - Hungary – 2 seizures of powder, 2.5 g (powder in 36 capsules); 1 collected sample of 638.2 g powder; 4 seizures of 211 tablets (from 2008), one seizure of 700 g homogenous powder.
 - Netherlands – From DIMS: 60 collected samples of powder, 6 collected samples of tablets and 1 collected sample of liquid from NFI: 1 seizure of powder > 340 kg; 98 seizures of powder, > 100 kg, 98 seizures of powder > 100 kg in combination with amphetamine.
 - Slovakia – 1 seizure of 16 mg powder.
 - Sweden – 105 seizures of 6174 g powder; 7 seizures of 21 mL liquid; 24 biological samples of urine; 71 biological samples of blood and 57 seizures of 1460.4 g powder.
 - United Kingdom – 2 seizures of 0.9 mL liquid; 102 seizures (93 kg powder); 4 seizures (6.67 kg powder); 6 seizures of paste (6.355 kg); 1 seizure of 300 g powder; 1 seizure of 7.627 kg paste containing also amphetamine. UK National Focal Point also reported a seizure of 371 mg of a pale pink powder in Guernsey.

 Seizures 2010:

 - Belgium – 1 seizure of 112.5 tablets containing also caffeine and piperonal; 1 seizure of 3.18 g powder containing also caffeine and amphetamine; 3 biological samples of urine.
 - Denmark – 13 seizures.
Finland – 3 seizures of 5g powder; 1 biological sample of blood; 13 seizures of 46 g powder and 1 seizure of 2 tablets (last two, both reported as 3-FA or 4-FA).

France – 4 seizures of 340 g liquid; 7 seizures of tablets.

Hungary – 10 seizures of 35 g powder and 7 seizures of 14 tablets (reported as fluoramphetamine).

Netherlands – 13 seizures: 2775 tablets and 65 g powder (from NFI).

Norway – 8 seizures of 106 g powder.

Poland – 1 seizure of 10 capsules; 1 seizure of 550 tablets containing piperonal and caffeine.

Slovenia – 5 seizures of 9.21 g white powder, most of the samples containing caffeine.

United Kingdom – From a variety of forensic providers. Key Forensics: 3 seizures of powder, 157.7 g; 1 seizure of powder, 23.5 g in an amphetamine sample. From LGC Forensics: 6 seizures of powder, 136.3 g; 13 seizures of powder, 520 g. From FSNI: 1 seizure of 16.76 g powder containing traces of mephedrone; 1 seizure of 102 g white powder. From FSSNI: 6 seizures of powder, 136.3 g; 13 seizures of powder, 520 g.

From FSNI: 1 seizure of 16.76 g powder containing traces of mephedrone; 1 seizure of 102 g white powder.

From FSSNI: 3 seizures of liquid, 1.6 mL; 152 seizures of powder, 46.4 kg; 1 seizure of 5 tablets. From Scotland: 9 seizures of powder, 529.5 g. From Key Scientifics: 3 seizures of powder, 14.46 g; 1 seizure of 2 tablets, 0.46 g; 3 seizures of powder, 5.73 g.

Seizures 2011:

- Austria – 1 seizure of 9.4 g of powder.
- Bulgaria – 3 seizures of 5.60 g of powder
- Denmark – 5 (19)* seizures of 442.2 g of powder (*The number in brackets is the total number of individual exhibits in all seizures).
- Finland – 38 seizures of 198 g of powder; 4 seizures of 20 tablets/blotters; 7 seizures of 82 g of powder; 2 biological samples of blood (all reported as 2-, 3- or 4-FA).
- France – 17 seizures of tablets.
- Hungary – 18 seizures of 15 g of powder, 60 seizures of 3235 tablets; 27 seizures of 26 g powder also containing amphetamine; 1 seizure of 3 tablets also containing 2C-D; 462 biological samples.
- Italy – 1 seizure of 1.18 g of tablets; 2 seizures of powder (one seizure also contained MDPV, 4-MEC, lidocaine or procaine and the other also contained mephedrone and MDPV, lidocaine and propanamide were also identified).
- Netherlands – 7 seizures of 279 tablets and 16 g powder (from NFI); 61 collected samples of powder (from DIMS); 9 collected samples of tablets (from DIMS); 3 collected samples of liquid (from DIMS); 1 collected sample of capsules (from DIMS).
- Norway – 3 seizures of 517 g of powder.
- Spain – 1 seizure of powder.
- United Kingdom – From FSNI: 1 seizure of 2.05g of powder; from FSS: 13 seizures of 400.1 g powder.

Seizures 2012:

- Austria – 1 seized powder sample.
- Belgium – 1 kg white powder seized by customs at airport, package sent from China.
- Denmark – 3 cases of seized powder, 9.5 g.
- Spain – Seizure of 7760 tablets and 15 tablets where 4-FA was present in combination with other substances; seizure of 210 g powder.
- Finland – Customs seizures of 243.8 g powder (53 cases), 18 tablets/blotter and 28.8 g ‘other’. Police seizure of 28 g powder and 10 cases of biological analyses with positive identification. Note: not clear what positional isomer might have been identified.
- France – seizures of tablets (5 cases) and two liquids (customs); police seizure of 100 tablets.
- Hungary – seizures of 421 tablets (13 cases), 2 g powder (2 cases); presence of additional substances: 7 g of powder (4-FA + amphetamine, 4 cases), 38 g of powder (4-FA + MDPV, 1 case), 33 tablets (4-FA + methoxetamine, 1 case), 30 tablets (4-FA + 4-MEC + methylone, 1 case); 43 samples of biological origin tested positive for 4-FA but details not reported.
- Netherlands – seizure of 1060.2 g (27 cases), 7 tablets and 11 tablets (4-FA + PMMA + 3,4-dimethoxymethamphetamine).
- Norway – seizure of materials in three cases and positive identification in one biofluids sample.
- Poland: 1 g powder and 2.99 g powder also containing amphetamine and caffeine.
• Slovakia – seizure of 367 g powder (see also Reitox National Focal Point Slovakia, below).
• Slovenia – 1 powdered sample (1.3 g).
• United Kingdom – Seizures of 1010 g powder (18 cases), 1488.57 mL liquid (3 cases), 1 tablet and 1 ‘other’ (6.34 g).

Seizures 2013:

• Denmark – 2 cases of collected powder (1.9 g)
• Finland – Powder (141.6 g, 34 cases); positional isomer not specified.
• France – seizure of tablets (6378 g, 37 cases), liquid (9312 g, 40 cases), and 97 g powder (8 cases).
• Greece – seizure of 2.4 g powder
• Italy – seizure of 1.69 g powder containing 4-FA + 4-MEC + methedrone (bk-PMMA) + methylone + 5-MeO-MIPT + 5-MeO-DALT.
• Latvia – seizure of 49.42 g powder
• Poland – seizure of 796.66 g powder (64 cases)
• Spain – 50 g powder (12 cases) and 11 g powder (18 cases) containing additional substances.

Information provided to Europol
Seizures 2009 (January – June) plus update from 9th Annual EWS meeting, 4-5 June 2009, Lisbon (A. Gallegos and R. Sedefov) and newsletter related to Europol’s SYNERGY project

• Sweden: Two seizures of 700 g and 340 g.
• Netherlands: found at two illegal amphetamine laboratories.
• From SYNERGY newsletter: ‘A total of 19 member states had replied to Europol’s request for information, with four member states (Finland, Germany, the Netherlands and the United Kingdom) reporting seizures of the substance, both in powder and tablet form. Additionally, insofar not yet officially provided, the Slovak Republic has also forensically identified this substance amongst submitted seizures. Equally, reports submitted to the EMCDDA from the NFP’s reveal that seizures of this substance have taken place in Belgium, Croatia, Denmark, Estonia, France and Hungary.’

‘In fact, the Dutch National Crime Squad reported that this substance was increasingly emerging on the national users market. Also, two production sites had been dismantled, with one in January 2009 where both this substance and its precursor chemical were seized; the other took place in February 2009, where traces of both this substance and amphetamine were found. Besides, one additional seizure totalling 169 kg of the substance was made in January 2009.’

Reitox National Focal Point Slovakia

• Rented premises were used for 4-FA manufacturing, packing and distribution. Mixing equipment and facilities for pills processing were encountered, including 367 g powdered 4-FA.

*a Some of the data reported to Europol and EMCDDA may overlap. Data were drawn from bi-annual data gathering (EU EWS progress and final reports) and from individual Reporting forms submitted on an ad hoc basis to EMCDDA. Positive identifications of 4-FA in various biofluids have also been reported but further details are not available.

17. Current International Controls and Their Impact
4-FA is not controlled under the 1961, 1971 or 1988 United Nations Conventions.

18. Current and Past National Controls
The EMCDDA’s European database on new drugs (EDND) lists that the following countries have taken legislative measures to control 4-FA: Belgium, Czech Republic, Denmark,
Finland, France, Germany, Hungary, Italy, Latvia, Lithuania, Norway, Poland, Portugal, Slovakia, Slovenia, Sweden, Turkey, United Kingdom. 4-FA is not a controlled Substance in Greece. Confirmation from all Reitox European National Focal Points, however, might be needed to obtain an update. Also see Annex 1: Report on WHO questionnaire for review of psychoactive substances.

19. **Other Medical and Scientific Matters Relevant for a Recommendation on the Scheduling of the Substance**

Not applicable.
References

32. Tripsit Factsheet. 4-FA. Available at: http://drugs.tripsit.me/4-FA.

33. Erowid Experience Reports. 4-Fluoroamphetamine Reports. Available at: https://erowid.org/experiences/subs/exp_4Fluoroamphetamine.shtml.

Please refer to separate Annex 1 document published on ECDD website
Annex 2: Studies associated with the detection and chemical analysis of 4-fluoroamphetamine (amongst other substances) published in the scientific literature.

<table>
<thead>
<tr>
<th>Techniques a</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal methods</td>
<td>Characterization of 4-FA HCl polymorphism.</td>
<td>Marthi et al.¹</td>
</tr>
<tr>
<td>¹H-NMR</td>
<td>Characterizations of compound including use chiral Eu-shift reagents.</td>
<td>Podányi²</td>
</tr>
<tr>
<td>XRD</td>
<td>Characterization of crystal structure properties of compound.</td>
<td>Simon et al.³</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Metabolism study in rats following administration of para-fluoro-deprenyl.</td>
<td>Lajtha et al.⁴</td>
</tr>
<tr>
<td>GC-MS, IR, NMR</td>
<td>Characterization of seized compounds.</td>
<td>Rösner et al.⁵</td>
</tr>
<tr>
<td>GC-MS, LC, LC-MS</td>
<td>Characterization of collected compounds.</td>
<td>Kikura-Hanajiri et al.⁶</td>
</tr>
<tr>
<td>LC-FL, LC-TOF-MS</td>
<td>Characterization of collected compounds.</td>
<td>Min et al.⁷,⁸</td>
</tr>
<tr>
<td>GC-MS, LC-DAD</td>
<td>Characterization of collected compounds.</td>
<td>Takahashi et al.⁹</td>
</tr>
<tr>
<td>GC-(EI/Cl)-MS/(MS)</td>
<td>Characterization of seized compounds.</td>
<td>Westphal et al.¹⁰</td>
</tr>
<tr>
<td>LC-FL, LC-ESI-TOF-MS</td>
<td>Characterization of collected compounds.</td>
<td>Inagaki et al.¹¹</td>
</tr>
<tr>
<td>PS-MS, CE-MS, CZE-UV</td>
<td>Method development.</td>
<td>Jhang et al.¹²</td>
</tr>
<tr>
<td>LC-TOF-MS</td>
<td>Detection in whole blood samples related to casework.</td>
<td>Johansen and Hansen¹³</td>
</tr>
<tr>
<td>Various approaches to ionization and MS</td>
<td>Method development.</td>
<td>Lee et al.¹⁴</td>
</tr>
<tr>
<td>¹H-NMR and UV</td>
<td>4-FA obtained from synthesis.</td>
<td>Lichtenberger.¹⁵</td>
</tr>
<tr>
<td>Immunoassays</td>
<td>Employment of chiral derivatization reagent.</td>
<td>Mohr et al.¹⁶</td>
</tr>
<tr>
<td>GC-MS, LC-Q-TOF-MS, NMR</td>
<td>Characterization of seized compounds.</td>
<td>Reitzel et al.¹⁸</td>
</tr>
<tr>
<td>Immunoanalysis, GC-MS</td>
<td>Detection biofluids.</td>
<td>Röhrich et al.¹⁹</td>
</tr>
<tr>
<td>LC-Q-trap-MS/MS</td>
<td>Detection in hair samples.</td>
<td>Rust et al.²⁰</td>
</tr>
<tr>
<td>LC-TOF-MS</td>
<td>Characterization of collected compounds.</td>
<td>Shanks et al.²¹</td>
</tr>
<tr>
<td>UHPLC-QqQ-MS/MS</td>
<td>Detection in oral fluid.</td>
<td>Strano-Rossi et al.²²</td>
</tr>
<tr>
<td>PTR-MS</td>
<td>Method development.</td>
<td>Sulzer et al.²³</td>
</tr>
<tr>
<td>LC-QqQ-MS/MS</td>
<td>Detection in authentic urine samples.</td>
<td>Al-Saffar et al.²⁴</td>
</tr>
<tr>
<td>CE-LIF, CE-UV, MEKC-UV</td>
<td>Method development for saliva analysis.</td>
<td>Chen et al.²⁵</td>
</tr>
<tr>
<td>LC-QqQ-MS/MS</td>
<td>Analyses of biofluids.</td>
<td>Helander et al.²⁶</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Method development and application to waste water analysis.</td>
<td>Mwenesongole et al.²⁷</td>
</tr>
<tr>
<td>GC-MS, LC-MS, NMR</td>
<td>Synthesis and characterization of regioisomers.</td>
<td>Nakazono et al.²⁸</td>
</tr>
<tr>
<td>LC-Q-TOF-MS</td>
<td>Method development in whole blood and application to casework.</td>
<td>Pedersen et al.²⁹</td>
</tr>
<tr>
<td>Immunoanalysis</td>
<td>Cross-reactivity studies.</td>
<td>Petrie et al.³⁰</td>
</tr>
<tr>
<td>Method development</td>
<td>Method description</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Colour spot test</td>
<td>Method development using a spectrophotometric reagent.</td>
<td>Philp et al.(^{31})</td>
</tr>
<tr>
<td>LC-TOF-MS</td>
<td>Method development and application to postmortem blood samples.</td>
<td>Roman et al.(^{32})</td>
</tr>
<tr>
<td>UPLC-QqQ-MS, LC-Q-TOF-MS</td>
<td>Method development in blood matrix for application to casework.</td>
<td>Rosano et al.(^{33})</td>
</tr>
<tr>
<td>LC-DAD, LC-Q-MS</td>
<td>Method development and application to collected samples combined with \textit{in vitro} pharmacology assays.</td>
<td>Rosenauer et al.(^{34})</td>
</tr>
<tr>
<td>Melting point, (^1)H-NMR, GC-MS, ATR-FTIR</td>
<td>Characterization of reference material.</td>
<td>SWGDRUG(^{35})</td>
</tr>
<tr>
<td>GC-MS, LC-DAD, LC-Q-TOF-MS, NMR</td>
<td>Detection of seized compounds.</td>
<td>Zuba et al.(^{36})</td>
</tr>
<tr>
<td>HS-SRI-TOF-MS</td>
<td>Method development.</td>
<td>Acton et al.(^{37})</td>
</tr>
<tr>
<td>LC-Q-TOF-MS/MS, LC-Q-ion trap-MS/MS</td>
<td>Detection in serum and urine.</td>
<td>Al-Abri et al.(^{38})</td>
</tr>
<tr>
<td>LC-UV</td>
<td>Biocatalytic synthesis of chiral species.</td>
<td>Au et al.(^{39})</td>
</tr>
<tr>
<td>LC-DAD</td>
<td>Method development for chiral separation.</td>
<td>Geryk et al.(^{40})</td>
</tr>
<tr>
<td>TLC, GC-MS</td>
<td>Analysis of submitted samples to drug checking service.</td>
<td>Giné et al.(^{41})</td>
</tr>
<tr>
<td>GC-FID, NMR</td>
<td>Biocatalytic synthesis of chiral species.</td>
<td>Green et al.(^{42})</td>
</tr>
<tr>
<td>Immunoanalysis, GC-MS</td>
<td>Method development and chemical derivatizations.</td>
<td>Holler et al.(^{43})</td>
</tr>
<tr>
<td>LC-Q-TOF-MS</td>
<td>Method development for urine analysis.</td>
<td>Paul et al.(^{44})</td>
</tr>
<tr>
<td>LC-QqQ-MS/MS</td>
<td>Method development for hair analysis and application to authentic specimens.</td>
<td>Strano-Rossi et al.(^{45})</td>
</tr>
<tr>
<td>LC-QqQ-MS/MS</td>
<td>Method development for urine analysis and application to authentic specimens.</td>
<td>Tang et al.(^{46})</td>
</tr>
<tr>
<td>LC-UV</td>
<td>Chiral analysis of products obtained from Internet retailers.</td>
<td>Taschwer et al.(^{47})</td>
</tr>
<tr>
<td>LC-DAD</td>
<td>Method development for chiral separation.</td>
<td>Geryk et al.(^{48})</td>
</tr>
<tr>
<td>TLC, GC-NPD, GC-MS</td>
<td>Identification of submitted samples.</td>
<td>Hondebrink et al.(^{49})</td>
</tr>
<tr>
<td>LC-DAD</td>
<td>Method development for chiral separation.</td>
<td>Kalíková et al.(^{50})</td>
</tr>
<tr>
<td>EMIT, LC-QqQ-MS/MS</td>
<td>Detection in serum and urine.</td>
<td>Laskowski et al.(^{51})</td>
</tr>
<tr>
<td>GC-MS, LC-QqQ-MS/MS</td>
<td>Detection in serum.</td>
<td>Maas et al.(^{52})</td>
</tr>
<tr>
<td>GC-FID</td>
<td>Biocatalytic synthesis of chiral species.</td>
<td>Mutti et al.(^{53})</td>
</tr>
<tr>
<td>LC-QqQ-MS/MS</td>
<td>Method development in whole blood.</td>
<td>Odoardi et al.(^{54})</td>
</tr>
<tr>
<td>LC-QqQ-MS/MS</td>
<td>Method development for wastewater and river water analysis.</td>
<td>Senta et al.(^{55})</td>
</tr>
<tr>
<td>LC-QqQ-MS/MS</td>
<td>Method development for blood analysis.</td>
<td>Adamowicz et al.(^{56})</td>
</tr>
<tr>
<td>LC, SFC, CEC,</td>
<td>Method development for chiral separation.</td>
<td>Albals et al.(^{57})</td>
</tr>
<tr>
<td>Raman</td>
<td>Differentiation between regioisomers.</td>
<td>Chen et al.(^{58})</td>
</tr>
<tr>
<td>Presumptive colour tests</td>
<td>Use of commercially available reagents.</td>
<td>Cuypers et al.(^{59})</td>
</tr>
<tr>
<td>SFC</td>
<td>Method development for chiral separation.</td>
<td>Geryk et al.(^{60})</td>
</tr>
<tr>
<td>GC-FID</td>
<td>Biocatalytic synthesis of chiral species.</td>
<td>Gomm et al.(^{61})</td>
</tr>
<tr>
<td>LC-Q-TOF-MS</td>
<td>Detection in pooled urine sample.</td>
<td>Kinyua et al.(^{62})</td>
</tr>
<tr>
<td>GC-MS, NMR</td>
<td>Analysis of seized material.</td>
<td>Ladrouce et al.(^{63})</td>
</tr>
<tr>
<td>GC-FID</td>
<td>Biocatalytic synthesis of chiral species.</td>
<td>Martínez-Montero et al.(^{64})</td>
</tr>
<tr>
<td>GC-MS, LC-Orbitrap-MS</td>
<td>Detection in seized samples.</td>
<td>Odoardi et al.(^{65})</td>
</tr>
<tr>
<td>Method</td>
<td>Description</td>
<td>Authors</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>LC-MS/MS</td>
<td>Detection in hair.</td>
<td>Palamar et al.66</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Detection in biofluids.</td>
<td>Poklis et al.67</td>
</tr>
<tr>
<td>LC-MS/MS</td>
<td>Detection in hair.</td>
<td>Salomone et al.68</td>
</tr>
<tr>
<td>LC-TOF-MS</td>
<td>Application to analyses of authentic urine samples.</td>
<td>Sundström et al.69 and Heikman et al.70</td>
</tr>
<tr>
<td>LC-QqQ-MS/MS</td>
<td>Method development for blood analysis.</td>
<td>Vaiano et al.71</td>
</tr>
<tr>
<td>LC-TOF-MS</td>
<td>Method development for blood analysis.</td>
<td>Woldegebriel et al.72</td>
</tr>
<tr>
<td>GC-MS, LC-DAD</td>
<td>Analysis of submitted samples to drug checking service.</td>
<td>Brunt et al.73</td>
</tr>
<tr>
<td>LC-Q-TOF-MS, LC-Orbitrap-MS</td>
<td>Analysis of wastewater samples.</td>
<td>Causanilles et al.74</td>
</tr>
<tr>
<td>Not reported</td>
<td>Detection in biofluids.</td>
<td>Nugteren-Van Lonkhuyzen et al.75</td>
</tr>
<tr>
<td>LC-Orbitrap-MS</td>
<td>Method development for hair analysis.</td>
<td>Odoardi et al.76</td>
</tr>
<tr>
<td>GC-FID</td>
<td>Biocatalytic synthesis of chiral species.</td>
<td>Pushpanath et al.77</td>
</tr>
<tr>
<td>SFC, Q-TOF-MS, UV</td>
<td>Differentiation between regioisomers.</td>
<td>Segawa et al.78</td>
</tr>
<tr>
<td>LC-UV</td>
<td>Method development for chiral separation.</td>
<td>Taschner et al.79</td>
</tr>
<tr>
<td>PALME, LC-MS</td>
<td>Method development for plasma and blood analysis.</td>
<td>Värdal et al.80</td>
</tr>
<tr>
<td>GC-MS, LC-UV</td>
<td>Differentiation between regioisomers.</td>
<td>Weiß et al.81</td>
</tr>
<tr>
<td>Immunoanalysis, LC-MS (various)</td>
<td>Blood and oral fluid analysis of Belgian driving under the influence of drugs population.</td>
<td>Wille et al.82</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Detection in urine sample.</td>
<td>Wolf et al.83</td>
</tr>
</tbody>
</table>

a XRD: X-ray diffraction; GC: gas chromatography; MS: mass spectrometry; IR: infrared; NMR: nuclear magnetic resonance spectroscopy; LC: liquid chromatography (various forms); FL: fluorescence; TOF: time-of-flight; EI: electron ionization; CI: chemical ionization; DAD: diode array detector; ESI: electrospray ionization; PS: paper spray; CE: capillary electrophoresis; CZE: capillary zone electrophoresis; Q: quadrupole; QqQ: triple quadrupole; PTR: proton-transfer-reaction; LIF: laser induced fluorescence; MEKC: micellar electrokinetic capillary chromatography; IT: linear ion trap; HS: head space; SRI: selective reagent ionization; TLC: thin-layer chromatography; NPD: nitrogen-phosphorus detector; EMIT: enzyme multiplied immunoassay technique; FID: flame ionization detector; SFC: supercritical fluid chromatography; CEC: capillary electrochromatography; PALME: Parallel artificial liquid membrane extraction.

References

35. SWGDRUG. 4-Fluoroamphetamine Monograph. Latest revision 14 June 2013. Available at: http://www.swgdrug.org/Monographs/4-FA.pdf.

