Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

Galaxy metallicity scaling relations in the EAGLE simulations

De Rossi, ME and Bower, RG and Font, AS and Schaye, J and Theuns, T (2017) Galaxy metallicity scaling relations in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 472 (3). pp. 3345-3377. ISSN 0035-8711

[img]
Preview
Text
Galaxy metallicity scaling relations in the EAGLE simulations.pdf - Published Version

Download (3MB) | Preview

Abstract

We quantify the correlations between gas-phase and stellar metallicities and global properties of galaxies, such as stellar mass, halo mass, age and gas fraction, in the Evolution and Assembly of GaLaxies and their Environments suite of cosmological hydrodynamical simulations. The slope of the correlation between stellar mass and metallicity of star-forming (SF) gas (M*–ZSF,gas relation) depends somewhat on resolution, with the higher resolution run reproducing a steeper slope. This simulation predicts a non-zero metallicity evolution, increasing by ≈0.5 dex at ∼109 M⊙ since z = 3. The simulated relation between stellar mass, metallicity and star formation rate at z ≲ 5 agrees remarkably well with the observed fundamental metallicity relation. At M* ≲ 1010.3 M⊙ and fixed stellar mass, higher metallicities are associated with lower specific star formation rates, lower gas fractions and older stellar populations. On the other hand, at higher M*, there is a hint of an inversion of the dependence of metallicity on these parameters. The fundamental parameter that best correlates with the metal content, in the simulations, is the gas fraction. The simulated gas fraction–metallicity relation exhibits small scatter and does not evolve significantly since z = 3. In order to better understand the origin of these correlations, we analyse a set of lower resolution simulations in which feedback parameters are varied. We find that the slope of the simulated M*–ZSF,gas relation is mostly determined by stellar feedback at low stellar masses (M* ≲ 1010 M⊙), and at high masses (M* ≳ 1010 M⊙) by the feedback from active galactic nuclei.

Item Type: Article
Additional Information: This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Uncontrolled Keywords: 0201 Astronomical And Space Sciences
Subjects: Q Science > QB Astronomy
Q Science > QC Physics
Divisions: Astrophysics Research Institute
Publisher: Oxford University Press
Date Deposited: 30 Oct 2017 10:12
Last Modified: 30 Oct 2017 10:12
DOI or Identification number: 10.1093/mnras/stx2158
URI: http://researchonline.ljmu.ac.uk/id/eprint/7432

Actions (login required)

View Item View Item