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Abstract— This paper presents an indirect rotor-field oriented 

control (IRFOC) algorithm for symmetrical six-phase double-

winding induction machines with four three-phase sub-winding 

sets. The presented algorithm introduces the ability to control the 

power flow between different sub-winding sets. Multiple three-

phase induction machines are utilised for critical applications such 

as more-electric aircrafts, due to their high reliability and fault 

tolerant capabilities. In this paper, the proposed control scheme is 

utilising the auxiliary currents of each six-phase sub-motor to 

achieve full control of the sub-winding sets current amplitudes and 

consequently the power flow direction for each sub-winding set. A 

six-phase induction machine with double winding is utilised to 

validate the proposed control scheme. Four isolated voltage source 

inverters (VSIs) are used to supply each winding set of the 

machine. The double-winding six-phase induction machine 

controlled by the proposed IRFOC algorithm is simulated using 

Matlab/Simulink. Presented simulation results validate the ability 

of the algorithm to appropriately control the power flow of each 

sub-winding set. 

Keywords — IRFOC; Multidirectional Power Flow; Multiphase 

Induction Machines; Multiple Three-Phase Machine. 

I. INTRODUCTION 

Recently, multiphase machines with multiple three-phase 
sub-winding sets started attracting attention of the researchers 
from the renewable energy area (especially wind energy 
generation). This is due to the possibility to apply well-
established three-phase power conversion technology to each of 
the sub-winding sets [1, 2]. Moreover, these machines are 
employed in industrial applications where high level of 
reliability and fault tolerant capability is compulsory, such as 
more-electric aircrafts [3-5]. In these applications, the fault 
tolerance is the main concern. Thus, by increasing the number 
of phases of the induction machine and having multiple voltage 
source inverters (VSIs) supplying the machine, fault tolerant 
capability of the more-electric aircraft increases [3]. 

One of the recognizable advantages of utilising the 
multiphase machines is the ability to split the load power among 
multiple VSI’s legs. Additionally, multiphase machines have 
more degrees of freedom compared to their three-phase 
counterparts, which are commonly used for fault tolerant 
applications [3, 6]. Several post-fault strategies have been 
introduced in the literature relating to a fault occurring in one or 
more phases of the multiphase machine or in the switches of the 
VSI [3, 4, 7]. These strategies are commonly using the auxiliary 
currents to achieve post-fault operation. 

As already mentioned, there are several practical 
applications of the multiple three-phase induction machines 
such as, more-electric aircrafts [3-5] and electrical vehicles 
(EVs) [8-11]. In the latter application, the electrical power 
generation and distribution systems are expected to raise from 
the conventional low dc voltage to a higher dc voltage level in 
the near future. This will reduce the system losses and size as 
well [12]. Furthermore, new starter-alternator topologies with 
different number of turns per winding set are introduced in [12]. 
The motivation being to accommodate multiple dc voltage 
levels (dc-bus voltage level of the corresponding VSIs), present 
in such system. The introduced starter-alternator is a multiple-
winding three-phase induction machine, where each three-
phase winding represents a sub-motor. The authors used a 
multiple vector control scheme in order to achieve 
multidirectional power flow between the multiple three-phase 
sub-motors. Obviously, multiple three-phase machines can also 
be categorised as a type of multiphase machines. However, 
multiple vector control is not the best approach to control 
multiphase machines. A more popular control method for 
multiphase machines is based on VSD (vector space 
decomposition) approach. 

High-performance ac electric drives require decoupled 
control of the flux and torque in a similar way as it is inherently 
present in the separately excited dc machines [13]. Therefore, 
in order to apply a fully decoupled control, it is essential to 
convert the ac machine model into its dc machine equivalent. 
One variant of this control scheme is indirect rotor-field 
oriented control (IRFOC), where two fictitious currents allow 
separate control of the torque and flux of the ac machine [13]. 
However, due to the non-ideal characteristics of the multiphase 
machines and power electronics converters in practice, e.g. the 
dead-time effect and asymmetries of the windings, controlling 
only the flux and torque producing plane with IRFOC, is not 
sufficient. Therefore, the other, losses producing planes, should 
be controlled as well [1, 2, 14, 15]. 

The aim of this paper is to develop an IRFOC algorithm for 
a six-phase induction machine with double-windings. The 
scheme uses the additional degrees of freedom offered by the 
six-phase machine to control the currents’ amplitude and power 
flow direction of each three-phase sub-winding set. 

The paper is organised as follows. Section two gives the 
mathematical model of the double-winding six-phase induction 
machine necessary to design the control system. Next, the 
proposed IRFOC control scheme with the additional ability to 
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Fig. 1. Spatial position of the symmetrical six-phase double-winding induction 

motor stator magnetic axes. 

control the power flow among the sub-winding sets is derived. 
In section four, the simulation results of the proposed control 
strategy are presented. Finally, the concluding remarks are 
stated in section five. 

II. DOUBLE-WINDING SIX-PHASE INDUCTION MACHINE MODEL 

Simplified structure of the double-winding symmetrical six-
phase induction machine, illustrating the stator’s magnetic axes, 
is shown in Fig. 1. Mathematical model of this machine can be 
considered as a twelve-phase machine in phase variable form, 
but also as a summation of dynamic equations of the two 
separate six-phase induction sub-motors. This fact makes it 
possible to simplify control, and is used to control this twelve 
phase machine as two six-phase sub-motors, as demonstrated in 
the next section. Also, in order to simplify the equations, the 
model of the double-winding six-phase induction motor is 
derived here as a combination of two separate six-phase sub-
motors sharing the same rotor. Stator and rotor voltage 
equilibrium equations, for each six-phase sub-motor, can be 
defined as: 
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In (1), [vsk] = [vsak vsbk vsck vsdk vsek vsfk]T, [isk] = [isak isbk isck isdk isek 
isfk]T, [ψsk] = [ψsak ψsbk ψsck ψsdk ψsek ψsfk]T, represent stator phase 
voltages, currents and flux linkages, respectively. Index k is 
used to indicate sub-motor (k = I or II). Matrix [Rsk] represents 
stator resistance matrix, of each sub-motor. It is a diagonal 
matrix, where all elements on the main diagonal are equal to Rs 

due to the assumed machine’s symmetry. Equation (2) is of the 
same form as (1), but it is given for rotor variables, hence r in 
index instead of s. Note that division of rotor into two sub-
motors does not physically exist. For instance, if the rotor 
currents are taken as an example, [irI] and [irII] would represent 
the rotor currents produced by each sub-motor. 

The flux-linkage equations for each sub-motor are defined 
as follows: 

       rksrksksksk iLiL   (3) 
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T
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where [Lsk] and [Lrk] represent stator and rotor self-inductance 
matrices and [Lsrk] represents stator-to-rotor inductance, for k-th 
(k = I or II) sub-motor. These inductances are defined as (note 
that below it is assumed that the sub-motors are identical hence 
the index k is omitted): 
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(7) 
In (5)-(7), M represents the maximum value of the mutual 
inductance between the stator and rotor, while Lls and Llr 
represent the leakage inductance of the stator and rotor, 
respectively. In (7), angle θe denotes the electrical position of 
the rotor. Electrical position of the rotor can be determined from 
the rotor electrical speed, ωe, as: 

 tee d  (8) 

The electrical speed of the rotor is related to the mechanical 
rotor speed through the number of pole pairs P as, ωe=Pωm. 
Newton’s law for rotation is defined as: 
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where Te represents the electromagnetic torque, Tl is the load 
torque and J is the inertia of the machine. Finally, the 
electromagnetic torque Te can be calculated as: 
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where [is] represents the sum of [isI] and [isII], and [ir] represents 
the sum of [irI] and [irII]. In other words, Te can be calculated by 
summing the electrometric torque produced by each six-phase 
sub-motor. The same approach was applied in [12]. Hence, one 
can write: 
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Note that the parameters of the sub-motors are reliant on the 
turns ratio between the sub-motors [12]. However, as already 
mentioned, in this paper it is assumed that two sub-motors, that 
form the double-winding six-phase machine, are identical. 



In order to implement the IRFOC algorithm, it is essential 
to convert the ac machine model into its dc machine equivalent 
where the flux and torque are decoupled. The fictitious flux and 
torque producing variables can be obtained from the phase 
variables reference frame through Clarke’s decoupling 
transformation [7]. The Clarke’s transformation for a 
symmetrical six-phase machine with two isolated neutral 
points, is defined as: 
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Where α-β components are the flux and torque producing 
variables, while the x-y components are loss-producing 
components. Components in x-y are usually nullified in order to 
eliminate the dead-time effect or the other non-linear effects 
introduced by the power electronics conversion systems or the 
machine’s windings [2]. The major drawback of the decoupled 
model (after application of the Clarke’s transformation only) is 
presented in the time-dependent coefficients [7], and rotational 
(Park’s) transformation is commonly used to eliminate this 
problem. The rotational speed of the new introduced common 
reference frame may be assumed to be arbitrary, ωa. The 
instantaneous position of the d-axis with respect to the first 
stator winding, θs, is utilised to transfer the stator’s variables of 
the decoupled model into the rotational ones. The following 
matrix represents the rotational transformation matrix for the 
stator’s α-β components: 
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In (13) the angle θs, is defined as: 

 tas d  (14) 

The rotational transformation of (13) is implemented only on 
the α-β components since the stator-to-rotor coupling terms 
appear only in this plane. The ωa can be arbitrarily chosen and 
for the IRFOC algorithm it is chosen to be equal to the rotational 
speed of the rotor field [13]. With this choice, the following 
relations can be obtained: 
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where ϕr and ωr represent the rotor field instantaneous position 
and the speed of the rotating field of the rotor, respectively. 

III. CONTROL STRATEGY  

The IRFOC algorithm can be applied to six-phase induction 
machines utilising previous decoupling and rotational 
transformations. As already discussed, due to the special 
construction of the considered double-winding six-phase 
machine, the control can be implemented by applying IRFOC 
algorithm to each sub-motor individually [12]. Traditional 
IRFOC can be reconfigured to suit this specific application. 
This will yield to a double vector control scheme to control each 
sub-motor independently. Nevertheless, in order to ensure that 

the flux of both sub-motors rotates at the same frequency and 
direction, the d-axis current components of the two sub-motors 
must be synchronised (aligned). The total flux should be 
maintained constant and divided among sub-motors according 
to their corresponding nominal flux values. In general, this is 
determined by the turns ratio, but in this paper sub-motors are 
assumed to be identical. Furthermore, the q-components of the 
stator currents are proportional to the electromagnetic torque 
produced by each sub-motor and also must be synchronised. 

In IRFOC, in steady state, the q-component of the rotor flux-
linkage will be equal to zero. Based on this, the following 
equation can be found: 

0
d
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Thus, the reference electromagnetic torque and rotor-flux 
linkage (Te and ψr) can be related to the ids and iqs as follows: 

  qsrrme iLLPT   (17) 

  slrre RPT  2  (18) 

dsmr iL  (19) 

where Lm=6/2M, Lr=Llr+Lm and ωsl represents the slip speed of 
the induction motor, ωsl = (ωr − ωe). Based on (16) to (19), the 
IRFOC scheme for six-phase machine can be implemented as 
shown in Fig. 2. Since measuring the rotor-flux-linkage position 
ϕr is difficult, it is normally estimated using the measured speed 
and estimated parameters of the machine. Based on (15) one can 
write: 

   ttt sleslerr dd)(d **   (20) 

Asterisk is used to denote estimated value, ω*
sl. The value of ω*

sl 
in (20) can be determined based on (17) and (18): 

***
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where Tr represents the rotor time constant and it is equal to 
(Lr/Rr). Finally, by using (19), the slip speed can be expressed 
by using the d-q current components only, as: 
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where SG stands for the slip gain. For a six-phase induction 
machine with double sub-motors, the slip speed can be found 
by adding the influence of ids and iqs of the two sub-motors as: 
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Fig. 2. IRFOC scheme in the synchronous reference frame for six-phase 
induction machine. 



where Nsk indicates the number of turns in each sub-motor. As 
already mentioned, in this paper the simplest case where NsI = 
NsII is considered. The magnetizing inductance of the first sub-
motor LmI is equal to (6/2)·MI. 

In order to utilise the double six-phase machines in starter-
alternator applications, the IRFOC algorithm for each sub-
motor must share the same speed controller in order to ensure 
synchronisation of the rotating fields between the sub-motors. 
However, to obtain multidirectional power flow between them, 
the speed controller output (iqs) should be multiplied by a 
suitable factor to control the current direction of each sub-motor 
as shown in Fig. 3. Introduced values GI and GII are the power 
sharing gains of two sub-motors. This will allow the power 
sharing between the sub-motors. However, controlling the 
power flow direction for each sub-winding set, using these 
gains only, is not possible. Therefore, further modifications of 
the proposed IRFOC algorithm and introduction of current 
sharing coefficients for each sub-winding set are necessary, as 
explained further. 
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Fig. 3. Modified speed controller for six-phase induction machine with double 

winding. 

As stated before, controlling the d-q currents with IRFOC 
algorithm is not sufficient. Therefore, the other x-y currents 
(auxiliary currents) need to be controlled beside the d-q 
currents. This is common when controlling multiphase 
machines, and usually it is used to eliminate the non-ideal 
characteristics of the machine or the power electronics 
converter. Moreover, post-fault strategies utilise these currents 
to control the current’s amplitude of the winding sets during the 
post-fault condition. Post-fault control due to a fault of one or 
more VSIs can be achieved by changing the sharing coefficients 
of the three-phase winding sets [2-4, 16]. 

In order to control the auxiliary currents in multiple three-
phase machines, each three-phase sub-winding set can be 
considered as a three-phase machine. The spatial displacement 
between each consecutive sub-winding sets in symmetrical 
induction machines is equal to α=2π/6. Using the decoupling 
matrix for three-phase induction machines, the contribution of 
each sub-winding set into the decoupled sub-motor’s currents 
can be obtained. In order to get the decoupled currents of each 
sub-winding set, the original phase variables currents of each 
sub-winding set should be multiplied by the three-phase 
decoupling transformation matrix, taking into consideration the 
spatial displacement of each winding set. The decoupling 
matrix of the sub-winding sets can be expressed as: 
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where δ represents the spatial displacement of the sub-winding 
sets, with respect to the first sub-winding set. For symmetrical 
six-phase machine, δ is equal to zero for the first sub-winding 

set, and δ is equal to δ=α=2π/6 for the second sub-winding set. 
Therefore, (24) can be applied on each sub-winding set as (the 
equations are given for the first sub-motor k=I, only): 
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The results of calculation from (25) are combined together, 
defining [iph I] matrix, as: 
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By multiplying the sub-motor’s currents from ( 62 ) with the 
decoupling transformation matrix of the first sub-motor with 
double neutral points [C] from (12), the product will define how 
each sub-winding set contributes to the stationary reference 
frame’s currents [iClarke]. After calculation one gets: 
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From (27), one can see that the stationary currents of the first 
sub-motor (the same applies for the second sub-motor) consist 
of α and β components of the two sub-winding sets only. 

The six-phase sub-motors current space vectors can be 
defined as: 

xyj

xyyxxy

j

eIjiii

eIjiii











 (28) 

The sub-winding sets current space vectors can be defined as: 
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Now, based on (27) – (29), the sub-motor current space vectors 
can be expressed in terms of the sub-winding sets current space 
vectors, as: 
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Note that (30) represents the space vector form (complex 
notation) of the previously given relationships in (27). 



By introducing the current sharing coefficients K1, K2, K3 
and K4 the sub-winding sets current space vectors can be 
rewritten in terms of the α-β space vectors for each sub-motor. 
The following relationships can be obtained for the sub-motors: 
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where K1, K2, K3 and K4 represent the current sharing 
coefficients of the four sub-winding sets. Note that sub-winding 
sets of the second motor are denoted with indices 3 and 4 (𝑖�̅�𝛽3 

and 𝑖�̅�𝛽4). By substituting newly introduced current sharing 

coefficients of (31) into (30) the following relationships 
between the sub-motor α-β space vectors and sub-winding sets 
current space vectors can be obtained (note that the equations 
are given for the first sub-motor only, but the equivalent 
equations can be given for the second sub-motor): 
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From (32), the currents of the sub-winding sets can be 
controlled by changing the K coefficients. These equations are 

valid in the common reference frame. Unlike i , xyi  should 

be controlled in the anti-synchronous reference frame [2]. This 
will allow the control of the currents’ amplitude of the sub-
winding sets in each sub-motor and consequently the power 
flow direction of each individual set. However, the transfer of 
power from one sub-motor to another is not possible by using 
the current sharing coefficients only. Thus, the sub-motors’ 
power sharing coefficients (GI and GII) should be integrated 
with the current sharing coefficients of the sub-winding sets to 
obtain multidirectional power flow among the sub-winding sets 
of the double sub-motors. 

As obvious from (32), the summation of each sub-motor’s 
current sharing coefficients should always be equal to one 
(K1+K2=1 and K3+K4=1, for the set II). Also, the sub-motor 
power sharing coefficients (GI and GII) must always sum to one, 
in order to maintain the same speed and torque. Fig. 4 illustrates 
the IRFOC schematic for the double-winding six-phase drive. 

IV. SIMULATION RESULTS  

The proposed six-phase induction machine’s control 
strategy is validated using Matlab/Simulink. The parameters of 
the simulated six-phase induction machine are presented in 
Table 1. The simulation results are illustrated in Fig. 5. The 
double six-phase machine is modelled and simulated as a 
twelve-phase machine in terms of phase variables considering 
all flux linkages between windings and sub-windings. This is 
done because such a machine cannot be modelled in terms of d-
q variables due to the 12 × 12 matrix not being invertible. The 
leakage flux (i.e. inductance) between two six-phase windings 
was taken as zero. The proposed IRFOC strategy shown in Fig. 
4 is implemented. At first, the machine is started with Tl = 0 
until the machine settled at the reference speed of 500 rpm. 
Then, the machine was loaded with 4 Nm at time instant of 1.8 
sec. Through this period, the power sharing coefficients of the 
machine GI and GII are equal and both are 0.5. Next, the power 
flow control within each sub-motor is validated, this means that 
the power transfer from the first to the second sub-winding set 
of each sub-motor is performed by changing current sharing 
coefficients of the sub-winding sets (K1,2,3,4) as shown in Fig. 5 
from 2.0 to 2.5 sec. The current amplitude in each sub-winding 
can be seen to change proportionally with K. While the d-q 
currents of the sub-motors are constant through the period 2.0 
to 2.5 sec the auxiliary x-y currents can be seen to change 
accordingly. 

To validate the power transfer ability from the first to the 
second sub-motor and vice versa, the power sharing coefficients 
between the sub-motors GI and GII were changed to 1.5 and -0.5, 
respectively, during the period from 2.5 to 3.0 sec. During this 
period, the second sub-motor has changed its power flow 
direction at 2.5 sec. This can be noticed from the q-axis currents 
for the sub-motors (iqI and iqII) shown in Fig. 5. While the first 
sub-motor works in motoring mode, the other one is working in 
generation mode. This can be utilised in directing the power to 
a specific storage unit depending on it is state of charge (SOC). 

Moreover, the proposed IRFOC algorithm is valid to control 
the double sub-motors machines during post-fault operating 
condition. It can be noticed that the proposed scheme 
maintained a constant speed and torque. However, an upper 
limit of the sub-winding sets’ currents should be set, to ensure 
that the currents do not exceed the rated current of the winding 
insulation or the rated current of the power electronics 
conversion systems.
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Fig. 4. IRFOC schematic for the double-winding six-phase induction machine. 



Table 1. Six-phase sub-motor parameters. 

Prated 1.1 kW P 3 (pair) 
fswitching 10 kHz Rr, total 1.8 Ω 
Lls I, II 8.1 mH Rs I, II 3.6 Ω 
Llr, total 11.5 mH M I, II 68.33 mH 
VDC 400 VDC Lm I, II 205 mH 

K1=0.5 0.75 0.25 1.51 0 0 -0.5 0.5

K2=0.5 0.25 0.75 -0.50 1 1 1.5 0.5

K3=0.5 0.25 0.75 -0.50 1 1 1.5 1.5 0.5

GI =GII = 0.5 GI =1.5, GII = -0.5
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Fig. 5. Simulation results for the proposed IRFOC algorithm with 

multidirectional power flow. 

V. CONCLUSION  

In this paper, a novel IRFOC algorithm is developed for the 
six-phase induction machine with double layers of winding with 
the ability to control the power flow direction. The control 
scheme is utilising the auxiliary currents of the six-phase 
machine to control the power flow direction and amount of each 
sub-winding set. The proposed scheme is validated through 
Matlab/Simulink with different operating scenarios. The results 

illustrate the control scheme capability to control the power 
flow direction and amount within each sub-motor or from one 
sub-motor to another. Furthermore, the control scheme can be 
utilised to operate during the post-fault operation condition. 
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