Zhao, C, Yang, C, Liu, B, Lin, L, Sarker, SD, Nahar, L, Yu, H, Cao, H and Xiao, J

Bioactive compounds from marine macroalgae and their hypoglycemic benefits

http://researchonline.ljmu.ac.uk/7721/

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/
Bioactive compounds from marine macroalgae and their hypoglycemic benefits

Chao Zhao1,2,5, Chengfeng Yang1, Bin Liu1, Luan Lin5, Satyajit D. Sarker3, Lutfun Nahar3, Hua Yu4, Hui Cao4, Jianbo Xiao4*

1College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2Department of Chemistry, University of California, Davis 95616, USA

3Medicinal Chemistry and Natural Products Research Group, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK

4Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau SAR, China

5Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou 362000, China

*To whom correspondence should be addressed: Jianboxiao@yahoo.com

Abstract: Diabetes mellitus is a group of chronic metabolic disorders characterized by hyperglycemia due to defects in insulin action and/or secretion. It is a worldwide problem which has led to illness and premature mortality for many people, and the number of diabetes cases has been rising sharply. Unluckily, many conventional antidiabetic agents either show limited efficacy or serious mechanism-based side effects. Marine macroalgae possess tremendous nutritional value and have been well-known to cure and prevent diabetes. An increased interest in various bioactive natural products from marine macroalgae, as a potential source of effective antidiabetic agents, has been observed in recent years. The effects of macroalgae may delay the development of diabetes and alter the metabolic abnormalities through various mechanisms of actions. This review provides an overview of marine macroalgae used to prevent and manage diabetes and explores the hypoglycemic properties of macroalgae-derived bioactive compounds such as polyphenol, bromophenols, sulfated polysaccharides, fucoidan, fucosterol, phlorotannins, carotenoid pigments and fucoxanthin with their probable mechanisms behind hypoglycemic activity.

Keywords: Phaeophyta; rhodophyta; chlorophyta; bioactive compounds; hypoglycemic activity
1. Introduction

Globalization, industrialization, and changes of human environment, behavior and lifestyle have led to increasing raising rates of both obesity and diabetes (Xiao & Högger, 2015). Diabetes mellitus, one of the most important global health problems, was estimated as the fifth leading cause of death globally (Roglic et al., 2005). The International Diabetes Federation (IDF) estimated that the number of diabetes cases is expected to grow to 438 million globally in 2030 from 285 million people in 2009 (Atlas, 2009). It is a serious chronic disease characterized by hyperglycemia due to defects in insulin action, insulin secretion, or both of them (ADA, 2015). The main characteristic symptoms of diabetes are polyuria, polydipsia and polyphagia (ADA, 2005). The varying degrees of insulin resistance (Pontiroli, 2004) and postprandial hyperglycemia play an important role in the development of type 2 diabetes and related complications (Lee et al., 2012). An effective control of postprandial blood glucose level play key role in diabetes care which can improve the life quality of patients with type 2 diabetes. A number of pharmacological approaches have been used to control diabetes based on the different modes of action such as stimulation of insulin release, increase in glucose transport activity, inhibition of gluconeogenesis, and reducing absorption of glucose from the intestine (Thilagam, Parimaladevi, Kumarappan, & Mandal, 2013). Currently available therapies, including insulin and various oral antidiabetic agents, have been used as monotherapy or in combination to make a better glycemic regulation (Jung et al., 2006). However, a number of those antidiabetic agents either have inadequate efficacy or serious mechanism-based side effects (Lee et al., 2014). Thus, the search and investigation for more effective and safer hypoglycemic agents from natural sources has continued to be an important issue (Vinayagam, Xiao, & Xu, 2017).

Owing to the rich biodiversity, the marine environment is a vast and relatively untapped source for new bioactive ingredients including polyunsaturated fatty acids, polyphenol, sterols, proteins, sulfated polysaccharides, antioxidants and pigments (Lee, Ko, Kang, Lee, & Jeon, 2016; Suleria, Gobe, Masci, & Osborne, 2016; Manikkam, Vasiljevic, Donkor, & Mathai, 2016; Saleh, Zhang, & Shen, 2016; Ruocco, Costantini, Guariniello, & Costantini, 2016). Marine algae, the primary producers of all aquatic ecosystems, have served as important sources of bioactive natural substances including antidiabetic, antioxidant,
antibacterial and antivirals agents (Choochote, Suklampoo, & Ochaikul, 2014; Zhao, Wu, Yang, Liu, & Huang, 2015). In particular, macroalgae are well-known healthy food with naturally rich in minerals and dietary fibers. Marine algae are consumed as a regular part of traditional diet in the Far East and Hawaiian Islands, Japan, Korea, and China. There are about 9,000 species macroalgae have been broadly classified into three categories according to their composition of pigments, i.e., Phaeophyta, Rhodophyta and Chlorophyta (or the brown, red, and green algae, respectively) (Khan et al., 2009). Diverse classes of unique metabolites have shown numerous biological activities and potential health benefits (Pangestuti & Kim, 2011), such as anticancer, antidiabetic, antihypertensive, antihyperlipidemic, antioxidant, anticoagulant, anti-inflammatory, anti-estrogenic, antiviral, antifungal, antibacterial, immunomodulatory, neuroprotective, and tissue healing properties in vivo (Mohamed, Hashim, & Rahman, 2012). With the identification of a large number of bioactive compounds from marine macroalgae, e.g., sulfated polysaccharides, phlorotannins and diterpenes, an increased level of attention has been given recently to study the potential applications of macroalgae and their components as functional ingredients for both human and animal health (Gupta & Abu-Ghannam, 2011). Functional ingredients of macroalgae have been found to possess antidiabetic properties and are typically used as food supplements (Pangestuti & Kim, 2011). This review paper pay close attention to the potential applications of marine macroalgae and/or macroalgae-derived bioactive compounds in diabetes management (Table 1), and also discusses their possible mechanisms of action.

2. Phaeophyta (brown algae)

2.1 Pelvetia Decne. & Thur.

Pelvetia is the genus of typical marine macroalgae, and comprises only four species. Pelvetia siliquosa C.K.Tseng & C.F.Chang has been reported to self-grow on the craggy surfaces near the seashores of the southern area (Lee, 2003). Fucosterol (1), isolated from P. siliquosa, was shown to decrease serum glucose levels and to inhibit glycogen degradation in streptozotocin (STZ)-induced diabetic rats (Lee, Shin, Kim, & Lee, 2004). An extract from P. babingtonii (Harvey) de Toni (Fucaceae) exhibited potent α-glucosidase inhibitory activity and was effective for suppressing postprandial hyperglycemia (Ohta, Sasaki, Oohori,
Yoshikawa, & Kurihara, 2002). α-Glucosidase, an enzyme located in the brush-border membranes of human intestinal cells, is involved in carbohydrate metabolism and post-translational processing of glycoprotein (Li, Niu, Fan, Han, & Zhang, 2005). Similarly, α-amylase is a kind of main secretory products of the pancreas and salivary glands, constituting a family of endoamylases that plays a vital role in the digestive system and catalyses the initial step in hydrolysis of starch to a mixture of smaller oligosaccharides through the cleavage of α-D (1–4) glycosidic bonds (Kandra, 2003). α-Glucosidase and α-amylase have long been recognized as preferred drug targets for the modulation of postprandial hyperglycemia (Liu, Zhang, Wei, & Lin, 2011). Some marine macroalgae may be considered as natural inhibitors of α-glucosidase and α-amylase and be used as auxiliary hypoglycemic functional foods or drugs (Rengasamy, Kulkarni, Stirke, Van Staden, 2014).

2.2 Ecklonia Hornemann

Several Ecklonia species contain high levels of marine algal polyphenols (Yoon et al., 2013). Polyphenols are one of the main classes of secondary metabolites found in terrestrial plants and marine macroalgae, but there are fundamental differences in the chemical structures of polyphenols found in both terrestrial and marine plants (Lee & Jeon, 2013). The methanolic extract of Ecklonia stolonifera Okamura, a brown alga belonging to the algal family Lessoniaceae, has rich polyphenol content, which were shown strong inhibition effect on α-glucosidase activity in vitro as well as strong suppression of the increase in plasma glucose level and lipid metabolism in diabetic KK-Ay mice. The bioactive compounds were investigated to be phlorotannins (Gouveia et al., 2007; Iwai, 2008). Phlorotannins are polyphenols which widely occur in marine organisms, especially in brown macroalgae (Yotsu-Yamashita et al., 2013). A review have outlined various antidiabetic mechanisms associated with phlorotannins from brown algae (Lee & Jeon, 2013). Phlorotannins from E. kurome Okamura showed inhibitory activities against carbohydrate-hydrolyzing enzymes in vitro and decreased postprandial blood glucose levels in vivo (Xu et al., 2012). Before that, Eisenia bicyclis (Kjellman) Setchell, Ecklonia stolonifera and phlorotannins isolated from them, namely dieckol (2), eckol (3), 7-phloroeckol (4), and phlorofucofuroeckol-A (5) were shown to possess marked α-glucosidase and protein tyrosine phosphatase 1B (PTP1B)
inhibitory activities (Moon et al., 2011). Moreover, the insulin receptors are back to their original state via the activity of protein tyrosine phosphatases (PTPs) (Wälchli, Curchod, Gobert, Arkininstall, & van Huijsduijnen, 2000). PTP1B is a member of PTPs family that have been isolated and identified from mammalian cells, and it maintains the balance of protein tyrosine phosphorylation with protein tyrosine kinases (PTK). Cicirelli et al. (1990) reported that PTP1B was associated with insulin signal transduction for the first time. It has been established that PTP1B played an important role as a negative regulator of the insulin signalling pathway. Another study showed that a PTP1B knock-out mouse had increased insulin sensitivity (Elchebly et al., 1999). Several clinical studies have revealed that PTP1B is mainly responsible for dephosphorylation of the activated insulin receptor and thus down regulates insulin signaling, which can be an effective target for the therapy of type 2 diabetes (Zhang & Zhang, 2007).

Several known phloroglucinol derivatives isolated from *E. cava* Kjellman, e.g., dieckol (2), 7-phloroeckol (4), phlorofucofuroeckol-A (5), 6,6-bieckol (6), and fucodiphloroethol-G (7), possess significant inhibitory activities against α-amylase and α-glucosidase (Lee, Karadeniz, Kim, & Kim, 2009). Dieckol (2) not only inhibits the activities of α-glucosidase and α-amylase but also alleviates postprandial hyperglycemia and improve insulin sensitivity in vivo (Lee et al., 2010; Pontiroli, 2004). Dieckol (2) and the extract of *E. cava* can also offer the anti-diabetic effect through activating both adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK) and Akt kinase signal pathways (Kang et al., 2010; Kang et al., 2012). Adiponectin activates the downstream target AMPK which is a serine/threonine kinase that plays an important role in energy metabolism at both the cellular and whole-organism levels (Hardie, 2008; Padmalayam & Suto, 2013). AMPK controls whole-body glucose homeostasis by regulating metabolism in multiple peripheral tissues, and its activation induces the expression of PPARα and carnitine palmitoyltransferase I (CPT-1) that increase fatty acid oxidation and improve insulin sensitivity (Bijland, Mancini, & Salt, 2013; Long & Zierath, 2006). Taking all these into account, it can be assumed that *E. cava* may have the potential as an AMPK activator to increase the expression of AMPK, thus controlling balance of blood glucose. However, there are only limited number of studies have investigated the role of macroalgae or macroalgae-derived compounds on activation of AMPK.
2.3 Laminaria J.V.Lamouroux

Laminaria japonica J.E.Areschoug is one of the most important marine medicinal foodstuffs (Shirosaki & Koyama, 2011). Its rhizoid has long been applied as a traditional medicine for diabetes mellitus in China. Butyl-isobutyl-phthalate (8), extracted from L. japonica, exhibited hypoglycemic effect in vivo and non-competitive inhibition of α-glucosidase in vitro (Liu, Zhang, Qin, & Lin, 2011). The synthesized butyl-isobutyl-phthalate (8) bound with α-glucosidase and induced conformational changes of the enzyme, thus providing a potential to develop new α-glucosidase inhibitors (Liu, Zhang, Qiu, & Lin, 2011). However, further studies are needed to confirm those findings. Over the past decades, L. japonica is a rich source of various functional compounds with diverse biological properties; among those, polysaccharides including alginate, fucoidan and laminaran are the main active components (Zha et al., 2012). Treatment with polysaccharides from L. japonica could significantly reduce fasting blood glucose and increase the levels of insulin and/or amylin in diabetic mice model (Li, Yu, Long, Guo, & Duan, 2012; Jia, Yang, Wang, Liu, & Xie, 2014). High fiber intake from dried whole seaweed supplements which consist of L. japonica and Undaria pinnatifida (48 g/day) could significantly reduce the concentrations of fasting and postprandial blood glucose and favorably altered lipid levels in 20 obese diabetic individuals after a intervention of 4 weeks (Kim, Kim, Choi, & Lee, 2008). The above findings indicate that Laminaria has rich antidiabetic potential, but further investigations are required to reveal the mechanisms associated with improving diabetic parameters, such as fasting and postprandial blood glucose concentrations.

2.4 Sargassum C.Agardh

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily of ligand-activated transcription factors (Michalik et al., 2006). There are three isotypes of PPAR, i.e. PPARα, PPARβ/δ (PPARδ) and PPARγ (Gervois, Fruchart & Staels, 2007). Particularly, PPARα and PPARγ are regarded as important pharmacological targets for the therapy of dyslipidemia and insulin-resistant diabetes, respectively (Pershadsingh, 2006). PPARγ has been demonstrated to be the major functional receptor for the thiazolidinedione
class of insulin-sensitizing drugs (Spiegelman, 1998). Activation of PPARα, which is predominantly expressed in the liver, could stimulate lipid consumption by enhancing the expression of fatty acid oxidation genes (Harrity et al., 2006). Combination the action of PPARα with PPARγ (PPARα/γ) are supposed to ameliorate both dyslipidemia and insulin sensitivity. Sargaquinoic acid (9) and sargahydroquinoic acid (10), extracted from Sargassum yezoense (Yamada) Yoshida & T.Konno, were identified as novel PPARα/γ dual agonists (Kim, 2008). Sargaquinoic acid (9) and sargahydroquinoic acid (10) have beneficial effects on glucose and lipid metabolism to improve metabolic disorders through dual activation of PPARα/γ transcriptional activities without showing severe adverse effects as observed with previously identified PPAR agonists (e.g., body weight gain, heart failure, renal failure, urinary cancer and anemia) (Adeghate, Adem, Hasan, Tekes, & Kalasz, 2011; Kim, Lee, Bae, & Kee 2012).

Sargassum ringgoldianum Harvey and S. hemiphyllum (Turner) C.Agardh extracts have high concentration of polyphenols and fucoxanthin (11), respectively. Both of them possess α-glucosidase and α-amylase inhibitory activities as well as property of insulin secretion stimulation (Lee & Han, 2012; Hwang, Hung, Tsai, Chien, & Kong, 2014). Fucoidans are complex and heterogeneous sulphated polysaccharides that usually found in brown macroalgae, such as Fucus vesiculosus, Ecklonia kurome, and Undaria pinnatifida. Fucoidans extracted from S. wightii Greville ex J.Agardh could inhibit α-glucosidase (Vinoth et al., 2015). Thunberol (12), a sterol from the Chinese brown macroalga S. thunbergii (Mertens ex Roth) Kuntze, which is one of prolific seaweed growing widely along the coast of East China Sea, has been reported to inhibit the activity of PTP1B significantly with an IC_{50} value of 2.24 mg/mL (He, Yao, Liu, & Guo, 2014). An in vivo study revealed that a supplement of the S. coreanum J. Agardh extract could lower the blood glucose concentration by regulating the hepatic glucose metabolic enzyme activities and improving insulin resistance (Park, Nam, & Han, 2015). S. polycystum C. Agardh contains various nutrients and is traditionally used against several human diseases (Motshakeri et al., 2014). Both the alcohol and the water extracts of S. polycystum could obviously reduce the levels of blood glucose and hemoglobin A1c (HbA1c) by increasing the response to insulin (Motshakeri, Ebrahimi, Goh, Matanjun, & Mohamed, 2013). HbA1c was incorporated into the diagnostic
criteria for diabetes in updated 2010 guidelines of the American Diabetes Association (ADA, 2010; WHO, 2011). The genus Sargassum has a wide range of active substances, but only limited studies have been performed on their antidiabetic activity.

2.5 Others

Eisenia bicyclis (Kijillman) Setchell (Lessoniaceae) is a perennial and daily consumed edible brown alga that inhabits the middle Pacific coastlines of Korea and Japan. Phloroglucinol derivatives isolated from E. bicyclis exhibited great potential for the effective therapy of diabetic complications by inhibiting advanced glycation end-products (AGEs) formation and α-amylase activity (Okada, Ishimaru, Suzuki, & Okuyama, 2004). E. bicyclis and U. pinnatifida (Harvey) Suringar high levels of fucoxanthin (11) and was shown to display potent inhibitory activity against AGEs formation and human recombinant aldose reductase (HRAR), rat lens aldose reductase (RLAR) and PTP1B activity (Ah et al., 2012). Phlorotannins extracted from Fucus vesiculosus L. (Fucaceae) inhibited the formation of AGEs mediated by glucose and methylglyoxal in a concentration-dependent manner (Liu & Gu, 2012). AGEs are the result of the Maillard reaction (nonenzymatic reaction), and may be formed as a result of normal metabolism and aging (Bakker et al., 2015). The accumulation of AGEs plays a pivotal role in the development and progression of diabetic complications (Rigalleau et al., 2015). Therefore, it may provide a potential means to control the development of diabetic complications by inhibiting AGEs formation.

Fucoxanthin (11), a marine carotenoid that is characteristically present in edible brown macroalgae such as E. bicyclis (Arame), U. pinnatifida (Wakame), was reported to improve insulin resistance and to ameliorate blood glucose levels (D’Orazio et al., 2012; Maeda & Dominguez, 2013). Insulin resistance is an important pathophysiological mechanism that predicts the progression to type 2 diabetes. Also, an in vivo study on high fat diet-induced obesity mice reflected that the fucoxanthin-rich diet could significantly suppress the body weight and white adipose tissue weight gain induced by the high fat diet and promoted mRNA expression of glucose transporter 4 (GLUT4) mRNA in skeletal muscle tissues (Maeda, Hosokawa, Sashima, Murakami-Funayama, & Miyashita, 2009). The glucose uptake in surrounding tissues is mediated by GLUT4 translocation which stimulated by Akt
(Ramachandran & Saravanan, 2015). Increasing the expression of GLUT4 could improve insulin sensitivity, thus reducing or preventing insulin resistance. Fucosterol (1) constitutes 83–97% of the sterol content in brown macroalgae, and fucosterol (1) from Eisenia bicyclis and Ecklonia stolonifera was found to be a promising candidate for the treatment of diabetes and diabetic complications through inhibiting HRAR, RLAR, PTP1B, α-glucosidase activities and AGEs formation (Jung et al., 2013; Sánchez-Machado, López-Hernández, Paseiro-Losada, & López-Cervantes, 2004). Fucoidans derived from the Sporophyll of Undaria pinnatifida were reported to substantially prevent hyperglycemia based on oral glucose tolerance tests in non-diabetic mice and significantly reduced the levels of blood glucose in diabetic mice (Kim, Yoon, & Lee, 2012).

Ascophyllum nodosum (L.) Le Jolis is a dominant rocky intertidal brown macroalga that grows abundantly in the northeastern coast of North America and the northwestern coast of Europe (Taylor, 1957). Water extracts of A. nodosum exhibited strong inhibitory activity against α-glucosidase and its phenolic compounds could be implicated to this activity (Apostolidis, Karayannakidis, Kwon, Chong, & Seeram, 2011). Several other studies have also demonstrated that polyphenol-enriched extracts from A. nodosum could inhibit α-glucosidase and α-amylase in vitro as well as have the potential to influence glycemic control in vivo (Apostolidis & Lee, 2010; Kim, Rioux, & Turgeon, 2014; Pantidos, Boath, Lund, Conner, & McDougall, 2014). Both Fucus vesiculosus and A. nodosum contain large amounts of fucoidan. Interestingly, fucoidan extracted from A. nodosum has shown stronger inhibitory activity of α-glucosidase than that of extracted from F. vesiculosus. In contrast, fucoidan from A. nodosum decreased α-amylase activity but fucoidan extracted from F. vesiculosus did not (Kim, Rioux, & Turgeon, 2014). This finding suggests that the ability of fucoidan for inhibition of α-glucosidase and α-amylase varies due to different the algae species and harvest period. Also, a double-blind experiment on healthy adults reflected that a single ingestion of dried whole seaweed extract from A. nodosum and F. vesiculosus favorably regulated insulin levels and sensitivity after a carbohydrate-rich meal but displayed no significant effect on postprandial glucose response (Paradis, Couture, & Lamarche, 2011). Their potential benefits in diabetes management should be further investigated.

Ishige okamurae Yendo is as an edible brown alga that grows on rocks in the upper and
middle intertidal zone on rough open coasts, and generally forms highly persistent populations in clear waters (Zou et al., 2008). Diphlorethohydroxycarmalol (13), a kind of phlorotannin, isolated from *I. okamurae*, displayed prominent inhibitory effect against α-amylase and α-glucosidase that might provide a good way to the regulation of carbon source, such as starch, during fermentation (Heo et al., 2009). The extracts of *I. okamurae* were also shown to have the abilities to lower the blood glucose levels by regulating the activities of hepatic glucose metabolic enzymes and improving insulin resistance in db/db mice (Min, Kim, Jeon, & Han, 2011). Octaphlorethol A (OPA, 14), a type of phlorotannin isolated from *I. foliacea* has been shown to have the potential to improve type 2 diabetes for the first time (Lee, Ko, Kang, Lee, & Jeon, 2016). The OPA significantly improved fasting blood glucose level and impaired glucose tolerance in type 2 diabetic db/db mice with the mechanism of increasing in GLUT4-mediated glucose utilization via activation of AMPK in muscle.

Overall, there is a huge knowledge gap exists between Phaeophyta bioactive compounds and their roles in antidiabetic activities. Brown algae are rich in bioactive substances and many in vitro studies have demonstrated the hypoglycemic potential of many of those compounds. However, further research using in vivo studies should be conducted to offer a better understanding of the potential mechanisms of those compounds.

3. Rhodophyta (red algae)

There are some red macroalgae that contain the bromophenols as algal enzyme inhibitors linked to diabetes mellitus (Table 2), such as the family Rhodomelaceae. Grateloupia elliptica Holmes contain two bromophenols such as 2,4,6-tribromophenol (15) and 2,4-dibromophenol (16) with α-glucosidase inhibitory activity (Kim, Nam, Kurihara, & Kim, 2008; Kurihara, Mitani, Kawabata, & Takahashi, 1999b). Bromophenol extracts of *G. elliptica* can inhibit intestinal α-glucosidase and stimulated basal glucose uptake into 3T3-L1 adipocytes (Kim, Nam, Kurihara, & Kim, 2008). Five highly brominated metabolites compounds (17–21; Table 2) isolated from a Chinese red alga *Laurencia similis* showed inhibitory activities against PTP1B (Qin et al., 2010). The compound named bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (22) was purified from Odonthalia corymbifera
and Polyopes lancifolia possessed strong activity against α-glucosidases. Meanwhile, six bromophenols (23–28; Table 2) isolated from the Japanese red alga O. corymbifera also showed α-glucosidase inhibitory activity (Kurihara et al., 1999a). The two bromophenols such as 3-bromo-4,5-dihydroxybenzyl alcohol (29) and 3-bromo-4,5-dihydroxybenzyl methyl ether (30) from Polysiphonia morrowii displayed activity against α-glucosidase were identified for the first time from this species (Kurihara et al., 1999b). Bis-(2,3-dibromo-4,5-dihydroxyphenyl)-methane (31), isolated from red macroalgae Rhodomela confervoides (Hudson) P.C.Silva showed significant inhibition against PTP1B (Li, Guo, Su, Han, & Shi, 2008). What’s more, an in vivo study also demonstrated the antihyperglycemic effect of bromophenols (Shi et al., 2008). Four bromophenols namely 3-bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)-1,2-benzene-diol (32), 3,4-dibromo-5-(2-bromo-3,4-dihydroxy-6-(isopropoxymethyl)benzyl)benzene-1,2-diol (33), 2,2′,3,3′-tetrabromo-4,4′,5,5′-tetra-hydroxydiphenyl methane (34) and 2,2′,3-tribromo-3′,4,4′,5-tetrahydroxy-6′-ethoxy-methylidiphenyl methane (35) are all bromophenols isolated from Rhodomela confervoides which have potent PTP1B inhibition (Jiang, Shi, Cui, & Guo, 2012; Shi et al., 2008; Shi, 2013). A series of bromophenols (36–43) purified from red alga Symphylocladia latiuscula exhibited antidiabetic activity by inhibiting PTP1B. Otherwise, Kurihara et al. (1999a) have reported a bromophenol 2,3,6-tribromo-4,5-dihydroxybenzyl alcohol (44) isolated from S. latiuscula with α-glucosidase inhibition at a very low concentration.

Among the red seaweeds, Hypnea musciformis (Wulfen) J.V.Lamouroux extract displayed antihyperglycemic, antioxidant and increased plasma insulin effects in diabetic animals (Anandakumar, Balamurugan, Rajadurai, & Vani, 2008). The edible red alga Gelidium amansii (J.V. Lamouroux) J.V. Lamouroux is mainly distributed in northeastern Taiwan. A mice study has shown that the plasma glucose significantly decreased in the group with oral treatment of G. amansii ethanol extract (Choi et al., 2015). The plasma glucose, triglyceride, and cholesterol concentrations in rats with diabetes fed the G. amansii diet for 11-week were lower than of in rats with diabetes fed the control diet (Yang, Yao, & Chiang, 2015). Gracilaria lemaneiformis (Bory) Greville occurs widely in the marine environment and belongs to the family Gracilariaceae (Rhodophyta), and the sulfated polysaccharide accounts
for about 30% of its dry weight (Yu, Wang, Chen, Zhang, & Long, 2006). A polysaccharide extracted from G. lemaneiformis inhibited α-glucosidase activity in vitro and the administration of polysaccharide (200 mg/kg body weight) for 21 days significantly decreased the blood glucose levels in diabetic mice (Liao et al., 2015).

The extract of Kappaphycus alvarezii (Doty) Doty ex Silva and the ethanol extract of fresh Eucheuma denticulatum (N. L. Burman) Collins & Hervey demonstrated the appreciable inhibitory activities towards α-amylase (Balasubramaniam et al., 2013; Nagarani & Kamaguru, 2013). K. alvarezii, K. striatus (F. Schmitz) Doty ex P.C.Silva and E. denticulatum are good sources of magnesium, which could provide 30%–90% of the daily demand per 100 g of dried macroalgae (Balasubramaniam et al., 2013). It is highly plausible that magnesium in red macroalgae is responsible for hypoglycaemic activity. Intracellular free magnesium levels have been found to be closely and inversely related to the level of the fasting blood glucose (Barbagallo et al., 2003). Magnesium, one of the most abundant ions present in living cells, plays a pivotal role in insulin homeostasis and glucose metabolism through multiple enzymatic reactions and its plasma concentration is remarkably constant in endocrine (Barbagallo et al., 2003). It was shown that serum magnesium levels declined with rise in HbA1c levels and with duration of type 2 diabetes (Ramadass, Basu, & Srinivasan, 2015). Thus, increased consumption of magnesium-rich macroalgae may reduce the risk of type 2 diabetes. Gyeongshingangjeehwan 18 (GGEx18) is a kind of herbal drug composed of three medicinal plants: Rheum palmatum L. (Polygonaceae), Laminaria japonica Aresch (Laminariaceae), and Ephedra sinica Stapf (Ephedraceae). A study revealed that GGEx18 could significantly increase the expression of fatty acid oxidation genes, such as adiponectin, AMPKs, PPARα and its target enzymes, and CPT-1, in both mesenteric adipose tissues and 3T3-L1 cells and normalized hyperglycemia and hyperinsulinemia in obese mice, thus reduce the blood glucose levels (Oh et al., 2014). Porphyran from the red alga Porphyra yezoensis Ueda is a water-soluble dietary fiber. A study revealed that dietary porphyran should increase adiponectin levels thus improving glucose metabolism in diabetes (Kitano et al., 2012). Adiponectin is an adipokine that exerts a strong insulin-sensitizing effect by binding to its receptors like AdipoR1 and AdipoR2, resulting in activation of AMPK, PPARα, and presumably some other unknown signaling pathways (Kadowaki et al., 2006). Therefore, the
adiponectin gene appears to be a promising candidate susceptibility gene for type 2 diabetes. Most of the seaweeds contain high contents of soluble dietary fibers such as carrageenan, agar, and alginites, which could passively retard digestion and glucose absorption. The beneficial effects of Rhodophyta species on the prevention and management of diabetes-related risks have clearly been indicated from in vitro and in vivo animal models. Nevertheless, deep and systematic studies, especially focusing on mechanisms of action, are still needed. Studies on Rhodophyta sp. and Rhodophyta-derived compounds with hypoglycemic activity are still insufficient. Thus, further research in this area is imperative to look for more species with hypoglycemic activity and to provide strong evidence of potential beneficial effects of hypoglycemic functional foods or drugs from macroalgae.

4. Chlorophyta (green algae)

Ulva lactuca L. is a common green macroalga in the division Chlorophyta and found widespread in China (Tian, Yin, Zeng, Zhu, & Chen, 2015). Polysaccharides isolated from U. lactuca could significantly decrease the blood glucose by their potential inhibitory effect on key enzymes closely related to starch digestion and absorption in both plasma and small intestine (Belhadj, Hentati, Elfeki, & Hamden, 2013). The Ulva rigida ethanolic extract decreased blood glucose concentrations and micronuclei frequency in diabetic rats (Celikler et al., 2009; Tas, Celikler, Ziyanok-Ayvalik, Sarandol, & Dirican, 2011). Oxidative stress is an important factor which responsible for complications in diabetes (Sukmawati et al., 2015). Diabetes is generally accompanied by increased production of the molecules of reactive oxygen species and/or impaired antioxidant defense systems, which lead to oxidative damage to biomolecules. Exposure of the genetic material to reactive oxygen species could cause DNA damage (Evans, Dizdaroglu, & Cooke, 2004). There are some reports on the antidiabetic activities of other Ulva species, such as U. fasciata Delile, have the abilities to reduce blood glucose level, and restore hepatic glycogen content, carbohydrate metabolic enzymes like hexokinase, gluokinase and glucose 6-phosphatase activity in vivo (Abirami & Kowsalya, 2013). Protein kinase C is a family of protein kinase enzymes that are involved in controlling the intracellular signal transduction (Anderson, Mcgill, & Tuttle, 2007). The activation of protein kinase C may occur in the organs susceptible to developing diabetic
complications, especially diabetic nephropathy (Kizub, Klymenko, & Soloviev, 2014).

5. Potential anti-diabetic natural products from marine algae

The WHO Expert Committee recommended that medicinal plants used in the treatment of diabetes be further investigated as they are frequently considered to be lesser or no adverse effects (Halberstein, 2005). Search for more safe and effective bioactive agents has continued to be an important target in the field of diabetic research. Less than 1% of the estimated 250,000 higher plants have been screened pharmacologically and very few in regard to diabetes (Arumugam, Manjula, & Paari, 2013). The ethnobotanical information reports state that about 800 plants and their active extracts which may possess hypoglycemic potential have been found. In which, about 200 pure bioactive compounds have been identified and reported for their potential anti-diabetic effects (Alarcon-Aguilara et al., 1998; Suksomboon, Poolsup, Boonkaew, & Suthisisang, 2011). These natural phytoconstituents showing anti-diabetic efficacy include flavonoids, alkaloids, tannins, saponins, terpenoids, phenolics, glycosides, steroids, chalcones, carotenoids, peptides, lipids, glycopeptides, iridoids, ursolic acid and imidazoline (Wu, Hsieh, Lin, & Yen, 2013). The bioactive compounds are found in many fruits, vegetables, herbs, tea, soy and beverage products, and mostly together responsible for efficacy (Edirisinghe & Burton-Freeman, 2016).

So far, approximately 22,000 natural products of marine organisms have been discovered whereas 131,000 terrestrial natural products exist (Blunt, Copp, Munro, Northcote, & Prinsep, 2011). According to a recent study, an estimate of 72,500 algal species has been described throughout the world, where as most of them are marine (Guiry, 2012). To survive in various diverse and extreme environments, marine macroalgae produce a variety of natural bioactive compounds and metabolites (Wang, Li, Lee, & Chang, 2017). Polyphenols and polysaccharides from marine macroalgae particularly showed very significant antidiabetic potential against pharmacological experimental systems via interfering in carbohydrate metabolism. Marine algae-derived functional metabolites indicate structural and functional diversity from their terrestrial counter-part due to the differences in their metabolic pathways (Guven, Percot, & Sezik, 2010). Algal polyphenols are derived from polymerized phloroglucinol units, whereas polyphenols from terrestrial plants are derived from gallic and
ellagic acids. They are termed as phlorotannins and biosynthesized via acetate malonate pathway (Arnold & Targett, 2002). At all events, the most active candidates will be determined through measuring different biochemical parameters such as fasting blood glucose, insulin, glycosylated hemoglobin, lipid profile, serum urea and creatinine, plasma alanine and aspartate transaminases, or microscopical examinations of pancreatic sections.

6. Conclusion

Marine macroalgae and functional ingredients derived from them have increasingly been playing a more and more important role in body health and human nutrition. Bioactive constituents from marine macroalgae and their byproducts, like phlorotannins, fucosterol, and carotenoid pigments including fucoxanthin can be used indirectly as functional ingredients for the reduction of incidences of many chronic diseases in humans (Li & Kim, 2011). Diabetes mellitus has been considered to be one of the most important global health problems and there are many potential ways for macroalgae and macroalgae-derived bioactive compounds to treat diabetes, including α-glucosidase and α-amylase inhibition, activation of both AMPK and Akt signal pathways as well as HRAR, RLAR, PTP1B activities and AGE formation inhibition etc. Marine macroalgae are usually perceived as less toxic with fewer side-effects compared with those synthetic antidiabetic drugs. Current understanding on the antidiabetic effects of marine macroalgae and their compounds is almost based on the data available from in vitro and in vivo animal studies, however, these data cannot be extrapolated into the human setting without reliable human clinical data. Further investigations are imperative to unveil many more macroalgae and their components, which may have antidiabetic potentials. It is also important to look in to the possible mechanisms of antidiabetic actions of these marine macroalgae and their compounds. These antidiabetic therapeutics from natural source are valuable lead compounds, However, they seldom can be for direct clinical use and structural modifications are necessary. As a primary requirement for drug development, the future potential of algal natural products used in diabetes will be based on the modification of structures of biologically active compounds. In addition, original alga-derived natural products is unfeasible to meet market demands and alternative resupply approaches are being developed based on biotechnological production or chemical
semi-synthesis from naturally occurring precursors. Industry-scale production of complex natural products can be harvested in the future align with the progress of the knowledge of plant biosynthetic pathways and the development of more efficient genetic engineering strategies and tools. It is of immense importance to gain idea on enhancement of bioavailability and intrinsic potency with structure–activity relationship studies of algal bioactive compounds for the treatment of diabetes. Moreover, clinical research is needed to confirm the real efficacy of marine macroalgae to aid in diabetes prevention and management. Pharmacists should encourage patients to seek advice about the addition of these antidiabetic therapeutics for the treatment of diabetes. More research is needed to identify and quantify the phytochemical compounds on diabetes, as well as the combination therapy of algal natural products with the synthetic drugs. It is reasonable to state that marine macroalgae seem to have great developing potential in medicinal preparation to be sustainable nutraceutical or functional foods for complementary and alternative diabetes therapy.

Acknowledgement

This work was financially supported by Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae grant (2017FZSK05), Natural Science Foundation (2016J06009) and Marine High-tech Industrial Development Project (MIN2014-17) of Fujian Province, China. The project was also supported by and by the FAFU grants KXb16011A and 612014043.

References

and actions of dual and pan PPAR modulators. The Open Medicinal Chemistry Journal, 5, 93–98.

Cardiovascular Diseases, 25, 230–235.

pathways. Food and Chemical Toxicology, 48, 509–516.

postprandial hyperglycemia in streptozotocin-induced diabetic mice. Food and Chemical Toxicology, 48, 2633–2637.

Liu, M., Zhang, W., Wei, J. T., & Lin, X. K. (2011). Synthesis and α-glucosidase inhibitory mechanisms of bis (2,3-dibromo-4,5-dihydroxybenzyl) ether, a potential marine
bromophenol α-glucosidase inhibitor. Marine Drugs, 9, 1554–1565.

Agriculture, 93, 1772–1778.

Fig. 1 Chemical structures of bioactive compounds from marine macroalgae (references seen in Table 1 and Table 2)

1 Fucosterol

2 Dieckol

3 Eckol

4 7-Phloroeckol

5 Phlorofucofuroeckol-A

6 6,6-Bieckol

7 Fucodiphloroethol-G

8 Butyl-isobutyl-phthalate
9 Sargaquinoic acid

10 Sargahydroquinoic acid

11 Fucoxanthin

12 Thunberol

13 Diphlorethohydroxycarmalol

14 Octaphlorellol A

15 2,4,6-Tribromophenol

16 2,4-Dibromophenol

17 3',5',6',6'-Tetabromo-2,4-dimethyldiphenyl ether

18

19

20

21
Fig. 1
<table>
<thead>
<tr>
<th>Macroalgae</th>
<th>Major compound</th>
<th>Effects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelvetia siliquosa</td>
<td>Fucosterol (1)</td>
<td>Inhibition of blood glucose level and glycogen degradation</td>
<td>Lee et al., 2004</td>
</tr>
<tr>
<td>Pelvetia babingtonii</td>
<td>Methanol extract</td>
<td>α-Glucosidase inhibition and suppression of postprandial hyperglycemia</td>
<td>Ohta et al., 2002</td>
</tr>
<tr>
<td>Ecklonia stolonifera</td>
<td>Polyphenols</td>
<td>α-Glucosidase inhibition; Suppression of the increase in plasma glucose</td>
<td>Gouveia et al., 2007; Iwai, 2008</td>
</tr>
<tr>
<td></td>
<td>Phlorotannins</td>
<td>PTP1B and α-glucosidase inhibition</td>
<td>Moon et al., 2011</td>
</tr>
<tr>
<td></td>
<td>Fucosterol (1)</td>
<td>RLAR, HRAR, PTP1B, α-glucosidase activities and AGE formation inhibition</td>
<td>Jung et al., 2013</td>
</tr>
<tr>
<td>Eisenia bicyclis</td>
<td>Dieckol (2)</td>
<td>α-Glucosidase and PTP1B</td>
<td>Moon et al., 2011</td>
</tr>
<tr>
<td>Ecklonia stolonifera</td>
<td>Eckol (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-Phloroeckol (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phlorofucofuroeckol-A (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecklonia cava</td>
<td>Dieckol (2)</td>
<td>Activation of both AMPK and Akt signal pathways; Improvement of insulin sensitivity</td>
<td>Kang et al., 2012</td>
</tr>
<tr>
<td></td>
<td>7-Phloroeckol (4)</td>
<td></td>
<td>Pontiroli, 2004</td>
</tr>
<tr>
<td></td>
<td>Phlorofucofuroeckol-A (5)</td>
<td></td>
<td>Lee et al., 2010</td>
</tr>
<tr>
<td></td>
<td>6,6-Bieckol (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fucodiphloroethol-G (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecklonia kurome</td>
<td>Phlorotannins</td>
<td>α-Amylase inhibition; Amelioration of hyperinsulinemia</td>
<td>Xu et al., 2012</td>
</tr>
<tr>
<td>Laminaria japonica</td>
<td>Polysaccharides</td>
<td>Reduced fasting blood glucose; Increased the levels of insulin and amylin</td>
<td>Li et al., 2012; Jia et al., 2014</td>
</tr>
<tr>
<td></td>
<td>Butyl-isobutyl-phthalate (8)</td>
<td></td>
<td>Bu et al. 2010</td>
</tr>
<tr>
<td>Sargassum ringgoldianum</td>
<td>Polyphenol</td>
<td>α-Amylase and α-glucosidase inhibition</td>
<td>Lee et al., 2012</td>
</tr>
<tr>
<td>Sargassum yezoense</td>
<td>Sargauquinoic acid (9)</td>
<td>Enhances the transcriptional activities of PPARα and PPARγ</td>
<td>Kim et al., 2012</td>
</tr>
<tr>
<td></td>
<td>Sargahydroquinoic acid (10)</td>
<td></td>
<td>Kim, 2008</td>
</tr>
<tr>
<td>Sargassum wightii</td>
<td>Fucoidan</td>
<td>α-D-glucosidase inhibition</td>
<td>Vinoth et al., 2015</td>
</tr>
<tr>
<td>Sargassum polycystum</td>
<td>Extract</td>
<td>Increasing insulin sensitivity</td>
<td>Motshakeri et al., 2013</td>
</tr>
<tr>
<td>Sargassum hemiphyllum</td>
<td>Fucoxanthin (11)</td>
<td>α-Amylase, α-glucosidase inhibition and insulin release enhancement</td>
<td>Hwang et al., 2014</td>
</tr>
<tr>
<td>Sargassum thunbergii</td>
<td>Thumberol (12)</td>
<td>PTP1B inhibition</td>
<td>He, Yao, Liu, & Guo, 2014</td>
</tr>
<tr>
<td>Sargassum coreanum</td>
<td>Extract</td>
<td>Alteration of the hepatic glucose metabolic enzyme activities and improvement of</td>
<td>Park, Nam, & Han, 2015</td>
</tr>
<tr>
<td>Algae/Seaweed</td>
<td>Component</td>
<td>Activity</td>
<td>Reference(s)</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Undaria pinnatifida</td>
<td>Fucoxanthin (11)</td>
<td>HRAR, RLAR, PTP1B inhibition, and AGE formation</td>
<td>Ah et al., 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improve insulin signaling</td>
<td>Maeda et al., 2013</td>
</tr>
<tr>
<td>Eisenia bicyclis</td>
<td>Phlorotannins</td>
<td>Inhibition of AGEs and α-amylase</td>
<td>Okada et al., 2004</td>
</tr>
<tr>
<td></td>
<td>Fucoxanthin (11)</td>
<td>Inhibition of RLAR, HRAR, PTP1B activities and AGE formation</td>
<td>Ah et al., 2012</td>
</tr>
<tr>
<td></td>
<td>Fucosterol (1)</td>
<td>Inhibition of RLAR, HRAR, PTP1B, α-glucosidase activities and AGE formation</td>
<td>Jung et al., 2013</td>
</tr>
<tr>
<td>Ascophyllum nodosum</td>
<td>Phlorotannins</td>
<td>α-Amylase and α-glucosidase inhibition</td>
<td>Apostolidis et al., 2011; Kim et al., 2014; Pantidos et al., 2014</td>
</tr>
<tr>
<td></td>
<td>Fucoidan</td>
<td>Inhibition of RLAR, HRAR, PTP1B, α-glucosidase activities and AGE formation</td>
<td>Ah et al., 2012</td>
</tr>
<tr>
<td></td>
<td>Diphlorethohydroxycarmalol (13)</td>
<td>α-Amylase and α-glucosidase inhibition</td>
<td>Heo et al., 2009</td>
</tr>
<tr>
<td>Ishige okamurae</td>
<td>Extract</td>
<td>Altering the hepatic glucose metabolic enzyme activities and improves insulin resistance.</td>
<td>Min et al., 2011</td>
</tr>
<tr>
<td>Kappaphycus alvarezii</td>
<td>Extract</td>
<td>Inhibitory activity towards α-amylase</td>
<td>Nagarani & Kamaguru 2013; Balasubramaniam et al., 2013</td>
</tr>
<tr>
<td>Eucheuma denticulatum</td>
<td>Polysaccharide</td>
<td>Inhibitory to the α-glucosidase activity; decrease in blood glucose levels</td>
<td>Liao et al., 2015</td>
</tr>
<tr>
<td>Gracilaria lemaneiformis</td>
<td>Ethanol extract</td>
<td>Plasma glucose significantly decreased</td>
<td>Choi et al., 2015</td>
</tr>
<tr>
<td>Gelidium amansithec</td>
<td>Porphyrin</td>
<td>Increasing adiponectin levels</td>
<td>Kitano et al., 2012</td>
</tr>
<tr>
<td>Ulva rigida</td>
<td>Ethanol extract</td>
<td>Regeneration of β-cells and/or potentiating the insulin release</td>
<td>Celikler et al., 2009; Tas et al., 2011</td>
</tr>
<tr>
<td>Ulva fasciata</td>
<td>Sulfated polysaccharides</td>
<td>Reduce blood glucose level, and restore hepatic glycogen content and carbohydrate metabolic enzymes</td>
<td>Abirami & Kowsalya, 2013</td>
</tr>
<tr>
<td>Ulva lactuca</td>
<td>Polysaccharides</td>
<td>α-Amylase, maltase and sucrase inhibition; Delay glucose absorption</td>
<td>Belhadj et al., 2013</td>
</tr>
</tbody>
</table>
Table 2 The bromophenols from red algae as algal enzyme inhibitors linked to diabetes mellitus

<table>
<thead>
<tr>
<th>Red algae</th>
<th>Bromophenols</th>
<th>Major activity</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grateloupia elliptica</td>
<td>2,4,6-Tribromophenol (15)</td>
<td>α-Glucosidase inhibition</td>
<td>Kim, Nam, Kurihara, & Kim, 2008</td>
</tr>
<tr>
<td></td>
<td>2,4-Dibromophenol (16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laurencia similis</td>
<td>3′,5′,6′,6′-Tetabromo-2,4-dimethyldiphenyl ether (17)</td>
<td>PTP1B inhibition</td>
<td>Qin et al., 2010</td>
</tr>
<tr>
<td></td>
<td>1,2,5-Tribromo-3-bromoamino-7-bromomethynaphthalene (18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,5,8-Tribromo-3-bromoamino-7-bromomethynaphthalene (19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,5,6-Tribromo-3-bromoamino-7-bromomethynaphthalene (20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2′,5′,6′,5,6-Pentabromo-3′,4′,3,4-tetramethoxybenzo-phenone (21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bis-(2,3-dibromo-4,5-dihydroxybenzyl) ether (22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odonthalia corymbifera</td>
<td>Bis-(2,3-dibromo-4,5-dihydroxybenzyl) ether (22)</td>
<td>α-Glucosidase inhibition</td>
<td>Kurihara et al., 1999a</td>
</tr>
<tr>
<td></td>
<td>2,3-Dibromo-4,5-dihydroxybenzyl alcohol (23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,3-Dibromo-4,5-dimethoxybenzyl methyl ether (24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-Bromo-2,3-dihydroxy-6-hydroxymethylphenyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,5-dibromo-6-hydroxy-3-hydroxymethylphenyl ether (25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-Bromo-2,3-dimethoxy-6-methoxymethylphenyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,5-dibromo-6-methoxy-3-methoxymethylphenyl ether (26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-Bromo-2,3-dimethoxy-6-methoxymethylphenyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,5-dibromo-6-methoxy-3-methoxymethylphenyl ether (27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-Bromo-4,5-dimethoxybenzyl methyl ether (28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyopes lancifolia</td>
<td>Bis-(2,3-dibromo-4,5-dihydroxybenzyl) ether (22)</td>
<td>α-Glucosidase inhibition</td>
<td>Kim, Kurihara, & Kim, 2010</td>
</tr>
<tr>
<td>Polysiphonia morrowii</td>
<td>Bis-(2,3-dibromo-4,5-dihydroxybenzyl) alcohol (29)</td>
<td>α-Glucosidase inhibition</td>
<td>Kurihara et al., 1999b</td>
</tr>
<tr>
<td></td>
<td>3-Bromo-4,5-dihydroxybenzyl methyl ether (30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhodomela confervoides</td>
<td>Bis-(2,3-dibromo-4,5-dihydroxybenzyl) alcohol (29)</td>
<td>α-Glucosidase inhibition</td>
<td>Kurihara et al., 1999b</td>
</tr>
<tr>
<td></td>
<td>3-Bromo-4,5-bis-(2,3-dibromo-4,5-dihydroxybenzyl)-1,2-benzenediol (32)</td>
<td>Potent PTP1B inhibition</td>
<td>Li et al., 2008; Jiang et al., 2012; Shi 2013</td>
</tr>
<tr>
<td></td>
<td>3,4-Dibromo-5-(2-bromo-3,4-dihydroxy-6-(isopropoxymethyl)benzyl)benzene-1,2-diol (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sympylocadia latiuscula</td>
<td>2,3-Dibromo-4,5-dihydroxybenzyl methyl ether (36)</td>
<td>PTP1B inhibition</td>
<td>Liu et al., 2011</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>3,5-Dibromo-4-hydroxybenzoic acid (37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,3,6-Tribromo-4,5-dihydroxymethylbenzene (38)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,3,6-Tribromo-4,5-dihydroxybenzaldehyde (39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,3,6-Tribromo-4,5-dihydroxybenzyl methyl ether (40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bis-(2,3,6-tribromo-4,5-dihydroxyphenyl) methane (41)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Bis-(2,3,6-tribromo-4,5-dihydroxyphenyl)-ethane (42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-(2,3,6-Tribromo-4,5-dihydroxybenzyl)-pyrrolidin-2-one (43)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,3,6-Tribromo-4,5-dihydroxybenzyl alcohol (44)</td>
<td>α-Glucosidase inhibition</td>
<td>Kurihara et al., 1999a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>