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Abstract: Diabetes mellitus is a group of chronic metabolic disorders characterized by 

hyperglycemia due to defects in insulin action and/or secretion. It is a worldwide problem 

which has led to illness and premature mortality for many people, and the number of 

diabetes cases has been rising sharply. Unluckily, many conventional antidiabetic agents 

either show limited efficacy or serious mechanism-based side effects. Marine macroalgae 

possess tremendous nutritional value and have been well-known to cure and prevent 

diabetes. An increased interest in various bioactive natural products from marine 

macroalgae, as a potential source of effective antidiabetic agents, has been observed in 

recent years. The effects of macroalgae may delay the development of diabetes and alter the 

metabolic abnormalities through various mechanisms of actions. This review provides an 

overview of marine macroalgae used to prevent and manage diabetes and explores the 

hypoglycemic properties of macroalgae-derived bioactive compounds such as polyphenol, 

bromophenols, sulfated polysaccharides, fucoidan, fucosterol, phlorotannins, carotenoid 

pigments and fucoxanthin with their probable mechanisms behind hypoglycemic activity. 

Keywords: Phaeophyta; rhodophyta; chlorophyta; bioactive compounds; hypoglycemic 

activity 
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1. Introduction 

Globalization, industrialization, and changes of human environment, behavior and lifestyle 

have led to increasing raising rates of both obesity and diabetes (Xiao & Högger, 2015). 

Diabetes mellitus, one of the most important global health problems, was estimated as the 

fifth leading cause of death globally (Roglic et al., 2005). The International Diabetes 

Federation (IDF) estimated that the number of diabetes cases is expected to grow to 438 

million globally in 2030 from 285 million people in 2009 (Atlas, 2009). It is a serious chronic 

disease characterized by hyperglycemia due to defects in insulin action, insulin secretion, or 

both of them (ADA, 2015). The main characteristic symptoms of diabetes are polyuria, 

polydipsia and polyphagia (ADA, 2005). The varying degrees of insulin resistance (Pontiroli, 

2004) and postprandial hyperglycemia play an important role in the development of type 2 

diabetes and related complications (Lee et al., 2012). An effective control of postprandial 

blood glucose level play key role in diabetes care which can improve the life quality of 

patients with type 2 diabetes. A number of pharmacological approaches have been used to 

control diabetes based on the different modes of action such as stimulation of insulin release, 

increase in glucose transport activity, inhibition of gluconeogenesis, and reducing absorption 

of glucose from the intestine (Thilagam, Parimaladevi, Kumarappan, & Mandal, 2013). 

Currently available therapies, including insulin and various oral antidiabetic agents, have 

been used as monotherapy or in combination to make a better glycemic regulation (Jung et al., 

2006). However, a number of those antidiabetic agents either have inadequate efficacy or 

serious mechanism-based side effects (Lee et al., 2014). Thus, the search and investigation 

for more effective and safer hypoglycemic agents from natural sources has continued to be an 

important issue (Vinayagam, Xiao, & Xu, 2017). 

  Owing to the rich biodiversity, the marine environment is a vast and relatively untapped 

source for new bioactive ingredients including polyunsaturated fatty acids, polyphenol, 

sterols, proteins, sulfated polysaccharides, antioxidants and pigments (Lee, Ko, Kang, Lee, & 

Jeon, 2016; Suleria, Gobe, Masci, & Osborne, 2016; Manikkam, Vasiljevic, Donkor, & 

Mathai, 2016; Saleh, Zhang, & Shen, 2016; Ruocco, Costantini, Guariniello, & Costantini, 

2016). Marine algae, the primary producers of all aquatic ecosystems, have served as 

important sources of bioactive natural substances including antidiabetic, antioxidant, 
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antibacterial and antivirals agents (Choochote, Suklampoo, & Ochaikul, 2014; Zhao, Wu, 

Yang, Liu, & Huang, 2015). In particular, macroalgae are well-known healthy food with 

naturally rich in minerals and dietary fibers. Marine algae are consumed as a regular part of 

traditional diet in the Far East and Hawaiian Islands, Japan, Korea, and China. There are 

about 9,000 species macroalgae have been broadly classified into three categories according 

to their composition of pigments, i.e., Phaeophyta, Rhodophyta and Chlorophyta (or the 

brown, red, and green algae, respectively) (Khan et al., 2009). Diverse classes of unique 

metabolites have shown numerous biological activities and potential health benefits 

(Pangestuti & Kim, 2011), such as anticancer, antidiabetic, antihypertensive, 

antihyperlipidemic, antioxidant, anticoagulant, anti-inflammatory, anti-estrogenic, antiviral, 

antifungal, antibacterial, immunomodulatory, neuroprotective, and tissue healing properties in 

vivo (Mohamed, Hashim, & Rahman, 2012). With the identification of a large number of 

bioactive compounds from marine macroalgae, e.g., sulfated polysaccharides, phlorotannins 

and diterpenes, an increased level of attention has been given recently to study the potential 

applications of macroalgae and their components as functional ingredients for both human 

and animal health (Gupta & Abu-Ghannam, 2011). Functional ingredients of macroalgae 

have been found to possess antidiabetic properties and are typically used as food supplements 

(Pangestuti & Kim, 2011). This review paper pay close attention to the potential applications 

of marine macroalgae and/or macroalgae-derived bioactive compounds in diabetes 

management (Table 1), and also discusses their possible mechanisms of action. 

 

2. Phaeophyta (brown algae) 

2.1 Pelvetia Decne. & Thur. 

  Pelvetia is the genus of typical marine macroalgae, and comprises only four species. 

Pelvetia siliquosa C.K.Tseng & C.F.Chang has been reported to self-grow on the craggy 

surfaces near the seashores of the southern area (Lee, 2003). Fucosterol (1), isolated from P. 

siliquosa, was shown to decrease serum glucose levels and to inhibit glycogen degradation in 

streptozotocin (STZ)-induced diabetic rats (Lee, Shin, Kim, & Lee, 2004). An extract from P. 

babingtonii (Harvey) de Toni (Fucaceae) exhibited potent α-glucosidase inhibitory activity 

and was effective for suppressing postprandial hyperglycemia (Ohta, Sasaki, Oohori, 

https://en.wikipedia.org/wiki/Joseph_Decaisne
https://en.wikipedia.org/wiki/Gustave_Thuret
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Yoshikawa, & Kurihara, 2002). α-Glucosidase, an enzyme located in the brush-border 

membranes of human intestinal cells, is involved in carbohydrate metabolism and 

post-translational processing of glycoprptein (Li, Niu, Fan, Han, & Zhang, 2005). Similarly, 

α-amylase is a kind of main secretory products of the pancreas and salivary glands, 

constituting a family of endoamylases that plays a vital role in the digestive system and 

catalyses the initial step in hydrolysis of starch to a mixture of smaller oligosaccharides 

through the cleavage of α-D (1–4) glycosidic bonds (Kandra, 2003). α-Glucosidase and 

α-amylase have long been recognized as preferred drug targets for the modulation of 

postprandial hyperglycemia (Liu, Zhang, Wei, & Lin, 2011). Some marine macroalgae may 

be considered as natural inhibitors of α-glucosidase and α-amylase and be used as auxiliary 

hypoglycemic functional foods or drugs (Rengasamy, Kulkarni, Stirk, Van Staden, 2014). 

 

2.2 Ecklonia Hornemann 

  Several Ecklonia species contain high levels of marine algal polyphenols (Yoon et al., 

2013). Polyphenols are one of the main classes of secondary metabolites found in terrestrial 

plants and marine macroalgae, but there are fundamental differences in the chemical 

structures of polyphenols found in both terrestrial and marine plants (Lee & Jeon, 2013). The 

methanolic extract of Ecklonia stolonifera Okamura, a brown alga belonging to the algal 

family Lessoniaceae, has rich polyphenol content, which were shown strong inhibition effect 

on α-glucosidase activity in vitro as well as strong suppression of the increase in plasma 

glucose level and lipid metabolism in diabetic KK-Ay mice. The bioactive compounds were 

investigated to be phlorotannins (Gouveia et al., 2007; Iwai, 2008). Phlorotannins are 

polyphenols which widely occur in marine organisms, especially in brown macroalgae 

(Yotsu-Yamashita et al., 2013). A review have outlined various antidiabetic mechanisms 

associated with phlorotannins from brown algae ( Lee & Jeon, 2013). Phlorotannins from E. 

kurome Okamura showed inhibitory activities against carbohydrate-hydrolyzing enzymes in 

vitro and decreased postprandial blood glucose levels in vivo (Xu et al., 2012). Before that, 

Eisenia bicyclis (Kjellman) Setchell, Ecklonia stolonifera and phlorotannins isolated from 

them, namely dieckol (2), eckol (3), 7-phloroeckol (4), and phlorofucofuroeckol-A (5) were 

shown to possess marked α-glucosidase and protein tyrosine phosphatase 1B (PTP1B) 

https://en.wikipedia.org/wiki/Frans_Reinhold_Kjellman
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inhibitory activities (Moon et al., 2011). Moreover, the insulin receptors are back to their 

original state via the activity of protein tyrosine phosphatases (PTPs) (Wälchli, Curchod, 

Gobert, Arkinstall, & van Huijsduijnen, 2000). PTP1B is a member of PTPs family that have 

been isolated and identified from mammalian cells, and it maintains the balance of protein 

tyrosine phosphorylation with protein tyrosine kinases (PTK). Cicirelli et al. (1990) reported 

that PTP1B was associated with insulin signal transduction for the first time. It has been 

established that PTP1B played an important role as a negative regulator of the insulin 

signalling pathway. Another study showed that a PTP1B knock-out mouse had increased 

insulin sensitivity (Elchebly et al., 1999). Several clinical studies have revealed that PTP1B is 

mainly responsible for dephosphorylation of the activated insulin receptor and thus down 

regulates insulin signaling, which can be an effective target for the therapy of type 2 diabetes 

(Zhang & Zhang, 2007).  

  Several known phloroglucinol derivatives isolated from E. cava Kjellman, e.g., dieckol (2), 

7-phloroeckol (4), phlorofucofuroeckol-A (5), 6,6-bieckol (6), and fucodiphloroethol-G (7), 

possess significant inhibitory activities against α-amylase and α-glucosidase (Lee, Karadeniz, 

Kim, & Kim, 2009). Dieckol (2) not only inhibits the activities of α-glucosidase and 

α-amylase but also alleviates postprandial hyperglycemia and improve insulin sensitivity in 

vivo (Lee et al., 2010; Pontiroli, 2004). Dieckol (2) and the extract of E. cava can also offer 

the anti-diabetic effect through activating both adenosine 5’-monophosphate (AMP)-activated 

protein kinase (AMPK) and Akt kinase signal pathways (Kang et al., 2010; Kang et al., 2012). 

Adiponectin activates the downstream target AMPK which is a serine/threonine kinase that 

plays an important role in energy metabolism at both the cellular and whole-organism levels 

(Hardie, 2008; Padmalayam & Suto, 2013). AMPK controls whole-body glucose homeostasis 

by regulating metabolism in multiple peripheral tissues, and its activation induces the 

expression of PPARα and carnitine palmitoyltransferase I (CPT-1) that increase fatty acid 

oxidation and improve insulin sensitivity (Bijland, Mancini, & Salt, 2013; Long & Zierath, 

2006). Taking all these into account, it can be assumed that E. cava may have the potential as 

an AMPK activator to increase the expression of AMPK, thus controlling balance of blood 

glucose. However, there are only limited number of studies have investigated the role of 

macroalgae or macroalgae-derived compounds on activation of AMPK. 
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2.3 Laminaria J.V.Lamouroux 

  Laminaria japonica J.E.Areschoug is one of the most important marine medicinal 

foodstuffs (Shirosaki & Koyama, 2011). Its rhizoid has long been applied as a traditional 

medicine for diabetes mellitus in China. Butyl-isobutyl-phthalate (8), extracted from L. 

japonica, exhibited hypoglycemic effect in vivo and non-competitive inhibition of 

α-glucosidase in vitro (Liu, Zhang, Qin, & Lin, 2011). The synthesized 

butyl-isobutyl-phthalate (8) bound with α-glucosidase and induced conformational changes of 

the enzyme, thus providing a potential to develop new α-glucosidase inhibitors (Liu, Zhang, 

Qiu, & Lin, 2011). However, further studies are needed to confirm those findings. Over the 

past decades, L. japonica is a rich source of various functional compounds with diverse 

biological properties; among those, polysaccharides including alginate, fucoidan and 

laminaran are the main active components (Zha et al., 2012). Treatment with polysaccharides 

from L. japonica could significantly reduce fasting blood glucose and increase the levels of 

insulin and/or amylin in diabetic mice model (Li, Yu, Long, Guo, & Duan, 2012; Jia, Yang, 

Wang, Liu, & Xie, 2014). High fiber intake from dried whole seaweed supplements which 

consist of L. japonica and Undaria pinnatifida (48 g/day) could significantly reduce the 

concentrations of fasting and postprandial blood glucose and favorably altered lipid levels in 

20 obese diabetic individuals after a intervention of 4 weeks (Kim, Kim, Choi, & Lee, 2008). 

The above findings indicate that Laminaria has rich antidiabetic potential, but further 

investigations are required to reveal the mechanisms associated with improving diabetic 

parameters, such as fasting and postprandial blood glucose concentrations. 

 

2.4 Sargassum C.Agardh 

  Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor 

superfamily of ligand-activated transcription factors (Michalik et al., 2006). There are three 

isotypes of PPAR, i.e. PPARα, PPARβ/δ (PPARδ) and PPARγ (Gervois, Fruchart & Staels, 

2007). Particularly, PPARα and PPARγ are regarded as important pharmacological targets for 

the therapy of dyslipidemia and insulin-resistant diabetes, respectively (Pershadsingh, 2006). 

PPARγ has been demonstrated to be the major functional receptor for the thiazolidinedione 
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class of insulin-sensitizing drugs (Spiegelman, 1998). Activation of PPARα, which is 

predominantly expressed in the liver, could stimulate lipid consumption by enhancing the 

expression of fatty acid oxidation genes (Harrity et al., 2006). Combination the action of 

PPARα with PPARγ (PPARα/γ) are supposed to ameliorate both dyslipidemia and insulin 

sensitivity. Sargaquinoic acid (9) and sargahydroquinoic acid (10), extracted from Sargassum 

yezoense (Yamada) Yoshida & T.Konno, were identified as novel PPARα/γ dual agonists 

(Kim, 2008). Sargaquinoic acid (9) and sargahydroquinoic acid (10) have beneficial effects 

on glucose and lipid metabolism to improve metabolic disorders through dual activation of 

PPARα/γ transcriptional activities without showing severe adverse effects as observed with 

previously identified PPAR agonists (e.g., body weight gain, heart failure, renal failure, 

urinary cancer and anemia) (Adeghate, Adem, Hasan, Tekes, & Kalasz, 2011; Kim, Lee, Bae, 

& Kee 2012). 

  Sargassum ringgoldianum Harvey and S. hemiphyllum (Turner) C.Agardh extracts have 

high concentration of polyphenols and fucoxanthin (11), respectively. Both of them possess 

α-glucosidase and α-amylase inhibitory activities as well as property of insulin secretion 

stimulation (Lee & Han, 2012; Hwang, Hung, Tsai, Chien, & Kong, 2014). Fucoidans are 

complex and heterogeneous sulphated polysaccharides that usually found in brown 

macroalgae, such as Fucus vesiculosus, Ecklonia kurome, and Undaria pinnatifida. 

Fucoidans extracted from S. wightii Greville ex J.Agardh could inhibit α-glucosidase (Vinoth 

et al., 2015). Thunberol (12), a sterol from the Chinese brown macroalga S. thunbergii 

(Mertens ex Roth) Kuntze, which is one of prolific seaweed growing widely along the coast 

of East China Sea, has been reported to inhibit the activity of PTP1B significantly with an 

IC50 value of 2.24 mg/mL (He, Yao, Liu, & Guo, 2014). An in vivo study revealed that a 

supplement of the S. coreanum J. Agardh extract could lower the blood glucose concentration 

by regulating the hepatic glucose metabolic enzyme activities and improving insulin 

resistance (Park, Nam, & Han, 2015). S. polycystum C. Agardh contains various nutrients and 

is traditionally used against several human diseases (Motshakeri et al., 2014). Both the 

alcohol and the water extracts of S. polycystum could obviously reduce the levels of blood 

glucose and hemoglobin A1c (HbA1c) by increasing the response to insulin (Motshakeri, 

Ebrahimi, Goh, Matanjun, & Mohamed, 2013). HbA1c was incorporated into the diagnostic 
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criteria for diabetes in updated 2010 guidelines of the American Diabetes Association (ADA, 

2010; WHO, 2011). The genus Sargassum has a wide range of active substances, but only 

limited studies have been performed on their antidiabetic activity.  

 

2.5 Others 

  Eisenia bicyclis (Kijillman) Setchell (Lessoniaceae) is a perennial and daily consumed 

edible brown alga that inhabits the middle Pacific coastlines of Korea and Japan. 

Phloroglucinol derivatives isolated from E. bicyclis exhibited great potential for the effective 

therapy of diabetic complications by inhibiting advanced glycation end-products (AGEs) 

formation and α-amylase activity (Okada, Ishimaru, Suzuki, & Okuyama, 2004). E. bicyclis 

and U. pinnatifida (Harvey) Suringar high levels of fucoxanthin (11) and was shown to 

display potent inhibitory activity against AGEs formation and human recombinant aldose 

reductase (HRAR), rat lens aldose reductase (RLAR) and PTP1B activity (Ah et al., 2012). 

Phlorotannins extracted from Fucus vesiculosus L. (Fucaceae) inhibited the formation of 

AGEs mediated by glucose and methylglyoxal in a concentration-dependent manner (Liu & 

Gu, 2012). AGEs are the result of the Maillard reaction (nonenzymatic reaction), and may be 

formed as a result of normal metabolism and aging (Bakker et al., 2015). The accumulation 

of AGEs plays a pivotal role in the development and progression of diabetic complications 

(Rigalleau et al., 2015). Therefore, it may provide a potential means to control the 

development of diabetic complications by inhibiting AGEs formation.  

  Fucoxanthin (11), a marine carotenoid that is characteristically present in edible brown 

macroalgaes such as E. bicyclis (Arame), U. pinnatifida (Wakame), was reported to improve 

insulin resistance and to ameliorate blood glucose levels (D'Orazio et al., 2012; Maeda & 

Dominguez, 2013). Insulin resistance is an important pathophysiological mechanism that 

predicts the progression to type 2 diabetes. Also, an in vivo study on high fat diet-induced 

obesity mice reflected that the fucoxanthin-rich diet could significantly suppress the body 

weight and white adipose tissue weight gain induced by the high fat diet and promoted 

mRNA expression of glucose transporter 4 (GLUT4) mRNA in skeletal muscle tissues 

(Maeda, Hosokawa, Sashima, Murakami-Funayama, & Miyashita, 2009). The glucose uptake 

in surrounding tissues is mediated by GLUT4 translocation which stimulated by Akt 
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(Ramachandran & Saravanan, 2015). Increasing the expression of GLUT4 could improve 

insulin sensitivity, thus reducing or preventing insulin resistance. Fucosterol (1) constitutes 

83–97% of the sterol content in brown macroalgae, and fucosterol (1) from Eisenia bicyclis 

and Ecklonia stolonifera was found to be a promising candidate for the treatment of diabetes 

and diabetic complications through inhibiting HRAR, RLAR, PTP1B, α-glucosidase 

activities and AGEs formation (Jung et al., 2013; Sánchez-Machado, López-Hernández, 

Paseiro-Losada, & López-Cervantes, 2004). Fucoidans derived from the Sporophyll of 

Undaria pinnatifida were reported to substantially prevent hyperglycemia based on oral 

glucose tolerance tests in non-diabetic mice and significantly reduced the levels of blood 

glucose in diabetic mice (Kim, Yoon, & Lee, 2012). 

  Ascophyllum nodosum (L.) Le Jolis is a dominant rocky intertidal brown macroalga that 

grows abundantly in the northeastern coast of North America and the northwestern coast of 

Europe (Taylor, 1957). Water extracts of A. nodosum exhibited strong inhibitory activity 

against α-glucosidase and its phenolic compounds could be implicated to this activity 

(Apostolidis, Karayannakidis, Kwon, Chong, & Seeram, 2011). Several other studies have 

also demonstrated that polyphenol-enriched extracts from A. nodosum could inhibit 

α-glucosidase and α-amylase in vitro as well as have the potential to influence glycemic 

control in vivo (Apostolidis & Lee, 2010; Kim, Rioux, & Turgeon, 2014; Pantidos, Boath, 

Lund, Conner, & McDougall, 2014). Both Fucus vesiculosus and A. nodosum contain large 

amounts of fucoidan. Interestingly, fucoidan extracted from A. nodosum has shown stronger 

inhibitory activity of α-glucosidase than that of extracted from F. vesiculosus. In contrast, 

fucoidan from A. nodosum decreased α-amylase activity but fucoidan extracted from F. 

vesiculosus did not (Kim, Rioux, & Turgeon, 2014). This finding suggests that the ability of 

fucoidan for inhibition of α-glucosidase and α-amylase varies due to different the algae 

species and harvest period. Also, a double-blind experiment on healthy adults reflected that a 

single ingestion of dried whole seaweed extract from A. nodosum and F. vesiculosis favorably 

regulated insulin levels and sensitivity after a carbohydrate-rich meal but displayed no 

significant effect on postprandial glucose response (Paradis, Couture, & Lamarche, 2011). 

Their potential benefits in diabetes management should be further investigated. 

  Ishige okamurae Yendo is as an edible brown alga that grows on rocks in the upper and 

https://en.wikipedia.org/wiki/Carl_Linnaeus
https://en.wikipedia.org/wiki/Auguste_Fran%C3%A7ois_Le_Jolis
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middle intertidal zone on rough open coasts, and generally forms highly persistent 

populations in clear waters (Zou et al., 2008). Diphlorethohydroxycarmalol (13), a kind of 

phlorotannin, isolated from I. okamurae, displayed prominent inhibitory effect against 

α-amylase and α-glucosidase that might provide a good way to the regulation of carbon 

source, such as starch, during fermentation (Heo et al., 2009). The extracts of I. okamurae 

were also shown to have the abilities to lower the blood glucose levels by regulating the 

activities of hepatic glucose metabolic enzymes and improving insulin resistance in db/db 

mice (Min, Kim, Jeon, & Han, 2011). Octaphlorethol A (OPA, 14), a type of phlorotannin 

isolated from I. foliacea has been shown to have the potential to improve type 2 diabetes for 

the first time (Lee, Ko, Kang, Lee, & Jeon, 2016). The OPA significantly improved fasting 

blood glucose level and impaired glucose tolerance in type 2 diabetic db/db mice with the 

mechanism of increasing in GLUT4-mediated glucose utilization via activation of AMPK in 

muscle. 

  Overall, there is a huge knowledge gap exists between Phaeophyta bioactive compounds 

and their roles in antidiabetic activities. Brown algae are rich in bioactive substances and 

many in vitro studies have demonstrated the hypoglycemic potential of many of those 

compounds. However, further research using in vivo studies should be conducted to offer a 

better understanding of the potential mechanisms of those compounds. 

 

3. Rhodophyta (red algae) 

  There are some red macroalgae that contain the bromophenols as algal enzyme inhibitors 

linked to diabetes mellitus (Table 2), such as the family Rhodomelaceae. Grateloupia 

elliptica Holmes contain two bromophenols such as 2,4,6-tribromophenol (15) and 2,4- 

dibromophenol (16) with α-glucosidase inhibitory activity (Kim, Nam, Kurihara, & Kim, 

2008; Kurihara, Mitani, Kawabata, & Takahashi, 1999b). Bromophenol extracts of G. 

elliptica can inhibit intestinal α-glucosidase and stimulated basal glucose uptake into 3T3-L1 

adipocytes (Kim, Nam, Kurihara, & Kim, 2008). Five highly brominated metabolites 

compounds (17–21; Table 2) isolated from a Chinese red alga Laurencia similis showed 

inhibitory activities against PTP1B (Qin et al., 2010). The compound named 

bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (22) was purified from Odonthalia corymbifera 
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and Polyopes lancifolia possessed strong activity against α-glucosidases. Meanwhile, six 

bromophenols (23–28; Table 2) isolated from the Japanese red alga O. corymbifera also 

showed α-glucosidase inhibitory activity (Kurihara et al., 1999a). The two bromophenols 

such as 3-bromo-4,5-dihydroxybenzyl alcohol (29) and 3-bromo-4,5-dihydroxybenzyl methyl 

ether (30) from Polysiphonia morrowii displayed activity against α-glucosidase were 

identified for the first time from this species (Kurihara et al., 1999b). 

Bis-(2,3-dibromo-4,5-dihydroxyphenyl)-methane (31), isolated from red macroalgae 

Rhodomela confervoides (Hudson) P.C.Silva showed significant inhibition against PTP1B (Li, 

Guo, Su, Han, & Shi, 2008). What’s more, an in vivo study also demonstrated the 

antihyperglycemic effect of bromophenols (Shi et al., 2008). Four bromophenols namely 

3-bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)-1,2-benzene-diol (32), 

3,4-dibromo-5-(2-bromo-3,4-dihydroxy-6-(isopropoxymethyl)benzyl)benzene-1,2-diol (33), 

2,2′,3,3′-tetrabromo-4,4′,5,5′-tetra-hydroxydiphenyl methane (34) and 

2,2′,3-tribromo-3′,4,4′,5-tetrahydroxy-6′-ethyloxy-methyldiphenyl methane (35) are all 

bromophenols isolated from Rhodomela confervoides which have potent PTP1B inhibition 

(Jiang, Shi, Cui, & Guo, 2012; Shi et al., 2008; Shi, 2013). A series of bromophenols (36–43) 

purified from red alga Symphylocladia latiuscula exhibited antidiabetic activity by inhibiting 

PTP1B. Otherwise, Kurihara et al. (1999a) have reported a bromophenol 

2,3,6-tribromo-4,5-dihydroxybenzyl alcohol (44) isolated from S. latiuscula wtih 

α-glucosidase inhibition at a very low concentration. 

  Among the red seaweeds, Hypnea musciformis (Wulfen) J.V.Lamouroux extract diplayed 

antihyperglycemic, antioxidant and increased plasma insulin effects in diabetic animals 

(Anandakumar, Balamurugan, Rajadurai, & Vani, 2008). The edible red alga Gelidium 

amansii (J.V. Lamouroux) J.V. Lamouroux is mainly distributed in northeastern Taiwan. A 

mice study has shown that the plasma glucose significantly decreased in the group with oral 

treatment of G. amansii ethanol extract (Choi et al., 2015). The plasma glucose, triglyceride, 

and cholesterol concentrations in rats with diabetes fed the G. amansii diet for 11-week were 

lower than of in rats with diabetes fed the control diet (Yang, Yao, & Chiang, 2015). 

Gracilaria lemaneiformis (Bory) Greville occurs widely in the marine environment and 

belongs to the family Gracilariaceae (Rhodophyta), and the sulfated polysaccharide accounts 

http://www.algaebase.org/search/?genus=Gracilaria
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for about 30% of its dry weight (Yu, Wang, Chen, Zhang, & Long, 2006). A polysaccharide 

extracted from G. lemaneiformis inhibited α-glucosidase activity in vitro and the 

administration of polysaccharide (200 mg/kg body weight) for 21 days significantly 

decreased the blood glucose levels in diabetic mice (Liao et al., 2015). 

  The extract of Kappaphycus alvarezii (Doty) Doty ex Silva and the ethanol extract of fresh 

Eucheuma denticulatum (N. L. Burman) Collins & Hervey demonstrated the appreciable 

inhibitory activities towards α-amylase (Balasubramaniam et al., 2013; Nagarani & 

Kamaguru, 2013). K. alvarezii, K. striatus (F. Schmitz) Doty ex P.C.Silva and E. 

denticulatum are good sources of magnesium, which could provide 30%–90% of the daily 

demand per 100 g of dried macroalgae (Balasubramaniam et al., 2013). It is highly plausible 

that magnesium in red macroalgae is responsible for hypoglycaemic activity. Intracellular 

free magnesium levels have been found to be closely and inversely related to the level of the 

fasting blood glucose (Barbagallo et al., 2003). Magnesium , one of the most abundant ions 

present in living cells, plays a pivotal role in insulin homeostasis and glucose metabolism 

through multiple enzymatic reactions and its plasma concentration is remarkably constant in 

endocrine (Barbagallo et al., 2003). It was shown that serum magnesium levels declined with 

rise in HbA1c levels and with duration of type 2 diabetes (Ramadass, Basu, & Srinivasan, 

2015). Thus, increased consumption of magnesium-rich macroalgae may reduce the risk of 

type 2 diabetes. Gyeongshingangjeehwan 18 (GGEx18) is a kind of herbal drug composed of 

three medicinal plants: Rheum palmatum L. (Polygonaceae), Laminaria japonica Aresch 

(Laminariaceae), and Ephedra sinica Stapf (Ephedraceae). A study revealed that GGEx18 

could significantly increase the expression of fatty acid oxidation genes, such as adiponectin, 

AMPKs, PPARα and its target enzymes, and CPT-1, in both mesenteric adipose tissues and 

3T3-L1 cells and normalized hyperglycemia and hyperinsulinemia in obese mice, thus reduce 

the blood glucose levels (Oh et al., 2014). Porphyran from the red alga Porphyra yezoensis 

Ueda is a water-soluble dietary fiber. A study revealed that dietary porphyran should increase 

adiponectin levels thus improving glucose metabolism in diabetes (Kitano et al., 2012). 

Adiponectin is an adipokine that exerts a strong insulin-sensitizing effect by binding to its 

receptors like AdipoR1 and AdipoR2, resulting in activation of AMPK, PPARα, and 

presumably some other unknown signaling pathways (Kadowaki et al., 2006). Therefore, the 
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adiponectin gene appears to be a promising candidate susceptibility gene for type 2 diabetes. 

  Most of the seaweeds contain high contents of soluble dietary fibers such as carrageenan, 

agar, and alginates, which could passively retard digestion and glucose absorption. The 

beneficial effects of Rhodophyta species on the prevention and management of 

diabetes-related risks have clearly been indicated from in vitro and in vivo animal models. 

Nevertheless, deep and systematic studies, especiallyfocusing on mechanisms of action, are 

still needed. Studies on Rhodophyta sp. and Rhodophyta-derived compounds with 

hypoglycemic activity are still insufficient. Thus, further research in this area is imperative to 

look for more species with hypoglycemic activity and to provide strong evidence of potential 

beneficial effects of hypoglycemic functional foods or drugs from macroalgae. 

 

4. Chlorophyta (green algae) 

  Ulva lactuca L. is a common green macroalga in the division Chlorophyta and found 

widespread in China (Tian, Yin, Zeng, Zhu, & Chen, 2015). Polysaccharides isolated from U. 

lactuca could significantly decrease the blood glucose by their potential inhibitory effect on 

key enzymes closely related to starch digestion and absorption in both plasma and small 

intestine (Belhadj, Hentati, Elfeki, & Hamden, 2013). The Ulva rigida ethanolic extract 

decreased blood glucose concentrations and micronuclei frequency in diabetic rats (Celikler 

et al., 2009; Tas, Celikler, Ziyanok‐ Ayvalik, Sarandol, & Dirican, 2011). Oxidative stress is 

an important factor which responsible for complications in diabetes (Sukmawati et al., 2015). 

Diabetes is generally accompanied by increased production of the molecules of reactive 

oxygen species and/or impaired antioxidant defense systems, which lead to oxidative damage 

to biomolecules. Exposure of the genetic material to reactive oxygen species could cause 

DNA damage (Evans, Dizdaroglu, & Cooke, 2004). There are some reports on the 

antidiabetic activities of other Ulva species, such as U. fasciata Delile, have the abilities to 

reduce blood glucose level, and restore hepatic glycogen content, carbohydrate metablic 

enzymes like hexokinase, glusokinase and glucose 6-phoshatase activity in vivo (Abirami & 

Kowsalya, 2013). Protein kinase C is a family of protein kinase enzymes that are involved in 

controlling the intracellular signal transduction (Anderson, Mcgill, & Tuttle, 2007). The 

activation of protein kinase C may occur in the organs susceptible to developing diabetic 
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complications, especially diabetic nephropathy (Kizub, Klymenko, & Soloviev, 2014).  

   

5. Potential anti-diabetic natural products from marine algae 

The WHO Expert Committee recommended that medicinal plants used in the treatment of 

diabetes be further investigated as they are frequently considered to be lesser or no adverse 

effects (Halberstein, 2005). Search for more safe and effective bioactive agents has continued 

to be an important target in the field of diabetic research. Less than 1% of the estimated 

250,000 higher plants have been screened pharmacologically and very few in regard to 

diabetes (Arumugam, Manjula, & Paari, 2013). The ethnobotanical information reports state 

that about 800 plants and their active extracts which may possess hypoglycemic potential 

have been found. In which, about 200 pure bioactive compounds have been identified and 

reported for their potential anti-diabetic effects (Alarcon-Aguilara et al., 1998; Suksomboon, 

Poolsup, Boonkaew, & Suthisisang, 2011). These natural phytoconstituents showing 

anti-diabetic efficacy include flavonoids, alkaloids, tannins, saponins, terpenoids, phenolics, 

glycosides, steroids, chalcones, carotenoids, peptides, lipids, glycopeptides, iridoids, ursolic 

acid and imidazoline (Wu, Hsieh, Lin, & Yen, 2013). The bioactive compounds are found in 

many fruits, vegetables, herbs, tea, soy and beverage products, and mostly together 

responsible for efficacy (Edirisinghe & Burton-Freeman, 2016). 

So far, approximately 22,000 natural products of marine organisms have been discovered  

whereas 131,000 terrestrial natural products exist (Blunt, Copp, Munro, Northcote, & Prinsep, 

2011). According to a recent study, an estimate of 72,500 algal species has been described 

throughout the world, where as most of them are marine (Guiry, 2012). To survive in various 

diverse and extreme environments, marine macroalgae produce a variety of natural bioactive 

compounds and metabolites (Wang, Li, Lee, & Chang, 2017). Polyphenols and 

polysaccharides from marine macroalgae particularly showed very significant antidiabetic 

potential against pharmacological experimental systems via interfering in carbohydrate 

metabolism. Marine algae-derived functional metabolites indicate structural and functional 

diversity from their terrestrial counter-part due to the differences in their metabolic pathways 

(Guven, Percot, & Sezik, 2010). Algal polyphenols are derived from polymerized 

phloroglucinol units, whereas polyphenols from terrestrial plants are derived from gallic and 
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ellagic acids. They are termed as phlorotannins and biosynthesized via acetate malonate 

pathway (Arnold & Targett, 2002). At all events, the most active candidates will be 

determined through measuring different biochemical parameters such as fasting blood 

glucose, insulin, glycosylated hemoglobin, lipid profile, serum urea and creatinine, plasma 

alanine and aspartate transaminases, or microscopical examinations of pancreatic sections. 

 

6. Conclusion 

  Marine macroalgae and functional ingredients derived from them have increasingly been 

playing a more and more important role in body health and human nutrition. Bioactive 

constituents from marine macroalgae and their byproducts, like phlorotannins, fucosterol, and 

carotenoid pigments including fucoxanthin can be used indirectly as functional ingredients 

for the reduction of incidences of many chronic diseases in humans (Li & Kim, 2011). 

Diabetes mellitus has been considered to be one of the most important global health problems 

and there are many potential ways for macroalgae and macroalgae-derived bioactive 

compounds to treat diabetes, including α-glucosidase and α-amylase inhibition, activation of 

both AMPK and Akt signal pathways as well as HRAR, RLAR, PTP1B activities and AGE 

formation inhibition etc. Marine macroalgae are usually perceived as less toxic with fewer 

side-effects compared with those synthetic antidiabetic drugs. Current understanding on the 

antidiabetic effects of marine macroalgae and their compounds is almost based on the data 

available from in vitro and in vivo animal studies, however, these data cannot be extrapolated 

into the human setting without reliable human clinical data. Further investigations are 

imperative to unveil many more macroalgae and their components, which may have 

antidiabetic potentials. It is also important to look in to the possible mechanisms of 

antidiabetic actions of these marine macroalgae and their compounds. These antidiabetic 

therapeutics from natural source are valuable lead compounds, However, they seldom can be 

for direct clinical use and structural modifications are necessary. As a primary requirement 

for drug development, the future potential of algal natural products used in diabetes will be 

based on the modification of structures of biologically active compounds. In addition, 

original alga-derived natural products is unfeasible to meet market demands and alternative 

resupply approaches are being developed based on biotechnological production or chemical 
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semi-synthesis from naturally occurring precursors. Industry-scale production of complex 

natural products can be harvested in the future align with the progress of the knowledge of 

plant biosynthetic pathways and the development of more efficient genetic engineering 

strategies and tools. It is of immense importance to gain idea on enhancement of 

bioavailability and intrinsic potency with structure–activity relationship studies of algal 

bioactive compounds for the treatment of diabetes. Moreover, clinical research is needed to 

confirm the real efficacy of marine macroalgae to aid in diabetes prevention and 

management . Pharmacists should encourage patients to seek advice about the addition of 

these antidiabetic therapeutics for the treatment of diabetes. More research is needed to 

identify and quantify the phytochemical compounds on diabetes, as well as the combination 

therapy of algal natural products with the synthetic drugs. It is reasonable to state that marine 

macroalgae seem to have great developing potential in medicinal preparation to be 

sustainable nutraceutical or functional foods for complementary and alternative diabetes 

therapy. 
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Fig. 1 Chemical structures of bioactive compounds from marine macroalgae (references seen in Table 1 

and Table 2) 

1 Fucosterol  2 Dieckol 

 

3 Eckol  4 7-Phloroeckol 

 

5 Phlorofucofuroeckol-A       6 6,6-Bieckol 
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Table 1 Preclinical trials with marine macroalgae 

Macroalgae Major compound Effects References 

Pelvetia siliquosa Fucosterol (1) Inhibition of blood glucose level and glycogen degradation Lee et al., 2004 

Pelvetia babingtonii Methanol extract α-Glucosidase inhibition and suppression of postprandial hyperglycemia Ohta et al., 2002 

Ecklonia stolonifera Polyphenols α-Glucosidase inhibition; Suppression of the increase in plasma glucose Gouveia et al., 2007; Iwai, 2008 

Phlorotannins PTP1B and α-glucosidase inhibition Moon et al., 2011 

Fucosterol (1) RLAR, HRAR, PTP1B, α-glucosidase activities and AGE formation inhibition Jung et al., 2013 

Eisenia bicyclis 

Ecklonia stolonifera 

Dieckol (2) 

Eckol (3) 

7-Phloroeckol (4) 

Phlorofucofuroeckol-A (5) 

α-Glucosidase and PTP1B Moon et al., 2011 

Ecklonia cava Dieckol (2) 

7-Phloroeckol (4) 

Phlorofucofuroeckol-A (5) 

6,6-Bieckol (6) 

Fucodiphloroethol-G (7) 

Activation of both AMPK and Akt signal pathways; Improvement of insulin 

sensitivity; α-Glucosidase and α-amylase inhibition 

Kang et al., 2012 

Pontiroli, 2004 

Lee et al., 2010 

Ecklonia kurome Phlorotannins α-Amylase inhibition; Amelioration of hyperinsulinemia Xu et al., 2012 

Laminaria japonica Polysaccharides Reduced fasting blood glucose; Increased the levels of insulin and amylin Li et al., 2012; Jia et al., 2014 

Butyl-isobutyl-phthalate (8) α-Glucosidase inhibition Bu et al. 2010 

Sargassum ringgoldianum Polyphenol α-Amylase and α-glucosidase inhibition Lee et al., 2012 

Sargassum yezoense Sargaquinoic acid (9) 

Sargahydroquinoic acid (10) 

Enhances the transcriptional activities of PPARα and PPARγ Kim et al., 2012 

Amelioration of insulin resistance Kim, 2008 

Sargassum wightii Fucoidan α-D-glucosidase inhibition Vinoth et al., 2015 

Sargassum polycystum Extract Increasing insulin sensitivity Motshakeri et al., 2013 

Sargassum hemiphyllum Fucoxanthin (11) α-Amylase, α-glucosidase inhibition and insulin release enhancement  Hwang et al., 2014 

Sargassum thunbergii Thunberol (12) PTP1B inhibition He, Yao, Liu, & Guo, 2014 

Sargassum coreanum Extract Alteration of the hepatic glucose metabolic enzyme activities and improvement of Park, Nam, & Han, 2015 
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insulin resistance  

Undaria pinnatifida Fucoxanthin (11) HRAR, RLAR, PTP1B inhibition, and AGE formation Ah et al., 2012 

Improve insulin signaling Maeda et al., 2013 

Eisenia bicyclis Phlorotannins Inhibition of AGEs and α-amylase Okada et al., 2004 

Fucoxanthin (11) Inhibition of RLAR, HRAR, PTP1B activities and AGE formation Ah et al., 2012 

Fucosterol (1) Inhibition of RLAR, HRAR, PTP1B, α-glucosidase activities and AGE formation Jung et al., 2013 

Ascophyllum nodosum Phlorotannins  

Fucoidan 

α-Amylase and α-glucosidase inhibition Apostolidis et al., 2011; Kim et 

al., 2014; Pantidos et al., 2014 

Ishige okamurae Diphlorethohydroxycarmalol (13) α-Amylase and α-glucosidase inhibition Heo et al., 2009 

Ishige okamurae Extract Altering the hepatic glucose metabolic enzyme activities and improves insulin 

resistance. 

Min et al., 2011 

Ishige foliacea  Octaphlorethol A (14) Increasing in GLUT4-mediated glucose utilization via activation of AMPK in 

muscle. 

Lee, Ko, Kang, Lee, & Jeon, 

2016 

Kappaphycus alvarezii 

Eucheuma denticulatum 

Extract Inhibitory activity towards α-amylase Nagarani & Kamaguru 2013; 

Balasubramaniam et al., 2013 

Gracilaria lemaneiformis Polysaccharide Inhibitory to the α-glucosidase activity; decrease in blood glucose levels Liao et al., 2015 

Gelidium amansiithe  Ethanol extract Plasma glucose significantly decreased Choi et al., 2015 

Porphyra yezoensis Porphyran Increasing adiponectin levels  Kitano et al., 2012 

Ulva rigida Ethanolic extract Regeneration of β-cells and/or potentiating the insulin release Celikler et al., 2009; Tas et al., 

2011 

Ulva fasciata Sulfated polysaccharides Reduce blood glucose level, and restore hepatic glycogen content and carbohydrate 

metablic enzymes 

Abirami & Kowsalya, 2013  

Ulva lactuca Polysaccharides α-Amylase, maltase and sucrase inhibition; Delay glucose absorption Belhadj et al., 2013 
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Table 2 The bromophenols from red algae as algal enzyme inhibitors linked to diabetes mellitus 

Red algae Bromophenols Major activity References 

Grateloupia elliptica 2,4,6-Tribromophenol (15) α-Glucosidase inhibition Kim, Nam, Kurihara, & Kim, 2008 

2,4-Dibromophenol (16)   

Laurencia similis 3′,5′,6′,6-Tetrabromo-2,4-dimethyldiphenyl ether (17) PTP1B inhibition Qin et al., 2010 

1,2,5-Tribromo-3-bromoamino-7-bromomethylnaphthalene (18)   

2,5,8-Tribromo-3-bromoamino-7-bromomethylnaphthalene (19)   

2,5,6-Tribromo-3-bromoamino-7-bromomethylnaphthalene (20)   

2′,5′,6′,5,6-Pentabromo-3′,4′,3,4-tetramethoxybenzo-phenone (21)   

Bis-(2,3-dibromo-4,5-dihydroxybenzyl) ether (22)   

Odonthalia corymbifera Bis-(2,3-dibromo-4,5-dihydroxybenzyl) ether (22) α-Glucosidase inhibition Kurihara et al., 1999a 

2,3-Dibromo-4,5-dihydroxybenzyl alcohol (23)   

2,3-Dibromo-4,5-dimethoxybenzyl methyl ether (24)   

4-Bromo-2,3-dihydroxy-6-hydroxymethylphenyl 

2,5-dibromo-6-hydroxy-3-hydroxymethylphenyl ether (25) 

  

4-Bromo-2,3-dimethoxy-6-methoxymethylphenyl 

2,5-dibromo-6-methoxy-3-methoxymethylphenyl ether (26) 

  

4-Bromo-2,3-dimethoxy-6-methoxymethylphenyl 

2,5-dibromo-6-methoxy-3-methoxymethylphenyl ether (27) 

  

3-Bromo-4,5-dimethoxybenzyl methyl ether (28)   

Polyopes lancifolia Bis-(2,3-dibromo-4,5-dihydroxybenzyl) ether (22) α-Glucosidase inhibition  Kim, Kurihara, & Kim, 2010  

Polysiphonia morrowii 3-Bromo-4,5-dihydroxybenzyl alcohol (29) α-Glucosidase inhibition  Kurihara et al., 1999b 

3-Bromo-4,5-dihydroxybenzyl methyl ether (30)   

Rhodomela confervoides Bis-(2,3-dibromo-4,5-dihydroxybenzyl) methane (31) Potent PTP1B inhibition  Li et al., 2008;  

 3-Bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)-1,2-benzene-diol (32)  Jiang et al., 2012; Shi 2013 

3,4-Dibromo-5-(2-bromo-3,4-dihydroxy-6-(isopropoxymethyl)benzyl)benzene-1,2-diol (33)   
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2,2′,3,3′-Tetrabromo-4,4′,5,5′-tetra-hydroxydiphenyl methane (34)  Shi et al., 2008 

2,2′,3-Tribromo-3′,4,4′,5-tetrahydroxy-6′-ethyloxy-methyldiphenyl methane (35)   

Symphylocladia latiuscula 2,3-Dibromo-4,5-dihydroxybenzyl methyl ether (36) PTP1B inhibition Liu et al., 2011 

3,5-Dibromo-4-hydroxybenzoic acid (37)   

2,3,6-Tribromo-4,5-dihydroxymethylbenzene (38)   

2,3,6-Tribromo-4,5-dihydroxybenzaldehyde (39)   

2,3,6-Tribromo-4,5-dihydroxybenzyl methyl ether (40)   

Bis-(2,3,6-tribromo-4,5-dihydroxyphenyl) methane (41)   

1,2-Bis-(2,3,6-tribromo-4,5-dihydroxyphenyl)-ethane (42)   

1-(2,3,6-Tribromo-4,5-dihydroxybenzyl)-pyrrolidin-2-one (43)   

2,3,6-Tribromo-4,5-dihydroxybenzyl alcohol (44) α-Glucosidase inhibition  Kurihara et al., 1999a 

 

 


