
Pomeroy, E, Macintosh, A, Wells, JCK, Cole, TJ and Stock, JT

 Relationship between body mass, lean mass, fat mass, and limb bone cross-
sectional geometry: implications for estimating body mass and physique from 
the skeleton

http://researchonline.ljmu.ac.uk/id/eprint/7733/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Pomeroy, E, Macintosh, A, Wells, JCK, Cole, TJ and Stock, JT (2018) 
Relationship between body mass, lean mass, fat mass, and limb bone 
cross-sectional geometry: implications for estimating body mass and 
physique from the skeleton. American Journal of Physical Anthropology. 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Title: Relationship between body mass, lean mass, fat mass, and limb bone cross-sectional 

geometry: implications for estimating body mass and physique from the skeleton 

 
Authors: Emma Pomeroy 1 

Alison Macintosh 2 
Jonathan C.K. Wells 3 
Tim J. Cole 3 
Jay T. Stock 2, 4 

 
Affiliations:  
1 School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, 
Liverpool L3 3AF, UK 
2 ADaPt Project, PAVE Research Group, Department of Archaeology and  Anthropology, University of 
Cambridge, Pembroke Street, Cambridge CB2 3QG, UK 
3 UCL Great Ormond Street Institute of Child Health, 30 Guilford Street London WC1N 1EH, UK 
4 Department of Anthropology, University of Western Ontario, London, ON, Canada, N6A 3K7 
 
Pages: 19 + 1 title page + 15 bibliography 
 
Figures: 3 
 
Tables: 3 
 
Abbreviated title: Estimating body composition from bone 
 
Key words: Lean mass; fat mass; osteology, human evolution 
 
Corresponding author: 
Dr Emma Pomeroy     Email: e.e.pomeroy@ljmu.ac.uk 
School of Natural Sciences and Psychology  Tel: +44 (0) 151 231 2815 
Liverpool John Moores University 
Byrom Street 
Liverpool L3 3AF 
UK 
 
Grant sponsorship: Leverhulme Trust Early Career Fellowship (EP), European Research Council under 

the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement 

n.617627 (JTS, AM), Medical Research Council grant MR/J004839/1 (TJC) 

  



ABSTRACT 
 

Objectives: Estimating body mass from skeletal dimensions is widely practiced, but methods for 

estimating its components (lean and fat mass) are poorly developed. The ability to estimate these 

characteristics would offer new insights into the evolution of body composition and its variation 

relative to past and present health. This study investigates the potential of long bone cross-sectional 

properties as predictors of body, lean, and fat mass. 

Materials and Methods: Humerus, femur and tibia midshaft cross-sectional properties were 

measured by peripheral quantitative computed tomography in sample of young adult women 

(n=105) characterised by a range of activity levels. Body composition was estimated from 

bioimpedance analysis.  

Results: Lean mass correlated most strongly with both upper and lower limb bone properties (r 

values up to 0.74), while fat mass showed weak correlations (r ≤ 0.29). Estimation equations 

generated from tibial midshaft properties indicated that lean mass could be estimated relatively 

reliably, with some improvement using logged data and including bone length in the models 

(minimum standard error of estimate = 8.9%). Body mass prediction was less reliable and fat mass 

only poorly predicted (standard errors of estimate ≥11.9% and >33% respectively).  

Discussion: Lean mass can be predicted more reliably than body mass from limb bone cross-

sectional properties. The results highlight the potential for studying evolutionary trends in lean mass 

from skeletal remains, and have implications for understanding the relationship between bone 

morphology and body mass or composition. 

 
  



Body mass can be divided into two major components: body fat (energy stores) and lean mass 

(including muscle, organs and bone), each of which has distinct biological significance and was likely 

subject to different selective pressures during human evolution. Humans have a high proportion of 

body fat compared to other primates, and to mammals more widely (Pontzer et al., 2016; Wells, 

2010; Zihlman and Bolter, 2015). In contrast, skeletal muscle mass (a major constituent of lean mass) 

is low compared with our closest relatives Pan (Zihlman and Bolter, 2015), other primates 

(Muchlinski et al., 2012) and, it has been argued, earlier fossil hominin species (Churchill, 1998; 

Churchill, 2006; Trinkaus, 1983; Trinkaus et al., 1991; Wells, 2017). Within our species, fat and lean 

masses vary in relation to selective pressures such as climate and disease load (Houghton, 1990; 

Wells, 2012a,b; Wells and Cortina-Borja, 2013; Wilberfoss, 2012), and population variation in body 

composition is linked to contemporary disease susceptibility (Gysel et al., 2014; Lear et al., 2009; 

Unni et al., 2009; Wells, 2016). The ability to estimate fat and lean mass from skeletal characteristics 

would offer novel potential to investigate past human adaptation, health and evolution, as well as to 

understand the origins of contemporary variation in body composition. 

 

Typically, body mass is estimated from the skeleton from femoral head diameter (Grine et al., 1995; 

McHenry, 1992; Ruff et al., 1991, 1997), from bi-iliac breadth and stature (Auerbach and Ruff, 2004; 

Ruff, 2000a; Ruff et al., 1997, 2005, Schaffer, 2016: see Auerbach and Ruff, 2004, for a review), or 

less commonly from other joint and shaft dimensions or properties (Aiello and Wood, 1994; De 

Groote and Humphrey, 2011; Elliott et al., 2016a,b; Grabowski et al., 2015; Grine et al., 1995; 

Lorkiewicz-Muszyńska et al., 2013; McHenry, 1992; Moore, 2008; Moore and Schaefer, 2011; Ruff et 

al., 1997, 2007; Squyres and Ruff, 2015; Wheatley, 2005; Will and Stock, 2015). While the estimation 

of body mass from the skeleton is relatively routine in osteology, despite its known inaccuracy 

(Elliott et al., 2016a; Heyes and MacDonald, 2015), fewer studies have explored methods for 

estimating body mass components. Previous attempts have largely focused on estimating muscle 

area in relation to bone cross-sectional properties at one body location (e.g. forearm), rather than 



total skeletal muscle or lean mass, and have produced mixed results. Shaw (2010) reported that 

bone cross-sectional geometry was a relatively poor predictor of muscle area at the same cross-

sectional location for the humerus, ulna and tibia of adult male athletes residing in the UK, although 

he reported correlations of up to 0.57 for the humerus, despite adjusting models for body mass 

(which may have removed a significant portion of any relationship). Slizewski et al. (2014, 2013) 

reported stronger results for the ulna among a German sample of mixed sex and age.  

 

The problem of estimating whole body lean mass and fat mass has received less attention. The 

theoretical basis of ‘mechanical’ methods of estimating body mass is that joints, particularly of the 

lower limb in humans, are adapted to, and so are proportional in size to, the load they support 

(Auerbach and Ruff, 2004). By the same rationale, cross-sectional geometry of the major limb bones 

is known to respond to mechanical loading (e.g., Bass et al., 2002; Frost, 1988, 2003; Haapasalo et 

al., 2000; Pearson and Lieberman, 2004; Ruff et al., 2006; Shaw, 2008; Shaw and Stock, 2009; Stock 

and Pfeiffer, 2001), and so could also be used to estimate body mass and its components, although 

this is not widely practised (but see for example Robbins et al., 2010 with juveniles). While activity 

levels influence bone cross-sectional geometry (Ruff, 2008; Ruff et al., 1993), body mass accounts for 

80% of the variation in cross-sectional geometry (Davies, 2012). Interestingly, some studies suggest 

that joint size and cross-sectional shaft geometry are more closely related to lean mass than to body 

mass (Reeves, 2014; Ruff et al., 1991; Semanick et al., 2005; Wu et al., 2007), although this has not 

been extensively investigated. 

 

As components of overall mass and bone loading, both total lean and total fat masses (hereafter 

lean and fat masses) may individually relate to joint sizes and cross-sectional bone properties. 

However, the influence of muscle forces on bone loading appears to be much greater than that of 

gravity and body mass per se (Baker et al., 2013; Beck et al., 2001a; Burr, 1997; Capozza et al., 2004; 

Hsu et al., 2006; Petit et al., 2005; Robling, 2009). Bone and skeletal muscle are proposed to form a 



‘functional unit’ so that bone cross-sectional properties respond to muscle mass and strength to 

maintain mechanical integrity (Edwards et al., 2013; Fricke and Schoenau, 2007; Judex et al., 2016; 

Parfitt, 1997; Puthucheary et al., 2015; Rauch and Schoenau, 2001; Schoenau, 2005; Schoenau and 

Fricke, 2006: but see e.g., Judex et al., 2016) through a feedback mechanism (Frost, 1988, 1997, 

2003). As bone and skeletal muscle derive from common progenitor cells from the somatic 

mesoderm and achieve peak tissue mass at the same time, they may also show correlated properties 

resulting from common genetic and environmental influences during development (DiGirolamo et 

al., 2013; Karasik et al., 2009; Lang et al., 2009; Mikkola et al., 2009; Seeman et al., 1996). Work by 

Ruff (2003) suggests that the relative importance of gravitational and muscular forces varies by limb, 

the former being more important for the lower limb and the latter for the upper limb, particularly in 

males. Adjusting for body mass, there was a strong correlation (r = 0.70) between the residuals of 

muscle area and humeral shaft strength in the oldest individuals (17 years) in the same dataset (Ruff 

et al., 2016). 

 

The theoretical basis for a link between fat mass and bone properties is weaker. Both bone shaft size 

and mechanical properties are more closely related to lean mass than to fat mass, and fat mass is 

not a strong predictor of bone size or geometry (Bailey and Brooke-Wavell, 2010; Beck et al., 2001a, 

2009; Cole et al., 2012; El Hage and Baddoura, 2012; Farr et al., 2014; Hu et al., 2012; Leslie et al., 

2014; Mallinson et al., 2013; Moon et al., 2015; Semanick et al., 2005; Sioen et al., 2016; Taes et al., 

2009; Travison et al., 2008; Wu et al., 2007). Most of these studies focused on femoral neck 

geometry inferred from dual energy X-ray absorptiometry (DXA), but peripheral quantitative 

computed tomography (pQCT) studies of the tibia (Baker et al., 2013; LeBrasseur et al., 2012; Taes et 

al., 2009) and radius (LeBrasseur et al., 2012; Taes et al., 2009) report similar results. However, there 

are several grounds on which we might predict a relationship between limb bone cross-sectional 

properties and adiposity: fat mass is a component of body mass and therefore contributes to 

skeletal loading; Bone medullary adipose tissue (BMAT) may show an inverse relationship with body 



mass and shares common progenitor cells with osteoblasts (reviewed in Devlin, 2011; Devlin and 

Rosen, 2015; Fazeli et al., 2013; Scheller et al., 2016; Scheller and Rosen, 2014); and bone is a source 

of hormones that contribute to the regulation of energy balance (Zhang et al., 2015). 

 

The purpose of this study is to examine the relationships between long bone cross-sectional 

properties, body mass, and estimates of lean, muscle and fat mass using a sample of young adult 

women of varying activity levels, and known body mass and composition. The aim is to test the 

feasibility of estimating body mass and its components from long bone shaft properties, 

independently of stature. Based on previous studies we hypothesise that lean mass will show the 

closest relationships to bone cross-sectional properties, followed by body mass, with fat mass 

showing the weakest correlations. It has previously been argued that bone properties of the lower 

limb should more closely relate to body mass (and by extension its components) in humans since the 

upper limb does not routinely support body mass beyond infancy (Ruff, 2003; Ruff et al., 1993; 

Schoenau et al., 2000; Slizewski et al., 2013; Trinkaus and Churchill, 1999). Therefore we also predict 

that bones of the lower limb (tibia, femur) will have stronger relationships to body mass and its 

components than those of the upper limb (humerus).  

 

MATERIALS AND METHODS 

Study sample 

The sample consists of 105 healthy women aged between 19 and 40 years, with no history of 

medical conditions or medication use known to interfere with bone metabolism. The largest portion 

of the sample (97 women) was recruited via a study of musculoskeletal adaptation to behaviour as 

part of the ADaPt Project, University of Cambridge, UK. Participants included varsity level rowers, 

soccer players, and endurance runners recruited from the Cambridge University Women's Boat Club, 

Women's Association Football Club, Athletics Club, Hare & Hounds, and Triathlon Club, as well as the 

Cambridge & Coleridge Athletics Club, and the Cambridge Triathlon Club. Recreationally-active 



controls were recruited through several University of Cambridge colleges and the University of 

Cambridge Graduate Union. An additional eight participants were recruited via a study of 

ultramarathon runners as part of the ADaPt Project, from the Beyond the Ultimate Jungle Ultra 2016 

and Everest Trail Race 2016. Both studies were approved by the Cambridge University Human 

Biology Research Ethics Board (HBREC.2015.25 and HBREC.2016.14) and ethical approval for the use 

of peripheral quantitative computed tomography (pQCT) was obtained from the NHS Health 

Research Authority NRES Committee East of England - Cambridge East (15/EE/0017). All volunteers 

provided prior written informed consent.  

 

The dataset is particularly suited to investigating relationships between bone properties and body 

mass and its components, since it includes women engaged in a wide range of physical activity 

levels, and sports which impose a variety of loading regimes on the upper and/or lower body. Given 

that people are thought to have been more active in the past, particularly prior to the Holocene 

(Ruff et al., 1993, 2015; Ryan and Shaw, 2015; Shaw, 2010: but see Pontzer et al. 2012), this sample 

is more likely to encompass a range of variation in musculature and activity levels that will parallel 

both past and modern loading regimes on the skeleton, making the results of our analyses more 

relevant for both contemporary and past populations. As only women are included in the dataset, 

the aim is not to create a full set of regression equations that can be applied, but as a test of the 

feasibility of such an approach. 

 

Anthropometry 

Stature was measured to the nearest mm using a SECA 274 stadiometer, and body mass was 

measured to the nearest 0.1 kg with the participant dressed in light athletic clothing using a SECA 

electronic scale. Humerus, femur and tibia lengths were measured following International Standards 

for Anthropometric Assessment (2001), using sliding callipers to the nearest 0.1 cm. It should be 

noted that femur length was measured from the superior border of the greater trochanter to the 



distal-most part of the lateral condyle, and so is not directly equivalent to the maximum or 

bicondylar femur lengths typically used in osteology.  

 

Estimation of body composition 

Lean mass (muscle, organ and bone weight) and fat mass were estimated by bioimpedance analysis 

(BIA) using a Bodystat QuadScan 4000 (Bodystat, Isle of Man, UK). Briefly, BIA passes a current 

through the body between electrodes placed on the hands and feet with the participant supine, and 

an estimate of total body water is obtained by measuring resistance and reactance to the current 

and adjusting them for height. Total body water is then converted to estimates of fat and lean mass 

using age- and sex-specific equations built into the equipment.  

 

Bone properties 

Peripheral Quantitative Computed Tomography was performed on both humeri (35% and 50% of 

length, measured from the distal end), and the right femur (at 50% of length) and tibia (at 66% and 

50% of length: Fig. 1A) using a Stratec XCT-3000 pQCT scanner (Stratec Medizintechnik GmbH, 

Pforzheim, Germany). Results are reported only for the right humerus, femur and tibia midshaft 

(50%) levels, as results from the 35% humerus and 66% tibia were similar to 50%, and those from the 

right humerus were very similar to those from the left. Images were visually screened, and any scans 

affected by movement artefacts were excluded; thus sample sizes vary slightly by measurement site. 

 

*** FIGURE 1 NEAR HERE *** 

 

Three classes of bone properties were investigated as predictors of body mass and its components 

(Fig. 1B). First, the total (TA), cortical (CA) and medullary (MA) areas of each cross-section in mm2 

were analysed, on the basis that a theoretical relationship has been predicted for total and cortical 

areas and body mass through skeletal loading, and between medullary cavity size and adiposity. 



Second, biomechanical properties representing bone strength (resistance to compressive forces) and 

rigidity (resistance to deformation) were included, again on the basis of theoretical relationships 

between loading, body mass and skeletal properties. Polar second moment of area (J, measured in 

mm4) represents torsional and twice average bending rigidity of the bone when modelled as a 

cylinder, and the polar section modulus (Zp, measured in mm3) represents torsional and twice 

average bending strength (Ruff, 2008). Finally, external dimensions of the bone cross-section 

(maximum and minimum diameters and circumference) were included, for many older datasets or 

where cross-sectional geometric analyses were not feasible. All bone properties were derived from 

the pQCT scans using the BoneJ plugin version 1.3.10 (Doube et al., 2010) for ImageJ version 1.46 

(NIH: Rasband, 1997-2016). Image stacks were thresholded using the 'Optimise Threshold' function 

in BoneJ.  

 

Data standardisation 

Stature is known to be an important predictor of lean body mass (e.g., Heymsfield et al., 2007, 2011; 

Kulkarni et al., 2013), and any relationships between bone properties and lean mass could reflect 

overall size. Bone properties also relate to body size as previously outlined. Given that the 

relationship between stature and lean mass varies between populations, the ability to predict lean 

mass independently of stature would have distinct benefits for trying to investigate temporal or 

geographical variation in lean mass from skeletal remains. Furthermore, the intimate relationships 

between stature, body mass and its components, and bone properties, may mean that applying size 

adjustments to both variables may remove the relationship which would allow the prediction of 

body mass, lean mass or fat mass. Therefore this study investigates the relationships between lean 

mass and unstandardized bone properties. However, we separately adjust for stature to investigate 

to what extent bone properties relate to body mass, lean mass or fat mass as a result of overall body 

size. 

 



Statistical analyses 

Relationships between body mass, lean mass or fat mass, and bone properties were investigated 

using Pearson’s correlation. Correlations were performed between body mass or its components 

and bone properties, as well as partial correlations adjusting for stature. Data were natural log 

transformed prior to correlation analysis as a number of the variables showed non-normal 

distributions (determined by visual assessment of histograms and ratio skewness to its standard 

error), and to account for potential allometry.  

 

Ordinary least squares (OLS) regression equations of body mass or its components on selected bone 

properties were fitted. One bone property from each type (area, cross-sectional geometry and 

external measurements) from the tibial midshaft was used for trial regression models. Models were 

calculated with and without bone length, as an indicator of overall size, to see how it affected the 

model, and for raw and natural log transformed variables, to investigate whether potential allometry 

may result in a log-log regression giving better results. The relative performance of the models was 

judged using the adjusted R2 values and the Bayesian Information Criterion (BIC: Schwarz, 1978). The 

BIC offers an assessment of model fit, with lower values indicating better fit, which penalises 

additional terms in the model to reduce the risk of over-fitting. It is similar to the Akaike Information 

Criterion (AIC) but uses a larger penalty and hence leads to more parsimonious models. The 

summary statistics used to compare models here differ from those applied in some other studies, 

where mean prediction errors (PEs) and standard errors (SEEs: raw and as a percentage in both 

cases) are often quoted alongside R2 values (e.g., Elliott et al., 2016b; Ruff et al., 2012; Squyres and 

Ruff, 2015). However, where log-log regression models are used (e.g., Elliott et al., 2016b), these 

measures are not appropriate. Working on the natural log scale is effectively working in percentage 

terms (Cole, 2000; Cole and Altman, 2017), and thus calculating further percentages (%SEE, %PE) is 

inappropriate. The SEE of the log-log regression model is directly interpretable in percentage units. 



Therefore 100 x SEE of the log–log regression models and %SEE (100 x (SEE / Mean y)) of the raw 

models are presented for comparison with each other and with other published models. 

 

All analyses were conducted using SPSS for Windows v. 24.0 (IBM Corporation, Chicago), with p 

values < 0.05 considered significant.  

 

RESULTS 

Demographic information and summary statistics on the study sample is presented in Table 1, and 

by individual sports disciplines and for controls in Supplementary Table 1. Mean age was 24 years, 

one third of the sample were relatively sedentary controls, 38% were rowers and the remainder 

were endurance or ultramarathon runners, soccer players or ex-athletes. The vast majority (97%) 

were of European ancestry, 71% reported using some form of hormonal contraceptive in the past, 

and 45% reported current hormonal contraceptive use. Percentage body fat was 25% for the 

controls and 21% for the athletes. 

 

*** TABLE 1 NEAR HERE *** 

 
 
Correlations between log-transformed variables are summarised in Table 2 and Figure 2. The highest 

correlations for each tissue component were as follows: body mass, tibia midshaft TA (r = 0.62); lean 

mass, humerus midshaft CA (r = 0.74); and fat mass, tibia midshaft circumference (r = 0.29). For all 

bone properties at all cross-section locations, correlations were lowest for fat mass, highest for lean 

mass, and intermediate for body mass. Generally, the pattern of strength of correlations was similar 

for body mass, lean mass, and fat mass across the different bones and cross-sections, except that 

medullary area had the lowest correlations with lean mass and body mass, but highest correlations 

with fat mass. The strongest correlations with lean and body mass were generally CA, J, and Zp. 

External bone measurements generally had weaker correlations, although of those, circumference 



was generally strongest. Correlations between bone properties and fat mass were relatively weak, 

but stronger for the lower than the upper limb. 

 

*** TABLE 2 AND FIGURE 2 NEAR HERE *** 

 

Partial correlations adjusting for stature showed similar patterns for lean and body mass (Table 2, 

Fig. 3) but correlations were typically 0.2 less showing that stature accounted for part, but not all, of 

the relationship between bone properties and lean or body masses. For fat mass, adjustment for 

stature had less impact, and as before fat mass was more closely related to lower than upper limb 

bone properties. The strongest correlations were between tibia midshaft TA for body mass (r = 0.40), 

humerus midshaft TA and Zp for lean mass (r = 0.60), and tibia midshaft circumference for fat mass 

(r = 0.30). 

 

*** FIGURE 3 NEAR HERE *** 

 

For the regression models, R2 values were highest for lean mass (0.47-0.52), intermediate for body 

mass (0.35-0.38), and low for fat mass (≤ 0.07). For all variables, the log-log regression models gave 

lower BIC values, indicating that they fitted better than the untransformed models. Including bone 

length in the models increased R2 values by 0.04-0.07 for body mass, 0.20-0.26 for muscle mass and 

0.08-0.11 for lean mass, and decreased BIC values. In contrast, R2 values for fat mass remained 

essentially unchanged and adding bone length increased BIC. Thus the best models were those 

predicting lean mass using log-transformed variables and including bone length.  

 
*** TABLE 3 NEAR HERE *** 

 
 
 



DISCUSSION 

This study demonstrates that in a sample of young adult women of varying habitual activity levels, 

the relationships between cross-sectional properties of the humerus, femur and tibia on the one 

hand, and body mass and composition on the other, were strongest for lean mass, intermediate for 

body mass, and weakest for fat mass. OLS regression models derived for log-transformed TA, J and 

circumference at the tibia midshaft had SEEs of 10% for lean mass and 12-13% for body mass, but 

only 33% for fat mass. These results for lean mass compare favourably with SEEs of 17.5% and 14.4% 

reported by Ruff et al. (1991) for body mass estimated from femoral head diameter and CA at the 

subtrochanteric level for white females. As indicated by those authors, the lack of remodelling in 

femoral head size coupled with weight gain between early late adolescence (when femoral head size 

is fixed) and body mass at the time of measurement may account for the weaker relationship 

between mass and femoral head size compared with shaft properties in their sample (Ruff et al. 

1991), and compared with our relatively young and active adult female sample. The results for lean 

mass also compare reasonably well with SEEs of 6-8% for estimating body mass from bi-iliac breadth 

and stature, using equations derived from population mean data (Ruff, 2000a).  

 

Although previous studies have indicated a close relationship between stature and lean mass (e.g., 

Heymsfield et al., 2007, 2011; Kulkarni et al., 2013), the partial correlations demonstrate that stature 

explains some but not all lean mass variation. In the regression models using tibia midshaft 

properties, adding tibial length reduced the SEEs by 1-2% for lean mass. Bone length was added to 

the models, rather than stature, to maintain some independence between stature and estimated 

body mass or its components, and to avoid compound errors that would result from estimating 

stature from skeletal remains, and then including these estimates in the model for estimating body 

mass or its components. However, all long bone lengths show a relatively strong relationship to 

stature and so the inclusion of a bone length does not yield equations that would provide entirely 

stature-independent estimates of body mass and its components.  



 

It should also be noted that the femoral midshaft level used in this study (determined 

anthropometrically as half the distance between the greater trochanter and distal end of the lateral 

epicondyle) is not directly equivalent to the midshaft location that is typically derived from 

measurements on dry bone (i.e., 50% of maximum or bicondylar length). Thus any equations derived 

through the method we use for application to skeletal remains may need to be modified accordingly. 

Furthermore, given that stature is included in the equations used to estimate lean and fat masses 

from BIA, correlations between the variables may inflate their correlations with bone properties. 

However, the fact that correlations were only moderately attenuated when stature was controlled 

for suggests a genuine relationship between lean mass and bone properties. 

 

These results are consistent with previous studies which suggested a stronger relationship between 

bone shaft cross-section or joint surface properties and lean mass than with body mass (Reeves, 

2014; Ruff et al., 1991; Semanick et al., 2005; Wu et al., 2007). Our findings support the argument 

that the relationship between bone and body mass is unlikely to be driven principally by the loading 

imparted by body mass due to gravity (Baker et al., 2013; Beck et al., 2001a; Burr, 1997; Capozza et 

al., 2004; Hsu et al., 2006; Petit et al., 2005; Robling, 2009).  

 

The fact that correlations between bone properties and body composition were similar for the 

humerus as for the lower limb bones (femur and tibia) was unexpected. We considered the 

possibility that the high proportion of rowers in the sample (almost 40% of the total) could account 

for this result, but found this was not the case. Although much of the power in rowing comes from 

the legs, which experiences forces over six times body weight, the arms also experience forces in 

excess of body weight (Hase et al., 2002). The higher loading on the arms experienced by rowers 

compared with other sportswomen and controls may mean that a higher proportion of lean mass is 

present in the arms in this sample, which might strengthen the relationship between humeral 



properties and lean mass among rowers, and so our sample as a whole. However, re-running 

correlations between bone cross sectional properties excluding the rowers only slightly attenuated 

the relationships between humeral properties and lean mass, and actually had greater negative 

impact on the relationships between lower limb bone properties and lean mass (Supplementary 

Table 2). This suggests that upper and lower limb bones are similarly related to total lean and body 

mass, with implications for understanding the relationships between lean mass and bone properties. 

Ruff (2003) reported that in a non-adult longitudinal sample, the product of bone length and body 

mass was highly correlated with femoral strength and more weakly related to humeral strength, 

while humeral strength was more strongly correlated with muscle area among males, but only the 

relationship was much weaker among females. The fact that our sample contains a majority of 

relatively muscular athletes may partially explain the difference from Ruff’s (2003) results. 

 

It has generally been assumed that in humans, as the lower limbs support body weight during 

locomotion after infancy whereas the upper limbs do not, a different relationship between body 

size, muscularity and bone cross-sectional properties should apply for the upper and lower limbs 

(Ruff et al., 1993; Schoenau et al., 2000; Slizewski et al., 2013; Trinkaus and Churchill, 1999). Ruff 

(2000b) previously reported that cross-sectional properties of upper and lower limb bones scaled 

similarly to body size, but noted that the correlations were stronger for lower limb bones than for 

those of the upper limb. This observation, along with our results, suggests that more systemic 

influences account for the relationship between whole body muscularity and bone cross-sectional 

properties. Previous work indicates that increased loading in one area of the skeleton leads to bone 

deposition in other areas (Lieberman, 1996; Reeves, 2014). It has also been argued that common 

genetic influences on bone and skeletal muscle (DiGirolamo et al., 2013; Karasik et al., 2009; Lang et 

al., 2009; Mikkola et al., 2009; Seeman et al., 1996), as well as an intimate functional relationship 

between these tissues (the ‘muscle-bone functional unit’), may explain relationships between 

muscle size (area, volume or mass) and bone size and mechanical properties including density and 



cross-sectional geometry (Edwards et al., 2013; Fricke and Schoenau, 2007; H. Frost, 1988, 1997, 

2003; Judex et al., 2016; Parfitt, 1997; Puthucheary et al., 2015; Rauch and Schoenau, 2001; 

Schoenau, 2005; Schoenau and Fricke, 2006: but see e.g., Judex et al., 2016), and our results are 

consistent with this interpretation. 

 

The results do not support any close relationship between long bone shaft cross-sectional properties 

and adiposity, similar to some previous studies (Beck et al., 2009; Petit et al., 2005; Travison et al., 

2008; Wu et al., 2007), and indicate that estimating fat mass from skeletal properties would not be 

reliable. The relationship between body fat and bone appears complex, and while relationships 

between poor nutrition and increased marrow adipose tissue have been reported by a number of 

studies (reviewed in Devlin, 2011), these have not indicated whether this was accompanied by a 

change in bone architecture, particularly in the size of the medullary cavity as might be predicted. It 

is possible that such relationships can only be detected in a malnourished sample, and thus may not 

have been evident in a relatively well-off and well-nourished population such as that studied here. 

Alternatively, it may be that such alterations in the amount of BMAT are not reflected in the 

dimensions of the medullary cavity. 

 

The dataset used in this study has some limitations. It is comprised of primarily young adult women, 

and was strongly dominated by women of European descent. The high proportion of physically 

active women and their selection primarily from among University students means that the sample 

is not representative of the adult female UK population. The relatively low body mass and BMI 

reflect this observation: the 2015 Health Survey for England reports a mean female BMI of 24.8 

kg/m2 for age 16-24 years and 26.4 kg/m2 for age 24-35 years (Fuller et al., 2016), compared with 

22.1 kg/m2 in our sample. For percentage body fat, the mean of 22% in our sample is substantially 

lower than that of 4,125 UK women reported by Flint et al. (2014) at 36%. This may be the result of 



both the older mean age of Flint et al.’s sample (43 years) and the selection of athletes in our sample 

who are likely to be leaner than average women.  

 

As it is likely that past populations were leaner than contemporary ones, our sample may be more 

appropriate than many contemporary samples selected from the general Western population for 

estimating body and lean mass in past populations. The prediction of body mass and its components 

may be more accurate for archaeological skeletons as the smaller proportion of body fat would give 

a closer relationship between bone properties and total mass. The use of modern Western (and thus 

more likely overweight) reference sample may lead to the overestimation of body mass in past 

individuals and populations who were leaner.  

 

Furthermore, given known interpopulation variation in proportional skeletal muscle and lean mass, 

the extent to which ancestry might affect the relationship between bone cross-sectional properties 

and lean mass needs to be explored. Baker et al. (2013) reported that greater tibial cross-sectional 

area of ‘black’ adults compared with ‘whites’ was largely removed by adjustment for lean mass, 

suggesting that similar relationships between bone cross-sectional properties and body mass 

components may exist across populations. Travison et al. (2008) reported a similar finding for 

proximal femoral strength among males, but further evaluation is needed.  

 

The dataset was also based on BIA-derived estimates of lean and fat mass. The ‘gold standard’ 

method for measuring body composition is cadaver dissection, so clearly estimation techniques are 

the only option for living subjects (Wells and Fewtrell, 2006). While BIA is less accurate than 

magnetic resonance imaging (MRI), dual energy X-Ray absorptiometry (DXA) or densitometry, the 

advantage is that BIA requires relatively simple equipment and causes minimal discomfort and 

inconvenience to subjects. Inaccuracies in the estimates of body mass components will of course 

attenuate the relationships between these characteristics and bone properties. Finally, the same 



analyses need to be repeated for men, given the known sex differences in body composition 

(Kirchengast, 2010; Wells, 2010), bone properties (Garn et al., 1972; Lang, 2011; Schoenau et al., 

2000) and hormonal influences on bone properties (Lapauw et al., 2009; Lorentzon et al., 2005; Petit 

et al., 2004). Nonetheless, the data analysed here serve to demonstrate that estimation of lean mass 

is promising and is likely to be more reliable than estimating body mass, and particularly fat mass, 

from cross-sectional properties of the long bones.  

 

A potential drawback of using cross-sectional shaft properties is that they are known to be affected 

by age, sex, and activity levels (Ahlborg  et al., 2003; Bass et al., 2002; Feik et al., 2000; Frost, 1988, 

2003; Garn et al., 1967; Haapasalo et al., 2000; Lazenby, 1990a, b; Pearson and Lieberman, 2004; 

Ruff and Hayes, 1982; Ruff et al., 2006; Shaw, 2008;  Shaw and Stock, 2009; Stock and Pfeiffer, 2001) 

and changes in body mass during life (Ruff et al., 1991). The relationship between bone cross-

sectional properties and activity may mean that to estimate body or lean mass from these 

properties, it would be most appropriate to use a reference sample of similar activity level. 

Apposition of bone to the periosteal surface and resorption of the endosteal surface progresses with 

age among adults (Ahlborg  et al., 2003; Feik et al., 2000; Stanley M. Garn et al., 1967; Lazenby, 

1990a,b; Ruff and Hayes, 1982). Furthermore, muscle mass is known to decrease through adulthood 

in conjunction with bone density and geometry (Baker et al., 2013; Beck et al., 2001a; Mikkola et al., 

2009), and changes in hormonal profiles, particularly the fall in oestrogen associated with the 

menopause among women, are known to affect bone properties (Ahlborg  et al., 2003; Beck et al., 

2001b; Edwards et al., 2013; Melton III et al., 2000). This may have implications for estimating lean 

mass from the skeletons of individuals who were older at the time of death in studies of 

archaeological or paleoanthropological material.  

 

There are two potential solutions, to derive equations from a sample with a wide age range so that 

age can be incorporated in the estimation equations, or to base predictions on bone properties that 



are unaffected by the ageing process. One such property might be joint size. We were unable to test 

associations between body mass, its components, and joint size using this dataset, but further 

investigation is warranted, given previous evidence that joint sizes are also more strongly related to 

lean mass than body mass (Reeves, 2014; Ruff et al., 1991; Semanick et al., 2005; Wu et al., 2007), 

and that they are minimally affected by age or activity due to functional constraints (Auerbach and 

Ruff, 2006; Buck et al., 2010; Lazenby et al., 2008; Lieberman et al., 2001; Reeves, 2014; Ruff et al., 

1991). Indeed the most appropriate type of bone property for estimating body mass may depend on 

the specific research questions posed. In some situations, it is desirable to know body or lean mass 

at the time of death (e.g., forensic cases, adjustment of bone biomechanical properties for loading 

due to body mass). In such cases, using cross-sectional properties of the shaft, which are more 

plastic and responsive to changes in body mass, is likely to be more appropriate, providing a 

reference sample of similar activity levels is used.  

 

On the other hand, to address other questions, such as examining trends in body size, health and 

growth in the past, it may be advantageous that noise introduced by life-course changes in adult 

body mass is poorly captured by some skeletal measurements such as joint sizes. In essence, in these 

situations we are interested in what has been termed “basal body mass” in contemporary 

populations (Hruschka et al. 2014), i.e., body mass in early adulthood before later accumulation of 

excess body fat due to ageing and lifestyle factors, or short term health variability. Such fluctuations 

in body mass are largely driven by changes in fat mass, which is especially plastic and sensitive to 

short term fluctuations in individual diet and health (Wells 2010), while lean mass appears to be less 

plastic and potentially subject to unique selective pressures (Hardikar et al. 2015; Houghton 1991; 

Prentice 2008; Steegmann 2007; Stini 1975; Wells et al. 2016; Wells 2012; Wells and Shirley 2016; 

Wilberfoss 2012). As methods for estimating age at death from adult skeletons remains relatively 

imprecise (Buckberry 2015; Falys et al. 2006; Jackes 2000; Mays 2015) and age-related aggregation 

of excess mass likely varies among populations, controlling for factors such as age-related changes in 



body mass currently has limited potential. However, the fact that various studies indicate that 

skeletal dimensions best reflect body mass, and more precisely lean mass, in early adulthood 

drastically reduces the introduction of such noise into the data on early adult body size. 

 

In conclusion, this study suggests that lean and body mass may be predicted relatively reliably from 

long bone cross-sectional properties among adults. This could have multiple applications in studying 

changes in build and musculature in our evolutionary past, as well as in more recent populations. 

Our results demonstrate that this approach to estimating lean and body mass is worth pursuing 

further in larger, more diverse datasets in order to develop equations encompassing a wider range 

of age and ancestry and both sexes. Appropriate reference samples should be selected in terms of 

body mass and activity levels, as the use of relatively overweight modern Western reference 

samples may lead to the overestimation of body or lean mass based on skeletal properties. This is 

particularly the case where shaft cross-sectional properties, known to be affected by age, activity 

and hormonal status, are employed. 
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Capozza, R. F., Cointry, G. R., Cure-Ramıŕez, P., Ferretti, J. L., & Cure-Cure, C. 2004. A dxa study of 

muscle–bone relationships in the whole body and limbs of 2512 normal men and pre- and 

post-menopausal women. Bone 35, 283-295. 

Choi, H. S., Kim, K. J., Kim, K. M., Hur, N. W., Rhee, Y., Han, D. S., Lee, E. J., & Lim, S.-K. 2010. 

Relationship between visceral adiposity and bone mineral density in korean adults. Calcified 

Tissue International 87, 218-225. 

Churchill, S. E. 1998. Cold adaptation, heterochrony, and neandertals. Evolutionary Anthropology: 

Issues, News, and Reviews 7, 46-60. 

Churchill, S. E. 2006. Bioenergetic perspectives on neanderthal thermoregulatory and activity 

budgets. In: Hublin, J.-J., Harvati, K., and Harrison, T., editors. Neanderthals revisited: New 

approaches and perspectives (pp. 113-133). Dordrecht: Springer Netherlands. 

Cole, T. J. 2000. Sympercents: Symmetric percentage differences on the 100 loge scale simplify the 

presentation of log transformed data. Statistics in Medicine 19, 3109-3125. 

Cole, T. J., & Altman, D. G. 2017. Statistics notes: Percentage differences, symmetry, and natural 

logarithms. British Medical Journal 358, j3683. 

Cole, Z. A., Harvey, N. C., Kim, M., Ntani, G., Robinson, S. M., Inskip, H. M., Godfrey, K. M., Cooper, 

C., & Dennison, E. M. 2012. Increased fat mass is associated with increased bone size but 

reduced volumetric density in pre pubertal children. Bone 50, 562-567. 



Cypess, A. M., Lehman, S., Williams, G., Tal, I., Rodman, D., Goldfine, A. B., Kuo, F. C., Palmer, E. L., 

Tseng, Y.-H., Doria, A., Kolodny, G. M., & Kahn, C. R. 2009. Identification and importance of 

brown adipose tissue in adult humans. New England Journal of Medicine 360, 1509-1517. 

Davies, T. 2012. Cross-sectional variation in the human femur and tibia: The influence of physique 

and habitual mobility on diaphyseal morphology (Unpublished PhD Thesis). University of 

Cambridge, UK. 

De Groote, I., & Humphrey, L. T. 2011. Body mass and stature estimation based on the first 

metatarsal in humans. American Journal of Physical Anthropology 144, 625-632. 

Devlin, M. J. 2011. Why does starvation make bones fat? American Journal of Human Biology 23, 

577-585. 

Devlin, M. J., & Rosen, C. J. 2015. The bone–fat interface: Basic and clinical implications of marrow 

adiposity. Lancet Diabetes & Endocrinology 3, 141-147. 

DiGirolamo, D. J., Kiel, D. P., & Esser, K. A. 2013. Bone and skeletal muscle: Neighbors with close ties. 

Journal of Bone and Mineral Research 28, 1509-1518. 

Doube, M., Kłosowski, M. M., Arganda-Carreras, I., Cordelières, F. P., Dougherty, R. P., Jackson, J. S., 

Schmid, B., Hutchinson, J. R., & Shefelbine, S. J. 2010. Bonej: Free and extensible bone image 

analysis in imagej. Bone 47, 1076-1079. 

Edwards, M. H., Gregson, C. L., Patel, H. P., Jameson, K. A., Harvey, N. C., Sayer, A. A., Dennison, E. 

M., & Cooper, C. 2013. Muscle size, strength, and physical performance and their 

associations with bone structure in the hertfordshire cohort study. Journal of Bone and 

Mineral Research 28, 2295-2304. 

El Hage, R., & Baddoura, R. 2012. Anthropometric predictors of geometric indices of hip bone 

strength in a group of Lebanese postmenopausal women. Journal of Clinical Densitometry 

15, 191-197. 



Elliott, M., Kurki, H., Weston, D., & Collard, M. 2016a. Estimating body mass from postcranial 

variables: An evaluation of current equations using a large known-mass sample of modern 

humans. Archaeological and Anthropological Sciences, 8, 689-704. 

Elliott, M., Kurki, H., Weston, D. A., & Collard, M. 2015b. Estimating body mass from skeletal 

material: New predictive equations and methodological insights from analyses of a known-

mass sample of humans. Archaeological and Anthropological Sciences, 8, 731-750. 

Falys, C. G., Schutkowski, H., & Weston, D. A. 2006. Auricular surface aging: Worse than expected? A 

test of the revised method on a documented historic skeletal assemblage. American Journal 

of Physical Anthropology 130, 508-513. 

Farr, J. N., Amin, S., LeBrasseur, N. K., Atkinson, E. J., Achenbach, S. J., McCready, L. K., Joseph 

Melton, L., & Khosla, S. 2014. Body composition during childhood and adolescence: 

Relations to bone strength and microstructure. Journal of Clinical Endocrinology & 

Metabolism 99, 4641-4648. 

Fazeli, P. K., Horowitz, M. C., MacDougald, O. A., Scheller, E. L., Rodeheffer, M. S., Rosen, C. J., & 

Klibanski, A. 2013. Marrow fat and bone—new perspectives. Journal of Clinical 

Endocrinology & Metabolism 98, 935-945. 

Feik, S. A., Thomas, C. D. L., Bruns, R., & Clement, J. G. 2000. Regional variations in cortical modeling 

in the femoral mid-shaft: Sex and age differences. American Journal of Physical 

Anthropology 112, 191-205. 

Flint, E., Cummins, S., & Sacker, A. 2014. Associations between active commuting, body fat, and body 

mass index: Population based, cross sectional study in the united kingdom. British Medical 

Journal 349: g4887. 

Fricke, O., & Schoenau, E. 2007. The ‘functional muscle-bone unit’: Probing the relevance of 

mechanical signals for bone development in children and adolescents. Growth Hormone & 

IGF Research 17, 1-9. 



Frost, H. 1988. Vital biomechanics: Proposed general concepts for skeletal adaptations to mechanical 

usage. Calcified Tissue International 42, 145-156. 

Frost, H. M. 1997. Why do marathon runners have less bone than weight lifters? A vital-

biomechanical view and explanation. Bone 20, 183-189. 

Frost, H. M. 2003. Bone's mechanostat: A 2003 update. The Anatomical Record Part A: Discoveries in 

Molecular, Cellular, and Evolutionary Biology 275A, 1081-1101. 

Fuller, E., Mindell, J., & Prior, G., editors. 2016. Health survey for England 2015. London: NHS Digital. 

Garn, S. M., Frisancho, A. R., Sandusky, S. T., & McCann, M. B. 1972. Confirmation of the sex 

difference in continuing subperiosteal apposition. American Journal of Physical Anthropology 

36, 377-380. 

Garn, S. M., Rohmann, C. G., Wagner, B., & Ascoli, W. 1967. Continuing bone growth throughout life: 

A general phenomenon. American Journal of Physical Anthropology 26, 313-317. 

Gilsanz, V., Chalfant, J., Mo, A. O., Lee, D. C., Dorey, F. J., & Mittelman, S. D. 2009. Reciprocal 

relations of subcutaneous and visceral fat to bone structure and strength. The Journal of 

Clinical Endocrinology & Metabolism 94, 3387-3393. 

Grabowski, M., Hatala, K. G., Jungers, W. L., & Richmond, B. G. 2015. Body mass estimates of 

hominin fossils and the evolution of human body size. Journal of Human Evolution 85, 75-93. 

Grine, F. E., Jungers, W. L., Tobias, P. V., & Pearson, O. M. 1995. Fossil Homo femur from Berg Aukas, 

northern Namibia. American Journal of Physical Anthropology 97, 151-185. 

Gysel, T., Calders, P., Cambier, D., Roman de Mettelinge, T., Kaufman, J., Taes, Y., Zmierczak, H.-G., & 

Goemaere, S. 2014. Association between insulin resistance, lean mass and muscle 

torque/force in proximal versus distal body parts in healthy young men. Journal of 

Musculoskeletal & Neuronal Interactions 14, 41-49. 

Haapasalo, H., Kontulainen, S., Sievanen, H., Kannus, P., Jarvinen, M., & Vuori, I. 2000. Exercise-

induced bone gain is due to enlargement in bone size without a change in volumetric bone 



density: A peripheral quantitative computed tomography study of the upper arms of male 

tennis players. Bone 27, 351-357. 

Hardikar, Anandwardhan A., Satoor, Sarang N., Karandikar, Mahesh S., Joglekar, Mugdha V., Puranik, 

Amrutesh S., Wong, W., Kumar, S., Limaye, A., Bhat, Dattatray S., Januszewski, A. S., Umrani, 

Malati R., Ranjan, Amaresh K., Apte, K., Yajnik, P., Bhonde, Ramesh R., Galande, S., Keech, 

Anthony C., Jenkins, Alicia J., & Yajnik, Chittaranjan S. 2015. Multigenerational 

undernutrition increases susceptibility to obesity and diabetes that is not reversed after 

dietary recuperation. Cell Metabolism 22, 312-319. 

Hase K, Kaya M, Yamazaki N, Andrews BJ, Zavatsky AB, and Halliday SE. 2002. Biomechanics of 

rowing. I. A model analysis of musculo-skeletal loads in rowing for fitness. JSME International 

Journal Series C Mechanical Systems, Machine Elements and Manufacturing 45(4):1073-

1081. 

Heyes, P., & MacDonald, K. 2015. Neandertal energetics: Uncertainty in body mass estimation limits 

comparisons with Homo sapiens. Journal of Human Evolution 85, 193-197. 

Heymsfield, S. B., Gallagher, D., Mayer, L., Beetsch, J., & Pietrobelli, A. 2007. Scaling of human body 

composition to stature: New insights into body mass index. American Journal of Clinical 

Nutrition 86, 82-91. 

Heymsfield, S. B., Heo, M., Thomas, D., & Pietrobelli, A. 2011. Scaling of body composition to height: 

Relevance to height-normalized indexes. American Journal of Clinical Nutrition 93, 736-740. 

Houghton, P. 1990. The adaptive significance of polynesian body form. Annals of Human Biology 17, 

19-32. 

Houghton, P. 1991. Selective influences and morphological variation amongst Pacific Homo sapiens. 

Journal of Human Evolution 21, 49-59. 

Hruschka, D. J., Hadley, C., & Brewis, A. 2014. Disentangling basal and accumulated body mass for 

cross-population comparisons. American Journal of Physical Anthropology 153, 542-550. 



Hsu, Y.-H., Venners, S. A., Terwedow, H. A., Feng, Y., Niu, T., Li, Z., Laird, N., Brain, J. D., Cummings, S. 

R., Bouxsein, M. L., Rosen, C. J., & Xu, X. 2006. Relation of body composition, fat mass, and 

serum lipids to osteoporotic fractures and bone mineral density in chinese men and women. 

American Journal of Clinical Nutrition 83, 146-154. 

Hu, W.-W., Zhang, H., Wang, C., Gu, J.-M., Yue, H., Ke, Y.-H., Hu, Y.-Q., Fu, W.-Z., Li, M., & Zhang, Z.-L. 

2012. Lean mass predicts hip geometry and bone mineral density in chinese men and 

women and age comparisons of body composition. Journal of Clinical Densitometry 15, 434-

442. 

International Society for the Advancement of Kinanthropometry. 2001. International Standards for 

Anthropometric Assessment. Australia: International Society for the Advancement of 

Kinanthropometry. 

Jackes, M. 2000. Building the bases for paleodemographic analysis: Adult age determination. In: 

Katzenberg, M. A., and Saunders, S. R., editors. Biological anthropology of the human 

skeleton (pp. 417-466). New York: Wiley-Liss Inc 

Judex, S., Zhang, W., Donahue, L. R., & Ozcivici, E. 2016. Genetic and tissue level muscle-bone 

interactions during unloading and reambulation. Journal of Musculoskeletal & Neuronal 

Interactions 16, 174-182. 

Karasik, D., Zhou, Y., Cupples, L. A., Hannan, M. T., Kiel, D. P., & Demissie, S. 2009. Bivariate genome-

wide linkage analysis of femoral bone traits and leg lean mass: Framingham study. Journal of 

Bone and Mineral Research 24, 710-718. 

Kirchengast, S. 2010. Gender differences in body composition from childhood to old age: An 

evolutionary point of view. Journal of Life Sciences 2, 1-10. 

Kulkarni, B., Kuper, H., Taylor, A., Wells, J. C., Radhakrishna, K. V., Kinra, S., Ben-Shlomo, Y., Smith, G. 

D., Ebrahim, S., Byrne, N. M., & Hills, A. P. 2013. Development and validation of 

anthropometric prediction equations for estimation of lean body mass and appendicular 

lean soft tissue in indian men and women. Journal of Applied Physiology 115, 1156-1162. 



Lang, D. H., Conroy, D. E., Lionikas, A., Mack, H. A., Larsson, L., Vogler, G. P., Vandenbergh, D. J., 

Blizard, D. A., McClearn, G. E., & Sharkey, N. A. 2009. Bone, muscle, and physical activity: 

Structural equation modeling of relationships and genetic influence with age. Journal of 

Bone and Mineral Research 24, 1608-1617. 

Lang, T. F. 2011. The bone-muscle relationship in men and women. Journal of osteoporosis 2011. 

Lapauw, B. M., Taes, Y., Bogaert, V., Vanbillemont, G., Goemaere, S., Zmierczak, H.-G., De Bacquer, 

D., & Kaufman, J.-M. 2009. Serum estradiol is associated with volumetric bmd and 

modulates the impact of physical activity on bone size at the age of peak bone mass: A study 

in healthy male siblings. Journal of Bone and Mineral Research 24, 1075-1085. 

Lazenby, R. A. 1990a. Continuing periosteal apposition i: Documentation, hypotheses, and 

interpretation. American Journal of Physical Anthropology 82, 451-472. 

Lazenby, R. A. 1990b. Continuing periosteal apposition ii: The significance of peak bone mass, strain 

equilibrium, and age-related activity differentials for mechanical compensation in human 

tubular bones. American Journal of Physical Anthropology 82, 473-484. 

Lazenby, R. A., Cooper, D. M. L., Angus, S., & Hallgrímsson, B. 2008. Articular constraint, handedness, 

and directional asymmetry in the human second metacarpal. Journal of Human Evolution 54, 

875-885. 

Lear, S. A., Kohli, S., Bondy, G. P., Tchernof, A., & Sniderman, A. D. 2009. Ethnic variation in fat and 

lean body mass and the association with insulin resistance. Journal of Clinical Endocrinology 

and Metabolism 94, 4696-4702. 

LeBrasseur, N. K., Achenbach, S. J., Melton, L. J., Amin, S., & Khosla, S. 2012. Skeletal muscle mass is 

associated with bone geometry and microstructure and serum insulin-like growth factor 

binding protein-2 levels in adult women and men. Journal of Bone and Mineral Research 27, 

2159-2169. 

Leslie, W. D., Orwoll, E. S., Nielson, C. M., Morin, S. N., Majumdar, S. R., Johansson, H., Odén, A., 

McCloskey, E. V., & Kanis, J. A. 2014. Estimated lean mass and fat mass differentially affect 



femoral bone density and strength index but are not frax independent risk factors for 

fracture. Journal of Bone and Mineral Research 29, 2511-2519. 

Lieberman, D. E. 1996. How and why humans grow thin skulls: Experimental evidence for systemic 

cortical robusticity. American Journal of Physical Anthropology 101, 217-236. 

Lieberman, D. E., Devlin, M. J., & Pearson, O. M. 2001. Articular area responses to mechanical 

loading: Effects of exercise, age, and skeletal location. American Journal of Physical 

Anthropology 116, 266-277. 

Lorentzon, M., Swanson, C., Andersson, N., Mellström, D., & Ohlsson, C. 2005. Free testosterone is a 

positive, whereas free estradiol is a negative, predictor of cortical bone size in young 

Swedish men: The good study. Journal of Bone and Mineral Research 20, 1334-1341. 

Lorkiewicz-Muszyńska, D., Przystańska, A., Kociemba, W., Sroka, A., Rewekant, A., Żaba, C., & 

Paprzycki, W. 2013. Body mass estimation in modern population using anthropometric 

measurements from computed tomography. Forensic Science International 231, 405.e401-

405.e406. 

Mallinson, R. J., Williams, N. I., Hill, B. R., & De Souza, M. J. 2013. Body composition and reproductive 

function exert unique influences on indices of bone health in exercising women. Bone 56, 

91-100. 

Mays, S. 2015. The effect of factors other than age upon skeletal age indicators in the adult. Annals 

of Human Biology 42, 332-341. 

McHenry, H. M. 1992. Body size and proportions in early hominids. American Journal of Physical 

Anthropology 87, 407-431. 

Melton III, L. J., Khosla, S., Atkinson, E. J., O’Connor, M. K., O’Fallon, W. M., & Riggs, B. L. 2000. Cross-

sectional versus longitudinal evaluation of bone loss in men and women. Osteoporosis 

International 11, 592-599. 

Mikkola, T. M., Sipilä, S., Rantanen, T., Sievänen, H., Suominen, H., Tiainen, K., Kaprio, J., Koskenvuo, 

M., Kauppinen, M., & Heinonen, A. 2009. Muscle cross-sectional area and structural bone 



strength share genetic and environmental effects in older women. Journal of Bone and 

Mineral Research 24, 338-345. 

Moon, R. J., Cole, Z. A., Crozier, S. R., Curtis, E. M., Davies, J. H., Gregson, C. L., Robinson, S. M., 

Dennison, E. M., Godfrey, K. M., Inskip, H. M., Cooper, C., & Harvey, N. C. 2015. Longitudinal 

changes in lean mass predict pqct measures of tibial geometry and mineralisation at 6-7 

years. Bone 75, 105-110. 

Moore, M. K. 2008. Body mass estimation from the human skeleton (Unpublished PhD Thesis). 

University of Tennessee, Knoxville TN. 

Moore, M. K., & Schaefer, E. 2011. A comprehensive regression tree to estimate body weight from 

the skeleton. Journal of Forensic Sciences 56, 1115-1122. 

Muchlinski, M. N., Snodgrass, J. J., & Terranova, C. J. 2012. Muscle mass scaling in primates: An 

energetic and ecological perspective. American Journal of Primatology 74, 395-407. 

Parfitt, A. M. 1997. Genetic effects on bone mass and turnover-relevance to black/white differences. 

Journal of the American College of Nutrition 16, 325-333. 

Pearson, O. M., & Lieberman, D. E. 2004. The aging of Wolff's "law": Ontogeny and responses to 

mechanical loading in cortical bone. American Journal of Physical Anthropology 125, 63-99. 

Peirce, V., Carobbio, S., & Vidal-Puig, A. 2014. The different shades of fat. Nature 510, 76-83. 

Petit, M. A., Beck, T. J., Lin, H.-M., Bentley, C., Legro, R. S., & Lloyd, T. 2004. Femoral bone structural 

geometry adapts to mechanical loading and is influenced by sex steroids: The Penn State 

Young Women's Health Study. Bone 35, 750-759. 

Petit, M. A., Beck, T. J., Shults, J., Zemel, B. S., Foster, B. J., & Leonard, M. B. 2005. Proximal femur 

bone geometry is appropriately adapted to lean mass in overweight children and 

adolescents. Bone 36, 568-576. 

Pontzer, H., Brown, M. H., Raichlen, D. A., Dunsworth, H., Hare, B., Walker, K., Luke, A., Dugas, L. R., 

Durazo-Arvizu, R., Schoeller, D., Plange-Rhule, J., Bovet, P., Forrester, T. E., Lambert, E. V., 



Thompson, M. E., Shumaker, R. W., & Ross, S. R. 2016. Metabolic acceleration and the 

evolution of human brain size and life history. Nature 533, 390-392. 

Pontzer, H., Raichlen, D. A., Wood, B. M., Mabulla, A. Z. P., Racette, S. B., & Marlowe, F. W. 2012. 

Hunter-gatherer energetics and human obesity. PLoS One 7, e40503. 

Prentice, A. 2008. Surviving famine. In: Shuckburgh, E., editor. Survival: The survival of the human 

race (pp. 146-177): Cambridge University Press. 

Puthucheary, Z., Kordi, M., Rawal, J., Eleftheriou, K. I., Payne, J., & Montgomery, H. E. 2015. The 

relationship between lower limb bone and muscle in military recruits, response to physical 

training, and influence of smoking status. Scientific Reports, 5, 9323. 

Rasband, W. S. 1997-2016. ImageJ. Bethesda, Maryland, USA: U.S. National Institutes of Health, 

http://imagej.nih.gov/ij/. 

Rauch, F., & Schoenau, E. 2001. The developing bone: Slave or master of its cells and molecules? 

Pediatric Research 50, 309-314. 

Reeves, N. M. 2014. Augmenting functional adaptation: Does obesity have a systemic effect on bone 

strength properties in humans? (Unpublished PhD thesis). University of Tennesse Knoxville 

TN. 

Robbins, G., Sciulli, P. W., & Blatt, S. H. 2010. Estimating body mass in subadult human skeletons. 

American Journal of Physical Anthropology 143, 146-150. 

Robling, A. G. 2009. Is bone’s response to mechanical signals dominated by muscle forces? Medicine 

and Science in Sports and Exercise 41, 2044-2049. 

Ruff, C. 2007. Body size prediction from juvenile skeletal remains. American Journal of Physical 

Anthropology 133, 698-716. 

Ruff, C., & Hayes, W. 1982. Subperiosteal expansion and cortical remodeling of the human femur 

and tibia with aging. Science 217, 945-948. 

Ruff, C., Holt, B., & Trinkaus, E. 2006. Who's afraid of the big bad Wolff?: "Wolff's law" and bone 

functional adaptation. American Journal of Physical Anthropology 129, 484-498. 



Ruff, C., Niskanen, M., Junno, J.-A., & Jamison, P. 2005. Body mass prediction from stature and bi-

iliac breadth in two high latitude populations, with application to earlier higher latitude 

humans. Journal of Human Evolution 48, 381-392. 

Ruff, C. B. 2000a. Body mass prediction from skeletal frame size in elite athletes. American Journal of 

Physical Anthropology 113, 507-517. 

Ruff, C. B. 2000b. Body size, body shape, and long bone strength in modern humans. Journal of 

Human Evolution 38, 269-290. 

Ruff, C. B. 2003. Growth in bone strength, body size, and muscle size in a juvenile longitudinal 

sample. Bone 33(3): 317-329. 

Ruff, C. B. 2008. Biomechanical analyses of archaeological human skeletons. In: Katzenberg, M. A., 

and Saunders, S. R., editors. Biological Anthropology of the Human Skeleton (pp. 183-206). 

2nd ed. Hoboken, NJ: Wiley-Liss. 

Ruff, C. B., Burgess, M. L., Ketcham, R. A., & Kappelman, J. 2016. Limb bone structural proportions 

and locomotor behavior in A.L. 288-1 ("Lucy"). PLoS One 11, e0166095. 

Ruff, C. B., Holt, B., Niskanen, M., Sladek, V., Berner, M., Garofalo, E., Garvin, H. M., Hora, M., Junno, 

J.-A., Schuplerova, E., Vilkama, R., & Whittey, E. 2015. Gradual decline in mobility with the 

adoption of food production in europe. Proceedings of the National Academy of Sciences 

112, 7147-7152. 

Ruff, C. B., Holt, B. M., Niskanen, M., Sladék, V., Berner, M., Garofalo, E., Garvin, H. M., Hora, M., 

Maijanen, H., Niinimäki, S., Salo, K., Schuplerová, E., & Tompkins, D. 2012. Stature and body 

mass estimation from skeletal remains in the european holocene. American Journal of 

Physical Anthropology 148, 601-617. 

Ruff, C. B., Scott, W. W., & Liu, A. Y. 1991. Articular and diaphyseal remodeling of the proximal femur 

with changes in body mass in adults. American Journal of Physical Anthropology 86, 397-413. 

Ruff, C. B., Trinkaus, E., & Holliday, T. W. 1997. Body mass and encephalization in pleistocene Homo. 

Nature 387, 173-176. 



Ruff, C. B., Trinkaus, E., Walker, A., & Larsen, C. S. 1993. Postcranial robusticity in Homo. I: Temporal 

trends and mechanical interpretation. American Journal of Physical Anthropology 91, 21-53. 

Russell, M., Mendes, N., Miller, K. K., Rosen, C. J., Lee, H., Klibanski, A., & Misra, M. 2010. Visceral fat 

is a negative predictor of bone density measures in obese adolescent girls. The Journal of 

Clinical Endocrinology & Metabolism 95, 1247-1255. 

Ryan, T. M., & Shaw, C. N. 2015. Gracility of the modern Homo sapiens skeleton is the result of 

decreased biomechanical loading. Proceedings of the National Academy of Sciences 112, 

372-377. 

Schaffer, W. C. 2016. Total body mass estimation from anthropometric measurements in modern 

young adult U.S. Populations with healthy body fat percentages (NHANES III). Journal of 

Forensic Sciences 61, 1431-1439. 

Scheller, E. L., Cawthorn, W. P., Burr, A. A., Horowitz, M. C., & MacDougald, O. A. 2016. Marrow 

adipose tissue: Trimming the fat. Trends in Endocrinology & Metabolism 27, 392-403. 

Scheller, E. L., & Rosen, C. J. 2014. What's the matter with mat? Marrow adipose tissue, metabolism, 

and skeletal health. Annals of the New York Academy of Sciences 1311, 14-30. 

Schoenau, E. 2005. From mechanostat theory to development of the "functional muscle-bone-unit". 

Journal of Musculoskeletal and Neuronal Interactions 5, 232-238. 

Schoenau, E., & Fricke, O. 2006. Interaction between muscle and bone. Hormone Research in 

Paediatrics 66, 73-78. 

Schoenau, E., Neu, C. M., Mokov, E., Wassmer, G., & Manz, F. 2000. Influence of puberty on muscle 

area and cortical bone area of the forearm in boys and girls. Journal of Clinical Endocrinology 

and Metabolism 85, 1095-1098. 

Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6, 461-464. 

Seeman, E., Hopper, J. L., Young, N. R., Formica, C., Goss, P., & Tsalamandris, C. 1996. Do genetic 

factors explain associations between muscle strength, lean mass, and bone density? A twin 

study. American Journal of Physiology - Endocrinology and Metabolism 270, E320-E327. 



Semanick, L. M., Beck, T. J., Cauley, J. A., Wheeler, V. W., Patrick, A. L., Bunker, C. H., & Zmuda, J. M. 

2005. Association of body composition and physical activity with proximal femur geometry 

in middle-aged and elderly Afro-Caribbean men. Calcified Tissue International 77, 160-166. 

Shaw, C. 2010. ‘Putting flesh back onto the bones?’ can we predict soft tissue properties from 

skeletal and fossil remains? Journal of Human Evolution 59, 484-492. 

Shaw, C. N. 2008. The influence of habitual athletic activity on diaphyseal morphology in modern 

humans, and its impact on interpretations of hominin activity patterns (unpublished PhD 

thesis). University of Cambridge, UK. 

Shaw, C. N., & Stock, J. T. 2009. Habitual throwing and swimming correspond with upper limb 

diaphyseal strength and shape in modern human athletes. American Journal of Physical 

Anthropology 140, 160-172. 

Sioen, I., Lust, E., De Henauw, S., Moreno, L. A., & Jiménez-Pavón, D. 2016. Associations between 

body composition and bone health in children and adolescents: A systematic review. 

Calcified Tissue International 99, 557-577. 

Slizewski, A., Burger-Heinrich, E., Francken, M., Wahl, J., & Harvati, K. 2014. Pilot study for 

reconstruction of soft tissues: Muscle cross-sectional area of the forearm estimated from 

cortical bone for a neolithic sample. The Anatomical Record 297, 1103-1114. 

Slizewski, A., Schönau, E., Shaw, C., & Harvati, K. 2013. Muscle area estimation from cortical bone. 

The Anatomical Record 296, 1695-1707. 

Squyres, N., & Ruff, C. B. 2015. Body mass estimation from knee breadth, with application to early 

hominins. American Journal of Physical Anthropology 158, 198-208. 

Steegmann, A. T. 2007. Human cold adaptation: An unfinished agenda. American Journal of Human 

Biology 19, 218-227. 

Stock, J., & Pfeiffer, S. 2001. Linking structural variability in long bone diaphyses to habitual 

behaviors: Foragers from the southern african later stone age and the andaman islands. 

American Journal of Physical Anthropology 115, 337-348. 



Taes, Y. E. C., Lapauw, B., Vanbillemont, G., Bogaert, V., De Bacquer, D., Zmierczak, H., Goemaere, S., 

& Kaufman, J.-M. 2009. Fat mass is negatively associated with cortical bone size in young 

healthy male siblings. Journal of Clinical Endocrinology and Metabolism 94, 2325-2331. 

Travison, T. G., Araujo, A. B., Esche, G. R., Beck, T. J., & McKinlay, J. B. 2008. Lean mass and not fat 

mass is associated with male proximal femur strength. Journal of Bone and Mineral Research 

23, 189-198. 

Trinkaus, E. 1983. The Shanidar Neandertals. New York: Academic Press. 

Trinkaus, E., & Churchill, S. E. 1999. Diaphyseal cross-sectional geometry of near eastern middle 

Palaeolithic humans: The humerus. Journal of Archaeological Science 26, 173-184. 

Trinkaus, E., Churchill, S. E., Villemeur, I., Riley, K. G., Heller, J. A., & Ruff, C. B. 1991. Robusticity 

versus shape: The functional interpretation of Neandertal appendicular morphology. Journal 

of the Anthropological Society of Nippon 99, 257-278. 

Unni, U. S., Ramakrishnan, G., Raj, T., Kishore, R. P., Thomas, T., Vaz, M., & Kurpad, A. V. 2009. 

Muscle mass and functional correlates of insulin sensitivity in lean young Indian men. 

European Journal of Clinical Nutrition 63, 1206-1212. 

Wells, J. C. K. 2010. The evolutionary biology of human body fatness: Thrift and control. Cambridge: 

Cambridge University Press. 

Wells, J. C. K. 2012a. Ecogeographical associations between climate and human body composition: 

Analyses based on anthropometry and skinfolds. American Journal of Physical Anthropology 

147, 169-186. 

Wells, J. C. K. 2012b. Sexual dimorphism in body composition across human populations: 

Associations with climate and proxies for short- and long-term energy supply. American 

Journal of Human Biology 24, 411-419. 

Wells, J. C. K. 2016. The metabolic ghetto: An evolutionary perspective on nutrition, power relations 

and chronic disease. Cambridge: Cambridge University Press. 



Wells, J. C. K. 2017. Body composition and susceptibility to type 2 diabetes: An evolutionary 

perspective. European Journal of Clinical Nutrition 71, 881-889. 

Wells, J. C. K., & Cortina-Borja, M. 2013. Different associations of subscapular and triceps skinfold 

thicknesses with pathogen load: An ecogeographical analysis. American Journal of Human 

Biology 25, 594-605. 

Wells, J. C. K., & Fewtrell, M. S. 2006. Measuring body composition. Archives of Disease in Childhood 

91, 612-617. 

Wheatley, B. P. 2005. An evaluation of sex and body weight determination from the proximal femur 

using dxa technology and its potential for forensic anthropology. Forensic Science 

International 147, 141-145. 

Wilberfoss, P. C. R. 2012. Cold case: Cold induced vasodilation response, and the origins of polynesian 

body morphology as an adaptation to a cold environment. (Unpublished PhD Thesis). 

University of Auckland, New Zealand. 

Will, M., & Stock, J. T. 2015. Spatial and temporal variation of body size among early Homo. Journal 

of Human Evolution 82, 15-33. 

Wu, S., Lei, S.-F., Chen, X.-D., Tan, L.-J., Jian, W.-X., Hong, X., Deng, F.-Y., Sun, X., Xiao, S.-M., Jiang, C., 

Guo, Y.-F., Zhu, X.-Z., & Deng, H.-W. 2007. The contributions of lean tissue mass and fat mass 

to bone geometric adaptation at the femoral neck in Chinese overweight adults. Annals of 

Human Biology 34, 344-353. 

Zhang, Q., Riddle, R. C., & Clemens, T. L. 2015. Bone and the regulation of global energy balance. 

Journal of Internal Medicine 277, 681-689. 

Zihlman, A. L., & Bolter, D. R. 2015. Body composition in pan paniscus compared with Homo sapiens 

has implications for changes during human evolution. Proceedings of the National Academy 

of Sciences 112, 7466-7471. 

 

  



Table 1. Characteristics of the study sample. 

Variable 
Control (n = 34) Athlete (n = 71) Total (n = 105) 

Mean 
Standard 
Deviation Mean 

Standard 
Deviation Mean 

Standard 
Deviation 

Age (years) 23 3 24 6 24 5 

Stature (cm) 167.9 7.4 170.5 7.6 169.7 7.6 

Body mass (kg) 61.7 11.1 65.1 9.5 64.0 10.1 

BMI (kg/m2) 21.9 3.9 22.3 2.4 22.2 3.0 

Lean mass (kg) * 45.6 5.8 51.1 6.7 49.3 6.9 

Fat mass (kg) 16.0 6.9 13.9 4.4 14.6 5.4 

Percent fat mass (%) * 25.2 6.4 21.1 4.9 22.4 5.7 

 

* Significant difference between athletes and controls, p<0.001 by independent samples T test. All other comparisons not 

significant. 

Athletes comprised of 40 rowers, 11 endurance runners, 8 ultramarathon runners, 11 soccer players and 1 ex-athlete 

(gymnast)  



Table 2. Correlations between body mass, lean mass or fat mass and bone properties (all variables log 

transformed). a denotes statistically non-significant correlations (p > 0.05). TA = total area; CA = cortical area; 

MA = medullary area; J = polar second moment of area; Zp = polar section modulus. 

 

 
Unadjusted Adjusted for stature 

 

Body 

mass 

Lean 

mass 

Fat mass Body 

mass  

Lean 

mass 

Fat mass 

 

Humerus 50%       

TA (mm2) 0.50 0.68 0.10 a 0.25 0.55 0.01 

CA (mm2) 0.55 0.74 0.03 a 0.23 0.60 -0.14 

MA (mm2) 0.28 0.38 0.14 a 0.15 0.16 0.15 

J (mm4) 0.54 0.73 0.09 a 0.26 0.59 -0.03 

Zp (mm3) 0.53 0.71 0.08 a 0.25 0.60 -0.06 

Circumference (mm) 0.51 0.70 0.09 a 0.24 0.53 0.02 

Maximum diameter (mm) 0.42 0.59 0.08 a 0.25 0.55 0.00 

Minimum diameter (mm) 0.50 0.66 0.11 a 0.28 0.47 0.11 

 

Femur 50% 

      

TA (mm2) 0.58 0.72 0.20 a 0.32 0.44 0.20 

CA (mm2) 0.55 0.68 0.19 a 0.34 0.48 0.18 

MA (mm2) 0.33 0.38 0.09 a 0.05 0.01 0.06 

J (mm4) 0.57 0.71 0.20 a 0.31 0.44 0.20 

Zp (mm3) 0.34 0.53 -0.02 -0.01 0.18 -0.08 

Circumference (mm) 0.58 0.66 0.27 0.35 0.41 0.29 

Maximum diameter (mm) 0.59 0.71 0.22 0.36 0.46 0.23 

Minimum diameter (mm) 0.46 0.59 0.17 0.18 0.27 0.15 

 

Tibia 50%       

TA (mm2) 0.62 0.73 0.28 0.40 0.51 0.29 

CA (mm2) 0.56 0.66 0.25 0.38 0.49 0.24 

MA (mm2) 0.39 0.43 0.18 a 0.18 0.16 0.17 

J (mm4) 0.60 0.72 0.26 0.39 0.52 0.27 

Zp (mm3) 0.60 0.71 0.27 0.39 0.50 0.28 

Circumference (mm) 0.60 0.69 0.29 0.39 0.48 0.30 

Maximum diameter (mm) 0.52 0.60 0.26 0.31 0.35 0.26 

Minimum diameter (mm) 0.52 0.64 0.19 a 0.32 0.45 0.18 
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Table 3. Adjusted R2 and Bayesian Information Criteria (BIC) for ordinary least squares regression models of tibia midshaft cross-sectional properties for raw and natural 

log transformed variables. TA = total area; J = polar second moments of area; Incl. bone length = model including bone length; SEE = standard error of estimate. Note that 

SEE column presents %SEE for raw data and SEE * 100 for log data. As described in the methods the natural log transformation results in SEEs which are already 

percentages (when multiplied by 100) and are thus comparable. 

 

Dependent Predictor n BIC Adjusted R2 SEE 

 Raw Log Raw Log Raw Log Raw Log Raw Log Raw Log 

 Basic model Incl. bone length Basic model Incl. bone length Basic model Incl. bone length 

 TA 112 474.0 467.7 468.8 461.0 0.38 0.37 0.42 0.43 12.6 12.4 12.1 11.9 

Body mass J 112 477.8 471.1 470.5 462.2 0.36 0.36 0.42 0.42 12.8 12.6 12.2 11.9 

 Circumference 112 479.0 471.9 471.5 462.9 0.35 0.35 0.41 0.42 12.9 12.7 12.3 12.0 

 TA 104 333.6 331.9 317.5 316.0 0.52 0.52 0.60 0.60 9.7 10.0 8.9 8.9 

Lean mass J 104 338.4 334.7 319.1 315.5 0.50 0.51 0.60 0.60 10.0 10.0 8.9 8.9 

 Circumference 104 344.3 331.9 324.4 322.0 0.47 0.48 0.58 0.58 10.3 10.2 9.2 9.1 

 TA 104 352.9 322.0 357.5 326.4 0.06 0.07 0.05 0.06 36.1 33.1 36.3 33.2 

Fat mass J 104 353.3 322.8 358.0 327.1 0.06 0.06 0.05 0.05 36.2 33.2 36.4 33.3 

 Circumference 104 352.3 321.4 356.9 325.8 0.07 0.07 0.06 0.07 36.0 33.0 36.2 33.1 
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Figure 1. Bone cross-section locations (A) and cross-sectional properties (B) used in this study. 

Cross-section illustrated is femur 50%. Results are reported in detail for the humerus, femur and 

tibia midshaft (50%) locations (red). 
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Figure 2. Correlations between body mass, lean mass or fat mass and bone properties. TA = total 

area; CA = cortical area; MA = medullary area; J = polar second moment of area; Zp = polar section 

modulus. 
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Figure 3. Partial correlations between body mass, lean mass or fat mass and bone properties, 

adjusting for stature. TA = total area; CA = cortical area; MA = medullary area; J = polar second 

moment of area; Zp = polar section modulus. 
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Supplementary Table 1. Summary statistics for age, body size and body composition by group. SD = standard 
deviation; Max. = maximum; Min. = minimum. 
 

Variable 
Rowers (n = 40) Distance runners (n = 11) Soccer players (n = 11) 

Mean SD Max. Min. Mean SD Max. Min. Mean SD Max. Min. 

Age (years) 22 2 28 19 27 4 31 20 23 4 27 19 

Stature (cm) 174.0 6.5 188.2 163.3 169.1 8.0 184.0 160.0 164.4 4.4 169.9 155.8 

Body mass (kg) 69.3 9.0 90.0 51.8 56.2 7.6 70.6 45.4 63.6 5.7 74.3 56.7 

Body mass index (kg/m2) 22.8 2.2 30.6 18.3 19.6 1.9 23.1 15.6 23.5 2.0 28.0 21.3 

Lean mass (kg) 54.7 5.8 65.4 43.1 45.0 5.5 56.7 37.5 47.9 3.0 53.0 43.7 

Fat mass (kg) 14.2 4.8 30.9 5.4 12.0 3.2 19.6 8.5 15.6 4.5 25.6 9.9 

% Fat mass (% of body mass) 20.2 4.8 34.3 8.8 21.0 4.4 30.0 16.0 24.3 5.0 34.5 16.8 

 
 
Supplementary table 1 cont. 

Variable Ex-athlete  
(gymnast: n = 1) 

Ultrarunners (n = 8) Controls (n = 34) 

Mean SD Max. Min. Mean SD Max. Min. 

Age (years) 21 36 6 43 27 23 3 32 19 

Stature (cm) 165.3 164.1 6.9 171.9 152.9 167.9 7.4 183.4 154.2 

Body mass (kg) 51.5 60.1 6.9 72.4 52.7 61.7 11.1 92.1 40.0 

Body mass index (kg/m2) 18.8 22.3 1.3 24.7 20.8 21.9 3.9 33.3 16.8 

Lean mass (kg) 44.6 46.8 5.9 54.5 40.1 45.6 5.8 61.6 30.9 

Fat mass (kg) 6.9 13.3 2.9 18.6 10.6 16.0 6.9 37.8 7.7 

% Fat mass (% of body mass) 13.4 22.1 4.1 30.0 18.2 25.2 6.4 41.0 14.1 
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Supplementary Table 2: Comparison of correlations between bone cross-sectional properties and body, lean and 

fat mass excluding rowers from the sample (“restricted sample”) with correlations for the full sample. All variables 

were log transformed. a denotes statistically non-significant correlations (p > 0.05). TA = total area; CA = cortical 

area; MA = medullary area; J = polar second moment of area; Zp = polar section modulus. 

 

 
Pearson correlation (restricted sample) Difference in correlation (full-restricted sample) 

 Unadjusted Adjusted for stature Unadjusted Adjusted for stature 

 

Body 

mass 

Lean 

mass 

Fat 

mass 

Body 

mass 

Lean 

mass 

Fat 

mass 

Body 

mass 

Lean 

mass 

Fat 

mass 

Body 

mass 

Lean 

mass 

Fat 

mass 

 

Humerus 50% 
            

TA (mm2) 0.35 0.63 -0.03 a 0.19 a 0.46 -0.06 a 0.15 0.05 0.13 0.06 0.08 0.06 
CA (mm2) 0.38 0.67 -0.03 a 0.28 0.63 -0.04 a 0.16 0.06 0.06 -0.05 -0.03 -0.10 
MA (mm2) 0.22 a 0.39 0.00 a 0.05 a 0.14 a -0.03 a 0.06 -0.01 0.14 0.10 0.02 0.18 
J (mm4) 0.38 0.67 -0.03 a 0.22 a 0.52 -0.05 a 0.16 0.05 0.12 0.03 0.06 0.02 
Zp (mm3) 0.37 0.65 -0.02 a 0.23 a 0.54 -0.05 a 0.16 0.06 0.10 0.02 0.05 -0.01 
Circumference (mm) 0.36 0.65 -0.03 a 0.19 a 0.46 -0.05 a 0.15 0.05 0.12 0.04 0.06 0.07 
Maximum diameter (mm) 0.35 0.59 -0.01 a 0.18 a 0.36 -0.01 a 0.07 0.00 0.08 0.07 0.18 0.00 
Minimum diameter (mm) 0.32 0.54 0.02 a 0.21 a 0.46 -0.03 a 0.17 0.12 0.09 0.07 0.00 0.13 

 

Femur 50% 
            

TA (mm2) 0.46 0.74 0.07 a 0.30 0.55 0.09 a 0.12 -0.01 0.13 0.02 -0.10 0.10 
CA (mm2) 0.47 0.71 0.10 a 0.35 0.62 0.11 a 0.08 -0.03 0.08 -0.01 -0.13 0.06 
MA (mm2) 0.15 a 0.32 -0.02 a -0.03 a -0.03 a 0.00 a 0.17 0.06 0.10 0.07 0.04 0.06 
J (mm4) 0.46 0.74 0.07 a 0.30 0.56 0.09 a 0.11 -0.02 0.12 0.00 -0.11 0.10 
Zp (mm3) 0.12 a 0.35 -0.11 a -0.08 a 0.03 a -0.14 a 0.22 0.17 0.09 0.07 0.15 0.05 
Circumference (mm) 0.51 0.71 0.17 a 0.39 0.56 0.20 a 0.07 -0.04 0.09 -0.03 -0.14 0.08 
Maximum diameter (mm) 0.36 0.62 0.03 a 0.19 a 0.39 0.04 a 0.22 0.09 0.18 0.16 0.07 0.19 
Minimum diameter (mm) 0.48 0.73 0.10 a 0.35 0.55 0.14 a -0.02 -0.13 0.06 -0.16 -0.27 0.00 

 

Tibia 50% 
            

TA (mm2) 0.50 0.69 0.20 a 0.33 0.49 0.19 a 0.11 0.03 0.07 0.06 0.02 0.09 
CA (mm2) 0.48 0.63 0.20 a 0.37 0.56 0.19 a 0.08 0.02 0.04 0.00 -0.07 0.04 
MA (mm2) 0.22 a 0.33 0.09 a -0.01 a -0.06 a 0.06 a 0.17 0.10 0.08 0.18 0.21 0.10 
J (mm4) 0.49 0.68 0.19 a 0.32 0.51 0.17 a 0.11 0.03 0.06 0.06 0.01 0.10 
Zp (mm3) 0.51 0.70 0.21 a 0.36 0.51 0.21 a 0.08 0.01 0.05 0.03 -0.01 0.07 
Circumference (mm) 0.49 0.67 0.21 a 0.31 0.46 0.19 a 0.11 0.02 0.07 0.08 0.02 0.11 
Maximum diameter (mm) 0.37 0.57 0.11 a 0.20 a 0.41 0.04 a 0.14 0.03 0.14 0.11 -0.05 0.21 
Minimum diameter (mm) 0.39 0.59 0.14 a 0.21 a 0.33 0.14 a 0.12 0.04 0.04 0.11 0.11 0.03 

 
 


