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One of the biggest concerns in liner operations is punctuality of containerships. Managing the time
factor has become a crucial issue in today’s liner shipping operations. A statistic in 2015 showed
that the overall punctuality for containerships only reached an on-time performance of 73%.
However, vessel punctuality is affected by many factors such as the port and vessel conditions and
knock-on effects of delays. As a result, this paper develops a model for analyzing and predicting the
arrival punctuality of a liner vessel at ports of call under uncertain environments by using a hybrid
decision-making technique, the Fuzzy Rule-Based Bayesian Network (FRBBN). In order to ensure
the practicability of the model, two container vessels have been tested by using the proposed model.
The results have shown that the differences between prediction values and real arrival times are
only 4.2% and 6.6%, which can be considered as reasonable. This model is capable of helping liner
shipping operators (LSOs) to predict the arrival punctuality of their vessel at a particular port of
call.

Copyright © 2017 The Korean Association of Shipping and Logistics, Inc. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The container liner shipping industry is a dynamic and complex one. It served by those ports of call (Stopford, 2009). At present, a large
consists of a fleet of vessels with a common ownership or management proportion (i.e. 80%) of world commodities by volume is transported by
strategy, providing a fixed service at regular intervals between ports of seaborne trade and more than 62% of this seaborne trade is carried by the
call and offers transport of containerized goods in the catchment area CLSI (UNCTAD, 2012; Mohd Salleh et al., 2014). A recent study
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2092-5212/© 2017 The Korean Association of Shipping and Logistics, Inc. Production and hosting by Elsevier B.V.
Peer review under responsibility of the Korean Association of Shipping and Logistics, Inc.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajsl.2017.06.007&domain=pdf

96 Predicting a Containership’s Arrival Punctuality in Liner Operations by Using a Fuzzy Rule-Based Bayesian Network (FRBBN)

addressing 157 countries over the period 1962-1990 provided the
empirical evidence that the CLSI is the driver of 20"™-century economic
globalization (Bernhofen et al., 2013). Therefore, it is noteworthy to
mention that the CLSI is remarkably acting as an artery in making
contributions to the growth of the global economy.

Recently, performance on service punctuality has become an area of
topical interest following various initiatives by many liner shipping
operators (LSOs). Leading LSOs (e.g. Maersk Line, MSC Shipping,
Hamburg Stid Group and CMA CGM) have developed a policy for future
sustainability that focuses on guaranteed punctual arrivals. With today’s
marketing structures and strategies in the CLSI, LSOs must ensure that
vessels can deliver containers within the scheduled time. However,
managing the time factor is not an easy task for LSOs. The schedule
reliability for overall container shipping achieves an on-time performance
of 73% (Drewry Shipping Consultants, 2015). Vessel delays lead to
significant handling interruption and underutilization of resources for both
ports and LSOs, which finally results in high financial losses.

Vessels may be delayed due to uncertainties comprised of port
congestion, port inefficiency, poor vessel conditions, rough weather,
incapability and unreliability of an agency that represents the LSO at each
port of call. These uncertainties are some of the reasons that may impede
LSOs from providing on-time services to their customers. As a result, the
aim of this paper is to develop a model for analyzing and predicting a
vessel’s arrival punctuality prior to actual arrival by using a hybrid
decision-making technique, the Fuzzy Rule-Based Bayesian Network
(FRBBN). It is expected that this model is capable of forecasting the
arrival punctuality of liner vessels, and sending an early warning signal to
LSOs so that they can adopt proactive strategies.

2. Literature Review

In container liner shipping, there are three planning level stages, which
can be listed as strategic, tactical and operational (Christiansen et al., 2007,
Van Riessen et al., 2015; Mohd Salleh et al., 2015). In this paper, the
focus is on the operational planning level, which is based on a short-term
period that can be extended from a few hours to a few months. One of the
problems in this operational planning level is disruption. Generally,
disruption can be listed in four levels: delay, deviation, stoppage and loss
of platform service (Gurning, 2011). Based on Hsu and Huang’s (2014)
study, shippers pay more attention to transportation reliability involving
key indicators such as correctness, perfect delivery and vessel punctuality.
Vessel delay will affect the punctually of cargo delivery resulting in
additional days of shipping days. Consequently, every possible
mechanism should be encouraged to mitigate this issue.

In recent years, many scholars have paid more attention to the schedule
reliability of road networks, railways and airlines, rather than container
liner shipping operations. There is little discussion about the analysis of
schedule reliability in liner shipping services in the literature. In the
context of liner shipping operations, only a few studies on schedule
reliability, such as Notteboom (2006), Vernimmen et al. (2007), Wu et al.
(2009), Gaonkar et al. (2011), Chung and Chiang (2011), Fancello et al.
(2011) and Ducruet and Notteboom (2012), are available in the literature.
Notteboom (2006) discussed causes of schedule unreliability from the
perspective of a shipping line. Later, Vernimmen et al. (2007) analyzed the
impact of schedule unreliability on shippers and consignees. Vernimmen
et al.’s study also provides the factors causing liner shipping unreliability
that can be used in this study. Nevertheless, the studies by Notteboom

(2006) and Vernimmen et al. (2007) do not provide a mathematical model
for analyzing and predicting arrival and departure punctuality.

Several attempts have been made to analyze schedule reliability by
using a mathematical model, such as Chung and Chiang (2011), Fancello
et al. (2011) and Gaonkar et al. (2011). Gaonkar et al. (2011) assessed the
timeliness of operational reliability in a maritime transportation system by
considering congestion at ports and sea. Nevertheless, these elements are
not deeply investigated as their study generally evaluates the criteria
without observing the sub-criteria of each element. As a result, the
collected data might not be accurate due to the generality of the criteria. In
addition, their study is focused on operational reliability rather than arrival
prediction. On the other hand, Chung and Chiang (2011) developed a
model for evaluating the schedule reliability in liner shipping. However,
they only assigned a weight for each criterion without assessing the real
condition of each element in their model. Fancello et al. (2011) predicted
ship delays by proposing two algorithms: a dynamic learning predictive
algorithm based on neural networks and an optimization algorithm for
resource allocation. They have reduced the prediction error from 4 hours
to around 2.7 hours (absolute value), obtaining an uncertainty range of 6
hours (5.20 hours). As a result, this prediction error will be used as a
benchmark in this paper.

Based on literatures, it is noteworthy to mention that no probability
model has been developed for analyzing the arrival punctuality of liner
vessels under uncertain environments; thus, making these attempts is
essential for the current research.

With the growing complexity in global transport networks, managing
the time factor in liner shipping operations is not an easy task. LSOs are
keen to achieve the timings as announced in their official schedule. Delays,
however, not only reduce the reliability value of the liner operations but
also incur logistic costs to the customer as a consequence of additional
inventory costs, and in some cases additional production costs are also
incurred (Notteboom, 2006). Generally, for analyzing and predicting
vessel punctuality, two aspects should be considered: vessel’s arrival and
departure at/from port of call (Mohd Salleh et al., 2015).

Fig. 1 shows the starting point of arrival and departure time for a vessel
to/from ports of call. Drewry Shipping Consultants (2012) stated that the
vessel is considered as having an “on-time arrival” if the divergence
between Actual Time Arrival (ATA) and Estimated Time Arrival (ETA)
is within one day or less. They also stated that the vessel is considered as
having an “on-time departure” if the divergence between Actual Time
Departure (ATD) and Estimated Time Departure (ETD) is within one day
or less. The deviation of estimated time of arrival/departure compared to
the actual time of arrival/departure can be formulated as follows:

AArrival = ATA-ETA 1)
A Departure= ATD — ETD )

Port
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Fig. 1. Arrival and departure time at ports of call
Source: Authors
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Based on Drewry Shipping Consultants (2012), if a vessel can
arrive/depart at/from a port of call within the same day as its estimated
time of arrival/departure, then the punctuality of the vessel’s arrival and
departure is assessed as on-time (i.e. as long as a vessel arrives/departs
within 24 hours, it is considered to be on time). As an example, if Viessels
and Vesselg respectively arrive at the named port of call 1 hour and 10
hours after ETA, both vessels are still assessed as on-time. To overcome
the aforementioned drawback in this paper, a precise model for analyzing
the arrival punctuality under a FRBBN model will be formulated.

2.1 Fuzzy Rule-Based Bayesian Network (FRBBN)

This sub-section discusses the background of FRBBN as a hybrid
method (i.e. will be employed in the research methodology) combining a
Fuzzy Rule-Based (FRB) approach and a Bayesian Network (BN) for
analyzing and predicting the arrival punctuality of a liner vessel at ports of
call under uncertain environments. A detailed explanation about the FRB
and BN can be found in Mohd Salleh et al. (2016). A basic FRBBN
formula can be formed using Eq. 3 as follows (Yang et al., 2009):

IFAL A2and ... AN, THEN B ®3)

where 4;(i = 1,2, ..., N)is the ith piece of evidence and B is a hypothesis
suggested by the evidence. Each 4; and the hypothesis (B) of a rule are
propositional statements. Later, the FRB is able to be incorporated with a
belief rule-base and can be defined as follows (Yang et al., 2006; Yang et
al., 2009; Zhou et al., 2011):

Ry: IF XX, Xk and ... X,
THEN {(ﬁlkl Yl)! (ﬁzk: YZ)J (ﬁNk' YN)} (4)

where Xj" (Ge{1,2,..,M}sk e{1,2,..,L}) is the referential value of the
jth antecedent attribute in the kth rule, M is the number of antecedent
attributes used in the kth rule and L is the number of rules in the rule-base.
Bu (i €{1,2,..,N}; k ={1,2,...,L}, with L as the number of the rules in
the rule-base) is a belief degree to ¥; (i€ 1,2,..,N), called the
consequent if, in the kth packet rule, the input satisfies the packet
antecedents X* = {X¥, X¥, .., X} }.

In order to determine the conditional probability table (CPT) by using an
FRBBN, Eq. 4 can be further expressed as shown in Eq. 5 (Zhou et al., 2011):

P(Y;|XE, XE, . X)) = B i=1,2,..,N. )

The FRBBN approach can be applied for combining rules and
generating a final conclusion which can be calculated by using Bayes’
chain rules.

3. Methodology

In order to develop the model for analyzing and predicting the arrival
punctuality of a vessel by using the FRBBN method, as shown in Fig. 2,
six steps are followed:

Sep 1: Identifying critical influential factors by using literature and
consultation with experts.

Sep 2: Defining states for each node by using literature and
consultation with experts.

Sep 3: Developing a generic model using the BN model.

Sep 4: Determining conditional probabilities by using the FRB method.

Sep 5: Determining unconditional probabilities by using membership
functions and belief degrees.

Sep 6: Validating the model and prediction values by using sensitivity
analysis and prediction error.

A detailed explanation about these steps can be found in Mohd Salleh et
al. (2016). However, these steps will be demonstrated in the test case (i.e.

Section 4).

Step 1: Critical Influential Factors
Identification
(Literature & Experts’ Consultation)

Step 2: Definition of States for
Each Node
(Literature & Experts’ Consultation)

¥

Step 3: Generic Model

Step 4: Conditional Probabilities

Determination .- Development
(Fuzzy Rule-Based) (BN Model)
3 5 Transformation of Experts’
Experts’ Judgement Aggregation i Judgements to Conditional

(Geometna Mean) Probability Tables

Step 5: Determination of
i it p iiti "J

I
L] L]

Transt . 10fQ ing Qualitative Criteria
Criteria to Qualitative Criteria Using Subjective Judgements
(Membership Functions) (Beliel Degree)

[ |
¥

Marginal Probabilities Calculation
(Bayes’ Chain Rules)

!

Step 6: Model and Outcomes
i i (Sensitivity hysis &
Prediction Error)

!

| Decision Making |

Fig. 2. The procedure for analyzing and predicting the arrival punctuality

4, Test Case

In order to demonstrate the applicability of the proposed model, the
arrival punctuality of Vessel, at Port, (test case 1) will be analysed in
this study. The final result of test case 2 is shown in sub-section 4.5 for
validation purposes. For test case 1, the backgrounds of Vessel, and
Port, are listed in Tables 1 and 2 respectively.

Table 1
Details of Vessel,

Details Vessel,
Vessel Type Container Ship
Gross Tonnage 17068
Deadweight 21206 tonne
Length x Breadth 186 mx 25 m
Year Built 2009

Draught 9.5m
Distance 554 nm
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Transit Time from Previous Port 36 hours (Sailing Time) By reviewing the literature and consulting with the domain experts, the
24 hours (Buffer Time) states of each node in the arrival model are described in Table 4.
Planned Speed 16 knot
Table 3
Table 2 Summary of identified influential factors
Details of Port, -
Arrival Model
Details Port, Main Criteria Sub-criteria Sub-sub-criteria
Berth Capacity 12 Berths forming 4.3km of linear Port Conditions Port Channel | Access Channel — Punctuality
wharf Conditions of Pilotage Operation for

Yard Capacity 200,000 TEUs Arrival Process, Tidal Window

Annual Handling Capacity 8,400,000 and Weather Condition at Port

Quay Crane Capacity 44 Quay-side cranes Terminal Berthing Area Condition

Berth Occupancy Ratio 57.45% Conditions Port Yard Condition

Yard Utilization 54.79% Miscellaneous Eactors

Average Truck Turnaround Time 24.20 minutes Miscellaneous | Port Administration Process

] . ) Factors Inland Corridors
4.1. Nodes and States in the Arrival Punctuality Model (Seps 1 and 2) Country Reliability
In this paper, the process of identifying the critical factor for analyzing Vessdl Conditions Maritime En-Route Traffic Condition
arrival punctuality involves the listing of influential factors and then Passage Possibility of Canal Miss
analyzing them by using cause and effect analysis. With the focus on En-Route Weather Condition
Vessel Speed

arrival punctuality of a liner vessel, every significant influential factor is
carefully reviewed. Through the extensive literature review, firstly, the 32

Operational Machinery Breakdown

influential factors (i.e. nodes in the model) are identified. Secondly, these Performance | ship Staff’s Reliability
factors are further revised and reduced by the domain experts (i.e. due to Unforeseen Dangerous Events
the complexity of the model and because some eliminated factors are not Events Other Unexpected Delays
significantly determining the punctuality of a liner vessel). Finally, as Departure Punctuality from Previous Port
shown in Table 3, the revised influential factors are selected (Mohd Salleh Agency Reliability and Capability
etal., 2016).
DPfPP AP
On fime Or Resolved  33.3 p Onfime 33.3
Delay 333 Delay 333
Serious Dalay 33.3 Serious Delay  33.3 jumd
PPTAP PCC \ = —
32;;:“ %; = Zzﬂ:u 2}? = ) Less Trafic 333 No Problem or NotRelated  50.0 ﬁ
Seripus Delay 333 e = Miszed Convway 50.0 H

Densely C 33.3 - Nomal Trafic 333
4 Densc Trafic 333
2 -
Pt
7 ‘i
WGaP e / / N
PC

MPC ERWC
Fucellent 33 3 - Smooth 333 / Excellent 233 Excellent 353
Modorate 333 e werage 333 Smooth Condifion 33,3 VG _d & il B ioicoe 155
Rough 33.3 - [oam 333 Crowded 333 Good 33.3 H | Paor 333 Rouehm 333 p—

L DensclyCongested 333 Awerage 333 P £
o Poor 333 fmm {
™ o
NotResticive 500 i B SPEED
IResmnctve 50.0 .
/ Highly Reliable 333 2:“"? gEeed 222
Medium Reliable  33.3 vor e hii"r“':;m =
BAC TC Lowly Iieliable Fign 52

Smooth Smouth 333 Hedium 33 3 .

Crowded Crowded Low 33.3 S e

Densely Congested Densely Congested Ic . - e

Free Flow 333 .
Nol Occurred 333
Crowded 333 i Minor Breakdown 333
Densely Crowded  33.3 i Major Rreakdown 33 3
PYC MISC —
Smoath 333 Smooth 33 3 LUE
Crowded B Awrage  33.3 = Not Dccurred I ™ NotOcourcd  50.0 et SSR
Densely C 33.3 Foar 333 Occurred 0 Oeeurred 50.0 jumimm: ¢ Ilighly Reliable  33.3 e
. Medium Relisble 333
. 1 owiy Reliable 333
™,
DE
| PAP cR NotOccurred 50,0 et
Highly Eficient  33.3 Oceurred i) () p——

Medium Efiicient 333
Lowly Cliicienl 33.3

High 333
Medium 333
Low 33.3 jm

Fig. 3. The BN model for arrival punctuality (without data)
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Table 4

List of nodes and states in the arrival model

Arrival Model

Nodes

States

Avrrival Punctuality
Port Condition
Vessel Condition

Agency

Departure Punctuality from
Previous Port

Port Channel Conditions
Terminal Conditions
Miscellaneous Factors

Maritime Passage Condition

Vessel Operational Performance

Unforeseen Events
Access Channel Condition
Berthing Area Condition
Port Yard Condition

Port Administration Process

Inland Corridors

Country Reliability
En-Route Traffic Condition
Missing a Convoy at a Canal
En-Route Weather Condition
Speed

Ship Staff’s Reliability

Machinery Breakdown

Dangerous Events

Other Unexpected Delays
Weather Condition at Port

Punctuality of Pilotage Operation

for Arrival Process
Tidal Window

On-time, Delay, Serious Delay

Smooth, Crowded, Densely Congested

Good, Average, Poor

Highly Reliable, Medium Reliable, Lowly
Reliable

On-time or Resolved, Delay, Serious Delay

Smooth, Crowded, Densely Congested

Smooth, Crowded, Densely Congested

Smooth, Average, Poor

Excellent, Moderate, Poor

High, Medium, Low

Not Occurred, Occurred

Smooth, Average, Poor

Smooth, Crowded, Densely Congested

Smooth, Crowded, Densely Congested

Highly Efficient, Medium Efficient, Lowly
Efficient

Free Flow, Crowded, Densely Congested

High, Medium, Low

Less Traffic, Normal Traffic, Dense Traffic

No problem or Not related, Missed convoy
Excellent, Moderate, Rough

Planned Speed, Slow, Disrupted

Highly Reliable, Medium Reliable, Lowly
Reliable

Not  Occurred, Minor Breakdown, Major
Breakdown

Not Occurred, Occurred

Not Occurred, Occurred

Excellent, Moderate, Rough

On-time, Delay, Serious Delay

Not Restrictive, Restrictive

Table 5

Preference numbers for the child node arrival punctuality

4.2. The Arrival Punctuality Modelling for Vessel, at Porta (Step 3)

Based on the identified factors and their states as shown in Steps 1 and
2, the BN model is developed and shown in Figure 3. As shown in Figure
3, the leaf node “arrival punctuality (AP)” has four parent nodes:
“departure punctuality from previous port (DPfPP)”, “port conditions
(PC)”, “vessel conditions (VC)” and “agency (AGENCY)”. The parent
nodes that influence the node “PC” consist of “port channel conditions
(PCC)”, “terminal conditions (TC)” and “miscellaneous factors (MISC)”.
The node “PCC” is influenced by “access channel conditions (ACC)” and
“TC”. The parent nodes that influence the node “ACC” consist of
“punctuality of pilotage operation for arrival process (PPfAP)”, “tidal
window (TW)” and “weather condition at port (WCaP)”. The node “TC”
has two parent nodes, namely “berth area condition (BAC)” and “port
yard condition (PYC)”; whereas the node “MISC” has three parent nodes,
namely “port administration process (PAP)”, “inland corridors (IC)” and
“country reliability (CR)”. The node “vessel conditions” has three parent
nodes: “maritime passage condition (MPC)”, *“vessel operational
performance (VOP)” and “unforeseen events (UE)”. The node “MPC” has
three parent nodes: “en-route traffic condition (ERTC)”, “possibility of
canal miss (PoCM)” and “en-route weather condition (ERWC)” and, at
the same time, the node “MPC” influences the node “speed (SPEED)”.
“SPEED”, “machinery breakdown (MB)” and “ship staff’s reliability
(SSR)” are the three parent nodes of the node “VOP”. Finally, “dangerous
events (DE)” and “other unexpected delays (OUD)” are the two parent
nodes that influence the node “UE”.

4.3. Determination of Conditional Probabilities (Step 4)

The CPT is a set of distributions to represent the dependency of a child
node on its parent node(s). In this paper, a CPT for all child nodes in the
arrival punctuality model is determined by using an FRB approach. To
conduct conditional probability distributions using the FRB approach,
four experts, “E,”, with 15 and more years of experience in this operation
are selected. Based on Equations 3-5, a CPT for all child nodes (i.e.
“ACC”, “PCC”, “TC”, “MISC”, “MPC”, “VOP”, “UE”, “PC”, “VC”,
“SPEED” and “AP”) will be calculated. For example, based on Table 5, to
establish a rule for the child node “AP” under the combination of the
conditions of its parent nodes (i.e. “DPfPP”, “PC”, “VC” and
“AGENCY™), a preference number ranging from 1 to 5 can be selected.
These preference numbers (i.e. have been selected by four experts) are
then aggregated by using the geometric mean and shown in Table 6. The
aggregated preference numbers for each rule, as listed in Table 6, are then
transformed into a CPT using membership functions. As a result, the CPT
for the child node “Arrival Punctuality” is shown in Table 7.

Arrival On-time (Exactly arrive Slight Delay (Up to 12 Delay (Up to 24 hours Serious Delay (Up to 36 Very Serious Delay (48
Punctuality States on or before ETA) hours after ETA) after ETA) hours after ETA) hours and more after ETA)
Preference

5 4 3 2 1

Number
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Table 6
Consequents for the child node arrival punctuality
IF THEN
Rules Departure Arrival Punctuality
Punctuality from | Vessel Conditions Port Conditions Agency
Previous Port (E1) (E2) (E3) (E4) Aggregation
1 On-time Good Smooth Highly Reliable 5 5 5 5 5.0000
2 On-time Good Smooth Medium Reliable 5 5 5 5 5.0000
3 On-time Good Smooth Lowly Reliable 4 5 4 5 4.4721
4 On-time Good Crowded Highly Reliable 4 5 4 5 4.4721
5 On-time Good Crowded Medium Reliable 4 5 4 4 4.2295
6 On-time Good Crowded Lowly Reliable 5 5 1 3 2.9428
7 On-time Good Densely Congested Highly Reliable 1 5 2 3 2.3403
8 On-time Good Densely Congested Medium Reliable 1 4 2 3 22134
9 On-time Good Densely Congested Lowly Reliable 1 4 1 2 1.6818
10 On-time Average Smooth Highly Reliable 4 5 4 3 3.9360
11 On-time Average Smooth Medium Reliable 4 5 3 2 3.3098
60 Serious Delay Good Crowded Lowly Reliable 1 4 1 1 1.4142
61 Serious Delay Good Densely Congested Highly Reliable 1 3 2 1 1.5651
62 Serious Delay Good Densely Congested Medium Reliable 1 3 2 1 1.5651
63 Serious Delay Good Densely Congested Lowly Reliable 1 3 1 1 1.3161
64 Serious Delay Average Smooth Highly Reliable 1 3 2 1 1.5651
78 Serious Delay Poor Crowded Lowly Reliable 1 2 1 1 1.1892
79 Serious Delay Poor Densely Congested Highly Reliable 1 2 1 1 1.1892
80 Serious Delay Poor Densely Congested Medium Reliable 1 2 1 1 1.1892
81 Serious Delay Poor Densely Congested Lowly Reliable 1 1 1 1 1.0000
Table 7
CPTs for the child node arrival punctuality
IF THEN
Arrival Punctuality
Rules Departur'e Vesse! . Current Port
Punctuality from | Condition | Z° . Agency Aggregated CPT
Previous Port s (Ppr\szirazr;cgsutpltlﬁj)mber On-time Delay Serious Delay
1 On-time Good Smooth Highly Reliable 5.0000 1 0 0
2 On-time Good Smooth Medium Reliable 5.0000 1 0 0
3 On-time Good Smooth Lowly Reliable 4.4721 0.7360 0.2640 0
4 On-time Good Crowded Highly Reliable 4.4721 0.7360 0.2640 0
5 On-time Good Crowded Medium Reliable 4.2295 0.6148 0.3852 0
6 On-time Good Crowded Lowly Reliable 2.9428 0 0.9714 0.0286
7 On-time Good Densely Congested Highly Reliable 2.3403 0 0.6701 0.3299
8 On-time Good Densely Congested Medium Reliable 2.2134 0 0.6067 0.3933
9 On-time Good Densely Congested Lowly Reliable 1.6818 0 0.3408 0.6592
10 On-time Average Smooth Highly Reliable 3.9360 0.4680 0.5320 0
11 On-time Average Smooth Medium Reliable 3.3098 0.1549 0.8451 0
60 Serious Delay Good Crowded Lowly Reliable 1.4142 0 0.2071 0.7929
61 Serious Delay Good Densely Congested Highly Reliable 1.5651 0 0.2825 0.7175
62 Serious Delay Good Densely Congested Medium Reliable 1.5651 0 0.2825 0.7175
63 Serious Delay Good Densely Congested Lowly Reliable 1.3161 0 0.2825 0.7175
64 Serious Delay Average Smooth Highly Reliable 1.5651 0 0.2825 0.7175
78 Serious Delay Poor Crowded Lowly Reliable 1.1892 0 0.0946 0.9054
79 Serious Delay Poor Densely Congested Highly Reliable 1.1892 0 0.0946 0.9054
80 Serious Delay Poor Densely Congested Medium Reliable 1.1892 0 0.0946 0.9054
81 Serious Delay Poor Densely Congested Lowly Reliable 1.0000 0 0 1
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The same process is applied to all the child nodes in the arrival
punctuality model (i.e. “ACC”, “PCC”, “TC”, “MISC”, “MPC”, “VC”,
“UE”, “PC”, “VOP” and “SPEED”). The number of pieces of data that
need to be transformed and inserted into the arrival punctuality model is
259 per expert.

4.4. Determination of Unconditional Probabilities (Step 5)

In order to assess the unconditional probabilities of the root nodes in the

For assessing the unconditional probabilities, membership functions
need to be constructed. As an example, based on Riahi et al. (2012), en-
route weather conditions can be measured by using Beaufort numbers
ranging from 0-13, as shown in Figure 4. If the Beaufort number is
between 0 and 4, the weather condition can be considered as excellent and
between 5 and 6 it can be considered as moderate. If the Beaufort number
is between 7 and 13, this signifies rough weather.

EXCELLENT MODERATE ROUGH
arrival punctuality model, the required data about the vessel and port 09
0.
conditions can be obtained from several reliable sources (i.e. record, goj
historical data, expert judgments and statistics). In this paper, the datasets 026
for test case 1 are shown in Table 8. ot
o3
0.
0.2
Table 8 o
0,
Datasets for arrival punctuality (test case 1) o9 . \
1 4 5 6 7 10
Beaufort Number
Root
Nodes | Measurement Data Fig. 4. Membership functions for the node “ERWC”
- Based on Figure 4, the set for the “en-route weather condition” can be
DPfPP | ADeparture = ATD | -3 hours and 12 minutes (Before ETD)
evaluated as:
-ETD
WCaP | Beaufort Number | 3 ERWC = {(Excellent, 1), (Moderate, 0), (Rough, 0)}
PPfAP | Initiated Time Before ETA
™ Hours Delay No Delay The same process is applied to all the root nodes in the arrival
BAC Berth Occupancy | 57.45% punctuality model. The sets for all root nodes are obtained and shown in
Ratio (%) Table 9.
BAC Yard Utilization (%) | 54.79%
— Table 9
PAP Immigration Before ETA The sets (belief degrees) for all root nodes
Clearance
- Root Nodes Sets
IC Truck Turnaround | 24.20 minutes - -
DPfPP {(On-time, 1), (Delay, 0), (Serious Delay, 0)}
Time
WCaP {(Excellent, 1), (Moderate, 0), (Rough, 0)}
ERTC |En-Route Traffic States Less Normal Dense PPFAP £(On-time, 1), (Delay, 0), (Serious Delay, 0)}
Condition Evaluator Traffic Traffic Traffic ™ {(Not Restrictive, 1), (Restrictive, 0)}
(Qualitative) Evaluator1 | 100% 0% 0% BAC {(Smooth, 1), (Crowded, 0), (Densely Congested, 0)}
Evaluator 2 100% 0% 0% BAC {(Smooth, 1), (Crowded, 0), (Densely Congested, 0)}
Evaluator 3 90% 10% 0% PAP {(Highly Efficient, 1), (Medium Efficient, 0), (Lowly Efficient, 0)}
PoCM | Occurrence Not Involved IC {(Smooth, 1), (Crowded, 0), (Densely Congested, 0)}
ERWC | Beaufort Number | 3 ERTC {(Less Traffic, 0.9784), (Normal Traffic, 0.0216),
MB Occurrence  and | Not Breakdown (Dense Traffic, 0)}
. PoCM {(No Problem or Not Related, 1), (Miss Convoy, 0)}
Delayed Time
— ERWC {(Excellent, 1), (Moderate, 0), (Rough, 0)}
SSR Reliability States High Medium Low MB {(No Breakdown, 1), (Minor Breakdown, 0),
(Qualitative) Evaluato (Major Breakdown, 0)}
Evaluator 1 90% 10% 0% SSR {(Highly Reliable, 0.8413), (Medium Reliable, 0.1587), (Lowly
Evaluator 2 80% 20% 0% Reliable, 0)}
Evaluator 3 70% 30% 0% DE {(Not Occurred, 1), (Occurred, 0)}
DE Occurrence Not Occur ouD {(Not Occurred, 1), (Occurred, 0)}
Ooub Occurrence Not Occur CR {(Highly Reliable, 0.3429), (Medium Reliable, 0.5788), (Lowly
CR Country High 0.3429 Reliable, 0.0783)}
Reliability Medium 0.5788 AGENCY {(Highly Reliable, 0.7700), (Medium Reliable, 0.2092), (Lowly
Low 00783 Reliable, 0.0208)}
AGEN | Agency Reliability | High 0.7700 . X .
oy - The Netica software tool is employed to calculate the marginal
Medium 0.2092 probabilities for arrival punctuality. After all the CPTs for child nodes and
Low 0.0208 unconditional probabilities of root nodes are determined and inserted into
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the software, the marginal probabilities of the child node(s) can be
calculated. Based on Figure 5, the marginal probability of Vessel,
arriving at Port, on-time is 92.1%.

4.5. Model and Result Validations (Step 6)

In order to ensure that the arrival punctuality model is functional, this
model must at least meet the following two axioms (i.e. sensitivity
analysis):

Axiom 1: A slight increase or decrease in the degree of membership
associated with any states of an input node will certainly result in a
relative increase or decrease in the degree of membership of the highest-
preference state of the model output.

Axiom 2: If the degree of membership associated with the highest-
preference state of an input node is decreased by [ and m (simultaneously
the degree of membership associated with its lowest-preference state is
increased by [ and m (1 >m >1)), and the values of the model output are
evaluated as U; and U,, respectively, then U, should be greater than U,,,.
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Fig. 5. The probability set for the arrival punctuality in test case 1
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Fig. 6. Representation of axioms 1 and 2 (test case 1)

As shown in Figure 6, the membership degree for the highest-
preference state of an input node is decreased by 0.1, 0.2 and 0.3
respectively and simultaneously the degree of membership for the lowest-
preference state is increased by 0.1, 0.2 and 0.3 respectively. Since the
assessed “on-time” values after alterations k, | and m are smaller than the
actual one (i.e. 0.921 “on-time”), the results are aligned with axioms 1 and 2.

In addition, for further validation of the arrival punctuality model, a
prediction error (A Predicted Arrival Time - A Real Arrival Time) is used.
If the difference between outcome of the model and real arrival time is
<10% or 2.4 hours, then it will be considered to be reasonable. Based on
Fancello et al. (2011), the validation error in their prediction model is

around 2.7 hours (i.e. absolute value) and 5.6 hours if uncertainty is
considered. Within this study, the use of 10% error or +2.4 hours as a
prediction error for the model is lower than the previous study. Based on
Figure 5 (i.e. test case 1), the outcome of the model (i.e. the marginal
probability of Vessel, departing from Port, on-time) was evaluated as
92.1%. Based on the real record obtained from the ship manager of
Vessel,, the A Arrival of Vessel, at Port, is +54 minutes and can be
considered as 96.3% on-time (i.e. (24 hours — 0.9 hours) / (24 hours — 0
hours) x 100%). The error of the model is calculated as 4.2% or 1 hour
(i.e. 96.3% - 92.1%). As a result, the outcome of test case 1 is considered
as reasonable (i.e. less than 2.4 hours) and it can be concluded that the
developed result in this paper is reasonable. The prediction errors for test
cases 1 and 2 are presented in Table 10.

Table 10
Prediction errors for test cases 1 and 2

Test Model Real Arrival Percentage Hour
Result Time Difference Difference

Test case 1 92.1% 96.3% 4.2% 1.008

Test case 2 33% 39.6% 6.6% 1.584

5. Results and Discussion

Within this paper, a model for analyzing the arrival punctuality of a
vessel by using an FRBBN model is developed. In this model, the arrival
punctuality depends upon many criteria, which are port conditions, vessel
conditions, process management efficiency by agency and departure
punctuality from the previous port of call. It is noteworthy to mention that
this developed model is highly sensitive. Any alteration of criteria values
will also alter the arrival punctuality’s value. In test case 1, based on the
given datasets in Table 8, the arrival punctuality value of Vessel, at
Port, is evaluated as 92.1%. This arrival punctuality value is not fixed
and will change if a criterion’s value is altered. To justify these statements,
the deviation of arrival punctuality of Vessel, at Port, due to alteration
of each criterion as shown in Table 11 is evaluated.

Table 11
Arrival punctuality’s value at different environments

Description of Event (Change of Event) On-time  Rank

Departure from previous port is 100% serious delay 0% 1
Weather condition at port is 100% rough 48.2% 10
Punctuality of pilotage operation is 100% serious delay 46.4% 8
Tidal window is 100% restrictive 47.6% 9
Berthing area condition is 100% densely congested 18.3% 2
Port yard condition is 100% densely congested 33.6% 6
Port administration process is 100% low efficiency 29.4% 4
Inland corridor is 100% densely congested 59.8% 13
En-route traffic condition is 100% dense traffic 53.8% 12
Missing a convoy at a canal occurs 50.9% 1
En-route weather condition is 100% rough 31.3% 5
Machinery breakdown is 100% major 20.2% 3
Ship’s staff are 100% low reliability 43.8% 7
Dangerous event occurs 0% 1
Other unexpected delays occur 0% 1
Country reliability is 100% low reliability 77.1% 15
Agency is 100% low reliability 64.3% 14
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As shown in Table 11, the model output is more sensitive to the
departure punctuality from the previous port, dangerous events and other
unexpected delays. The condition of the berthing area is ranked 2™ and
vessel machinery breakdown is ranked 3. Consequently, the ship
manager should pay more attention to these criteria for further planning,
monitoring and prevention measures.

Based on Table 11, the importance of departure punctuality of Vessel,
from the previous port of call has been proven. If the departure
punctuality from the previous port is assessed as 100% serious delay, the
probability of Vessel, arriving at Port, on-time is 0%. As a result, ship
managers should ensure that the vessel always departs on-time from the
previous port of call in order to ensure on-time arrival at the next port of
call. This objective can be achieved by having an efficient process
management (i.e. agency) and excellent coordination between a vessel and
aport.

Dangerous and other unexpected events such as pirate attacks, armed
robbery, looting and ship hijacking, war, detention by port state control,
ship captain or crew deaths and embargoes adversely disrupt the operation
of a vessel. Based on Table 11, there is no chance of Vessel, arriving at
Port, on-time if unforeseen events occur during the voyage.

6. Conclusion

Within this paper, the new mathematical model for analyzing and
predicting the arrival punctuality of a vessel at a port of call under
dynamic environments by using a hybrid technique (i.e. the FRBBN
method) has been developed. For the analysis of arrival punctuality, firstly,
the critical factors for analyzing and predicting the arrival punctuality
have been identified. Secondly, the states of each node were defined by
using literature and consultation with experts. Thirdly, a model for
analyzing and predicting the arrival punctuality was constructed using the
BN model. Fourthly, the strength of direct dependence of each child node
on its associated parents was quantified by assigning each child node a
CPT using an FRB approach. Fifthly, unconditional probabilities were
determined by assigning assessment grades to all the root nodes in the
arrival punctuality model. Finally, the developed model and results were
validated by using sensitivity analysis and prediction error. Based on the
proposed model, LSOs will be able to forecast their vessels’ arrival
punctuality and, further, tactical strategies can be implemented if a vessel
is expected to be delayed.

Based on sensitivity analysis, one of three most significant factors in
the developed model for analyzing the arrival punctuality is found to be
the departure punctuality of a vessel from the previous port of call. For
future research, an FRBBN model will again be developed for analyzing
and predicting the critical factors in determining the departure punctuality
of a liner vessel from a particular port of call. Consequently, this model is
capable of helping academic researchers and industrial practitioners to
comprehend the influence of uncertain environments on service
punctuality.
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