

HIGH PERFORMANCE DECENTRALISED

COMMUNITY DETECTION ALGORITHMS FOR

BIG DATA FROM SMART COMMUNICATION

APPLICATIONS

AMHMED ABDULSALAM BHIH

A thesis submitted in partial fulfilment of the requirements of
Liverpool John Moores University for the degree of

Doctor of Philosophy

January 2018

i

ABSTRACT

Many systems in the world can be represented as models of complex networks and

subsequently be analysed fruitfully. One fundamental property of the real-world networks is

that they usually exhibit inhomogeneity in which the network tends to organise according to

an underlying modular structure, commonly referred to as community structure or clustering.

Analysing such communities in large networks can help people better understand the structural

makeup of the networks. For example, it can be used in mobile ad-hoc and sensor networks to

improve the energy consumption and communication tasks. Thus, community detection in

networks has become an important research area within many application fields such as

computer science, physical sciences, mathematics and biology.

Driven by the recent emergence of big data, clustering of real-world networks using traditional

methods and algorithms is almost impossible to be processed in a single machine. The existing

methods are limited by their computational requirements and most of them cannot be directly

parallelised. Furthermore, in many cases the data set is very big and does not fit into the main

memory of a single machine, therefore needs to be distributed among several machines.

The main topic of this thesis is about network community detection within these big data

networks. More specifically, in this thesis, a novel approach, namely Decentralized Iterative

Community Clustering Approach (DICCA) for clustering large and undirected networks is

introduced. An important property of this approach is its ability to cluster the entire network

without the global knowledge of the network topology. Moreover, an extension of the DICCA

called Parallel Decentralized Iterative Community Clustering approach (PDICCA) is proposed

for efficiently processing data distributed across several machines. PDICCA is based on

MapReduce computing platform to work efficiently in distributed and parallel fashion.

In addition, the real-world networks are usually noisy and imperfect with missing and false

edges. These imperfections are often difficult to eliminate and highly affect the quality and

ii

accuracy of conventional methods used to find the community structure in the network.

However, in real-world networks, node attribute information is also available in addition to

topology information. Considering more than one source of information for community

detection could produce meaningful clusters and improve the robustness of the network.

Therefore, a pre-processing approach that considers attribute information, shared neighbours

and connectivity information aspects of the network for community detection is presented in

this thesis as part of my research.

Finally, a set of real-world mobile phone usage data obtained from Cambridge Laboratories

(Device Analyzer) has been analysed as an exploratory step for viability to apply the algorithms

developed in this thesis.

All the proposed approaches have been evaluated and verified for feasibility using real-world

large data set. The evaluation results of these experimentations prove very promising for the

type of large data networks considered.

Keyword: Community analysis, community detection algorithms; decentralized clustering

algorithm; networks; graph; distributed algorithms.

iii

Acknowledgements

Praise be to Allah, the most gracious and the most merciful. Without his blessing my

accomplishment would never have been possible.

This thesis would not have been possible without the guidance and the help of several

individuals who in one way or another contributed and extended their valuable assistance in

the preparation and completion of this study. It is a pleasure to convey my gratitude to them all

in my humble acknowledgment.

First of all, I would like to thank my research supervisor, Dr. Princy Johnson for giving me the

opportunity to be part of her research group and for providing me the right balance of guidance

and independence in my research. Without her guidance, vast knowledge and persistent help

this achievement would have been faraway.

My thanks also go to my second and third supervisors Dr. Trung Nguyen and Dr. Martin

Randles for providing invaluable suggestions and necessary information regarding this

research from different views. Their constructive feedback and suggestions greatly improved

this thesis.

Special thanks to my office mates for creating a good atmosphere, interesting discussions, and

great technical chats making the Ph.D. period such a friendly environment.

Last but not least, truly on top of all, I am heartily thankful to my parents and all my family

members. Without their prayers, support, trust, and understanding I would not have been able

to seek a single word.

 Amhmed

iv

Publications

International Conferences Publications

Bhih, A.A., Johnson, P. and Randles, M., 2016, June. Diversity in Smartphone Usage.

In Proceedings of the 17th International Conference on Computer Systems and Technologies

2016, Palermo, Italy (pp. 81-88). ACM.

Eiza, M.H., Randles, M., Johnson, P., Shone, N., Pang, J. and Bhih, A., 2015, October. Rail

Internet of Things: An Architectural Platform and Assured Requirements Model. In Computer

and Information Technology; Ubiquitous Computing and Communications; Dependable,

Autonomic and Secure Computing; Pervasive Intelligence and Computing

(CIT/IUCC/DASC/PICOM), 2015 IEEE International Conference, Liverpool, UK (pp. 364-

370). IEEE.

Bhih, A.A., Johnson, P. and Randles, M., October 2017, June. Decentralized Iterative

Community Clustering Approach (DICCA). IEEE 28th Annual International Symposium on

Personal, Indoor and Mobile Radio Communications PIMRC, Montreal, QC, Canada (pp.1-7).

IEEE.

Journals Publications

Bhih, A.A., Johnson, P. and Randles, M., (2015), EM Clustering Approach for Multi-

Dimensional Analysis of Big Data Set. International Journal of Engineering Research &

Technology (IJERT). ISSN: 2278-0181, Vol. 4 (pp.553-557).

v

Contents

ABSTRACT .. 1

Acknowledgements .. iii

Publications ... iv

Contents .. v

List of Tables .. x

List of Figures .. xi

List of Symbols and Abbreviations .. xiii

CHAPTER 1 INTRODUCTION .. 1
1.1 Introduction ... 1

1.2 Impact of the Research and its Impact .. 3

1.2.1 Social networks .. 3

1.2.2 Impact on WWW ... 4

1.2.3 Routing in Ad-hoc and Wireless Sensor Networks ... 4

1.3 Research Challenges ... 5

1.4 Aim and Research Objectives ... 7

1.5 Scope of Research ... 9

1.6 Contributions of the research to state of the art .. 9

1.7 Thesis Structure ... 10

CHAPTER 2 LITERATURE REVIEW .. 12
2.1 Basic concepts of graph theory ... 12

2.2 Community Detection Algorithms .. 16

2.2.1 Link-Centrality-Based Algorithms .. 17

2.2.2 Modularity Optimisation Algorithms .. 18

2.2.3 Spectral Algorithms ... 21

2.2.4 Random-Walk-Based Algorithms .. 22

2.2.5 Information-Based Algorithms .. 22

2.3 Parallelisation of Centrality Algorithms ... 23

2.3.1 MapReduce .. 24

vi

2.4 Summary ... 26

CHAPTER 3 NETWORK MODELS AND STATISTICAL METHODS FOR

COMPARISON OF NETWORKS ... 28
3.1 Topology of Real Networks .. 28

3.1.1 The Small-World effect ... 28

3.1.2 Degree Distribution .. 29

3.1.3 Community Effects. ... 29

3.2 Overview of Validity Evaluation .. 31

3.2.1 Cluster Quality Metrics .. 31

3.2.1.1 Coverage .. 31

3.2.1.2 Conductance .. 32

3.2.1.3 Modularity ... 33

3.2.2 External Evaluation Metrics .. 33

3.2.2.1 Rand Index ... 33

3.2.2.2 Adjusted Rand Index ... 34

3.2.2.3 Normalized Mutual Information (NMI) .. 35

3.2.3 Computational complexity ... 36

3.2.4 Visualization for Cluster Validation .. 36

3.2 Artificial Networks .. 37

3.2.1 Girvan and Newman (GN) Benchmark Networks ... 38

3.2.2 LFR Benchmark Networks .. 39

3.3 Research Methodology .. 40

3.4 Summary ... 42

CHAPTER 4 DECENTRALIZED ITERATIVE COMMUNITY CLUSTERING

APPROACH (DICCA) .. 44
4.1 Related Literature and Previous Studies ... 44

4.2 Description of the Proposed DICCA ... 46

4.3 Experimentation and Results ... 52

4.3.1 LFR Synthetic Dataset (network) .. 52

4.3.2 Evaluation Metric... 52

4.3.3 Parameter Selection Strategy ... 53

4.3.3.1 Time to Live .. 53

vii

4.3.3.2 Threshold Value .. 57

4.3.3.3 Automated Identification of Appropriate Threshold Value 59

4.4 Analysis of Results and Discussion .. 63

4.4.1 Results for Each Iteration of Clustering... 64

4.4.2 Clustering Results for Increasing Network Size .. 66

4.4.3 Evaluating Repeatability of the Algorithm’s Performance 66

4.4.4 Evaluation of Message Complexity of the DICCA Algorithm 67

4.4.5 Evaluation of Clustering Performance Using Mixing Parameter 69

4.4.6 Evaluation of Clustering Performance Using Adjacency Matrix Representations

 70

4.5 Summary ... 73

CHAPTER 5 PARALLEL DECENTRALIZED ITERATIVE COMMUNITY

CLUSTERING APPROACH (PDICCA) .. 74
5.1 Introduction ... 74

5.2 Description of the Proposed PDICCA Approach. ... 76

5.2.1 Framework of the PDICCA Approach .. 76

5.2.2 Partitioning of the Network Nodes Set .. 80

5.2.3 How to Calculate the Parameters ... 81

5.3 Matlab Implementation of PDICCA Approach for Distributed Memory Systems ... 81

5.4 Parallel Algorithms Using MapReduce Model ... 83

5.4.1 Description of Algorithm in MapReduce Model ... 84

5.5 Analysis of Results and Discussion .. 85

5.5.1 Environment Setup... 85

5.5.2 Experimental Evaluation .. 85

5.5.2.1 Horizontal Scalability in Relation to the Number of Parallel Cores 85

5.5.2.1.1 Quality ... 85

5.5.2.1.2 Message Complexity of the PDICCA Algorithm .. 86

5.5.2.2 Clustering Results for Increasing Network Size ... 89

5.5.2.2.1 Quality ... 89

5.5.2.2.2 Evaluating Repeatability of the Algorithm’s Performance 89

5.5.2.2.3 Evaluation of Complexity of the PDICCA Approach .. 90

5.5.2.3 Evaluation of Clustering Performance Using Mixing Parameter 91

viii

5.6 Summary ... 92

CHAPTER 6 A PRE-PROCESSING APPROACH FOR ROBUST COMMUNITY

CLUSTERING TECHNIQUES BASED ON COLLABORATIVE INFORMATION

SOURCES .. 94
6.1 Introduction ... 94

6.2 Related Literature and Contribution .. 96

6.3 Experimental Datasets ... 97

6.4 Correlation Analysis .. 98

6.4.1 Shared Neighbours ... 98

6.4.2 Correlation of Communities and Attributes ... 99

6.5 Description of the Proposed Approach ... 103

6.5.1 The Parameter Learning Phase .. 106

6.5.1.1 Attribute Similarity Metric .. 107

6.5.1.2 Effect of α and β on the Quality of Community Structure 111

6.5.2 Information Aggregation Phase ... 115

6.6 Experimentation and Results ... 115

6.6.1 Experimental Setup .. 115

6.6.2 Experimental Results and Discussion .. 116

6.6.2.1 Evaluation of Attribute Weighting Method ... 116

6.6.2.2 Model Performance ... 120

6.6.2.2.1 Number of Community Clusters .. 120

6.6.2.2.2 Modularity ... 123

6.7 Summary ... 124

CHAPTER 7 A CASE STUDY IN TELECOMMUNICATION INDUSTRY OF

SMARTPHONE USAGE. ... 126
7.1 Introduction ... 126

7.2 Related Literature .. 127

7.3 Proposed Methodology ... 129

7.3.1 Datasets .. 129

7.3.2 Characterisation Methodology ... 130

7.4 Results, Analysis and Discussion .. 131

7.4.1 Calls via Time .. 131

ix

7.4.2 Text Messaging via Time ... 132

7.4.3 Mobile Data Traffic Distribution via Time .. 132

7.4.4 Percentage of Calls, Text Messaging and Mobile Data Traffic Over the Days of

Week 132

7.4.5 Percentage of Calls, Text Messaging and Mobile Data Traffic via Different

Time Zones .. 133

7.5 Summary ... 133

CHAPTER 8 CONCLUSION AND FUTURE WORK .. 137
8.1 Summary of Contributions .. 137

8.2 Recommendations and Future Works ... 140

REFERENCES ... 143

APPENDIX ... 153
Appendix A: Additional Results ... 153

A.1 Additional Results for DICCA described in chapter 4 .. 153

A.2 Additional Results for PDICCA described in chapter 5 155

A.3 Additional results for pre-processing approach described in chapter6 156

Appendix B: Permission to Reuse IEEE Material .. 168

x

List of Tables

Table 4.1 Comparison of the algorithms.. 46

Table 4.2 The experimental results obtained by the DICCA algorithm on a small network of

50 nodes ... 58

Table 4.3 The LFR benchmark graph parameters. .. 63

Table 5.1 Comparison between DICCA and PDICCA .. 75

Table 5.2 Comparison with message exchanged locally in hosts and messages exchanged

between master and hosts... 88

Table 5.3 Experimental results of the PDICCA approach for increasing number of nodes in

the network... 91

Table 6.1 Results for four dataset .. 119

xi

List of Figures

Figure 1.1 A simple graph with three communities that are represented by different colours. 3

Figure 2.1 An example of unweighted undirected graph and its adjacency matrix. 14

Figure 2.2 Architecture of MapReduce framework (Dean and Ghemawat, 2008) 25

Figure 3.1 The way of benchmarking the algorithm using a network with ground-truth

communities ... 33

Figure 4.1 Illustrates the concept of the algorithm ... 50

Figure 4.2 Performance of the DICCA algorithm using different TTL values 54

Figure 4.3 Comparison between computing time and the message complexities over different

TTL values ... 54

Figure 4.4 Performance of DICCA algorithm using adaptive termination via different TTL

values ... 57

Figure 4.5 Community detection result for a small network with 50 nodes as extracted by the

proposed DICCA algorithm using TTL=3 and with different threshold values. (a) threshold

value =0, (b) threshold value =0.1, (c) threshold value =0.2, (d) threshold value =0.3, (e)

threshold value =0.4, (f) threshold value =0.5, (g) threshold value =0.6, (h) threshold value

=0.7, (i) threshold value >=0.8, (j) ground truth clusters, (k) Modularity via threshould value.

The values of the other parameters were fixed: =2, β=1. .. 60

Figure 4.6 The community structures of the ground truth communities and those extracted by

the proposed DICCA algorithm on the LFR benchmark networks with 50 nodes using TTL=3

and threshold value =0.223xt1. .. 62

Figure 4.7 Community detection result for each iteration on a small network of 50 nodes

using the proposed DICCA algorithm with TTL=3, threshold value =0.223 *t, and =1, β=2.

.. 65

Figure 4.8 NMI, Q-DICCS and Ground truth Q scores (y-axis) as number of nodes (x-axis)

changes. .. 66

Figure 4.9 Standard deviation of final modularity/NMI with network sizes. 67

Figure 4.10 Total number of exchanged messages (y-axis) as number of nodes (x-axis)

changes ... 68

Figure 4.11 Percentage of Message exchanged per each iteration. (a) number of node in the

network is 500, (b) number of node in the network is 1,000. .. 68

Figure 4.12 Performance of the proposed algorithm using Mixing parameter. (a) Number of

node in the network is 500, (b) Number of node in the network is 1,000. 69

Figure 4.13 Spy plot for the connections of the nodes. ... 72

Figure 5.1 Framework of the PDICCA approach. .. 78

Figure 5.2 Examples of eight nodes with two community clusters .. 80

Figure 5.3 Parfor mechanism. ... 82

Figure 5.4 PDICCA workflow and architecture. .. 84

Figure 5.5 NMI, Q-PDICCS and Ground truth Q scores (y-axis) as number of workers (x-

axis) changes number of nodes: (a) 500 (b) 1,000. .. 86

Figure 5.6 Number of Message exchanged in each iterations and for each worker with

respect to the number of workers varied from 2 to 4 (a, b, c) for number of nodes 500 (d, e, f)

for number of nodes 1,000. .. 87

Figure 5.7 Average percentage of Message exchanged per each iteration with number of

cores varied from 1 to 4 workers (a, b, c) network size 500 (d, e, f) network size 1,000. 88

xii

Figure 5.8 NMI, Q-DICCS and Ground truth Q scores (y-axis) as number of nodes (x-axis)

changes. .. 89

Figure 5.9 Standard deviation of final modularity/NMI with network sizes. 90

Figure 5.10 (a) Total number of exchanged messages (y-axis) as number of nodes (x-axis)

changes. (b) .Running-time scalability of proposed algorithm in seconds. 91

Figure 5.11 Performance of the proposed algorithm using Mixing parameter μ. (a) Number

of node in the network is 500, (b) Number of node in the network is 1,000. 92

Figure 6.1 Visualization results of node clustering coefficient for subset of four datasets

(should be viewed in colour).. 99

Figure 6.2 Visualization of correlations between attributes and communities for Reed

dataset. (a) Communities based on attributes: nodes are coloured the same if they have the

same value for the corresponding attribute; nodes with a missing value for an attribute are

white. (b) Communities based on community clustering algorithm: nodes are coloured the

same if they belong to the same community. ... 101

Figure 6.3 Agreement of different community detection algorithms with each attribute, for a

subset of four datasets. ... 102

Figure 6.4 System architecture for the proposed approach. .. 104

Figure 6.5 (a-b) Modularity value achieved by four community clustering algorithm dataset

using different value of α and β on: (a) Caltech36 (b) Reed98 dataset. 113

Figure 6.6 (c-d) Modularity value achieved by four community clustering algorithm dataset

using different value of α and β on: (c) Harvord76 (d) Vassar85 dataset. 114

Figure 6.7 Attribute weights for four datasets. ... 117

Figure 6.8 Robustness of weighting method to the edge removal. 118

Figure 6.9 Number of community clusters for: (a) Caltech36 university dataset, (b) Reed98

university dataset (c) Haverford76 university dataset, (d) Vassar85 dataset. 121

Figure 6.10 Average Community size for: (a) Caltech36 university dataset, (b) Reed98

university dataset (c) Haverford76 university dataset, (d) Vassar85 dataset. 122

Figure 6.11 Modularity index vis missing edges for: (a) Caltech36 university dataset, (b)

Reed98 university dataset (c) Haverford76 university dataset, (d) Vassar85 dataset. 124

Figure 7.1 Data mining process .. 131

Figure 7.2 Number of calls via hours of day... 131

Figure 7.3 Number of text messages as a function of time of day .. 132

Figure 7.4 Mobile data traffic as a function of time of day .. 132

Figure 7.5 Percentage of calls, text messaging and mobile data traffic via days of week 133

Figure 7.6 Percentage of calls, text messaging and mobile data traffic via different time

zones .. 133

xiii

List of Symbols and Abbreviations

A Adjacency matrix

Aij Connection weight of node pair i; j given adjacency matrix A.

AR Rand Index

ARI Adjusted Rand Index

Asim(i,j) The attribute similarity between a pair of nodes (i, j) in network G =

(V, E, A).

C A partition of V

CDC Connectivity-based Decentralized Node Clustering scheme

Ci Clustering coefficient of a given node i

CPU Central Processing Unit

CSV Comma separated values

dc The total degree of nodes in C.

DICCA Decentralized Iterative Community Clustering Approach

DiDiC Distributed Diffusive Clustering algorithm

E Set of edges (links)

eij Fraction of edges in the network that connect nodes in group i to those

nodes in group

FA Fast Modularity algorithm

GN benchmark Girvan and Newman benchmark

G = (V, E, A) Graph/network consisted of set of nodes (V) and set of edges (E) and

each node Vi ∈ V is associated with an attribute vector (Ai
1, … Ai

d).

Where d is the attribute dimension and i represents the node ID

G(V, E) Graph/network consisted of set of nodes (V) and set of edges (E)

GPU Graphics Processing Unit

H sim(i, j) Hybrid similarity matrix

J Jaccard similarity

k The number of clusters

K Mean degree of each node

ki Degree of node i

kmax Maximum degree

xiv

LWd
i The local attribute weight for cluster i with N nodes each with d

attributes

LA Louvain algorithm

Lc The total number of edges joining nodes of cluster C

LE Leading eigenvector

Li Number of edges between neighbours of node i

M Number of edges |E| in the network.

µ Mixing parameter

n Number of nodes |V| in the network.

N△(i) Number of triangles involving node i

N3(i) Number of connected triples having i as the central node.

Nbr(Vi) Neighbours of node Vi

NMI Normalized mutual information

OnID Originator node ID

PC Personal computer.

Pk Degree distribution

PCT Parallel Computing Toolbox

PDICCA Parallel Decentralized Iterative Community Clustering approach

Q Newman-Girvan modularity.

RW Random Walk

SN(i,j) The shared neighbours between node i and j.

SNsim(i,j) Shared neighbours similarity between nodes i and j.

SNsim(i,j) The shared neighbours similarity between nodes i and j

t the iteration number

T Transitivity

TTL Time to Live

V Set of nodes (vertices)

VLSI Very Large Scale Integration

W(Vm, Vi) The weight of the edge between Vm and Vi

WMsg Message Weight

WSNs Wireless Sensor Networks

xv

WWW World wide web network

β Exponent of community size distribution

γ Exponent of the degree distribution

α Exponent of the power-law degree distribution

Γ(i) Neighbourhood of node i

δ(.) Kronecker delta function, δ (x; y) = 1 if and only if all variables in the

argument are equal and _(x; y) = 0 otherwise.
Φ(Ci) The conductance of given cluster Ci

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Many systems in the world can be represented as networks (also referred to as graphs in much

of the mathematical literature) composed of nodes (vertices) and links (edges) in which

network links represent relationships between the interrelating parts (nodes) of the systems.

Examples include technological networks such as the Internet (Faloutsos, Faloutsos and

Faloutsos, 1999) and the World Wide Web (WWW) (Albert, Jeong and Barabási, 1999),

biological networks e.g., Neuronal networks, metabolic networks, protein-protein interaction

networks and food webs (Vocaturo and Veltri, 2017), and distribution networks (Newman,

2003) like postal delivery routes, citation networks, social networks, organisational networks

(Newman, 2003) and even political elections (Adamic and Glance, 2005) etc.

Recently, it has become common to analyse interactions in the real-world by looking at the

networks that underlie these interactions (Chen, Zaiane and Goebel, 2009). However, real-

world networks are not random networks, they usually exhibit inhomogeneity and reveal a high

level of order and organisation (Mahata and Patra, 2016). An interesting feature that real-world

networks usually present is the community structure property, under which the topology of

network is organised into modules commonly called communities or clusters (Fortunato, 2010).

The process of discovering the cohesive groups or clusters in the network is known as

community detection (Bedi and Sharma, 2016), it is also known as the graph partition problem

in modern graph theory, and as the graph clustering or dense subgraph discovery problem in

the graph mining area (Wang et al, 2015).

2

The problem of community or graph clustering is not well defined and the concepts of

community do not have a universally accepted definition. Highlighting the difficulties of the

problem, in his recent work, Fortuna stated that “the definition often depends on the specific

system at hand and/or application one has in mind” (Fortunato, 2010). Considering social

network as an example, community can be defined using many natural properties. Whether the

nodes representing people in a community should know each other, the community should have

a high edge density or each detectable community ought to have a unique identity (Shah and

Zaman, 2010).

Informally, a cluster is usually defined as a set of entities that are closer to each other than with

the rest of the entities in the data set (Jain, Murty and Flynn, 1999). The notion of closeness is

based on a similarity measure that is usually defined with the use of a mathematical objective

function. The task of clustering is also referred to as “unsupervised learning where the aim is

to group together similar data set without resorting to any a priori knowledge about the clusters

(Schaeffer, 2007). In the case of networks, the similarity is usually measured either based on

the structural similarity which considers the topological features or the attribute features related

to the nodes or edges of the graph, or both of them (Malliaros and Vazirgiannis, 2013).

There are several definitions of the community detection problem. In general, the community

detection algorithms aim to divide a network into sub-communities. The general principle on

which most community definitions are based is the tendency for the nodes to divide into

clusters with dense connections within clusters and only sparser connections between them

(Newman, 2004a). However, communities may overlap as nodes belong to multiple clusters

simultaneously. The overlapping community is very common in real-world networks for

example, in a social network, a person may belong to more than one social group such as friend

group and family group which are known as overlapping nodes (Amelio and Pizzuti, 2014).

More detailed definitions of community are presented in another work (Fortunato, 2010).

3

Figure 1.1 shows a small network of 12 nodes that illustrates this idea of network structure.

The network has three communities denoted by the circles in which a set of nodes are densely

connected internally and loosely connected to the rest of the network.

Figure 1.1 A simple graph with three communities that are represented by different colours.

1.2 Impact of the Research and its Impact

1.2.1 Social networks

Community structure is a common and important topological characteristic of many real-world

complex networks. Nodes belonging to a tight-knit community are more than likely to have

other properties in common (Danon et al, 2005). The determination of communities in the

networks can help to better understand the structural makeup of the networks, provide powerful

insights about the structure of networks, and help analyse complex phenomena at different

scales (Orman, Labatut and Cherifi, 2011; Borgatti, Everett and Johnson, 2013). Thus, this

research topic has applications in many fields such as biology, social science, physics,

computer science, business science, etc. (Schaeffer, 2007; Orman, Labatut and Cherifi, 2011).

In social networks, for example, analysis of community detection is extremely useful in the

context of many applications, including customer segmentation, vertex labelling,

4

recommendations and link inference (Khatoon and Banu, 2015). Also could be used to

estimating unknown features of users in social networks. If a given user does not give a certain

piece of information (like the school he/she went to), but a reasonable number in his/her

community do, the missing information can be imputed with a reasonable degree of confidence.

1.2.2 Impact on WWW

Community structure is important not only on social networks, but also on various other

networks. For the famous example of the Internet, determination of community structure can

address questions such as, how to route data as packets in an efficient way, how to reduce the

time consumption for such traffic and what is the fast and safe path to consider reaching the

destination etc. It can go further in depth, by elucidating questions like how computer viruses

are spreading through the Internet, and what mechanisms they follow to hit organisations etc.

Also in dark networks, community structure can reveal the hidden relationships between

individual terrorists and help develop effective disruptive strategies. (Warnke, 2016). Similarly,

in the case of the world wide web (WWW), pages related to the same subject are typically

organised into communities, so that the identification of these communities can help the task

of seeking for identifying the category of the network as well as understanding its dynamic

evolution and organisation (Costa et al, 2007).

1.2.3 Routing in Ad-hoc and Wireless Sensor Networks

Clustering without global knowledge is an important technique in mobile ad-hoc and sensor

networks (Gehweiler and Meyerhenke, 2010) for the improvement of certain management e.g.

energy consumption and communication tasks.

In wireless sensor networks (WSNs), nodes are usually consist with limited and non-

rechargeable energy resources. Thus in WSNs, energy consumption is the most critical problem

and large number of clustering routing protocols have been developed for WSNs to reduce

5

communications, efficiently optimize the energy of sensor nodes, organize messages among

the cluster head and their node members and optimize the network life-time (Liu, 2012).

In clustering routing protocols, the sensing field of sensor network is divided into number of

clusters where each cluster has a leader called cluster head. The cluster head collects the data

from its node members and transfer it to the destination (base station). Yu and Chong (2005)

reported that the cluster structure is an effective topology that could provide many benefits in

the context of wireless sensor networks (WSNs). It could be used to increase the system

capacity by spatial reuse of resources. Furthermore, it improves routing performance, since the

set of cluster-heads and cluster gateways can normally form a virtual backbone for inter-cluster

routing, and thus the generation and spreading of routing information can be restricted to this

set of nodes. Additionally, they stated that the cluster structure makes an ad hoc network appear

smaller and more stable in the view of each mobile terminal, this is because in WSNs when a

mobile node changes its attaching cluster, only mobile nodes residing in the corresponding

clusters need to update the information.

For more information, interested readers may refer to Yu and Chong’s survey (Yu and Chong,

2005).

1.3 Research Challenges

In recent years, the problem of network clustering has received growing attention as an

important analytical technique and has been actively investigated in a variety of fields, from

computer science and statistical physics (Newman, 2004b; Newman and Girvan, 2004) to data

mining (Moghaddam et al, 2010). Therefore, a rich and diverse list of methods and algorithms

has been generated.

In the current Big Data era, the amount of generated data is huge, existing in various formats,

from a continuously increasing number of sources. The real-world networks can be very large

6

in size, even reaching billions of nodes. However, most of the community detection algorithms

in the literature are classified as global algorithms, which require access to the entire

information of the network and are designed to work on a single machine.

As the data size is scaling up, the need for computing power is exponentially increasing. In

many such situations, it has become difficult for the stand-alone community detection

algorithms to find communities in large-scale networks (Li et al, 2015) and the required

processing power far exceeds the processing capabilities of single machines. However, most

of the existing community detection algorithms cannot be directly parallelised. Furthermore,

in many such cases the large-scale data set does not fit into the main memory of a single

machine and needs to be distributed among several machines. These demanding requirements

make existing community clustering algorithms even more limited than before, and so more

powerful and scalable clustering tools for big data analysis seem to be in urgent need.

Additionally, in many real-world networks, node attribute is also available in addition to

topology information. It is pointed out that nodes containing similar content of communication

are much likely to belong to the same community (McPherson, Smith-Lovin and Cook, 2001;

Traud et al, 2011). Traud et al (2011) show that a set of nodes’ attributes can act as the primary

organising principle of the communities. An overwhelming majority of conventional

approaches to community detection focus on topology information and largely ignore the

attribute information. However, the collected topology information for networks is usually

noisy when there are missing edges. This makes the task of community detection for

incomplete networks very challenging.

To summarise, Big data exhibits different characteristics such as ‘volume, variety, velocity,

value, thus it is very difficult to analyse Big data and obtain information with traditional

techniques (Hu et al, 2014).

7

Given these scenarios, there is the emergence of a new research direction to develop a powerful

and scalable community clustering method for big data analysis, which will make use of the

relationship between the attribute and link information to improve the robustness of the existing

community clustering methods in unreliable environments (incomplete or noisy networks).

1.4 Aim and Research Objectives

The main goal of this thesis is to design and implement novel techniques and algorithms for

the problem of clustering and community detection in large and undirected networks. In the

light of the above discussed research challenges, the main objectives and motivations of this

research work are summarised below:

1. To design and implement an efficient community-detection approach that could work

at the local level and does not require any global knowledge of the network.

As the networks being operated on become larger and larger, the ability to process them in

the main memory of a single machine becomes impractical due to both time and memory

constraints. Moreover, community detection algorithms are often computationally

expensive and are not scalable to large networks with hundreds of millions or even billions

of nodes and billions of edges.

The above issues motivated me to design, implement, and evaluate an efficient community-

detection solution for large-scale networks. More specifically, the proposed approach

works at the local level and does not require any global knowledge of the network. From

the heuristic point of view, it is worth noting that the optimisation of global clustering

methods, when only restricted to the local knowledge, is more difficult. That is why most

of the existing approaches and algorithms make use of global knowledge.

2. To extend the proposed approach for large-scale networks to work in parallel and in a

distributed fashion.

8

Being a localised algorithm, it can be run in parallel or in a distributed fashion among

clusters when the size of the input network or the computation complexity is beyond the

resources of a single computer.

3. To design and implement a community clustering approach considering both attribute

information and topological structure information to improve the performance of

existing community detection algorithms.

Since in many real-word networks, the nodes and links in the networks may contain

attribute information, this attribute information has important significance in completely

presenting the community structure of the network and could improve the robustness of

community detection algorithms in unreliable environments.

4. To analyse a set of real-world mobile phone usage data as an exploratory step for

viability to apply the algorithms developed in this thesis.

The smart phones in the telecommunication industry generate a massive amount of data.

These data usually include call details, data and network details. The amount of data is so

big that manual management and analysis of these data is almost impossible. From this

perspective to explore the viability of applying the proposed method and algorithms to

analyse the big data sets generated by smart phones. A real-life big data (Device Analyzer)

set from Cambridge Laboratories is used for this proposed objective.

5. To propose a set of broad guidelines and future design from the understanding gained.

Under this objective, the potential usage of the developed approaches proposed in this

thesis will be demonstrated. Also, recommendations, guidance information, and

suggestions to improve the effectiveness of the developed algorithm will be made.

9

1.5 Scope of Research

This thesis studies in the scope of community detection in big networks. In other words, the

main goal of this thesis is to design and implement novel techniques and algorithms for the

problem of clustering and community detection in large and undirected networks. The

approaches proposed in this thesis all assume that the given network structure is needed to be

divided into communities in such a way that every node belongs to one of the communities

(non-overlapping communities). Although doing some modifications of the proposed

approaches can achieve overlapping communities, the focus of this thesis is on non-overlapping

communities.

1.6 Contributions of the research to state of the art

This thesis aims to design and implement methods for the problem of extracting non-

overlapping communities in large networks. However, since the global community clustering

approaches demand shared memory to access global information, they are inappropriate for

this goal. Thus, in this work attention is given to the local community clustering as it is more

accessible for parallelization.

The following summary provides a short overview of the four key contributions of this work

that address all of the challenges introduced in the previous sections:

1. A novel Decentralized Iterative Community Clustering Approach (DICCA) to extract

an efficient community structure for large networks is proposed. An important property

of this approach is its ability to cluster the entire network without the global knowledge

of the network topology. This ability means that the entire network does not need to be

loaded into one memory and DICCA could be easily adapted to run in parallel on as

many processors as available to find community clusters in big networks. This cannot

be done in the majority of the existing community detection algorithms as they

10

implicitly assume that the entire structure of the big network is known and is available.

Another perspective of DICCA approach is reducing the problem size by aggregating

the nodes in the network, allowing the approach to cluster the large-scale data set

efficiently.

2. A Parallel Decentralized Iterative Community Clustering Approach (PDICCA), which

does not require any global knowledge of the graph topology is proposed. PDICCA is

a distributed memory parallel processing approach that transforms the serial steps of

DICCA approach into parallel tasks. It is scalable and will work with a range of

computer architecture platforms (e.g. cluster of PCs, multi-core distributed memory

servers, GPUs).

3. A pre-processing approach for existing community detection algorithms is proposed to

improve the robustness of community detection algorithms in unreliable environments.

The proposed approach is applicable to the existing weighted community detection

algorithms and it seeks to improve their performance by considering attribute

information, shared neighbours information and connectivity between nodes in the

network. Therefore, if either attribute information or topological structure information

is noisy or missing, the other could make up for it.

4. Using a set of real-life android smartphone usage datasets, the different features of

mobile phone usage is analysed.

1.7 Thesis Structure

The thesis contains eight chapters, which are organised as follows. The present chapter gives

an overall picture of the thesis, highlights the importance of the field of community detection

in the networks and states the challenges, aim, objectives and the contributions of the research.

The rest of the thesis is organised as follows:

11

Chapter 2 gives some basic definitions of graph theory, which are used in further chapters.

Furthermore, the literature review of state-of-the-art community detection algorithms and

related work in the area of parallelisation techniques for the community detection algorithms

are also discussed.

Chapter 3 presents some specific structural properties and models of real networks.

Additionally, the current work available in literature for models that generate synthetic

networks with community structures along with the most popular quality metrics for assessing

the network clustering results are discussed.

Chapter 4 addresses the first technical objective of the research. It gives a detailed description

of my proposed Decentralized Iterative Community Clustering Approach, for detecting

community and then the effectiveness and efficiency of the DICCA approach is evaluated.

Chapter 5 centres around the design and implementation of the parallel framework version of

DICCA approach named PDICCA. In this chapter, the principle and implementation of the

proposed PDICCA approach is detailed and its performance is evaluated.

Seeking to improve the robustness of existing community detection algorithms rather than

looking to identify communities in the network based just on topological structure information,

a new pre-processing approach that considers attribute information, shared neighbours

information and connectivity between nodes in the network is presented in chapter 6. Chapter

7 shows the data analysis of the datasets from the real-world telecom network.

Finally, chapter 8 concludes the research activities within this thesis by summarising the

contributions and proposing a set of possible suggestions for future work.

12

CHAPTER 2

LITERATURE REVIEW

This chapter introduces some fundamental concepts that are widely used throughout this thesis,

and reviews existing work on the community clustering and distributed techniques. It starts

with a short introduction into the basics of graph theory, including the concepts required to

understand further chapters. This is followed by a discussion of the definitions and concepts

around community clustering. Then a detailed literature survey on the state-of-the-art in

community approaches and the parallelisation techniques for extracting network clusters is

presented.

2.1 Basic concepts of graph theory

Many practical problems in various fields of study such as scientific computing, data analysis

etc, can be modelled in their essential form by graphs and solved using appropriate graph

algorithms. In graph theory, a simple graph G = (V, E) is defined as an abstract representation

of a set of nodes (or vertices) V = {1, . . . , n} and a set of edges (or links) E = {(i, j)| i, j ∈ V}

which connect pairs of nodes together. A pair (i, j) belongs to E if there is an interaction

between the nodes i and j and the cardinality of the set E. The number of nodes in the graph is

n = |V| and the number of edges m = |E|. In some graphs it is possible to find an edge that

connects a node to itself, (i, i) ∈ E, it is called a self-loop (Silva and Zhao, 2016).

The edges in the graph can be assigned with a weight, which represents the strength of

connection between two nodes; in this case, the graph is called a weighted graph. If each edge

has unit weight, the graph is called an unweighted graph (Silva and Zhao, 2016). Considering

the nature of the edges, the graphs can be classified into two: undirected and directed graph. A

graph is called directed (also referred to as digraph) if the orientation of the edges is important

for the task (Silva and Zhao, 2016). A directed graph G= (V, E) consists of a non-empty set of

13

nodes V and a set of directed edges E. Each edge e:(u, v) of E is specified by an ordered pair

of nodes (u, v) and comes out from node u, namely the origin (or tail), and reaches a destination

v (or head).

Directed graphs arise in many real-world applications such as the web graph whose node

represents a web host and each directed edge represents the hyperlinks. These hyperlinks are

one-way from web pages on the source host to web pages on the destination host (Canright and

Engø-Monsen, 2008). On the other hand, in undirected graphs, the edges have no orientation

and the graph has edges that represent symmetric relationships in which whenever the edge (u,

v) exists in an undirected graph then so does the edge (v, u) (Costa et al, 2007). For example,

in friendship networks where each relationship is considered reciprocal in the sense that if you

are friends with someone, then they are friends with you.

From the mathematical point of view an undirected unweighted graph G = (V, E) can be

represented by a matrix A called adjacency matrix A ∈ {0,1}𝑛𝑥𝑛.

Definition 2.1 Adjacency Matrix: The adjacency matrix A of a graph G = (V, E) is an |V|×|V|

matrix, such that:

𝐴𝑖,𝑗 = {
1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.1)

The adjacency matrix for an undirected graph is symmetric, This fact implies that A(i,j) = A(j,i).

However for a directed graph, the adjacency matrix may not be symmetric (Silva and Zhao,

2016).

 Throughout this thesis, the terms “graph” and “network” are used interchangeably. In the same

spirit, the data relationships that make up a graph are termed structure or topology of the

network. Unless stated otherwise, a graph G = (V, E) is unweighted, undirected and consists of

14

a set of nodes V and a set of E edges. Nodes and vertices convey the same type of information

and are used interchangeably and the same principle applies to edges and links.

Labeled graph Adjacency matrix

A=

[

0 0 1 1 0
0 0 1 0 0
1 1 0 1 1
1 0 1 0 0
0 0 1 0 0]

Figure 2.1 An example of unweighted undirected graph and its adjacency matrix.

Definition 2.2 Degree of a node: The degree 𝐾𝑖 of a node ‘i' in undirected graph G = (V;E) is

equal to the number of edges connecting to node i (Silva and Zhao, 2016). Given an adjacency

matrix A, the degree of node i is the sum of row entries corresponding to node i, which can be

expressed as:

𝐾𝑖 = ∑ 𝐴𝑖𝑗
𝑛
𝑗=0 (2.2)

However, for directed graphs, the concept of degree is split into two categories: out-degree and

in-degree.

Definition 2.3 In-degree and out-degree: The out-degree of a node ‘i’ in a directed graph is

the number of edges that leave the node i, and the in-degree is the number of edges that enter

the node i (Silva and Zhao, 2016).

Definition 2.4 A completely connected (fully connected) graph: In undirected graph G the

fully connected graph is a graph in which every pair of distinct nodes is connected by a unique

edge. Thus the total number of edges in a completely connected graph with n number of nodes

is equal to n(n-1)/2 (Tomassini, 2010).

Definition 2.5 A triangle: In graph G = (V, E) a triangle (∆) is a three node subgraph with V

= {v1, v2, v3} ⊂ V and E = {(v1, v2), (v2, v3), (v3, v1)} ⊂ E (Schank and Wagner).

15

Definition 2.6 A triple: In graph G = (V, E) a triple N3(i) at node ‘i', is a path length of two

for which i is the centre node (Schank and Wagner). For undirected graph, the number of triples

of node i is defined as:

𝑁3(𝑖) = (
𝐾𝑖

2
) =

𝐾𝑖 [𝐾𝑖−1]

2
 (2.3)

and the number of triples in graph G is defined as the summing of triples of all nodes in the

graph:

𝑁3 = ∑ 𝑁3(𝑖)
𝑛
𝑖=1 (2.4)

To illustrate the concept of triangle and triples, the network in Figure 2.1 has 1 triangle and 8

connected triples.

Definition 2.7 Reachability: In graph theory, reachability refers to the ability to get from one

node to another within a graph. Given a graph G(V, E), it is said that V2 ∈ V is reachable from

V1 ∈ V if there is at least a walk that starts from V1 and ends at V2 (Silva and Zhao, 2016).

Definition 2.8 Homophily:

Apart from the previous patterns that concern network architecture, there are also some other

patterns that relate to how links depend on other characteristics of nodes. For instance, if nodes

are people, then they have some attributes such as age, gender, ethnicity, profession, political

attitudes, their hobbies and so forth. In real-world networks, it has been shown that the similar

nodes in terms of their characteristics tend to be more frequently linked to each other than to

nodes that are less similar to themselves in characteristics. This is referred to as homophily, as

originally named by Lazarsfeld and Merton (McPherson, Smith-Lovin and Cook, 2001;

Jackson, 2010).

Definition 2.9 Hierarchical structure: Another important aspect related to community

structure is the hierarchical organisation (multiscale or multilevel) exhibited in most real-world

16

networks in which communities contain smaller communities that may be further divided into

sub-communities. (Fortunato, 2010)

2.2 Community Detection Algorithms

The problem of unveiling the community structure of a network is called community detection.

Community detection is an active area of network science research and over the years, a wide

variety of community detection algorithms have been proposed to find the communities in the

network. Community detection is also named as graph partitioning in much of the literature

(Aggarwal and Wang, 2010; Wang et al, 2015). It is tempting to suggest that this community

detection and graph partitioning are really addressing the same question; in both, their aim is

to identify groups of nodes in a network that are better connected to each other than to the rest

of the network. However, it is very important to stress that the task of graph partitioning and

community detection can be distinguished from one another based on whether the experimenter

fixes the number and size of the groups or it is unspecified (Newman, 2010). Graph partitioning

is the problem of partitioning a graph into a predefined number and size of clusters. It has been

pursued particularly in computer science and related fields with applications in parallel

computing and very-large-scale integration (VLSI) design. However, in the community

detection, which has been pursued by sociologists and more recently by physicists and applied

mathematicians, with applications especially to social and biological networks the number and

size of clusters are unspecified. Furthermore, the goal in the former is usually to identify the

best division of a network regardless of whether or not a good division existed. In case there

are no good divisions exist, the least bad one will be done as a solution. On the other hand, in

community detection, the algorithm only divides the network when good divisions exist and

leave the network undivided in case there are no existing good divisions (Newman, 2010).

Community structure identification has been an important research topic in complex networks.

Given the number and range of community definitions, it is not a surprise that the number of

17

methods proposed for detecting and revealing the community structures in networks are even

larger. Furthermore, the community detection algorithms can be classified in different ways,

and depending on the selected criteria, one algorithm can belong to more than one category. A

brief summary of existing community detection algorithms is introduced in the sections below.

The algorithms are classified based on methodological principles as presented in Orman,

Labatut and Cherifi (2011) in which most of the existing community detection algorithms

mainly fall into the following categories:

2.2.1 Link-Centrality-Based Algorithms

The centrality measures such as degree centrality (Silva and Zhao, 2016) and betweenness

(Girvan and Newman, 2002) are used to rank how important an edge (or node) is in the

structure of the network. Thus, the link-centrality-based algorithms are usually hierarchical

divisive approaches that start with a single community comprising all the nodes of the network.

Then repeatedly removing/cutting edges and dividing the network progressively into smaller

and smaller disconnected subnetworks that are viewed as communities until further splitting is

no longer worthwhile. The centrality measures are used for the selection of the links to be cut,

which are links connecting the communities and not those within them (Orman, Labatut and

Cherifi, 2011).

The first and most known algorithm using this approach is the Girvan-Newman algorithm

introduced in Girvan and Newman (2002). The algorithm estimates the centrality of a link by

considering the edge betweenness measure, which is defined as the number of shortest paths

between pairs of nodes that go through an edge in a graph. The algorithm is based on the fact

that edges connecting communities are expected to have high edge betweenness. Thus, by

iteratively removing these edges, the network is separated into groups from one another and

the underlying community structure of the network is revealed. Though the algorithm obtains

good results, it is very slow and highly complex thus it is not well suited for very large networks.

18

2.2.2 Modularity Optimisation Algorithms

The most popular method widely used to find community in the network relies on the

optimisation of a quantity called modularity. Modularity (Q) is a prominent measure for the

quality of a community structure introduced by Newman and Girvan in (Newman and Girvan,

2004) and it has become a widely accepted quality of measure for community detection.

The general concept of modularity optimisation algorithms is to detect the best community

structure in terms of modularity by searching over possible divisions of a network that have

high modularity.

Definition 2.10 Modularity (Q)

Modularity is based on the idea that a random graph is not expected to have a cluster structure,

so it quantifies the community strength by comparing the fraction of edges that fail within a

community with the expected fraction value of the same quantity of edges failing at random.

Let eij be the fraction of edges in the network that connect nodes in group i to those nodes in

group j, then the modularity score Q for a clustering is given by the following equation

(Newman and Girvan, 2004):

 𝑄 = ∑ [𝑒𝑖𝑖 − (∑ 𝑒𝑖𝑗𝑗)2
𝑖] (2.5)

Formally, modularity can be defined as (Fortunato, 2010):

𝑄 =
1

2|𝑚|
∑ [𝐴𝑖𝑗 −

𝐾𝑖𝐾𝑗

2|𝑚|
]𝑖𝑗 𝛿𝑐𝑖 𝑐𝑗 (2.6)

Where Aij is an element of the adjacency matrix, 𝐾𝑖 is the degree of node i. 𝑚 is the total

number of edges in the network. 𝛿𝑐𝑖 𝑐𝑗 is the Kronecker delta symbol, which is equal to 1 if

ci=cj and 0 otherwise, and ci is the label of the community to which node i is assigned.

The modularity can also be equivalently defined as (Fortunato, 2010):

19

𝑄 = ∑ [
𝐿𝐶

𝑚
− (

𝑑𝑐

2𝑚
)
2

]𝑘
𝑐=1 (2.7)

Here, k is the number of clusters, 𝐿𝐶 the total number of edges joining nodes in community c

and 𝑑𝑐 is the total degree of nodes in c.

The higher the value of Q in the network, the better its community strength. Networks with

high modularity have dense connections between nodes within the same communities and

sparse connections between nodes from different communities. Thus, a Q value close to 0

indicates that fraction of edges within communities is no better than for a random case. Values

other than 0 indicate deviations from randomness. However, Newman et.al reported that in real

networks the modularity values typically fall in the range from about 0.3 to 0.7, and values 0.3

or more, usually indicate good divisions (Newman and Girvan, 2004).

Fortunato and Barthélemy (2007) pointed out that the modularity measure suffers from serious

resolution limits, and claimed that the size of the detected community, by enforcing modularity

optimisation Q, depends on the size of the whole network, which may fail to identify modules

smaller than a certain size. The main reason is that the modularity index does not consider the

information of the number of nodes in a community, and the choice of partition is highly

sensitive to the total number of edges in the network.

However, despite the fact that modularity is subject to a resolution limit, it is still one of the

most popularly accepted metrics for measuring the quality of community structure as well as

an optimisation criterion used by some algorithms to identify communities in networks

(Newman, 2016). In the following paragraphs, two modularity optimisation algorithms are

considered in some detail.

Fastgreedy algorithm is an agglomerative hierarchical clustering method proposed by

Newman (Newman, 2004b). The algorithm greedily maximises the modularity function Q, and

20

starts the process by assigning a different community to each node in the network. Then at each

stage in the process, the pair of clusters that yields greatest increase of modularity or smallest

decrease is merged until only one cluster remains containing all nodes in the network. The

whole procedure can be represented by a dendrogram (hierarchical tree) that illustrates the

order of the mergers. Cuts through the dendrogram at different levels give different partitions

into communities. The optimal community cluster can be found by cutting the dendrogram at

the level of maximum Q.

Louvain algorithm is a hierarchical agglomerative optimisation method proposed by Blondel

et al and attempts to optimise the modularity of a partition of the network. The optimisation is

performed in two steps that are repeated iteratively (Blondel et al, 2008).

This algorithm starts with each node in the network belonging to its own community. Then in

the first step and for each node in the network, the algorithm uses the local moving heuristic to

obtain an improved community structure by moving each node from its own community to its

neighbours’ community and evaluating the gain of modularity associated with the moving of

the node. The node is then placed in the community for which the modularity change is the

most positive. If none of these modularity changes is positive, the node stays in its original

community. This process is applied repeatedly and sequentially for each node until all the nodes

in the network are considered, and no further improvement can be achieved. This concludes

the first step. The second step of the algorithm consists of building a new network from the

communities discovered in the first step. Therefore, the individual nodes in the new network

are the individual communities from the first step. In this new network, there will be an edge

between two nodes if there were edges between the corresponding two communities in the

previous step. The weights of those new edges are the sum of the weights of the edges between

nodes in the corresponding two communities. The edges between nodes of the same community

in the first step will lead to self-loops for this community node in the new network. Once the

21

second step is completed, it is possible to replay the first step and iterate again if necessary.

The two steps repeat iteratively and stop when there is no more change in the modularity gain

and consequently a maximum modularity is obtained.

2.2.3 Spectral Algorithms

The spectral algorithms are mostly based on the analysis of the eigenvectors of matrices derived

from the networks and designed to find the partition minimising the links lying in between the

node groups. Leading eigenvector is one of the effective spectral algorithms proposed by

Newman (2006b). The algorithm is based on the spectral optimisation of modularity. Newman

showed that the modularity could be expressed in terms of the eigenvectors of a characteristic

matrix for the network, called modularity matrix, and therefore spectral techniques for the

optimisation process could be applied. He exploits the spectral properties of the modularity

matrix by using the leading eigenvectors (associated with the largest eigenvalues) of the

modularity matrix to maximise the modularity in his proposed algorithm. The algorithm

initially divides the network by assigning all the nodes into two communities according to the

signs of the leading vector elements of the modularity matrix. The negative signs clustered in

one group and positive signs in the other. The algorithm then runs recursively on each

subnetwork to divide those parts, and so forth. At any stage when there is no division of a

subgraph that will increase the modularity of the network the algorithm leaves the

corresponding subgraph undivided. This happens when all the elements in the eigenvector of

the proposed split subgraph have the same sign, and when the entire network has been

decomposed into indivisible subgraphs the algorithm ends. For the interested readers, Newman

(2006b) discusses the algorithm in more detail.

However, there are two drawbacks in the spectral algorithm described above. First, it only takes

the leading eigenvector of the modularity matrix to generate the solution and ignores all the

information provided by the other eigenvectors. Second, it splits a network into more than two

22

communities by recursive partitioning instead of getting all the communities directly in a single

step (Chen and Hero, 2015).

2.2.4 Random-Walk-Based Algorithms

Random walk is a process of traversing nodes at random and it has been widely used to partition

the network into communities. There are several algorithms which have been proposed in

literature based on the random walk. An example includes Walktrap (WT) algorithm which

is proposed by Pons and Latapy (2006).

The walktrap algorithm is based on the principle that random walks on a network tend to get

“trapped” into densely connected parts defining the communities. In this method, the authors

propose using a node similarity measure based on short walks to capture structural similarities

between nodes instead of modularity to identify community via hierarchical agglomeration.

The algorithm starts by assigning each node to its own community and the distance for every

pair of communities is computed. Communities are merged according to the minimum of their

distances and the process iterated. After n−1 steps, the algorithm finishes and gives a

hierarchical structure of communities called a dendrogram. The best partition is then

considered to be the one that maximises modularity.

2.2.5 Information-Based Algorithms

Information-Based algorithms are also known as compression-based approaches. These

approaches use the concept of information theory to find community clusters in the network.

They basically consider the community structure as a set of regularities in the network topology,

which can be used to represent the whole network in a more compact way than the whole

adjacency matrix (Orman, Labatut and Cherifi, 2012). Infomap algorithm is an example of

information theoretic algorithms proposed by Rosvall and Bergstrom (2008). Infomap

algorithm characterises the problem of finding the optimal community clustering in the

network as the problem of finding the most compressed (shortest) description length of the

23

random walks on the network. It uses a random walk as a proxy for information flow in a

network and minimises a map equation, which measures the description length of a random

walker, over all the network clusters to reveal its community structure. To represent the

community structure, the algorithm uses a two-level nomenclature based on Huffman coding:

a level to distinguish communities in the network and the other to distinguish nodes in the

community.

In practice, the random walker is likely to stay longer inside communities, therefore in the

process of finding a community containing few inter-community links, only the second level

is needed to describe its path, leading to a compact representation. However, even though

Infomap is a competitive community detection algorithm and shows a very good performance

across several benchmarks (Fortunato, 2010), it cannot handle big networks with millions and

billions of edges that are becoming commonplace with the advent of Big Data (Bae et al, 2017).

For a more thorough discussion of community detection methods and algorithms and their

principles, please refer to the work done by Fortunato who is one of the major authorities in

the field of community detection (Fortunato, 2010) and Schaeffer (Schaeffer, 2007).

2.3 Parallelisation of Centrality Algorithms

Presently, the real-world networks are often complicated and accompanied by extremely large

sizes. Using conventional algorithms to analyse the networks is almost impossible to process

in a single machine and they usually require specialised processing methods, especially parallel

ones. Furthermore, many data parallelisation methods are proposed to extend storage

capabilities and to improve performance by distributing data and related tasks into disparate

hardware (Hu et al, 2014). MapReduce (Dean and Ghemawat, 2008) is one of the most popular

distributed computation frameworks that is being widely applied to large scale data-intensive

processing.

24

2.3.1 MapReduce

MapReduce is a distributed computing model proposed by Google in 2004 for processing

massive data sets with a parallel distributed algorithm using a large number of computers in an

efficient and fault tolerant manner (Dean and Ghemawat, 2008). Nowadays, MapReduce is

widely used as an efficient distributed computation tool in many applications e.g., search,

clustering, analysis of social networks, log analysis and matrix multiplication to name but a

few (Derbeko et al, 2016).

The computation of MapReduce takes a set of input key/value pairs, and produces a set of

output key/value pairs. The computation of MapReduce is expressed as two functions written

by the user: Map and Reduce. One iteration of map and reduce functions is called MapReduce

Job. MapReduce computation could be simply described as the following steps (Dean and

Ghemawat, 2008):

1. Input data is read from the disk and converted to Key-Value pairs.

2. The map function takes an input pair of data separately, processes it and produces a

list of intermediate key/value pairs.

(𝐾𝑒𝑦1, 𝑉𝑎𝑙𝑢𝑒1) → 𝑙𝑖𝑠𝑡(𝐾𝑒𝑦2, 𝑉𝑎𝑙𝑢𝑒2) (2.8)

3. The reduce function takes intermediate Key2 with a list of Values and processes them

to form a new list of values.

(𝐾𝑒𝑦2, 𝑙𝑖𝑠𝑡(𝑉𝑎𝑙𝑢𝑒2)) → 𝑙𝑖𝑠𝑡(𝑉𝑎𝑙𝑢𝑒3) (2.9)

4. Once all input pairs have been processed, the output of the Reduce function is then

written to the disk as Key-Value pairs.

25

MapReduce runs in a cluster of nodes; one node acts as a master node and the others act as

workers. The master node is responsible for assigning tasks to idle workers whereas the worker

nodes are responsible for running map and reduce tasks. A block diagram of the MapReduce

framework is shown in Figure 2.2.

Figure 2.2 Architecture of MapReduce framework (Dean and Ghemawat, 2008)

There are some existing open source implementations of MapReduce such as Hadoop (Hadoop,

2016), which has been widely used by many organisations such as Facebook, Yahoo!, LinkedIn.

However, despite the popularity of MapReduce and being extensively used by both academia

and industry, the MapReduce has also been the object of severe criticism (Doulkeridis and

Nørvåg, 2014; Fernández et al, 2014; Mohebi et al, 2016), mainly due to its performance

limitations, which arise in various complex processing tasks such as lack of loop-aware task

scheduling. MapReduce does not support multi-staging of tasks in a single run. Whenever new

MapReduce jobs are executed, the input data has to be reloaded from the disk every time during

iterations and regardless whether or not the input has changed from the previous iterations.

Recently, some researchers proposed several frameworks that support asynchronous execution,

which is not allowed in MapReduce. For example, some approaches provide support for

26

iterative algorithms that use MapReduce execution models such as: Twister (Ekanayake et al,

2010), HaLoop (Bu et al, 2010) and iMapReduce (Zhang et al, 2012).

2.4 Summary

Since the terminologies networks and graphs share the same definition, the first part of this

chapter introduces the basic concepts of graph theory that are used in further chapters. This

includes the definitions of adjacency matrix, degree of a node, completely connected graph,

triangle, triple, reachability, homophily and hierarchical structure.

This is followed by the literature review of state-of-the-art community detection algorithms

and the discussion of different categories of clustering algorithms. The field of community

detection is very rich and several algorithms to detect communities in networks are proposed.

As an overview, the community detection algorithms could be classified based on

methodological principles into five categories: link-centrality-based algorithms, modularity

optimisation algorithms, spectral algorithms, random-walk-based algorithms and information-

based algorithms. For a more thorough discussion of community detection methods and

algorithms and their principles, please refer to the work done by Fortunato who is one of the

major authorities in the field of community detection (Fortunato, 2010) and Schaeffer

(Schaeffer, 2007).

Most of the community detection algorithms in the literature are classified as global algorithms

and are designed to work on a single machine. However, in large-scale network scenarios

which will not fit within a single machine, it is impossible for such community detection

algorithms to find communities. Parallelizing the algorithms is one way to improve the

scalability of community detection. However, it is worth noting that community detection

algorithms, which use global information, are not suitable for parallelization. Hence, a

Decentralized Iterative Community Clustering approach (DICCA) is proposed in this research.

27

The last part of this chapter addresses the parallelisation techniques that have been used to

parallelise the community detection algorithms. Though there are several techniques available

for implementing parallelisation, most of the algorithms used for big data scenario employ

MapReduce scheme. This is due to its salient features that include scalability, flexibility, fault-

tolerance and simplicity. So, I have incorporated MapReduce scheme in parallelising the

Decentralized Iterative Community Clustering approach (PDICCA).

28

CHAPTER 3

NETWORK MODELS AND STATISTICAL METHODS

FOR COMPARISON OF NETWORKS

In the previous chapter, the basic concepts of community detection methods were introduced.

In this chapter, the empirical properties of real-world networks are discussed. Following this,

general metrics to evaluate the performance of community clustering algorithms and cluster

quality on the networks are presented. . Then a comprehensive study to benchmark approaches

for community detection in the networks is conducted. Finally, research methodology used in

this work is discussed.

3.1 Topology of Real Networks

As it has been noted in the first chapter of this thesis, many real-world systems can be

represented as complex networks. However, the real-world networks are non-random and they

usually present interesting patterns and properties conveying that their inherent structure is not

governed by randomness. Researchers have concentrated particularly on a few properties that

seem to be common to many networks (the small-world effect, degree distribution and

community effects), which will be discussed in the following subsections.

3.1.1 The Small-World effect

The small-world concept in simple terms describes the fact that even if the network has many

nodes, there exists a relatively small number of intermediate steps (short path) connecting any

pair of nodes within the network (Newman, 2003). It was first introduced in the 1960s by

Stanley Milgram through a series of experiments (Travers and Milgram, 1967; Travers and

Milgram, 1969).

29

The network is said to show a small-world effect if the value of the mean geodesic distance,

scales logarithmically or slower with network size for fixed mean degree (Newman, 2003).

However, nowadays, the small-world effect has been studied and verified directly in a large

number of different networks such as, the well-known “six-degrees of separation” in social

networks (Newman, 2003).

3.1.2 Degree Distribution

In real-world networks, not all the nodes in the network have the same number of edges. The

spread in the node degrees is characterised by a distribution function 𝑃𝑘 . The degree

distribution 𝑃𝑘 is defined as the fraction of nodes in the network with a degree k (Newman,

2003). Degree distribution of the network gives important information about topological

characterisation of the network. For example, many networks, such as the internet (Faloutsos,

Faloutsos and Faloutsos, 1999), citation networks (Redner, 1998), telephone call networks

(Aiello, Chung and Lu, 2000) have all been shown to display power-law degree distribution 𝑃𝑘

~ 𝑘 α where the constant α is known as the exponent of the power-law with a scaling between

2 ≤ α ≤ 3 (Newman, 2010).

3.1.3 Community Effects.

A number of measures have been developed for testing this tendency in the network. One of

them is the clustering coefficient which measures the degree to which nodes in a network tend

to cluster together. However, there are two well-known definitions of the clustering coefficient

of an unweighted network: the local clustering coefficient and the global clustering coefficient

(also referred as transitivity) (Newman, 2001; Costa et al, 2007).

The local clustering coefficient is a local property, introduced by Watts and Strogatz (1998a)

and used to describe the network structure of nodes that are close to each other.

30

Consider a node i in a network G, the clustering coefficient of a node i, 𝐶𝑖, is defined as the

ratio of the number of edges connecting the neighbours of i to the total possible number of such

edges of i.

𝐶𝑖 =
2𝐿𝑖

𝐾𝑖[𝐾𝑖−1]
 (3.1)

Where, Li is the number of edges between neighbours of node i, 𝐾𝑖 is the degree of node i

(Costa et al, 2007).

The clustering coefficient for the whole network is the average of the local values Ci.

𝐶 =
1

𝑛
∑ 𝐶𝑖

𝑛
𝑖=1 (3.2)

Where n is the number of nodes in the network (Costa et al, 2007).

An alternative definition of the clustering coefficient of a given node i is:

𝐶𝑖 =
𝑁△(𝑖)

𝑁3(𝑖)
 (3.3)

where N△(i) is the number of triangles involving node i and N3(i) is the number of connected

triples having i as the central node (Costa et al, 2007).

The global clustering coefficient is defined as the tendency among two nodes to be connected

if they share a mutual neighbour (if a↔b and b↔c, then heightened probability that a↔c and

forming a triangle). The global clustering coefficient is based on the relative number of

triangles in the network, compared to total number of connected triples of nodes and can be

written as (Newman, 2001):

 𝑇 =
3∗𝑁△

𝑁3
 (3.4)

Where: N△ is the number of triangles in the network and N3 is the number of connected triples.

31

In real networks, it is shown that the small-world property is often associated with the presence

of clustering, denoted by high values of the clustering coefficient (Watts and Strogatz, 1998a).

3.2 Overview of Validity Evaluation

Since there is no universally accepted definition of what a community is, assessing the validity

of community detection algorithms is a hard task and several validity approaches have been

developed in literature to evaluate the performance of the community clustering algorithms.

However, until this day, there is no formalisation of the problem of comparing and validation

of community structure. In this section, the most commonly used cluster validity metrics are

discussed. The cluster validity metrics could be classified into two types, cluster quality metrics

and external evaluation metrics.

3.2.1 Cluster Quality Metrics

3.2.1.1 Coverage

Coverage (Emmons et al, 2016) is one of the simplest quality functions, which compares the

fraction of intra-cluster edges in the graph to the total number of edges in the graph. Coverage

is given by:

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
∑ 𝐴𝑗𝑖𝛿(𝑆𝑖,𝑆𝑗)𝑖,𝑗

∑ 𝐴𝑗𝑖𝑖,𝑗
 (3.5)

Where Si is the cluster to which node i is assigned and δ(a; b) is 1 if a = b and 0 otherwise.

Coverage values usually range between 0 and 1. Higher values of coverage mean that there are

more edges inside the clusters than edges linking different clusters. However, coverage metric

does not take into account the internal cluster density and causes a strong bias toward partitions

with a smaller number of clusters. Thus, it leads to a trivial clustering in which all nodes are

assigned to the same cluster.

32

3.2.1.2 Conductance

In contrast to coverage, which measures only the accumulated edge weight within clusters, the

conductance, which is also known as Cheeger constant (Arias-Castro, Pelletier and Pudlo, 2012)

is based on the idea that two clusters should have a small degree of connectivity between each

other and in the ideal case they are disconnected. More formally, it computes the ratio of the

number of inter-cluster edges for the cluster and either, the number of edges with an endpoint

in the cluster or the number of edges that do not have an endpoint in the cluster, whichever is

smaller (Kannan, Vempala and Vetta, 2004).

Consider a cut that divides G into C non-overlapping clusters C1, C2, ….., Ck. The conductance

of any given cluster Φ(C𝑘) is denoted by (Kannan, Vempala and Vetta, 2004):

 𝛷 (𝐶𝑘) =
∑ 𝐴𝑖𝑗𝑖∈𝐶𝑘,𝑗∉𝐶𝑘

𝑚𝑖𝑛{𝐴(𝐶𝑘),𝐴(𝐶𝑘)}
 (3.6)

Where: 𝐴(𝐶𝑘) = ∑ 𝐴𝑖𝑗𝑖∈𝐶𝑘,𝑗∈𝑣 which determine the total degrees of Ck , Ck denotes the

complement of Ckin graph G and A is the adjacency matrix of the graph G.

The conductance of the graph G is (Kannan, Vempala and Vetta, 2004):

𝛷(𝐺) = 𝑚𝑖𝑛 (𝛷(𝐶𝑘)) (3.7)

Conductance is widely used to capture quantitatively the notion of a good network community

as a set of nodes that has better internal- than external-connectivity. The lower the conductance

the better is the clustering (Leskovec, Lang and Mahoney, 2010). However, as more clusters

in the network will probably lead to more cut-edges, it is pointed out that the conductance has

a tendency of giving better scores to partitioning with fewer clusters (Almeida et al, 2011).

33

3.2.1.3 Modularity

As presented in chapter 2, modularity is one of the most popular validation metrics for

topological clustering and it is used as an optimisation method for detecting community

structure in networks. Modularity states that a good cluster should have a bigger than expected

number of connections between the nodes within modules and a smaller than expected number

of connections between nodes in different modules. The higher the value of modularity the

better its community strength.

3.2.2 External Evaluation Metrics

When working with a network that has well-defined clusters of “ground truth”, it is possible to

evaluate a specific clustering algorithm by comparing the computed solution provided by the

algorithm with this “ground truth” solution as shown in Figure 3.1. In the following subsection,

the common indices that are used for measuring “goodness” of a clustering result comparing

to ground truth” solution are discussed.

Figure 3.1 The way of benchmarking the algorithm using a network with ground-truth communities

3.2.2.1 Rand Index

The Rand Index (RI) is a statistical measure developed by Rand to measure the similarity

between two clustering solutions (Rand, 1971). It is based on the relationship between pairs of

nodes and requires two labels for each node. One label is corresponding to its true community

34

and the other one is corresponding to the predicted community. If X and Y are community

clustering assignments for each node in the network, Rand Index is defined as the fraction of

pairs of nodes that are correct to all possible pairs of nodes. A pair of nodes is considered

correct either if the nodes share the same cluster in both clustering processes X and Y or if they

are in different clusters in both solutions. The Rand Index is then given by the equation:

𝑅𝐼(𝑋, 𝑌) =
𝑎00+ 𝑎11

𝑎00+𝑎11+ +𝑎01+ 𝑎10
=

𝑎00+ 𝑎11

(
𝑛
2
)

 (3.8)

Where:

a11: i and j are assigned to the same cluster in both X and Y.

a00: i and j are assigned to different clusters in both X and Y.

a10: i and j are assigned to the same cluster in X but to different clusters in Y.

a01: i and j are assigned to different clusters in X but to the same cluster in Y.

n: number of nodes in the network.

RI gives a measure of similarity with a value ranging from 0, when there is no pair classified

in the same way under both data clusters, to 1 when data clusters are exactly the same. In

practice, the RI often lies within the narrow range of [0.5, 1]. However, RI is highly sensitive

to the number of clusters considered in each clustering solution and has a tendency to give

higher values as the number of clusters increases (Wagner and Wagner, 2007).

3.2.2.2 Adjusted Rand Index

The Adjusted Rand Index (ARI) is the chance-corrected version of the RI proposed by Hubert

and Arabie and it is known to be less sensitive to the number of clusters (Hubert and Arabie,

1985). ARI is equal to the normalised difference of the Rand Index and its expected value under

the null hypothesis. The expression for ARI takes the general form (index - expected index)/

35

(maximum index - expected index). More formally the Hubert-Arabie’s formulation of the

adjusted Rand index is (Amodio et al, 2015):

𝐴𝑅𝐼(𝑋, 𝑌) =
2(𝑎00 𝑎11− 𝑎01 𝑎10)

(𝑎00+𝑎01)(𝑎01+ 𝑎11)+(𝑎00+𝑎10)(𝑎10+ 𝑎11)
 (3.9)

Like the RI, the adjusted Rand Index equals to 1 when both partitions are exactly similar.

Because it is chance-corrected, a value equal to 0 represents the fact that the similarity between

X and Y is equal to expected value under the generalised hypergeometric distribution

assumption for randomness. However, negative values are possible and they indicate less

agreement than expected value. For further detailed description of ARI, the reader is referred

to Hubert and Arabie (1985).

3.2.2.3 Normalized Mutual Information (NMI)

Normalized Mutual Information (NMI) is a similarity measure for comparing two partitions

based on the information theory concept. It is introduced in the community detection domain

by Danon et al. and since then it has been widely used to evaluate the accuracy of community

detection algorithms (Danon et al, 2005).

For an n-node network with two partitions X={X1, X2, X3, ….Xk} and Y={Y1 ,Y2 ,Y3, ….YK}

where X and Y represent the real communities and found communities respectively, the

normalized mutual information NMI(X,Y) of two divisions X and Y of a network is defined as

follows (Labatut, 2015):

𝑁𝑀𝐼(𝑋, 𝑌) =
−2∑ ∑ 𝑃(𝐾,𝐾)𝐿𝑜𝑔[

𝑃(𝐾,𝐾))

𝑃(𝐾)𝑃(𝐾)
]𝐾

𝐾=1
𝑘
𝐾=1

∑ 𝑃(𝐾)𝐿𝑜𝑔[𝑃(𝐾)]+∑ 𝑃(𝐾)𝐿𝑜𝑔[𝑃(𝐾)]𝐾
𝐾=1

𝐾
𝐾=1

 (3.10)

Where: (𝐾, 𝐾) =
𝑋𝐾∩𝑌

𝐾

𝑛
 , 𝑃(𝐾) =

𝑋𝐾

𝑛
 and 𝑃(𝐾) =

𝑌
𝐾

𝑛

36

If the found partition by the algorithm is identical to the real community, then NMI takes its

maximum value of 1. If the partition found is totally independent of the real partition then

NMI=0 (Labatut, 2015).

3.2.3 Computational complexity

Computational complexity theory is the study of the scalability of algorithms. The term

scalability involves both the number of computation steps needed and the number of memory

units that need to be allocated to run the computation. In the case of a graph, the number of

nodes n and/or the number of edges m is usually used to indicate the complexity of algorithm.

Big O notation is a symbolism used in complexity theory, computer science, and mathematics

to describe the asymptotic behaviour of functions. It tells you how fast a function grows or

decreased (Fortunato, 2010).

3.2.4 Visualization for Cluster Validation

Applying metrics is one way to evaluate the quality and correctness of the detected

communities but “a picture is worth a thousand words”. Visualising networks is the most direct

way of understanding them. However, large networks, particularly dense ones are very difficult

to visualise due to inherent visual clutter caused by many edge crossings (Kang et al, 2014).

Different graphical representations for data associated with networks and their layout

algorithms to give an impression of graph layout issues and limitations with regard to

scalability have been proposed. These algorithms include Yifan Hu (Hu, 2005), ForceAtlas

(Jacomy et al, 2014), Barnes-Hut Algorithm (Barnes and Hut, 1986) and OpenOrd layout

algorithm (Martin et al, 2011). How to design appropriate graph visualization technique

depends on many factors, including the type of graph describing the data and the analytical

task at hand.

37

An alternative visualisation method is to use the adjacency matrix representations. In an

adjacency matrix, nodes are displayed twice, on the abscissa and on the ordinate. An edge

between the two corresponding nodes in the network is represented by a non-zero entry.

However, since each edge in the network is defined by itself in a non-shared space, there is no

edge-crossing problem. According to studies performed by Ghoniem et al. the adjacency matrix

outperforms the node-link diagram when the considered graph becomes large and dense

(Ghoniem, Fekete and Castagliola, 2004).

Furthermore, using adjacency matrix representations, coherent rectangular areas (blocks)

appear in ordered matrix plots whenever strongly connected nodes are present in the underlying

topology. In network analysis scenarios, these blocks would be referred to as clusters. Hence,

with these representations, clear block patterns help counting clusters and identify larger and

smaller clusters (Behrisch et al, 2016). The adjacency matrix representation has been used in

many domains including: social science, artificial intelligence, biology, supply management,

neurology and transportation (Behrisch et al, 2016).

 In this research, I have used the matrix reordering visualisation technique for representing the

community clusters.

 However, the research in this work focuses on the problem of community detection in the

networks and does not touch the visualization technique. For more information, interested

readers may refer to (Herman, Melançon et al. 2000) and (Von Landesberger, Kuijper et al.

2011).

3.2 Artificial Networks

When evaluating the performance of community detection algorithms, there are two

approaches that could be used. The first approach is to test against the real-world networks

38

with prior information about communities and the second approach is to test against an artificial

network whose community structure is already known, which is usually termed as ground truth.

Among the former, Zachary's karate club (Zachary, 1977) and the college football network

(Girvan and Newman, 2002) have been extensively used. However, due to the complexity of

data collection and costs, real-world benchmarks are usually small-sized networks (Yang,

Algesheimer and Tessone, 2016). Furthermore, obtaining a real network with a ground truth is

not only difficult, but also costly in economic terms and time. Moreover, since it is not possible

to control all the different features of a real network (e.g. average degree, degree distribution,

community sizes, etc.), the algorithms could only be tested with a limited set of features. On

the other hand, artificially generated networks can overcome most of these limitations. Thus,

the literature has given much attention to algorithms' performance on benchmark networks and

there are a number of models available to produce synthetic networks. The following

subsections discuss the most well-known benchmarks that generate networks with ground truth.

3.2.1 Girvan and Newman (GN) Benchmark Networks

The Girvan and Newman benchmark (GN) is one of the first benchmarks proposed for

community detection algorithms by Girvan and Newman in (Girvan and Newman, 2002). The

GN benchmark network consists of 128 nodes that are divided equally into 4 communities of

32 nodes each. The strength of the community (λ) is given by the fraction of the edges placed

between two communities to the total number of edges in the network. The lower value of this

parameter will result in networks with clear separable communities. However, the GN

benchmark has some limitations such as: all the nodes of the network have essentially the same

degree, the communities are all of the same size and the network is small.

Since the real-world networks are characterised by heterogeneity in the distributions of node

degrees and of community sizes, which is not the case in the GN benchmark, this benchmark

is not entirely suitable for real-world network clustering (Newman, 2003).

39

3.2.2 LFR Benchmark Networks

The LFR benchmark model was proposed by Lancichinetti et al. to generate undirected and

unweighted networks that closely resemble real-world networks with community structure

(Lancichinetti, Fortunato and Radicchi, 2008). LFR model has become a popular choice for

assessing the performance of community detection algorithms and the model was subsequently

extended to generate weighted and/or directed networks, with the possibility of overlapping

communities. However, in this work, the focus is given to the undirected unweighted networks

with non-overlapping communities.

The LFR model is proposed to address most characteristics of real networks, e.g., size of the

network and heterogeneous degree distribution. In the LFR benchmark, both the node degrees

of a network and the size of each community are controlled by a power-law distribution with

exponent γ and β respectively. However, it has been observed that real-world graphs have such

a power-law degree distribution (Newman, 2003) with typical values of: 2 ≤ γ ≤ 3, 1 ≤ β ≤ 2

(Lancichinetti, Fortunato and Radicchi, 2008).

An important parameter of the LFR model is the mixing parameter μ, which represents the ratio

between the external degree of each node with respect to its community and the total degree of

the node. Each node shares a fraction 1− μ of its links with the other nodes of its community

and a fraction μ with the other nodes of the network. Essentially this parameter can be viewed

as the amount of noise in the graph. The larger the μ value of a network is, the harder it is to

detect communities in it. If µ > 0.5 then each node shares more than half of its edges with nodes

in other communities, μ = 0 means all edges are within community edges and μ = 1 means all

edges are between nodes in different communities. The model also allows controlling directly

the following parameters: number of nodes and maximum degrees. The code of LFR mode is

publicly made available by the authors (Fortunato).

40

3.3 Research Methodology

The aim of the research is to develop an accurate and effective community clustering

approaches for large-scale networks. This section presents research methodology for achieving

the objectives of this thesis. Figure 3.2 shows the research methodology framework used to

achieve these objectives. Each stage of the methodology for this research is explained briefly

in the following lines.

Studying the background information and a careful review of the relevant literature (presented

in chapter 2 and 3), revealed the insufficiencies of existing community detection techniques.

This provided the direction for the research and helped me to formulate the problem definition

along with the research objectives that listed in section 1.4. However, to achieve these

objectives three approaches are proposed and evaluated extensively.

Figure 3.2 Research methodology framework

41

1- Decentralized Iterative Community Clustering Approach (DICCA)

A novel Decentralized Iterative Community Clustering Approach to extract an efficient

community structure for large social networks are proposed. The proposed approach

works at the local level and does not require any global knowledge of the network. It

based on random walk and reachability, which is done by message propagation between

neighbours.

2- Parallel Decentralized Iterative Community Clustering Approach (PDICCA)

PDICCA is a distributed memory parallel processing approach that transforms the serial

steps of the DICCA approach into parallelised tasks.

3- An optimization approach for improving the robustness of community detection in the

existing weighted community detection algorithms, especially in networks with missing

information is proposed. This is done through considering attribute information, shared

neighbours’ information and connectivity between nodes in the network, for the

detection process.

The following chapters (chapter 4, 5 and 6) explain in details about these three proposed

approaches.

For implementation of the proposed approaches, list of software were used in the process:

 Matlab software

 Igraph (R) software packages

In this work, the synthetic dataset is generated by the LFR benchmark model along with their

ground-truth communities in order to be able to evaluate the effectiveness of the proposed

community detection approaches on a range of network-structural properties and network sizes.

42

In addition, anonymised Facebook datasets are used to evaluate the effectiveness of the

Prepressing approach (3rd proposed approach).

Evaluating the validity of community detection algorithms based on a single measure alone can

lead to misleading conclusions. Thus, in this work, a range of performance measurements,

Normalized Mutual Information (NMI), modularity (Q) and Adjusted Rand Index (ARI) have

been applied as evaluation criteria to evaluate the quality of community clusters. These three

performance measurements are based on three different approaches. The ARI is performed on

pair counting whereas, NMI is based on the information theory approach. The third approach

is the modularity measure, which relies strictly on the network topology. This modularity

measure allows to quantify the quality of a community structure in a blind way and without the

use of a reference (ground-truth).

Going a step further, the matrix reordering visualisation is used as a visual representation for

networks by encoding visually an adjacency matrix to show community clusters in the network.

3.4 Summary

Real-word networks have specific topological features, which characterize their connectivity.

Measurements of the connectivity are essential to describe, analyse, model, validate the

networks and exploit network structure to achieve certain aims. In this chapter, the empirical

properties of real-word networks that describe the structure of the network are presented. This

specifically focuses on the statistical properties of networks that have received particular

attention, including the small-world effect, degree distribution and community effects.

Furthermore, in this chapter various performance measures for assessing the quality of

community clustering algorithms are discussed. This includes, cluster quality metrics such as

coverage, conductance and modularity, and some external evaluation metrics such as Rand

43

index, adjusted Rand index and Normalized mutual information. Also, adjacency matrix

representation is discussed.

Finally, a comprehensive benchmarking study on the approaches for community detection in

the networks is conducted. Girvan and Newman (Lancichinetti, Fortunato and Radicchi, 2008)

and LFR Benchmark models (Lancichinetti, Fortunato and Radicchi, 2008) that are proposed

to generate synthetic networks to mimic the real-world networks are discussed in more detail.

The GN benchmark has some limitations such as, all the nodes of the network have essentially

the same degree, the communities are all of the same size and the network size is small. Since

the real-world networks are characterised by heterogeneity in the distributions of node degrees

and of community sizes, this benchmark is not entirely suitable for real-world network

clustering. So in this work, the synthetic dataset is generated by the LFR benchmark model

along with their ground-truth communities is used in order to be able to evaluate the

effectiveness of the proposed community detection approaches on a range of network-structural

properties and network sizes.

44

CHAPTER 4

DECENTRALIZED ITERATIVE COMMUNITY

CLUSTERING APPROACH (DICCA)

In this chapter, a novel Decentralized Iterative Community Clustering approach (DICCA) for

detecting communities in complex networks is proposed. The DICCA approach is based on the

random walk procedure and reachability of nodes in the network. An important property of this

approach is its ability to cluster the entire network without the global knowledge of the network

topology. This ability means that this method could be easily adapted to any parallel/

distributed processing to find community clusters in big networks.

Some parts of this chapter are published in the proceedings of the IEEE 28th Annual

International Symposium on Personal, Indoor and Mobile Radio Communications PIMRC,

Montreal, QC, Canada (pp.1-7) in October 2017. However, in reference to IEEE copyrighted

material which is used with permission in this thesis, the IEEE does not endorse any of

[Liverpool John Moores University]'s products or services. Internal or personal use of this

material is permitted. If interested in reprinting/republishing IEEE copyrighted material for

advertising or promotional purposes or for creating new collective works for resale or

redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/

rights_link.html to learn how to obtain a License from RightsLink.

4.1 Related Literature and Previous Studies

The problem of network clustering has received considerable attention from researchers in

recent years and the list of proposed algorithms is rich and diverse. Among them, those based

on modularity maximization form the most prominent family of community detection

algorithms closely followed by the category of algorithms based on random walks (Fortunato,

45

2010). However, most of the research on community detection algorithms has been designed

to work on a single machine employing a form of basic random access to the entire network,

so they require access to the entire network at all times (Fortunato, 2010).

In the modern era of technology, a tremendous amount of data is generated at an incredible

speed from everywhere. As the data size is scaling up, the need for computing power is

exponentially increasing. In many such situations, the required processing power far exceeds

the processing capabilities of single machines. Furthermore, in many such cases the large-scale

data set does not fit into the main memory of a single machine and needs to be distributed

among several machines. These demanding requirements have led to the need for parallel and

distributed algorithms for big data analysis.

In this chapter, a novel Decentralized Iterative Community Clustering Approach (DICCA) for

accurately clustering networks is presented. This scheme is completely decentralized and does

not require the global knowledge of the network. Apart from DICCA, there exist some other

algorithms that operate based on partial information. For example, the Distributed Diffusive

Clustering algorithm (DiDiC) is proposed by Joachim and Henning (Gehweiler and

Meyerhenke, 2010), based on the method of disturbed diffusion, which is designed to eliminate

all the global operations for assigning nodes to partitions. However, the nodes executing DiDiC

algorithm need to communicate with their direct neighbours and DiDiC requires knowledge of

all the neighbouring nodes.

Another algorithm somewhat similar to the proposed DICCA is Connectivity-based

Decentralized Node Clustering scheme (CDC) proposed by Ramaswamy et.al (Ramaswamy,

Gedik and Liu, 2005). The CDC algorithm adopts some ideas from the diffusion-based models,

and is particularly designed for peer-to-peer networks. Even though the algorithm assumes that

each node has a limited view of the entire network, similar to the DiDiC algorithm, CDC

46

algorithm requires knowledge about all the neighbouring nodes. Another distributed graph

partitioning algorithm, called Ja-be-Ja, proposed in (Rahimian et al, 2013) is a decentralized

local algorithm that does not require any global knowledge of the graph topology. To compute

the partitioning, the node only requires some local information about its neighbouring nodes,

and a small subset of random nodes in the graph. However, unlike the proposed DICCA

approach, the algorithm produces partitions of equal sizes. In fact, it tends to find balanced size

partitions rather than good-shaped partitions, and therefore, the number and size of yielded

partitions is controlled, and does not depend on the topology of the input graph. Therefore, the

outcome does not match the real-life scenario.

Table 4.1 Comparison of the algorithms

Algorithm
Short

name

Concept of the

algorithm
Features Comments

Distributed

Diffusive

Clustering

algorithm

DiDiC

Uses the concept of

disturbed diffusion to

identify dense graph

regions

Requires

knowledge of all

the neighbouring

nodes

DiDiC initially was

implemented to balance the

loads on virtual P2P

supercomputers

Connectivity-

based

Decentralized

Node

Clustering

scheme

CDC

The central idea in the

CDC scheme is to

simulate flow in

the network where every

edge considered as a

road between two points

Requires

knowledge about

all the

neighbouring

nodes

Model is suitable for

discovering connectivity-based

clusters in peer to peer

network and handle highly

dynamic nodes

Ja-be-Ja Ja-be-Ja

It is a distributed edge

partitioner that creates

balanced partitions while

reducing the vertex cut

Does not require

any global

knowledge of the

graph topology

The algorithm produces

partitions of equal sizes.

However, this is usually not the

case for real networks.

Decentralized

Iterative

Community

Clustering

approach

DICCA

The algorithm is based

on the random walk

procedure and

reachability of nodes in

the network

Able to cluster the

entire network

without the global

knowledge of the

network topology

The algorithm adaptable to any

parallel/ distributed processing

to find community clusters in

big networks when the size of

the input network or the

computation complexity is

beyond the resources of a single

computer.

4.2 Description of the Proposed DICCA

DICCA is an agglomerative clustering algorithm, it starts with every node belonging to a

community cluster on its own and iteratively merging the clusters that have high similarity with

each other. DICCA is based on random walk and reachability by broadcasting messages

47

through the network to compute similarity between community clusters and identify clusters

in the network.

The pseudo code outlining the entire procedure is listed in Algorithm 4.1 below and it consists

of two phases that run in an iterative fashion. The first phase, named local clustering, is to

define originators, one for each community cluster and associate each node to the best-fit

originator. The second phase, named network reduction, is used to build a new network based

on the detected communities in the first phase.

In the local clustering phase of each round of the iteration, one node is selected randomly as

the originator. Then this originator node sends a message (Msg) to all its neighbours. The

message contains the following three fields: Originator node ID (OnID), Time to Live (TTL)

and Message Weight (WMsg). OnID is used for uniquely identifying the originator node. TTL

is the maximum number of hops that the Msg can be recirculated before being discarded. The

message weight field (WMsg) is the weight carried by the message. The Weight represents the

estimated probability of reaching any node in the network starting from the originator node.

However, the WMsg is initialised to one and assigned to the originator itself, to avoid the

originator being assigned to any other clusters. The function used to calculate the weight of

message sent from the originator 𝑂𝑖 to its neighbouring node V𝑖 depends on the edges between

the originator 𝑂𝑖 and the node V𝑖 and is defined as:

𝑊𝑀𝑠𝑔 (𝑂𝑖, 𝑉𝑖) =
𝑊(𝑂𝑖,𝑉𝑖)

∑ 𝑊(𝑂𝑖,𝑉𝑗)𝑉𝑗∈𝑁𝑏𝑟(𝑂𝑖)
 (4.1)

Each node in the network maintains a set of values, represented as Total Message Weight,

originator ID. The Total Message Weight value represents the sum of the weights of all the

messages that reached Ni and has the same Originator node ID. When the node V𝑖 receives a

message Msg, it updates the total weight function corresponding to the message originator node.

Then, the receiving node V𝑖 checks whether or not the TTL of the message is greater than zero.

48

If so, the node decrements TTL value by one, updates WMsg of the Msg and forwards the

updated message to all its neighbours. The updated weight of the new message WMsg(Vi, Vk)

being re-sent from node V𝑖 to its neighbouring node VK is defined as:

𝑊𝑀𝑠𝑔(𝑉𝑖 , 𝑉𝐾) = 𝑊𝑀𝑠𝑔 𝑥
𝑊(𝑉𝑖,𝑉𝑘)

∑ 𝑊(𝑉𝑖,𝑉𝑗)𝑉𝑗∈𝑁𝑏𝑟(𝑉𝑖)
 (4.2)

However, Node VK halts the message circulation if TTL is zero or WMsg becomes

insignificantly low. When the TTL reaches zero, the message will no longer be forwarded and

the nodes join the community led by the originator node Oithat has received total weight values

greater than the specified threshold. However, if the total weight values received for some

nodes lie below a predefined threshold, then those nodes will remain as outliers.

In the next step, the algorithm adds one more originator node, by randomly selecting one of the

nodes from the outliers that do not belong to any community. Then the new originator repeats

the same process that was carried out by the former originator and updates communities and

their corresponding originator as well as the outlier nodes list. The algorithm keeps iteratively

adding one more originator, and updating communities and outlier nodes until each node is

joined to a community, and there is no outlier node remaining. However, each node in the

network may receive multiple messages generated from different originator nodes. In that case,

the node joins the community led by the originator node that has the highest total weight.

The second phase of the algorithm consists of building a new network from the communities

discovered in the first phase where the individual nodes in the new network are the individual

communities from the first step. In this new network, there will be an edge between two nodes

if there were edges between the corresponding two communities in the previous step. The

weights of those new edges are the sum of the weights of the edges between nodes in the

corresponding two communities. The edges between nodes of the same community in the first

step will lead to self-loops for this community node in the new network.

49

The two phases mentioned above are repeated with the rebuilt network iteratively and the

process stops when there is no more change in the communities and consequently optimised

community clusters are obtained.

Although the exact computational complexity of DICCA is harder to formalize, this algorithm

behaves as 𝑂(𝑚 log ((𝑛.𝑚)2)), in which n is the total number of nodes in the network and m

the number of edges. However, the most effort is in the first phase of the algorithm.

The proposed concept is shown in Figure 4.1. The figure illustrates how the proposed algorithm

works at different stages of execution of the algorithm with 11 nodes labelled from 1 to 11 and

17 unweighted edges. The algorithm process is initiated by choosing node 4 as originator in

the first iteration and threshold value is set to 0.25. Messages in the figure are defined by three

fields that provide information about the messages representing the originator, TTL and current

weight of the message respectively. For example, if the field value of the message received by

node 5 is {4:2: 0.25}, it means that the message data was originated by node 4 and the weight

of current message is 0.25 with TTL=2.

By compiling the notions above, a community cluster in the proposed algorithm can be

described as:

1. The nodes and only these nodes which are mutually densely-connected, belong to the same

cluster.

2. If node V does not have many neighbours and it is reachable from one or several nodes, then

V belongs to the cluster that is more densely connected.

3. If V does not have any neighbours, then V does not belong to any cluster.

4. The obtained communities are not overlapping and consequently, they define a partition C

of n such that V= ∪𝑖=1
𝑘 Ci and Ci ∩ Cj = Ø for any i≠ j.

50

Figure 4.1 Illustrates the concept of the algorithm

Step1: Initialisation

Node 4 chosen as originator. TTL=3

outlier nodes ={1,2,3,4,5,6,7,8,9,10,11}

Step2: The originator (Node 4) sends

messages to all its neighbours. TTL=2

outlier nodes ={1,2,3,4,5,6,7,8,9,10,11}

Step3: At TTL=1

outlier nodes ={1,2,3,4,5,6,7,8,9,10,11}

Step 4: At TTL=0.

Outlier nodes ={1,2,3,4,5,6,7,8,9,10,11}

Step 5: Total weighted message received

by the nodes from originator (Node 4) ,

threshold value =0.25, outlier nodes

{1,7,8,9,10,11}

Step 6: Start new round by choosing node 7

as originator and repeat the previous process.

Outlier nodes ={1, 8,9,10,11}

Step7: Output for the first iteration where

nodes {4,7,10,1} are chosen as originators.

 Outlier nodes ={}

Step 8: Rebuild the network and start new

iteration where,V1={1,2,3}, V2={4,5},

V3={6,7,8} and V4={9,10,11}

Step 9: Final output with three optimised

community clusters

4: 3: 1

4: 2: 0.25

4: 1: 0.0625

4: 1: 0.0625

4:2: 0.25

4:1: 0.0625

4:1: 0.0625

4: 2: 1

4: 1: 0.0833

4: 1: 0.25

4: 1: 0.0625

4: 1: 0.0833

4:2: 0.25

4: 1: 0.0625

4: 1: 0.0625

4: 2: 0.25

4:1: 0.0625

4: 1: 0.0625

4: 2: 0.25

4: 2: 0.25

4: 2: 0.25

4: 1: 0.25

4: 1: 0.0625

4: 0: 0.0156

4: 0: 0.0156

4: 0: 0.0156

4: 0: 0.0156

4: 2: 1

4: 0: 0.0156

4: 0: 0.0156

4: 0: 0.0156

4: 0: 0.0156

4: 0: 0.0156

4: 0: 0.0156

4: 1: 0.0837

4: 0: 0.0208

4: 0: 0.0278

4: 2: 0.25

4: 0: 0.0208

4: 1: 0.0625

4: 1: 0.0833

4: 0: 0.0156

4: 0: 0.0156

4: 0: 0.0278

4: 0: 0.25

4: 1: 0.0625

4: 1: 0.0625

4: 0: 0.0156

4: 0: 0.0156

4: 0: 0.0278

4: 2: 0.25

4: 1: 0.0625

4: 1: 0.0625

4: 0: 0.0313

4: 0: 0.0156

4: 0: 0.0156

4: 0: 0.0278

4: 2: 0.25

4: 1: 0.0625

4: 1: 0.0625

4: 0: 0.0313

4: 0: 0.0156

4: 0: 0.0156

4: 0: 0.4375

4: 0: 1.0938

4: 0: 0.2708

4: 0: 0.2049

4: 0: 0.4340

4: 0: 0.4375

4: 0: 0.1875

4: 0: 0.1319

4: 0: 0.0278

4: 0: 0.4375

4: 0: 1.0938

4: 0: 0.2708

7: 2: 0.3333

4: 0: 0.2049

7: 3: 1

4: 0: 0.4340

7: 2: 0.3333

4: 0: 0.4375

4: 0: 0.1875

4: 0: 0.1319

7: 2: 0.3333

4: 0: 0.0278

4: 3: 1

4

2 1

3

1

3

3

51

Algorithm 4.1. The proposed method

Input: underlying network graph G, time_to_live and threshold value

Output: C communities as a final division of G.

Repeat

 Outlier list ← all nodes // local clustering phase

 While outlier list ≠{}

 Oi ← Rand select (outlier list) // choose a node randomly to be an originator.

 //creat new message (Msg)

 OnId ← Oi // originator ID

 TTL ← time_to_live

 WMsg ← 1

 Msg ←{ OnId , TTL, WMsg }

While TTL ≥ 0

Total_weight (Oi, Vi) = sendmessages(G, Oi ,OnId, TTL, Msg) // Total

//weight between Oi and its neighbout nodes (Vi)

TTL ← TTL-1

Oi ← Vi

Msg ←{ OnId , TTL, Total_weight (Oi, Vi) }

 end while

for each Node Vi ∈ G

if Total_weight(Vi, onID) ≥ threshould then

 C(Vi) ← Join the cluster lead by max onID

else

 Remain outlier

end if

 end

 end while

 Ĝ=Aggregate (G,C) // Network reduction phase “Compact each community to one

 // new node and build new network”

 if (C_current=C_ previous) // no membership change

break;

 return C / / return the final division of G

end Algorithm

Function sendmessages (G, Oi ,OnId, TTL, Msg)

for each Node Vi ∈ Nbr (Oi) do

Send WMsg to Vi ← WMsg(Oi ,Vi)=WMsg(Oi ,Vi) *W(Oi,

Vi)/ ∑ 𝑊(𝑉𝑖, 𝑉𝑗)𝑉𝑗∈Nbr(𝑉𝑖)

If Ni have seen message from onID before then

 Total_weight(Vi, Oi) ← Total_weight (Vi, Oi) + WMsg

else

 Total_weight(Vi,Oi) ← WMsg

end if

 end

Return Total_weight(Vi,Oi)

end function

52

4.3 Experimentation and Results

4.3.1 LFR Synthetic Dataset (network)

Many real-world complex networks such as the Internet, social networks, biological networks,

infrastructure networks etc. are heterogeneous and show a power-law degree distribution

(Newman, 2003). In such networks not all their components such as nodes, links and subgraphs

carry the same role or importance in the network, which has crucial effects on the resulting

performance of the algorithms deployed. Consequently, the performance of any community

detection algorithm varies depending on the network’s characteristics. Furthermore, to analyse

the efficiency of the community detection algorithm, one needs to apply it to networks which

have ground truth communities (the actual partitions), and then the performance of the

algorithm needs to be measured as the accuracy in recognising the ground truth communities.

Due to the scarce availability of real networks that have ground truth communities, and in order

to measure the performance of the proposed community detection algorithm on both network-

structural properties and network size, the synthetic dataset is generated by the LFR benchmark

model along with their ground-truth communities and used to test the proposed algorithm in

this work.

4.3.2 Evaluation Metric

Since the true community structure is known for the benchmark network, the proposed

algorithm is evaluated by comparing the obtained partition in the experiments with the ground

truth provided by the LFR benchmark. Normalized mutual information (NMI) metric is used

to quantify the accuracy of community detection methods by evaluating the level of

correspondence between detected and ground-truth communities. In addition, modularity

measurement is used to evaluate how effective the algorithm is in terms of modularity

optimisation.

53

4.3.3 Parameter Selection Strategy

The proposed algorithm uses two parameters, which are ‘time to live’ and ‘threshold value’; if

these two parameters are optimally set, then, it will highly improve the performance of the

algorithm. So some strategies about the choice of these two initial parameters are discussed in

this section.

4.3.3.1 Time to Live

TTL is a parameter used by the algorithm to control the number of nodes visited in the network.

TTL value must be a positive integer greater than zero. In reality, choosing an appropriate TTL

value is not an obvious task. On one hand, small time-to-live may expire before reaching many

relevant nodes which are further away. On the other hand, high time to live means more nodes

than needed are visited, thus increasing both the message load on the network and the running

time of the algorithm. Therefore, in the proposed algorithm, rebuilding the network before

starting a new iteration is considered as a solution for this issue. For example, with a small

value of TTL, some nodes (Vf) that are densely connected with the neighbours of the originator

(intermediate nodes between them and the originator node) cannot receive messages from the

originator Oi as the TTL value might have expired in the current iteration. Then in the following

iteration, the intermediate nodes will be merged with the originator node making them as one

node. Then in the next iteration these Vf nodes will be reached by the originator Oi with a small

value of TTL.

In order to determine the effect of TTL value on the community clustering accuracy, the TTL

value ranging from 1 to 4 has been used in this evaluation. Figure 4.2 indicates the accuracy

values of synthetic networks with 500 and 1000 nodes. In this work, modularity and NMI have

been used to evaluate the quality of community detection. In order to give a condensed picture

54

of the results, the computing time in seconds and the message complexity results as a function

of the TTL are presented in Figure 4.3.

From the figure, it is clear that there is a correlation between TTL and both computing time

and message complexity. The smaller the TTL, the faster the algorithm. This can be qualified

(a) (b)

Figure 4.2 Performance of the DICCA algorithm using different TTL values

(a) (b)

(c) (d)

Figure 4.3 Comparison between computing time and the message complexities over different TTL values

0

0.2

0.4

0.6

0.8

1

1 2 3 4

C
lu

st
er

in
g
 A

cc
u
ra

cy

TTL

n=500

NMI Modularity Ground Modularity

0

0.2

0.4

0.6

0.8

1

1 2 3 4

C
lu

st
er

in
g
 A

cc
u
ra

cy

TTL

n=1000

NMI Modularity Ground Modularity

0

5000

10000

15000

1 2 3 4

T
im

e
(s

ec
)

TTL

n=500

Time

0

10

20

30

1 2 3 4

N
u
m

b
er

 o
f

M
es

sa
g
es

(i
n
 m

il
li

o
n
s)

TTL

n=500

Number of Messages

0

10000

20000

30000

40000

1 2 3 4

T
im

e
(s

ec
)

TTL

n=1000

Time

0

20

40

60

80

100

1 2 3 4

N
u
m

b
er

 o
f

M
es

sa
g
es

(i
n
 m

il
li

o
n
s)

TTL

n=1000

Number of Messages

55

by the fact that the run time of the DICCA algorithm depends on the total number of exchanged

messages which in turn is affected by the total number of hops that a message is permitted to

travel before being discarded (TTL).

However, the proposed algorithm in this work is implemented in Matlab from scratch, which

is not optimised for speed. Therefore, the total number of exchanged messages (Message

Complexity) will be computed as a score for running time in this work.

The graphs in Figure 4.2 demonstrate that the algorithm yields good community clusters when

the TTL is set to be 3. Furthermore, recall from chapter 3 that big networks from real-world

applications are often small-world networks (Watts and Strogatz, 1998b) (Silva and Zhao,

2016), so increasing the TTL value does not have significant impact on the quality of

community detection but may result in a very high communication load. However, selecting a

small TTL value can reduce the broadcast overhead but will compromise the accuracy. For

example, when TTL = 1 is used, the WMsg message is only being propagated once from

originator to its neighbour, which means only the direct originator’s neighbour nodes could be

merged in that iteration. For this scenario, the NMI and total number of messages generated

by the algorithm for N ∈ {500; 1000} were {0.661; 0.769} and {4832; 9019} and respectively.

On the other hand when a value of TTL=3 was used for n ∈ {500; 1000}, the NMI results were

{0.918; 0.946} and the total number of messages were {1,347,024; 3,735,475}. Furthermore,

when TTL = 4, the NMI scores were {0.922; 0.956} which are almost same as the NMI yielded

by the algorithm when TTL is 3. On the contrary, the total number of messages generated were

{29,680,547; 87,794,210} which are significantly higher than that generated when TTL was 3.

Based on the above discussion, it is clear that the algorithm will stabilize very fast on the

networks with small value of TTL, but quality is worse in most cases. On the contrary, using a

56

large value of TTL can ensure that all nodes will receive the message, but introduces

unnecessary broadcast messages for nodes beyond the target-clustering region.

The number of messages sent during an iteration clearly depends on the number of nodes in

the network and on the size of the n-neighbourhoods of the nodes (network structure). This

means high communication load is required for extracting clusters and may result in a

scalability problem in large and dense network environments. This scalability issue greatly

hinders the application of module extraction to network analysis where most of the networks

consist of high number of nodes. However, in big networks, the message weight becomes

extremely low compared to a threshold value. A node’s decision to join a cluster is based on

the total weight of the messages from the originator to the node exceeding the threshold value.

Consequently, extremely low message weight does not affect the accuracy of clusters and the

process could be halted.

To avoid an excessive number of messages being forwarded, adaptive termination technique

has been implemented in the DICCA approach. When the message weight becomes

insignificantly low, the message is discarded by the received node even though the TTL may

still be greater than zero. In this work the minimum value of message weight (Min_VALUE)

is specified to be three hundred less than threshold value.

By comparing Figures 4.2-4.3 with Figure 4.4, it can be observed that there are negligible

differences between the performance of the algorithm in terms of NMI and Modularity scores.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280845/figure/f12-sensors-09-01012/

57

Considering message complexity and running time, the performance of the algorithm when the

Min_VALUE is applied is by far better than its performance when Min_VALUE is not applied.

 (a) (b)

 (c) (d)

Figure 4.4 Performance of DICCA algorithm using adaptive termination via different TTL values

4.3.3.2 Threshold Value

The threshold is a numerical value ranging between 0 and 1, which defines the minimum weight

of the message required to join a cluster. It is defined by the user at the beginning of the process.

The node is allowed to join the community cluster led by originator Oi, if the total weight of

the message received by the node from Oi is equal to or greater than the threshold value. As

the threshold value increases, the difficulty of merging communities also increases. Thus, the

size of the community clusters depends on the threshold value. If a high threshold is set, more

small-size communities are detected. On the contrary, setting a lower threshold leads to fewer

but large size detected clusters. Therefore, the size of the community clusters produced by the

proposed algorithm could be controlled using the threshold parameter. The threshold value is

0

0.2

0.4

0.6

0.8

1

1 2 3 4C
lu

st
er

in
g
 A

cc
u
ra

cy

(Q
 \

N
M

I)

TTL

n=500

NMI Modularity

0

1

2

3

4

1 2 3 4N
u
m

b
er

 o
f

M
es

sa
g
es

(i
n
 m

il
li

o
n
s)

TTL

n=500

Number of Messages

0

0.2

0.4

0.6

0.8

1

1 2 3 4

C
lu

st
er

in
g
 A

cc
u
ra

cy

(Q
 \

N
M

I)

TTL

n=1000

NMI Modularity

0

2

4

6

8

1 2 3 4N
u
m

b
er

 o
f

M
es

sa
g
es

(i
n
 m

il
li

o
n
s)

TTL

n=1000

Number of Messages

58

in the range of {0; 1}, 0 yielding a single community and 1 producing clusters of singleton

nodes. Tuning this parameter could be seen as a possible practical remedy to control the desired

size and the number of communities.

In order to understand how the threshold value affects the accuracy, size and the number of

community clusters, the effect of different threshold values has been studied on a small network

with 50 nodes and 83 edges. The results presented in Table 4.2 show that when the threshold

value increases, more small-sized communities are detected. In contrast, lower threshold value

leads to larger detected clusters. For example, when the threshold value is 0.1, three clusters

have been detected and the biggest detected cluster has 21 members. That number of clusters

becomes 5 when the threshold parameter is changed to 0.7. That is because larger threshold

value means more strict requirements in community intra-connectivity and only strongly

connected nodes can belong to the same cluster.

Table 4.2 The experimental results obtained by the DICCA algorithm on a small network of 50 nodes

Figure 4.5 shows the visualization of synthetic network with 50 nodes and the detected clusters

when the threshold parameter is varied from 0 to 1 in steps of 0.1. The layout for all the different

Threshold

value
NMI

Number

of clusters

Modularity

(Q)

Min N.of

members

Max N.of

members

Avg N.of

members

0 0 1 0 50 50 50

0.1 0.664672 3 0.623675 14 21 16.66667

0.2 0.810166 5 0.674046 5 21 10

0.3 0.88515 6 0.717521 5 16 8.333333

0.4 0.85165 9 0.658151 1 10 5.555556

0.5 0.900606 12 0.622587 1 9 4.166667

0.6 0.900606 16 0.622587 1 9 3.125

0.7 0.723512 39 0.18682 1 5 1.282051

0.8 0.670295 50 -0.02584 1 1 1

0.9 0.670295 50 -0.02584 1 1 1

1 0.670295 50 -0.02584 1 1 1

0.223xt1 0.950701 9 0.68907 2 10 5.555556

59

visualizations of the network is kept constant to be able to draw conclusions easily by looking

at the figures. Members in the same community are represented with the same colour.

Using the proposed DICCA algorithm the maximum modularity is obtained when the threshold

value is 0.3 by the partition in 6 communities achieving Q=0.71 (graph d). However, the ground

truth partitioning is 8 communities with Q= 0.717. DICCA merged three communities into one.

Beside this, there are 5 communities classified correctly with the exception of one node (node

23) which is misclassified.

Clearly, the success of the algorithm is heavily dependent on the proper tuning of the threshold

value. However, there is no standard prescription for threshold value for all type of data sets

and applications. The most appropriate threshold value for a given data set is usually derived

experimentally, defined by the user according to their knowledge or estimated on the basis of

data from previously completed similar projects.

4.3.3.3 Automated Identification of Appropriate Threshold Value

Although the threshold value controls the number and the size of clusters that will be extracted,

which could be considered as an advantage of the algorithm, choosing the right threshold

without a priori knowledge of the network structure is a challenging task. Furthermore,

generating a priori knowledge requires human expertise and is time consuming since real

networks are usually big and contain huge amounts of information (De, 2016). In this work,

based on the above observation, a mathematical model is proposed to automatically calculate

the threshold value. The model calculates the optimal threshold value based on the size, density

and layout structure of the network. Equations 4.3 to 4.5 present the threshold calculation

model for undirected networks designed by the author to help calculate the threshold value

60

Figure 4.5 Community detection result for a small network with 50 nodes as extracted by the proposed DICCA

algorithm using TTL=3 and with different threshold values. (a) threshold value =0, (b) threshold value =0.1, (c)

threshold value =0.2, (d) threshold value =0.3, (e) threshold value =0.4, (f) threshold value =0.5, (g) threshold

value =0.6, (h) threshold value =0.7, (i) threshold value >=0.8, (j) ground truth clusters, (k) Modularity via

threshould value. The values of the other parameters were fixed: =2, β=1.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
o

d
u

la
ri

ty

Threshould Value

Modularity

61

when the users have no knowledge of the community properties of the network. Threshold

value calculation for specific networks and applications may require specific concepts and

considerations.

In undirected network, the threshold value is defined as follows:

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 = 𝑎𝑣𝑔_𝑡 + (𝑡 − 1)𝑥(1 − 𝐶) 𝑥 𝑎𝑣𝑔_𝑡 (4.3)

𝑎𝑣𝑔_𝑡 =
𝑙𝑜𝑔 (𝑙𝑜𝑔 (𝑛)

𝑙𝑜𝑔 (𝑛)
∑ (

1

𝑘(𝑖)
+

𝐾𝑖−1

𝐾𝑖
2 +

𝐾𝑖−2

𝐾𝑖
3)𝑛

𝑖=1 (4.4)

𝐾𝑖 = ∑ 𝐴𝑖𝑗
𝑛
𝑗=0 (4.5)

where, t is the iteration number, Ki is the degree of node i, n is the total number of nodes in the

network, A is the adjacency matrix and C is network clustering coefficient which is defined as:

𝐶 =
1

𝑛
∑

2𝐿𝑖

𝐾𝑖[𝐾𝑖−1]
𝑛
𝑖=1 (4.6)

where L𝑖 is the number of edges between neighbours of node i (Costa et al, 2007).

Given a network with n nodes, a complete network (fully connected network) is a simple

undirected graph in which every pair of distinct nodes is connected by a unique edge. Based

on the graph theory the network clustering coefficient for a fully connected network is 1 and

the degree of each node is defined as:

 𝐾𝑖 = 𝑛 – 1 (4.7)

Thus, the total edges of the network having n nodes will be:

∑ 𝐾𝑖
𝑛
𝑖=0 = 𝑛(𝑛 − 1) (4.8)

Using equation (4.3) to calculate the threshold value:

 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑉𝑎𝑙𝑢𝑒 =
𝑙𝑜𝑔 (𝑙𝑜𝑔 (𝑛)

𝑙𝑜𝑔 (𝑛)
∑ (

1

𝐾𝑖
+

𝐾𝑖−1

𝐾𝑖
2 +

𝐾𝑖−2

𝐾𝑖
3)𝑛

𝑖=1 (4.9)

62

Here, the value of ∑ (
1

Ki
+

Ki−1

Ki
2 +

Ki−2

Ki
3)𝑛

𝑖=1 represents the maximum weight of messages

received by node i when the TTL=3 and since
log (log(n))

log (n)
 is always less than 1, if the proposed

algorithm with adapted equation (4.3) for threshold parameter is used to extract clusters in the

complete network, the algorithm will merge all nodes in one cluster from the first iteration.

This result is acceptable since there is no obvious cluster structure in a fully connected network.

It is worthwhile mentioning that, in each iteration, the threshold value is stepwise increased by

(t-1)x(1- C) x avg_t as seen in equation (4.3), so that it becomes progressively difficult for

clusters that are not so densely connected to join with each other. Only the strongly connected

ones will be able to merge. Additionally, the maximum threshold value cannot be larger than

1. By using the proposed model, the threshold value at the first iteration for a small network of

50 nodes as considered in Table 4.2 is derived as 0.223 x t1, where t1 refers to the first iteration.

Figure 4.6 The community structures of the ground truth communities and those extracted by the proposed

DICCA algorithm on the LFR benchmark networks with 50 nodes using TTL=3 and threshold value =0.223xt1.

Figure 4.6 shows the visualization of the ground-truth community structure of 50 nodes and

the detected clusters result using the DICCA algorithm when the threshold value parameter

was calculated using equation (4.3). The DICCA algorithm gives a near optimal partitioning.

It identifies nine clusters, one more than the ground truth partition, which has difficulty in

extracting the cluster containing nodes 33, 23 and 16.

(a) Communities detected with proposed algorithm. (b) Ground truth communities

63

Based on the above argument, in all the experimentations performed in this work as discussed

below, threshold value is defined using equation (4.3) and to achieve good trade-off between

high modularity and low message complexity (running time), TTL is set to a value of 3.

4.4 Analysis of Results and Discussion

In this section, the results from the experiments conducted using synthetic networks are

presented, analysed and discussed in detail. The proposed DICCA approach was implemented

using Matlab, which is not optimised for speed on the windows system with ® Core™ i7 6700K

CPU 4.00GHz and 16 RAM available memory.

A set of undirected networks were generated using the LFR benchmark graph. The default

benchmark parameter values are used as the benchmark parameters for the exponents of the

degree distribution and community size, viz. γ =2, β =1. The mixing parameter is varied from

0.1 to 0.75 and the number of nodes is varied from 500 to 5000. The average degree and the

maximal degree are 25 and 50, respectively. Table 4.3 outlines the parameters used to generate

the LFR benchmark graph.

Table 4.3 The LFR benchmark graph parameters.
Variable Value Description

n n ∈ {500, 1000, ,,,,5000} number of nodes in the network

𝑲 25 mean degree of each node

kmax 50 maximum degree

µ µ ∈ {0.1, 0.15, . . . , 0.75}, mixing parameter

β 1 exponent of community size distribution

(typically 1 ≤ β ≤ 2 in real-world networks)

γ 2 exponent of degree distribution

(typically 2 ≤ γ ≤ 3 in real-world networks)

For each combination of parameter values, five instances of network were generated to check

for consistency. Furthermore, to eliminate the effect of randomness of choosing originators in

the proposed DICCA method, the algorithm was run 20 times on the five instances of network

datasets, so, the experimental results presented are the average of 100 simulation runs.

64

4.4.1 Results for Each Iteration of Clustering

Figure 4.7 shows iteration results of the algorithm for a small network with 50 nodes. Nodes

in the same community are labelled in the same colour. In the first iteration, originator nodes

are represented by rectangular shape. It is worth mentioning that due to the reduction phase of

DICCA, which consists of merging nodes in the same community into one node to create a

new graph, nodes in the figure that are shaded together with the same colour represent one node

in the following iteration process of the algorithm. Each iteration results in a network with a

different number of community clusters, and the number of communities becomes smaller and

smaller until the convergence of clusters is achieved. For example, in the initialisation stage,

each node is a cluster on its own, therefore there are as many clusters as the number of nodes

in the network. After initialisation, in the first iteration, 15 communities are identified followed

by 14 and 11 communities during the second and third iterations respectively. The random

initial originator nodes are transferred into meaningful clustering in iteration 5. Graph (g) in

Figure 4.7, illustrates the convergence of the clusters, where there is no change in cluster

membership of clusters with subsequent iterations (iteration 5). To be able to analyse the

intermediate results of the algorithm the value of modularity and NMI via the iteration are

calculated and shown in graph (h) in Figure 4.7, which reveals that at each iteration, the

measure of both Modularity and NMI are improved progressively until the convergence is

reached.

65

Figure 4.7 Community detection result for each iteration on a small network of 50 nodes using the proposed

DICCA algorithm with TTL=3, threshold value =0.223 *t, and =1, β=2.

 (a) Initialisation (b) Iteration#1 (c) Iteration#2

 (d) Iteration#3 (e) Iteration#4 (f) Iteration#5

 (g) Convergence (h) Performance via iteration

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

N
M

I/
M

o
d

u
la

ri
ty

Iteration

Modularity

NMI

66

4.4.2 Clustering Results for Increasing Network Size

To check how the performance of the proposed algorithm is affected by the network size, the

algorithm was evaluated using the previously discussed synthetic network with varying number

of nodes, viz. n ∈ {500, 1000, … 5000}. The obtained community structure is compared with

the ground truth communities using the previously discussed NMI and modularity measures.

Figure 4.8 NMI, Q-DICCS and Ground truth Q scores (y-axis) as number of nodes (x-axis) changes.

Figure 4.8 shows the clustering accuracy of the proposed DICCA algorithm when the network

size is varied from 500 nodes to 5,000 nodes. The algorithm performs very well and the

communities detected are very close to the reference (value of 1) with an average NMI value

of above 0.9. However, the modularity index (Q) of clustering results obtained by the DICCA

algorithm is slightly lower compared to that of the ground truth network.

4.4.3 Evaluating Repeatability of the Algorithm’s Performance

It is important to mention that several clustering methods are sensitive to random starts of

algorithm (Weber and Robinson, 2016) and the resulting clusters depend on the initial random

starts where the algorithm does not yield the same result with each run. However, to further

investigate the ability of the DICCA clustering algorithm to produce consistent results across

random starts, the standard deviation of the clustering results is measured where the algorithm

is run 100 times each time with different random initialisation. The lower values of standard

0.5

0.6

0.7

0.8

0.9

1

C
lu

st
er

in
g
 A

cc
u
ra

cy

(Q
 \

N
M

I)

Number of Nodes

NMI

Q-DICCA

Ground-truth Q

67

deviation indicate lower output changes and are always preferable. Results of the standard

deviation value of both NMI and modularity are displayed in Figure 4.9. As an overview, the

most notable phenomenon that can be observed from the results is that the overall value of

standard deviation is negligible, indicating that the DICCA algorithm does not have stability

issues and is able to successfully reproduce stable output when the experiment is repeated.

Figure 4.9 Standard deviation of final modularity/NMI with network sizes.

4.4.4 Evaluation of Message Complexity of the DICCA Algorithm

Performance of the proposed algorithm was evaluated in terms of the total number of

exchanged messages for different network size, as an indirect measure of processing capability

required for increasing network size. At the outset, the curve in Figure 4.10 shows a linear

increase in the number of exchanged messages with increasing size of the network.

However, more in-depth analysis as shown in Figure 4.11, which shows the average percentage

of exchanged messages in each iteration tells a different story. It can be observed from the

figure that data exchange for the DICCA algorithm is much greater at the first stage of iteration

when each node is in its own cluster. Just after 2 to 3 initial iterations, most nodes have their

cluster labels and the algorithm has merged the nodes belonging to the same cluster to be one

node. In fact, on average more than 90% of the data exchange happens in the first iteration for

a network size of 1,000 nodes. As seen in Figure 4.11, the percentages of total exchanged

0

0.02

0.04

0.06

0.08

0.1

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

Number of Nodes

Std-NMI

Std-Q

68

messages in the first three iterations are 99.59 % and 98.66% for network size of 500 and 1,000

nodes respectively. Hence, it can be safely concluded that though the proposed approach may

tend to have an increasing number of generated messages for increasing network size, it does

not require more iterations before the clusters converge. Most of the data exchange is in the

first 2 or 3 iterations due to the sheer number of nodes exchanging data with each other. The

average number of iterations is slightly increased from 5 to 7 as the number of nodes increased

from 500 to 5,000 (See table A.1.1 in Appendix A.1).

Figure 4.10 Total number of exchanged messages (y-axis) as number of nodes (x-axis) changes

(a) (b)

Figure 4.11 Percentage of Message exchanged per each iteration. (a) number of node in the network is 500, (b)

number of node in the network is 1,000.

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

N
u
m

b
er

 o
f

M
es

sa
g
es

Number of Nodes

Number of

Messages

94.95%

4.18%
0.47%

0.41%

1st Iteration 2nd Iteration

3rd Iteration The rest

91.65%

5.82%

1.19%
1.34%

1st Iteration 2nd Iteration

3rd Iteration The rest

69

4.4.5 Evaluation of Clustering Performance Using Mixing Parameter

The DICCA algorithm was evaluated with varying values of mixing parameter between 0.1

and 0.75, µ ∈ {0.1, 0.15, . . . , 0.75}, and keeping the number of nodes constant, n ∈ {500,

1000}. Figure 4.12 shows the mean values of all the obtained results for NMI and Q.

(a) (b)

Figure 4.12 Performance of the proposed algorithm using Mixing parameter. (a) Number of node in the network

is 500, (b) Number of node in the network is 1,000.

In Figure 4.12, the mean modularity score and the NMI of the partitions compared with the

ground truth communities as a function of the mixing parameter are shown. As can be seen,

the proposed algorithm has a similar performance for both networks of size 500 and 1,000.

However, on a closer look, the algorithm performs very well for the mixing parameter value ≤

0.5 and provides a good match to the ground truth. In contrast, for mixing parameter values

≥0.5, its performance drops with respect to both NMI and the modularity scores of its network

partitions.

Also, it should be noticed that with increasing value of mixing parameter, the modularity of

both the DICCA algorithm and ground truth network is decreasing. This can be justified by the

fact that when the mixing parameter becomes more than 0.5 many of the edges will fall outside

the communities and so the communities become rather indistinguishable. In other words, for

smaller μ the network exhibits a clear community structure, as per the definition of a

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0
.1

0
.1

5
0

.2

0
.2

5
0

.3
0

.3
5

0
.4

0
.4

5

0
.5

0
.5

5
0

.6

0
.6

5
0

.7
0

.7
5

C
lu

st
er

in
g
 A

cc
u
ra

cy

(Q
 \

N
M

I)

Mixing parameter

n=500
NMI-DICCA
Q-DICCA
Ground Modularity
NMI-Fast Greedy

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5
0

.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

C
lu

st
er

in
g
 A

cc
u
ra

cy

(Q
 \

N
M

I)

Mixing parameter

n=1000
NMI-DICCA
Q-DICCA
Ground Modularity
NMI-Fast Greedy

70

community in a strong sense that each node should have more connections within the

community than with the rest of the graph (Silva and Zhao, 2016). Therefore, for higher μ, the

network starts to show a multipartite structure and it most closely resembles the network that

does not display any community structure. However, the modularity index of clustering results

obtained by the proposed algorithm is gradually lowering compared to the ground truth network

modularity index.

Furthermore, the modularity of both the ground-truth clustering network and the results

achieved by the proposed DICCA algorithm are shown along with the clustering obtained using

the fast greedy modularity optimisation proposed by Clauset, Newman and Moor (Clauset,

Newman and Moore, 2004). This comparison reveals that the poor performance of the proposed

DICCA algorithm for mixing parameter value ≥0.5 is not due to the failure of the algorithm

but rather due to the network structure.

4.4.6 Evaluation of Clustering Performance Using Adjacency Matrix

Representations

To further investigate the quality of the clustering performance of the DICCA algorithm, the

spy plot of the input networks and the community clusters obtained by the DICCA algorithm

are shown as examples in Figure 4.13 for network size of 500, 2,500 and 5,000 nodes

respectively. Graphs (a, d, g) in Figure 4.13 show the spy plot for the connections of the input

networks where the graph structure is hardly visible. Graphs (b, e, h) in Figure 4.13 show the

spy plot obtained after rearranging the network according to ground truth community structure

and graphs (c, f, i) in Figure 4.13 present the spy plot obtained after rearranging the network

according to the clusters that they were assigned to by the proposed DICCA algorithm. Note

that the clusters are ordered based on the number of nodes in the community cluster where the

cluster with the most nodes is located on the top.

71

In the Figure 4.13, each blue dot corresponds to an element of the adjacency matrix that has

the value one, the white areas correspond to elements with the value zero. It can be easily

observed from the plot that the adjacency matrix visualizes strong clusters as solid rectangles

and the DICCA algorithm performs quite well in arranging the nodes into different clusters.

The algorithm discovered 13, 74 and 150 cluster structures with modularity values of 0.776,

0.857 and 0.864 for the final clustering result of 500, 2,500 and 5,000 network size respectively,

which corresponds to a very good community structure between the nodes. The number of

clusters in the actual partitions for the corresponding networks (500, 2,500 and 5,000) are 13,

91 and 171 respectively.

To further assess the similarity of the solutions, another metric called ARI was considered. ARI

is based on pair counting. Although this metric has different bias compared to NMI, which is

based on information theory, in general, the results show the same trend as NMI. The results

are included in the appendix A.1 along with the exact values of the NMI and Q performance

measures.

72

Figure 4.13 Spy plot for the connections of the nodes.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

73

4.5 Summary

In this chapter, a novel Decentralized Iterative Community Clustering Approach (DICCA) to

extract an efficient community structure for large social networks has been presented. DICCA

is based on random walk and reachability, which is done by message propagation between

neighbours. The algorithm consists of two phases that are run in an iterative fashion. First, it

must determine all originators in the network, which could be seen as cluster centres, and assign

each node to the community whose originator is densely connected. The second phase is to

build new networks based on the detected communities in the first phase where each

community becomes a node and the edges in the new network are representing the sum of the

edges between two communities. The DICCA algorithm uses two parameters named threshold

value and time to live (TTL). The threshold value should be ideally specified by the expert

according to domain knowledge. However, when this knowledge is not available, optimum

parameter values should be estimated. In this work, the mathematical model to obtain optimal

threshold value based on the characters of the networks is presented. In addition, the optimal

value of the TTL parameter is discussed. The DICCA algorithm is demonstrated with an

artificial network and the output shows very promising results.

Regardless of the threshold calculation method, the algorithm is simple and its concept does

not require any global knowledge. Being a localised algorithm, it can be run in parallel or in a

distributed fashion among clusters when the size of the input network or the computation

complexity is beyond the resources of a single computer. In the following chapter the main

challenges to be addressed when designing and implementing the distributed framework

version of the algorithm is discussed.

74

CHAPTER 5

PARALLEL DECENTRALIZED ITERATIVE

COMMUNITY CLUSTERING APPROACH (PDICCA)

In the previous chapter, a standalone approach named DICCA has been proposed for

identifying community clusters, which is self-organised and does not require any global

information of the network. In this chapter, an extended version of the DICCA called Parallel

Decentralized Iterative Community Clustering approach (PDICCA) is proposed. The PDICCA

approach is parallel in that it does not require any global knowledge of network structure when

the data is distributed across several machines and strict synchronization between the

distributed datasets is not required.

5.1 Introduction

Faced with the challenge of a big dataset, many researchers pay great attention to parallel and

distributed clustering algorithms that would improve the bottleneck of traditional clustering

methods on a single machine. To cope with this scenario, a distributed and parallel computing

model is needed to process a large dataset by scaling the dataset out to multiple machines across

a cluster and process it. Some novel parallel computing frameworks shine, of which

MapReduce is one of the most popular (Dean and Ghemawat, 2008).

In this chapter, a Parallel Decentralized Iterative Community Clustering approach (PDICCA)

is proposed. The design of the PDICCA approach follows master/worker configuration, with

one master serving as coordinator of many workers. In this case, of master/worker

configuration, the master is not required to do the job allocations nor does it need to have the

overview of the data itself. The purpose of the master in this configuration is to purely compile

the results from the slave workers at the end of each iteration. These features allow PDICCA

75

to be easily adapted to a distributed graph processing system from data centres to fully

distributed networks.

The PDICCA transforms the operations of the DICCA approach which is a serial process, into

a parallelised approach. The PDICCA is a pipelined parallel implementation and maintains the

overall structure of the serial method (DICCA) presented in the previous chapter. The novelty

of the design comes from the following fact: even though the PDICCA solves the same problem

and maintains the overall structure as does the serial method, the proposed approach is

distinguished due to the features of exploiting the use of distributed memory and extracting

parallelism under the MapReduce framework. The proposed algorithm does not require any

global knowledge of the network topology, and is scalable and will work with a range of

computer architecture platforms (e.g. cluster of PCs, multi-core distributed memory servers,

GPUs), where, the master and slave workers could represent either different threads in a single

machine or different machines in a computing cluster. Also, one of the main contributions of

this chapter is to take advantage of the graph partitioning when performing parallel community

clustering in order to speed up the process by minimizing the communication between slave-

workers. Furthermore, a parallel implementation of PDICCA based on the most popular

MapReduce model to accelerate processing in large-scale networks is proposed.

Table 5.1 Comparison between DICCA and PDICCA

Algorithm DICCA PDICCA

Process

approach

Serial process approach Parallelised process approach

Concept of

the algorithm

Based on the random walk procedure

and reachability of nodes in the

network

Based on the random walk procedure and

reachability of nodes in the network

Framework Consists of two phases: local

clustering and network reduction

phase that run in an iterative fashion

Consists of three phases: clustering, re-

clustering and rebuilding phase that run

in an iterative fashion

worker

schemes

Work in one single machine The approach consists of two worker

schemes: master and slave-clustering

workers

Mismatching

node

Not applicable Use cluster strength to find best result for

mismatching node

Parameters Uses two parameters, Time To Live

and threshold value

Uses two parameters, Time To Live and

threshold value

76

5.2 Description of the Proposed PDICCA Approach.

The core idea of my proposed approach is to divide the dataset into blocks, and then iteratively

repeat the following three phases: clustering, re-clustering and rebuilding phase: the clustering

phase is responsible for finding local community clusters for each block independently and in

parallel. In the second phase, the local clusters thus extracted from the individual blocks are

aggregated to find the initial community clustering for the entire network. The third phase

involves building a new, but smaller network for each block of data based on the initial

community clustering. Each cycle of this process through all the three phases is referred to as

an iteration. The three phases iterate until the old and the new community-clustering list does

not converge anymore.

5.2.1 Framework of the PDICCA Approach

The PDICCA approach consists of two worker schemes: master and slave-clustering workers.

The master worker creates the blocks as it reads the dataset, and passes them to slave-clustering

workers. The master worker is also responsible for receiving and aggregating the cluster

assignment results from all the slave-clustering workers, perform some computation, assign the

overlapped nodes into the best community and return the final solution. On the other hand

slave-clustering worker’s functionality is to identify local communities by going through its

own data set and applying the first phase of the DICCA approach proposed in chapter 4, named

local clustering phase. The overview of PDICCA approach is shown in Figure 5.1.

Slave-clustering worker runs in parallel and stores the community clustering lists in its local

memory. However, since each slave-clustering worker has some part of the data and does not

have a global knowledge of the network, consequently, different slave-clustering workers could

cluster the same node into different communities. Thereby, when all the blocks are clustered

77

and the local communities have been identified, the master worker loads the local community-

clustering lists to aggregate.

Since the PDCCA approach is proposed to find non-overlapping clusters then the partition C

of n nodes should form a partition such that n= ∪𝑖=1
𝑘 Ci and Ci ∩ Cj = Ø for any i≠ j. So, the

master worker is responsible for finding the set of overlapping nodes. The overlapping node

list is then sent back to the slave workers to calculate the strength of clustering solutions for

each overlapped node among different machines. This is then sent back to the master worker

for the re-clustering phase. In the re-clustering phase, the master worker finds out the best

solution for overlapped nodes, the solution corresponding to the highest strength of clustering,

and updates the community-clustering list. At the end of the re-clustering phase, the network

is partitioned into a number of communities.

Next step is the re-build phase, which involves building a new network by each of slave-

clustering workers. Using the same method presented in section 4.2 where the nodes in the new

network are the communities from the re-clustering phase. The weight of the link between two

nodes in this new network is the total weight of the links between the nodes of the two

corresponding communities in the original network. The links between the nodes of the same

community become self-loops of the corresponding node in the new network.

The iteration is then repeated until a stable set of community clusters (fulfilling the

convergence condition) is obtained.

It is to be noted that each slave-clustering worker has its own private non-shareable memory

and there are no communications between the workers in the clustering phase. Thus, each

slave-clustering worker operation is independent of the others and each of the slave-clustering

worker’s operations can be performed in parallel.

78

Figure 5.1 Framework of the PDICCA approach.

To calculate the strength of overlapped nodes, the clustering strength of overlapped node Vm

is formalised in the following definition:

Definition 5.1 Cluster strength

Given a network set G = (V, E), with n = |V| nodes and m = |E| edges is presented. During the

clustering phase, each slave-clustering worker clusters these nodes into C clusters and assigns

Vm node to different communities. To find the best community that fits Vm node, the proposed

scheme carries out the following two steps:

First, the node Vm obtains two sets of information from each of its neighbours, namely, the

degree of the neighbour node and the cluster to which it belongs to, and then calculates the

neighbour attraction between Vm and its neighbour Vi, which is defined as:

𝑁𝑏𝑟 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑉𝑚 (𝑉𝑖) =
𝑊(𝑉𝑚,𝑉𝑖)

∑ 𝑊(𝑉𝑖,𝑉𝑘)𝑉𝑘∈𝑁𝑏𝑟(𝑉𝑖)

 (5.1)

Convergence?

End

Slave
worker 1

 Slave
worker 2

 Slave
worker N

Master

worker

 Slave
worker 1

 Slave
worker 2

 Slave
worker N

Master
worker

 Slave
worker 1

 Slave
worker 2

 Slave
worker N

Master
worker

Split N

Split 1

Split3

Split 2

….

Yes

No

Data

records

Run next iteration

….

Find the local

communities

Find strength of

clustering for

overlapping

nodes

Updated community

clustering list and

Rebuild the network

Clustering
aggregation and
find overlapped

nodes

Find out the best

solution for

overlapped

nodes

Convergence

test

One Iteration

79

Where W(Vm, Vi) represents the weight of the edge between 𝑉𝑚 and 𝑉𝑖.

Then the strength value of Vm for all the clusters (C) where Vm belongs to is calculated by

computing the sum of the attractions for Vm towards its neighbours (Nbr Attraction) within

these C clusters.

The pseudocode for the cluster strength of Vm to the cluster C1 is shown in Algorithm 5.1 and

it is calculated as follows:

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (𝑉𝑚, 𝐶1) = ∑ 𝑁𝑏𝑟 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑉𝑚(𝑉𝑖)𝑉𝑖∈ 𝐶1&𝑉𝑖∈𝑁𝑏𝑟(𝑉𝑚) (5.2)

Algorithm 5.1 The Cluster strength

Function Cluster strength

Input: underlying network graph G, Vm (overlapped node)

Output: Cluster_Id community as a final division of Vm.

Function Cluster strength (G, Vm)

for each Node Vi ∈ Nbr (𝑉𝑚) do

 Nbr Attraction Vm (Vi) ← 𝑊(𝑉𝑚, 𝑉𝑖)/ ∑ 𝑊(𝑉𝑖, 𝑉𝑘)𝑉𝑘∈𝑁𝑏𝑟(𝑉𝑖)

 end

for each C do // C is the Community clusters

 Cluster strength (Vm, Ci) ← 𝑊 ∑ Nbr Attraction V𝑚(𝑉𝑖)𝑉𝑖∈ 𝐶𝑖&𝑉𝑖∈𝑁𝑏𝑟(𝑉𝑚)

 end

Cluster_Id=Max {Cluster strength (Nm, Ci)}

Return Cluster_Id

end function

The proposed scheme calculates how strongly the mismatching node Vm is connected to each

of the existing clustering solutions and then Vm joins the cluster with the highest cluster strength

value.

Refer to Figure 5.2, node ‘V1‘ has neighbour nodes (‘V2’ and ‘V3’), and belongs to the cluster

‘C1’ and has one node ‘V6’ that belongs to cluster ‘C2’ then the neighbour attraction between

node’V1’ and its neighbour is:

Nbr Attraction V1 (V2) =
𝑊(𝑉1,𝑉2)

∑ 𝑊(𝑉2,𝑉𝑘)𝑉𝑘∈𝑁𝑏𝑟(𝑉2)

 =
1

3
 ; where Vk={ V1, V4 ,V5}

80

Figure 5.2 Examples of eight nodes with two community clusters

Nbr Attraction V1 (V3) =
𝑊(𝑉1,𝑉3)

∑ 𝑊(𝑉3,𝑉𝑘)𝑉𝑘∈𝑁𝑏𝑟(𝑉3)

 =
1

2
 ; where Vk={V1 , V5}

Nbr Attraction V1 (V6) =
𝑊(𝑉1,𝑉6)

∑ 𝑊(𝑉6,𝑉𝑘)𝑉𝑘∈𝑁𝑏𝑟(𝑉6)

 =
1

3
 ; where Vk={V1 ,V7, V8}

The cluster strength of V1 to the cluster C1 is calculated as follows:

Cluster strength (V1, C1) = ∑ Nbr Attraction V1(𝑉𝑖)𝑉𝑖∈ 𝐶1&𝑉𝑖∈𝑁𝑏𝑟(𝑉1) =
1

3
+

1

2
 =0.8333

The cluster strength of V1 to the cluster C2 is calculated as follows:

Cluster strength (V1, C2) = ∑ Nbr Attraction V1(𝑉𝑖)𝑉𝑖∈ 𝐶2&𝑉𝑖∈𝑁𝑏𝑟(𝑉1) =
1

3
 =0.3333

Based on the cluster strength value, the node V1 chooses to join the cluster with higher strength,

which is cluster C1 in this example.

5.2.2 Partitioning of the Network Nodes Set

It is worth mentioning that in this work, for the purpose of computation, network nodes are

partitioned with the same size and they are assigned to different workers. This enables the

workers to serve a similar size of network.

It would be beneficial for the nodes close to each other to be processed on the same worker,

since this will increase the local computing and decrease network transfer (cost of bandwidth)

caused by overlapped nodes (Kajdanowicz, Kazienko and Indyk, 2014). Unfortunately, the

81

network partitioning requires a priori knowledge of the global picture of network structure,

which is a resource-consuming task, especially for large network structures. For this reason,

in this work the partitioning aspect of the network is done randomly with the consideration that

the number of edges in each partition should be the same.

5.2.3 How to Calculate the Parameters

As mentioned in the previous chapter, DICCA approach uses two parameters to be defined.

The first parameter ‘Time To Live’ (TTL) is defined as the number of hops that a message is

permitted to travel before being discarded. The next parameter is threshold value that

determines the difficulty of merging communities and is defined by the equation presented in

the previous chapter. However, in the PDICCA approach, TTL is set to be 3 (optimal value

obtained from chapter 4) and the threshold value for each worker is calculated based on its

local view of data and using the equation 4.3 presented in chapter 4.

5.3 Matlab Implementation of PDICCA Approach for

Distributed Memory Systems

To implement the PDICCA approach in a parallel manner, the Parallel Computing Toolbox

(PCT) available in the Matlab software platform is used (MATLAB, Release 2017a). PCT

enables computational solution of data intensive problems using multicore CPUs, GPUs and

computer clusters. In PCT to start a parallel processing, the MATLAB pool is opened to reserve

a collection of MATLAB worker sessions that run separately on the local machine or on a

remote cluster. In the PCT toolbox the loop command “parfor” is included. By using parfor,

for each worker a separate process is created with its own memory and own CPU usage. The

workers are headed by a client process which creates and manages them. When parfor is

executed, the MATLAB client coordinates with the MATLAB workers which form a parallel

82

pool. The code within the parfor loop is distributed to workers and it executes in parallel in the

pool. The required data needed by workers to do the computations is sent from the client to all

the workers and the results from all the workers are collected back by the client as shown in

Figure 5.3.

Figure 5.3 Parfor mechanism.

In this work, the algorithm is implemented on a multi-core machine to which two or more

independent processors are attached. The client divides the work among multiple processors

by allocating different data to the different processors (called workers). The processors run

their job independently of each other and no communication can occur between workers during

the execution of the loop. Each processor executes the same program but working on different

sets of data, so each worker maintains its own memory stack. Furthermore, since the

implementation relies on partitioning data into a number of blocks, the number of data blocks

equals the number of available workers (processors) in which each worker has only one block

of data to process and does not have access to the whole data.

Parfor i=1:n

end

Worker 1 Worker 2 Worker n

Client

Code

distributed to

workers

Workers

returning the

results to client

83

The client loads the outputs from each worker and aggregates the outputs to do some processing,

submits new instructions to workers and makes final clustering when stable condition has been

reached.

5.4 Parallel Algorithms Using MapReduce Model

Since in MapReduce model it is not possible to share any information among different slave

machines while running map or reduce functions, not all of graph clustering based algorithms

can be fitted into the MapReduce model. However, since the idea of the PDICCA approach

follows master/worker configuration, with one master serving as the coordinator of many

workers, this algorithm can be directly applied to work on top of the MapReduce computing

framework. As shown in Figure 5.1, the PDICCA approach is an iterative process, where each

iteration can be expressed in three step MapReduce jobs. To begin with, the client submits the

job to the master node of a machine cluster where the master machine will partition the input

data into several parts and arrange a number of slave machines to process these input data

partitions in map functions. The output of each map function will be sorted, shuffled and then

routed to the proper reducer. During the iterative process, the reducer’s output is directly sent

to the map function for the next round of the iteration. The process is repeated until the

termination condition is met and the final output is obtained. However, each Map function

needs to get the same data split during each iteration.

The different stages of computation are shown in Figure 5.4 and the description of each stage

follows:

84

Figure 5.4 PDICCA workflow and architecture.

5.4.1 Description of Algorithm in MapReduce Model

• Input

• Dataset (network) –Large

• First Map Stage

• Step 1: Select one node at random (originator)

• Step 2: apply the first phase of the DICCA approach to find the local community

clusters

• Output < node, cluster ID>

• First Reduce Stage

• Step 3: Find overlapped node clustering

• Output: <mismatched clustering nodes>

• Second Map Stage

• Step 4: For each overlapped clustering node, re-compute the strength of answers

• Output: <mismatched clustering nodes, strength>

• Second Reduce Stage

• Step 5: Find the best answer for each mismatched node

• Output: <mismatched clustering nodes, best answer>

• Third Map Stage

• Step 6: Assign mismatched node to the best answer.

• Step 7: Rebuild the network

• Output: <Nodes, Cluster ID>

• Third Reduce Stage

• Step 8: Compare the new discovered community and the old one (communities from

previous iteration)

• If similar Stop

• Else Go to Step 1 to start another MapReduce Iteration

• Use of Single Reducer

• The size of the dataset sent to the reducers is very small

• Single reducer can tell whether any of the node is mismatched or not

• Creates a single output file

Reducer

Single iteration

DFS

Mapper Mapper Reducer Mapper Reducer

Input file data

Final

output

Yes

No

1
st
 Map-Reduce stage 2

nd
 Map-Reduce stage 3

rd
 Map-Reduce stage

85

It is worth mentioning that although the PDICCA approach is presented here using a

MapReduce model, the approach can be implemented in a range of iterative MapReduce

implementation frameworks such as Twister programming model that are built for iterative

graph algorithms (Ekanayake et al, 2010).

5.5 Analysis of Results and Discussion

5.5.1 Environment Setup

The PDICCA approach is implemented in Matlab, a discrete event simulator for building P2P

protocols. Using the LFR networks mentioned in chapter 3, several experiments have been

conducted to evaluate the scalability and quality of the proposed algorithm. The experiments

are performed on a system configured with 4® Core™ i7 6700K CPU 4.00GHz and 16 RAM

available memory running windows. Because the approach initializes the originator randomly

and in order to neglect the effect of randomness in our method each result is averaged over 100

runs.

5.5.2 Experimental Evaluation

5.5.2.1 Horizontal Scalability in Relation to the Number of Parallel Cores

To demonstrate how well the PDICCA approach handles datasets when more workers are

available, the number of nodes in the network used in this evaluation is kept constant and the

number of workers is varied from 1 to 4. Figure 5.5 shows the results of different cores when

the number of nodes is constant, n ∈ {500, 1000}.

5.5.2.1.1 Quality

From Figure 5.5, the PDICCA shows a good scalability close to the optimal value, which is

indicated by average modularity and NMI values. In addition, it is clear that using more than

one worker to parallelise the algorithm does not adversely affect the accuracy of the result.

86

Consequently, the results prove that the algorithm is effective and able to achieve very high-

quality results in a parallel manner. More especially, PDICCA is capable of exploiting multi-

core architecture efficiently.

(b) (b)

Figure 5.5 NMI, Q-PDICCS and Ground truth Q scores (y-axis) as number of workers (x-axis) changes number

of nodes: (a) 500 (b) 1,000.

5.5.2.1.2 Message Complexity of the PDICCA Algorithm

Considering the number of exchanged messages for each worker, Figure 5.6 shows the

percentage of exchanged messages at each iteration by each worker processor. As can be

observed in each iteration, each worker generates almost the same number of messages, this

can be clarified by the fact that the data has been partitioned equally among the workers so

each worker has to process the same size of data. Hence, at each iteration, the master worker

must wait until all workers have completed their processes. So, splitting the data equally over

workers, can significantly reduce the expected time needed to wait until the slowest machine

worker returned data.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4

C
lu

st
er

in
g
 A

cc
u
ra

cy

(Q
 \

N
M

I)

Number of workers

n= 500

NMI Q-PDICCA Ground-truth Q

0

0.2

0.4

0.6

0.8

1

1 2 3 4
C

lu
st

er
in

g
 A

cc
u
ra

cy

(Q
 \

N
M

I)
Number of workers

n= 1000

NMI Q-PDICCA Ground-truth Q

87

(a) (b) (c)

(d) (e) (f)

Figure 5.6 Number of Message exchanged in each iterations and for each worker with respect to the number of

workers varied from 2 to 4 (a, b, c) for number of nodes 500 (d, e, f) for number of nodes 1,000.

For more in-depth analysis, Figure 5.7 shows the average percentage of exchanged messages

in each iteration. It can be easily observed from the figure that data exchange for the algorithm

is much greater at the first stage of iteration when each node is in its own cluster. Just after 2

to 3 initial iterations, most nodes have their cluster labels and the algorithm has merged the

nodes belonging to the same cluster to be one node. It also becomes clear from the Table 5.2

that the percentage of exchanged messages between master and slaves, the communication cost,

0
100000
200000
300000
400000
500000
600000
700000
800000

N
u
m

b
er

 o
f

 M
es

sa
g
es

n=500, 2 workers

1 worker 2 workers

0

50000

100000

150000

200000

250000

300000

350000

400000

N
u
m

b
er

 o
f

 M
es

sa
g
es

n=500, 3 workers

1 worker 2 workers

3 workers

0

50000

100000

150000

200000

250000

N
u
m

b
er

 o
f

 M
es

sa
g
es

n=500, 4 workers

1 worker 2 workers

3 workers 4 workers

0

200000

400000

600000

800000

1000000

1200000

1400000

N
u
m

b
er

 o
f

 M
es

sa
g
es

n=1000, 2 workers

1 worker 2 workers

0

100000

200000

300000

400000

500000

600000

700000

N
u
m

b
er

 o
f

 M
es

sa
g
es

n=1000, 3 workers

1 worker 2 workers

3 workers

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

N
u
m

b
er

 o
f

 M
es

sa
g
es

n=1000, 4 workers

1 worker 2 workers

3 workers 4 workers

88

is negligible. In comparison to the information exchanged locally in slaves which is very costly

and constitutes the main body of the time consumption of the algorithm.

Figure 5.7 Average percentage of Message exchanged per each iteration with number of cores varied from 1 to

4 workers (a, b, c) network size 500 (d, e, f) network size 1,000.

Table 5.2 Comparison with message exchanged locally in hosts and messages exchanged between master and

hosts

Number of nodes 500 1000

No. of Workers

%Messages

exchanged

locally among

slaves

% messages

exchanged between

master and slaves

%Messages

exchanged locally

among slaves

% messages

exchanged between

master and slaves

2 99.9767 0.0233 99.9760 0.0240

3 99.9636 0.0364 99.9631 0.0369

4 99.9599 0.0401 99.9629 0.0371

(a) (b) (c)

(d) (e) (f)

90%

8%

1% 1%

n=500, 2 workers

1st Iteration 2nd Iteration

3rd Iteration The rest

79%

16%

3% 2%

n=500, 3 workers

1st Iteration 2nd Iteration

3rd Iteration The rest

61%
28%

7%

4%

n=500 4, workers

1st Iteration 2nd Iteration

3rd Iteration The rest

85%

11%

2% 2%

n=1000,2 workers

1st Iteration 2nd Iteration

3rd Iteration The rest

72%

19%

5% 4%

n=1000, 3 workers

1st Iteration 2nd Iteration

3rd Iteration The rest

52%

28%

10%

10%

n=1000,4 workers

1st Iteration 2nd Iteration

3rd Iteration The rest

89

5.5.2.2 Clustering Results for Increasing Network Size

To demonstrate the performance influenced by scalability, the number of nodes is increased

linearly from 500 to 5,000 and the number of workers is kept constant at 3. All other parameters

and factors remain the same as previous evaluations.

5.5.2.2.1 Quality

The modularity values of the solutions obtained by the PDICCA approach are presented in

Figure 5.8. It can be observed from the figure that the performance of the PDICCA is

consistently good and close to the optimal value with NMI 0.96 and modularity 0.84 on average.

Figure 5.8 NMI, Q-DICCS and Ground truth Q scores (y-axis) as number of nodes (x-axis) changes.

5.5.2.2.2 Evaluating Repeatability of the Algorithm’s Performance

To further investigate the ability of the PDICCA approach to produce consistent results across

random starts across random data partitioning and initialisation, the standard deviation of the

clustering results is measured where the algorithm is run 100 times each time with different

random data partitioning and algorithm initialisation. The standard deviation value of both NMI

and modularity for the data sets with different network size are displayed in Figure 5.9, which

is relatively very small and in some cases around zero variation.

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

C
lu

st
er

in
g
 A

cc
u
ra

cy

(Q
 \

N
M

I)

Number of Nodes
NMI Q-PDICCA Ground-truth Q

90

Figure 5.9 Standard deviation of final modularity/NMI with network sizes.

5.5.2.2.3 Evaluation of Complexity of the PDICCA Approach

To investigate the relationship between the number of nodes and complexity of approach, both

the computing time and the total number of exchanged messages as a function of the network

size are presented in Figure 5.10 (a and b). Since PDICCA requires a large number of

exchanged messages between nodes, which is the most time consuming part during execution,

the performance of PDICCA highly depended on the total number of exchanged messages.

Therefore in this approach, the running time increases with the network size as a consequence

of increasing the number of exchanged messages. For example, the computing time and total

number of messages exchanged by PDICCA for n∈{500; 5,000} are {8.6; 3,763} and

{1,344,282; 15,633,691} respectively.

The average number of iterations and number of clustering solutions achieved are summarized

in Table 5.3. As can be seen, the PDICCA usually tends to detect fewer communities than the

ground truth solution. Another observation is that the number of iterations seems to depend

more on the network structure than the size of network.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

Number of Nodes

Std-NMI Std-Q

91

(b) (b)

Figure 5.10 (a) Total number of exchanged messages (y-axis) as number of nodes (x-axis) changes.

(b) .Running-time scalability of proposed algorithm in seconds.

Table 5.3 Experimental results of the PDICCA approach for increasing number of nodes in the network

5.5.2.3 Evaluation of Clustering Performance Using Mixing Parameter

The PDICCA approach is evaluated with varying values of mixing parameter between 0.1 and

0.75, µ∈{0.1, 0.15, . . . , 0.75}, and keeping the number of nodes constant, n∈{500, 1000}.

Figure 5.11 shows the results obtained for both modularity and NMI accuracy as a function of

the mixing parameter using the PDICCA for network sizes 500 and 1,000 nodes. As can be

clearly seen, the natural partitions of the network are always found (in principle) for the mixing

parameter value of up to 0.5, after which the method starts to fail where the quality of PDICCA

0

2

4

6

8

10

12

14

16

18
N

u
m

b
er

 o
f

M
es

sa
g
es

(i
n
 m

il
li

o
n
s)

Number of Nodes

Number of Messages (in millions)

0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
(s

ec
)

Number of Nodes

 Execution Time

Number

of nodes

G.No.

cluster
NMI

No.

cluster
Iteration

500 16.4 0.9487652 14.9 4.65

1000 32 0.9497669 28.24 4.88

1500 51.4 0.9596985 45.79 5.01

2000 69 0.9660799 61.85 5.22

2500 87.6 0.9664238 77.84 5.11

3000 103.6 0.9675385 92.34 5.31

3500 122.6 0.9698933 108.89 5.29

4000 133.6 0.9674534 118.71 5.41

4500 154.8 0.9703297 137.01 5.35

5000 173 0.9695852 151.99 5.34

92

was rather poor. However, fast greedy modularity optimisation algorithm does not have

impressive performances either, and displays a similar pattern. Furthermore, the performance

of PDICCA is expected to decrease as μ increases because higher values of μ indicates that the

community clusters in the network are not well defined.

More results including the exact values of the Q and NMI performance measures along with

ARI metric values can be found in the appendix A.2.

(a) (b)

Figure 5.11 Performance of the proposed algorithm using Mixing parameter μ. (a) Number of node in the

network is 500, (b) Number of node in the network is 1,000.

5.6 Summary

In this chapter, the distributed-memory parallel version of the DICCA approach, named

PDICCA, to extract an efficient community structure for large networks, is proposed. PDICCA

builds around the idea of splitting data instances into blocks and then clusters each block

independently and in parallel fashion across multiple cores/machines. The clusters extracted

from blocks are then aggregated at the final stage using the re-clustering stage. The PDICCA

approach provides several features simultaneously. Since it does not require a global

knowledge of the network topology, it is effective to process massive datasets that are too large

0

0.2

0.4

0.6

0.8

1

0
.1

0
.1

5
0

.2
0

.2
5

0
.3

0
.3

5
0

.4
0

.4
5

0
.5

0
.5

5
0

.6
0

.6
5

0
.7

0
.7

5

C
lu

st
er

in
g
 A

cc
u
ra

cy

(Q
 \

N
M

I)

Mixing parameter

n= 500

NMI-PDICCA Q-PDICCA

Ground-truth Q NMI-Fast greedy

0

0.2

0.4

0.6

0.8

1

0
.1

0
.1

5
0

.2
0

.2
5

0
.3

0
.3

5
0

.4
0

.4
5

0
.5

0
.5

5
0

.6
0

.6
5

0
.7

0
.7

5

C
lu

st
er

in
g
 A

cc
u
ra

cy

(Q
 \

N
M

I)

Mixing parameter

n=1000

NMI-PDICCA Q-PDICCA

Ground-truth Q NMI-Fast greedy

93

to fit in memory. In addition, PDICCA addresses the computationally intensive issues and

utilizes maximum hardware capabilities of modern multi-core systems for faster execution by

processing multiple blocks in a parallel manner. Furthermore, when scalability issues occur as

the data size grows beyond the processing power of a single machine, the proposed distributed

approach based on the MapReduce computing platform will help address this. Finally, in this

chapter the effectiveness and complexity of the PDICCA approach is tested and analysed using

synthetic networks with ground truth communities. The experimental results of the PDICCA

approach prove promising.

Since the nodes in the network contain a large amount of attribute information, this attribute

information has important significance in completely presenting the community structure of

the network. For example, in a social network, members of the same organisation are not only

friends but also they are more likely to have common interests or common individual attributes.

Therefore, in the following chapter, the approach which utilizes attribute information, shared

neighbours’ information and connectivity between nodes in the network to extract communities,

is proposed.

94

CHAPTER 6

A PRE-PROCESSING APPROACH FOR ROBUST

COMMUNITY CLUSTERING TECHNIQUES BASED

ON COLLABORATIVE INFORMATION SOURCES

In this chapter, a pre-processing approach for improving the robustness of community detection

in the existing weighted community detection algorithms, especially in networks with missing

information is proposed. This is done through considering attribute information, shared

neighbours’ information and connectivity between nodes in the network, for the detection

process. Empirical results demonstrate that the proposed approach is robust and can detect

more meaningful community structures within incomplete information networks than the state-

of-the-art methods that consider only topology information.

6.1 Introduction

In many real-world network structures such as social networks and the World Wide Web, in

addition to the link information, nodes are accompanied with their attribute values referred to

as attribute/content information. For example, in a social network, the nodes’ properties could

describe the roles of a person while the topological structure represents relationships among a

group of people.

A fundamental property in network is the community structure. Another property of similar

interest is transitivity or global coefficient clustering, which is defined as the tendency among

two nodes to be connected if they share a mutual neighbour (Newman, 2001). In terms of

network topology, recall from chapter 3 equation 3.4 transitivity defined as the presence of a

95

heightened number of sets of three vertices with edges between each pair of nodes (triangles)

in the network.

Empirical studies have found that the concept of transitivity applies in about 70–80% of all

cases across a variety of small group situations (Davis, 1970; Louch, 2000). Huijuan and

Shixuan (2013) proposed a graph clustering algorithm called SNGC that considers both

connectivity between nodes and shared neighbours. Their experimental results show that the

proposed algorithm provides promising results and could be applied to the analysis of social

networks, computer networks, bioinformatics, etc.

Another common occurrence in networks is that similar nodes associate with each other more

often than with others (e.g. in social networks, people choose to be friends with people who

share their beliefs). This property in known as Homophily (McPherson, Smith-Lovin and Cook,

2001). Traud et al (2011) show that a set of nodes’ attributes can act as the primary organising

principle of the communities. Several studies have been performed to investigate this

phenomenon of Homophily, which is summarized in McPherson, Smith-Lovin and Cook

(2001).

Most of the existing approaches found in the literature make use of either link information or

attribute information analysis alone for community detection. However, in real-world networks

neither piece of information on its own is sufficient in determining good clusters of the network.

The link information is usually sparse and noisy. On the other hand, relying on the attribute

information alone could mislead the process of community detection. For example, the process

may not identify the strength of a node’s relationship with its neighbours correctly.

Consequently, by taking into account only one source of information, the algorithm may fail

to detect accurately the entire community memberships. However, considering more than one

source of information for community detection could produce meaningful clusters and improve

the robustness of the network. For instance, in the case of attribute information, shared

96

neighbours and connectivity information are considered, then if either one source of

information is noisy or missing, the other could make up for it. Therefore, the proposed

approach will consider attribute information, shared neighbours and connectivity information

aspects of the network for community detection. It should be noted that this work does not

attempt to introduce a new community detection algorithm; rather proposes a pre-processing

step to improve existing community detection algorithms and make them execute with better

results in unreliable data network environments.

In this chapter, a network is represented as an undirected network G = (V, E, A), where V is

the set of nodes, E is set of edges between nodes. Each node Vi ∈ V is associated with an

attribute vector (𝐴𝑖
1, … 𝐴𝑖

𝑑). Where d is the attribute dimension and i represents the node ID.

The main goal of this work is to find K non-overlapping communities in the network where the

community (C) is defined as a list of non-empty node subsets: C ={C1, C2, , , Ck } ,= and V=

∪𝑖=1
𝑘 𝐶i that satisfy 𝐶i ∩ 𝐶j = Ø for any i≠ j.

6.2 Related Literature and Contribution

During the past decade, the problem of community detection in networks has drawn a great

deal of attention and several algorithms have been proposed. However, most of these existing

methods use either link information or attribute information alone for detecting communities

in the networks. Recently, there have been several studies (Dang and Viennet; Yang et al, 2009;

Zhou, Cheng and Yu, 2009; Lin et al, 2012; Ruan, Fuhry and Parthasarathy, 2013; Salem and

Ozcaglar, 2014) showing that the combination of attribute and link information to detect

communities in a network can improve the clustering quality. Most of these studies propose

new algorithms that aim to use both sources of information; however, their success relies on

the completeness of the dataset. Moreover, most methods use all attributes the same way

without considering which ones may influence the community structure more, and lack the

97

flexibility of balancing the information coming from network adjacency matrix and its node

attributes. Additionally, none of the studies examines the quality and the number of community

structures that could be identified in the network when some of the links are missing i.e. noisy

network environment. So, to the best of our knowledge, this is the first study on the community

structure that seeks to:

1. Design a unique pre-processing approach for the state of the art community detection

algorithms by tightly integrating the attribute information, shared neighbours and

connectivity information aspects of the network to produce a new matrix.

2. Study the correlation between communities and attributes in the network and introduce

weight detection attribute model to learn the degree of contributions of different

attributes based on the impact of attribute on the community structure.

3. Evaluate the performance of pre-processing approach within incomplete, noisy,

networks.

6.3 Experimental Datasets

In order to investigate the correlations between attributes and community structure and to

evaluate the proposed approach, anonymised Facebook datasets as introduced by Traud et al

(Traud, Mucha and Porter, 2012) and (Traud et al, 2011) are used. The Facebook datasets are

undirected and unweighted. The datasets were recorded on a particular day in September 2005

and contain Facebook networks from 100 different American university networks whose nodes

represent users and the links represent friendships between users. Attribute information about

each user is also provided. Each user has seven node attributes: a student/faculty status flag,

gender, major, second major/minor (if applicable), dormitory (house), year and high school. In

this work four networks from 100 Facebook datasets are used. In particular, the Caltech36,

Reed98, Haverford76 and Vassar85 datasets, which contain 769, 962, 1,446 and 3,068 nodes

98

and 16,656, 18,812, 59,589 and 119,161 edges respectively are used. However, the proposed

approach in this work is not limited to the social networks but can be applied to many kind of

graph structures.

6.4 Correlation Analysis

6.4.1 Shared Neighbours

In order to measure how likely any two nodes with a common neighbour are themselves

connected, the clustering coefficient of each node in the network is calculated.

Recall from chapter 3, the node clustering coefficient 𝐶𝑖, of a node i is defined as the ratio of

the number of edges connecting the neighbours of i to the total possible number of such edges

of I, 𝐾𝑖 is the degree of node i.

𝐶𝑖 =
2𝐿𝑖

𝐾𝑖[𝐾𝑖−1]
 (6.1)

Where, Li is the number of edges between neighbours of node i (Costa et al, 2007).

The clustering coefficient for the whole network is the average of the local values 𝐶𝑖.

𝐶 =
1

𝑛
∑ 𝐶𝑖

𝑛
𝑖=1 (6.2)

Where n is the number of nodes in the network (Costa et al, 2007).

Figure 6.1 shows the visualization results of the cluster coefficient for each node in the four

datasets. In this figure, colours of nodes correspond to values of their corresponding clustering

coefficients. As can be seen, there are some nodes that have high clustering coefficients, which

indicates strong connectivity between each other. In the other words, they are more prone to be

in the same cluster. Furthermore, the clustering coefficient for the considered networks are

0.4288, 0.3304, 0.3268 and 0.2487 for Caltech36, Reed98, Haverford76 and Vassar85 datasets

respectively.

99

Figure 6.1 Visualization results of node clustering coefficient for subset of four datasets (should be viewed in

colour).

Therefore it is clear from the above discussion that the shared neighbours’ information can be

used to describe the nature of connections between nodes in the network. This should motivate

the use of shared neighbours’ information in detecting community clusters in the network.

6.4.2 Correlation of Communities and Attributes

For the sake of computing the correlation between connectivity of nodes and their attributes,

the nodes are clustered based on their attributes in which, the nodes whose attributes are similar

are grouped together to form a cluster. Also, four different community clustering algorithms,

(a) Caltech36 (b) Reed98

(c) Haverford76 (d) Vassar85

100

which are FastModularity (Clauset, Newman and Moore, 2004), Louvain (Blondel et al, 2008),

leading eigenvector algorithm (Newman, 2006a) and WalkTrap (Pons and Latapy, 2005) are

applied on the datasets to find the communities. Then the correlations between the resulting

communities from these algorithms and the attributes are measured using Jaccard similarity

index.

Figure 6.2 shows the correlations between attribute and communities clustering for Reed

dataset. The visualization is done using R with the help of the Igraph package (Csardi and

Nepusz, 2006). From this figure some of the correlations between attributes (colours) and the

community structure can be observed.

Figure 6.3 presents the Jaccard similarity index for four different community detection

algorithms with each attribute over the four networks in the Facebook dataset. It is interesting

to notice that for the same dataset, the order of the correlation strength across different attributes

is not the same and varies from one community clustering algorithm to another. For example

in Reed98 dataset, if the agreement with the fast modularity algorithm is considered, the most

agreement is observed with the attribute ‘student faculty’. On the other hand, Louvain

algorithm performs the best if the agreement with the `year’ is considered. This is due to the

fact that each algorithm differs on how they treat the nodes and assign them to different

communities with different size and number of communities.

Even though there exists a difference in attribute ranking across different algorithms and

datasets, as an overview, the most agreements are observed with student faculty, gender, year

and dormitory attributes. However, in computing the correlation between attributes and

community structure, Traud et al (2011) reported that the order of correlation strength is

significantly dependent on the agreement index used and not consistent across different indices.

101

Figure 6.2 Visualization of correlations between attributes and communities for Reed dataset. (a) Communities

based on attributes: nodes are coloured the same if they have the same value for the corresponding attribute;

nodes with a missing value for an attribute are white. (b) Communities based on community clustering

algorithm: nodes are coloured the same if they belong to the same community.

Student or faculty status flag Gender Major second major or minor

 Dormitory Year High school

(a)

 Fastgreedy Louvain Leading eigenvector Walktrap

(b)

102

Figure 6.3 Agreement of different community detection algorithms with each attribute, for a subset of four

datasets.

0

0.1

0.2

0.3

0.4

0.5

Student/

faculty

Gender Major Second

major/ minor

 Dormitory

(house)

 Year High school

Ja
cc

ar
d

 I
n
d

ex

Attribute

Caltech36

Fast Modularity Louvain leading eigenvector walktrap

0

0.1

0.2

0.3

0.4

0.5

Student/

faculty

Gender Major Second

major/ minor

 Dormitory

(house)

 Year High school

Ja
cc

ar
d

 I
n
d

ex

Attribute

Reed98

Fast Modularity Louvain leading eigenvector walktrap

0

0.1

0.2

0.3

0.4

0.5

Student/

faculty

Gender Major Second

major/ minor

 Dormitory

(house)

 Year High school

Ja
cc

ar
d

 I
n
d

ex

Attribute

Haverford76

Fast Modularity Louvain leading eigenvector walktrap

0

0.1

0.2

0.3

0.4

0.5

Student/

faculty

Gender Major Second

major/ minor

 Dormitory

(house)

 Year High school

Ja
cc

ar
d

 I
n
d

ex

Attribute

Vassar85

Fast Modularity Louvain leading eigenvector walktrap

103

Observing a correlation between the attributes and the communities in the network, indicates

the attribute information is a source of data that can be used to perform the community

clustering task. Furthermore, based on the homophily property of a network as shown above it

is clear that the linked nodes are more likely to share similar attributes. However, the attributes

do not have the same influence as the community structure and some attributes weigh more

than others in their influence. Thus the impact of different attributes on communities needs to

be known and properly weighted according to their influence on the community structure. This

will balance the role of network information and node attributes.

6.5 Description of the Proposed Approach

The proposed approach could be defined as a pre-processing phase for conventional

community clustering algorithms, which takes a graph G = (V, E, A), the weight of attributes

(W) and two more weighting factors (α and β) as inputs. α is used to weight the contribution

between connectivity information, and both attribute and shared neighbours’ information. β is

used to weight attribute information to the number of common neighbours. However, these

weighting factors (W, α, β) can be either provided as part of the input if they are known a priori

or calculated from the dataset.

The proposed approach returns a hybrid similarity matrix. The hybrid similarity matrix is a

weighted combination of attribute information, shared neighbours’ information and

connectivity information between the nodes. Once the proposed approach constructs the hybrid

similarity matrix, it can be supplied to any of the state-of-the-art clustering algorithms proposed

for weighted graph (e.g. Newman fast Greedy algorithm, Louvain algorithm, Newman

algorithm based on leading eigenvector of a modularity matrix or Walktrap algorithm) to

extract community clusters.

104

The general architecture of proposed approach is shown in Figure 6.4. As can be seen in the

figure, the approach has two phases named the parameter-learning phase and information

aggregation phase. The first phase aims is to extract optimal parameters whereas the second

one is used to build a hybrid similarity matrix.

Figure 6.4 System architecture for the proposed approach.

We formally describe the generative process of hybrid similarity matrix as following:

𝐻𝑠𝑖𝑚(𝑖, 𝑗) = ∝ . 𝐴(𝑖, 𝑗) + (1−∝)[𝛽.𝑊𝑎𝑠𝑖𝑚(𝑖, 𝑗) + (1 − 𝛽). 𝑆𝑁𝑠𝑖𝑚(𝑖, 𝑗)] (6.3)

𝑊𝑎𝑠𝑖𝑚(𝑖, 𝑗) = 𝑊.𝐴𝑠𝑖𝑚(𝑖, 𝑗) (6.4)

Where:

Hsim (i, j): Hybrid similarity matrix

A: adjacency matrix

𝑊𝑎𝑠𝑖𝑚(𝑖, 𝑗): The weighted attribute similarity between a pair of nodes (i, j)

α: The weighting factor used for the contribution of connectivity information to the attribute

information and shared neighbours information.

Calculate attribute similarity

matrix

Mapping attribute similarity,

shared neighbours similarity and

adjacency matrix to build a

hybrid similarity matrix

C 1

C 3

C 2

Input

1 st Phase 2 nd Phase

Output

Communities

N
e
tw

o
rk

 d
a
ta

se
t

Content information

Topology information

Weighted contribution

parameters (α, β)

W

Information aggregation

Mapping

hybrid

similarity

matrix to

community

detection

algorithm

O
p

ti
o

n
a
l

in
p

u
t

p
a
ra

m
e
te

r

Parameter learning

Local clustering stage

Attribute weighting

stage

W

(α, β)

state of the art

community

detection

algorithm

Calculate shared neighbours

similarity matrix

Our proposed approach

105

β: The weighting factor used for the contribution of attribute information to the number of

common neighbours information.

SNsim(i, j): Shared neighbours similarity between nodes i and j.

Asim(i, j): The attribute similarity between a pair of nodes (i, j) in network G = (V,E,A)

W: A matrix containing the weights of each attribute of the node in the network.

Definition 6.1 Shared neighbours

Given a graph G = (V, E), for a node i ∈ V, the neighbours of node i are nodes that directly

connect to node i and is denoted by Γ(i).

The shared neighbours of node i and j are the nodes that both directly connect to nodes i and j.

It is defined as:

𝑆𝑁(𝑖, 𝑗) = {𝛤(i) ∩ 𝛤(j)} (6.5)

The shared neighbours similarity between nodes i and j is calculated by dividing the number

of shared neighbours between them by the maximum degree of i and j nodes. It is defined as:

𝑆𝑁𝑠𝑖𝑚(𝑖, 𝑗) =
𝑆𝑁(𝑖,𝑗)

𝑚𝑎𝑥 [𝐾𝑖,𝐾𝑗]
 (6.6)

Where:

𝑆𝑁(𝑖, 𝑗): Shared neighbours between nodes i and j.

𝐾𝑖: Degree of node i

In the hybrid similarity matrix, as it is defined in equation 6.3, the strength of relationship

between nodes is determined by attribute information, connectivity information and shared

neighbours and controlled by two weighting parameters (α and β). The α and β weighting

parameters can be given as part of the input values by the human agent based on his knowledge

106

of the data structure and his perception of the importance of each attribute. However, choosing

the right weighting values of attributes without a priori knowledge of the network is a

challenging task. Furthermore, the proposed approach has attribute weighting factors (W), the

values of which need to be set carefully. Thus, in the following sections, the two phases of the

proposed approach (the parameter-learning phase and information aggregation phase) will be

discussed in detail to provide guidelines on how to set these parameters.

6.5.1 The Parameter Learning Phase

Since the goal of utilizing details on attribute information, shared neighbours and connectivity

information in this work, is to get the best community clusters for the network, the attributes

of the nodes should be weighted in such a way that greater weight is given to the more

influential attributes, and smaller weights for the less influential. Determining the influence

and thus the weights of the attributes correctly, will enhance the community structure algorithm

and improve the detection of communities in the networks. The main purpose of the proposed

attribute weighting technique is to search for small groups of nodes (initial clusters) that contain

more internal connections (links between nodes in the group) than external connections

(between nodes of the group and nodes in other groups) and then find the attribute similarity

between nodes in the same groups to get the influence factor for each attribute.

To accomplish this, the parameter-learning phase, as shown in Figure 6.4, is subdivided into

two stages, local clustering stage and attribute weighting stage. Local clustering phase is to

extract dense nodes from the network to form the initial clusters. These initial clusters are local

small ones, far from being the optimal result and are only used in the second stage to weight

the attributes of each node in the network as well as estimate the α and β parameter values.

In the local clustering phase, the initial clusters are obtained by applying the first phase of the

DICCA approach proposed in chapter 4, named local clustering phase. The basic idea of the

107

local clustering phase in DICCA consists of picking up m nodes to be originators in which the

m nodes should be spread out in all regions of the network and assigning each node to the

closest originator to form a cluster.

The attribute weighting stage is then applied to find the strength of the weighting for each

attribute based on the structures of current clustering results. During the attribute weighting

stage, the set of attributes for each node are weighted according to its influence in the

community in which the highly influential attributes are assigned with high strength weights;

meanwhile the less influential attributes are assigned with low strength weights.

In more detail, to find the attribute weighting, it is necessary to measure the proximity between

each pair of nodes in the initial clusters based on their attributes. To do so, the attribute

similarity metric needs to be defined first.

6.5.1.1 Attribute Similarity Metric

The attribute similarity between nodes Vi and Vj within the same cluster is determined by

examining each of d set of attributes on the two nodes and reflect on the strength of the

relationship between them in terms of their attribute values.

Without loss of generality, regardless of the similarity metric considered to find the weight of

attributes, first, the similarity between the attribute values of each pair of nodes belonging to

the same local cluster is calculated as follows:

let Xi
N.d be the similarity matrix for cluster i with N nodes each with d attributes, the local

attribute weight for cluster i is obtained by adding the appropriate dimension attribute of each

node in the cluster to form a vector of 1xd size and determined as:

L𝑊𝑑
𝑖 =

1

𝑁
∑ (𝑋𝑁.𝑑

𝑖)𝑑
𝑖=1 (6.7)

108

The weighting for the entire network is then calculated by adding the corresponding attribute

of each local attribute weight (sum of the vectors) to form another vector in 1xd size. It is

formally defined as:

𝑊 =
1

𝑚
(∑ 𝐿𝑊𝑑

𝑖)𝑚
𝑖=1 (6.8)

It is worth mentioning that the weights assigned to the attributes in the parameter learning

phase LW = {Lw1, Lw2 …. Lwm} ranges between 0 and 1.

Whether or not a certain subset is optimal depends on the similarity metric employed. The

question about what are the best similarity measures between nodes to choose for different

types of attribute data is beyond the scope of this work. In this work, a Jaccard similarity

coefficient is used to define the attribute similarity between nodes in the same cluster and to

find the weight of attributes (W) during the parameter-learning phase. For an overview of the

research work on determining the most meaningful similarity measures in various fields and

for different types of data, see (Choi, Cha and Tappert, 2010; Arif and Basalamah, 2012).

Definition 6.2 Jaccard similarity. Given a network G = (V,E,A), for any pair of nodes Vi, Vj

∈ V, the Jaccard similarity between nodes Vi and Vj with respect to attribute is indicated as

J(Ai,Aj) and is defined as the size of the intersection divided by the size union of the data sets,

as given below:

𝐽(𝐴𝑖, 𝐴𝑗) =
|𝐴𝑖∩𝐴𝑗|

|𝐴𝑖∪𝐴𝑗|
 (6.9)

J(Ai, Aj) returns a value between 0 and 1, with 0 denoting no similarity, and 1 denoting identical

sets.

109

Furthermore, since in this work Jaccard similarity is used to measure attribute similarity

between nodes, the XN.d
i could be defined as the Jaccard similarity matrix for cluster i and the

weighted attribute similarity 𝑊𝑎𝑠𝑖𝑚(𝑖, 𝑗), between any nodes i and j is defined as follows:

𝑊𝑎𝑠𝑖𝑚(𝑖, 𝑗) =
∑ (𝑊𝐿∗[𝐴𝑡𝑡_𝑖𝐿∩𝐴𝑡𝑡_𝑗𝐿]𝑑

𝐿=1)

 ∑ (𝑊𝐿∗[𝐴𝑡𝑡_𝑖𝐿 ∪𝐴𝑡𝑡_𝑗𝐿] 𝑑
𝐿=1)

 (6.10)

Where each node has d attributes and 𝐴𝑡𝑡_𝑖 is the attribute vector of node i.

The pseudo code outlining the entire procedure with Jaccard similarity is listed in Algorithm

6.1.

110

Algorithm 6.1: The proposed approach

Input:

 adj: adjacency matrix.

 Att: An attribute nodes matrix.

 Optional input parameter:

 W: a matrix containing the weights of each attribute for each node in the network.

 ∝: The weighted Contribution of connectivity information to the attribute information

 //and shared neighbours information.

 𝛽: The weighted contribution of attribute information to the number of shared

 //neighbour information.

 Output:

 K: A set of communities in the network.

 for each Node i ∈ adj

 Asim(i, j) = ∑ [Att_iL ∩ Att_jL]
d
L=1) ∑ [Att_iL ∪ Att_jL]

d
L=1)⁄ //get attribute

 //similarity matrix between i &j where i≠j

 Γ(i) ← get the neighbours of node (i)

 ki ← get the degree of node (i)

 end

 SN(i,j) = { Γ(i) ∩ Γ(j))} //get the number of shared neighbours between each nodes

 SNsim(i, j) = SN(i, j) /max[Ki, Kj] // shared neighbours similarity between nodes i

 // and j where i≠j

 C= local clustering phase (adj) // run the first phase of DICCA algorithm

 for each cluster lc∈ C
 For each pairs of nodes i,j ∈ lc

 XN.d
lc ←|Att_𝑖 ∩ Att_𝑗| |Att_𝑖 ∪ Att_𝑗|⁄ // Jaccard similarity matrix for cluster lc

 end
 N← get number of nodes in lc

 LWd
lc =

1

N
∑ (XNxd

i)d
i=1

 End

m← get number of initial clusters in c

 if (W not provided as an input parameter)

 W=
1

m
(∑ LWd

i)m
i=1

 end

if (∝ not provided as an input parameter))

 ∝= 𝑎𝑣𝑔(𝑊)

 end

if (𝛽 not provided as an input parameter))

 𝛽 =0.5

 end

 Wasim(i, j) = ∑ (WL ∗ [AttiL ∩ AttjL
]

d

L=1
) ∑ (WL ∗ [AttiL ∪ AttjL

]
d

L=1
)⁄

 Hsim(i, j) ← ∝ . Adj(i, j) + (1−∝)[β.Wasim(i, j) + (1 − β). SNsim(i, j)]
 K ← community cluster (Hsim(i, j))

 Return K return the final division of adj.

111

6.5.1.2 Effect of α and β on the Quality of Community Structure

When considering the values to select for the two weighting factors (α and β), the type of

emphasis on one of the network parameters needs to be considered. For example, emphasis on

the connectivity information source means that the parameter α should be greater than 0.5. On

the other hand, emphasis on attribute and shared neighbours information means that α should

be less than 0.5. The same argument holds good for the parameter β, i.e., β greater than 0.5

indicates that attribute node information source has more contribution than the information

related to the number of common neighbours. In the networks, the weighted combination of

attribute information, shared neighbours and connectivity information are not the same and the

values of α and β need to be selected carefully. However, in practice without any prior domain

knowledge, it is quite difficult to scale the contribution of each source of information.

In order to determine the effects of varying α and β parameters on the quality of community

clustering and thereby to determine the parameters’ selection range, four different datasets are

used to track how the community clustering changes when the values of α and β are varied

from 0.1 to 1 with a step size of 0.1. Also, modularity index is used to evaluate the quality of

community detection.

Figure 6.5 and 6.6 show how the two parameters influence the community clustering quality.

The X-axis and Y-axis in the figures represent the values of α and β respectively, while the Z-

axis represents the modularity score. As can be clearly seen from Figure 6.5 (a-d), the

modularity is remarkably robust to the choice of parameter values. When α =β=0, the

modularity of community detection is ≥ 0.25 for most of the algorithms for all the datasets.

However, it is worth mentioning that α =β=0 indicates that the information used to find the

community clustering is just based on the number of common neighbours Hsim(i, j) =

SNsim(i, j).

112

As an overview, with an increasing value of β, the quality of community clustering decreases

for a constant value of α. On the contrary, with an increasing value of α, the quality of

community clustering increases slightly for a constant β value. It is also noticed that, for values

of α < 0.6 the modularity is dramatically affected by varying the value of β. The modularity

fluctuates between 0.01 and 0.4 and it becomes relatively stable when α value ranges between

0.6 and 0.7. However, the Modularity becomes almost stable for the vast majority of β values

when α > 0.7.

Experimental results also demonstrate that the connectivity information is more useful than the

shared neighbours’ information and attribute information. Therefore the value selected for α

should be greater than or equal to 0.5. For the datasets considered in this work, high modularity

values are obtained when α > 0.7.

With regard to these two parameters α and β, there is no straightforward way to fit them to

datasets and different datasets may require different parameter values. However, based on the

above argument, in order to better exploit the sources of information and obtain optimum

robustness in the detection of community clusters in the presence of noise, the value of α is set

based on the weights of attributes (w) as follows:

𝛼 = 𝑎𝑣𝑔(𝑤) (6.11)

In this work, to avoid a cumbersome decision process, equal importance is given to shared

neighbours and attribute information in which β=0.5 is set in all the following performed

experimentations.

113

Figure 6.5 (a-b) Modularity value achieved by four community clustering algorithm dataset using different

value of α and β on: (a) Caltech36 (b) Reed98 dataset.

(a)

(b)

114

Figure 6.6 (c-d) Modularity value achieved by four community clustering algorithm dataset using different

value of α and β on: (c) Harvord76 (d) Vassar85 dataset.

(c)

(d)

115

6.5.2 Information Aggregation Phase

The information aggregation phase aims to build a weighted matrix, named hybrid matrix,

based on the knowledge learned from the parameter learning phase. These weighted attributes

w, α and β values are used to build a hybrid similarity matrix as defined in equation 6.3. In the

hybrid matrix, the edges that link nodes do not have similar attributes or do not have shared

neighbours, will be punished and assigned with low strength weights; while the edges

connecting similar nodes or having shared neighbours will be assigned with high strength

weights. Also, there are some edges which will be added between the nodes to represent the

attribute and shared neighbour similarity.

6.6 Experimentation and Results

6.6.1 Experimental Setup

In order to assess the effectiveness of the proposed approach to detect communities under an

unreliable network structure, an experimentation has been conducted using four different

Facebook dataset networks when some edges are missing while the node attributes are fully

available. Furthermore, for the sake of evaluation, edges are removed from the network at

random and the number of removed links is increased from zero to half the number of edges in

the network in steps of 5% of network edges.

In each experiment, the performance is computed using the results obtained by applying each

of the four algorithms with and without applying the proposed approach as a pre-processing

step. Each algorithm has been applied more than once on the data and the experimental results

presented are the average of ten simulation runs.

To quantify the performance of the proposed approach, the quality of the obtained community

structures is evaluated based on the modularity, number and size of detected communities.

116

Moreover, for simplification, in the following sections when the proposed approach is

combined with Fast Modularity algorithm (FA) is referred to as Hybrid-FA; when combined

with Louvain algorithm (LA) as Hybrid-LA; when combined with leading eigenvector (LE) as

Hybrid-LE and Hybrid-WA when combined with Walktrap algorithm (WA). Additionally, to

facilitate comparison of results in line charts, the results obtained using the proposed approach

are denoted by dashed line style with “x” marker points.

6.6.2 Experimental Results and Discussion

In this subsection, the effectiveness and efficiency of the algorithm is assessed from two aspects.

One is to evaluate the attribute weighted method proposed in this work along with the

methodology used to set the parameter value. The other aspect is to integrate the proposed

approach with well-known community clustering algorithms and make a comparison of the

results achieved without the integration to show how the proposed approach can be used to

improve the robustness and quality of well-known community clustering algorithms.

6.6.2.1 Evaluation of Attribute Weighting Method

As highlighted in section 6.4, different attributes have different significance for assessing the

similarity between the nodes in the same community clusters, therefore the attribute weighting

method is proposed. In this section, the performance of the proposed attribute weighting

method is experimentally evaluated.

The evaluation is done by checking how well the weight of the attributes obtained by the

weighting method match with the actual important attributes presented in Figure 6.3.

Figure 6.7 shows the attribute weights obtained by the weighting method for the four datasets

under consideration. It is obvious that the attributes have different weight strengths and order

of importance for different datasets. However, looking at the attribute weights of the four data

sets, it is clear that four specific attributes (student, gender, dormitory and year attribute) have

117

the highest weighting values across all four data sets. Anyway, the remaining attributes (high

school and major/minor attribute) do not have strong influence on the community structure,

hence weighted with a very small value, if not dropped, in the attribute weighting stage.

Figure 6.7 Attribute weights for four datasets.

Moreover, the comparison between Figure 6.3 and Figure 6.7 shows that the parameter learning

phase achieves almost the same results in most cases. Whereas, the attribute importance order

is either the same or only slightly different due to small differences in the attribute correlation.

For example in Caltech36 dataset, the order of importance attributes are student, gender, year

and house with attribute weight values 0.4695, 0.3102, 0.2195 and 0.2193 respectively. In

comparison to Figure 6.3 and for the case of the fast modularity algorithm as an example, the

order is changed to student, gender, house and year attribute, achieving Jaccard index values

of 0.2772, 0.2412, 0.1746 and 0.1239 respectively.

Furthermore, to evaluate the performance of the proposed weighting method in handling noisy

data, Figure 6.8 shows the values of attribute weight for the four largest weighted attributes

obtained by the weighting method when the percentage of removed edges varied from 0 to 50%.

From the figure, it is worth noting that the ordering of weights is remarkably stable and the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Student/

faculty

Gender Major Second

major/ minor

 Dormitory

(house)

 Year High school

w
ei

g
h
t

(W
)

Attribute

Caltech36 Reed98 Haverford76 Vassar85

118

attribute weighting method shows an effective performance by getting rid of the noisy datasets

and correctly weights attributes according to their importance.

Figure 6.8 Robustness of weighting method to the edge removal.

To further assess the parameters analysis phase, the number of initial clusters identified at local

clustering stage along with the value of α via percent of removed edges for four datasets are

reported in Table 6.1.

The results in the Table 6.1 indicate that the noise has no significant influence on the value of

α. In other words, the method used to define α value (see equation 6.11) is somewhat stable. In

addition, it is clear that local crusting tends to partition data to a larger number of initial clusters.

Considering Reed98 dataset for example, when the missing edges varied from 0% to 50%, the

values of α and the number of obtained initial clusters were {0.8084, 382} and {0.8231, 446}

respectively.

119

It is also worth noting from Table 6.1 that the value of α is not related to the number of initial

clusters found by the local clustering stage. In some cases, higher value of α is obtained when

more initial clusters are found. For others however, the value of α increases when fewer initial

clusters are found. Considering Reed98 dataset, for instance, when the missing edges increased

from 15% to 20%, both α value and the number of initial clusters increased from {0.8139, 399}

to {0.8162, 405} respectively. On the other hand and for the same dataset, when the missing

edges increased from 5% to 10% the value of α increased from 0.8123 to 0.8130 meanwhile

the number of initial clusters decreased by 3. However, the value of α for the four considered

datasets is always higher than 0.75. This value is in agreement with what was observed in

section 6.5.1.2, where the connectivity information contains more useful information than the

shared neighbours or attribute information (α ≥ 0.5) and to get high modularity the value of α

should be higher than 0.7.

Overall, the results clearly demonstrate that the parameter learning method has the ability to

extract essential and informative attributes and to weight them to reflect the relative importance

of attribute in community clustering tasks.

Table 6.1 Results for four dataset

Dataset Caltech36 Reed98 Haverford76 Vassar85

%Missing

edges

Number

of initial

clusters

α

Number of

initial

clusters

α

Number of

initial

clusters

α

Number of

initial

clusters

α

0 384 0.8127 382 0.8084 412 0.7792 824 0.7673

5 381 0.8156 392 0.8123 427 0.7811 835 0.7671

10 392 0.8177 389 0.8130 436 0.7822 844 0.7684

15 388 0.8161 399 0.8139 419 0.7823 873 0.7694

20 392 0.8161 405 0.8162 443 0.7827 898 0.7709

25 391 0.8159 397 0.8153 463 0.7827 921 0.7712

30 390 0.8156 409 0.8170 467 0.7843 927 0.7722

35 394 0.8168 402 0.8180 476 0.7834 948 0.7731

40 398 0.8152 418 0.8193 489 0.7861 953 0.7738

45 390 0.8171 432 0.8241 487 0.7879 1003 0.7763

50 387 0.8110 446 0.8231 514 0.7884 1036 0.7784

120

6.6.2.2 Model Performance

In this subsection, using the optimal parameters determined using the parameter-learning phase

(as discussed in section 6.5.1), the performance of the pre-processing approach is evaluated.

6.6.2.2.1 Number of Community Clusters

Since the number of communities in the networks is unspecified, the algorithms try to

automatically detect the most appropriate number of communities by maximizing the

modularity.

The variation in number of community clusters when different numbers of edges are removed

is given in Figure 6.9. It is observed that the conventional algorithms are adversely affected by

noise so fail to account for appropriate community structures. Moreover, most cases result in

an increasing number of communities with an increasing % of missing edges. The only

exception is the LEA algorithm, which results in almost the same number of communities even

without applying the pre-processing approach.

Considering Caltech36 dataset, for example, increasing proportions of edges are randomly

removed from the network (from 0% to 50%), the number of communities detected by all

conventional algorithms are changed from {10,10,12,72} to {39,39,10,104} for {FA, LA, LEA,

WA} algorithms respectively. Such behaviour can be explained by the fact that the

conventional algorithms consider only topology information. On the other hand, the proposed

approach considers attribute, shared neighbours and connectivity information. Since the nodes

in the same community usually are not just highly connected but also have similar attributes

and transitivity coefficient, the proposed approach uses attribute information to make up for

the missing link information and to identify the community membership. Consequently,

integrating the proposed approach with a conventional algorithm is more advantageous for

121

discovering the most appropriate number of community structures than using the conventional

algorithm on its own.

Figure 6.9 Number of community clusters for: (a) Caltech36 university dataset, (b) Reed98 university dataset

(c) Haverford76 university dataset, (d) Vassar85 dataset.

Walktrap algorithm when run on the dataset on its own failed to detect the appropriate number

of communities, and compared to the other algorithms the number of communities returned by

Walktrap are extremely high for all considered datasets. However, applying the proposed

approach as a pre-processing step to build the hybrid similarity matrix before applying the

Walktrap community detection algorithm has significantly improved the performance to obtain

just 8 clusters.

Furthermore, when the percentage of removed edges is increased from 0% to 50%, the number

of clusters formed using the proposed approach is more similar to the original partition network

when there is no noise applied. For example in the case of Caltech36 dataset when 50% of

122

edges are missing, the number of obtained communities are {8,8,4} for {Hybrid-FA, Hybrid-

LA, Hybrid LEA, Hybrid-WA} algorithms respectively. This demonstrates that the proposed

approach has the capability to extract relevant information from highly noisy datasets and make

these algorithms quite robust to edge removal. The complete tables showing the cluster

performance for four datasets are included in appendix A.3.

To take a closer look at the sensitivity of obtained communities to the noise, the average size

of the obtained communities, when percentage of removed edges is increased from 0% to 50%,

is investigated and shown in Figure 6.10.

Figure 6.10 Average Community size for: (a) Caltech36 university dataset, (b) Reed98 university dataset (c)

Haverford76 university dataset, (d) Vassar85 dataset.

Considering Vasser85 dataset, for example, increasing proportions of edges are randomly

removed from network (from 0% to 50%), the average community size detected by all

conventional algorithms dropped from {614, 511, 438, 51} to {94, 95, 583,28} for {FA,

123

LA,LEA, WA} algorithms respectively. In contrast, combining the proposed pre-processing

approach with the community-clustering algorithms considered in this work results in

community clusters with almost constant average size. This effect comes from the fact that

since the conventional community identification is based only on the adjacency matrix, the

number of community clusters obtained are heavily dependent on the number of links in the

network, so as the percentage of missing edges increases, the clustering algorithm becomes

less stable and the clusters become smaller. In contrast, this is not the case for the hybrid

similarity matrix, which is based on different considerations (attribute information, shared

neighbours information and connectivity between nodes in the network).

6.6.2.2.2 Modularity

Regarding the quality of community clusters, the modularity metric is used as a scoring

function to assess the quality of detected community clusters with and without applying the

proposed pre-processing phase. Figure 6.11 shows the averaged Q values, plotted for each

community detection algorithm. As shown in this figure, in most cases using the proposed pre-

processing approach has resulted in a slightly lower modularity than the conventional

community detection methods. However, the difference is negligible and the results suggest

that the proposed approach is a promising and powerful tool to assist in the fine tuning of

different sources of information in community clustering area.

Moreover, the comparison between Figure 6.9, Figure 6.10 and Figure 6.11 shows that while

the approach achieves a good modularity quality that is comparable with the conventional

methods, the approach is significantly more effective in terms of both number and size of

communities detected where the network structure is found to have some unreliable or missing

information.

124

Figure 6.11 Modularity index vis missing edges for: (a) Caltech36 university dataset, (b) Reed98 university

dataset (c) Haverford76 university dataset, (d) Vassar85 dataset.

It is worth noting that in the present context, using community clusters matching (e.g. NMI) to

evaluate the quality of proposed approach might be particularly problematic, as the ground

truth structures of four considered networks are not provided and both numbers and sizes of

the obtained community clusters are not the same across the different community clustering

algorithms. The exact values of results presented in this chapter are included as tables in

appendix A.3.

6.7 Summary

In this chapter, a pre-processing approach that makes use of attribute information, shared

neighbours and connectivity information aspects of the network to build a hybrid similarity

matrix is proposed. Because the attributes in a network usually do not play equally important

roles in clustering tasks, the proposed approach assigns a weighting value to each attribute

125

during the process of building Hybrid similarity matrix to reflect the relative importance of

each attribute.

Besides the attribute weighting parameter, the approach required the specification of two more

parameters α and β, these control the degree of contribution of connectivity information,

attribute similarity and shared neighbours information for a good balance between them. The

sensitivity of the pre-processing approach to α and β parameters is analysed. Also, a simple but

effective model for determining attribute weighting value, α and β values of the approach to

achieve an optimal result is provided.

In this work, a Jaccard similarity coefficient is used to denote attribute similarity between nodes.

The proposed approach is tested in conjunction with four state-of-the-art algorithms (Fast

Modularity algorithm, Louvain, leading eigenvector and Walktrap algorithm) popular in the

literature by applying to four real-life Facebook data networks. The experimental results clearly

demonstrate that the approach has the ability to incorporate attribute, structure and shared

neighbours’ information into meaningful information used to build a hybrid similarity matrix.

Besides, the community clustering algorithms employed on the hybrid similarity matrix pre-

processed by the proposed approach have shown a better effectiveness and robustness over

noisy networks than the state-of-the-art algorithms without applying the pre-processing

approach.

The approach proposed here could be used as well in conjunction with other community

clustering algorithms and with other data sets.

126

CHAPTER 7

A CASE STUDY IN TELECOMMUNICATION

INDUSTRY OF SMARTPHONE USAGE.

In this chapter, a set of real-life android smartphone usage data has been skimmed and the

different features of real-life Android smartphone usage are presented. With these results,

community clustering and data mining techniques will be carried out as future work in order to

develop a more profound understanding of the telecom network usage and users’ characteristics.

This chapter is published in the proceedings of the 17th International Conference on Computer

Systems and Technologies 2016, Palermo, Italy (pp. 81-88), ACM.

7.1 Introduction

Nowadays, the majority of people have a smartphone within a few feet of them at all times.

According to the report from eMarketer, it appraises that that there are 4.30 billion Smartphone

customers worldwide in 2016. EMarketer estimates that the number of smartphone users

worldwide will surpass 4.78 billion in 2020 (eMarketer, November 23, 2016).

In the past, mobile phones were mostly about making phone calls. Now smart phones offer so

much more. They can run games and programs; support access to the internet, watching TV,

send and receive email and much more. Even though a smartphone is a ubiquitous device, it is

not yet well understood what people actually do with their smart phones. How often do they

use them to make calls or surf the internet? How many text messages are sent/received over

the day?

The information gained from these kinds of studies and analyses is vitally important for

smartphone manufacturers, mobile operators and governments. It could be used by mobile

The material originally presented here (Chapter 7) cannot be made freely available via

LJMU E-Theses Collection because of copyright. The material was published at 7th

International Conference on Computer Systems and Technologies 2016, Palermo, Italy

(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

https://dl.acm.org/citation.cfm?id=2983496

127

operators for mapping busy traffic hours and ensuring sufficient total capacity is made available

and that an acceptable quality of service is offered to customers during periods of peak

consumption. In addition, it could be used to plan for the marketing strategies and for future

directions of phone companies and telecom network providers. Furthermore, it could be used

to help governments and enterprises to predict and plan proactive actions to improve the quality

of life in smart cities.

In this work, the behaviour of smartphone users around the world has been analysed, based on

massive real-life data (about 3.3 Terabytes) from smartphone users collected by the University

of Cambridge.

7.2 Related Literature

The ability to better understand how people use their mobile phones is not new and there is a

rich history of work to understand and enhance our understanding of mobile phone usage

patterns. However, the existing works could be generally categorised into either standard

ethnographic and user studies, based on questionnaires, diaries and self-report, or studies based

on automatic recording and subsequent analysis of phone activity logs (Do, Blom and Gatica-

Perez, 2011). In the first category, Reid and Reid (2004) study the differences of call and SMS

usage preference using an online questionnaire which involved 982 users. Grinter and Eldridge

(2001) investigate how British teenagers incorporate text messaging into their daily lives. They

collected data by asking the teenagers involved in a study to manually log their texting activity

for seven consecutive days. In a more recent example, Barkhuus and Polichar (2011) study

how users integrate multifunctional mobile phones into their everyday lives. The study was

based on interviews and daily diaries and involved 21 users over 3 weeks. The article was done

by Mutchler, Shim and Ormond (2011) and shows another recent work based on data collection

The material originally presented here (Chapter 7) cannot be made freely available via

LJMU E-Theses Collection because of copyright. The material was published at 7th

International Conference on Computer Systems and Technologies 2016, Palermo, Italy

(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

https://dl.acm.org/citation.cfm?id=2983496

128

from interviews to explore the factors that motivate college students in the U.S to use

smartphones.

However, the study results discussed above have their limitations. Also no justifiable

conclusion can be derived from their results as the studies were conducted on a small number

of subjects. Thus, the ability to collect and record mobile phone usage automatically on a large

scale is needed where longitudinal analyses of phone application logs is collected by combining

automatic collection of smartphone data and human-centric data analysis (Do, Blom and

Gatica-Perez, 2011). According to the results of studies carried by Parslow, Hepworth and

McKinney (2003) over 93 volunteers were asked to report on the number of their call activities

during different periods of time (day, week, or month) and their responses were then compared

to log data collected from the mobile phone operators. There was only a moderate correlation

between log data and self-reporting, indicating that self-reporting measures do not fully

represent actual usage patterns.

Verkasalo and Hämmäinen (2007) use data collected by Symbian-based monitoring to present

a study of voice calls, SMS, email and Bluetooth messages usage based on a population of 562

subscribers, during seven months. Another study was done on a larger scale, based on the data

collected from 180,000 smartphone users on the Android platform during a period of one month,

to analyse the user behaviour trends across cellular networks in domestic and roaming scenarios

and through WI-FI based access (Wehmeier, 2012). Shye et al. present in (Shye et al, 2010) a

comprehensive analysis of real smartphone usage involving 25 subscribers during a 6-month

study of real user activity on the android smartphone. The study covers general usage behaviour,

power consumption interaction with the battery and network activity. Another study (Rahmati

and Zhong, 2013) uses logging software that runs in the background to perform a four-month

field study of usage of 14 smartphones and reported what applications were used, and how the

phones were used. Xu et al (2011) present summaries of their analysis based on anonymised

The material originally presented here (Chapter 7) cannot be made freely available via

LJMU E-Theses Collection because of copyright. The material was published at 7th

International Conference on Computer Systems and Technologies 2016, Palermo, Italy

(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

https://dl.acm.org/citation.cfm?id=2983496

129

datasets from a tier-1 cellular network provider in the U.S. over a week of how, where, and

when smartphone apps are used from spatial, temporal, and user perspectives and attempt to

understand the impact of location, time, user, and app interest accordingly.

Other existing researches (Falaki et al, 2010),(Xavier et al, 2012) have addressed specific

aspects of mobile phone design, such as mobility, to enhance user experience under mobility,

phone application such as statistics of popular apps and the impact of user activities on the

network. However, studies that have been carried out are still unable to gain adequate

understanding of the behaviour of smart phone usage. Furthermore, most of the previous

studies focused on the usage of specific countries and within a limited period of time and

number of users, so the overall picture of smartphone usage is still inadequate.

7.3 Proposed Methodology

In this section, a description and characterisation methodology of the real-life smartphone

dataset is presented.

7.3.1 Datasets

The dataset used in this work is approximately 3.3 terabytes containing over 100 billion records

of android smartphone usage from over 17,000 devices across the globe collected over almost

three years between December 2010 and January 2014. This data has been collected by

university of Cambridge using Device Analyzer. The Device Analyzer application is

distributed as a free application on Google Play and registers with the operating system to

receive notifications when various events occur on the handset. Device Analyzer performs

rigorous, automatic collection and does not become impaired after a while of recording. The

recorded data is uploaded periodically to the server at the University of Cambridge. The

collected data contains information about when the users make phone calls, send or receive

The material originally presented here (Chapter 7) cannot be made freely available via

LJMU E-Theses Collection because of copyright. The material was published at 7th

International Conference on Computer Systems and Technologies 2016, Palermo, Italy

(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

https://dl.acm.org/citation.cfm?id=2983496

130

texts, when they turn on/off the phone or charge it, which applications they use and so much

more.

The dataset is in comma separated values (CSV) formatted with 5 fields. The data files contain

one data point per line. Each field in a data point is separated by a semi-colon ';'. The fields

included are: line number in file; time in milliseconds; key; value. In Cambridge (2014) there

are more details about Devise Analyzer, datasets format and keys.

7.3.2 Characterisation Methodology

The characterisation methodology proposed in this work is designed with the purpose of

answering two main questions (I) what could the data tell us about patterns of calls, text

messaging and data traffic during the day and week? (II) is there any difference in smartphone

usage between users living in different geographical locations (i.e. across time zones)?

As can be seen clearly from Figure 7.1 the first step towards answering the aforementioned

questions is to extract data variables such as call details, text messaging and mobile internet

data from our 3.3-terabyte csv files. A software program code written using C++ has been used

to filter out the desired dataset. The filtered dataset is then cleaned, transformed and stored in

csv files and then loaded into the Matlab program for the purpose of data mining to find out

interesting patterns.

In the real world, data is always accompanied by errors (or issues) related to incompleteness,

noise or inconsistency, which would be handled in the data cleaning process. Data may be

missing because of missing collection or duplicate records. Noisy data refers to data with

random error or variance in a measured variable (Sumathi and Esakkirajan, 2007). However,

the quality of data can affect the application of the data mining process. In this work, in order

to arrive at accurate results, data cleaning has been performed as described here. First, the calls

and SMS data that have missing time or date stamps are removed. Secondly, mobile internet

The material originally presented here (Chapter 7) cannot be made freely available via

LJMU E-Theses Collection because of copyright. The material was published at 7th

International Conference on Computer Systems and Technologies 2016, Palermo, Italy

(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

https://dl.acm.org/citation.cfm?id=2983496

131

data that have either missing date details or missing value for the field ‘transmission/received

data’ are ignored. The next step after cleaning the dataset is to transform the data to be ready

for further analysis and mining. The cleaned data now has valid values for the fields ‘call times’

and ‘date time zones’ and the ‘key’ (calls, text messaging and mobile internet data). Therefore,

the main goal of data transformation is to process the data and sort it according to the days

(Monday, Thursday … and Saturday) of the week and time zones. The data mining stage

involves subjecting the cleaned data to analysis by Matlab software in an attempt to identify

some hidden patterns.

Figure 7.1 Data mining process

7.4 Results, Analysis and Discussion

This section presents the results of the analysis of smartphone usage patterns, including call

volume distributions, text messaging activities, and mobile data usage as a function of time of

the day, day of the week and time zone (or geographical location).

7.4.1 Calls via Time

Figure 7.2 presents the pattern of calls made throughout the hours of the day. It shows that a

total of 2,670,409 calls have been made over the three year period, across the world. These

calls have interesting peaks at 11:00 and 17:00. The number of calls remains fairly steady

during the middle of the day. The number of calls is very low in the early morning and they are

increasing during working hours, reaching the maximum value at 17:00 hours and start

declining afterwards.

Figure 7.2 Number of calls via hours of day

The material originally presented here (Chapter 7) cannot be made freely available via

LJMU E-Theses Collection because of copyright. The material was published at 7th

International Conference on Computer Systems and Technologies 2016, Palermo, Italy

(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

https://dl.acm.org/citation.cfm?id=2983496

132

7.4.2 Text Messaging via Time

An analysis of text messaging is shown in Figure 7.3. As an overview, most of the text

messages are received and made after mid-day and late evening (from 12:00 noon to 22:00

hours) and approximately 66.69% of total text messages are received and 68.34% of total text

messages are sent during this time. Comparing with Figure 7.2, unlike the voice calls, the

number of text messages has interesting peaks late in the evening between 18:00 and 21:00

hours. It would appear that people generally like to use text messaging rather than telephone

calls during the night.

Figure 7.3 Number of text messages as a function of time of day

7.4.3 Mobile Data Traffic Distribution via Time

Figure 7.4 shows the amount of downlink mobile data traffic (from the network to the

smartphone) and uplink mobile data traffic (from the smartphone to the network) in Terabytes.

As an overview, the most significant feature is that downlink data traffic is almost six times

more than the uplink traffic. Surprisingly, the amount of mobile data traffic is fairly constant

during the hours of the day. However, the internet usage peaks around 22:00 hours.

Figure 7.4 Mobile data traffic as a function of time of day

7.4.4 Percentage of Calls, Text Messaging and Mobile Data Traffic

Over the Days of Week

An interesting feature to be noticed is that the traffic data patterns are quite the same throughout

the week. Meanwhile, the percentage of both calls made and messages exchanged during the

weekends are lower than working days. Furthermore, during the working day use of texting

message is the secondary use of smartphone after calling. The percentage of total calls has a

peak value on Friday with 16.15%. By comparison, during the weekends mobile data traffic

The material originally presented here (Chapter 7) cannot be made freely available via

LJMU E-Theses Collection because of copyright. The material was published at 7th

International Conference on Computer Systems and Technologies 2016, Palermo, Italy

(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

https://dl.acm.org/citation.cfm?id=2983496

133

activity is the most used in smartphones. On Sunday the percentage of calls made is

approximately 9.27% whereas, about 12.44% and 13.84% of total messages and mobile data

exchange happen respectively.

Figure 7.5 Percentage of calls, text messaging and mobile data traffic via days of week

7.4.5 Percentage of Calls, Text Messaging and Mobile Data Traffic via

Different Time Zones

To get a more in depth understanding of smartphone usage, the dataset has been clustered based

on time zone. Figure 7.6 displays the smartphone usage by different time zones. It shows that

there is a wide variation of smartphone usage among users in different time zones caused likely

by the diversity in tariffs/service rates. For instance, users located between time zones +2 and

+8 region have used their smartphones to make calls more than any other phone activities. For

example, almost 20.89% of total calls are made by the users in time zone +2. Whereas, 12.6%

of total text messaging and 18.3% total mobile data traffic is made by users in the same region.

The users in region between time zones -6 and -4 have used their smartphones to text more

than any other activities. On the other hand, smartphone users in time zones -7, +1 and from

+9 to +12 are using mobile data traffic activity more than making calls or texting message.

However, an interesting observation is that in time zone 0, texting is as common a mobile

activity as talking and data traffic activity.

Figure 7.6 Percentage of calls, text messaging and mobile data traffic via different time zones

7.5 Summary

Calling people, sending messages, receiving emails, sharing pictures and videos, are all now

part of everyday life for many and this could all be achieved easily by just using one tool: a

smartphone. In fact, it was not very long ago that the only function of phones was just calling

The material originally presented here (Chapter 7) cannot be made freely available via

LJMU E-Theses Collection because of copyright. The material was published at 7th

International Conference on Computer Systems and Technologies 2016, Palermo, Italy

(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

https://dl.acm.org/citation.cfm?id=2983496

134

people. The purpose of this chapter has been to gain a deeper understanding of the behaviour

of users in using their Smartphone. However, analysis of the real smartphone data reveals that

there are significant differences in type of usage of smartphone during the day. The peak time

period for making calls is between 11:00 and 17:00 hours. In contrast, between 16:00 and 21:00

hours are the peak time periods for text messaging and 22:00 hours for using mobile data.

Regardless of the location of the users, there are usage variations between weekends and

working days, in the working days text messaging is the secondary use activity of smartphones

after making calls. On the other hand, during the weekend after mobile data, text messaging is

still the second most popular activity. The lower usage rate of calls at weekend indicates that

people use their phone for making business calls more than social calls. The study also finds

that there is no significant difference between mobile data traffic at weekends and during

working days. As far as the location of users is concerned, there is a variation of the most

popular mobile usage activity among the different time zones. This could be clarified by the

fact that Smartphones depend on high-speed data access, which is usually limited to big cities

and areas with larger population densities, so people who live in countryside areas or

developing countries are provided only a portion of the benefits afforded by smartphones.

The material originally presented here (Chapter 7) cannot be made freely available via

LJMU E-Theses Collection because of copyright. The material was published at 7th

International Conference on Computer Systems and Technologies 2016, Palermo, Italy

(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

https://dl.acm.org/citation.cfm?id=2983496

135

The material originally presented here (Chapter 7) cannot be made freely available via

LJMU E-Theses Collection because of copyright. The material was published at 7th

International Conference on Computer Systems and Technologies 2016, Palermo, Italy

(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

https://dl.acm.org/citation.cfm?id=2983496

136

The material originally presented here (Chapter 7) cannot be made freely available via

LJMU E-Theses Collection because of copyright. The material was published at 7th

International Conference on Computer Systems and Technologies 2016, Palermo, Italy

(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

https://dl.acm.org/citation.cfm?id=2983496

137

CHAPTER 8

CONCLUSION AND FUTURE WORK

This chapter concludes the research activities within this thesis. The first section summarises

the original contribution and the main findings of the thesis. In the second section, the

limitations of the work are discussed, and a number of further research directions that have

been opened up by this thesis are presented.

8.1 Summary of Contributions

Many systems in the world can be represented as models of complex networks which are

structures consisting of nodes or vertices connected by links or edges. Detecting and

characterizing such community structures is one of the fundamental topics in network systems’

analysis and it has many important applications in different branches of science including

computer science, physics, mathematics and biology ranging from visualization, exploratory

and data mining to building prediction models.

In this thesis, the major focus is given to the community analysis in networks which has been

one of the active research topics for quite some time. However, based on a substantial

background and literature review presented in chapter 2 and the properties of real-world

networks presented in chapter 3, I argue that current community clustering techniques are no

longer able to deal with the large real-world networks as the network size has increased beyond

the capabilities of a single machine.

Hence, the focus in chapter 4 and 5 has been given to design the community clustering

approaches to be able to handle massive datasets by efficiently utilizing the computing

resources in a parallel processing topology. Following this, I propose an approach that uses

both structural and attribute information to extract communities. Finally, I have studied the

138

real-world community structure of a large telecom dataset network. In the following, I

summarize the contributions for each technical chapter (chapter 4, 5, 6 and 7) separately.

Chapter 4:

In chapter 4, a novel Decentralized Iterative Community Clustering Approach (DICCA) to

extract an efficient community structure for large networks is presented. An important property

of this approach is its ability to cluster the entire network without the global knowledge of the

network topology. This ability means that the entire network does not need to be loaded into a

single memory, and DICCA could be easily adapted to run in parallel on as many processors

as available to find community clusters in big networks. This cannot be done in the majority of

existing community detection algorithms that implicitly assume that the entire structure of the

network is known and is available.

The DICCA approach is based on the random walk procedure and reachability of nodes in the

network. The approach is run in an iterative fashion and uses two parameters, named threshold

value and time to live (TTL). The question about what value of TTL to choose is discussed in

this chapter along with the mathematical model to obtain optimal threshold value. Furthermore,

the obtained results support the conclusion that the community clusters found by DICCA are

meaningful and very close to the ground truth solution.

Chapter 5:

In chapter 5, a parallel decentralized iterative community clustering approach (PDICCA),

which does not require any global knowledge of the graph topology is proposed. PDICCA is

a distributed memory parallel processing approach that transforms the serial steps of the

DICCA approach into parallelised tasks. It is scalable and will work with a range of computer

architecture platforms (e.g. cluster of PCs, multi-core distributed memory servers, GPUs). The

core idea of PDICCA is to split the data into blocks and cluster each block in a separate worker.

139

Then, the clusters extracted from blocks are aggregated at the final stage using re-clustering

phase. PDICCA provides several features simultaneously; the PDICCA does not need to store

the whole dataset in the one main memory so it is suitable for systems with limited memory

and works well for massive datasets. Furthermore, PDICCA optimally utilizes the hardware

capabilities of the parallel processors and minimizes the communication between workers

during processing to reduce the bandwidth, memory and storage cost. Experimental results on

a 4-core computer demonstrate that the proposed approach is quite effective, provides a

consistent performance over time and has a great scaling characteristic without any noticeable

loss in the performance.

Chapter 6:

Another problem in practical applications is that the network is usually noisy and imperfect

with missing and false edges. These imperfections are often difficult to eliminate and highly

affect the quality and accuracy of conventional methods that are used to find the community

structure in the network. In this work, the pre-processing approach proposed in chapter 6 has

the ability to incorporate attribute information, shared neighbours and connectivity information

aspects of the network to build a hybrid similarity matrix. The matrix is built by assigning

weights to the edges according to the strength of the connectivity, attribute similarity and

number of shared neighbours. To accurately model, the proposed approach uses two weighting

factors to identify the optimum trade-off between the information sources through a weighted

matrix.

Extensive experiments with real Facebook data sets show that the results obtained by using the

proposed approach in conjunction with the state-of-the-art community clustering algorithms

have been demonstrated to be greatly improved. More specifically, while the approach achieves

a good modularity quality that is comparable with the conventional methods, the approach is

140

significantly more effective in terms of both number and size of the communities detected

where the network structure is found to have some unreliable or missing information.

Chapter 7:

Using a real-life android smartphone usage dataset, the different features of mobile phone

usage is analysed in chapter 7. Furthermore, my plan was to apply the proposed community

detection approaches to the smartphone usage dataset so that I can identify a community of

users that often communicate with each other based on communication information between

users along with other information present in the dataset. The community clustering might

reveal interesting information about users, which then could be used by mobile server providers

to design suitable marketing strategies for each group and thereby enhance business

profitability. However, the fact that different phones pick a different hash for the same phone

number, made it hard to detect the user communities. Thus, a data skimming technique is used

to extract abstract information and trends from the given big dataset.

8.2 Recommendations and Future Works

Many lines of research remain open for future works, such as:

First, although the DICCA and PDICCA approaches for detecting community clusters in large

networks (in chapter 4 and 5 respectively) have been extensively investigated and studied, there

are still some issues that need further investigation. In particular, I intend to extend the studies

and analysis on three specific points:

 Real-world networks often do not contain perfect communities where each node does

not have only one possible clustering and nodes can belong to multiple communities at

once. Identifying such overlapping communities (also known as fuzzy) is crucial for

understanding the structure as well as the function of real-world networks. A further

direction is to extend the DICCA approach to be able to detect such fuzzy communities.

141

 In this work, only the undirected networks have been taken into consideration.

Therefore, I consider the directed network case as an interesting direction for further

research.

 In PDICCA, in order to cluster networks in parallel, these networks need to be

partitioned and distributed across different workers. How to generate and manage

partitions is an important issue. Another interesting guideline for further work is to

propose an effective method to partition the network into sub-networks to optimize the

distribution of the network across a cluster so that clustering approaches can run with

minimal communication effort and at the highest level of parallelism.

Secondly, considering the research line related to the novel pre-processing approach proposed

in chapter 6, the approach has two aspects, which are worth investigating further:

 The proposed pre-processing approach utilizes a similarity function for comparing

attributes. In a wide range of real-life applications, data contains a mixed type of

attributes (e.g. numerical, categorical). Therefore, it is important to use appropriate

similarity metrics to correctly measure the attribute proximity between two nodes in the

network. However, the appropriate choice of the similarity measure depends on the

attribute type of network to study. The natural extension of work in chapter 6 is to use

a more sophisticated approach that supports datasets with mixed attribute types.

 Combining the proposed pre-processing approach with DDICA and PDDICA

approaches (Algorithms proposed in chapter 4 and 5) for identifying more realistic

communities.

Finally, for the smartphone usage dataset, although in chapter 7 of this thesis, data skimming

type of analysis was carried out on real-life big dataset (Device Analyzer) from Cambridge

Laboratories to understand the behavioural patterns of different mobile users, in the future, I

intend to extend the analysis and studies to test the proposed community clustering approaches

142

DICCA/PDICCA on big telecom datasets to extract community clusters and find hidden trends

and behavioural patterns. This could help CSPs improve profitability in many ways:

 Optimizing network routing and quality of service by analysing network traffic in real

time.

 Improving security by analysing call data records in real time to identify fraudulent

behaviour immediately.

 Enhancing customer experience by using insights into customer behaviour and usage

to develop new products and services.

143

REFERENCES

Adamic, L.A. and Glance, N. (2005) The political blogosphere and the 2004 US election:

divided they blog. Proceedings of the 3rd international workshop on Link discoveryof

Conference.

Aggarwal, C.C. and Wang, H. (2010) A survey of clustering algorithms for graph data.

Managing and mining graph data, 275-301.

Aiello, W., Chung, F. and Lu, L. (2000) A random graph model for massive graphs.

Proceedings of the thirty-second annual ACM symposium on Theory of computingof

Conference.

Albert, R., Jeong, H. and Barabási, A.-L. (1999) The diameter of the world wide web. arXiv

preprint cond-mat/9907038.

Almeida, H., Guedes, D., Meira, W. and Zaki, M.J. (2011) Is there a best quality metric for

graph clusters? Joint European Conference on Machine Learning and Knowledge Discovery

in Databasesof Conference.

Amelio, A. and Pizzuti, C. (2014) Overlapping community discovery methods: a survey. In:

(ed.) Social Networks: Analysis and Case Studies. Springer. pp. 105-125.

Amodio, S., D'Ambrosio, A., Iorio, C. and Siciliano, R. (2015) Adjusted Concordance Index,

an extension of the Adjusted Rand index to fuzzy partitions. arXiv preprint

arXiv:1509.00803.

Arias-Castro, E., Pelletier, B. and Pudlo, P. (2012) The normalized graph cut and Cheeger

constant: from discrete to continuous. Advances in Applied Probability, 44 (4), 907-937.

Arif, M. and Basalamah, S. (2012) Similarity-dissimilarity plot for high dimensional data of

different attribute types in biomedical datasets. International Journal of Innovative

Computing, Information and Control, 8 (2), 1275-1297.

Bae, S.-H., Halperin, D., West, J.D., Rosvall, M. and Howe, B. (2017) Scalable and Efficient

Flow-Based Community Detection for Large-Scale Graph Analysis. ACM Transactions on

Knowledge Discovery from Data (TKDD), 11 (3), 32.

Barkhuus, L. and Polichar, V.E. (2011) Empowerment through seamfulness: smart phones in

everyday life. Personal and Ubiquitous Computing, 15 (6), 629-639.

144

Barnes, J. and Hut, P. (1986) A hierarchical O (N log N) force-calculation algorithm. nature,

324 (6096), 446.

Bedi, P. and Sharma, C. (2016) Community detection in social networks. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 6 (3), 115-135.

Behrisch, M., Bach, B., Henry Riche, N., Schreck, T. and Fekete, J.D. (2016) Matrix

reordering methods for table and network visualization. Computer Graphics Forumof

Conference.

Blondel, V.D., Guillaume, J.-L., Lambiotte, R. and Lefebvre, E. (2008) Fast unfolding of

communities in large networks. Journal of statistical mechanics: theory and experiment,

2008 (10), P10008.

Borgatti, S.P., Everett, M.G. and Johnson, J.C. (2013) Analyzing social networks. SAGE

Publications Limited.

Bu, Y., Howe, B., Balazinska, M. and Ernst, M.D. (2010) HaLoop: Efficient iterative data

processing on large clusters. Proceedings of the VLDB Endowment, 3 (1-2), 285-296.

Cambridge, U.o. (2014) Device Analyzer [online]

Available at: http://deviceanalyzer.cl.cam.ac.uk

[Accessed: september]

Canright, G.S. and Engø-Monsen, K. (2008) Introducing network analysis. Telektronikk. v1.

Chen, J., Zaiane, O.R. and Goebel, R. (2009) Detecting communities in large networks by

iterative local expansion. Computational Aspects of Social Networks, 2009. CASON'09.

International Conference onof Conference.

Chen, P.-Y. and Hero, A.O. (2015) Deep community detection. IEEE Transactions on Signal

Processing, 63 (21), 5706-5719.

Choi, S.-S., Cha, S.-H. and Tappert, C.C. (2010) A survey of binary similarity and distance

measures. Journal of Systemics, Cybernetics and Informatics, 8 (1), 43-48.

Clauset, A., Newman, M.E. and Moore, C. (2004) Finding community structure in very large

networks. Physical review E, 70 (6), 066111.

Costa, L.d.F., Rodrigues, F.A., Travieso, G. and Villas Boas, P.R. (2007) Characterization of

complex networks: A survey of measurements. Advances in physics, 56 (1), 167-242.

http://deviceanalyzer.cl.cam.ac.uk/

145

Csardi, G. and Nepusz, T. (2006) The igraph software package for complex network research.

InterJournal, Complex Systems, 1695 (5), 1-9.

Dang, T.A. and Viennet, E. Community detection based on structural and attribute

similarities, 2012 of Conference.

Danon, L., Diaz-Guilera, A., Duch, J. and Arenas, A. (2005) Comparing community structure

identification. Journal of Statistical Mechanics: Theory and Experiment, 2005 (09), P09008.

Davis, J.A. (1970) Clustering and hierarchy in interpersonal relations: Testing two graph

theoretical models on 742 sociomatrices. American Sociological Review, 843-851.

De, D. (2016) Mobile cloud computing: architectures, algorithms and applications. CRC

Press.

Dean, J. and Ghemawat, S. (2008) MapReduce: simplified data processing on large clusters.

Communications of the ACM, 51 (1), 107-113.

Derbeko, P., Dolev, S., Gudes, E. and Sharma, S. (2016) Security and Privacy aspects in

MapReduce on clouds: A survey. Computer Science Review, 20, 1-28.

Do, T.M.T., Blom, J. and Gatica-Perez, D. (2011) Smartphone usage in the wild: a large-

scale analysis of applications and context. Proceedings of the 13th international conference

on multimodal interfacesof Conference.

Doulkeridis, C. and Nørvåg, K. (2014) A survey of large-scale analytical query processing in

MapReduce. The VLDB Journal, 23 (3), 355-380.

Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.-H., Qiu, J. and Fox, G. (2010)

Twister: a runtime for iterative mapreduce. Proceedings of the 19th ACM international

symposium on high performance distributed computingof Conference.

eMarketer (November 23, 2016) eMarketer: Mobile Phone, Smartphone Usage Varies

Globally. [online], eMarketer

Available at: https://www.emarketer.com/Article/Mobile-Phone-Smartphone-Usage-Varies-

Globally/1014738]

Emmons, S., Kobourov, S., Gallant, M. and Börner, K. (2016) Analysis of network clustering

algorithms and cluster quality metrics at scale. PloS one, 11 (7), e0159161.

https://www.emarketer.com/Article/Mobile-Phone-Smartphone-Usage-Varies-Globally/1014738
https://www.emarketer.com/Article/Mobile-Phone-Smartphone-Usage-Varies-Globally/1014738

146

Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R. and Estrin, D. (2010)

Diversity in smartphone usage. Proceedings of the 8th international conference on Mobile

systems, applications, and servicesof Conference.

Faloutsos, M., Faloutsos, P. and Faloutsos, C. (1999) On power-law relationships of the

internet topology. ACM SIGCOMM computer communication reviewof Conference.

Fernández, A., del Río, S., López, V., Bawakid, A., del Jesus, M.J., Benítez, J.M. and

Herrera, F. (2014) Big Data with Cloud Computing: an insight on the computing

environment, MapReduce, and programming frameworks. Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, 4 (5), 380-409.

Fortunato, S. Benchmark graphs for testing community detection algorithms [online]

Available at: www.santo.fortunato.googlepages.com/benchmark.tgz

Fortunato, S. (2010) Community detection in graphs. Physics reports, 486 (3), 75-174.

Fortunato, S. and Barthélemy, M. (2007) Resolution limit in community detection.

Proceedings of the National Academy of Sciences, 104 (1), 36-41.

Gehweiler, J. and Meyerhenke, H. (2010) A distributed diffusive heuristic for clustering a

virtual P2P supercomputer. Parallel & Distributed Processing, Workshops and Phd Forum

(IPDPSW), 2010 IEEE International Symposium onof Conference.

Ghoniem, M., Fekete, J.-D. and Castagliola, P. (2004) A comparison of the readability of

graphs using node-link and matrix-based representations. Information Visualization, 2004.

INFOVIS 2004. IEEE Symposium onof Conference.

Girvan, M. and Newman, M.E. (2002) Community structure in social and biological

networks. Proceedings of the national academy of sciences, 99 (12), 7821-7826.

Grinter, R.E. and Eldridge, M.A. (2001) y do tngrs luv 2 txt msg? ECSCW 2001of

Conference.

Hadoop, A. (2016) Welcome to apache hadoop.

Herman, I., Melançon, G. and Marshall, M.S. (2000) Graph visualization and navigation in

information visualization: A survey. IEEE Transactions on visualization and computer

graphics, 6 (1), 24-43.

www.santo.fortunato.googlepages.com/benchmark.tgz

147

Hu, H., Wen, Y., Chua, T.-S. and Li, X. (2014) Toward scalable systems for big data

analytics: A technology tutorial. IEEE access, 2, 652-687.

Hu, Y. (2005) Efficient, high-quality force-directed graph drawing. Mathematica Journal, 10

(1), 37-71.

Hubert, L. and Arabie, P. (1985) Comparing partitions. Journal of classification, 2 (1), 193-

218.

Huijuan, Z. and Shixuan, S. (2013) A Graph Clustering algorithm based on shared neighbors

and connectivity. Computer Science & Education (ICCSE), 2013 8th International

Conference onof Conference.

Jackson, M.O. (2010) An overview of social networks and economic applications. The

handbook of social economics, 1, 511-585.

Jacomy, M., Venturini, T., Heymann, S. and Bastian, M. (2014) ForceAtlas2, a continuous

graph layout algorithm for handy network visualization designed for the Gephi software.

PloS one, 9 (6), e98679.

Jain, A.K., Murty, M.N. and Flynn, P.J. (1999) Data clustering: a review. ACM computing

surveys (CSUR), 31 (3), 264-323.

Kajdanowicz, T., Kazienko, P. and Indyk, W. (2014) Parallel processing of large graphs.

Future Generation Computer Systems, 32, 324-337.

Kang, U., Lee, J.-Y., Koutra, D. and Faloutsos, C. (2014) Net-ray: Visualizing and mining

billion-scale graphs. Pacific-Asia Conference on Knowledge Discovery and Data Miningof

Conference.

Kannan, R., Vempala, S. and Vetta, A. (2004) On clusterings: Good, bad and spectral.

Journal of the ACM (JACM), 51 (3), 497-515.

Khatoon, M. and Banu, W.A. (2015) A survey on community detection methods in social

networks. International Journal of Education and Management Engineering (IJEME), 5 (1),

8.

Labatut, V. (2015) Generalised measures for the evaluation of community detection methods.

International Journal of Social Network Mining, 2 (1), 44-63.

Lancichinetti, A., Fortunato, S. and Radicchi, F. (2008) Benchmark graphs for testing

community detection algorithms. Physical review E, 78 (4), 046110.

148

Leskovec, J., Lang, K.J. and Mahoney, M. (2010) Empirical comparison of algorithms for

network community detection. Proceedings of the 19th international conference on World

wide webof Conference.

Li, R., Guo, W., Guo, K. and Qiu, Q. (2015) Parallel multi-label propagation for overlapping

community detection in large-scale networks. International Workshop on Multi-disciplinary

Trends in Artificial Intelligenceof Conference.

Lin, W., Kong, X., Yu, P.S., Wu, Q., Jia, Y. and Li, C. (2012) Community detection in

incomplete information networks. Proceedings of the 21st international conference on World

Wide Webof Conference.

Liu, X. (2012) A survey on clustering routing protocols in wireless sensor networks. sensors,

12 (8), 11113-11153.

Louch, H. (2000) Personal network integration: transitivity and homophily in strong-tie

relations. Social networks, 22 (1), 45-64.

Mahata, D. and Patra, C. (2016) Detecting and analyzing invariant groups in complex

networks. In: (ed.) Computational Intelligence in Data Mining—Volume 1. Springer. pp. 85-

93.

Malliaros, F.D. and Vazirgiannis, M. (2013) Clustering and community detection in directed

networks: A survey. Physics Reports, 533 (4), 95-142.

Martin, S., Brown, W.M., Klavans, R. and Boyack, K.W. (2011) OpenOrd: an open-source

toolbox for large graph layout. Visualization and Data Analysis 2011of Conference.

MATLAB (Release 2017a) Parallel Computing Toolbox, The MathWorks. Inc., Natick,

Massachusetts, United State

 [online],

Available at: https://uk.mathworks.com/products/parallel-computing.html?s_tid=srchtitle]

McPherson, M., Smith-Lovin, L. and Cook, J.M. (2001) Birds of a feather: Homophily in

social networks. Annual review of sociology, 27 (1), 415-444.

Moghaddam, S., Helmy, A., Ranka, S. and Somaiya, M. (2010) Data-driven co-clustering

model of internet usage in large mobile societies. Proceedings of the 13th ACM international

conference on Modeling, analysis, and simulation of wireless and mobile systemsof

Conference.

Mohebi, A., Aghabozorgi, S., Ying Wah, T., Herawan, T. and Yahyapour, R. (2016) Iterative

big data clustering algorithms: a review. Software: Practice and Experience, 46 (1), 107-129.

https://uk.mathworks.com/products/parallel-computing.html?s_tid=srchtitle

149

Mutchler, L.A., Shim, J. and Ormond, D. (2011) Exploratory Study on Users' Behavior:

Smartphone Usage. AMCISof Conference.

Newman, M. (2010) Networks: an introduction. Oxford university press.

Newman, M. (2016) Community detection in networks: Modularity optimization and

maximum likelihood are equivalent. arXiv preprint arXiv:1606.02319.

Newman, M.E. (2001) Scientific collaboration networks. I. Network construction and

fundamental results. Physical review E, 64 (1), 016131.

Newman, M.E. (2003) The structure and function of complex networks. SIAM review, 45 (2),

167-256.

Newman, M.E. (2004a) Detecting community structure in networks. The European Physical

Journal B-Condensed Matter and Complex Systems, 38 (2), 321-330.

Newman, M.E. (2004b) Fast algorithm for detecting community structure in networks.

Physical review E, 69 (6), 066133.

Newman, M.E. (2006a) Finding community structure in networks using the eigenvectors of

matrices. Physical review E, 74 (3), 036104.

Newman, M.E. (2006b) Modularity and community structure in networks. Proceedings of the

national academy of sciences, 103 (23), 8577-8582.

Newman, M.E. and Girvan, M. (2004) Finding and evaluating community structure in

networks. Physical review E, 69 (2), 026113.

Orman, G.K., Labatut, V. and Cherifi, H. (2011) On accuracy of community structure

discovery algorithms. arXiv preprint arXiv:1112.4134.

Orman, G.K., Labatut, V. and Cherifi, H. (2012) Comparative evaluation of community

detection algorithms: a topological approach. Journal of Statistical Mechanics: Theory and

Experiment, 2012 (08), P08001.

Parslow, R., Hepworth, S. and McKinney, P. (2003) Recall of past use of mobile phone

handsets. Radiation protection dosimetry, 106 (3), 233-240.

Pons, P. and Latapy, M. (2005) Computing communities in large networks using random

walks. International Symposium on Computer and Information Sciencesof Conference.

150

Pons, P. and Latapy, M. (2006) Computing communities in large networks using random

walks. J. Graph Algorithms Appl., 10 (2), 191-218.

Rahimian, F., Payberah, A.H., Girdzijauskas, S., Jelasity, M. and Haridi, S. (2013) Ja-be-ja:

A distributed algorithm for balanced graph partitioning. Self-Adaptive and Self-Organizing

Systems (SASO), 2013 IEEE 7th International Conference onof Conference.

Rahmati, A. and Zhong, L. (2013) Studying smartphone usage: lessons from a four-month

field study. Mobile Computing, IEEE Transactions on, 12 (7), 1417-1427.

Ramaswamy, L., Gedik, B. and Liu, L. (2005) A distributed approach to node clustering in

decentralized peer-to-peer networks. IEEE Transactions on Parallel and Distributed Systems,

16 (9), 814-829.

Rand, W.M. (1971) Objective criteria for the evaluation of clustering methods. Journal of the

American Statistical association, 66 (336), 846-850.

Redner, S. (1998) How popular is your paper? An empirical study of the citation distribution.

The European Physical Journal B-Condensed Matter and Complex Systems, 4 (2), 131-134.

Reid, D. and Reid, F. (2004) Insights into the social and psychological effects of SMS text

messaging.

Rosvall, M. and Bergstrom, C.T. (2008) Maps of random walks on complex networks reveal

community structure. Proceedings of the National Academy of Sciences, 105 (4), 1118-1123.

Ruan, Y., Fuhry, D. and Parthasarathy, S. (2013) Efficient community detection in large

networks using content and links. Proceedings of the 22nd international conference on World

Wide Webof Conference.

Salem, S. and Ozcaglar, C. (2014) Hybrid coexpression link similarity graph clustering for

mining biological modules from multiple gene expression datasets. BioData mining, 7 (1),

16.

Schaeffer, S.E. (2007) Graph clustering. Computer science review, 1 (1), 27-64.

Schank, T. and Wagner, D. Approximating Clustering-Coefficient and Transitivity.

Shah, D. and Zaman, T. (2010) Community detection in networks: The leader-follower

algorithm. arXiv preprint arXiv:1011.0774.

151

Shye, A., Scholbrock, B., Memik, G. and Dinda, P.A. (2010) Characterizing and modeling

user activity on smartphones: summary. ACM SIGMETRICS Performance Evaluation

Reviewof Conference.

Silva, T.C. and Zhao, L. (2016) Machine learning in complex networks. Springer.

Sumathi, S. and Esakkirajan, S. (2007) Fundamentals of relational database management

systems. Springer.

Tomassini, M. (2010) Introduction to graphs and networks. Information Systems Department,

HEC, University of Lausanne, Switzerland.

Traud, A.L., Kelsic, E.D., Mucha, P.J. and Porter, M.A. (2011) Comparing community

structure to characteristics in online collegiate social networks. SIAM review, 53 (3), 526-543.

Traud, A.L., Mucha, P.J. and Porter, M.A. (2012) Social structure of Facebook networks.

Physica A: Statistical Mechanics and its Applications, 391 (16), 4165-4180.

Travers, J. and Milgram, S. (1967) The small world problem. Phychology Today, 1, 61-67.

Travers, J. and Milgram, S. (1969) An experimental study of the small world problem.

Sociometry, 425-443.

Verkasalo, H. and Hämmäinen, H. (2007) A handset-based platform for measuring mobile

service usage. info, 9 (1), 80-96.

Vocaturo, E. and Veltri, P. (2017) On the use of Networks in Biomedicine. Procedia

Computer Science, 110, 498-503.

Von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J.J., Fekete, J.D.

and Fellner, D.W. (2011) Visual analysis of large graphs: state‐of‐the‐art and future

research challenges. Computer graphics forumof Conference.

Wagner, S. and Wagner, D. (2007) Comparing clusterings: an overview. Universität

Karlsruhe, Fakultät für Informatik Karlsruhe.

Wang, M., Wang, C., Yu, J.X. and Zhang, J. (2015) Community detection in social networks:

an in-depth benchmarking study with a procedure-oriented framework. Proceedings of the

VLDB Endowment, 8 (10), 998-1009.

Warnke, S.D. (2016) Partial information community detection in a multilayer network. Naval

Postgraduate School Monterey United States.

152

Watts, D.J. and Strogatz, S.H. (1998a) Collective dynamics of'small-world'networks. nature,

393 (6684), 440.

Watts, D.J. and Strogatz, S.H. (1998b) Collective dynamics of ‘small-world’networks.

nature, 393 (6684), 440-442.

Weber, L.M. and Robinson, M.D. (2016) Comparison of clustering methods for high‐

dimensional single‐cell flow and mass cytometry data. Cytometry Part A, 89 (12), 1084-

1096.

Wehmeier, T. (2012) Understanding today’s smartphone user: Demystifying data usage

trends on cellular & Wi-Fi networks. Informa Telecoms and Media.

Xavier, F.H.Z., Silveira, L.M., Almeida, J.M.d., Ziviani, A., Malab, C.H.S. and Marques-

Neto, H.T. (2012) Analyzing the workload dynamics of a mobile phone network in large

scale events. Proceedings of the first workshop on Urban networkingof Conference.

Xu, Q., Erman, J., Gerber, A., Mao, Z., Pang, J. and Venkataraman, S. (2011) Identifying

diverse usage behaviors of smartphone apps. Proceedings of the 2011 ACM SIGCOMM

conference on Internet measurement conferenceof Conference.

Yang, T., Jin, R., Chi, Y. and Zhu, S. (2009) Combining link and content for community

detection: a discriminative approach. Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data miningof Conference.

Yang, Z., Algesheimer, R. and Tessone, C.J. (2016) A comparative analysis of community

detection algorithms on artificial networks. Scientific reports, 6, 30750.

Yu, J.Y. and Chong, P.H.J. (2005) A survey of clustering schemes for mobile ad hoc

networks. IEEE Communications Surveys & Tutorials, 7 (1), 32-48.

Zachary, W.W. (1977) An information flow model for conflict and fission in small groups.

Journal of anthropological research, 33 (4), 452-473.

Zhang, Y., Gao, Q., Gao, L. and Wang, C. (2012) imapreduce: A distributed computing

framework for iterative computation. Journal of Grid Computing, 10 (1), 47-68.

Zhou, Y., Cheng, H. and Yu, J.X. (2009) Graph clustering based on structural/attribute

similarities. Proceedings of the VLDB Endowment, 2 (1), 718-729.

153

APPENDIX

Appendix A: Additional Results

A.1 Additional Results for DICCA described in chapter 4

Table A.1.1 Scalability of the proposed algorithm performance

size
Ground-

truth Q

No. Of

Ground-

truth

clusters

NMI
Modularity

(Q)

Execution

Time

No. Of

Msg

No. of

cluster
Iteration ARI

500 0.819 16 0.914 0.765 3.355 1401045 13 5 0.751

1000 0.859 32 0.934 0.822 13.919 2681195 27 5 0.785

1500 0.873 51 0.937 0.839 33.846 4093201 41 6 0.758

2000 0.880 69 0.943 0.851 65.918 5484550 55 6 0.761

2500 0.884 88 0.948 0.857 109.672 6803586 70 7 0.769

3000 0.887 104 0.947 0.858 177.191 8404026 82 7 0.754

3500 0.889 123 0.950 0.861 254.517 9705058 98 7 0.758

4000 0.890 134 0.950 0.860 397.839 11814798 107 7 0.769

4500 0.891 155 0.953 0.864 524.625 13060131 124 7 0.766

5000 0.892 173 0.954 0.866 665.021 14664776 138 7 0.771

Table A.1.2 Summary of the performance of the proposed algorithm using Mixing parameter for n=500

Mixing

parameter

GT

Modularity

No. Of

GT

Cluster

NMI Modularity Time
No. Of

Msg

No. Of

Cluster
Iteration ARI

0.1 0.819 16 0.914 0.765 3.355 1401045 13 5 0.751

0.15 0.768 16 0.791 0.624 3.364 1549821 11 7 0.557

0.2 0.721 16 0.742 0.551 3.435 1539140 10 7 0.498

0.25 0.670 17 0.708 0.493 3.699 2001578 10 8 0.468

0.3 0.628 17 0.692 0.451 3.960 2232687 11 8 0.455

0.35 0.576 16 0.645 0.383 3.935 2752697 11 8 0.454

0.4 0.528 16 0.591 0.321 4.035 3590013 12 9 0.403

0.45 0.481 18 0.555 0.266 3.988 4556827 15 10 0.361

0.5 0.427 16 0.540 0.216 4.322 6348157 24 8 0.333

0.55 0.382 17 0.484 0.159 4.489 8247020 34 7 0.232

0.6 0.341 16 0.436 0.123 4.999 10387158 43 7 0.157

0.65 0.286 17 0.388 0.095 5.534 14135123 52 7 0.087

0.7 0.233 17 0.348 0.083 6.199 16151336 56 7 0.048

0.75 0.181 17 0.313 0.079 5.931 16231281 57 7 0.028

154

Table A.1.3 Summary of the performance of the proposed algorithm using Mixing parameter for =1000

Mixing

parameter

GT

Modularity

No. Of

GT

Cluster

NMI Modularity Time
No. Of

Msg

No. Of

Cluster
Iteration ARI

0.1 0.859 32 0.934 0.822 13.919 2681195 27 5 0.785

0.15 0.811 34 0.901 0.753 13.249 2973750 26 6 0.698

0.2 0.760 33 0.875 0.681 13.277 3370322 26 6 0.680

0.25 0.712 33 0.837 0.609 14.029 4271018 26 7 0.615

0.3 0.663 34 0.820 0.546 14.864 5350932 28 7 0.617

0.35 0.614 34 0.780 0.476 14.726 7064995 29 7 0.565

0.4 0.566 35 0.753 0.409 14.556 9379372 32 8 0.557

0.45 0.515 33 0.699 0.331 14.052 13770905 36 9 0.505

0.5 0.465 33 0.643 0.242 14.861 21328634 57 8 0.392

0.55 0.415 33 0.587 0.166 15.997 35480627 89 7 0.261

0.6 0.367 34 0.549 0.119 16.890 45995466 114 6 0.167

0.65 0.316 34 0.500 0.091 17.343 53388924 133 5 0.095

0.7 0.266 35 0.475 0.080 18.744 57209564 144 5 0.060

0.75 0.219 36 0.450 0.074 17.433 54101108 147 4 0.039

Table A.1.4 Performance of DICCA algorithm using different TTL values for n=500 without using Min_VALUE condition

TTL
GT

Modularity

No. Of

GT

Cluster

NMI Modularity Time No. Of Msg
No. Of

Cluster
Iteration ARI

1 0.819 16 0.661 0.583 0.296 4832 8 11 0.398

2 0.819 16 0.875 0.734 0.853 62990 12 6 0.669

3 0.819 16 0.918 0.764 24.873 1347024 13 5 0.763

4 0.819 16 0.922 0.765 10407.076 29680547 13 5 0.751

Table A.1.5 Performance of DICCA algorithm using different TTL values for n=500 when using Min_VALUE condition

TTL
GT

Modularity

No. Of

GT

Cluster

NMI Modularity Time No. Of Msg
No. Of

Cluster
Iteration ARI

1 0.819 16 0.689 0.608 0.289 4928 8 11 0.421

2 0.819 16 0.872 0.726 0.804 63881 12 6 0.648

3 0.819 16 0.914 0.765 3.355 1401045 13 5 0.751

4 0.819 16 0.915 0.766 5.039 3388457 13 5 0.754

Table A.1.6 Performance of DICCA algorithm using different TTL values for n=1000 without using Min_VALUE condition

TTL
GT

Modularity

No. Of

GT

Cluster

NMI Modularity Time No. Of Msg
No. Of

Cluster
Iteration ARI

1 0.859 32 0.769 0.695 0.890 9019 17 10 0.475

2 0.859 32 0.926 0.819 3.498 166525 26 6 0.760

3 0.859 32 0.946 0.831 98.738 3735475 27 5 0.810

4 0.859 32 0.956 0.838 34333.526 87794210 28 5 0.837

155

Table A.1.7 Performance of DICCA algorithm using different TTL values for n=1000 when using Min_VALUE condition

TTL
GT

Modularity

No. Of

GT

Cluster

NMI Modularity Time No. Of Msg
No. Of

Cluster
Iteration ARI

1 0.859 32 0.764 0.693 0.899 9031 17 10 0.477

2 0.859 32 0.930 0.820 3.078 162377 26 6 0.780

3 0.859 32 0.934 0.822 13.919 2681195 27 5 0.785

4 0.859 32 0.933 0.821 19.617 6963794 26 5 0.785

A.2 Additional Results for PDICCA described in chapter 5
Table A.2.1 Summary of the performance of the proposed algorithm using Mixing parameter for n=500

Mixing

parameter

GT

Modular

ity

No.

Of

GT

Clus

ter

NMI-

PDICC

A

Q-

PDICC

A

Time
No. Of

Msg

No. Of

Cluster

Itera

tion

No. Of.

Swappe

d Msg

ARI

0.1 0.8189 16.4 0.9488 0.7824 8.5995 1344282 15 5 489 0.8708

0.15 0.7678 16.4 0.8953 0.6950 8.5076 1773968 14 5 504 0.7506

0.2 0.7207 16.4 0.8677 0.6265 7.9940 2222215 14 5 518 0.7089

0.25 0.6705 16.8 0.8118 0.5376 8.8348 3561679 14 6 527 0.6312

0.3 0.6278 17.4 0.7747 0.4771 8.8118 4511721 14 6 536 0.5878

0.35 0.5759 16.2 0.7038 0.3867 8.6034 7490749 16 7 552 0.5165

0.4 0.5282 16.2 0.6427 0.2924 9.1207 12045080 23 7 550 0.4387

0.45 0.4811 17.6 0.6004 0.2235 9.5374 18467793 35 6 544 0.3330

0.5 0.4267 16 0.5159 0.1429 10.4627 31859841 54 6 534 0.2034

0.55 0.3817 16.6 0.4777 0.1140 10.8221 36917671 59 6 530 0.1467

0.6 0.3414 16.4 0.4384 0.0928 11.1384 43860527 68 5 524 0.0976

0.65 0.2858 17.2 0.4129 0.0769 12.6901 54613811 81 5 517 0.0593

0.7 0.2332 17.4 0.3710 0.0729 12.5550 55755527 78 5 518 0.0369

0.75 0.1813 17.2 0.3426 0.0702 13.2440 59511312 80 6 519 0.0216

Table A.2.2 Summary of the performance of the proposed algorithm using Mixing parameter for n=1000

Mixing

paramet

er

GT

Modularit

y

No.

Of

GT

Cluste

r

NMI-

PDICC

A

Q-

PDICC

A

Time No. Of Msg

No.

Of

Cluste

r

Iteratio

n

No. Of.

Swappe

d Msg

ARI

0.1 0.8592 32 0.9498 0.8231 37.1294 2657238 28 5 981 0.8413

0.15 0.8106 34.2 0.9315 0.7550 36.3261 3726253 30 5 1001 0.8051

0.2 0.7603 33.2 0.8936 0.6723 33.5093 5571812 28 5 1038 0.7383

0.25 0.7121 33.4 0.8644 0.5997 35.1898 8534686 29 6 1061 0.6925

0.3 0.6629 34.4 0.8312 0.5158 31.5680 13850086 32 6 1077 0.6506

0.35 0.6145 34.2 0.7879 0.4373 32.1823 21098526 34 7 1098 0.5882

0.4 0.5656 35 0.7413 0.3418 28.8428 36494619 48 7 1102 0.5041

0.45 0.5152 33.2 0.6776 0.2355 31.6455 70023087 77 6 1092 0.3749

0.5 0.4654 33.4 0.6222 0.1625 31.7654 115217719 111 6 1068 0.2484

0.55 0.4154 32.8 0.5696 0.1158 37.2374 155653645 142 5 1045 0.1529

0.6 0.3668 34 0.5388 0.0906 38.5380 189698826 164 5 1036 0.1021

0.65 0.3160 33.6 0.5010 0.0779 39.8445 200467611 179 5 1024 0.0657

0.7 0.2664 35 0.4765 0.0707 42.6053 215485993 191 5 1017 0.0421

0.75 0.2186 36 0.4576 0.0678 42.8690 222938148 196 5 1015 0.0291

156

Table A.2.3 Number of messages exchanged in each iterations for each worker when the number of workers is two for

n=500 and 1000

Number of

nodes

No. Of Exchanged Msg

500 1000

 1st worker 2nd worker 1st worker 2nd worker

1st Iteration 717661 733163 1295619 1297506

2nd Iteration 66842 63418 163026 166334.5

3rd Iteration 8909 8651 36774.34 37814.39

The rest 5777 5873 36194 369267

Table A.2.4 Number of messages in each iterations when the number of workers is three for n=500 and 1000

Number of

nodes

500 1000

1st worker 2nd worker 3rd worker 1st worker 2nd worker 3rd worker

1st Iteration 347991 349277 360717 628164 648158 626507

2nd Iteration 73781 72508 76838 166452 170013 166283

3rd Iteration 12626 12920 13475 44852 45586 46264

The rest 8411 8390 8673 36746 38581 39632

Table A.2.5 Number of messages exchanged in each iterations when the number of workers is four for n=500 and 1000

Number of

nodes

500 1000

1st worker
2nd

worker

3rd

worker

4th

worker

1st

worker

2nd

worker

3rd

worker

4th

worker

1st Iteration 213942 206759 209541 209940 398284 385951 394337 372525

2nd

Iteration
101267 91984 97896 96235 210895 209678 208015 206202

3rd Iteration 25039 23514 25520 25239 79371 78650 78701 78636

The rest 14665 14991 15895 15376 74467 68562 71947 70707

A.3 Additional results for pre-processing approach described in chapter6

Table A.3.1 Agreement of different community detection algorithms with each attribute for Caltech36 and Reed9 datasets

using Jaccard index similarity.

Data set Caltech36 Reed98

A
tt

ri
b

u
te

F
as

t
M

o
d

u
la

ri
ty

al
g

o
ri

th
m

L
o

u
v

ai
n

le
ad

in
g

ei
g

en
v

ec
to

r

W
al

k
tr

ap

F
as

t
M

o
d

u
la

ri
ty

al
g

o
ri

th
m

L
o

u
v

ai
n

le
ad

in
g

ei
g

en
v

ec
to

r

W
al

k
tr

ap

student/ faculty 0.2772 0.1629 0.1539 0.0989 0.4023 0.2106 0.2189 0.1866

Gender 0.2412 0.1478 0.1461 0.0898 0.2761 0.1692 0.1660 0.1543

major 0.0573 0.0530 0.0519 0.0473 0.0364 0.0344 0.0333 0.0360

second major/

minor
0.0034 0.0036 0.0037 0.0042 0.0059 0.0056 0.0061 0.0054

dormitory 0.1746 0.3220 0.2537 0.3720 0.0231 0.0210 0.0199 0.0181

year 0.1239 0.0973 0.0917 0.0840 0.2432 0.3060 0.2683 0.2482

High school 0.0009 0.0010 0.0011 0.0012 0.0005 0.0005 0.0007 0.0005

157

Table A.3.2 Agreement of different community detection algorithms with each attribute for Haverford76 and Aassar85

datasets. Using Jaccard index similarity.

Data set Haverford76 Aassar85
A

tt
ri

b
u

te

F
as

t

M
o

d
u

la
ri

ty

al
g

o
ri

th
m

L
o

u
v

ai
n

le
ad

in
g

ei
g

en
v

ec
to

r

W
al

k
tr

ap

F
as

t

M
o

d
u

la
ri

ty

al
g

o
ri

th
m

L
o

u
v

ai
n

le
ad

in
g

ei
g

en
v

ec
to

r

W
al

k
tr

ap

student/ faculty 0.3214 0.2559 0.2156 0.3012 0.3585 0.2317 0.2647 0.2177

Gender 0.2443 0.1644 0.1697 0.2235 0.2643 0.1788 0.1912 0.1614

major 0.0346 0.0334 0.0348 0.0388 0.0301 0.0306 0.0313 0.0313

second major/

minor
0.0091 0.0093 0.0096 0.0104 0.0072 0.0074 0.0076 0.0077

dormitory 0.0958 0.1024 0.0945 0.0992 0.0741 0.0732 0.0671 0.0703

year 0.2862 0.4739 0.3369 0.3979 0.2896 0.4409 0.3455 0.4315

High school 0.0008 0.0009 0.0009 0.0008 0.0008 0.0009 0.0008 0.0008

Table A.3.3 The influence of the parameters α and β on the quality of clustering solutions for Caltech36 and Reed98 datasets

Data set Caltech36 Reed98

α

β

F
as

t

M
o

d
u

la
ri

ty

al
g

o
ri

th
m

L
o

u
v

ai
n

le
ad

in
g

ei
g

en
v

ec
to

r

W
al

k
tr

ap

F
as

t

M
o

d
u

la
ri

ty

al
g

o
ri

th
m

L
o

u
v

ai
n

le
ad

in
g

ei
g

en
v

ec
to

r

W
al

k
tr

ap

0 0 0.3212 0.3837 0.3181 0.2600 0.2534 0.3011 0.2279 0.0945

0 0.1 0.3230 0.3825 0.2720 0.1563 0.2420 0.2932 0.1786 0.2103

0 0.2 0.1981 0.2972 0.1547 0.0787 0.2358 0.2330 0.1746 0.1399

0 0.3 0.1242 0.0840 0.1003 0.0770 0.0744 0.1266 0.0085 0.0421

0 0.4 0.0867 0.0806 0.0896 0.0744 0.0843 0.0593 0.0778 0.0681

0 0.5 0.0847 0.1023 0.0898 0.0746 0.0841 0.0557 0.0721 0.0735

0 0.6 0.0821 0.0804 0.0828 0.0771 0.0655 0.0636 0.0735 0.0678

0 0.7 0.0821 0.0803 0.0856 0.0768 0.0655 0.0550 0.0081 0.0411

0 0.8 0.0821 0.0805 0.0812 0.0617 0.0655 0.0547 0.0659 0.0427

0 0.9 0.0847 0.0806 0.0853 0.0592 0.0655 0.0552 0.0546 0.0414

0 1 0.0821 0.0806 0.0860 0.0778 0.0655 0.0547 0.0373 0.0384

0.1 0 0.3213 0.3872 0.3272 0.3144 0.2859 0.3200 0.2619 0.2304

0.1 0.1 0.3212 0.3743 0.2480 0.2034 0.1946 0.2965 0.1716 0.1864

0.1 0.2 0.3148 0.3603 0.1767 0.0787 0.1745 0.2945 0.1670 0.1357

0.1 0.3 0.1025 0.2655 0.1040 0.0625 0.0551 0.2705 0.0112 0.0429

0.1 0.4 0.0883 0.2789 0.0993 0.0768 0.1146 0.2566 0.1235 0.0681

0.1 0.5 0.0863 0.0822 0.1664 0.0746 0.0945 0.0625 0.0813 0.0849

0.1 0.6 0.0868 0.0819 0.0871 0.0746 0.0835 0.0550 0.0311 0.0490

0.1 0.7 0.0848 0.0576 0.0693 0.0632 0.0824 0.1485 0.0755 0.0407

0.1 0.8 0.0847 0.0805 0.0863 0.0778 0.0655 0.0545 0.0082 0.0411

0.1 0.9 0.0821 0.0805 0.0856 0.0617 0.0824 0.0630 0.0659 0.0426

0.1 1 0.0847 0.1484 0.0874 0.0592 0.0655 0.0555 0.0961 0.0412

158

0.2 0 0.3199 0.3868 0.3347 0.3301 0.2869 0.3263 0.2736 0.2486

0.2 0.1 0.3247 0.3931 0.2570 0.2357 0.2184 0.2832 0.1729 0.2307

0.2 0.2 0.3246 0.3097 0.2102 0.0806 0.1801 0.2871 0.1923 0.1407

0.2 0.3 0.2365 0.2922 0.1150 0.0626 0.1846 0.2511 0.0108 0.0576

0.2 0.4 0.1743 0.2844 0.1087 0.0780 0.0638 0.2991 0.1030 0.0585

0.2 0.5 0.0867 0.0828 0.0967 0.0749 0.0903 0.0610 0.0965 0.0681

0.2 0.6 0.0833 0.1927 0.1722 0.0800 0.1076 0.2610 0.0831 0.0897

0.2 0.7 0.0920 0.0822 0.0894 0.0746 0.0893 0.2628 0.0863 0.0842

0.2 0.8 0.0887 0.0589 0.0613 0.0632 0.0688 0.0631 0.0550 0.0393

0.2 0.9 0.0833 0.0806 0.0885 0.0800 0.0831 0.0553 0.0085 0.0414

0.2 1 0.0821 0.0806 0.0865 0.0619 0.0655 0.0617 0.0694 0.0419

0.3 0 0.3014 0.3876 0.3435 0.3169 0.2871 0.3275 0.2831 0.2679

0.3 0.1 0.3006 0.3936 0.2629 0.2932 0.2656 0.3307 0.2869 0.2571

0.3 0.2 0.2566 0.3915 0.2745 0.2337 0.1897 0.2815 0.1926 0.1507

0.3 0.3 0.2338 0.3186 0.1343 0.0820 0.2323 0.2978 0.1902 0.1782

0.3 0.4 0.1690 0.2851 0.1182 0.0637 0.2001 0.2720 0.0140 0.0441

0.3 0.5 0.1561 0.2665 0.1114 0.0752 0.1823 0.2699 0.1612 0.0678

0.3 0.6 0.1443 0.0825 0.0887 0.0745 0.1003 0.0655 0.0939 0.0596

0.3 0.7 0.0914 0.0851 0.1855 0.0800 0.0921 0.0629 0.0795 0.0563

0.3 0.8 0.1158 0.1586 0.1631 0.0800 0.0902 0.2642 0.0817 0.0619

0.3 0.9 0.0863 0.0804 0.0601 0.0632 0.0918 0.0659 0.0935 0.0678

0.3 1 0.0897 0.2050 0.0963 0.0757 0.0708 0.0550 0.0108 0.0424

0.4 0 0.3246 0.3918 0.3464 0.3471 0.2889 0.3285 0.2822 0.2760

0.4 0.1 0.3235 0.3966 0.3388 0.3213 0.2630 0.3299 0.2948 0.2272

0.4 0.2 0.3218 0.3947 0.2715 0.2322 0.2094 0.2671 0.1896 0.1416

0.4 0.3 0.3160 0.3203 0.2006 0.0806 0.1948 0.3008 0.1926 0.1797

0.4 0.4 0.2823 0.3160 0.1245 0.0629 0.2267 0.2799 0.0150 0.0445

0.4 0.5 0.1029 0.2992 0.1259 0.0780 0.2648 0.2757 0.0288 0.0430

0.4 0.6 0.1561 0.2926 0.1204 0.0750 0.1559 0.2726 0.1615 0.0693

0.4 0.7 0.1429 0.0861 0.0966 0.0734 0.0956 0.2583 0.0951 0.0634

0.4 0.8 0.0833 0.1945 0.1725 0.0800 0.1113 0.0695 0.0968 0.0573

0.4 0.9 0.0833 0.1947 0.1859 0.0778 0.0908 0.0550 0.0399 0.0404

0.4 1 0.0899 0.0822 0.0848 0.0578 0.0924 0.2548 0.0741 0.0678

0.5 0 0.3219 0.3952 0.3470 0.3311 0.2830 0.3161 0.2852 0.2661

0.5 0.1 0.3267 0.3950 0.3395 0.3017 0.2903 0.3319 0.2962 0.2590

0.5 0.2 0.3236 0.3899 0.2692 0.2034 0.1958 0.3170 0.2411 0.2201

0.5 0.3 0.3165 0.3659 0.2327 0.0816 0.1563 0.2840 0.2017 0.1539

0.5 0.4 0.3285 0.3764 0.2040 0.0808 0.2015 0.3019 0.2013 0.1641

0.5 0.5 0.2653 0.3189 0.1244 0.0622 0.2502 0.2823 0.0158 0.0574

0.5 0.6 0.2260 0.3146 0.1230 0.0780 0.2643 0.2648 0.0160 0.0457

0.5 0.7 0.1711 0.2966 0.1761 0.0775 0.2360 0.2800 0.2437 0.0748

0.5 0.8 0.2715 0.3041 0.1176 0.0807 0.2436 0.2610 0.0979 0.0691

0.5 0.9 0.0924 0.2190 0.0952 0.0800 0.2392 0.2589 0.0974 0.0805

0.5 1 0.0926 0.1957 0.1902 0.0778 0.1708 0.2276 0.0960 0.0854

159

0.6 0 0.3309 0.3950 0.3544 0.3366 0.2883 0.3299 0.2839 0.2708

0.6 0.1 0.3264 0.3764 0.3447 0.3487 0.2820 0.3319 0.2925 0.2560

0.6 0.2 0.3282 0.3953 0.3330 0.2472 0.2244 0.3143 0.2529 0.2115

0.6 0.3 0.3179 0.3914 0.2868 0.2081 0.1577 0.2691 0.1970 0.1246

0.6 0.4 0.2768 0.3754 0.2506 0.2035 0.1806 0.2917 0.2083 0.1605

0.6 0.5 0.2420 0.3862 0.2180 0.1496 0.1030 0.3053 0.2123 0.1931

0.6 0.6 0.2439 0.3338 0.2049 0.0634 0.2348 0.1405 0.0158 0.0447

0.6 0.7 0.1952 0.3082 0.1461 0.0627 0.2474 0.2770 0.0175 0.0581

0.6 0.8 0.1069 0.3002 0.1426 0.0778 0.2454 0.2752 0.0869 0.0450

0.6 0.9 0.1915 0.3115 0.1888 0.0777 0.2534 0.2808 0.2496 0.1593

0.6 1 0.1550 0.2983 0.1821 0.0768 0.2448 0.2802 0.1078 0.0678

0.7 0 0.3379 0.3999 0.3721 0.3362 0.2555 0.3246 0.2825 0.2602

0.7 0.1 0.3308 0.4005 0.3634 0.3312 0.2673 0.3232 0.2888 0.2733

0.7 0.2 0.2879 0.3976 0.3436 0.3234 0.2612 0.3295 0.2970 0.2434

0.7 0.3 0.2194 0.3909 0.2991 0.2254 0.1719 0.3193 0.2704 0.2147

0.7 0.4 0.2452 0.3950 0.2838 0.2236 0.1770 0.2755 0.1982 0.1511

0.7 0.5 0.2382 0.3807 0.2421 0.0814 0.2000 0.2869 0.2015 0.1471

0.7 0.6 0.2417 0.3870 0.2430 0.1955 0.1984 0.3051 0.2142 0.1729

0.7 0.7 0.3233 0.3804 0.2209 0.2220 0.1842 0.2987 0.2131 0.1635

0.7 0.8 0.2661 0.3424 0.2590 0.1617 0.2685 0.2752 0.2071 0.0456

0.7 0.9 0.2634 0.3101 0.0874 0.0641 0.2818 0.2865 0.2122 0.0610

0.7 1 0.2154 0.3029 0.1593 0.0777 0.2687 0.2747 0.0784 0.0717

0.8 0 0.3378 0.3994 0.3733 0.3336 0.2885 0.3185 0.2759 0.2581

0.8 0.1 0.3441 0.3996 0.3731 0.3403 0.2577 0.3176 0.2791 0.2611

0.8 0.2 0.3201 0.3960 0.3651 0.3782 0.2914 0.3169 0.2882 0.2629

0.8 0.3 0.3230 0.3991 0.3598 0.3246 0.2736 0.3269 0.2907 0.2797

0.8 0.4 0.3226 0.3726 0.3499 0.2820 0.1534 0.3199 0.2769 0.1659

0.8 0.5 0.3286 0.3930 0.2844 0.2144 0.2132 0.3039 0.2725 0.2135

0.8 0.6 0.2476 0.3969 0.2919 0.2080 0.1950 0.2811 0.2009 0.1269

0.8 0.7 0.3276 0.3830 0.2503 0.1529 0.2088 0.3008 0.2009 0.1269

0.8 0.8 0.2430 0.3636 0.2209 0.1501 0.2163 0.2797 0.2031 0.1227

0.8 0.9 0.2185 0.3702 0.2157 0.0783 0.2768 0.2941 0.2345 0.1304

0.8 1 0.1898 0.3915 0.2544 0.0783 0.2777 0.2944 0.2345 0.1455

0.9 0 0.3171 0.3976 0.3630 0.3304 0.2885 0.3244 0.2824 0.2683

0.9 0.1 0.3037 0.3998 0.3636 0.3367 0.2881 0.3229 0.2851 0.2540

0.9 0.2 0.3058 0.3962 0.3636 0.3436 0.2865 0.3225 0.2816 0.2694

0.9 0.3 0.3253 0.3943 0.3653 0.3451 0.2832 0.3249 0.2836 0.2688

0.9 0.4 0.3313 0.3998 0.3666 0.3394 0.2888 0.3217 0.2865 0.2686

0.9 0.5 0.3325 0.3958 0.3676 0.3629 0.2939 0.3219 0.2838 0.2788

0.9 0.6 0.3461 0.3986 0.3640 0.3569 0.2955 0.3247 0.2928 0.2831

0.9 0.7 0.3284 0.3734 0.3649 0.3396 0.2974 0.3246 0.2938 0.2893

0.9 0.8 0.3256 0.3957 0.3480 0.3328 0.2810 0.3157 0.2812 0.1607

0.9 0.9 0.2453 0.3834 0.3312 0.2314 0.2545 0.3163 0.2812 0.1374

0.9 1 0.2241 0.3915 0.2536 0.2340 0.2583 0.3149 0.2815 0.1451

160

1 0 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621

1 0.1 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621

1 0.2 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621

1 0.3 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621

1 0.4 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621

1 0.5 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621

1 0.6 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621

1 0.7 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621

1 0.8 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621

1 0.9 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621

1 1 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621

Table A.3.4 The influence of the parameters α and β on the quality of clustering solutions for Haverford76 and

Aassar85datasets.

Data set Haverford76 Vassar85

α

β

F
as

t

M
o

d
u

la
ri

ty

al
g

o
ri

th
m

L
o

u
v

ai
n

le
ad

in
g

ei
g

en
v

ec
to

r

W
al

k
tr

ap

F
as

t

M
o

d
u

la
ri

ty

al
g

o
ri

th
m

L
o

u
v

ai
n

le
ad

in
g

ei
g

en
v

ec
to

r

W
al

k
tr

ap

0 0 0.3007 0.2911 0.2871 0.2403 0.3246 0.3891 0.3454 0.3351

0 0.1 0.2689 0.3274 0.2419 0.2154 0.2747 0.3617 0.2236 0.2700

0 0.2 0.2525 0.3230 0.2066 0.2071 0.2606 0.3693 0.3208 0.1291

0 0.3 0.2437 0.3185 0.2455 0.0724 0.2655 0.3719 0.1108 0.0672

0 0.4 0.1453 0.3122 0.1025 0.0943 0.1537 0.3459 0.2600 0.1277

0 0.5 0.2433 0.2032 0.1034 0.1077 0.2667 0.1040 0.1100 0.1277

0 0.6 0.2068 0.0943 0.1026 0.0714 0.1105 0.0957 0.1105 0.0679

0 0.7 0.1022 0.0934 0.0990 0.0670 0.1564 0.1453 0.1063 0.1270

0 0.8 0.1025 0.0948 0.1007 0.0670 0.1101 0.0957 0.1051 0.0678

0 0.9 0.0938 0.0956 0.0953 0.0689 0.1101 0.0962 0.1053 0.1268

0 1 0.1023 0.0938 0.1008 0.0689 0.1101 0.1008 0.1056 0.1276

0.1 0 0.3035 0.3298 0.2920 0.2448 0.3499 0.3716 0.3622 0.3010

0.1 0.1 0.2683 0.3289 0.2483 0.2749 0.3512 0.3477 0.2095 0.2685

0.1 0.2 0.2391 0.3222 0.2357 0.2190 0.2554 0.3690 0.3114 0.1303

0.1 0.3 0.2540 0.3202 0.2402 0.0756 0.1607 0.3717 0.1338 0.0669

0.1 0.4 0.2427 0.3205 0.2399 0.2143 0.2683 0.3556 0.2524 0.0674

0.1 0.5 0.2206 0.2073 0.1053 0.0974 0.2670 0.3670 0.1084 0.1277

0.1 0.6 0.1468 0.0954 0.1055 0.0677 0.3153 0.3684 0.1104 0.1277

0.1 0.7 0.2057 0.0961 0.1137 0.0648 0.1105 0.0957 0.1106 0.0721

0.1 0.8 0.1018 0.0960 0.0971 0.0671 0.3214 0.3615 0.1093 0.1270

0.1 0.9 0.1025 0.1224 0.1008 0.0704 0.1101 0.1046 0.1051 0.0679

0.1 1 0.0949 0.0956 0.0982 0.0689 0.3470 0.3523 0.1089 0.0665

0.2 0 0.2662 0.3305 0.2955 0.2858 0.2911 0.3913 0.3610 0.3600

0.2 0.1 0.2691 0.3293 0.2542 0.2799 0.3518 0.3506 0.3563 0.3208

0.2 0.2 0.2641 0.3237 0.2340 0.2168 0.2445 0.3669 0.2017 0.1296

0.2 0.3 0.2394 0.3238 0.1094 0.0914 0.2700 0.3559 0.2736 0.1281

161

0.2 0.4 0.2424 0.3213 0.2659 0.0744 0.3295 0.3722 0.1181 0.0683

0.2 0.5 0.1461 0.3184 0.1056 0.0943 0.1477 0.3452 0.2661 0.1277

0.2 0.6 0.2215 0.0994 0.1094 0.0943 0.1565 0.3588 0.1091 0.1277

0.2 0.7 0.1478 0.0954 0.1070 0.0657 0.3155 0.3686 0.1101 0.1276

0.2 0.8 0.3035 0.2061 0.1021 0.0660 0.1110 0.0972 0.1106 0.1289

0.2 0.9 0.0984 0.0960 0.0987 0.0659 0.1834 0.3659 0.1103 0.1271

0.2 1 0.3135 0.2981 0.1025 0.0704 0.1481 0.0972 0.1067 0.0679

0.3 0 0.3034 0.3305 0.2958 0.2920 0.3227 0.3898 0.3592 0.3221

0.3 0.1 0.2708 0.3296 0.2674 0.2375 0.3511 0.3661 0.3590 0.3364

0.3 0.2 0.2170 0.3218 0.2083 0.2368 0.2258 0.3190 0.1999 0.1294

0.3 0.3 0.2881 0.3247 0.2873 0.2191 0.2634 0.3716 0.2622 0.1281

0.3 0.4 0.2462 0.3232 0.2501 0.0688 0.2906 0.3729 0.1179 0.0682

0.3 0.5 0.2779 0.3216 0.2585 0.0743 0.3207 0.3731 0.1194 0.0681

0.3 0.6 0.2209 0.3134 0.1090 0.0943 0.1564 0.3710 0.1097 0.1277

0.3 0.7 0.1476 0.2418 0.1097 0.0975 0.1569 0.2092 0.1102 0.1272

0.3 0.8 0.1470 0.3137 0.1072 0.0642 0.3438 0.3703 0.2649 0.1277

0.3 0.9 0.2409 0.2047 0.0911 0.0664 0.2894 0.3616 0.1106 0.1271

0.3 1 0.3046 0.3145 0.1042 0.0659 0.1479 0.3458 0.1107 0.1271

0.4 0 0.3052 0.3380 0.2984 0.2900 0.3253 0.3876 0.3556 0.3534

0.4 0.1 0.2708 0.3308 0.2744 0.3002 0.3551 0.3823 0.3341 0.3471

0.4 0.2 0.2762 0.3290 0.2701 0.2445 0.2715 0.3647 0.2836 0.2598

0.4 0.3 0.2655 0.3256 0.2498 0.2161 0.2532 0.3731 0.2945 0.1294

0.4 0.4 0.2391 0.3234 0.2323 0.0914 0.3170 0.3720 0.2755 0.1281

0.4 0.5 0.2453 0.3242 0.2673 0.0721 0.1581 0.3720 0.1284 0.0710

0.4 0.6 0.2832 0.3216 0.2590 0.1219 0.3210 0.3731 0.1369 0.0676

0.4 0.7 0.2165 0.3200 0.1093 0.0974 0.2670 0.3469 0.1106 0.1272

0.4 0.8 0.1477 0.3140 0.1094 0.0974 0.2671 0.3705 0.1111 0.1272

0.4 0.9 0.1459 0.3178 0.1095 0.0974 0.1565 0.3480 0.1117 0.1277

0.4 1 0.3156 0.3163 0.1061 0.0962 0.3469 0.3715 0.1102 0.0703

0.5 0 0.2827 0.3379 0.2976 0.2937 0.3266 0.3884 0.3570 0.3577

0.5 0.1 0.2711 0.3313 0.2824 0.3030 0.3468 0.3845 0.3618 0.3567

0.5 0.2 0.2707 0.3293 0.2958 0.2431 0.3526 0.3651 0.2497 0.2548

0.5 0.3 0.2953 0.3253 0.2737 0.2387 0.2256 0.3326 0.2609 0.1294

0.5 0.4 0.2653 0.3242 0.2663 0.2190 0.2613 0.3748 0.2626 0.2515

0.5 0.5 0.2492 0.3238 0.2520 0.0880 0.2395 0.3730 0.1239 0.0710

0.5 0.6 0.2660 0.3200 0.2643 0.0667 0.3487 0.3728 0.1302 0.0692

0.5 0.7 0.2797 0.3243 0.2768 0.0729 0.3355 0.3731 0.1364 0.0707

0.5 0.8 0.2316 0.3198 0.1240 0.0981 0.2304 0.3713 0.2752 0.1280

0.5 0.9 0.2170 0.3202 0.3028 0.0981 0.1834 0.3717 0.1118 0.1272

0.5 1 0.2155 0.3191 0.2300 0.0981 0.1830 0.3688 0.1120 0.1272

0.6 0 0.3023 0.3375 0.3027 0.3014 0.3009 0.3856 0.3535 0.3396

0.6 0.1 0.2877 0.3296 0.2956 0.2999 0.3496 0.3877 0.3673 0.3710

0.6 0.2 0.3031 0.3283 0.2605 0.2198 0.3500 0.3813 0.3480 0.3274

0.6 0.3 0.2697 0.3296 0.2747 0.2333 0.3046 0.3647 0.3052 0.1301

162

0.6 0.4 0.2793 0.3263 0.2600 0.2266 0.2292 0.3723 0.2709 0.1294

0.6 0.5 0.2654 0.3255 0.2826 0.2565 0.3376 0.3755 0.2892 0.1294

0.6 0.6 0.2815 0.3236 0.2564 0.0885 0.3195 0.3737 0.2911 0.1282

0.6 0.7 0.2910 0.3200 0.2757 0.0874 0.2500 0.3734 0.1283 0.0700

0.6 0.8 0.2889 0.3198 0.2856 0.0755 0.3186 0.3735 0.1360 0.0716

0.6 0.9 0.2976 0.3201 0.2562 0.1428 0.3497 0.3735 0.1456 0.0703

0.6 1 0.1394 0.1036 0.1142 0.0974 0.1489 0.3726 0.1507 0.1289

0.7 0 0.2715 0.3334 0.3006 0.3015 0.3007 0.3810 0.3505 0.3444

0.7 0.1 0.2979 0.3376 0.3055 0.3091 0.3412 0.3941 0.3699 0.3540

0.7 0.2 0.2983 0.3307 0.2860 0.3045 0.3572 0.3825 0.3704 0.3685

0.7 0.3 0.2704 0.3277 0.2632 0.2173 0.3472 0.3801 0.2489 0.2649

0.7 0.4 0.2701 0.3297 0.2772 0.2290 0.3246 0.3655 0.3111 0.2598

0.7 0.5 0.2480 0.3265 0.2980 0.2009 0.2092 0.3193 0.2665 0.1302

0.7 0.6 0.2485 0.3222 0.2678 0.2438 0.2423 0.3764 0.2893 0.1294

0.7 0.7 0.2661 0.3268 0.2620 0.2812 0.2639 0.3770 0.2928 0.2409

0.7 0.8 0.2849 0.3250 0.2750 0.1062 0.3427 0.3748 0.2913 0.2503

0.7 0.9 0.2893 0.3244 0.2892 0.1058 0.3152 0.3739 0.1354 0.0684

0.7 1 0.3013 0.3249 0.3006 0.0921 0.3508 0.3732 0.1447 0.0694

0.8 0 0.2707 0.3280 0.2932 0.3101 0.3043 0.3866 0.3481 0.3532

0.8 0.1 0.2708 0.3360 0.3001 0.3025 0.3047 0.3866 0.3512 0.3563

0.8 0.2 0.2996 0.3362 0.3058 0.3079 0.3439 0.3933 0.3700 0.3621

0.8 0.3 0.2950 0.3289 0.2981 0.3024 0.3516 0.3826 0.3798 0.3600

0.8 0.4 0.3010 0.3286 0.2701 0.2731 0.3545 0.3806 0.3688 0.3374

0.8 0.5 0.2702 0.3285 0.2717 0.2454 0.3204 0.3795 0.2205 0.2162

0.8 0.6 0.2711 0.3274 0.2696 0.2511 0.3315 0.3825 0.2998 0.2234

0.8 0.7 0.2557 0.3050 0.2927 0.0991 0.1339 0.3167 0.2700 0.1294

0.8 0.8 0.2579 0.3270 0.2974 0.1838 0.1713 0.3421 0.2694 0.1305

0.8 0.9 0.2798 0.3266 0.3093 0.2384 0.2567 0.3753 0.2845 0.1305

0.8 1 0.3053 0.3266 0.3098 0.2293 0.2552 0.3759 0.2853 0.1302

0.9 0 0.2325 0.3311 0.2807 0.3031 0.3038 0.3940 0.3472 0.3575

0.9 0.1 0.2477 0.3377 0.2812 0.3031 0.3036 0.3901 0.3472 0.3445

0.9 0.2 0.2527 0.3376 0.2820 0.2957 0.3023 0.3869 0.3476 0.3445

0.9 0.3 0.2502 0.3322 0.2822 0.2972 0.3020 0.3929 0.3468 0.3453

0.9 0.4 0.2668 0.3376 0.2880 0.2993 0.3009 0.3865 0.3521 0.3672

0.9 0.5 0.2737 0.3306 0.2974 0.3013 0.3042 0.3882 0.3632 0.3706

0.9 0.6 0.2731 0.3292 0.3011 0.2980 0.3494 0.3828 0.3791 0.3799

0.9 0.7 0.2702 0.3303 0.2855 0.3059 0.3542 0.3822 0.3848 0.3796

0.9 0.8 0.3026 0.3279 0.2622 0.2664 0.3464 0.3818 0.3872 0.3652

0.9 0.9 0.3018 0.3277 0.2691 0.2308 0.3368 0.3797 0.2659 0.2594

0.9 1 0.2677 0.3276 0.2695 0.2683 0.3383 0.3788 0.2680 0.2525

1 0 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443

1 0.1 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443

1 0.2 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443

1 0.3 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443

163

1 0.4 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443

1 0.5 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443

1 0.6 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443

1 0.7 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443

1 0.8 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443

1 0.9 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443

1 1 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443

Table A.3.5 Attribute weights vs. missing edges for Caltech36 dataset

% missing

edges

student/

faculty
Gender major

second major/

minor
dormitory year High school

0 0.4695 0.3102 0.0924 0.0002 0.2193 0.2195 0.0112

5 0.4677 0.3166 0.0864 0.0008 0.2146 0.2021 0.0059

10 0.4522 0.3065 0.0864 0.0020 0.2006 0.2085 0.0050

15 0.4293 0.3166 0.0846 0.0042 0.1994 0.1820 0.0105

20 0.4564 0.3110 0.0818 0.0016 0.2027 0.1966 0.0063

25 0.4499 0.3209 0.0766 0.0007 0.1978 0.2014 0.0097

30 0.4604 0.3208 0.0843 0.0040 0.2035 0.2122 0.0098

35 0.4750 0.3325 0.0744 0.0010 0.2040 0.2312 0.0050

40 0.4523 0.3119 0.0775 0.0022 0.2260 0.2066 0.0039

45 0.4418 0.3108 0.1031 0.0057 0.2134 0.2229 0.0074

50 0.4451 0.3093 0.0892 0.0007 0.2280 0.2279 0.0078

Table A.3.6 Attribute weights vs. missing edges for Reed98 dataset

% missing

edges

student/

faculty
Gender major

second major/

minor
dormitory year

High

school

0 0.5840 0.3180 0.0761 0.0064 0.0976 0.2698 0.0143

5 0.5808 0.2931 0.0567 0.0048 0.0894 0.2667 0.0100

10 0.5824 0.3141 0.0596 0.0061 0.0892 0.2575 0.0145

15 0.5638 0.2920 0.0619 0.0044 0.0818 0.2567 0.0142

20 0.5836 0.2997 0.0498 0.0049 0.0806 0.2875 0.0136

25 0.5670 0.3065 0.0554 0.0041 0.0836 0.2501 0.0099

30 0.5794 0.2940 0.0685 0.0028 0.0900 0.2580 0.0123

35 0.5638 0.2777 0.0615 0.0040 0.0823 0.2671 0.0045

40 0.5569 0.2928 0.0512 0.0059 0.0746 0.2600 0.0101

45 0.5208 0.2790 0.0514 0.0053 0.0761 0.2422 0.0138

50 0.5391 0.2917 0.0529 0.0062 0.0846 0.2543 0.0044

Table A.3.7 Attribute weights vs. missing edges for Haverford76 dataset

% missing

edges

student/

faculty
Gender major

second major/

minor
dormitory year

High

school

0 0.5815 0.3794 0.0387 0.0084 0.1582 0.3077 0.0079

5 0.5995 0.3854 0.0344 0.0107 0.1541 0.3254 0.0097

10 0.5950 0.3740 0.0323 0.0098 0.1610 0.3255 0.0101

15 0.6025 0.3791 0.0423 0.0065 0.1444 0.3213 0.0051

20 0.5966 0.3660 0.0355 0.0110 0.1619 0.3124 0.0049

164

25 0.5883 0.3640 0.0376 0.0127 0.1724 0.3096 0.0062

30 0.5927 0.3716 0.0362 0.0081 0.1563 0.3202 0.0047

35 0.5839 0.3411 0.0386 0.0093 0.1692 0.3195 0.0057

40 0.6154 0.3741 0.0461 0.0117 0.1740 0.3460 0.0066

45 0.5775 0.3455 0.0450 0.0136 0.1680 0.3031 0.0056

50 0.5732 0.3594 0.0444 0.0118 0.1395 0.3150 0.0063

Table A.3.8 Attribute weights vs. missing edges for Vassar85 dataset.

% missing

edges

student/

faculty
Gender major

second

major/minor
dormitory year

High

school

0 0.6188 0.3457 0.0442 0.0073 0.1964 0.3843 0.0102

5 0.6337 0.3534 0.0420 0.0090 0.2058 0.3818 0.0095

10 0.6293 0.3544 0.0438 0.0084 0.1979 0.3910 0.0094

15 0.6179 0.3441 0.0392 0.0069 0.1936 0.3882 0.0071

20 0.6264 0.3654 0.0444 0.0074 0.2066 0.3847 0.0105

25 0.6215 0.3406 0.0413 0.0093 0.2076 0.3796 0.0104

30 0.6066 0.3479 0.0433 0.0072 0.1983 0.3710 0.0090

35 0.6142 0.3463 0.0405 0.0072 0.1957 0.3709 0.0077

40 0.6105 0.3374 0.0456 0.0075 0.1934 0.3828 0.0076

45 0.6064 0.3614 0.0450 0.0082 0.1937 0.3823 0.0095

50 0.5894 0.3412 0.0408 0.0062 0.1831 0.3642 0.0089

Table A.3.9 Number of community clusters vs. Missing edges for Caltech36 and Reed98 datasets

Data set Caltech36 Reed98

%
 m

is
si

n
g

ed
g

es

F
A

H
y

b
ri

d
-F

A

L
A

H
y

b
ri

d
-

L
A

L

E
A

H
y

b
ri

d
-

L
E

A

W
A

H
y

b
ri

d
-

W
A

F
A

H
y

b
ri

d
-F

A

L
A

H
y

b
ri

d
-

L
A

L

E
A

H
y

b
ri

d
-

L
E

A

W
A

H
y

b
ri

d
-

W
A

0 9 4 10 7 12 4 72 8 5 3 6 4 7 3 78 6

5 11 4 12 8 11 4 71 6 7 3 8 4 6 3 65 6

10 12 4 13 8 11 5 77 6 11 3 9 4 6 3 72 5

15 16 4 17 7 13 5 79 6 12 3 11 4 5 3 76 6

20 20 4 19 8 9 4 78 6 15 3 13 4 6 3 78 7

25 22 4 22 7 10 4 87 6 17 3 17 4 4 4 71 8

30 24 4 25 7 11 4 89 7 18 3 18 5 5 3 77 5

35 26 4 26 7 10 4 88 7 26 4 24 4 6 3 90 7

40 32 4 33 8 11 5 98 8 27 4 27 4 6 4 96 6

45 33 4 34 7 10 5 103 8 28 4 28 4 7 3 102 6

50 39 4 39 8 10 4 104 8 36 4 34 4 8 4 114 6

165

Table A.3.10 Number of community clusters vs. missing edges for Haverford76 and Vassar85datasets

Data set Haverford76 Vassar85
%

 m
is

si
n

g

ed
g

es

F
A

H
y

b
ri

d
-F

A

L
A

H
y

b
ri

d
-L

A

L
E

A

H
y

b
ri

d
-

L
E

A

W
A

H
y

b
ri

d
-

W
A

F
A

H
y

b
ri

d
-F

A

L
A

H
y

b
ri

d
-L

A

L
E

A

H
y

b
ri

d
-

L
E

A

W
A

H
y

b
ri

d
-

W
A

0 6 3 5 4 7 3 28 4 5 3 6 5 7 3 60 4

5 5 3 7 4 7 3 37 5 7 3 8 5 7 3 55 4

10 6 3 7 4 8 3 40 4 9 3 10 5 6 3 55 5

15 8 3 9 4 8 3 42 5 12 3 13 5 7 3 67 5

20 9 3 11 4 8 3 40 4 13 3 15 5 6 3 70 4

25 10 3 11 4 8 3 43 5 16 3 17 5 8 4 73 4

30 12 3 13 4 8 3 46 4 17 3 18 5 6 4 84 4

35 14 3 14 4 10 3 49 5 21 3 23 5 5 3 89 4

40 15 3 15 4 7 3 53 5 26 3 27 5 6 4 97 4

45 18 4 18 4 10 3 55 5 33 3 32 5 8 3 102 4

50 20 3 21 4 8 4 61 6 34 3 35 5 7 3 105 4

Table A.3.11 Community size vs. missing edges for Caltech36 and Reed98 datasets

D
at

a
se

t

Caltech36 Reed98

%
 m

is
si

n
g

ed
g

es

F
A

H
y

b
ri

d
-F

A

L
A

H
y

b
ri

d
-L

A

L
E

A

H
y

b
ri

d
-

L
E

A

W
A

H
y

b
ri

d
-

W
A

F
A

H
y

b
ri

d
-F

A

L
A

H
y

b
ri

d
-L

A

L
E

A

H
y

b
ri

d
-

L
E

A

W
A

H
y

b
ri

d
-

W
A

0 85 192 77 110 64 185 11 100 192 313 160 221 137 321 12 162

5 71 185 63 101 75 181 11 122 161 305 131 226 180 321 15 169

10 64 192 60 102 75 169 10 125 92 300 113 231 189 321 14 196

15 51 188 45 104 63 173 10 127 83 297 89 221 210 337 13 176

20 40 182 40 102 89 185 10 121 68 297 78 236 191 313 13 167

25 36 181 35 108 82 192 9 125 57 313 58 236 253 284 14 146

30 32 185 31 105 82 182 9 118 54 313 54 212 213 305 13 199

35 30 191 31 106 77 178 9 118 38 281 40 231 201 329 11 175

40 24 195 24 103 77 165 8 103 36 292 36 241 174 306 10 182

45 24 195 23 106 78 172 8 98 35 273 35 236 184 350 10 177

50 20 183 20 100 83 188 7 101 27 281 29 221 158 287 8 164

166

Table A.3.12 Community size vs. missing edges for Haverford76 and Vassar85datasets
D

at
a

se
t

Haverford76 Vassar85

%
 m

is
si

n
g

ed
g

es

F
A

H
y

b
ri

d
-F

A

L
A

H
y

b
ri

d
-L

A

L
E

A

H
y

b
ri

d
-

L
E

A

W
A

H
y

b
ri

d
-W

A

F
A

H
y

b
ri

d
-F

A

L
A

H
y

b
ri

d
-L

A

L
E

A

H
y

b
ri

d
-

L
E

A

W
A

H
y

b
ri

d
-W

A

0 241 482 289 362
20

7
482 52 393 614

102

3
511 614

43

8

102

3
51 736

5 296 446 222 362
21

1
482 39 311 488

102

3
396 614

48

0

102

3
56 752

10 251 470 215 362
18

5
482 37 354 374

102

3
316 629

56

7
997 56 709

15 196 499 170 362
19

0
482 35 345 269

102

3
236 614

43

6
972 47 721

20 162 506 140 354
21

3
482 36 369 250 997 224 614

59

2
946 44 736

25 143 506 132 362
22

4
470 34 342 200

102

3
188 614

44

7
895 42 736

30 123 458 115 362
23

7
482 32 376 181

102

3
174 614

59

7
869 37 767

35 111 446 103 362
17

8
482 30 352 148

102

3
140 614

67

8
972 35 752

40 99 458 98 362
28

2
482 28 299 123

102

3
116 614

57

2
895 32 752

45 83 431 81 362
21

7
446 27 275 96 997 97 614

44

6
946 30 721

50 74 470 72 362
24

0
410 24 251 90

102

3
89 614

55

3

102

3
30 782

Table A.3.13 Modularity index vs. missing edges for Caltech36 dataset

%

missing

edges

FA
Hybrid-

FA
LA

Hybrid-

LA
LEA

Hybrid-

LEA
WA

Hybrid-

WA

0 0.3120 0.3174 0.3764 0.3935 0.3623 0.3445 0.3459 0.3133
5 0.3224 0.3206 0.3877 0.3963 0.3602 0.3454 0.3414 0.3105

10 0.3238 0.3177 0.3952 0.3932 0.3627 0.3411 0.3446 0.3135
15 0.3246 0.3098 0.3897 0.3961 0.3573 0.3358 0.3412 0.3041
20 0.3344 0.3033 0.3900 0.3910 0.3529 0.3217 0.3473 0.2923
25 0.3134 0.3074 0.3891 0.3916 0.3562 0.3052 0.3440 0.2833
30 0.3255 0.3119 0.3912 0.3900 0.3513 0.2914 0.3403 0.2784
35 0.3233 0.2994 0.3890 0.3893 0.3507 0.2838 0.3443 0.2686
40 0.3208 0.3012 0.3889 0.3853 0.3433 0.2669 0.3445 0.2658
45 0.3207 0.3000 0.3873 0.3834 0.3451 0.2655 0.3341 0.2542
50 0.3177 0.2938 0.3805 0.3815 0.3420 0.2372 0.3362 0.2369

167

Table A.3.14 Modularity index vs. missing edges for Reed98 dataset

%

missing

edges

FA
Hybrid-

FA
LA

Hybrid-

LA
LEA

Hybrid-

LEA
WA

Hybrid-

WA

0 0.2776 0.2423 0.3288 0.3199 0.2823 0.2785 0.2621 0.2411

5 0.2711 0.2470 0.3214 0.3170 0.2858 0.2775 0.2617 0.2358

10 0.2768 0.2473 0.3229 0.3142 0.2815 0.2739 0.2640 0.2223

15 0.2731 0.2525 0.3190 0.3134 0.2800 0.2724 0.2649 0.2145

20 0.2641 0.2532 0.3157 0.3153 0.2771 0.2662 0.2629 0.2152

25 0.2649 0.2481 0.3099 0.3156 0.2737 0.2658 0.2678 0.2131

30 0.2729 0.2430 0.3122 0.3104 0.2758 0.2583 0.2615 0.2075

35 0.2814 0.2422 0.3086 0.3060 0.2726 0.2539 0.2515 0.1990

40 0.2702 0.2457 0.3027 0.3073 0.2641 0.2443 0.2615 0.1938

45 0.2696 0.2502 0.3014 0.3044 0.2686 0.2376 0.2504 0.1830

50 0.2749 0.2439 0.2928 0.2986 0.2629 0.2400 0.2453 0.1747

Table A.3.15 Modularity index vs. missing edges for Haverford76 dataset

%

missing

edges

FA
Hybrid-

FA
LA

Hybrid-

LA
LEA

Hybrid-

LEA
WA

Hybrid-

WA

0 0.2769 0.3010 0.3373 0.3293 0.2823 0.2736 0.3000 0.2573

5 0.2706 0.2818 0.3324 0.3291 0.2811 0.2714 0.3024 0.2786

10 0.2692 0.2706 0.3324 0.3285 0.2817 0.2699 0.2994 0.2701

15 0.2651 0.2785 0.3342 0.3291 0.2814 0.2685 0.2982 0.2764

20 0.2694 0.2757 0.3325 0.3259 0.2761 0.2657 0.2991 0.2641

25 0.2709 0.2773 0.3301 0.3283 0.2772 0.2630 0.2983 0.2694

30 0.2796 0.2753 0.3291 0.3278 0.2720 0.2615 0.2965 0.2584

35 0.2811 0.2835 0.3265 0.3249 0.2756 0.2584 0.2958 0.2653

40 0.2813 0.2761 0.3262 0.3275 0.2682 0.2570 0.2965 0.2607

45 0.2794 0.2740 0.3236 0.3272 0.2692 0.2696 0.2896 0.2572

50 0.2830 0.2809 0.3214 0.3261 0.2685 0.2836 0.2951 0.2531

Table A.3.16 Modularity index vs. missing edges for Vassar85 dataset

%

missing

edges

FA
Hybrid-

FA
LA

Hybrid-

LA
LEA

Hybrid-

LEA
WA

Hybrid-

WA

0 0.3138 0.3354 0.3940 0.3809 0.3472 0.3307 0.3443 0.2688

5 0.3176 0.3405 0.3889 0.3807 0.3470 0.3292 0.3498 0.2638

10 0.3166 0.3420 0.3878 0.3786 0.3499 0.3257 0.3474 0.2580

15 0.3156 0.3458 0.3841 0.3798 0.3478 0.3220 0.3457 0.2411

20 0.3182 0.3414 0.3869 0.3795 0.3487 0.3188 0.3474 0.2650

25 0.3250 0.3432 0.3843 0.3790 0.3492 0.3146 0.3518 0.2504

30 0.3240 0.3440 0.3865 0.3784 0.3480 0.3068 0.3475 0.2379

35 0.3172 0.3449 0.3844 0.3777 0.3463 0.3081 0.3467 0.2435

40 0.3274 0.3412 0.3799 0.3773 0.3442 0.2968 0.3437 0.2447

45 0.3237 0.3455 0.3823 0.3765 0.3442 0.2921 0.3429 0.2400

50 0.3286 0.3417 0.3805 0.3762 0.3437 0.2901 0.3412 0.2231

168

Appendix B: Permission to Reuse IEEE Material

