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ABSTRACT  

Many systems in the world can be represented as models of complex networks and 

subsequently be analysed fruitfully. One fundamental property of the real-world networks is 

that they usually exhibit inhomogeneity in which the network tends to organise according to 

an underlying modular structure, commonly referred to as community structure or clustering. 

Analysing such communities in large networks can help people better understand the structural 

makeup of the networks. For example, it can be used in mobile ad-hoc and sensor networks to 

improve the energy consumption and communication tasks. Thus, community detection in 

networks has become an important research area within many application fields such as 

computer science, physical sciences, mathematics and biology. 

Driven by the recent emergence of big data, clustering of real-world networks using traditional 

methods and algorithms is almost impossible to be processed in a single machine. The existing 

methods are limited by their computational requirements and most of them cannot be directly 

parallelised.  Furthermore, in many cases the data set is very big and does not fit into the main 

memory of a single machine, therefore needs to be distributed among several machines.  

The main topic of this thesis is about network community detection within these big data 

networks. More specifically, in this thesis, a novel approach, namely Decentralized Iterative 

Community Clustering Approach (DICCA) for clustering large and undirected networks is 

introduced. An important property of this approach is its ability to cluster the entire network 

without the global knowledge of the network topology. Moreover, an extension of the DICCA 

called Parallel Decentralized Iterative Community Clustering approach (PDICCA) is proposed 

for efficiently processing data distributed across several machines. PDICCA is based on 

MapReduce computing platform to work efficiently in distributed and parallel fashion.  

In addition, the real-world networks are usually noisy and imperfect with missing and false 

edges. These imperfections are often difficult to eliminate and highly affect the quality and 
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accuracy of conventional methods used to find the community structure in the network. 

However, in real-world networks, node attribute information is also available in addition to 

topology information. Considering more than one source of information for community 

detection could produce meaningful clusters and improve the robustness of the network. 

Therefore, a pre-processing approach that considers attribute information, shared neighbours 

and connectivity information aspects of the network for community detection is presented in 

this thesis as part of my research. 

Finally, a set of real-world mobile phone usage data obtained from Cambridge Laboratories 

(Device Analyzer) has been analysed as an exploratory step for viability to apply the algorithms 

developed in this thesis.  

All the proposed approaches have been evaluated and verified for feasibility using real-world 

large data set. The evaluation results of these experimentations prove very promising for the 

type of large data networks considered. 

Keyword: Community analysis, community detection algorithms; decentralized clustering 

algorithm; networks; graph; distributed algorithms. 
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CHAPTER 1                                                        

INTRODUCTION 

1.1 Introduction 

Many systems in the world can be represented as networks (also referred to as graphs in much 

of the mathematical literature) composed of nodes (vertices) and links (edges) in which 

network links represent relationships between the interrelating parts (nodes) of the systems. 

Examples include technological networks such as the Internet (Faloutsos, Faloutsos and 

Faloutsos, 1999) and  the World Wide Web (WWW) (Albert, Jeong and Barabási, 1999), 

biological networks e.g., Neuronal networks, metabolic networks, protein-protein interaction 

networks and food webs (Vocaturo and Veltri, 2017), and distribution networks (Newman, 

2003) like postal delivery routes, citation networks, social networks, organisational networks 

(Newman, 2003) and even political elections (Adamic and Glance, 2005) etc. 

Recently, it has become common to analyse interactions in the real-world by looking at the 

networks that underlie these interactions (Chen, Zaiane and Goebel, 2009). However, real-

world networks are not random networks, they usually exhibit inhomogeneity and reveal a high 

level of order and organisation (Mahata and Patra, 2016). An interesting feature that real-world 

networks usually present is the community structure property, under which the topology of 

network is organised into modules commonly called communities or clusters (Fortunato, 2010).  

The process of discovering the cohesive groups or clusters in the network is known as 

community detection (Bedi and Sharma, 2016), it is also known as the graph partition problem 

in modern graph theory, and as the graph clustering or dense subgraph discovery problem in 

the graph mining area (Wang et al, 2015). 
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The problem of community or graph clustering is not well defined and the concepts of 

community do not have a universally accepted definition. Highlighting the difficulties of the 

problem, in his recent work, Fortuna stated that “the definition often depends on the specific 

system at hand and/or application one has in mind” (Fortunato, 2010).  Considering social 

network as an example, community can be defined using many natural properties. Whether the 

nodes representing people in a community should know each other, the community should have 

a high edge density or each detectable community ought to have a unique identity (Shah and 

Zaman, 2010). 

Informally, a cluster is usually defined as a set of entities that are closer to each other than with 

the rest of the entities in the data set (Jain, Murty and Flynn, 1999). The notion of closeness is 

based on a similarity measure that is usually defined with the use of a mathematical objective 

function. The task of clustering is also referred to as “unsupervised learning where the aim is 

to group together similar data set without resorting to any a priori knowledge about the clusters 

(Schaeffer, 2007). In the case of networks, the similarity is usually measured either based on 

the structural similarity which considers the topological features or the attribute features related 

to the nodes or edges of the graph, or both of them (Malliaros and Vazirgiannis, 2013). 

There are several definitions of the community detection problem. In general, the community 

detection algorithms aim to divide a network into sub-communities. The general principle on 

which most community definitions are based is the tendency for the nodes to divide into 

clusters with dense connections within clusters and only sparser connections between them 

(Newman, 2004a). However, communities may overlap as nodes belong to multiple clusters 

simultaneously. The overlapping community is very common in real-world networks for 

example, in a social network, a person may belong to more than one social group such as friend 

group and family group which are known as overlapping nodes (Amelio and Pizzuti, 2014). 

More  detailed definitions of community are presented in another work (Fortunato, 2010). 
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Figure 1.1 shows a small network of 12 nodes that illustrates this idea of network structure. 

The network has three communities denoted by the circles in which a set of nodes are densely 

connected internally and loosely connected to the rest of the network. 

Figure 1.1 A simple graph with three communities that are represented by different colours. 

1.2 Impact of the Research and its Impact 

1.2.1 Social networks 

Community structure is a common and important topological characteristic of many real-world 

complex networks. Nodes belonging to a tight-knit community are more than likely to have 

other properties in common (Danon et al, 2005). The determination of communities in the 

networks can help to better understand the structural makeup of the networks, provide powerful 

insights about the structure of networks, and help analyse complex phenomena at different 

scales (Orman, Labatut and Cherifi, 2011; Borgatti, Everett and Johnson, 2013). Thus, this 

research topic has applications in many fields such as biology, social science, physics, 

computer science, business science, etc. (Schaeffer, 2007; Orman, Labatut and Cherifi, 2011). 

In social networks, for example, analysis of community detection is extremely useful in the 

context of many applications, including customer segmentation, vertex labelling, 
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recommendations and link inference (Khatoon and Banu, 2015). Also could be used to 

estimating unknown features of users in social networks. If a given user does not give a certain 

piece of information (like the school he/she went to), but a reasonable number in his/her 

community do, the missing information can be imputed with a reasonable degree of confidence. 

1.2.2 Impact on WWW 

Community structure is important not only on social networks, but also on various other 

networks. For the famous example of the Internet, determination of community structure can 

address questions such as, how to route data as packets in an efficient way, how to reduce the 

time consumption for such traffic and what is the fast and safe path to consider reaching the 

destination etc. It can go further in depth, by elucidating questions like how computer viruses 

are spreading through the Internet, and what mechanisms they follow to hit organisations etc. 

Also in dark networks, community structure can reveal the hidden relationships between 

individual terrorists and help develop effective disruptive strategies. (Warnke, 2016). Similarly, 

in the case of the world wide web (WWW), pages related to the same subject are typically 

organised into communities, so that the identification of these communities can help the task 

of seeking for identifying the category of the network as well as understanding its dynamic 

evolution and organisation (Costa et al, 2007).  

1.2.3 Routing in Ad-hoc and Wireless Sensor Networks 

Clustering without global knowledge is an important technique in mobile ad-hoc and sensor 

networks (Gehweiler and Meyerhenke, 2010) for the improvement of certain management e.g. 

energy consumption and communication tasks. 

In wireless sensor networks (WSNs), nodes are usually consist with limited and non-

rechargeable energy resources. Thus in WSNs, energy consumption is the most critical problem 

and large number of clustering routing protocols have been developed for WSNs to reduce 
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communications, efficiently optimize the energy of sensor nodes, organize messages among 

the cluster head and their node members and optimize the network life-time (Liu, 2012). 

In clustering routing protocols, the sensing field of sensor network is divided into number of 

clusters where each cluster has a leader called cluster head. The cluster head collects the data 

from its node members and transfer it to the destination (base station). Yu and Chong (2005) 

reported that the cluster structure is an effective topology that could provide many benefits in 

the context of wireless sensor networks (WSNs). It could be used to increase the system 

capacity by spatial reuse of resources. Furthermore, it improves routing performance, since the 

set of cluster-heads and cluster gateways can normally form a virtual backbone for inter-cluster 

routing, and thus the generation and spreading of routing information can be restricted to this 

set of nodes. Additionally, they stated that the cluster structure makes an ad hoc network appear 

smaller and more stable in the view of each mobile terminal, this is because in WSNs when a 

mobile node changes its attaching cluster, only mobile nodes residing in the corresponding 

clusters need to update the information.  

For more information, interested readers may refer to Yu and Chong’s survey (Yu and Chong, 

2005). 

1.3 Research Challenges 

In recent years, the problem of network clustering has received growing attention as an 

important analytical technique and has been actively investigated in a variety of fields, from 

computer science and statistical physics (Newman, 2004b; Newman and Girvan, 2004) to data 

mining (Moghaddam et al, 2010). Therefore, a rich and diverse list of methods and algorithms 

has been generated. 

In the current Big Data era, the amount of generated data is huge, existing in various formats, 

from a continuously increasing number of sources. The real-world networks can be very large 
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in size, even reaching billions of nodes. However, most of the community detection algorithms 

in the literature are classified as global algorithms, which require access to the entire 

information of the network and are designed to work on a single machine.  

As the data size is scaling up, the need for computing power is exponentially increasing. In 

many such situations, it has become difficult for the stand-alone community detection 

algorithms to find communities in large-scale networks (Li et al, 2015) and the required 

processing power far exceeds the processing capabilities of single machines. However, most 

of the existing community detection algorithms cannot be directly parallelised. Furthermore, 

in many such cases the large-scale data set does not fit into the main memory of a single 

machine and needs to be distributed among several machines. These demanding requirements 

make existing community clustering algorithms even more limited than before, and so more 

powerful and scalable clustering tools for big data analysis seem to be in urgent need.  

Additionally, in many real-world networks, node attribute is also available in addition to 

topology information. It is pointed out that  nodes containing similar content of communication 

are much likely to belong to the same community (McPherson, Smith-Lovin and Cook, 2001; 

Traud et al, 2011).  Traud et al (2011) show that a set of nodes’ attributes can act as the primary 

organising principle of the communities. An overwhelming majority of conventional 

approaches to community detection focus on topology information and largely ignore the 

attribute information. However, the collected topology information for networks is usually 

noisy when there are missing edges. This makes the task of community detection for 

incomplete networks very challenging. 

To summarise, Big data exhibits different characteristics such as ‘volume, variety, velocity, 

value, thus it is very difficult to analyse Big data and obtain information with traditional 

techniques (Hu et al, 2014). 
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Given these scenarios, there is the emergence of a new research direction to develop a powerful 

and scalable community clustering method for big data analysis, which will make use of the 

relationship between the attribute and link information to improve the robustness of the existing 

community clustering methods in unreliable environments (incomplete or noisy networks). 

1.4 Aim and Research Objectives  

The main goal of this thesis is to design and implement novel techniques and algorithms for 

the problem of clustering and community detection in large and undirected networks. In the 

light of the above discussed research challenges, the main objectives and motivations of this 

research work are summarised below: 

1. To design and implement an efficient community-detection approach that could work 

at the local level and does not require any global knowledge of the network. 

As the networks being operated on become larger and larger, the ability to process them in 

the main memory of a single machine becomes impractical due to both time and memory 

constraints. Moreover, community detection algorithms are often computationally 

expensive and are not scalable to large networks with hundreds of millions or even billions 

of nodes and billions of edges.  

The above issues motivated me to design, implement, and evaluate an efficient community-

detection solution for large-scale networks. More specifically, the proposed approach 

works at the local level and does not require any global knowledge of the network. From 

the heuristic point of view, it is worth noting that the optimisation of global clustering 

methods, when only restricted to the local knowledge, is more difficult. That is why most 

of the existing approaches and algorithms make use of global knowledge.  

2. To extend the proposed approach for large-scale networks to work in parallel and in a 

distributed fashion. 
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Being a localised algorithm, it can be run in parallel or in a distributed fashion among 

clusters when the size of the input network or the computation complexity is beyond the 

resources of a single computer.  

3. To design and implement a community clustering approach considering both attribute 

information and topological structure information to improve the performance of 

existing community detection algorithms. 

Since in many real-word networks, the nodes and links in the networks may contain 

attribute information, this attribute information has important significance in completely 

presenting the community structure of the network and could improve the robustness of 

community detection algorithms in unreliable environments.  

4. To analyse a set of real-world mobile phone usage data as an exploratory step for 

viability to apply the algorithms developed in this thesis. 

The smart phones in the telecommunication industry generate a massive amount of data. 

These data usually include call details, data and network details. The amount of data is so 

big that manual management and analysis of these data is almost impossible. From this 

perspective to explore the viability of applying the proposed method and algorithms to 

analyse the big data sets generated by smart phones. A real-life big data (Device Analyzer) 

set from Cambridge Laboratories is used for this proposed objective. 

5. To propose a set of broad guidelines and future design from the understanding gained. 

Under this objective, the potential usage of the developed approaches proposed in this 

thesis will be demonstrated. Also, recommendations, guidance information, and 

suggestions to improve the effectiveness of the developed algorithm will be made. 
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1.5 Scope of Research  

This thesis studies in the scope of community detection in big networks. In other words, the 

main goal of this thesis is to design and implement novel techniques and algorithms for the 

problem of clustering and community detection in large and undirected networks. The 

approaches proposed in this thesis all assume that the given network structure is needed to be 

divided into communities in such a way that every node belongs to one of the communities 

(non-overlapping communities). Although doing some modifications of the proposed 

approaches can achieve overlapping communities, the focus of this thesis is on non-overlapping 

communities. 

1.6 Contributions of the research to state of the art 

This thesis aims to design and implement methods for the problem of extracting non-

overlapping communities in large networks. However, since the global community clustering 

approaches demand shared memory to access global information, they are inappropriate for 

this goal. Thus, in this work attention is given to the local community clustering as it is more 

accessible for parallelization. 

The following summary provides a short overview of the four key contributions of this work 

that address all of the challenges introduced in the previous sections: 

1. A novel Decentralized Iterative Community Clustering Approach (DICCA) to extract 

an efficient community structure for large networks is proposed.  An important property 

of this approach is its ability to cluster the entire network without the global knowledge 

of the network topology. This ability means that the entire network does not need to be 

loaded into one memory and DICCA could be easily adapted to run in parallel on as 

many processors as available to find community clusters in big networks. This cannot 

be done in the majority of the existing community detection algorithms as they 
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implicitly assume that the entire structure of the big network is known and is available. 

Another perspective of DICCA approach is reducing the problem size by aggregating 

the nodes in the network, allowing the approach to cluster the large-scale data set 

efficiently. 

2. A Parallel Decentralized Iterative Community Clustering Approach (PDICCA), which 

does not require any global knowledge of the graph topology is proposed.  PDICCA is 

a distributed memory parallel processing approach that transforms the serial steps of 

DICCA approach into parallel tasks. It is scalable and will work with a range of 

computer architecture platforms (e.g. cluster of PCs, multi-core distributed memory 

servers, GPUs).  

3. A pre-processing approach for existing community detection algorithms is proposed to 

improve the robustness of community detection algorithms in unreliable environments. 

The proposed approach is applicable to the existing weighted community detection 

algorithms and it seeks to improve their performance by considering attribute 

information, shared neighbours information and connectivity between nodes in the 

network. Therefore, if either attribute information or topological structure information 

is noisy or missing, the other could make up for it. 

4. Using a set of real-life android smartphone usage datasets, the different features of 

mobile phone usage is analysed. 

1.7 Thesis Structure 

The thesis contains eight chapters, which are organised as follows. The present chapter gives 

an overall picture of the thesis, highlights the importance of the field of community detection 

in the networks and states the challenges, aim, objectives and the contributions of the research. 

The rest of the thesis is organised as follows:  
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Chapter 2 gives some basic definitions of graph theory, which are used in further chapters. 

Furthermore, the literature review of state-of-the-art community detection algorithms and 

related work in the area of parallelisation techniques for the community detection algorithms 

are also discussed. 

Chapter 3 presents some specific structural properties and models of real networks. 

Additionally, the current work available in literature for models that generate synthetic 

networks with community structures along with the most popular quality metrics for assessing 

the network clustering results are discussed.  

Chapter 4 addresses the first technical objective of the research. It gives a detailed description 

of my proposed Decentralized Iterative Community Clustering Approach, for detecting 

community and then the effectiveness and efficiency of the DICCA approach is evaluated.  

Chapter 5 centres around the design and implementation of the parallel framework version of 

DICCA approach named PDICCA. In this chapter, the principle and implementation of the 

proposed PDICCA approach is detailed and its performance is evaluated.  

Seeking to improve the robustness of existing community detection algorithms rather than 

looking to identify communities in the network based just on topological structure information, 

a new pre-processing approach that considers attribute information, shared neighbours 

information and connectivity between nodes in the network is presented in chapter 6. Chapter 

7 shows the data analysis of the datasets from the real-world telecom network.  

Finally, chapter 8 concludes the research activities within this thesis by summarising the 

contributions and proposing a set of possible suggestions for future work. 

 

 

 

 



12 
 

CHAPTER 2                                                               

LITERATURE REVIEW 

This chapter introduces some fundamental concepts that are widely used throughout this thesis, 

and reviews existing work on the community clustering and distributed techniques. It starts 

with a short introduction into the basics of graph theory, including the concepts required to 

understand further chapters. This is followed by a discussion of the definitions and concepts 

around community clustering. Then a detailed literature survey on the state-of-the-art in 

community approaches and the parallelisation techniques for extracting network clusters is 

presented. 

2.1 Basic concepts of graph theory 

Many practical problems in various fields of study such as scientific computing, data analysis 

etc, can be modelled in their essential form by graphs and solved using appropriate graph 

algorithms. In graph theory, a simple graph G = (V, E) is defined as an abstract representation 

of a set of nodes (or vertices) V = {1, . . . , n} and a set of edges (or links) E = {(i, j)| i, j ∈ V} 

which connect pairs of nodes together. A pair (i, j) belongs to E if there is an interaction 

between the nodes i and j and the cardinality of the set E. The number of nodes in the graph is 

n = |V| and the number of edges m = |E|. In some graphs it is possible to find an edge that 

connects a node to itself, (i, i) ∈ E, it is called a self-loop (Silva and Zhao, 2016). 

The edges in the graph can be assigned with a weight, which represents the strength of 

connection between two nodes; in this case, the graph is called a weighted graph. If each edge 

has unit weight, the graph is called an unweighted graph (Silva and Zhao, 2016). Considering 

the nature of the edges, the graphs can be classified into two: undirected and directed graph. A 

graph is called directed (also referred to as digraph) if the orientation of the edges is important 

for the task (Silva and Zhao, 2016). A directed graph G= (V, E) consists of a non-empty set of 
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nodes V and a set of directed edges E. Each edge e:(u, v) of E is specified by an ordered pair 

of nodes (u, v) and comes out from node u, namely the origin (or tail), and reaches a destination 

v (or head).  

Directed graphs arise in many real-world applications such as the web graph whose node 

represents a web host and each directed edge represents the hyperlinks. These hyperlinks are 

one-way from web pages on the source host to web pages on the destination host (Canright and 

Engø-Monsen, 2008). On the other hand, in undirected graphs, the edges have no orientation 

and the graph has edges that represent symmetric relationships in which whenever the edge (u, 

v) exists in an undirected graph then so does the edge (v, u) (Costa et al, 2007). For example, 

in friendship networks where each relationship is considered reciprocal in the sense that if you 

are friends with someone, then they are friends with you. 

From the mathematical point of view an undirected unweighted graph G = (V, E) can be 

represented by a matrix A called adjacency matrix A ∈ {0,1}𝑛𝑥𝑛. 

Definition 2.1  Adjacency Matrix: The adjacency matrix A of a graph G = (V, E) is an |V|×|V| 

matrix, such that: 

𝐴𝑖,𝑗 = {
1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         (2.1) 

The adjacency matrix for an undirected graph is symmetric, This fact implies that A(i,j) = A(j,i). 

However for a directed graph, the adjacency matrix may not be symmetric (Silva and Zhao, 

2016). 

 Throughout this thesis, the terms “graph” and “network” are used interchangeably. In the same 

spirit, the data relationships that make up a graph are termed structure or topology of the 

network. Unless stated otherwise, a graph G = (V, E) is unweighted, undirected and consists of 
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a set of nodes V and a set of E edges. Nodes and vertices convey the same type of information 

and are used interchangeably and the same principle applies to edges and links.  

Labeled graph Adjacency matrix 

 

A= 

[
 
 
 
 
0 0 1 1 0
0 0 1 0 0
1 1 0 1 1
1 0 1 0 0
0 0 1 0 0]

 
 
 
 

 

Figure 2.1 An example of unweighted undirected graph and its adjacency matrix. 

Definition 2.2 Degree of a node: The degree 𝐾𝑖 of a node ‘i' in undirected graph G = (V;E) is 

equal to the number of edges connecting to node i (Silva and Zhao, 2016). Given an adjacency 

matrix A, the degree of node i is the sum of row entries corresponding to node i, which can be 

expressed as: 

𝐾𝑖  = ∑ 𝐴𝑖𝑗
𝑛
𝑗=0         (2.2) 

However, for directed graphs, the concept of degree is split into two categories: out-degree and 

in-degree.  

Definition 2.3 In-degree and out-degree: The out-degree of a node ‘i’ in a directed graph is 

the number of edges that leave the node i, and the in-degree is the number of edges that enter 

the node i (Silva and Zhao, 2016). 

Definition 2.4 A completely connected (fully connected) graph: In undirected graph G the 

fully connected graph is a graph in which every pair of distinct nodes is connected by a unique 

edge.  Thus the total number of edges in a completely connected graph with n number of nodes 

is equal to n(n-1)/2 (Tomassini, 2010). 

Definition 2.5 A triangle:  In graph G = (V, E) a triangle (∆) is a three node subgraph with V 

= {v1, v2, v3} ⊂ V and E = {(v1, v2), (v2, v3), (v3, v1)} ⊂ E (Schank and Wagner). 
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Definition 2.6 A triple:  In graph G = (V, E) a triple N3(i) at node ‘i', is a path length of two 

for which i is the centre node (Schank and Wagner). For undirected graph, the number of triples 

of node i is defined as: 

𝑁3(𝑖) =  (
𝐾𝑖

2
) =

𝐾𝑖 [𝐾𝑖−1]

2
                                           (2.3) 

and the number of triples in graph G is defined as the summing of triples of all nodes in the 

graph: 

𝑁3 = ∑ 𝑁3(𝑖) 
𝑛
𝑖=1                                                                    (2.4) 

To illustrate the concept of triangle and triples, the network in Figure 2.1 has 1 triangle and 8 

connected triples.  

Definition 2.7 Reachability: In graph theory, reachability refers to the ability to get from one 

node to another within a graph. Given a graph G(V, E), it is said that V2 ∈ V is reachable from 

V1 ∈ V if there is at least a walk that starts from V1 and ends at V2 (Silva and Zhao, 2016). 

Definition 2.8  Homophily: 

Apart from the previous patterns that concern network architecture, there are also some other 

patterns that relate to how links depend on other characteristics of nodes. For instance, if nodes 

are people, then they have some attributes such as age, gender, ethnicity, profession, political 

attitudes, their hobbies and so forth. In real-world networks, it has been shown that the similar 

nodes in terms of their characteristics tend to be more frequently linked to each other than to 

nodes that are less similar to themselves in characteristics. This is referred to as homophily, as 

originally named by Lazarsfeld and Merton (McPherson, Smith-Lovin and Cook, 2001; 

Jackson, 2010). 

Definition 2.9  Hierarchical structure: Another important aspect related to community 

structure is the hierarchical organisation (multiscale or multilevel) exhibited in most real-world 
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networks in which communities contain smaller communities that may be further divided into 

sub-communities. (Fortunato, 2010) 

2.2 Community Detection Algorithms 

The problem of unveiling the community structure of a network is called community detection. 

Community detection is an active area of network science research and over the years, a wide 

variety of community detection algorithms have been proposed to find the communities in the 

network. Community detection is also named as graph partitioning in much of the literature 

(Aggarwal and Wang, 2010; Wang et al, 2015). It is tempting to suggest that this community 

detection and graph partitioning are really addressing the same question; in both, their aim is 

to identify groups of nodes in a network that are better connected to each other than to the rest 

of the network. However, it is very important to stress that the task of graph partitioning and 

community detection can be distinguished from one another based on whether the experimenter 

fixes the number and size of the groups or it is unspecified (Newman, 2010). Graph partitioning 

is the problem of partitioning a graph into a predefined number and size of clusters. It has been 

pursued particularly in computer science and related fields with applications in parallel 

computing and very-large-scale integration (VLSI) design. However, in the community 

detection, which has been pursued by sociologists and more recently by physicists and applied 

mathematicians, with applications especially to social and biological networks the number and 

size of clusters are unspecified. Furthermore, the goal in the former is usually to identify the 

best division of a network regardless of whether or not a good division existed. In case there 

are no good divisions exist, the least bad one will be done as a solution. On the other hand, in 

community detection, the algorithm only divides the network when good divisions exist and 

leave the network undivided in case there are no existing good divisions (Newman, 2010).  

Community structure identification has been an important research topic in complex networks. 

Given the number and range of community definitions, it is not a surprise that the number of 
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methods proposed for detecting and revealing the community structures in networks are even 

larger. Furthermore, the community detection algorithms can be classified in different ways, 

and depending on the selected criteria, one algorithm can belong to more than one category. A 

brief summary of existing community detection algorithms is introduced in the sections below. 

The algorithms are classified based on methodological principles as presented in Orman, 

Labatut and Cherifi (2011)  in which most of the existing community detection algorithms 

mainly fall into the following categories: 

2.2.1 Link-Centrality-Based Algorithms 

The centrality measures such as degree centrality (Silva and Zhao, 2016) and betweenness 

(Girvan and Newman, 2002)  are used to rank how important an edge (or node) is in the 

structure of the network. Thus, the link-centrality-based algorithms are usually hierarchical 

divisive approaches that start with a single community comprising all the nodes of the network. 

Then repeatedly removing/cutting edges and dividing the network progressively into smaller 

and smaller disconnected subnetworks that are viewed as communities until further splitting is 

no longer worthwhile. The centrality measures are used for the selection of the links to be cut, 

which are links connecting the communities and not those within them (Orman, Labatut and 

Cherifi, 2011). 

The first and most known algorithm using this approach is the Girvan-Newman algorithm 

introduced in Girvan and Newman (2002). The algorithm estimates the centrality of a link by 

considering the edge betweenness measure, which is defined as the number of shortest paths 

between pairs of nodes that go through an edge in a graph. The algorithm is based on the fact 

that edges connecting communities are expected to have high edge betweenness. Thus, by 

iteratively removing these edges, the network is separated into groups from one another and 

the underlying community structure of the network is revealed. Though the algorithm obtains 

good results, it is very slow and highly complex thus it is not well suited for very large networks.  
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2.2.2 Modularity Optimisation Algorithms 

The most popular method widely used to find community in the network relies on the 

optimisation of a quantity called modularity. Modularity (Q) is a prominent measure for the 

quality of a community structure introduced by Newman and Girvan in (Newman and Girvan, 

2004) and it has become a widely accepted quality of measure for community detection.  

The general concept of modularity optimisation algorithms is to detect the best community 

structure in terms of modularity by searching over possible divisions of a network that have 

high modularity. 

Definition 2.10 Modularity (Q) 

Modularity is based on the idea that a random graph is not expected to have a cluster structure, 

so it quantifies the community strength by comparing the fraction of edges that fail within a 

community with the expected fraction value of the same quantity of edges failing at random. 

Let eij be the fraction of edges in the network that connect nodes in group i to those nodes in 

group j, then the modularity score Q for a clustering is given by the following equation  

(Newman and Girvan, 2004):  

     𝑄 = ∑ [𝑒𝑖𝑖 − (∑ 𝑒𝑖𝑗𝑗 )2
𝑖 ]         (2.5) 

Formally, modularity can be defined as (Fortunato, 2010): 

𝑄 =
1

2|𝑚|
∑ [𝐴𝑖𝑗 −

𝐾𝑖𝐾𝑗

2|𝑚|
]𝑖𝑗 𝛿𝑐𝑖 𝑐𝑗                  (2.6) 

Where Aij is an element of the adjacency matrix, 𝐾𝑖  is the degree of node i. 𝑚 is the total 

number of edges in the network. 𝛿𝑐𝑖 𝑐𝑗  is the Kronecker delta symbol, which is equal to 1 if 

ci=cj and 0 otherwise, and ci is the label of the community to which node i is assigned. 

The modularity can also be equivalently defined as (Fortunato, 2010): 
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𝑄 = ∑ [
𝐿𝐶

𝑚
− (

𝑑𝑐

2𝑚
)
2

]𝑘
𝑐=1        (2.7) 

Here, k is the number of clusters, 𝐿𝐶 the total number of edges joining nodes in community c 

and 𝑑𝑐 is the total degree of nodes in c. 

The higher the value of Q in the network, the better its community strength.  Networks with 

high modularity have dense connections between nodes within the same communities and 

sparse connections between nodes from different communities. Thus, a Q value close to 0 

indicates that fraction of edges within communities is no better than for a random case. Values 

other than 0 indicate deviations from randomness. However, Newman et.al reported that in real 

networks the modularity values typically fall in the range from about 0.3 to 0.7, and values 0.3 

or more, usually indicate good divisions (Newman and Girvan, 2004). 

Fortunato and Barthélemy (2007) pointed out that the modularity measure suffers from serious 

resolution limits, and claimed that the size of the detected community, by enforcing modularity 

optimisation Q, depends on the size of the whole network, which may fail to identify modules 

smaller than a certain size. The main reason is that the modularity index does not consider the 

information of the number of nodes in a community, and the choice of partition is highly 

sensitive to the total number of edges in the network. 

However, despite the fact that modularity is subject to a resolution limit, it is still one of the 

most popularly accepted metrics for measuring the quality of community structure as well as 

an optimisation criterion used by some algorithms to identify communities in networks 

(Newman, 2016). In the following paragraphs, two modularity optimisation algorithms are 

considered in some detail.  

Fastgreedy algorithm is an agglomerative hierarchical clustering method proposed by 

Newman (Newman, 2004b). The algorithm greedily maximises the modularity function Q, and 
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starts the process by assigning a different community to each node in the network. Then at each 

stage in the process, the pair of clusters that yields greatest increase of modularity or smallest 

decrease is merged until only one cluster remains containing all nodes in the network.  The 

whole procedure can be represented by a dendrogram (hierarchical tree) that illustrates the 

order of the mergers. Cuts through the dendrogram at different levels give different partitions 

into communities.  The optimal community cluster can be found by cutting the dendrogram at 

the level of maximum Q. 

Louvain algorithm is a hierarchical agglomerative optimisation method proposed by Blondel 

et al and attempts to optimise the modularity of a partition of the network.  The optimisation is 

performed in two steps that are repeated iteratively (Blondel et al, 2008). 

This algorithm starts with each node in the network belonging to its own community. Then in 

the first step and for each node in the network, the algorithm uses the local moving heuristic to 

obtain an improved community structure by moving each node from its own community to its 

neighbours’ community and evaluating the gain of modularity associated with the moving of 

the node. The node is then placed in the community for which the modularity change is the 

most positive. If none of these modularity changes is positive, the node stays in its original 

community. This process is applied repeatedly and sequentially for each node until all the nodes 

in the network are considered, and no further improvement can be achieved. This concludes 

the first step. The second step of the algorithm consists of building a new network from the 

communities discovered in the first step. Therefore, the individual nodes in the new network 

are the individual communities from the first step. In this new network, there will be an edge 

between two nodes if there were edges between the corresponding two communities in the 

previous step. The weights of those new edges are the sum of the weights of the edges between 

nodes in the corresponding two communities. The edges between nodes of the same community 

in the first step will lead to self-loops for this community node in the new network. Once the 
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second step is completed, it is possible to replay the first step and iterate again if necessary. 

The two steps repeat iteratively and stop when there is no more change in the modularity gain 

and consequently a maximum modularity is obtained.  

2.2.3 Spectral Algorithms 

The spectral algorithms are mostly based on the analysis of the eigenvectors of matrices derived 

from the networks and designed to find the partition minimising the links lying in between the 

node groups. Leading eigenvector is one of the effective spectral algorithms proposed by 

Newman (2006b). The algorithm is based on the spectral optimisation of modularity. Newman 

showed that the modularity could be expressed in terms of the eigenvectors of a characteristic 

matrix for the network, called modularity matrix, and therefore spectral techniques for the 

optimisation process could be applied. He exploits the spectral properties of the modularity 

matrix by using the leading eigenvectors (associated with the largest eigenvalues) of the 

modularity matrix to maximise the modularity in his proposed algorithm. The algorithm 

initially divides the network by assigning all the nodes into two communities according to the 

signs of the leading vector elements of the modularity matrix. The negative signs clustered in 

one group and positive signs in the other. The algorithm then runs recursively on each 

subnetwork to divide those parts, and so forth. At any stage when there is no division of a 

subgraph that will increase the modularity of the network the algorithm leaves the 

corresponding subgraph undivided. This happens when all the elements in the eigenvector of 

the proposed split subgraph have the same sign, and when the entire network has been 

decomposed into indivisible subgraphs the algorithm ends. For the interested readers, Newman 

(2006b) discusses the algorithm in more detail. 

However, there are two drawbacks in the spectral algorithm described above. First, it only takes 

the leading eigenvector of the modularity matrix to generate the solution and ignores all the 

information provided by the other eigenvectors. Second, it splits a network into more than two 
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communities by recursive partitioning instead of getting all the communities directly in a single 

step (Chen and Hero, 2015). 

2.2.4 Random-Walk-Based Algorithms 

Random walk is a process of traversing nodes at random and it has been widely used to partition 

the network into communities. There are several algorithms which have been proposed in 

literature based on the random walk. An example includes Walktrap (WT) algorithm which 

is proposed by Pons and Latapy (2006).  

The walktrap algorithm is based on the principle that random walks on a network tend to get 

“trapped” into densely connected parts defining the communities. In this method, the authors 

propose using a node similarity measure based on short walks to capture structural similarities 

between nodes instead of modularity to identify community via hierarchical agglomeration. 

The algorithm starts by assigning each node to its own community and the distance for every 

pair of communities is computed. Communities are merged according to the minimum of their 

distances and the process iterated. After n−1 steps, the algorithm finishes and gives a 

hierarchical structure of communities called a dendrogram. The best partition is then 

considered to be the one that maximises modularity. 

2.2.5 Information-Based Algorithms 

Information-Based algorithms are also known as compression-based approaches. These 

approaches use the concept of information theory to find community clusters in the network. 

They basically consider the community structure as a set of regularities in the network topology, 

which can be used to represent the whole network in a more compact way than the whole 

adjacency matrix (Orman, Labatut and Cherifi, 2012). Infomap algorithm is an example of 

information theoretic algorithms proposed by Rosvall and Bergstrom (2008). Infomap 

algorithm characterises the problem of finding the optimal community clustering in the 

network as the problem of finding the most compressed (shortest) description length of the 
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random walks on the network. It uses a random walk as a proxy for information flow in a 

network and minimises a map equation, which measures the description length of a random 

walker, over all the network clusters to reveal its community structure. To represent the 

community structure, the algorithm uses a two-level nomenclature based on Huffman coding: 

a level to distinguish communities in the network and the other to distinguish nodes in the 

community.  

In practice, the random walker is likely to stay longer inside communities, therefore in the 

process of finding a community containing few inter-community links, only the second level 

is needed to describe its path, leading to a compact representation. However, even though 

Infomap is a competitive community detection algorithm and shows a very good performance 

across several benchmarks (Fortunato, 2010), it cannot handle big networks with millions and 

billions of edges that are becoming commonplace with the advent of Big Data (Bae et al, 2017). 

For a more thorough discussion of community detection methods and algorithms and their 

principles, please refer to the work done by Fortunato who is one of the major authorities in 

the field of community detection (Fortunato, 2010) and Schaeffer (Schaeffer, 2007). 

2.3 Parallelisation of Centrality Algorithms 

Presently, the real-world networks are often complicated and accompanied by extremely large 

sizes. Using conventional algorithms to analyse the networks is almost impossible to process 

in a single machine and they usually require specialised processing methods, especially parallel 

ones. Furthermore, many data parallelisation methods are proposed to extend storage 

capabilities and to improve performance by distributing data and related tasks into disparate 

hardware (Hu et al, 2014).  MapReduce (Dean and Ghemawat, 2008) is one of the most popular 

distributed computation frameworks that is being widely applied to large scale data-intensive 

processing. 
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2.3.1 MapReduce  

MapReduce is a distributed computing model proposed by Google in 2004 for processing 

massive data sets with a parallel distributed algorithm using a large number of computers in an 

efficient and fault tolerant manner (Dean and Ghemawat, 2008).  Nowadays, MapReduce is 

widely used as an efficient distributed computation tool in many applications e.g., search, 

clustering, analysis of social networks, log analysis and matrix multiplication to name but a 

few (Derbeko et al, 2016). 

The computation of MapReduce takes a set of input key/value pairs, and produces a set of 

output key/value pairs. The computation of MapReduce is expressed as two functions written 

by the user: Map and Reduce. One iteration of map and reduce functions is called MapReduce 

Job. MapReduce computation could be simply described as the following steps (Dean and 

Ghemawat, 2008): 

1. Input data is read from the disk and converted to Key-Value pairs. 

2. The map function takes an input pair of data separately, processes it and produces a 

list of intermediate key/value pairs. 

(𝐾𝑒𝑦1, 𝑉𝑎𝑙𝑢𝑒1)  →  𝑙𝑖𝑠𝑡(𝐾𝑒𝑦2, 𝑉𝑎𝑙𝑢𝑒2)    (2.8) 

3. The reduce function takes intermediate Key2 with a list of Values and processes them 

to form a new list of values.  

(𝐾𝑒𝑦2, 𝑙𝑖𝑠𝑡(𝑉𝑎𝑙𝑢𝑒2))  →  𝑙𝑖𝑠𝑡(𝑉𝑎𝑙𝑢𝑒3)      (2.9) 

4. Once all input pairs have been processed, the output of the Reduce function is then 

written to the disk as Key-Value pairs. 
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MapReduce runs in a cluster of nodes; one node acts as a master node and the others act as 

workers. The master node is responsible for assigning tasks to idle workers whereas the worker 

nodes are responsible for running map and reduce tasks. A block diagram of the MapReduce 

framework is shown in Figure 2.2. 

Figure 2.2 Architecture of MapReduce framework (Dean and Ghemawat, 2008) 

There are some existing open source implementations of MapReduce such as Hadoop (Hadoop, 

2016), which has been widely used by many organisations such as Facebook, Yahoo!, LinkedIn.  

However, despite the popularity of MapReduce and being extensively used by both academia 

and industry, the MapReduce has also been the object of severe criticism (Doulkeridis and 

Nørvåg, 2014; Fernández et al, 2014; Mohebi et al, 2016), mainly due to its performance 

limitations, which arise in various complex processing tasks such as lack of loop-aware task 

scheduling. MapReduce does not support multi-staging of tasks in a single run. Whenever new 

MapReduce jobs are executed, the input data has to be reloaded from the disk every time during 

iterations and regardless whether or not the input has changed from the previous iterations.  

Recently, some researchers proposed several frameworks that support asynchronous execution, 

which is not allowed in MapReduce. For example, some approaches provide support for 
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iterative algorithms that use MapReduce execution models such as: Twister (Ekanayake et al, 

2010), HaLoop (Bu et al, 2010) and iMapReduce (Zhang et al, 2012). 

2.4 Summary 

Since the terminologies networks and graphs share the same definition, the first part of this 

chapter introduces the basic concepts of graph theory that are used in further chapters. This 

includes the definitions of adjacency matrix, degree of a node, completely connected graph, 

triangle, triple, reachability, homophily and hierarchical structure. 

This is followed by the literature review of state-of-the-art community detection algorithms 

and the discussion of different categories of clustering algorithms. The field of community 

detection is very rich and several algorithms to detect communities in networks are proposed.  

As an overview, the community detection algorithms could be classified based on 

methodological principles into five categories: link-centrality-based algorithms, modularity 

optimisation algorithms, spectral algorithms, random-walk-based algorithms and information-

based algorithms. For a more thorough discussion of community detection methods and 

algorithms and their principles, please refer to the work done by Fortunato who is one of the 

major authorities in the field of community detection (Fortunato, 2010) and Schaeffer 

(Schaeffer, 2007). 

Most of the community detection algorithms in the literature are classified as global algorithms 

and are designed to work on a single machine. However, in large-scale network scenarios 

which will not fit within a single machine, it is impossible for such community detection 

algorithms to find communities. Parallelizing the algorithms is one way to improve the 

scalability of community detection. However, it is worth noting that community detection 

algorithms, which use global information, are not suitable for parallelization. Hence, a 

Decentralized Iterative Community Clustering approach (DICCA) is proposed in this research. 
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The last part of this chapter addresses the parallelisation techniques that have been used to 

parallelise the community detection algorithms. Though there are several techniques available 

for implementing parallelisation, most of the algorithms used for big data scenario employ 

MapReduce scheme. This is due to its salient features that include scalability, flexibility, fault-

tolerance and simplicity. So, I have incorporated MapReduce scheme in parallelising the 

Decentralized Iterative Community Clustering approach (PDICCA). 
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CHAPTER 3                                                                     

NETWORK MODELS AND STATISTICAL METHODS 

FOR COMPARISON OF NETWORKS 

In the previous chapter, the basic concepts of community detection methods were introduced. 

In this chapter, the empirical properties of real-world networks are discussed. Following this, 

general metrics to evaluate the performance of community clustering algorithms and cluster 

quality on the networks are presented. . Then a comprehensive study to benchmark approaches 

for community detection in the networks is conducted. Finally, research methodology used in 

this work is discussed.  

3.1 Topology of Real Networks 

As it has been noted in the first chapter of this thesis, many real-world systems can be 

represented as complex networks. However, the real-world networks are non-random and they 

usually present interesting patterns and properties conveying that their inherent structure is not 

governed by randomness. Researchers have concentrated particularly on a few properties that 

seem to be common to many networks (the small-world effect, degree distribution and 

community effects), which will be discussed in the following subsections. 

3.1.1 The Small-World effect 

The small-world concept in simple terms describes the fact that even if the network has many 

nodes, there exists a relatively small number of intermediate steps (short path) connecting any 

pair of nodes within the network (Newman, 2003). It was first introduced in the 1960s by 

Stanley Milgram through a series of experiments (Travers and Milgram, 1967; Travers and 

Milgram, 1969).  
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The network is said to show a small-world effect if the value of the mean geodesic distance, 

scales logarithmically or slower with network size for fixed mean degree (Newman, 2003). 

However, nowadays, the small-world effect has been studied and verified directly in a large 

number of different networks such as, the well-known “six-degrees of separation” in social 

networks (Newman, 2003).  

3.1.2    Degree Distribution 

In real-world networks, not all the nodes in the network have the same number of edges. The 

spread in the node degrees is characterised by a distribution function 𝑃𝑘 . The degree 

distribution 𝑃𝑘 is defined as the fraction of nodes in the network with a degree k (Newman, 

2003). Degree distribution of the network gives important information about topological 

characterisation of the network. For example, many networks, such as the internet (Faloutsos, 

Faloutsos and Faloutsos, 1999), citation networks (Redner, 1998), telephone call networks 

(Aiello, Chung and Lu, 2000) have all been shown to display power-law degree distribution 𝑃𝑘 

~ 𝑘 α where the constant α is known as the exponent of the power-law with a scaling between 

2 ≤ α ≤ 3 (Newman, 2010).  

3.1.3   Community Effects.  

A number of measures have been developed for testing this tendency in the network. One of 

them is the clustering coefficient which measures the degree to which nodes in a network tend 

to cluster together. However, there are two well-known definitions of the clustering coefficient 

of an unweighted network: the local clustering coefficient and the global clustering coefficient  

(also referred as transitivity) (Newman, 2001; Costa et al, 2007).  

The local clustering coefficient is a local property, introduced by Watts and Strogatz (1998a) 

and used to describe the network structure of nodes that are close to each other. 
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Consider a node i in a network G, the clustering coefficient of a node i, 𝐶𝑖, is defined as the 

ratio of the number of edges connecting the neighbours of i to the total possible number of such 

edges of i.  

𝐶𝑖 =
2𝐿𝑖

𝐾𝑖[𝐾𝑖−1]
        (3.1) 

Where, Li is the number of edges between neighbours of node i, 𝐾𝑖 is the degree of node i 

(Costa et al, 2007). 

The clustering coefficient for the whole network is the average of the local values Ci. 

𝐶 =
1

𝑛
∑ 𝐶𝑖

𝑛
𝑖=1        (3.2) 

Where n is the number of nodes in the network (Costa et al, 2007). 

An alternative definition of the clustering coefficient of a given node i is: 

𝐶𝑖 =
𝑁△(𝑖)

𝑁3(𝑖) 
       (3.3) 

where N△(i) is the number of triangles involving node i and N3(i) is the number of  connected 

triples having i as the central node (Costa et al, 2007). 

The global clustering coefficient is defined as the tendency among two nodes to be connected 

if they share a mutual neighbour (if a↔b and b↔c, then heightened probability that a↔c and 

forming a triangle). The global clustering coefficient is based on the relative number of 

triangles in the network, compared to total number of connected triples of nodes and can be 

written as (Newman, 2001): 

 𝑇 =
3∗𝑁△

𝑁3
       (3.4) 

Where: N△ is the number of triangles in the network and N3 is the number of connected triples.  
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In real networks, it is shown that the small-world property is often associated with the presence 

of clustering, denoted by high values of the clustering coefficient (Watts and Strogatz, 1998a).  

3.2 Overview of Validity Evaluation   

Since there is no universally accepted definition of what a community is, assessing the validity 

of community detection algorithms is a hard task and several validity approaches have been 

developed in literature to evaluate the performance of the community clustering algorithms. 

However, until this day, there is no formalisation of the problem of comparing and validation 

of community structure. In this section, the most commonly used cluster validity metrics are 

discussed. The cluster validity metrics could be classified into two types, cluster quality metrics 

and external evaluation metrics. 

3.2.1 Cluster Quality Metrics 

3.2.1.1 Coverage 

Coverage (Emmons et al, 2016) is one of the simplest quality functions, which compares the 

fraction of intra-cluster edges in the graph to the total number of edges in the graph. Coverage 

is given by: 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
∑ 𝐴𝑗𝑖𝛿(𝑆𝑖,𝑆𝑗)𝑖,𝑗

∑ 𝐴𝑗𝑖𝑖,𝑗
       (3.5) 

Where Si is the cluster to which node i is assigned and δ(a; b) is 1 if a = b and 0 otherwise. 

Coverage values usually range between 0 and 1. Higher values of coverage mean that there are 

more edges inside the clusters than edges linking different clusters. However, coverage metric 

does not take into account the internal cluster density and causes a strong bias toward partitions 

with a smaller number of clusters. Thus, it leads to a trivial clustering in which all nodes are 

assigned to the same cluster. 
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3.2.1.2 Conductance 

In contrast to coverage, which measures only the accumulated edge weight within clusters, the 

conductance, which is also known as Cheeger constant (Arias-Castro, Pelletier and Pudlo, 2012) 

is based on the idea that two clusters should have a small degree of connectivity between each 

other and in the ideal case they are disconnected. More formally, it computes the ratio of the 

number of inter-cluster edges for the cluster and either, the number of edges with an endpoint 

in the cluster or the number of edges that do not have an endpoint in the cluster, whichever is 

smaller (Kannan, Vempala and Vetta, 2004).  

Consider a cut that divides G into C non-overlapping clusters C1, C2, ….., Ck. The conductance 

of any given cluster Φ(C𝑘) is denoted by (Kannan, Vempala and Vetta, 2004):  

 𝛷 (𝐶𝑘) =
∑ 𝐴𝑖𝑗𝑖∈𝐶𝑘,𝑗∉𝐶𝑘

𝑚𝑖𝑛{𝐴(𝐶𝑘),𝐴(𝐶𝑘)}
       (3.6) 

Where: 𝐴(𝐶𝑘) = ∑ 𝐴𝑖𝑗𝑖∈𝐶𝑘,𝑗∈𝑣   which determine the total degrees of Ck , Ck  denotes the 

complement of Ckin graph G and A is the adjacency matrix of the graph G. 

The conductance of the graph G is (Kannan, Vempala and Vetta, 2004): 

𝛷(𝐺) = 𝑚𝑖𝑛 (𝛷(𝐶𝑘))      (3.7) 

Conductance is widely used to capture quantitatively the notion of a good network community 

as a set of nodes that has better internal- than external-connectivity. The lower the conductance 

the better is the clustering (Leskovec, Lang and Mahoney, 2010). However, as more clusters 

in the network will probably lead to more cut-edges, it is pointed out that the conductance has 

a tendency of giving better scores to partitioning with fewer clusters (Almeida et al, 2011). 
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3.2.1.3  Modularity 

As presented in chapter 2, modularity is one of the most popular validation metrics for 

topological clustering and it is used as an optimisation method for detecting community 

structure in networks. Modularity states that a good cluster should have a bigger than expected 

number of connections between the nodes within modules and a smaller than expected number 

of connections between nodes in different modules. The higher the value of modularity the 

better its community strength. 

3.2.2 External Evaluation Metrics 

When working with a network that has well-defined clusters of “ground truth”, it is possible to 

evaluate a specific clustering algorithm by comparing the computed solution provided by the 

algorithm with this “ground truth” solution as shown in Figure 3.1. In the following subsection, 

the common indices that are used for measuring “goodness” of a clustering result comparing 

to ground truth” solution are discussed. 

Figure 3.1 The way of benchmarking the algorithm using a network with ground-truth communities 

3.2.2.1 Rand Index 

The Rand Index (RI) is a statistical measure developed by Rand to measure the similarity 

between two clustering solutions (Rand, 1971). It is based on the relationship between pairs of 

nodes and requires two labels for each node. One label is corresponding to its true community 
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and the other one is corresponding to the predicted community. If X and Y are community 

clustering assignments for each node in the network, Rand Index is defined as the fraction of 

pairs of nodes that are correct to all possible pairs of nodes. A pair of nodes is considered 

correct either if the nodes share the same cluster in both clustering processes X and Y or if they 

are in different clusters in both solutions.  The Rand Index is then given by the equation: 

𝑅𝐼(𝑋, 𝑌) =
𝑎00+ 𝑎11

𝑎00+𝑎11+ +𝑎01+ 𝑎10
=

𝑎00+ 𝑎11

(
𝑛
2
)

      (3.8) 

Where:  

a11: i and j are assigned to the same cluster in both X and Y. 

a00:  i and j are assigned to different clusters in both X and Y. 

a10: i and j are assigned to the same cluster in X but to different clusters in Y. 

a01: i and j are assigned to different clusters in X but to the same cluster in Y. 

n: number of nodes in the network. 

 

RI gives a measure of similarity with a value ranging from 0, when there is no pair classified 

in the same way under both data clusters, to 1 when data clusters are exactly the same. In 

practice, the RI often lies within the narrow range of [0.5, 1]. However, RI is highly sensitive 

to the number of clusters considered in each clustering solution and has a tendency to give 

higher values as the number of clusters increases (Wagner and Wagner, 2007). 

3.2.2.2 Adjusted Rand Index 

The Adjusted Rand Index (ARI) is the chance-corrected version of the RI proposed by Hubert 

and Arabie and it is known to be less sensitive to the number of clusters (Hubert and Arabie, 

1985). ARI is equal to the normalised difference of the Rand Index and its expected value under 

the null hypothesis. The expression for ARI takes the general form (index - expected index)/ 
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(maximum index - expected index). More formally the Hubert-Arabie’s formulation of the 

adjusted Rand index is (Amodio et al, 2015): 

𝐴𝑅𝐼(𝑋, 𝑌)  =  
2(𝑎00 𝑎11− 𝑎01 𝑎10)

(𝑎00+𝑎01)(𝑎01+ 𝑎11)+(𝑎00+𝑎10)(𝑎10+ 𝑎11)
    (3.9) 

Like the RI, the adjusted Rand Index equals to 1 when both partitions are exactly similar.  

Because it is chance-corrected, a value equal to 0 represents the fact that the similarity between 

X and Y is equal to expected value under the generalised hypergeometric distribution 

assumption for randomness. However, negative values are possible and they indicate less 

agreement than expected value.  For further detailed description of ARI, the reader is referred 

to Hubert and Arabie (1985).  

3.2.2.3 Normalized Mutual Information (NMI) 

Normalized Mutual Information (NMI) is a similarity measure for comparing two partitions 

based on the information theory concept. It is introduced in the community detection domain 

by Danon et al. and since then it has been widely used to evaluate the accuracy of community 

detection algorithms (Danon et al, 2005).  

For an n-node network with two partitions X={X1, X2, X3, ….Xk} and Y={Y1 ,Y2 ,Y3, ….YK} 

where X and Y represent the real communities and found communities respectively, the 

normalized mutual information NMI(X,Y) of two divisions X and Y of a network is defined as 

follows (Labatut, 2015): 

𝑁𝑀𝐼(𝑋, 𝑌) =
−2∑ ∑ 𝑃(𝐾,𝐾)𝐿𝑜𝑔[

𝑃(𝐾,𝐾))

𝑃(𝐾)𝑃(𝐾)
]𝐾

𝐾=1
𝑘
𝐾=1

∑ 𝑃(𝐾)𝐿𝑜𝑔[𝑃(𝐾)]+∑ 𝑃(𝐾)𝐿𝑜𝑔[𝑃(𝐾)]𝐾
𝐾=1

𝐾
𝐾=1

    (3.10) 

Where: (𝐾, 𝐾) =
𝑋𝐾∩𝑌

𝐾

𝑛
 , 𝑃(𝐾) =

𝑋𝐾

𝑛
  and   𝑃( 𝐾) =

𝑌
𝐾

𝑛
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If the found partition by the algorithm is identical to the real community, then NMI takes its 

maximum value of 1. If the partition found is totally independent of the real partition then 

NMI=0 (Labatut, 2015).  

3.2.3 Computational complexity 

Computational complexity theory is the study of the scalability of algorithms. The term 

scalability involves both the number of computation steps needed and the number of memory 

units that need to be allocated to run the computation. In the case of a graph, the number of 

nodes n and/or the number of edges m is usually used to indicate the complexity of algorithm. 

Big O notation is a symbolism used in complexity theory, computer science, and mathematics 

to describe the asymptotic behaviour of functions. It tells you how fast a function grows or 

decreased (Fortunato, 2010). 

3.2.4 Visualization for Cluster Validation 

Applying metrics is one way to evaluate the quality and correctness of the detected 

communities but “a picture is worth a thousand words”. Visualising networks is the most direct 

way of understanding them. However, large networks, particularly dense ones are very difficult 

to visualise due to inherent visual clutter caused by many edge crossings (Kang et al, 2014). 

Different graphical representations for data associated with networks and their layout 

algorithms to give an impression of graph layout issues and limitations with regard to 

scalability have been proposed. These algorithms include Yifan Hu (Hu, 2005), ForceAtlas 

(Jacomy et al, 2014), Barnes-Hut Algorithm (Barnes and Hut, 1986) and OpenOrd layout 

algorithm (Martin et al, 2011). How to design appropriate graph visualization technique 

depends on many factors, including the type of graph describing the data and the analytical 

task at hand. 
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An alternative visualisation method is to use the adjacency matrix representations. In an 

adjacency matrix, nodes are displayed twice, on the abscissa and on the ordinate. An edge 

between the two corresponding nodes in the network is represented by a non-zero entry. 

However, since each edge in the network is defined by itself in a non-shared space, there is no 

edge-crossing problem. According to studies performed by Ghoniem et al. the adjacency matrix 

outperforms the node-link diagram when the considered graph becomes large and dense 

(Ghoniem, Fekete and Castagliola, 2004).  

Furthermore, using adjacency matrix representations, coherent rectangular areas (blocks) 

appear in ordered matrix plots whenever strongly connected nodes are present in the underlying 

topology. In network analysis scenarios, these blocks would be referred to as clusters. Hence, 

with these representations, clear block patterns help counting clusters and identify larger and 

smaller clusters (Behrisch et al, 2016). The adjacency matrix representation has been used in 

many domains including: social science, artificial intelligence, biology, supply management, 

neurology and transportation (Behrisch et al, 2016). 

  In this research, I have used the matrix reordering visualisation technique for representing the 

community clusters. 

 However, the research in this work focuses on the problem of community detection in the 

networks and does not touch the visualization technique.  For more information, interested 

readers may refer to (Herman, Melançon et al. 2000) and (Von Landesberger, Kuijper et al. 

2011). 

3.2 Artificial Networks 

When evaluating the performance of community detection algorithms, there are two 

approaches that could be used. The first approach is to test against the real-world networks 
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with prior information about communities and the second approach is to test against an artificial 

network whose community structure is already known, which is usually termed as ground truth. 

Among the former, Zachary's karate club (Zachary, 1977) and the college football network 

(Girvan and Newman, 2002) have been extensively used. However, due to the complexity of 

data collection and costs, real-world benchmarks are usually small-sized networks (Yang, 

Algesheimer and Tessone, 2016). Furthermore, obtaining a real network with a ground truth is 

not only difficult, but also costly in economic terms and time. Moreover, since it is not possible 

to control all the different features of a real network (e.g. average degree, degree distribution, 

community sizes, etc.), the algorithms could only be tested with a limited set of features. On 

the other hand, artificially generated networks can overcome most of these limitations. Thus, 

the literature has given much attention to algorithms' performance on benchmark networks and 

there are a number of models available to produce synthetic networks. The following 

subsections discuss the most well-known benchmarks that generate networks with ground truth. 

3.2.1   Girvan and Newman (GN) Benchmark Networks 

The Girvan and Newman benchmark (GN) is one of the first benchmarks proposed for 

community detection algorithms by Girvan and Newman in  (Girvan and Newman, 2002). The 

GN benchmark network consists of 128 nodes that are divided equally into 4 communities of 

32 nodes each.  The strength of the community (λ) is given by the fraction of the edges placed 

between two communities to the total number of edges in the network. The lower value of this 

parameter will result in networks with clear separable communities. However, the GN 

benchmark has some limitations such as: all the nodes of the network have essentially the same 

degree, the communities are all of the same size and the network is small.  

Since the real-world networks are characterised by heterogeneity in the distributions of node 

degrees and of community sizes, which is not the case in the GN benchmark, this benchmark 

is not entirely suitable for real-world network clustering (Newman, 2003). 
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3.2.2   LFR Benchmark Networks 

The LFR benchmark model was proposed by Lancichinetti et al. to generate undirected and 

unweighted networks that closely resemble real-world networks with community structure 

(Lancichinetti, Fortunato and Radicchi, 2008). LFR model has become a popular choice for 

assessing the performance of community detection algorithms and the model was subsequently 

extended to generate weighted and/or directed networks, with the possibility of overlapping 

communities. However, in this work, the focus is given to the undirected unweighted networks 

with non-overlapping communities.  

The LFR model is proposed to address most characteristics of real networks, e.g., size of the 

network and heterogeneous degree distribution. In the LFR benchmark, both the node degrees 

of a network and the size of each community are controlled by a power-law distribution with 

exponent γ and β respectively. However, it has been observed that real-world graphs have such 

a power-law degree distribution (Newman, 2003) with typical values of: 2 ≤ γ ≤ 3, 1 ≤ β ≤ 2  

(Lancichinetti, Fortunato and Radicchi, 2008). 

An important parameter of the LFR model is the mixing parameter μ, which represents the ratio 

between the external degree of each node with respect to its community and the total degree of 

the node. Each node shares a fraction 1− μ of its links with the other nodes of its community 

and a fraction μ with the other nodes of the network. Essentially this parameter can be viewed 

as the amount of noise in the graph. The larger the μ value of a network is, the harder it is to 

detect communities in it. If µ > 0.5 then each node shares more than half of its edges with nodes 

in other communities, μ = 0 means all edges are within community edges and μ = 1 means all 

edges are between nodes in different communities. The model also allows controlling directly 

the following parameters: number of nodes and maximum degrees. The code of LFR mode is 

publicly made available by the authors (Fortunato). 
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3.3 Research Methodology 

The aim of the research is to develop an accurate and effective community clustering 

approaches for large-scale networks.  This section presents research methodology for achieving 

the objectives of this thesis.  Figure 3.2 shows the research methodology framework used to 

achieve these objectives. Each stage of the methodology for this research is explained briefly 

in the following lines. 

Studying the background information and a careful review of the relevant literature (presented 

in chapter 2 and 3), revealed the insufficiencies of existing community detection techniques. 

This provided the direction for the research and helped me to formulate the problem definition 

along with the research objectives that listed in section 1.4.  However, to achieve these 

objectives three approaches are proposed and evaluated extensively.  

 

Figure 3.2 Research methodology framework 

 



41 
 

1- Decentralized Iterative Community Clustering Approach (DICCA) 

A novel Decentralized Iterative Community Clustering Approach to extract an efficient 

community structure for large social networks are proposed. The proposed approach 

works at the local level and does not require any global knowledge of the network. It 

based on random walk and reachability, which is done by message propagation between 

neighbours.  

2- Parallel Decentralized Iterative Community Clustering Approach (PDICCA) 

PDICCA is a distributed memory parallel processing approach that transforms the serial 

steps of the DICCA approach into parallelised tasks.  

3- An optimization approach for improving the robustness of community detection in the 

existing weighted community detection algorithms, especially in networks with missing 

information is proposed. This is done through considering attribute information, shared 

neighbours’ information and connectivity between nodes in the network, for the 

detection process.  

The following chapters (chapter 4, 5 and 6) explain in details about these three proposed 

approaches.  

For implementation of the proposed approaches, list of software were used in the process:  

 Matlab software  

 Igraph ( R ) software packages 

In this work, the synthetic dataset is generated by the LFR benchmark model along with their 

ground-truth communities in order to be able to evaluate the effectiveness of the proposed 

community detection approaches on a range of network-structural properties and network sizes. 



42 
 

In addition, anonymised Facebook datasets are used to evaluate the effectiveness of the 

Prepressing approach (3rd  proposed approach ).   

Evaluating the validity of community detection algorithms based on a single measure alone can 

lead to misleading conclusions. Thus, in this work, a range of performance measurements, 

Normalized Mutual Information (NMI), modularity (Q) and Adjusted Rand Index (ARI) have 

been applied as evaluation criteria to evaluate the quality of community clusters. These three 

performance measurements are based on three different approaches. The ARI is performed on 

pair counting whereas, NMI is based on the information theory approach. The third approach 

is the modularity measure, which relies strictly on the network topology. This modularity 

measure allows to quantify the quality of a community structure in a blind way and without the 

use of a reference (ground-truth).  

Going a step further, the matrix reordering visualisation is used as a visual representation for 

networks by encoding visually an adjacency matrix to show community clusters in the network.  

3.4 Summary 

Real-word networks have specific topological features, which characterize their connectivity. 

Measurements of the connectivity are essential to describe, analyse, model, validate the 

networks and exploit network structure to achieve certain aims. In this chapter, the empirical 

properties of real-word networks that describe the structure of the network are presented. This 

specifically focuses on the statistical properties of networks that have received particular 

attention, including the small-world effect, degree distribution and community effects.  

Furthermore, in this chapter various performance measures for assessing the quality of 

community clustering algorithms are discussed. This includes, cluster quality metrics such as 

coverage, conductance and modularity, and some external evaluation metrics such as Rand 
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index, adjusted Rand index and Normalized mutual information. Also, adjacency matrix 

representation is discussed.  

Finally, a comprehensive benchmarking study on the approaches for community detection in 

the networks is conducted. Girvan and Newman (Lancichinetti, Fortunato and Radicchi, 2008) 

and LFR Benchmark models (Lancichinetti, Fortunato and Radicchi, 2008) that are proposed 

to generate synthetic networks to mimic the real-world networks are discussed in more detail. 

The GN benchmark has some limitations such as, all the nodes of the network have essentially 

the same degree, the communities are all of the same size and the network size is small. Since 

the real-world networks are characterised by heterogeneity in the distributions of node degrees 

and of community sizes, this benchmark is not entirely suitable for real-world network 

clustering. So in this work, the synthetic dataset is generated by the LFR benchmark model 

along with their ground-truth communities is used in order to be able to evaluate the 

effectiveness of the proposed community detection approaches on a range of network-structural 

properties and network sizes. 
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CHAPTER 4                                                        

DECENTRALIZED ITERATIVE COMMUNITY 

CLUSTERING APPROACH (DICCA) 

In this chapter, a novel Decentralized Iterative Community Clustering approach (DICCA) for 

detecting communities in complex networks is proposed. The DICCA approach is based on the 

random walk procedure and reachability of nodes in the network. An important property of this 

approach is its ability to cluster the entire network without the global knowledge of the network 

topology. This ability means that this method could be easily adapted to any parallel/ 

distributed processing to find community clusters in big networks. 

Some parts of this chapter are published in the proceedings of the IEEE 28th Annual 

International Symposium on Personal, Indoor and Mobile Radio Communications PIMRC, 

Montreal, QC, Canada (pp.1-7) in October 2017. However, in reference to IEEE copyrighted 

material which is used with permission in this thesis, the IEEE does not endorse any of 

[Liverpool John Moores University]'s products or services. Internal or personal use of this 

material is permitted. If interested in reprinting/republishing IEEE copyrighted material for 

advertising or promotional purposes or for creating new collective works for resale or 

redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/ 

rights_link.html to learn how to obtain a License from RightsLink. 

4.1  Related Literature and Previous Studies  

The problem of network clustering has received considerable attention from researchers in 

recent years and the list of proposed algorithms is rich and diverse. Among them, those based 

on modularity maximization form the most prominent family of community detection 

algorithms closely followed by the category of algorithms based on random walks (Fortunato, 
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2010). However, most of the research on community detection algorithms has been designed 

to work on a single machine employing a form of basic random access to the entire network, 

so they require access to the entire network at all times (Fortunato, 2010). 

In the modern era of technology, a tremendous amount of data is generated at an incredible 

speed from everywhere. As the data size is scaling up, the need for computing power is 

exponentially increasing. In many such situations, the required processing power far exceeds 

the processing capabilities of single machines. Furthermore, in many such cases the large-scale 

data set does not fit into the main memory of a single machine and needs to be distributed 

among several machines. These demanding requirements have led to the need for parallel and 

distributed algorithms for big data analysis. 

In this chapter, a novel Decentralized Iterative Community Clustering Approach (DICCA) for 

accurately clustering networks is presented. This scheme is completely decentralized and does 

not require the global knowledge of the network. Apart from DICCA, there exist some other 

algorithms that operate based on partial information. For example, the Distributed Diffusive 

Clustering algorithm (DiDiC) is proposed by Joachim and Henning (Gehweiler and 

Meyerhenke, 2010), based on the method of disturbed diffusion, which is designed to eliminate 

all the global operations for assigning nodes to partitions. However, the nodes executing DiDiC 

algorithm need to communicate with their direct neighbours and DiDiC requires knowledge of 

all the neighbouring nodes. 

Another algorithm somewhat similar to the proposed DICCA is Connectivity-based 

Decentralized Node Clustering scheme (CDC) proposed by Ramaswamy et.al (Ramaswamy, 

Gedik and Liu, 2005). The CDC algorithm adopts some ideas from the diffusion-based models, 

and is particularly designed for peer-to-peer networks. Even though the algorithm assumes that 

each node has a limited view of the entire network, similar to the DiDiC algorithm, CDC 
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algorithm requires knowledge about all the neighbouring nodes. Another distributed graph 

partitioning algorithm, called Ja-be-Ja, proposed in (Rahimian et al, 2013) is a decentralized 

local algorithm that does not require any global knowledge of the graph topology. To compute 

the partitioning, the node only requires some local information about its neighbouring nodes, 

and a small subset of random nodes in the graph. However, unlike the proposed DICCA 

approach, the algorithm produces partitions of equal sizes. In fact, it tends to find balanced size 

partitions rather than good-shaped partitions, and therefore, the number and size of yielded 

partitions is controlled, and does not depend on the topology of the input graph. Therefore, the 

outcome does not match the real-life scenario. 

Table 4.1 Comparison of the algorithms 

Algorithm 
Short 

name 

Concept of the 

algorithm 
Features Comments 

Distributed 

Diffusive 

Clustering 

algorithm 

DiDiC 

Uses the concept of 

disturbed diffusion to 

identify dense graph 

regions 

Requires 

knowledge of all 

the neighbouring 

nodes 

DiDiC initially was 

implemented to balance the 

loads on virtual P2P 

supercomputers 

Connectivity-

based 

Decentralized 

Node 

Clustering 

scheme 

CDC 

The central idea in the 

CDC scheme is to 

simulate flow in 

the network where every 

edge considered as a 

road between two points 

Requires 

knowledge about 

all the 

neighbouring 

nodes 

Model is suitable for 

discovering connectivity-based 

clusters in peer to peer 

network and handle  highly 

dynamic nodes 

Ja-be-Ja Ja-be-Ja 

It is a  distributed edge 

partitioner that creates 

balanced partitions while 

reducing the vertex cut 

Does not require 

any global 

knowledge of the 

graph topology 

The algorithm produces 

partitions of equal sizes. 

However, this is usually not the 

case for real networks. 

Decentralized 

Iterative 

Community 

Clustering 

approach 

DICCA 

The algorithm is based 

on the random walk 

procedure and 

reachability of nodes in 

the network 

Able to cluster the 

entire network 

without the global 

knowledge of the 

network topology 

The algorithm adaptable to any 

parallel/ distributed processing 

to find community clusters in 

big networks when the size of 

the input network or the 

computation complexity is 

beyond the resources of a single 

computer. 

 

4.2 Description of the Proposed DICCA 

DICCA is an agglomerative clustering algorithm, it starts with every node belonging to a 

community cluster on its own and iteratively merging the clusters that have high similarity with 

each other. DICCA is based on random walk and reachability by broadcasting messages 
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through the network to compute similarity between community clusters and identify clusters 

in the network. 

The pseudo code outlining the entire procedure is listed in Algorithm 4.1 below and it consists 

of two phases that run in an iterative fashion. The first phase, named local clustering, is to 

define originators, one for each community cluster and associate each node to the best-fit 

originator. The second phase, named network reduction, is used to build a new network based 

on the detected communities in the first phase. 

In the local clustering phase of each round of the iteration, one node is selected randomly as 

the originator. Then this originator node sends a message (Msg) to all its neighbours. The 

message contains the following three fields: Originator node ID (OnID), Time to Live (TTL) 

and Message Weight (WMsg). OnID is used for uniquely identifying the originator node. TTL 

is the maximum number of hops that the Msg can be recirculated before being discarded. The 

message weight field (WMsg) is the weight carried by the message. The Weight represents the 

estimated probability of reaching any node in the network starting from the originator node. 

However, the WMsg is initialised to one and assigned to the originator itself, to avoid the 

originator being assigned to any other clusters. The function used to calculate the weight of 

message sent from the originator 𝑂𝑖 to its neighbouring node V𝑖  depends on the edges between 

the originator 𝑂𝑖 and the node V𝑖 and is defined as: 

𝑊𝑀𝑠𝑔 (𝑂𝑖, 𝑉𝑖) =
𝑊(𝑂𝑖,𝑉𝑖)

∑ 𝑊(𝑂𝑖,𝑉𝑗)𝑉𝑗∈𝑁𝑏𝑟(𝑂𝑖)
         (4.1) 

Each node in the network maintains a set of values, represented as Total Message Weight, 

originator ID. The Total Message Weight value represents the sum of the weights of all the 

messages that reached Ni and has the same Originator node ID. When the node V𝑖  receives a 

message Msg, it updates the total weight function corresponding to the message originator node. 

Then, the receiving node V𝑖 checks whether or not the TTL of the message is greater than zero. 
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If so, the node decrements TTL value by one, updates WMsg of the Msg and forwards the 

updated message to all its neighbours. The updated weight of the new message WMsg(Vi, Vk) 

being re-sent from node V𝑖  to its neighbouring node VK is defined as: 

𝑊𝑀𝑠𝑔(𝑉𝑖 , 𝑉𝐾 ) =  𝑊𝑀𝑠𝑔  𝑥 
𝑊(𝑉𝑖,𝑉𝑘)

∑ 𝑊(𝑉𝑖,𝑉𝑗)𝑉𝑗∈𝑁𝑏𝑟(𝑉𝑖)
     (4.2) 

However, Node VK  halts the message circulation if TTL is zero or WMsg becomes 

insignificantly low. When the TTL reaches zero, the message will no longer be forwarded and 

the nodes join the community led by the originator node Oithat has received total weight values 

greater than the specified threshold. However, if the total weight values received for some 

nodes lie below a predefined threshold, then those nodes will remain as outliers. 

In the next step, the algorithm adds one more originator node, by randomly selecting one of the 

nodes from the outliers that do not belong to any community. Then the new originator repeats 

the same process that was carried out by the former originator and updates communities and 

their corresponding originator as well as the outlier nodes list. The algorithm keeps iteratively 

adding one more originator, and updating communities and outlier nodes until each node is 

joined to a community, and there is no outlier node remaining. However, each node in the 

network may receive multiple messages generated from different originator nodes. In that case, 

the node joins the community led by the originator node that has the highest total weight. 

The second phase of the algorithm consists of building a new network from the communities 

discovered in the first phase where the individual nodes in the new network are the individual 

communities from the first step. In this new network, there will be an edge between two nodes 

if there were edges between the corresponding two communities in the previous step. The 

weights of those new edges are the sum of the weights of the edges between nodes in the 

corresponding two communities. The edges between nodes of the same community in the first 

step will lead to self-loops for this community node in the new network. 
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The two phases mentioned above are repeated with the rebuilt network iteratively and the 

process stops when there is no more change in the communities and consequently optimised 

community clusters are obtained.  

Although the exact computational complexity of DICCA is harder to formalize, this algorithm 

behaves as 𝑂(𝑚 log ((𝑛.𝑚)2)), in which n is the total number of nodes in the network  and m 

the number of edges. However, the most effort is in the first phase of the algorithm. 

The proposed concept is shown in Figure 4.1. The figure illustrates how the proposed algorithm 

works at different stages of execution of the algorithm with 11 nodes labelled from 1 to 11 and 

17 unweighted edges. The algorithm process is initiated by choosing node 4 as originator in 

the first iteration and threshold value is set to 0.25. Messages in the figure are defined by three 

fields that provide information about the messages representing the originator, TTL and current 

weight of the message respectively. For example, if the field value of the message received by 

node 5 is {4:2: 0.25}, it means that the message data was originated by node 4 and the weight 

of current message is 0.25 with TTL=2. 

By compiling the notions above, a community cluster in the proposed algorithm can be 

described as: 

1. The nodes and only these nodes which are mutually densely-connected, belong to the same 

cluster. 

2. If node V does not have many neighbours and it is reachable from one or several nodes, then 

V belongs to the cluster that is more densely connected. 

3. If V does not have any neighbours, then V does not belong to any cluster.  

4. The obtained communities are not overlapping and consequently, they define a partition C 

of  n such that V= ∪𝑖=1
𝑘  Ci  and  Ci ∩ Cj = Ø for any i≠ j. 
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Figure 4.1 Illustrates the concept of the algorithm 
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Node 4 chosen as originator. TTL=3 
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Algorithm 4.1. The proposed method 

Input: underlying network graph G, time_to_live and threshold value 

Output: C communities as a final division of G. 

Repeat 

      Outlier list   ←  all nodes // local clustering phase 

      While outlier list ≠{} 

               Oi  ←  Rand select (outlier list) // choose a node randomly to be an originator. 

               //creat new message (Msg) 

             OnId  ←  Oi // originator ID 

              TTL  ←  time_to_live 

             WMsg ←  1 

             Msg ←{ OnId , TTL, WMsg } 

While TTL ≥ 0 

Total_weight (Oi, Vi) = sendmessages(G, Oi ,OnId, TTL, Msg) // Total 

//weight between Oi and its neighbout nodes (Vi) 

TTL ←  TTL-1 

Oi ←  Vi 

Msg ←{ OnId , TTL, Total_weight (Oi, Vi) } 

      end while 

for each Node Vi ∈ G 

if Total_weight(Vi, onID)  ≥ threshould then 

   C(Vi)    ←  Join the cluster lead by max onID 

else 

    Remain outlier 

end if 

             end  

              end while 

    Ĝ=Aggregate (G,C) // Network reduction phase “Compact each community to one  

 // new node and build new network” 

       if (C_current=C_ previous) // no membership change 

break;   

    return C / / return the final division of G 

end Algorithm 

Function sendmessages  (G, Oi ,OnId, TTL, Msg) 

for each Node Vi ∈ Nbr (Oi) do 

Send WMsg to Vi  ←  WMsg(Oi ,Vi)=WMsg(Oi ,Vi) *W(Oi, 

Vi)/ ∑ 𝑊(𝑉𝑖, 𝑉𝑗)𝑉𝑗∈Nbr(𝑉𝑖)
 

If Ni have seen message from onID before then 

    Total_weight(Vi, Oi) ←   Total_weight (Vi, Oi) + WMsg 

else 

    Total_weight(Vi,Oi) ←   WMsg 

end if 

      end  

Return Total_weight(Vi,Oi) 

end function 
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4.3 Experimentation and Results 

4.3.1 LFR Synthetic Dataset (network) 

Many real-world complex networks such as the Internet, social networks, biological networks, 

infrastructure networks etc. are heterogeneous and show a power-law degree distribution 

(Newman, 2003). In such networks not all their components such as nodes, links and subgraphs 

carry the same role or importance in the network, which has crucial effects on the resulting 

performance of the algorithms deployed. Consequently, the performance of any community 

detection algorithm varies depending on the network’s characteristics. Furthermore, to analyse 

the efficiency of the community detection algorithm, one needs to apply it to networks which 

have ground truth communities (the actual partitions), and then the performance of the 

algorithm needs to be measured as the accuracy in recognising the ground truth communities.  

Due to the scarce availability of real networks that have ground truth communities, and in order 

to measure the performance of the proposed community detection algorithm on both network-

structural properties and network size, the synthetic dataset is generated by the LFR benchmark 

model along with their ground-truth communities and used to test the proposed algorithm in 

this work.  

4.3.2 Evaluation Metric 

Since the true community structure is known for the benchmark network, the proposed 

algorithm is evaluated by comparing the obtained partition in the experiments with the ground 

truth provided by the LFR benchmark. Normalized mutual information (NMI) metric is used 

to quantify the accuracy of community detection methods by evaluating the level of 

correspondence between detected and ground-truth communities.  In addition, modularity 

measurement is used to evaluate how effective the algorithm is in terms of modularity 

optimisation. 
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4.3.3 Parameter Selection Strategy 

The proposed algorithm uses two parameters, which are ‘time to live’ and ‘threshold value’; if 

these two parameters are optimally set, then, it will highly improve the performance of the 

algorithm.  So some strategies about the choice of these two initial parameters are discussed in 

this section. 

4.3.3.1 Time to Live  

TTL is a parameter used by the algorithm to control the number of nodes visited in the network. 

TTL value must be a positive integer greater than zero. In reality, choosing an appropriate TTL 

value is not an obvious task. On one hand, small time-to-live may expire before reaching many 

relevant nodes which are further away. On the other hand, high time to live means more nodes 

than needed are visited, thus increasing both the message load on the network and the running 

time of the algorithm. Therefore, in the proposed algorithm, rebuilding the network before 

starting a new iteration is considered as a solution for this issue. For example, with a small 

value of TTL, some nodes (Vf) that are densely connected with the neighbours of the originator 

(intermediate nodes between them and the originator node) cannot receive messages from the 

originator Oi as the TTL value might have expired in the current iteration. Then in the following 

iteration, the intermediate nodes will be merged with the originator node making them as one 

node. Then in the next iteration these Vf nodes will be reached by the originator Oi with a small 

value of TTL. 

In order to determine the effect of TTL value on the community clustering accuracy, the TTL 

value ranging from 1 to 4 has been used in this evaluation. Figure 4.2 indicates the accuracy 

values of synthetic networks with 500 and 1000 nodes. In this work, modularity and NMI have 

been used to evaluate the quality of community detection. In order to give a condensed picture 
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of the results, the computing time in seconds and the message complexity results as a function 

of the TTL are presented in Figure 4.3. 

From the figure, it is clear that there is a correlation between TTL and both computing time 

and message complexity. The smaller the TTL, the faster the algorithm. This can be qualified 

 
(a)                                                                                       (b) 

Figure 4.2 Performance of the DICCA algorithm using different TTL values 

 

(a)                                                                                       (b)

 

(c)                                                                                       (d) 

Figure 4.3 Comparison between computing time and the message complexities over different TTL values 
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by the fact that the run time of the DICCA algorithm depends on the total number of exchanged 

messages which in turn is affected by the total number of hops that a message is permitted to 

travel before being discarded (TTL).  

However, the proposed algorithm in this work is implemented in Matlab from scratch, which 

is not optimised for speed. Therefore, the total number of exchanged messages (Message 

Complexity) will be computed as a score for running time in this work. 

The graphs in Figure 4.2 demonstrate that the algorithm yields good community clusters when 

the TTL is set to be 3. Furthermore, recall from chapter 3 that big networks from real-world 

applications are often small-world networks (Watts and Strogatz, 1998b) (Silva and Zhao, 

2016), so increasing the TTL value does not have significant impact on the quality of 

community detection but may result in a very high communication load. However, selecting a 

small TTL value can reduce the broadcast overhead but will compromise the accuracy. For 

example, when TTL = 1 is used, the WMsg message is only being propagated once from 

originator to its neighbour, which means  only the direct originator’s neighbour nodes could be 

merged  in that iteration. For this scenario, the NMI and total number of messages generated 

by the algorithm for N ∈ {500; 1000} were {0.661; 0.769} and {4832; 9019} and respectively. 

On the other hand when a value of TTL=3 was used for n ∈ {500; 1000}, the NMI results were 

{0.918; 0.946} and the total number of messages were {1,347,024; 3,735,475}. Furthermore, 

when TTL = 4, the NMI scores were {0.922; 0.956} which are almost same as the NMI yielded 

by the algorithm when TTL is 3. On the contrary, the total number of messages generated were 

{29,680,547; 87,794,210} which are significantly higher than that generated when TTL was 3.  

Based on the above discussion, it is clear that the algorithm will stabilize very fast on the 

networks with small value of TTL, but quality is worse in most cases. On the contrary, using a 
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large value of TTL can ensure that all nodes will receive the message, but introduces 

unnecessary broadcast messages for nodes beyond the target-clustering region.  

The number of messages sent during an iteration clearly depends on the number of nodes in 

the network and on the size of the n-neighbourhoods of the nodes (network structure). This 

means high communication load is required for extracting clusters and may result in a 

scalability problem in large and dense network environments. This scalability issue greatly 

hinders the application of module extraction to network analysis where most of the networks 

consist of high number of nodes. However, in big networks, the message weight becomes 

extremely low compared to a threshold value. A node’s decision to join a cluster is based on 

the total weight of the messages from the originator to the node exceeding the threshold value.  

Consequently, extremely low message weight does not affect the accuracy of clusters and the 

process could be halted.  

To avoid an excessive number of messages being forwarded, adaptive termination technique 

has been implemented in the DICCA approach. When the message weight becomes 

insignificantly low, the message is discarded by the received node even though the TTL may 

still be greater than zero. In this work the minimum value of message weight (Min_VALUE) 

is specified to be three hundred less than threshold value. 

By comparing Figures 4.2-4.3 with Figure 4.4, it can be observed that there are negligible 

differences between the performance of the algorithm in terms of NMI and Modularity scores.  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280845/figure/f12-sensors-09-01012/
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Considering message complexity and running time, the performance of the algorithm when the 

Min_VALUE is applied is by far better than its performance when Min_VALUE is not applied. 

 
              (a)                                                                                       (b) 

 
                (c)                                                                                       (d) 

Figure 4.4 Performance of DICCA algorithm using adaptive termination via different TTL values 

4.3.3.2 Threshold Value  

The threshold is a numerical value ranging between 0 and 1, which defines the minimum weight 

of the message required to join a cluster. It is defined by the user at the beginning of the process.  

The node is allowed to join the community cluster led by originator Oi, if the total weight of 

the message received by the node from Oi is equal to or greater than the threshold value. As 

the threshold value increases, the difficulty of merging communities also increases. Thus, the 

size of the community clusters depends on the threshold value. If a high threshold is set, more 

small-size communities are detected. On the contrary, setting a lower threshold leads to fewer 

but large size detected clusters. Therefore, the size of the community clusters produced by the 

proposed algorithm could be controlled using the threshold parameter. The threshold value is 
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in the range of {0; 1}, 0 yielding a single community and 1 producing clusters of singleton 

nodes. Tuning this parameter could be seen as a possible practical remedy to control the desired 

size and the number of communities.  

In order to understand how the threshold value affects the accuracy, size and the number of 

community clusters, the effect of different threshold values has been studied on a small network 

with 50 nodes and 83 edges. The results presented in Table 4.2 show that when the threshold 

value increases, more small-sized communities are detected. In contrast, lower threshold value 

leads to larger detected clusters. For example, when the threshold value is 0.1, three clusters 

have been detected and the biggest detected cluster has 21 members. That number of clusters 

becomes 5 when the threshold parameter is changed to 0.7. That is because larger threshold 

value means more strict requirements in community intra-connectivity and only strongly 

connected nodes can belong to the same cluster.   

Table 4.2 The experimental results obtained by the DICCA algorithm on a small network of 50 nodes 

 

 

 

 

 

 

 

Figure 4.5 shows the visualization of synthetic network with 50 nodes and the detected clusters 

when the threshold parameter is varied from 0 to 1 in steps of 0.1. The layout for all the different 

Threshold 

value 
NMI 

Number 

of clusters 

Modularity 

(Q) 

Min N.of 

members 

Max N.of 

members 

Avg N.of 

members 

0 0 1 0 50 50 50 

0.1 0.664672 3 0.623675 14 21 16.66667 

0.2 0.810166 5 0.674046 5 21 10 

0.3 0.88515 6 0.717521 5 16 8.333333 

0.4 0.85165 9 0.658151 1 10 5.555556 

0.5 0.900606 12 0.622587 1 9 4.166667 

0.6 0.900606 16 0.622587 1 9 3.125 

0.7 0.723512 39 0.18682 1 5 1.282051 

0.8 0.670295 50 -0.02584 1 1 1 

0.9 0.670295 50 -0.02584 1 1 1 

1 0.670295 50 -0.02584 1 1 1 

0.223xt1 0.950701 9 0.68907 2 10 5.555556 
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visualizations of the network is kept constant to be able to draw conclusions easily by looking 

at the figures. Members in the same community are represented with the same colour. 

Using the proposed DICCA algorithm the maximum modularity is obtained when the threshold 

value is 0.3 by the partition in 6 communities achieving Q=0.71 (graph d). However, the ground 

truth partitioning is 8 communities with Q= 0.717. DICCA merged three communities into one. 

Beside this, there are 5 communities classified correctly with the exception of one node (node 

23) which is misclassified. 

Clearly, the success of the algorithm is heavily dependent on the proper tuning of the threshold 

value. However, there is no standard prescription for threshold value for all type of data sets 

and applications. The most appropriate threshold value for a given data set is usually derived 

experimentally, defined by the user according to their knowledge or estimated on the basis of 

data from previously completed similar projects. 

4.3.3.3 Automated Identification of Appropriate Threshold Value 

Although the threshold value controls the number and the size of clusters that will be extracted, 

which could be considered as an advantage of the algorithm, choosing the right threshold 

without a priori knowledge of the network structure is a challenging task. Furthermore, 

generating a priori knowledge requires human expertise and is time consuming since real 

networks are usually big and contain huge amounts of information (De, 2016). In this work, 

based on the above observation, a mathematical model is proposed to automatically calculate 

the threshold value. The model calculates the optimal threshold value based on the size, density 

and layout structure of the network. Equations 4.3 to 4.5 present the threshold calculation 

model for undirected networks designed by the author to help calculate the threshold value  
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Figure 4.5 Community detection result for a small network with 50 nodes as extracted by the proposed DICCA 

algorithm using TTL=3 and with different threshold values. (a) threshold value =0, (b) threshold value =0.1, (c) 

threshold value =0.2, (d) threshold value =0.3, (e) threshold value =0.4, (f) threshold value =0.5, (g) threshold 

value =0.6, (h) threshold value =0.7, (i) threshold value >=0.8, (j) ground truth clusters, (k) Modularity via 

threshould value. The values of the other parameters were fixed: =2, β=1. 

 
(a)                                                     (b)                                                    (c)

 
(d)                                                     (e)                                                    (f)

 
(g)                                                     (h)                                                    (i )

  
(j)                                                                             (k)                                                     
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when the users have no knowledge of the community properties of the network. Threshold 

value calculation for specific networks and applications may require specific concepts and 

considerations. 

In undirected network, the threshold value is defined as follows: 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 =  𝑎𝑣𝑔_𝑡 + (𝑡 − 1)𝑥(1 −  𝐶) 𝑥 𝑎𝑣𝑔_𝑡 (4.3) 

𝑎𝑣𝑔_𝑡 =  
𝑙𝑜𝑔 (𝑙𝑜𝑔 (𝑛)

𝑙𝑜𝑔 (𝑛)
∑ (

1

𝑘(𝑖)
+

𝐾𝑖−1

𝐾𝑖
2 +

𝐾𝑖−2

𝐾𝑖
3 )𝑛

𝑖=1      (4.4) 

𝐾𝑖 = ∑ 𝐴𝑖𝑗
𝑛
𝑗=0                                           (4.5) 

where, t is the iteration number, Ki is the degree of node i, n is the total number of nodes in the 

network, A is the adjacency matrix and C is network clustering coefficient which is defined as:  

𝐶 =
1

𝑛
∑

2𝐿𝑖

𝐾𝑖[𝐾𝑖−1]
𝑛
𝑖=1       (4.6) 

where L𝑖 is the number of edges between neighbours of node i (Costa et al, 2007). 

Given a network with n nodes, a complete network (fully connected network) is a simple 

undirected graph in which every pair of distinct nodes is connected by a unique edge. Based 

on the graph theory the network clustering coefficient for a fully connected network is 1 and 

the degree of each node is defined as: 

                 𝐾𝑖  =  𝑛 –  1             (4.7) 

Thus, the total edges of the network having n nodes will be: 

∑ 𝐾𝑖
𝑛
𝑖=0 =  𝑛(𝑛 − 1)       (4.8) 

Using equation (4.3) to calculate the threshold value: 

                𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑉𝑎𝑙𝑢𝑒 =
𝑙𝑜𝑔 (𝑙𝑜𝑔 (𝑛)

𝑙𝑜𝑔 (𝑛)
∑ (

1

𝐾𝑖
+

𝐾𝑖−1

𝐾𝑖
2 +

𝐾𝑖−2

𝐾𝑖
3 )𝑛

𝑖=1      (4.9) 
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Here, the value of  ∑ (
1

Ki
+

Ki−1

Ki
2 +

Ki−2

Ki
3 )𝑛

𝑖=1  represents the maximum weight of messages 

received by node i when the TTL=3  and  since 
log (log(n))

log (n)
  is always less than 1, if the proposed 

algorithm with adapted equation (4.3) for threshold parameter is used to extract clusters in the 

complete network, the algorithm will merge all nodes in one cluster from the first iteration. 

This result is acceptable since there is no obvious cluster structure in a fully connected network. 

It is worthwhile mentioning that, in each iteration, the threshold value is stepwise increased by 

(t-1)x(1- C) x avg_t as seen in equation (4.3), so that it becomes progressively difficult for 

clusters that are not so densely connected to join with each other. Only the strongly connected 

ones will be able to merge. Additionally, the maximum threshold value cannot be larger than 

1. By using the proposed model, the threshold value at the first iteration for a small network of 

50 nodes as considered in Table 4.2 is derived as 0.223 x t1, where t1 refers to the first iteration. 

Figure 4.6 The community structures of the ground truth communities and those extracted by the proposed 

DICCA algorithm on the LFR benchmark networks with 50 nodes using TTL=3 and threshold value =0.223xt1. 

Figure 4.6 shows the visualization of the ground-truth community structure of 50 nodes and 

the detected clusters result using the DICCA algorithm when the threshold value parameter 

was calculated using equation (4.3). The DICCA algorithm gives a near optimal partitioning. 

It identifies nine clusters, one more than the ground truth partition, which has difficulty in 

extracting the cluster containing nodes 33, 23 and 16. 

   
(a)  Communities detected with proposed algorithm.          (b) Ground truth communities 
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Based on the above argument, in all the experimentations performed in this work as discussed 

below, threshold value is defined using equation (4.3) and to achieve good trade-off between 

high modularity and low message complexity (running time), TTL is set to a value of 3. 

4.4 Analysis of Results and Discussion 

In this section, the results from the experiments conducted using synthetic networks are 

presented, analysed and discussed in detail. The proposed DICCA approach was implemented 

using Matlab, which is not optimised for speed on the windows system with ® Core™ i7 6700K 

CPU 4.00GHz and 16 RAM available memory.   

A set of undirected networks were generated using the LFR benchmark graph. The default 

benchmark parameter values are used as the benchmark parameters for the exponents of the 

degree distribution and community size, viz. γ =2, β =1. The mixing parameter is varied from 

0.1 to 0.75 and the number of nodes is varied from 500 to 5000. The average degree and the 

maximal degree are 25 and 50, respectively. Table 4.3 outlines the parameters used to generate 

the LFR benchmark graph. 

Table 4.3 The LFR benchmark graph parameters. 
Variable Value Description 

n n ∈ {500, 1000, ,,,,5000} number of nodes in the network 

𝑲 25 mean degree of each node 

kmax 50 maximum degree 

µ µ ∈ {0.1, 0.15, . . . , 0.75}, mixing parameter 

β 1 exponent of community size distribution 

(typically 1 ≤ β ≤ 2 in real-world networks) 

γ 2 exponent of degree distribution 

(typically 2 ≤ γ ≤ 3 in real-world networks) 

  

For each combination of parameter values, five instances of network were generated to check 

for consistency. Furthermore, to eliminate the effect of randomness of choosing originators in 

the proposed DICCA method, the algorithm was run 20 times on the five instances of network 

datasets, so, the experimental results presented are the average of 100 simulation runs.  
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4.4.1 Results for Each Iteration of Clustering 

Figure 4.7 shows iteration results of the algorithm for a small network with 50 nodes. Nodes 

in the same community are labelled in the same colour. In the first iteration, originator nodes 

are represented by rectangular shape. It is worth mentioning that due to the reduction phase of 

DICCA, which consists of merging nodes in the same community into one node to create a 

new graph, nodes in the figure that are shaded together with the same colour represent one node 

in the following iteration process of the algorithm. Each iteration results in a network with a 

different number of community clusters, and the number of communities becomes smaller and 

smaller until the convergence of clusters is achieved. For example, in the initialisation stage, 

each node is a cluster on its own, therefore there are as many clusters as the number of nodes 

in the network. After initialisation, in the first iteration, 15 communities are identified followed 

by 14 and 11 communities during the second and third iterations respectively. The random 

initial originator nodes are transferred into meaningful clustering in iteration 5. Graph (g) in 

Figure 4.7, illustrates the convergence of the clusters, where there is no change in cluster 

membership of clusters with subsequent iterations (iteration 5). To be able to analyse the 

intermediate results of the algorithm the value of modularity and NMI via the iteration are 

calculated and shown in graph (h) in Figure 4.7, which reveals that at each iteration, the 

measure of both Modularity and NMI are improved progressively until the convergence is 

reached. 



65 
 

 
Figure 4.7 Community detection result for each iteration on a small network of 50 nodes using the proposed 

DICCA algorithm with TTL=3, threshold value =0.223 *t, and =1, β=2. 

        

                     (a)   Initialisation                        (b) Iteration#1                               (c) Iteration#2 

                                                              

                   (d) Iteration#3                                          (e) Iteration#4                       (f) Iteration#5 

   

                                 (g) Convergence                                   (h) Performance via iteration 
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4.4.2 Clustering Results for Increasing Network Size 

To check how the performance of the proposed algorithm is affected by the network size, the 

algorithm was evaluated using the previously discussed synthetic network with varying number 

of nodes, viz. n ∈ {500, 1000, … 5000}. The obtained community structure is compared with 

the ground truth communities using the previously discussed NMI and modularity measures. 

 
Figure 4.8 NMI, Q-DICCS and Ground truth Q scores (y-axis) as number of nodes (x-axis) changes. 

 

Figure 4.8 shows the clustering accuracy of the proposed DICCA algorithm when the network 

size is varied from 500 nodes to 5,000 nodes. The algorithm performs very well and the 

communities detected are very close to the reference (value of 1) with an average NMI value 

of above 0.9. However, the modularity index (Q) of clustering results obtained by the DICCA 

algorithm is slightly lower compared to that of the ground truth network.  

4.4.3 Evaluating Repeatability of the Algorithm’s Performance 

It is important to mention that several clustering methods are sensitive to random starts of 

algorithm (Weber and Robinson, 2016) and the resulting clusters depend on the initial random 

starts where the algorithm does not yield the same result with each run. However, to further 

investigate the ability of the DICCA clustering algorithm to produce consistent results across 

random starts, the standard deviation of the clustering results is measured where the algorithm 

is run 100 times each time with different random initialisation. The lower values of standard 
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deviation indicate lower output changes and are always preferable. Results of the standard 

deviation value of both NMI and modularity are displayed in Figure 4.9. As an overview, the 

most notable phenomenon that can be observed from the results is that the overall value of 

standard deviation is negligible, indicating that the DICCA algorithm does not have stability 

issues and is able to successfully reproduce stable output when the experiment is repeated.  

 

Figure 4.9 Standard deviation of final modularity/NMI with network sizes. 

4.4.4 Evaluation of Message Complexity of the DICCA Algorithm 

Performance of the proposed algorithm was evaluated in terms of the total number of 

exchanged messages for different network size, as an indirect measure of processing capability 

required for increasing network size. At the outset, the curve in Figure 4.10 shows a linear 

increase in the number of exchanged messages with increasing size of the network.  

However, more in-depth analysis as shown in Figure 4.11, which shows the average percentage 

of exchanged messages in each iteration tells a different story. It can be observed from the 

figure that data exchange for the DICCA algorithm is much greater at the first stage of iteration 

when each node is in its own cluster. Just after 2 to 3 initial iterations, most nodes have their 

cluster labels and the algorithm has merged the nodes belonging to the same cluster to be one 

node. In fact, on average more than 90% of the data exchange happens in the first iteration for 

a network size of 1,000 nodes.  As seen in Figure 4.11, the percentages of total exchanged 
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messages in the first three iterations are 99.59 % and 98.66% for network size of 500 and 1,000 

nodes respectively. Hence, it can be safely concluded that though the proposed approach may 

tend to have an increasing number of generated messages for increasing network size, it does 

not require more iterations before the clusters converge. Most of the data exchange is in the 

first 2 or 3 iterations due to the sheer number of nodes exchanging data with each other. The 

average number of iterations is slightly increased from 5 to 7 as the number of nodes increased 

from 500 to 5,000 (See table A.1.1 in Appendix A.1). 

  

Figure 4.10 Total number of exchanged messages (y-axis) as number of nodes (x-axis) changes 

 
(a)                                                               (b)  

Figure 4.11 Percentage of Message exchanged per each iteration. (a) number of  node in the network is 500, (b)  

number of  node in the network is 1,000. 
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4.4.5 Evaluation of Clustering Performance Using Mixing Parameter 

The DICCA algorithm was evaluated with varying values of mixing parameter between 0.1 

and 0.75, µ ∈ {0.1, 0.15, . . . , 0.75}, and keeping the number of nodes constant, n ∈ {500, 

1000}. Figure 4.12 shows the mean values of all the obtained results for NMI and Q.    

   

(a)                                                                                  (b) 

Figure 4.12 Performance of the proposed algorithm using Mixing parameter. (a) Number of node in the network 

is 500, (b) Number of  node in the network is 1,000. 

In Figure 4.12, the mean modularity score and the NMI of the partitions compared with the 

ground truth communities as a function of the mixing parameter are shown. As can be seen, 

the proposed algorithm has a similar performance for both networks of size 500 and 1,000. 

However, on a closer look, the algorithm performs very well for the mixing parameter value ≤ 

0.5 and provides a good match to the ground truth. In contrast, for mixing parameter values 

≥0.5, its performance drops with respect to both NMI and the modularity scores of its network 

partitions.  

Also, it should be noticed that with increasing value of mixing parameter, the modularity of 

both the DICCA algorithm and ground truth network is decreasing. This can be justified by the 

fact that when the mixing parameter becomes more than 0.5 many of the edges will fall outside 

the communities and so the communities become rather indistinguishable. In other words, for 

smaller μ the network exhibits a clear community structure, as per the definition of a 
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community in a strong sense that each node should have more connections within the 

community than with the rest of the graph (Silva and Zhao, 2016). Therefore, for higher μ, the 

network starts to show a multipartite structure and it most closely resembles the network that 

does not display any community structure. However, the modularity index of clustering results 

obtained by the proposed algorithm is gradually lowering compared to the ground truth network 

modularity index. 

Furthermore, the modularity of both the ground-truth clustering network and the results 

achieved by the proposed DICCA algorithm are shown along with the clustering obtained using 

the fast greedy modularity optimisation proposed by Clauset, Newman and Moor (Clauset, 

Newman and Moore, 2004). This comparison reveals that the poor performance of the proposed 

DICCA algorithm for mixing parameter value ≥0.5 is not due to the failure of the algorithm 

but rather due to the network structure.  

4.4.6 Evaluation of Clustering Performance Using Adjacency Matrix 

Representations  

To further investigate the quality of the clustering performance of the DICCA algorithm, the 

spy plot of the input networks and the community clusters obtained by the DICCA algorithm 

are shown as examples in Figure 4.13 for network size of 500, 2,500 and 5,000 nodes 

respectively.  Graphs (a, d, g) in Figure 4.13 show the spy plot for the connections of the input 

networks where the graph structure is hardly visible. Graphs (b, e, h) in Figure 4.13 show the 

spy plot obtained after rearranging the network according to ground truth community structure 

and graphs (c, f, i) in Figure 4.13 present the spy plot obtained after rearranging the network 

according to the clusters that they were assigned to by the proposed DICCA algorithm. Note 

that the clusters are ordered based on the number of nodes in the community cluster where the 

cluster with the most nodes is located on the top.  
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In the Figure 4.13, each blue dot corresponds to an element of the adjacency matrix that has 

the value one, the white areas correspond to elements with the value zero. It can be easily 

observed from the plot that the adjacency matrix visualizes strong clusters as solid rectangles 

and the DICCA algorithm performs quite well in arranging the nodes into different clusters. 

The algorithm discovered 13, 74 and 150 cluster structures with modularity values of 0.776, 

0.857 and 0.864 for the final clustering result of 500, 2,500 and 5,000 network size respectively, 

which corresponds to a very good community structure between the nodes. The number of 

clusters in the actual partitions for the corresponding networks (500, 2,500 and 5,000) are 13, 

91 and 171 respectively.  

To further assess the similarity of the solutions, another metric called ARI was considered. ARI 

is based on pair counting. Although this metric has different bias compared to NMI, which is 

based on information theory, in general, the results show the same trend as NMI. The results 

are included in the appendix A.1 along with the exact values of the NMI and Q performance 

measures. 
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Figure 4.13 Spy plot for the connections of the nodes. 

 
(a)                                                    (b)                                                             (c) 

 
(d)                                                    (e)                                                             (f) 

 
(g)                                                    (h)                                                             (i) 



73 
 

4.5 Summary 

In this chapter, a novel Decentralized Iterative Community Clustering Approach (DICCA) to 

extract an efficient community structure for large social networks has been presented. DICCA 

is based on random walk and reachability, which is done by message propagation between 

neighbours. The algorithm consists of two phases that are run in an iterative fashion. First, it 

must determine all originators in the network, which could be seen as cluster centres, and assign 

each node to the community whose originator is densely connected. The second phase is to 

build new networks based on the detected communities in the first phase where each 

community becomes a node and the edges in the new network are representing the sum of the 

edges between two communities. The DICCA algorithm uses two parameters named threshold 

value and time to live (TTL). The threshold value should be ideally specified by the expert 

according to domain knowledge. However, when this knowledge is not available, optimum 

parameter values should be estimated. In this work, the mathematical model to obtain optimal 

threshold value based on the characters of the networks is presented. In addition, the optimal 

value of the TTL parameter is discussed. The DICCA algorithm is demonstrated with an 

artificial network and the output shows very promising results. 

Regardless of the threshold calculation method, the algorithm is simple and its concept does 

not require any global knowledge. Being a localised algorithm, it can be run in parallel or in a 

distributed fashion among clusters when the size of the input network or the computation 

complexity is beyond the resources of a single computer. In the following chapter the main 

challenges to be addressed when designing and implementing the distributed framework 

version of the algorithm is discussed. 
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CHAPTER 5                                                                     

PARALLEL DECENTRALIZED ITERATIVE 

COMMUNITY CLUSTERING APPROACH (PDICCA) 

In the previous chapter, a standalone approach named DICCA has been proposed for 

identifying community clusters, which is self-organised and does not require any global 

information of the network. In this chapter, an extended version of the DICCA called Parallel 

Decentralized Iterative Community Clustering approach (PDICCA) is proposed. The PDICCA 

approach is parallel in that it does not require any global knowledge of network structure when 

the data is distributed across several machines and strict synchronization between the 

distributed datasets is not required. 

5.1 Introduction 

Faced with the challenge of a big dataset, many researchers pay great attention to parallel and 

distributed clustering algorithms that would improve the bottleneck of traditional clustering 

methods on a single machine. To cope with this scenario, a distributed and parallel computing 

model is needed to process a large dataset by scaling the dataset out to multiple machines across 

a cluster and process it. Some novel parallel computing frameworks shine, of which 

MapReduce is one of the most popular (Dean and Ghemawat, 2008). 

In this chapter, a Parallel Decentralized Iterative Community Clustering approach (PDICCA) 

is proposed. The design of the PDICCA approach follows master/worker configuration, with 

one master serving as coordinator of many workers. In this case, of master/worker 

configuration, the master is not required to do the job allocations nor does it need to have the 

overview of the data itself. The purpose of the master in this configuration is to purely compile 

the results from the slave workers at the end of each iteration. These features allow PDICCA 
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to be easily adapted to a distributed graph processing system from data centres to fully 

distributed networks. 

The PDICCA transforms the operations of the DICCA approach which is a serial process, into 

a parallelised approach. The PDICCA is a pipelined parallel implementation and maintains the 

overall structure of the serial method (DICCA) presented in the previous chapter. The novelty 

of the design comes from the following fact: even though the PDICCA solves the same problem 

and maintains the overall structure as does the serial method, the proposed approach is 

distinguished due to the features of exploiting the use of distributed memory and extracting 

parallelism under the MapReduce framework. The proposed algorithm does not require any 

global knowledge of the network topology, and is scalable and will work with a range of 

computer architecture platforms (e.g. cluster of PCs, multi-core distributed memory servers, 

GPUs), where, the master and slave workers could represent either different threads in a single 

machine or different machines in a computing cluster. Also, one of the main contributions of 

this chapter is to take advantage of the graph partitioning when performing parallel community 

clustering in order to speed up the process by minimizing the communication between slave-

workers. Furthermore, a parallel implementation of PDICCA based on the most popular 

MapReduce model to accelerate processing in large-scale networks is proposed. 

Table 5.1 Comparison between DICCA and PDICCA 

Algorithm DICCA PDICCA 

Process 

approach 

Serial process approach Parallelised process approach 

Concept of 

the algorithm 

Based on the random walk procedure 

and reachability of nodes in the 

network 

Based on the random walk procedure and 

reachability of nodes in the network 

Framework Consists of two phases: local 

clustering and network reduction 

phase that run in an iterative fashion 

Consists of  three phases: clustering, re-

clustering and rebuilding phase that run 

in an iterative fashion 

worker 

schemes 

Work in one single machine The approach consists of two worker 

schemes: master and slave-clustering 

workers 

Mismatching 

node 

Not applicable Use cluster strength to find best result for 

mismatching node 

Parameters Uses two parameters, Time To Live 

and threshold value 

Uses two parameters, Time To Live and 

threshold value 
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5.2 Description of the Proposed PDICCA Approach. 

The core idea of my proposed approach is to divide the dataset into blocks, and then iteratively 

repeat the following three phases: clustering, re-clustering and rebuilding phase: the clustering 

phase is responsible for finding local community clusters for each block independently and in 

parallel. In the second phase, the local clusters thus extracted from the individual blocks are 

aggregated to find the initial community clustering for the entire network. The third phase 

involves building a new, but smaller network for each block of data based on the initial 

community clustering. Each cycle of this process through all the three phases is referred to as 

an iteration. The three phases iterate until the old and the new community-clustering list does 

not converge anymore.  

5.2.1 Framework of the PDICCA Approach 

The PDICCA approach consists of two worker schemes: master and slave-clustering workers. 

The master worker creates the blocks as it reads the dataset, and passes them to slave-clustering 

workers. The master worker is also responsible for receiving and aggregating the cluster 

assignment results from all the slave-clustering workers, perform some computation, assign the 

overlapped nodes into the best community and return the final solution. On the other hand 

slave-clustering worker’s functionality is to identify local communities by going through its 

own data set and applying the first phase of the DICCA approach proposed in chapter 4, named 

local clustering phase. The overview of PDICCA approach is shown in Figure 5.1. 

Slave-clustering worker runs in parallel and stores the community clustering lists in its local 

memory. However, since each slave-clustering worker has some part of the data and does not 

have a global knowledge of the network, consequently, different slave-clustering workers could 

cluster the same node into different communities. Thereby, when all the blocks are clustered 
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and the local communities have been identified, the master worker loads the local community-

clustering lists to aggregate.  

Since the PDCCA approach is proposed to find non-overlapping clusters then the partition C 

of n nodes should form a partition such that n= ∪𝑖=1
𝑘  Ci  and  Ci ∩ Cj = Ø for any i≠ j. So, the 

master worker is responsible for finding the set of overlapping nodes. The overlapping node 

list is then sent back to the slave workers to calculate the strength of clustering solutions for 

each overlapped node among different machines. This is then sent back to the master worker 

for the re-clustering phase. In the re-clustering phase, the master worker finds out the best 

solution for overlapped nodes, the solution corresponding to the highest strength of clustering, 

and updates the community-clustering list.  At the end of the re-clustering phase, the network 

is partitioned into a number of communities. 

Next step is the re-build phase, which involves building a new network by each of slave-

clustering workers. Using the same method presented in section 4.2 where the nodes in the new 

network are the communities from the re-clustering phase. The weight of the link between two 

nodes in this new network is the total weight of the links between the nodes of the two 

corresponding communities in the original network. The links between the nodes of the same 

community become self-loops of the corresponding node in the new network.   

The iteration is then repeated until a stable set of community clusters (fulfilling the 

convergence condition) is obtained. 

It is to be noted that each slave-clustering worker has its own private non-shareable memory  

and there are no communications between the workers in the clustering phase. Thus, each 

slave-clustering worker operation is independent of the others and each of the slave-clustering 

worker’s operations can be performed in parallel. 
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Figure 5.1 Framework of the PDICCA approach. 

 

To calculate the strength of overlapped nodes, the clustering strength of overlapped node Vm 

is formalised in the following definition: 

Definition 5.1  Cluster strength 

Given a network set G = (V, E), with n = |V| nodes and m = |E| edges is presented. During the 

clustering phase, each slave-clustering worker clusters these nodes into C clusters and assigns 

Vm node to different communities. To find the best community that fits Vm node, the proposed 

scheme carries out the following two steps: 

First, the node Vm obtains two sets of information from each of its neighbours, namely, the 

degree of the neighbour node and the cluster to which it belongs to, and then calculates the 

neighbour attraction between Vm and its neighbour Vi, which is defined as:  

𝑁𝑏𝑟 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑉𝑚 (𝑉𝑖)  =
𝑊(𝑉𝑚,𝑉𝑖)

∑ 𝑊(𝑉𝑖,𝑉𝑘)𝑉𝑘∈𝑁𝑏𝑟(𝑉𝑖)

   (5.1) 
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Where W(Vm, Vi) represents the weight of the edge between 𝑉𝑚 and 𝑉𝑖. 

Then the strength value of Vm for all the clusters (C) where Vm belongs to is calculated by 

computing the sum of the attractions for Vm towards its neighbours (Nbr Attraction) within 

these C clusters.  

The pseudocode for the cluster strength of Vm to the cluster C1 is shown in Algorithm 5.1 and 

it is calculated as follows:  

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (𝑉𝑚, 𝐶1)  = ∑ 𝑁𝑏𝑟 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑉𝑚(𝑉𝑖)𝑉𝑖∈ 𝐶1&𝑉𝑖∈𝑁𝑏𝑟(𝑉𝑚)    (5.2) 

Algorithm 5.1 The Cluster strength   

 

Function  Cluster strength   

Input: underlying network graph G, Vm (overlapped node)  

Output: Cluster_Id community as a final division of Vm. 

Function Cluster strength (G, Vm) 

for each Node Vi ∈ Nbr (𝑉𝑚) do 

 Nbr Attraction Vm (Vi) ←   𝑊(𝑉𝑚, 𝑉𝑖)/ ∑ 𝑊(𝑉𝑖, 𝑉𝑘)𝑉𝑘∈𝑁𝑏𝑟(𝑉𝑖)
 

      end  

 

for each C do // C is the Community clusters 

 Cluster strength (Vm, Ci) ←   𝑊 ∑ Nbr Attraction V𝑚(𝑉𝑖)𝑉𝑖∈ 𝐶𝑖&𝑉𝑖∈𝑁𝑏𝑟(𝑉𝑚)  

      end  

 

Cluster_Id=Max {Cluster strength (Nm, Ci)} 

Return Cluster_Id 

end function 

 

The proposed scheme calculates how strongly the mismatching node Vm is connected to each 

of the existing clustering solutions and then Vm joins the cluster with the highest cluster strength 

value.       

Refer to Figure 5.2, node ‘V1‘ has neighbour nodes (‘V2’ and ‘V3’), and belongs to the cluster 

‘C1’ and has one node ‘V6’ that belongs to cluster ‘C2’ then the neighbour attraction between 

node’V1’ and its neighbour is: 

Nbr Attraction V1 (V2) =  
𝑊(𝑉1,𝑉2)

∑ 𝑊(𝑉2,𝑉𝑘)𝑉𝑘∈𝑁𝑏𝑟(𝑉2)

 =  
1

3
  ; where Vk={ V1, V4 ,V5} 



80 
 

Figure 5.2 Examples of eight nodes with two community clusters 

Nbr Attraction V1 (V3) =  
𝑊(𝑉1,𝑉3)

∑ 𝑊(𝑉3,𝑉𝑘)𝑉𝑘∈𝑁𝑏𝑟(𝑉3)

 =  
1

2
  ; where Vk={V1 , V5} 

Nbr Attraction V1 (V6) =  
𝑊(𝑉1,𝑉6)

∑ 𝑊(𝑉6,𝑉𝑘)𝑉𝑘∈𝑁𝑏𝑟(𝑉6)

 =  
1

3
  ; where Vk={V1 ,V7, V8} 

The cluster strength of V1 to the cluster C1 is calculated as follows:  

Cluster strength (V1, C1) = ∑ Nbr Attraction V1(𝑉𝑖)𝑉𝑖∈ 𝐶1&𝑉𝑖∈𝑁𝑏𝑟(𝑉1) = 
1

3
+

1

2
 =0.8333  

The cluster strength of V1 to the cluster C2 is calculated as follows:  

Cluster strength (V1, C2) = ∑ Nbr Attraction V1(𝑉𝑖)𝑉𝑖∈ 𝐶2&𝑉𝑖∈𝑁𝑏𝑟(𝑉1)  = 
1

3
 =0.3333  

Based on the cluster strength value, the node V1 chooses to join the cluster with higher strength, 

which is cluster C1 in this example. 

5.2.2 Partitioning of the Network Nodes Set 

It is worth mentioning that in this work, for the purpose of computation, network nodes are 

partitioned with the same size and they are assigned to different workers. This enables the 

workers to serve a similar size of network.  

It would be beneficial for the nodes close to each other to be processed on the same worker, 

since this will  increase the local computing and decrease network transfer (cost of bandwidth) 

caused by overlapped nodes (Kajdanowicz, Kazienko and Indyk, 2014). Unfortunately, the 
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network partitioning requires a priori knowledge of the global picture of network structure, 

which is a resource-consuming task, especially for large network structures.  For this reason, 

in this work the partitioning aspect of the network is done randomly with the consideration that 

the number of edges in each partition should be the same. 

 

5.2.3 How to Calculate the Parameters 

As mentioned in the previous chapter, DICCA approach uses two parameters to be defined. 

The first parameter ‘Time To Live’ (TTL) is defined as the number of hops that a message is 

permitted to travel before being discarded. The next parameter is threshold value that 

determines the difficulty of merging communities and is defined by the equation presented in 

the previous chapter. However, in the PDICCA approach, TTL is set to be 3 (optimal value 

obtained from chapter 4) and the threshold value for each worker is calculated based on its 

local view of data and using the equation 4.3 presented in chapter 4. 

5.3 Matlab Implementation of PDICCA Approach for 

Distributed Memory Systems 

To implement the PDICCA approach in a parallel manner, the Parallel Computing Toolbox 

(PCT) available in the Matlab software platform is used (MATLAB, Release 2017a). PCT 

enables computational solution of data intensive problems using multicore CPUs, GPUs and 

computer clusters. In PCT to start a parallel processing, the MATLAB pool is opened to reserve 

a collection of MATLAB worker sessions that run separately on the local machine or on a 

remote cluster. In the PCT toolbox the loop command “parfor” is included. By using parfor, 

for each worker a separate process is created with its own memory and own CPU usage. The 

workers are headed by a client process which creates and manages them. When parfor is 

executed, the MATLAB client coordinates with the MATLAB workers which form a parallel 
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pool. The code within the parfor loop is distributed to workers and it executes in parallel in the 

pool. The required data needed by workers to do the computations is sent from the client to all 

the workers and the results from all the workers are collected back by the client as shown in 

Figure 5.3. 

Figure 5.3 Parfor mechanism. 

In this work, the algorithm is implemented on a multi-core machine to which two or more 

independent processors are attached. The client divides the work among multiple processors 

by allocating different data to the different processors (called workers). The processors run 

their job independently of each other and no communication can occur between workers during 

the execution of the loop. Each processor executes the same program but working on different 

sets of data, so each worker maintains its own memory stack. Furthermore, since the 

implementation relies on partitioning data into a number of blocks, the number of data blocks 

equals the number of available workers (processors) in which each worker has only one block 

of data to process and does not have access to the whole data.  
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The client loads the outputs from each worker and aggregates the outputs to do some processing, 

submits new instructions to workers and makes final clustering when stable condition has been 

reached. 

5.4 Parallel Algorithms Using MapReduce Model 

Since in MapReduce model it is not possible to share any information among different slave 

machines while running map or reduce functions, not all of graph clustering based algorithms 

can be fitted into the MapReduce model. However, since the idea of the PDICCA approach 

follows master/worker configuration, with one master serving as the coordinator of many 

workers, this algorithm can be directly applied to work on top of the MapReduce computing 

framework. As shown in Figure 5.1, the PDICCA approach is an iterative process, where each 

iteration can be expressed in three step MapReduce jobs. To begin with, the client submits the 

job to the master node of a machine cluster where the master machine will partition the input 

data into several parts and arrange a number of slave machines to process these input data 

partitions in map functions. The output of each map function will be sorted, shuffled and then 

routed to the proper reducer.  During the iterative process, the reducer’s output is directly sent 

to the map function for the next round of the iteration. The process is repeated until the 

termination condition is met and the final output is obtained. However, each Map function 

needs to get the same data split during each iteration. 

The different stages of computation are shown in Figure 5.4 and the description of each stage 

follows: 
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Figure 5.4 PDICCA workflow and architecture. 

5.4.1 Description of Algorithm in MapReduce Model 
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It is worth mentioning that although the PDICCA approach is presented here using a 

MapReduce model, the approach can be implemented in a range of iterative MapReduce 

implementation frameworks such as Twister programming model that are built for iterative 

graph algorithms (Ekanayake et al, 2010). 

5.5 Analysis of Results and Discussion 

5.5.1 Environment Setup 

The PDICCA approach is implemented in Matlab, a discrete event simulator for building P2P 

protocols. Using the LFR networks mentioned in chapter 3, several experiments have been 

conducted to evaluate the scalability and quality of the proposed algorithm. The experiments 

are performed on a system configured with 4® Core™ i7 6700K CPU 4.00GHz and 16 RAM 

available memory running windows. Because the approach initializes the originator randomly 

and in order to neglect the effect of randomness in our method each result is averaged over 100 

runs. 

5.5.2 Experimental Evaluation  

5.5.2.1 Horizontal Scalability in Relation to the Number of Parallel Cores  

To demonstrate how well the PDICCA approach handles datasets when more workers are 

available, the number of nodes in the network used in this evaluation is kept constant and the 

number of workers is varied from 1 to 4. Figure 5.5 shows the results of different cores when 

the number of nodes is constant, n ∈ {500, 1000}.  

5.5.2.1.1 Quality 

From Figure 5.5, the PDICCA shows a good scalability close to the optimal value, which is 

indicated by average modularity and NMI values. In addition, it is clear that using more than 

one worker to parallelise the algorithm does not adversely affect the accuracy of the result.  
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Consequently, the results prove that the algorithm is effective and able to achieve very high-

quality results in a parallel manner. More especially, PDICCA is capable of exploiting multi-

core architecture efficiently. 

  

(b)                                                                                  (b) 

Figure 5.5 NMI, Q-PDICCS and Ground truth Q scores (y-axis) as number of workers (x-axis) changes number 

of nodes: (a) 500 (b) 1,000. 

5.5.2.1.2 Message Complexity of the PDICCA Algorithm 

Considering the number of exchanged messages for each worker, Figure 5.6 shows the 

percentage of exchanged messages at each iteration by each worker processor. As can be 

observed in each iteration, each worker generates almost the same number of messages, this 

can be clarified by the fact that the data has been partitioned equally among the workers so 

each worker has to process the same size of data. Hence, at each iteration, the master worker 

must wait until all workers have completed their processes. So, splitting the data equally over 

workers, can significantly reduce the expected time needed to wait until the slowest machine 

worker returned data. 
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(a)                                            (b)             (c) 

    
(d)                                           (e)             (f) 

Figure 5.6 Number of Message exchanged in each iterations and for each worker with respect to the number of 

workers varied from 2 to 4 (a, b, c) for number of nodes 500 (d, e, f) for number of nodes 1,000. 

For more in-depth analysis, Figure 5.7 shows the average percentage of exchanged messages 

in each iteration. It can be easily observed from the figure that data exchange for the algorithm 

is much greater at the first stage of iteration when each node is in its own cluster. Just after 2 

to 3 initial iterations, most nodes have their cluster labels and the algorithm has merged the 

nodes belonging to the same cluster to be one node. It also becomes clear from the Table 5.2 

that the percentage of exchanged messages between master and slaves, the communication cost, 
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is negligible. In comparison to the information exchanged locally in slaves which is very costly 

and constitutes the main body of the time consumption of the algorithm. 

Figure 5.7 Average percentage of Message exchanged per each iteration with number of cores varied from 1 to 

4 workers (a, b, c) network size 500 (d, e, f) network size 1,000. 

Table 5.2 Comparison with message exchanged locally in hosts and messages exchanged between master and 

hosts 

Number of nodes 500 1000 

No. of Workers 

%Messages 

exchanged 

locally among 

slaves 

%  messages 

exchanged between 

master and slaves 

%Messages 

exchanged locally 

among slaves 

%  messages 

exchanged between 

master and slaves 

2 99.9767 0.0233 99.9760 0.0240 

3 99.9636 0.0364 99.9631 0.0369 

4 99.9599 0.0401 99.9629 0.0371 

 
(a)                   (b)      (c) 

 
(d)                  (e)      (f) 
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5.5.2.2 Clustering Results for Increasing Network Size  

To demonstrate the performance influenced by scalability, the number of nodes is increased 

linearly from 500 to 5,000 and the number of workers is kept constant at 3. All other parameters 

and factors remain the same as previous evaluations. 

5.5.2.2.1 Quality 

The modularity values of the solutions obtained by the PDICCA approach are presented in 

Figure 5.8. It can be observed from the figure that the performance of the PDICCA is 

consistently good and close to the optimal value with NMI 0.96 and modularity 0.84 on average. 

 

Figure 5.8 NMI, Q-DICCS and Ground truth Q scores (y-axis) as number of nodes (x-axis) changes. 

5.5.2.2.2 Evaluating Repeatability of the Algorithm’s Performance 

To further investigate the ability of the PDICCA approach to produce consistent results across 

random starts across random data partitioning and initialisation, the standard deviation of the 

clustering results is measured where the algorithm is run 100 times each time with different 

random data partitioning and algorithm initialisation. The standard deviation value of both NMI 

and modularity for the data sets with different network size are displayed in Figure 5.9, which 

is relatively very small and in some cases around zero variation. 

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

C
lu

st
er

in
g
 A

cc
u
ra

cy
  

(Q
 \

N
M

I)

Number of Nodes
NMI Q-PDICCA Ground-truth Q



90 
 

  

Figure 5.9 Standard deviation of final modularity/NMI with network sizes. 

5.5.2.2.3 Evaluation of Complexity of the PDICCA Approach 

To investigate the relationship between the number of nodes and complexity of approach, both 

the computing time and the total number of exchanged messages as a function of the network 

size are presented in Figure 5.10 ( a and b). Since PDICCA requires a large number of 

exchanged messages between nodes, which is the most time consuming part during execution, 

the performance of PDICCA highly depended on the total number of exchanged messages. 

Therefore in this approach, the running time increases with the network size as a consequence 

of increasing the number of exchanged messages. For example, the computing time and total 

number of messages exchanged by PDICCA for n∈{500; 5,000} are {8.6; 3,763} and 

{1,344,282; 15,633,691} respectively. 

The average number of iterations and number of clustering solutions achieved are summarized 

in Table 5.3. As can be seen, the PDICCA usually tends to detect fewer communities than the 

ground truth solution. Another observation is that the number of iterations seems to depend 

more on the network structure than the size of network.  
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(b)                                                               (b)  

Figure 5.10  (a) Total number of exchanged messages (y-axis) as number of nodes (x-axis) changes. 

(b) .Running-time scalability of proposed algorithm in seconds. 

Table 5.3 Experimental results of the PDICCA approach for increasing number of nodes in the network 

 

 

 

 

 

 

 

 

 

5.5.2.3 Evaluation of Clustering Performance Using Mixing Parameter 

The PDICCA approach is evaluated with varying values of mixing parameter between 0.1 and 

0.75, µ∈{0.1, 0.15, . . . , 0.75}, and keeping the number of nodes constant, n∈{500, 1000}.  

Figure 5.11 shows the results obtained for both modularity and NMI accuracy as a function of 

the mixing parameter using the PDICCA for network sizes 500 and 1,000 nodes.  As can be 

clearly seen, the natural partitions of the network are always found (in principle) for the mixing 

parameter value of up to 0.5, after which the method starts to fail where the quality of PDICCA 
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was rather poor. However, fast greedy modularity optimisation algorithm does not have 

impressive performances either, and displays a similar pattern. Furthermore, the performance 

of PDICCA is expected to decrease as μ increases because higher values of μ indicates that the 

community clusters in the network are not well defined.  

More results including the exact values of the Q and NMI performance measures along with 

ARI metric values can be found in the appendix A.2.  

 

 

(a)                                                                 (b)  

Figure 5.11 Performance of the proposed algorithm using Mixing parameter μ. (a) Number of node in the 

network is 500, (b) Number of  node in the network is 1,000. 

5.6 Summary 

In this chapter, the distributed-memory parallel version of the DICCA approach, named 

PDICCA, to extract an efficient community structure for large networks, is proposed. PDICCA 

builds around the idea of splitting data instances into blocks and then clusters each block 

independently and in parallel fashion across multiple cores/machines. The clusters extracted 

from blocks are then aggregated at the final stage using the re-clustering stage. The PDICCA 

approach provides several features simultaneously. Since it does not require a global 

knowledge of the network topology, it is effective to process massive datasets that are too large 
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to fit in memory. In addition, PDICCA addresses the computationally intensive issues and 

utilizes maximum hardware capabilities of modern multi-core systems for faster execution by 

processing multiple blocks in a parallel manner. Furthermore, when scalability issues occur as 

the data size grows beyond the processing power of a single machine, the proposed distributed 

approach based on the MapReduce computing platform will help address this.  Finally, in this 

chapter the effectiveness and complexity of the PDICCA approach is tested and analysed using 

synthetic networks with ground truth communities. The experimental results of the PDICCA 

approach prove promising. 

Since the nodes in the network contain a large amount of attribute information, this attribute 

information has important significance in completely presenting the community structure of 

the network. For example, in a social network, members of the same organisation are not only 

friends but also they are more likely to have common interests or common individual attributes. 

Therefore, in the following chapter, the approach which utilizes attribute information, shared 

neighbours’ information and connectivity between nodes in the network to extract communities, 

is proposed. 
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CHAPTER 6                                                                            

A PRE-PROCESSING APPROACH FOR ROBUST 

COMMUNITY CLUSTERING TECHNIQUES BASED 

ON COLLABORATIVE INFORMATION SOURCES 

In this chapter, a pre-processing approach for improving the robustness of community detection 

in the existing weighted community detection algorithms, especially in networks with missing 

information is proposed. This is done through considering attribute information, shared 

neighbours’ information and connectivity between nodes in the network, for the detection 

process. Empirical results demonstrate that the proposed approach is robust and can detect 

more meaningful community structures within incomplete information networks than the state- 

of-the-art methods that consider only topology information. 

6.1 Introduction 

In many real-world network structures such as social networks and the World Wide Web, in 

addition to the link information, nodes are accompanied with their attribute values referred to 

as attribute/content information. For example, in a social network, the nodes’ properties could 

describe the roles of a person while the topological structure represents relationships among a 

group of people.  

A fundamental property in network is the community structure. Another property of similar 

interest is transitivity or global coefficient clustering, which is defined as the tendency among 

two nodes to be connected if they share a mutual neighbour (Newman, 2001). In terms of 

network topology, recall from chapter 3 equation 3.4 transitivity defined as the presence of a 



95 
 

heightened number of sets of three vertices with edges between each pair of nodes (triangles) 

in the network.  

Empirical studies have found that the concept of transitivity applies in about 70–80% of all 

cases across a variety of small group situations (Davis, 1970; Louch, 2000).  Huijuan and 

Shixuan (2013) proposed a graph clustering algorithm called SNGC that considers both 

connectivity between nodes and shared neighbours. Their experimental results show that the 

proposed algorithm provides promising results and could be applied to the analysis of social 

networks, computer networks, bioinformatics, etc. 

Another common occurrence in networks is that similar nodes associate with each other more 

often than with others (e.g. in social networks, people choose to be friends with people who 

share their beliefs). This property in known as Homophily (McPherson, Smith-Lovin and Cook, 

2001). Traud et al (2011) show that a set of nodes’ attributes can act as the primary organising 

principle of the communities. Several studies have been performed to investigate this 

phenomenon of Homophily, which is summarized in McPherson, Smith-Lovin and Cook 

(2001). 

Most of the existing approaches found in the literature make use of either link information or 

attribute information analysis alone for community detection. However, in real-world networks 

neither piece of information on its own is sufficient in determining good clusters of the network. 

The link information is usually sparse and noisy. On the other hand, relying on the attribute 

information alone could mislead the process of community detection. For example, the process 

may not identify the strength of a node’s relationship with its neighbours correctly. 

Consequently, by taking into account only one source of information, the algorithm may fail 

to detect accurately the entire community memberships. However, considering more than one 

source of information for community detection could produce meaningful clusters and improve 

the robustness of the network. For instance, in the case of attribute information, shared 
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neighbours and connectivity information are considered, then if either one source of 

information is noisy or missing, the other could make up for it. Therefore, the proposed 

approach will consider attribute information, shared neighbours and connectivity information 

aspects of the network for community detection.  It should be noted that this work does not 

attempt to introduce a new community detection algorithm; rather proposes a pre-processing 

step to improve existing community detection algorithms and make them execute with better 

results in unreliable data network environments.  

In this chapter, a network is represented as an undirected network G = (V, E, A), where V is 

the set of nodes, E is set of edges between nodes. Each node Vi ∈ V is associated with an 

attribute vector (𝐴𝑖
1, … 𝐴𝑖

𝑑). Where d is the attribute dimension and i represents the node ID. 

The main goal of this work is to find K non-overlapping communities in the network where the 

community (C) is defined as a list of non-empty node subsets: C ={C1, C2, , , Ck } ,= and V= 

∪𝑖=1
𝑘  𝐶i  that satisfy 𝐶i ∩ 𝐶j = Ø for any i≠ j.  

6.2 Related Literature and Contribution 

During the past decade, the problem of community detection in networks has drawn a great 

deal of attention and several algorithms have been proposed. However, most of these existing 

methods use either link information or attribute information alone for detecting communities 

in the networks. Recently, there have been several studies (Dang and Viennet; Yang et al, 2009; 

Zhou, Cheng and Yu, 2009; Lin et al, 2012; Ruan, Fuhry and Parthasarathy, 2013; Salem and 

Ozcaglar, 2014) showing that the combination of attribute and link information to detect 

communities in a network can improve the clustering quality. Most of these studies propose 

new algorithms that aim to use both sources of information; however, their success relies on 

the completeness of the dataset. Moreover, most methods use all attributes the same way 

without considering which ones may influence the community structure more, and lack the 



97 
 

flexibility of balancing the information coming from network adjacency matrix and its node 

attributes. Additionally, none of the studies examines the quality and the number of community 

structures that could be identified in the network when some of the links are missing i.e. noisy 

network environment. So, to the best of our knowledge, this is the first study on the community 

structure that seeks to: 

1. Design a unique pre-processing approach for the state of the art community detection 

algorithms by tightly integrating the attribute information, shared neighbours and 

connectivity information aspects of the network to produce a new matrix.  

2. Study the correlation between communities and attributes in the network and introduce 

weight detection attribute model to learn the degree of contributions of different 

attributes based on the impact of attribute on the community structure. 

3. Evaluate the performance of pre-processing approach within incomplete, noisy, 

networks. 

6.3 Experimental Datasets  

In order to investigate the correlations between attributes and community structure and to 

evaluate the proposed approach, anonymised Facebook datasets as introduced by Traud et al  

(Traud, Mucha and Porter, 2012) and (Traud et al, 2011) are used. The Facebook datasets are 

undirected and unweighted. The datasets were recorded on a particular day in September 2005 

and contain Facebook networks from 100 different American university networks whose nodes 

represent users and the links represent friendships between users. Attribute information about 

each user is also provided. Each user has seven node attributes: a student/faculty status flag, 

gender, major, second major/minor (if applicable), dormitory (house), year and high school. In 

this work four networks from 100 Facebook datasets are used. In particular, the Caltech36, 

Reed98, Haverford76 and Vassar85 datasets, which contain 769, 962, 1,446 and 3,068 nodes 
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and 16,656, 18,812, 59,589 and 119,161 edges respectively are used. However, the proposed 

approach in this work is not limited to the social networks but can be applied to many kind of 

graph structures. 

6.4 Correlation Analysis 

6.4.1 Shared Neighbours 

In order to measure how likely any two nodes with a common neighbour are themselves 

connected, the clustering coefficient of each node in the network is calculated.  

Recall from chapter 3, the node clustering coefficient 𝐶𝑖, of a node i is defined as the ratio of 

the number of edges connecting the neighbours of i to the total possible number of such edges 

of I, 𝐾𝑖 is the degree of node i. 

𝐶𝑖 =
2𝐿𝑖

𝐾𝑖[𝐾𝑖−1]
        (6.1) 

Where, Li is the number of edges between neighbours of node i (Costa et al, 2007). 

The clustering coefficient for the whole network is the average of the local values 𝐶𝑖. 

𝐶 =
1

𝑛
∑ 𝐶𝑖

𝑛
𝑖=1         (6.2) 

Where n is the number of nodes in the network (Costa et al, 2007).  

Figure 6.1 shows the visualization results of the cluster coefficient for each node in the four 

datasets. In this figure, colours of nodes correspond to values of their corresponding clustering 

coefficients. As can be seen, there are some nodes that have high clustering coefficients, which 

indicates strong connectivity between each other. In the other words, they are more prone to be 

in the same cluster. Furthermore, the clustering coefficient for the considered networks are 

0.4288, 0.3304, 0.3268 and 0.2487 for Caltech36, Reed98, Haverford76 and Vassar85 datasets 

respectively.                                                                                                                      
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Figure 6.1 Visualization results of node clustering coefficient for subset of four datasets (should be viewed in 

colour). 

Therefore it is clear from the above discussion that the shared neighbours’ information can be 

used to describe the nature of connections between nodes in the network. This should motivate 

the use of shared neighbours’ information in detecting community clusters in the network. 

6.4.2 Correlation of Communities and Attributes 

For the sake of computing the correlation between connectivity of nodes and their attributes, 

the nodes are clustered based on their attributes in which, the nodes whose attributes are similar 

are grouped together to form a cluster. Also, four different community clustering  algorithms, 

 
(a)  Caltech36                                                               (b) Reed98 

 
(c)  Haverford76                                                                  (d) Vassar85  
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which are FastModularity (Clauset, Newman and Moore, 2004), Louvain (Blondel et al, 2008), 

leading eigenvector algorithm (Newman, 2006a) and WalkTrap (Pons and Latapy, 2005) are 

applied on the datasets to find the communities. Then the correlations between the resulting 

communities from these algorithms and the attributes are measured using Jaccard similarity 

index.  

Figure 6.2 shows the correlations between attribute and communities clustering for Reed 

dataset. The visualization is done using R with the help of the Igraph package (Csardi and 

Nepusz, 2006). From this figure some of the correlations between attributes (colours) and the 

community structure can be observed.  

Figure 6.3 presents the Jaccard similarity index for four different community detection 

algorithms with each attribute over the four networks in the Facebook dataset. It is interesting 

to notice that for the same dataset, the order of the correlation strength across different attributes 

is not the same and varies from one community clustering algorithm to another. For example 

in Reed98 dataset, if the agreement with the fast modularity algorithm is considered, the most 

agreement is observed with the attribute ‘student faculty’. On the other hand, Louvain 

algorithm performs the best if the agreement with the `year’ is considered. This is due to the 

fact that each algorithm differs on how they treat the nodes and assign them to different 

communities with different size and number of communities.  

Even though there exists a difference in attribute ranking across different algorithms and 

datasets, as an overview, the most agreements are observed with student faculty, gender, year 

and dormitory attributes.  However, in computing the correlation between attributes and 

community structure, Traud et al (2011) reported that the order of correlation strength is 

significantly dependent on the agreement index used and not consistent across different indices.  
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Figure 6.2 Visualization of correlations between attributes and communities for Reed dataset. (a) Communities 

based on attributes: nodes are coloured the same if they have the same value for the corresponding attribute; 

nodes with a missing value for an attribute are white. (b) Communities based on community clustering 

algorithm: nodes are coloured the same if they belong to the same community. 

 
Student or faculty status flag Gender   Major        second major or minor 

 
                      Dormitory               Year              High school 

(a) 

 

 
         Fastgreedy                           Louvain                        Leading eigenvector                  Walktrap 

(b) 
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Figure 6.3 Agreement of different community detection algorithms with each attribute, for a subset of four 

datasets. 
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Observing a correlation between the attributes and the communities in the network, indicates 

the attribute information is a source of data that can be used to perform the community 

clustering task. Furthermore, based on the homophily property of a network as shown above it 

is clear that the linked nodes are more likely to share similar attributes. However, the attributes 

do not have the same influence as the community structure and some attributes weigh more 

than others in their influence. Thus the impact of different attributes on communities needs to 

be known and properly weighted according to their influence on the community structure. This 

will balance the role of network information and node attributes. 

6.5 Description of the Proposed Approach 

The proposed approach could be defined as a pre-processing phase for conventional 

community clustering algorithms, which takes a graph G = (V, E, A), the weight of attributes 

(W) and two more weighting factors (α and β) as inputs. α is used to weight the contribution 

between connectivity information, and both attribute and shared neighbours’ information. β  is 

used to weight attribute information to the number of common neighbours. However, these 

weighting factors (W, α, β) can be either provided as part of the input if they are known a priori 

or calculated from the dataset.  

The proposed approach returns a hybrid similarity matrix. The hybrid similarity matrix is a 

weighted combination of attribute information, shared neighbours’ information and 

connectivity information between the nodes. Once the proposed approach constructs the hybrid 

similarity matrix, it can be supplied to any of the state-of-the-art clustering algorithms proposed 

for weighted graph (e.g. Newman fast Greedy algorithm, Louvain algorithm, Newman 

algorithm based on leading eigenvector of a modularity matrix or Walktrap algorithm) to 

extract community clusters. 
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The general architecture of proposed approach is shown in Figure 6.4. As can be seen in the 

figure, the approach has two phases named the parameter-learning phase and information 

aggregation phase.  The first phase aims is to extract optimal parameters whereas the second 

one is used to build a hybrid similarity matrix. 

 
Figure 6.4 System architecture for the proposed approach. 

We formally describe the generative process of hybrid similarity matrix as following: 

𝐻𝑠𝑖𝑚(𝑖, 𝑗) = ∝ . 𝐴(𝑖, 𝑗) + (1−∝)[𝛽.𝑊𝑎𝑠𝑖𝑚(𝑖, 𝑗) + (1 − 𝛽). 𝑆𝑁𝑠𝑖𝑚(𝑖, 𝑗)]           (6.3) 

𝑊𝑎𝑠𝑖𝑚(𝑖, 𝑗) = 𝑊.𝐴𝑠𝑖𝑚(𝑖, 𝑗)                                                                    (6.4) 

Where: 

Hsim (i, j): Hybrid similarity matrix 

A: adjacency matrix 

𝑊𝑎𝑠𝑖𝑚(𝑖, 𝑗): The weighted attribute similarity between a pair of nodes (i, j) 

α: The weighting factor used for  the contribution of connectivity information to the attribute 

information and shared neighbours information.  
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β: The weighting factor used for the contribution of attribute information to the number of 

common neighbours information.  

SNsim(i, j): Shared neighbours similarity between nodes i and j. 

Asim(i, j): The attribute similarity between a pair of nodes (i, j) in network G = (V,E,A) 

W: A matrix containing the weights of each attribute of the node in the network. 

Definition 6.1 Shared neighbours 

Given a graph G = (V, E), for a node i ∈ V, the neighbours of node i are nodes that directly 

connect to node i and is denoted by Γ(i). 

The shared neighbours of node i and j are the nodes that both directly connect to nodes i and j. 

It is defined as: 

𝑆𝑁(𝑖, 𝑗) = {𝛤(i)  ∩  𝛤(j)}       (6.5) 

The shared neighbours similarity between nodes i and j is calculated by dividing the number 

of shared neighbours between them by the maximum degree of i and j nodes. It is defined as: 

𝑆𝑁𝑠𝑖𝑚(𝑖, 𝑗) =
𝑆𝑁(𝑖,𝑗) 

𝑚𝑎𝑥 [𝐾𝑖,𝐾𝑗]
       (6.6) 

Where: 

𝑆𝑁(𝑖, 𝑗): Shared neighbours between nodes i and j. 

𝐾𝑖:  Degree of node i  

In the hybrid similarity matrix, as it is defined in equation 6.3, the strength of relationship 

between nodes is determined by attribute information, connectivity information and shared 

neighbours and controlled by two weighting parameters (α and β).  The α and β weighting 

parameters can be given as part of the input values by the human agent based on his knowledge 
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of the data structure and his perception of the importance of each attribute. However, choosing 

the right weighting values of attributes without a priori knowledge of the network is a 

challenging task. Furthermore, the proposed approach has attribute weighting factors (W), the 

values of which need to be set carefully. Thus, in the following sections, the two phases of the 

proposed approach (the parameter-learning phase and information aggregation phase) will be 

discussed in detail to provide guidelines on how to set these parameters. 

6.5.1 The Parameter Learning Phase 

Since the goal of utilizing details on attribute information, shared neighbours and connectivity 

information in this work, is to get the best community clusters for the network, the attributes 

of the nodes should be weighted in such a way that greater weight is given to the more 

influential attributes, and smaller weights for the less influential. Determining the influence 

and thus the weights of the attributes correctly, will enhance the community structure algorithm 

and improve the detection of communities in the networks. The main purpose of the proposed 

attribute weighting technique is to search for small groups of nodes (initial clusters) that contain 

more internal connections (links between nodes in the group) than external connections 

(between nodes of the group and nodes in other groups) and then find the attribute similarity 

between nodes in the same groups to get the influence factor for each attribute. 

To accomplish this, the parameter-learning phase, as shown in Figure 6.4, is subdivided into 

two stages, local clustering stage and attribute weighting stage. Local clustering phase is to 

extract dense nodes from the network to form the initial clusters. These initial clusters are local 

small ones, far from being the optimal result and are only used in the second stage to weight 

the attributes of each node in the network as well as estimate the α and β parameter values. 

In the local clustering phase, the initial clusters are obtained by applying the first phase of the 

DICCA approach proposed in chapter 4, named local clustering phase. The basic idea of the 
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local clustering phase in DICCA consists of picking up m nodes to be originators in which the 

m nodes should be spread out in all regions of the network and assigning each node to the 

closest originator to form a cluster.  

The attribute weighting stage is then applied to find the strength of the weighting for each 

attribute based on the structures of current clustering results. During the attribute weighting 

stage, the set of attributes for each node are weighted according to its influence in the 

community in which the highly influential attributes are assigned with high strength weights; 

meanwhile the less influential attributes are assigned with low strength weights. 

In more detail, to find the attribute weighting, it is necessary to measure the proximity between 

each pair of nodes in the initial clusters based on their attributes. To do so, the attribute 

similarity metric needs to be defined first. 

6.5.1.1 Attribute Similarity Metric 

The attribute similarity between nodes Vi and Vj within the same cluster is determined by 

examining each of d set of attributes on the two nodes and reflect on the strength of the 

relationship between them in terms of their attribute values.  

Without loss of generality, regardless of the similarity metric considered to find the weight of 

attributes, first, the similarity between the attribute values of each pair of nodes belonging to 

the same local cluster is calculated as follows: 

let Xi
N.d be the similarity matrix for cluster i with N nodes each with d attributes, the local 

attribute weight for cluster i is obtained by adding the appropriate dimension attribute of each 

node in the cluster  to form a vector of 1xd  size and determined as: 

L𝑊𝑑
𝑖   =

1

𝑁
∑ (𝑋𝑁.𝑑

𝑖 )𝑑
𝑖=1        (6.7) 
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The weighting for the entire network is then calculated by adding the corresponding attribute 

of each local attribute weight (sum of the vectors) to form another vector in 1xd size. It is 

formally defined as: 

𝑊 = 
1

𝑚
(∑ 𝐿𝑊𝑑

𝑖  )𝑚
𝑖=1         (6.8) 

It is worth mentioning that the weights assigned to the attributes in the parameter learning 

phase LW = {Lw1, Lw2 …. Lwm} ranges between 0 and 1. 

Whether or not a certain subset is optimal depends on the similarity metric employed. The 

question about what are the best similarity measures between nodes to choose for different 

types of attribute data is beyond the scope of this work. In this work, a Jaccard similarity 

coefficient is used to define the attribute similarity between nodes in the same cluster and to 

find the weight of attributes (W) during the parameter-learning phase. For an overview of the 

research work on determining the most meaningful similarity measures in various fields and 

for different types of data, see (Choi, Cha and Tappert, 2010; Arif and Basalamah, 2012). 

Definition 6.2 Jaccard similarity. Given a network G = (V,E,A), for any pair of nodes Vi, Vj 

∈ V, the Jaccard similarity between nodes Vi and Vj with respect to attribute is indicated as 

J(Ai,Aj) and is defined as the size of the intersection divided by the size union of the data sets, 

as given below: 

𝐽(𝐴𝑖, 𝐴𝑗)  =  
|𝐴𝑖∩𝐴𝑗|

|𝐴𝑖∪𝐴𝑗|
         (6.9) 

J(Ai, Aj) returns a value between 0 and 1, with 0 denoting no similarity, and 1 denoting identical 

sets. 
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Furthermore, since in this work Jaccard similarity is used to measure attribute similarity 

between nodes, the XN.d
i  could be defined as the Jaccard similarity matrix for cluster i and the 

weighted attribute similarity 𝑊𝑎𝑠𝑖𝑚(𝑖, 𝑗), between any nodes i and j is defined as follows: 

𝑊𝑎𝑠𝑖𝑚(𝑖, 𝑗) =
∑ (𝑊𝐿∗[𝐴𝑡𝑡_𝑖𝐿∩𝐴𝑡𝑡_𝑗𝐿]𝑑

𝐿=1 )

 ∑ (𝑊𝐿∗[ 𝐴𝑡𝑡_𝑖𝐿 ∪𝐴𝑡𝑡_𝑗𝐿] 𝑑
𝐿=1 )

       (6.10) 

Where each node has d attributes and 𝐴𝑡𝑡_𝑖 is the attribute vector of node i. 

The pseudo code outlining the entire procedure with Jaccard similarity is listed in Algorithm 

6.1. 
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Algorithm 6.1: The proposed approach 

Input: 

        adj: adjacency matrix. 

        Att: An attribute nodes matrix. 

        Optional input parameter: 

         W: a matrix containing the weights of each attribute for each node in the network. 

          ∝: The weighted Contribution of connectivity information to the attribute information  

             //and shared neighbours information. 

           𝛽: The weighted contribution of attribute information to the number of shared     

               //neighbour information. 

                    Output: 

          K: A set of communities in the network. 

         for each Node i ∈ adj 

     Asim(i, j) = ∑ [Att_iL ∩ Att_jL]
d
L=1 )  ∑ [ Att_iL  ∪ Att_jL] 

d
L=1 )⁄   //get attribute     

     //similarity matrix between i &j where i≠j 

     Γ(i)  ←  get the neighbours of node (i) 

     ki ← get the degree of node (i) 

     end 

         SN(i,j) = { Γ(i) ∩ Γ(j))}   //get the number of shared neighbours between each nodes 

          SNsim(i, j) = SN(i, j) /max[Ki, Kj] // shared neighbours similarity between nodes i   

               // and j where i≠j 

         C= local clustering phase (adj) // run the first phase of DICCA algorithm  

          for each cluster lc∈ C 
                For each pairs of nodes  i,j ∈ lc 

        XN.d
lc  ←|Att_𝑖 ∩ Att_𝑗| |Att_𝑖 ∪ Att_𝑗|⁄    // Jaccard similarity matrix for cluster lc 

        end 
                N← get number of nodes in lc 

                LWd
lc  =  

1

N
∑ (XNxd

i )d
i=1  

                End 

m← get number of initial clusters  in c 

 if ( W not provided as an input parameter) 

             W= 
1

m
(∑ LWd

i  )m
i=1  

     end 

if ( ∝ not provided as an input parameter)) 

                  ∝= 𝑎𝑣𝑔(𝑊) 

     end 

if ( 𝛽 not provided as an input parameter)) 

                   𝛽 =0.5 

     end 

        Wasim(i, j) = ∑ (WL ∗ [AttiL ∩ AttjL
]

d

L=1
)  ∑ (WL ∗ [ AttiL  ∪ AttjL

] 
d

L=1
)⁄  

         Hsim(i, j)  ← ∝ . Adj(i, j) + (1−∝)[β.Wasim(i, j) + (1 − β). SNsim(i, j)] 
        K ← community cluster (Hsim(i, j)) 

          Return K return the final division of adj. 



111 
 

6.5.1.2 Effect of α and β on the Quality of Community Structure  

When considering the values to select for the two weighting factors (α and β), the type of 

emphasis on one of the network parameters needs to be considered. For example, emphasis on 

the connectivity information source means that the parameter α should be greater than 0.5. On 

the other hand, emphasis on attribute and shared neighbours information means that α should 

be less than 0.5.  The same argument holds good for the parameter β, i.e., β greater than 0.5 

indicates that attribute node information source has more contribution than the information 

related to the number of common neighbours. In the networks, the weighted combination of 

attribute information, shared neighbours and connectivity information are not the same and the 

values of α and β need to be selected carefully. However, in practice without any prior domain 

knowledge, it is quite difficult to scale the contribution of each source of information. 

In order to determine the effects of varying α and β parameters on the quality of community 

clustering and thereby to determine the parameters’ selection range, four different datasets are 

used  to track how the community clustering changes when the values of α and β are varied 

from 0.1 to 1 with a step size of 0.1. Also, modularity index is used to evaluate the quality of 

community detection.  

Figure 6.5 and 6.6 show how the two parameters influence the community clustering quality. 

The X-axis and Y-axis in the figures represent the values of α and β respectively, while the Z-

axis represents the modularity score. As can be clearly seen from Figure 6.5 (a-d), the 

modularity is remarkably robust to the choice of parameter values. When α =β=0, the 

modularity of community detection is ≥ 0.25 for most of the algorithms for all the datasets. 

However, it is worth mentioning that α =β=0 indicates that the information used to find the 

community clustering is just based on the number of common neighbours  Hsim(i, j) =

SNsim(i, j). 
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As an overview, with an increasing value of β, the quality of community clustering decreases 

for a constant value of α. On the contrary, with an increasing value of α, the quality of 

community clustering increases slightly for a constant β value. It is also noticed that, for values 

of α < 0.6 the modularity is dramatically affected by varying the value of β. The modularity 

fluctuates between 0.01 and 0.4 and it becomes relatively stable when α value ranges between 

0.6 and 0.7. However, the Modularity becomes almost stable for the vast majority of β values 

when α > 0.7. 

Experimental results also demonstrate that the connectivity information is more useful than the 

shared neighbours’ information and attribute information. Therefore the value selected for α 

should be greater than or equal to 0.5. For the datasets considered in this work, high modularity 

values are obtained when α > 0.7. 

With regard to these two parameters α and β, there is no straightforward way to fit them to 

datasets and different datasets may require different parameter values. However, based on the 

above argument, in order to better exploit the sources of information and obtain optimum 

robustness in the detection of community clusters in the presence of noise, the value of α is set 

based on the weights of attributes (w) as  follows: 

𝛼 = 𝑎𝑣𝑔(𝑤)        (6.11) 

In this work, to avoid a cumbersome decision process, equal importance is given to shared 

neighbours and attribute information in which β=0.5 is set in all the following performed 

experimentations. 
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Figure 6.5 (a-b) Modularity value achieved by four community clustering algorithm dataset using different 

value of α and β on: (a) Caltech36 (b) Reed98 dataset. 

  
(a) 

 
(b) 
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Figure 6.6 (c-d) Modularity value achieved by four community clustering algorithm dataset using different 

value of α and β on: (c) Harvord76  (d) Vassar85 dataset. 

 

  
(c) 

  
(d) 
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6.5.2 Information Aggregation Phase 

The information aggregation phase aims to build a weighted matrix, named hybrid matrix, 

based on the knowledge learned from the parameter learning phase. These weighted attributes 

w, α and β values are used to build a hybrid similarity matrix as defined in equation 6.3. In the 

hybrid matrix, the edges that link nodes do not have similar attributes or do not have shared 

neighbours, will be punished and assigned with low strength weights; while the edges 

connecting similar nodes or having shared neighbours will be assigned with high strength 

weights. Also, there are some edges which will be added between the nodes to represent the 

attribute and shared neighbour similarity. 

6.6 Experimentation and Results 

6.6.1 Experimental Setup 

In order to assess the effectiveness of the proposed approach to detect communities under an 

unreliable network structure, an experimentation has been conducted using four different 

Facebook dataset networks when some edges are missing while the node attributes are fully 

available. Furthermore, for the sake of evaluation, edges are removed from the network at 

random and the number of removed links is increased from zero to half the number of edges in 

the network in steps of 5% of network edges.  

In each experiment, the performance is computed using the results obtained by applying each 

of the four algorithms with and without applying the proposed approach as a pre-processing 

step. Each algorithm has been applied more than once on the data and the experimental results 

presented are the average of ten simulation runs. 

To quantify the performance of the proposed approach, the quality of the obtained community 

structures is evaluated based on the modularity, number and size of detected communities. 
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Moreover, for simplification, in the following sections when the proposed approach is 

combined with Fast Modularity algorithm (FA) is referred to as Hybrid-FA; when combined 

with Louvain algorithm (LA) as Hybrid-LA; when combined with leading eigenvector (LE) as 

Hybrid-LE and Hybrid-WA when combined with Walktrap algorithm (WA). Additionally, to 

facilitate comparison of results in line charts, the results obtained using the proposed approach 

are denoted by dashed line style with “x” marker points. 

6.6.2 Experimental Results and Discussion 

In this subsection, the effectiveness and efficiency of the algorithm is assessed from two aspects. 

One is to evaluate the attribute weighted method proposed in this work along with the 

methodology used to set the parameter value. The other aspect is to integrate the proposed 

approach with well-known community clustering algorithms and make a comparison of the 

results achieved without the integration to show how the proposed approach can be used to 

improve the robustness and quality of well-known community clustering algorithms. 

6.6.2.1 Evaluation of Attribute Weighting Method 

As highlighted in section 6.4, different attributes have different significance for assessing the 

similarity between the nodes in the same community clusters, therefore the attribute weighting 

method is proposed. In this section, the performance of the proposed attribute weighting 

method is experimentally evaluated.  

The evaluation is done by checking how well the weight of the attributes obtained by the 

weighting method match with the actual important attributes presented in Figure 6.3. 

Figure 6.7 shows the attribute weights obtained by the weighting method for the four datasets 

under consideration. It is obvious that the attributes have different weight strengths and order 

of importance for different datasets. However, looking at the attribute weights of the four data 

sets, it is clear that four specific attributes (student, gender, dormitory and year attribute) have 
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the highest weighting values across all four data sets. Anyway, the remaining attributes (high 

school and major/minor attribute) do not have strong influence on the community structure, 

hence weighted with a very small value, if not dropped, in the attribute weighting stage.  

Figure 6.7 Attribute weights for four datasets. 

Moreover, the comparison between Figure 6.3 and Figure 6.7 shows that the parameter learning 

phase achieves almost the same results in most cases. Whereas, the attribute importance order 

is either the same or only slightly different due to small differences in the attribute correlation. 

For example in Caltech36 dataset, the order of importance attributes are student, gender, year 

and house with attribute weight values 0.4695, 0.3102, 0.2195 and 0.2193 respectively.  In 

comparison to Figure 6.3 and for the case of the fast modularity algorithm as an example, the 

order is changed to student, gender, house and year attribute, achieving Jaccard index values 

of 0.2772, 0.2412, 0.1746 and 0.1239 respectively.  

Furthermore, to evaluate the performance of the proposed weighting method in handling noisy 

data, Figure 6.8 shows the values of attribute weight for the four largest weighted attributes 

obtained by the weighting method when the percentage of removed edges varied from 0 to 50%. 

From the figure, it is worth noting that the ordering of weights is remarkably stable and the 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Student/

faculty

Gender Major Second

major/ minor

 Dormitory

(house)

 Year  High school

w
ei

g
h
t 

(W
)

Attribute

Caltech36 Reed98 Haverford76 Vassar85



118 
 

attribute weighting method shows an effective performance by getting rid of the noisy datasets 

and correctly weights attributes according to their importance. 

 
Figure 6.8 Robustness of weighting method to the edge removal. 

To further assess the parameters analysis phase, the number of initial clusters identified at local 

clustering stage along with the value of α via percent of removed edges for four datasets are 

reported in Table 6.1. 

The results in the Table 6.1 indicate that the noise has no significant influence on the value of 

α. In other words, the method used to define α value (see equation 6.11) is somewhat stable. In 

addition, it is clear that local crusting tends to partition data to a larger number of initial clusters. 

Considering Reed98 dataset for example, when the missing edges varied from 0% to 50%, the 

values of α and the number of obtained initial clusters were {0.8084, 382} and {0.8231, 446}  

respectively.  
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It is also worth noting from Table 6.1 that the value of α is not related to the number of initial 

clusters found by the local clustering stage. In some cases, higher value of α is obtained when 

more initial clusters are found. For others however, the value of α increases when fewer initial 

clusters are found. Considering Reed98 dataset, for instance, when the missing edges increased 

from  15% to 20%, both α value and the number of initial clusters  increased from {0.8139, 399} 

to {0.8162, 405} respectively. On the other hand and for the same dataset, when the missing 

edges increased from 5% to 10% the value of α increased from 0.8123 to 0.8130 meanwhile 

the number of initial clusters decreased by 3. However, the value of α for the four considered 

datasets is always higher than 0.75. This value is in agreement with what was observed in 

section 6.5.1.2, where the connectivity information contains more useful information than the 

shared neighbours or attribute information (α ≥ 0.5) and to get high modularity the value of α 

should be higher than 0.7. 

Overall, the results clearly demonstrate that the parameter learning method has the ability to 

extract essential and informative attributes and to weight them to reflect the relative importance 

of attribute in community clustering tasks. 

Table 6.1 Results for four dataset 

Dataset Caltech36 Reed98 Haverford76 Vassar85 

%Missing 

edges 

Number 

of initial 

clusters 

α 

Number of 

initial 

clusters 

α 

Number of 

initial 

clusters 

α 

Number of 

initial 

clusters 

α 

0 384 0.8127 382 0.8084 412 0.7792 824 0.7673 

5 381 0.8156 392 0.8123 427 0.7811 835 0.7671 

10 392 0.8177 389 0.8130 436 0.7822 844 0.7684 

15 388 0.8161 399 0.8139 419 0.7823 873 0.7694 

20 392 0.8161 405 0.8162 443 0.7827 898 0.7709 

25 391 0.8159 397 0.8153 463 0.7827 921 0.7712 

30 390 0.8156 409 0.8170 467 0.7843 927 0.7722 

35 394 0.8168 402 0.8180 476 0.7834 948 0.7731 

40 398 0.8152 418 0.8193 489 0.7861 953 0.7738 

45 390 0.8171 432 0.8241 487 0.7879 1003 0.7763 

50 387 0.8110 446 0.8231 514 0.7884 1036 0.7784 
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6.6.2.2 Model Performance 

In this subsection, using the optimal parameters determined using the parameter-learning phase 

(as discussed in section 6.5.1), the performance of the pre-processing approach is evaluated. 

6.6.2.2.1 Number of Community Clusters 

Since the number of communities in the networks is unspecified, the algorithms try to 

automatically detect the most appropriate number of communities by maximizing the 

modularity.   

The variation in number of community clusters when different numbers of edges are removed 

is given in Figure 6.9. It is observed that the conventional algorithms are adversely affected by 

noise so fail to account for appropriate community structures. Moreover, most cases result in 

an increasing number of communities with an increasing % of missing edges. The only 

exception is the LEA algorithm, which results in almost the same number of communities even 

without applying the pre-processing approach. 

Considering Caltech36 dataset, for example,  increasing  proportions of edges are randomly 

removed from the network (from 0% to 50%), the number of communities detected  by all 

conventional algorithms are changed from {10,10,12,72} to {39,39,10,104} for {FA, LA, LEA, 

WA} algorithms respectively. Such behaviour can be explained by the fact that the 

conventional algorithms consider only topology information. On the other hand, the proposed 

approach considers attribute, shared neighbours and connectivity information. Since the nodes 

in the same community usually are not just highly connected but also have similar attributes 

and transitivity coefficient, the proposed approach uses attribute information to make up for 

the missing link information and to identify the community membership. Consequently, 

integrating the proposed approach with a conventional algorithm is more advantageous for 
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discovering the most appropriate number of community structures than using the conventional 

algorithm on its own. 

 
Figure 6.9 Number of community clusters for: (a) Caltech36 university dataset, (b) Reed98 university dataset  

(c) Haverford76 university dataset, (d) Vassar85 dataset.  

Walktrap algorithm when run on the dataset on its own failed to detect the appropriate number 

of communities, and compared to the other algorithms the number of communities returned by 

Walktrap are extremely high for all considered datasets. However, applying the proposed 

approach as a pre-processing step to build the hybrid similarity matrix before applying the 

Walktrap community detection algorithm has significantly improved the performance to obtain 

just 8 clusters.  

Furthermore, when the percentage of removed edges is increased from 0% to 50%, the number 

of clusters formed using the proposed approach is more similar to the original partition network 

when there is no noise applied. For example in the case of Caltech36 dataset when 50% of 
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edges are missing, the number of obtained communities are {8,8,4} for {Hybrid-FA, Hybrid-

LA, Hybrid LEA, Hybrid-WA} algorithms respectively. This demonstrates that the proposed 

approach has the capability to extract relevant information from highly noisy datasets and make 

these algorithms quite robust to edge removal. The complete tables showing the cluster 

performance for four datasets are included in appendix A.3.  

To take a closer look at the sensitivity of obtained communities to the noise, the average size 

of the obtained communities, when percentage of removed edges is increased from 0% to 50%, 

is investigated and shown in Figure 6.10. 

 
Figure 6.10 Average Community size for: (a) Caltech36 university dataset, (b) Reed98 university dataset (c) 

Haverford76 university dataset, (d) Vassar85 dataset. 

Considering Vasser85 dataset, for example, increasing proportions of edges are randomly 

removed from network (from 0% to 50%), the average community size detected by all 

conventional algorithms dropped from {614, 511, 438, 51} to {94, 95, 583,28} for {FA, 
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LA,LEA, WA} algorithms respectively. In contrast, combining the proposed pre-processing 

approach with the community-clustering algorithms considered in this work results in 

community clusters with almost constant average size. This effect comes from the fact that 

since the conventional community identification is based only on the adjacency matrix, the 

number of community clusters obtained are heavily dependent on the number of links in the 

network, so as the percentage of missing edges increases, the clustering algorithm becomes 

less stable and the clusters become smaller. In contrast, this is not the case for the hybrid 

similarity matrix, which is based on different considerations (attribute information, shared 

neighbours information and connectivity between nodes in the network). 

6.6.2.2.2 Modularity 

Regarding the quality of community clusters, the modularity metric is used as a scoring 

function to assess the quality of detected community clusters with and without applying the 

proposed pre-processing phase. Figure 6.11 shows the averaged Q values, plotted for each 

community detection algorithm. As shown in this figure, in most cases using the proposed pre-

processing approach has resulted in a slightly lower modularity than the conventional 

community detection methods. However, the difference is negligible and the results suggest 

that the proposed approach is a promising and powerful tool to assist in the fine tuning of 

different sources of information in community clustering area. 

Moreover, the comparison between Figure 6.9, Figure 6.10 and Figure 6.11 shows that while 

the approach achieves a good modularity quality that is comparable with the conventional 

methods, the approach is significantly more effective in terms of both number and size of 

communities detected where the network structure is found to have some unreliable or missing 

information.  
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Figure 6.11 Modularity index vis missing edges for: (a) Caltech36 university dataset, (b) Reed98 university 

dataset (c) Haverford76 university dataset, (d) Vassar85 dataset. 

It is worth noting that in the present context, using community clusters matching (e.g. NMI) to 

evaluate the quality of proposed approach might be particularly problematic, as the ground 

truth structures of four considered networks are not provided and both numbers and sizes of 

the obtained community clusters are not the same across the different community clustering 

algorithms. The exact values of results presented in this chapter are included as tables in 

appendix A.3. 

6.7  Summary 

In this chapter, a pre-processing approach that makes use of attribute information, shared 

neighbours and connectivity information aspects of the network to build a hybrid similarity 

matrix is proposed. Because the attributes in a network usually do not play equally important 

roles in clustering tasks, the proposed approach assigns a weighting value to each attribute 
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during the process of building Hybrid similarity matrix to reflect the relative importance of 

each attribute. 

Besides the attribute weighting parameter, the approach required the specification of two more 

parameters α and β, these control the degree of contribution of connectivity information, 

attribute similarity and shared neighbours information for a good balance between them. The 

sensitivity of the pre-processing approach to α and β parameters is analysed. Also, a simple but 

effective model for determining attribute weighting value, α and β values of the approach to 

achieve an optimal result is provided.  

In this work, a Jaccard similarity coefficient is used to denote attribute similarity between nodes. 

The proposed approach is tested in conjunction with four state-of-the-art algorithms (Fast 

Modularity algorithm, Louvain, leading eigenvector and Walktrap algorithm) popular in the 

literature by applying to four real-life Facebook data networks. The experimental results clearly 

demonstrate that the approach has the ability to incorporate attribute, structure and shared 

neighbours’ information into meaningful information used to build a hybrid similarity matrix. 

Besides, the community clustering algorithms employed on the hybrid similarity matrix pre-

processed by the proposed approach have shown a better effectiveness and robustness over 

noisy networks than the state-of-the-art algorithms without applying the pre-processing 

approach. 

The approach proposed here could be used as well in conjunction with other community 

clustering algorithms and with other data sets. 
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CHAPTER 7                                                                                       

A CASE STUDY IN TELECOMMUNICATION 

INDUSTRY OF SMARTPHONE USAGE. 

In this chapter, a set of real-life android smartphone usage data has been skimmed and the 

different features of real-life Android smartphone usage are presented. With these results, 

community clustering and data mining techniques will be carried out as future work in order to 

develop a more profound understanding of the telecom network usage and users’ characteristics. 

This chapter is published in the proceedings of the 17th International Conference on Computer 

Systems and Technologies 2016, Palermo, Italy (pp. 81-88), ACM. 

7.1 Introduction  

 

Nowadays, the majority of people have a smartphone within a few feet of them at all times. 

According to the report from eMarketer, it appraises that that there are 4.30 billion Smartphone 

customers worldwide in 2016. EMarketer estimates that the number of smartphone users 

worldwide will surpass 4.78 billion in 2020 (eMarketer, November 23, 2016 ). 

In the past, mobile phones were mostly about making phone calls. Now smart phones offer so 

much more. They can run games and programs; support access to the internet, watching TV, 

send and receive email and much more. Even though a smartphone is a ubiquitous device, it is 

not yet well understood what people actually do with their smart phones. How often do they 

use them to make calls or surf the internet? How many text messages are sent/received over 

the day?  

The information gained from these kinds of studies and analyses is vitally important for 

smartphone manufacturers, mobile operators and governments. It could be used by mobile 
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operators for mapping busy traffic hours and ensuring sufficient total capacity is made available 

and that an acceptable quality of service is offered to customers during periods of peak 

consumption. In addition, it could be used to plan for the marketing strategies and for future 

directions of phone companies and telecom network providers.  Furthermore, it could be used 

to help governments and enterprises to predict and plan proactive actions to improve the quality 

of life in smart cities.  

In this work, the behaviour of smartphone users around the world has been analysed, based on 

massive real-life data (about 3.3 Terabytes) from smartphone users collected by the University 

of Cambridge.  

7.2 Related Literature  

The ability to better understand how people use their mobile phones is not new and there is a 

rich history of work to understand and enhance our understanding of mobile phone usage 

patterns. However, the existing works could be generally categorised into either standard 

ethnographic and user studies, based on questionnaires, diaries and self-report, or studies based 

on automatic recording and subsequent analysis of phone activity logs (Do, Blom and Gatica-

Perez, 2011). In the first category, Reid and Reid (2004) study the differences of call and SMS 

usage preference using an online questionnaire which involved 982 users. Grinter and Eldridge 

(2001) investigate how British teenagers incorporate text messaging into their daily lives. They 

collected data by asking the teenagers involved in a study to manually log their texting activity 

for seven consecutive days. In a more recent example, Barkhuus and Polichar (2011) study 

how users integrate multifunctional mobile phones into their everyday lives. The study was 

based on interviews and daily diaries and involved 21 users over 3 weeks. The article was done 

by Mutchler, Shim and Ormond (2011) and shows another recent work based on data collection 
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from interviews to explore the factors that motivate college students in the U.S to use 

smartphones. 

However, the study results discussed above have their limitations. Also no justifiable 

conclusion can be derived from their results as the studies were conducted on a small number 

of subjects. Thus, the ability to collect and record mobile phone usage automatically on a large 

scale is needed where longitudinal analyses of phone application logs is collected by combining 

automatic collection of smartphone data and human-centric data analysis (Do, Blom and 

Gatica-Perez, 2011). According to the results of studies carried by Parslow, Hepworth and 

McKinney (2003) over 93 volunteers were asked to report on the number of their call activities 

during different periods of time (day, week, or month) and their responses were then compared 

to log data collected from the mobile phone operators. There was only a moderate correlation 

between log data and self-reporting, indicating that self-reporting measures do not fully 

represent actual usage patterns.   

Verkasalo and Hämmäinen (2007) use data collected by Symbian-based monitoring to present 

a study of  voice calls, SMS, email and Bluetooth messages usage based on a population of 562 

subscribers, during seven months. Another study was done on a larger scale, based on the data 

collected from 180,000 smartphone users on the Android platform during a period of one month, 

to analyse the user behaviour trends across cellular networks in domestic and roaming scenarios 

and through WI-FI based access (Wehmeier, 2012). Shye et al. present in (Shye et al, 2010) a 

comprehensive analysis of real smartphone usage involving 25 subscribers during a 6-month 

study of real user activity on the android smartphone. The study covers general usage behaviour, 

power consumption interaction with the battery and network activity. Another study (Rahmati 

and Zhong, 2013) uses logging software that runs in the background to perform a four-month 

field study of usage of 14 smartphones and reported what applications were used, and how the 

phones were used. Xu et al (2011) present summaries of their analysis based on anonymised 
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datasets from a tier-1 cellular network provider in the U.S. over a week of how, where, and 

when smartphone apps are used from spatial, temporal, and user perspectives and attempt to 

understand the impact of location, time, user, and app interest accordingly. 

Other existing researches (Falaki et al, 2010),(Xavier et al, 2012) have addressed specific 

aspects of mobile phone design, such as mobility, to enhance user experience under mobility, 

phone application such as statistics of popular apps and the impact of user activities on the 

network. However, studies that have been carried out are still unable to gain adequate 

understanding of the behaviour of smart phone usage. Furthermore, most of the previous 

studies focused on the usage of specific countries and within a limited period of time and 

number of users, so the overall picture of smartphone usage is still inadequate. 

7.3 Proposed Methodology  

In this section, a description and characterisation methodology of the real-life smartphone 

dataset is presented. 

7.3.1 Datasets 

The dataset used in this work is approximately 3.3 terabytes containing over 100 billion records 

of android smartphone usage from over 17,000 devices across the globe collected over almost 

three years between December 2010 and January 2014. This data has been collected by 

university of Cambridge using Device Analyzer. The Device Analyzer application is 

distributed as a free application on Google Play and registers with the operating system to 

receive notifications when various events occur on the handset. Device Analyzer performs 

rigorous, automatic collection and does not become impaired after a while of recording. The 

recorded data is uploaded periodically to the server at the University of Cambridge. The 

collected data contains information about when the users make phone calls, send or receive 
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texts, when they turn on/off the phone or charge it, which applications they use and so much 

more.  

The dataset is in comma separated values (CSV) formatted with 5 fields. The data files contain 

one data point per line. Each field in a data point is separated by a semi-colon ';'. The fields 

included are: line number in file; time in milliseconds; key; value. In Cambridge (2014) there 

are more details about Devise Analyzer, datasets format and keys.  

7.3.2 Characterisation Methodology 

The characterisation methodology proposed in this work is designed with the purpose of 

answering two main questions (I) what could the data tell us about patterns of calls, text 

messaging and data traffic during the day and week? (II) is there any difference in smartphone 

usage between users living in different geographical locations (i.e. across time zones)? 

As can be seen clearly from Figure 7.1 the first step towards answering the aforementioned 

questions is to extract data variables such as call details, text messaging and mobile internet 

data from our 3.3-terabyte csv files. A software program code written using C++ has been used 

to filter out the desired dataset. The filtered dataset is then cleaned, transformed and stored in 

csv files and then loaded into the Matlab program for the purpose of data mining to find out 

interesting patterns. 

In the real world, data is always accompanied by errors (or issues) related to incompleteness, 

noise or inconsistency, which would be handled in the data cleaning process. Data may be 

missing because of missing collection or duplicate records.  Noisy data refers to data with 

random error or variance in a measured variable (Sumathi and Esakkirajan, 2007). However, 

the quality of data can affect the application of the data mining process. In this work, in order 

to arrive at accurate results, data cleaning has been performed as described here. First, the calls 

and SMS data that have missing time or date stamps are removed. Secondly, mobile internet 
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data that have either missing date details or missing value for the field ‘transmission/received 

data’ are ignored. The next step after cleaning the dataset is to transform the data to be ready 

for further analysis and mining. The cleaned data now has valid values for the fields ‘call times’ 

and ‘date time zones’ and the ‘key’ (calls, text messaging and mobile internet data). Therefore, 

the main goal of data transformation is to process the data and sort it according to the days 

(Monday, Thursday … and Saturday) of the week and time zones. The data mining stage 

involves subjecting the cleaned data to analysis by Matlab software in an attempt to identify 

some hidden patterns. 

 

Figure 7.1 Data mining process 

7.4 Results, Analysis and Discussion 

This section presents the results of the analysis of smartphone usage patterns, including call 

volume distributions, text messaging activities, and mobile data usage as a function of time of 

the day, day of the week and time zone (or geographical location). 

7.4.1 Calls via Time 

Figure 7.2 presents the pattern of calls made throughout the hours of the day. It shows that a 

total of 2,670,409 calls have been made over the three year period, across the world. These 

calls have interesting peaks at 11:00 and 17:00. The number of calls remains fairly steady 

during the middle of the day. The number of calls is very low in the early morning and they are 

increasing during working hours, reaching the maximum value at 17:00 hours and start 

declining afterwards.  

 
Figure 7.2 Number of calls via hours of day 
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7.4.2 Text Messaging via Time  

An analysis of text messaging is shown in Figure 7.3. As an overview, most of the text 

messages are received and made after mid-day and late evening (from 12:00 noon to 22:00 

hours) and approximately 66.69% of total text messages are received and 68.34% of total text 

messages are sent during this time. Comparing with Figure 7.2, unlike the voice calls, the 

number of text messages has interesting peaks late in the evening between 18:00 and 21:00 

hours. It would appear that people generally like to use text messaging rather than telephone 

calls during the night.  

 
Figure 7.3 Number of text messages as a function of time of day 

7.4.3 Mobile Data Traffic Distribution via Time 

Figure 7.4 shows the amount of downlink mobile data traffic (from the network to the 

smartphone) and uplink mobile data traffic (from the smartphone to the network) in Terabytes. 

As an overview, the most significant feature is that downlink data traffic is almost six times 

more than the uplink traffic. Surprisingly, the amount of mobile data traffic is fairly constant 

during the hours of the day. However, the internet usage peaks around 22:00 hours. 

 
Figure 7.4 Mobile data traffic as a function of time of day 

7.4.4 Percentage of Calls, Text Messaging and Mobile Data Traffic 

Over the Days of Week  

An interesting feature to be noticed is that the traffic data patterns are quite the same throughout 

the week. Meanwhile, the percentage of both calls made and messages exchanged during the 

weekends are lower than working days. Furthermore, during the working day use of texting 

message is the secondary use of smartphone after calling. The percentage of total calls has a 

peak value on Friday with 16.15%. By comparison, during the weekends mobile data traffic 
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activity is the most used in smartphones. On Sunday the percentage of calls made is 

approximately 9.27% whereas, about 12.44% and 13.84% of total messages and mobile data 

exchange happen respectively. 

 
Figure 7.5 Percentage of calls, text messaging and mobile data traffic via days of week 

7.4.5 Percentage of Calls, Text Messaging and Mobile Data Traffic via 

Different Time Zones 

To get a more in depth understanding of smartphone usage, the dataset has been clustered based 

on time zone. Figure 7.6 displays the smartphone usage by different time zones. It shows that 

there is a wide variation of smartphone usage among users in different time zones caused likely 

by the diversity in tariffs/service rates. For instance, users located between time zones +2 and 

+8 region have used their smartphones to make calls more than any other phone activities. For 

example, almost 20.89% of total calls are made by the users in time zone +2. Whereas, 12.6% 

of total text messaging and 18.3% total mobile data traffic is made by users in the same region.  

The users in region between time zones -6 and -4 have used their smartphones to text more 

than any other activities. On the other hand, smartphone users in time zones -7, +1 and from 

+9 to +12 are using mobile data traffic activity more than making calls or texting message. 

However, an interesting observation is that in time zone 0, texting is as common a mobile 

activity as talking and data traffic activity. 

 
Figure 7.6 Percentage of calls, text messaging and mobile data traffic via different time zones 

7.5 Summary 

Calling people, sending messages, receiving emails, sharing pictures and videos, are all now 

part of everyday life for many and this could all be achieved easily by just using one tool: a 

smartphone. In fact, it was not very long ago that the only function of phones was just calling 
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people. The purpose of this chapter has been to gain a deeper understanding of the behaviour 

of users in using their Smartphone. However, analysis of the real smartphone data reveals that 

there are significant differences in type of usage of smartphone during the day. The peak time 

period for making calls is between 11:00 and 17:00 hours. In contrast, between 16:00 and 21:00 

hours are the peak time periods for text messaging and 22:00 hours for using mobile data. 

Regardless of the location of the users, there are usage variations between weekends and 

working days, in the working days text messaging is the secondary use activity of smartphones 

after making calls. On the other hand, during the weekend after mobile data, text messaging is 

still the second most popular activity. The lower usage rate of calls at weekend indicates that 

people use their phone for making business calls more than social calls. The study also finds 

that there is no significant difference between mobile data traffic at weekends and during 

working days. As far as the location of users is concerned, there is a variation of the most 

popular mobile usage activity among the different time zones. This could be clarified by the 

fact that Smartphones depend on high-speed data access, which is usually limited to big cities 

and areas with larger population densities, so people who live in countryside areas or 

developing countries are provided only a portion of the benefits afforded by smartphones. 
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CHAPTER 8                                                              

CONCLUSION AND FUTURE WORK 

This chapter concludes the research activities within this thesis. The first section summarises 

the original contribution and the main findings of the thesis. In the second section, the 

limitations of the work are discussed, and a number of further research directions that have 

been opened up by this thesis are presented. 

8.1 Summary of Contributions 

Many systems in the world can be represented as models of complex networks which are 

structures consisting of nodes or vertices connected by links or edges. Detecting and 

characterizing such community structures is one of the fundamental topics in network systems’ 

analysis and it has many important applications in different branches of science including 

computer science, physics, mathematics and biology ranging from visualization, exploratory 

and data mining to building prediction models.  

In this thesis, the major focus is given to the community analysis in networks which has been 

one of the active research topics for quite some time. However, based on a substantial 

background and literature review presented in chapter 2 and the properties of real-world 

networks presented in chapter 3, I argue that current community clustering techniques are no 

longer able to deal with the large real-world networks as the network size has increased beyond 

the capabilities of a single machine.  

Hence, the focus in chapter 4 and 5 has been given to design the community clustering 

approaches to be able to handle massive datasets by efficiently utilizing the computing 

resources in a parallel processing topology. Following this, I propose an approach that uses 

both structural and attribute information to extract communities. Finally, I have studied the 



138 
 

real-world community structure of a large telecom dataset network. In the following, I 

summarize the contributions for each technical chapter (chapter 4, 5, 6 and 7) separately. 

 

Chapter 4: 

In chapter 4, a novel Decentralized Iterative Community Clustering Approach (DICCA) to 

extract an efficient community structure for large networks is presented. An important property 

of this approach is its ability to cluster the entire network without the global knowledge of the 

network topology. This ability means that the entire network does not need to be loaded into a 

single memory, and DICCA could be easily adapted to run in parallel on as many processors 

as available to find community clusters in big networks. This cannot be done in the majority of 

existing community detection algorithms that implicitly assume that the entire structure of the 

network is known and is available.  

The DICCA approach is based on the random walk procedure and reachability of nodes in the 

network. The approach is run in an iterative fashion and uses two parameters, named threshold 

value and time to live (TTL). The question about what value of TTL to choose is discussed in 

this chapter along with the mathematical model to obtain optimal threshold value. Furthermore, 

the obtained results support the conclusion that the community clusters found by DICCA are 

meaningful and very close to the ground truth solution. 

Chapter 5: 

In chapter 5, a parallel decentralized iterative community clustering approach (PDICCA), 

which does not require any global knowledge of the graph topology is proposed.  PDICCA is 

a distributed memory parallel processing approach that transforms the serial steps of the 

DICCA approach into parallelised tasks. It is scalable and will work with a range of computer 

architecture platforms (e.g. cluster of PCs, multi-core distributed memory servers, GPUs). The 

core idea of PDICCA is to split the data into blocks and cluster each block in a separate worker. 
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Then, the clusters extracted from blocks are aggregated at the final stage using re-clustering 

phase. PDICCA provides several features simultaneously; the PDICCA does not need to store 

the whole dataset in the one main memory so it is suitable for systems with limited memory 

and works well for massive datasets. Furthermore, PDICCA optimally utilizes the hardware 

capabilities of the parallel processors and minimizes the communication between workers 

during processing to reduce the bandwidth, memory and storage cost. Experimental results on 

a 4-core computer demonstrate that the proposed approach is quite effective, provides a 

consistent performance over time and has a great scaling characteristic without any noticeable 

loss in the performance.  

Chapter 6: 

Another problem in practical applications is that the network is usually noisy and imperfect 

with missing and false edges. These imperfections are often difficult to eliminate and highly 

affect the quality and accuracy of conventional methods that are used to find the community 

structure in the network. In this work, the pre-processing approach proposed in chapter 6 has 

the ability to incorporate attribute information, shared neighbours and connectivity information 

aspects of the network to build a hybrid similarity matrix. The matrix is built by assigning 

weights to the edges according to the strength of the connectivity, attribute similarity and 

number of shared neighbours. To accurately model, the proposed approach uses two weighting 

factors to identify the optimum trade-off between the information sources through a weighted 

matrix. 

Extensive experiments with real Facebook data sets show that the results obtained by using the 

proposed approach in conjunction with the state-of-the-art community clustering algorithms 

have been demonstrated to be greatly improved. More specifically, while the approach achieves 

a good modularity quality that is comparable with the conventional methods, the approach is 
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significantly more effective in terms of both number and size of the communities detected 

where the network structure is found to have some unreliable or missing information.  

Chapter 7: 

Using a real-life android smartphone usage dataset, the different features of mobile phone 

usage is analysed in chapter 7. Furthermore, my plan was to apply the proposed community 

detection approaches to the smartphone usage dataset so that I can identify a community of 

users that often communicate with each other based on communication information between 

users along with other information present in the dataset. The community clustering might 

reveal interesting information about users, which then could be used by mobile server providers 

to design suitable marketing strategies for each group and thereby enhance business 

profitability. However, the fact that different phones pick a different hash for the same phone 

number, made it hard to detect the user communities. Thus, a data skimming technique is used 

to extract abstract information and trends from the given big dataset.  

8.2 Recommendations and Future Works 

Many lines of research remain open for future works, such as:  

First, although the DICCA and PDICCA approaches for detecting community clusters in large 

networks (in chapter 4 and 5 respectively) have been extensively investigated and studied, there 

are still some issues that need further investigation. In particular, I intend to extend the studies 

and analysis on three specific points: 

 Real-world networks often do not contain perfect communities where each node does 

not have only one possible clustering and nodes can belong to multiple communities at 

once. Identifying such overlapping communities (also known as fuzzy) is crucial for 

understanding the structure as well as the function of real-world networks. A further 

direction is to extend the DICCA approach to be able to detect such fuzzy communities. 
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 In this work, only the undirected networks have been taken into consideration. 

Therefore, I consider the directed network case as an interesting direction for further 

research. 

 In PDICCA, in order to cluster networks in parallel, these networks need to be 

partitioned and distributed across different workers. How to generate and manage 

partitions is an important issue. Another interesting guideline for further work is to 

propose an effective method to partition the network into sub-networks to optimize the 

distribution of the network across a cluster so that clustering approaches can run with 

minimal communication effort and at the highest level of parallelism. 

Secondly, considering the research line related to the novel pre-processing approach proposed 

in chapter 6, the approach has two aspects, which are worth investigating further: 

 The proposed pre-processing approach utilizes a similarity function for comparing 

attributes. In a wide range of real-life applications, data contains a mixed type of 

attributes (e.g. numerical, categorical). Therefore, it is important to use appropriate 

similarity metrics to correctly measure the attribute proximity between two nodes in the 

network. However, the appropriate choice of the similarity measure depends on the 

attribute type of network to study. The natural extension of work in chapter 6 is to use 

a more sophisticated approach that supports datasets with mixed attribute types. 

 Combining the proposed pre-processing approach with DDICA and PDDICA 

approaches (Algorithms proposed in chapter 4 and 5) for identifying more realistic 

communities.  

Finally, for the smartphone usage dataset, although in chapter 7 of this thesis, data skimming 

type of analysis was carried out on real-life big dataset (Device Analyzer) from Cambridge 

Laboratories to understand the behavioural patterns of different mobile users, in the future, I 

intend to extend the analysis and studies to test the proposed community clustering approaches 
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DICCA/PDICCA on big telecom datasets to extract community clusters and find hidden trends 

and behavioural patterns. This could help CSPs improve profitability in many ways: 

 Optimizing network routing and quality of service by analysing network traffic in real 

time. 

 Improving security by analysing call data records in real time to identify fraudulent 

behaviour immediately. 

 Enhancing customer experience by using insights into customer behaviour and usage 

to develop new products and services. 
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APPENDIX   

Appendix A: Additional Results 

A.1 Additional Results for DICCA described in chapter 4  
 

Table A.1.1 Scalability of the proposed algorithm performance  

size 
Ground-

truth Q 

No. Of 

Ground-

truth  

clusters 

NMI 
Modularity 

(Q) 

Execution 

Time 

No. Of 

Msg 

No. of 

cluster 
Iteration ARI 

500 0.819 16 0.914 0.765 3.355 1401045 13 5 0.751 

1000 0.859 32 0.934 0.822 13.919 2681195 27 5 0.785 

1500 0.873 51 0.937 0.839 33.846 4093201 41 6 0.758 

2000 0.880 69 0.943 0.851 65.918 5484550 55 6 0.761 

2500 0.884 88 0.948 0.857 109.672 6803586 70 7 0.769 

3000 0.887 104 0.947 0.858 177.191 8404026 82 7 0.754 

3500 0.889 123 0.950 0.861 254.517 9705058 98 7 0.758 

4000 0.890 134 0.950 0.860 397.839 11814798 107 7 0.769 

4500 0.891 155 0.953 0.864 524.625 13060131 124 7 0.766 

5000 0.892 173 0.954 0.866 665.021 14664776 138 7 0.771 

 

Table A.1.2 Summary of the performance of the proposed algorithm using Mixing parameter for n=500 

Mixing 

parameter 

GT 

Modularity 

No. Of 

GT 

Cluster 

NMI Modularity Time 
No. Of 

Msg 

No. Of 

Cluster 
Iteration ARI 

0.1 0.819 16 0.914 0.765 3.355 1401045 13 5 0.751 

0.15 0.768 16 0.791 0.624 3.364 1549821 11 7 0.557 

0.2 0.721 16 0.742 0.551 3.435 1539140 10 7 0.498 

0.25 0.670 17 0.708 0.493 3.699 2001578 10 8 0.468 

0.3 0.628 17 0.692 0.451 3.960 2232687 11 8 0.455 

0.35 0.576 16 0.645 0.383 3.935 2752697 11 8 0.454 

0.4 0.528 16 0.591 0.321 4.035 3590013 12 9 0.403 

0.45 0.481 18 0.555 0.266 3.988 4556827 15 10 0.361 

0.5 0.427 16 0.540 0.216 4.322 6348157 24 8 0.333 

0.55 0.382 17 0.484 0.159 4.489 8247020 34 7 0.232 

0.6 0.341 16 0.436 0.123 4.999 10387158 43 7 0.157 

0.65 0.286 17 0.388 0.095 5.534 14135123 52 7 0.087 

0.7 0.233 17 0.348 0.083 6.199 16151336 56 7 0.048 

0.75 0.181 17 0.313 0.079 5.931 16231281 57 7 0.028 

 

 

 



154 
 

Table A.1.3 Summary of the performance of the proposed algorithm using Mixing parameter for =1000 

Mixing 

parameter 

GT 

Modularity 

No. Of 

GT 

Cluster 

NMI Modularity Time 
No. Of  

Msg 

No. Of 

Cluster 
Iteration ARI 

0.1 0.859 32 0.934 0.822 13.919 2681195 27 5 0.785 

0.15 0.811 34 0.901 0.753 13.249 2973750 26 6 0.698 

0.2 0.760 33 0.875 0.681 13.277 3370322 26 6 0.680 

0.25 0.712 33 0.837 0.609 14.029 4271018 26 7 0.615 

0.3 0.663 34 0.820 0.546 14.864 5350932 28 7 0.617 

0.35 0.614 34 0.780 0.476 14.726 7064995 29 7 0.565 

0.4 0.566 35 0.753 0.409 14.556 9379372 32 8 0.557 

0.45 0.515 33 0.699 0.331 14.052 13770905 36 9 0.505 

0.5 0.465 33 0.643 0.242 14.861 21328634 57 8 0.392 

0.55 0.415 33 0.587 0.166 15.997 35480627 89 7 0.261 

0.6 0.367 34 0.549 0.119 16.890 45995466 114 6 0.167 

0.65 0.316 34 0.500 0.091 17.343 53388924 133 5 0.095 

0.7 0.266 35 0.475 0.080 18.744 57209564 144 5 0.060 

0.75 0.219 36 0.450 0.074 17.433 54101108 147 4 0.039 

 

Table A.1.4 Performance of DICCA algorithm using different TTL values for n=500 without using Min_VALUE condition 

TTL 
GT 

Modularity 

No. Of 

GT 

Cluster 

NMI Modularity Time No. Of  Msg 
No. Of 

Cluster 
Iteration ARI 

1 0.819 16 0.661 0.583 0.296 4832 8 11 0.398 

2 0.819 16 0.875 0.734 0.853 62990 12 6 0.669 

3 0.819 16 0.918 0.764 24.873 1347024 13 5 0.763 

4 0.819 16 0.922 0.765 10407.076 29680547 13 5 0.751 

 

Table A.1.5 Performance of DICCA algorithm using different TTL values for n=500 when using Min_VALUE condition 

TTL 
GT 

Modularity 

No. Of 

GT 

Cluster 

NMI Modularity Time No. Of  Msg 
No. Of 

Cluster 
Iteration ARI 

1 0.819 16 0.689 0.608 0.289 4928 8 11 0.421 

2 0.819 16 0.872 0.726 0.804 63881 12 6 0.648 

3 0.819 16 0.914 0.765 3.355 1401045 13 5 0.751 

4 0.819 16 0.915 0.766 5.039 3388457 13 5 0.754 

 

Table A.1.6 Performance of DICCA algorithm using different TTL values for n=1000 without using Min_VALUE condition 

TTL 
GT 

Modularity 

No. Of 

GT 

Cluster 

NMI Modularity Time No. Of  Msg 
No. Of 

Cluster 
Iteration ARI 

1 0.859 32 0.769 0.695 0.890 9019 17 10 0.475 

2 0.859 32 0.926 0.819 3.498 166525 26 6 0.760 

3 0.859 32 0.946 0.831 98.738 3735475 27 5 0.810 

4 0.859 32 0.956 0.838 34333.526 87794210 28 5 0.837 
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Table A.1.7 Performance of DICCA algorithm using different TTL values for n=1000 when using Min_VALUE condition 

TTL 
GT 

Modularity 

No. Of 

GT 

Cluster 

NMI Modularity Time No. Of  Msg 
No. Of 

Cluster 
Iteration ARI 

1 0.859 32 0.764 0.693 0.899 9031 17 10 0.477 

2 0.859 32 0.930 0.820 3.078 162377 26 6 0.780 

3 0.859 32 0.934 0.822 13.919 2681195 27 5 0.785 

4 0.859 32 0.933 0.821 19.617 6963794 26 5 0.785 

 

A.2 Additional Results for PDICCA described in chapter 5  
Table A.2.1 Summary of the performance of the proposed algorithm using Mixing parameter for n=500 

Mixing 

parameter 

GT 

Modular

ity 

No. 

Of 

GT 

Clus

ter 

NMI-

PDICC

A 

Q-

PDICC

A 

Time 
No. Of 

Msg 

No. Of 

Cluster 

Itera

tion 

No. Of. 

Swappe

d Msg 

ARI 

0.1 0.8189 16.4 0.9488 0.7824 8.5995 1344282 15 5 489 0.8708 

0.15 0.7678 16.4 0.8953 0.6950 8.5076 1773968 14 5 504 0.7506 

0.2 0.7207 16.4 0.8677 0.6265 7.9940 2222215 14 5 518 0.7089 

0.25 0.6705 16.8 0.8118 0.5376 8.8348 3561679 14 6 527 0.6312 

0.3 0.6278 17.4 0.7747 0.4771 8.8118 4511721 14 6 536 0.5878 

0.35 0.5759 16.2 0.7038 0.3867 8.6034 7490749 16 7 552 0.5165 

0.4 0.5282 16.2 0.6427 0.2924 9.1207 12045080 23 7 550 0.4387 

0.45 0.4811 17.6 0.6004 0.2235 9.5374 18467793 35 6 544 0.3330 

0.5 0.4267 16 0.5159 0.1429 10.4627 31859841 54 6 534 0.2034 

0.55 0.3817 16.6 0.4777 0.1140 10.8221 36917671 59 6 530 0.1467 

0.6 0.3414 16.4 0.4384 0.0928 11.1384 43860527 68 5 524 0.0976 

0.65 0.2858 17.2 0.4129 0.0769 12.6901 54613811 81 5 517 0.0593 

0.7 0.2332 17.4 0.3710 0.0729 12.5550 55755527 78 5 518 0.0369 

0.75 0.1813 17.2 0.3426 0.0702 13.2440 59511312 80 6 519 0.0216 

Table A.2.2 Summary of the performance of the proposed algorithm using Mixing parameter for n=1000 

Mixing 

paramet

er 

GT 

Modularit

y 

No. 

Of 

GT 

Cluste

r 

NMI-

PDICC

A 

Q-

PDICC

A 

Time No. Of Msg 

No. 

Of 

Cluste

r 

Iteratio

n 

No. Of. 

Swappe

d Msg 

ARI 

0.1 0.8592 32 0.9498 0.8231 37.1294 2657238 28 5 981 0.8413 

0.15 0.8106 34.2 0.9315 0.7550 36.3261 3726253 30 5 1001 0.8051 

0.2 0.7603 33.2 0.8936 0.6723 33.5093 5571812 28 5 1038 0.7383 

0.25 0.7121 33.4 0.8644 0.5997 35.1898 8534686 29 6 1061 0.6925 

0.3 0.6629 34.4 0.8312 0.5158 31.5680 13850086 32 6 1077 0.6506 

0.35 0.6145 34.2 0.7879 0.4373 32.1823 21098526 34 7 1098 0.5882 

0.4 0.5656 35 0.7413 0.3418 28.8428 36494619 48 7 1102 0.5041 

0.45 0.5152 33.2 0.6776 0.2355 31.6455 70023087 77 6 1092 0.3749 

0.5 0.4654 33.4 0.6222 0.1625 31.7654 115217719 111 6 1068 0.2484 

0.55 0.4154 32.8 0.5696 0.1158 37.2374 155653645 142 5 1045 0.1529 

0.6 0.3668 34 0.5388 0.0906 38.5380 189698826 164 5 1036 0.1021 

0.65 0.3160 33.6 0.5010 0.0779 39.8445 200467611 179 5 1024 0.0657 

0.7 0.2664 35 0.4765 0.0707 42.6053 215485993 191 5 1017 0.0421 

0.75 0.2186 36 0.4576 0.0678 42.8690 222938148 196 5 1015 0.0291 
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Table A.2.3 Number of messages exchanged in each iterations for each worker when the number of workers is two for 

n=500 and 1000 

Number of 

nodes 

No. Of Exchanged Msg 

500 1000 

 1st worker 2nd  worker 1st  worker 2nd worker 

1st  Iteration 717661 733163 1295619 1297506 

2nd Iteration 66842 63418 163026 166334.5 

3rd Iteration 8909 8651 36774.34 37814.39 

The rest 5777 5873 36194 369267 

 

Table A.2.4 Number of messages in each iterations when the number of workers is three for n=500 and 1000 

Number of 

nodes 

500 1000 

1st worker 2nd  worker 3rd  worker 1st worker 2nd  worker 3rd   worker 

1st  Iteration 347991 349277 360717 628164 648158 626507 

2nd Iteration 73781 72508 76838 166452 170013 166283 

3rd Iteration 12626 12920 13475 44852 45586 46264 

The rest 8411 8390 8673 36746 38581 39632 

 

Table A.2.5 Number of messages exchanged in each iterations when the number of workers is four for n=500 and 1000 

Number of 

nodes 

500 1000 

1st worker 
2nd  

worker 

3rd  

worker 

4th   

worker 

1st 

worker 

2nd  

worker 

3rd  

worker 

4th   

worker 

1st  Iteration 213942 206759 209541 209940 398284 385951 394337 372525 

2nd 

Iteration 
101267 91984 97896 96235 210895 209678 208015 206202 

3rd Iteration 25039 23514 25520 25239 79371 78650 78701 78636 

The rest 14665 14991 15895 15376 74467 68562 71947 70707 

 

A.3 Additional results for pre-processing approach described in chapter6  
 

Table A.3.1 Agreement of different community detection algorithms with each attribute for Caltech36 and Reed9 datasets 

using Jaccard index similarity. 

Data set Caltech36 Reed98 
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student/ faculty 0.2772 0.1629 0.1539 0.0989 0.4023 0.2106 0.2189 0.1866 

Gender 0.2412 0.1478 0.1461 0.0898 0.2761 0.1692 0.1660 0.1543 

major 0.0573 0.0530 0.0519 0.0473 0.0364 0.0344 0.0333 0.0360 

second major/ 

minor 
0.0034 0.0036 0.0037 0.0042 0.0059 0.0056 0.0061 0.0054 

dormitory 0.1746 0.3220 0.2537 0.3720 0.0231 0.0210 0.0199 0.0181 

year 0.1239 0.0973 0.0917 0.0840 0.2432 0.3060 0.2683 0.2482 

High school 0.0009 0.0010 0.0011 0.0012 0.0005 0.0005 0.0007 0.0005 
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Table A.3.2 Agreement of different community detection algorithms with each attribute for Haverford76 and Aassar85 

datasets. Using Jaccard index similarity. 

Data set Haverford76 Aassar85 
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student/ faculty 0.3214 0.2559 0.2156 0.3012 0.3585 0.2317 0.2647 0.2177 

Gender 0.2443 0.1644 0.1697 0.2235 0.2643 0.1788 0.1912 0.1614 

major 0.0346 0.0334 0.0348 0.0388 0.0301 0.0306 0.0313 0.0313 

second major/ 

minor 
0.0091 0.0093 0.0096 0.0104 0.0072 0.0074 0.0076 0.0077 

dormitory 0.0958 0.1024 0.0945 0.0992 0.0741 0.0732 0.0671 0.0703 

year 0.2862 0.4739 0.3369 0.3979 0.2896 0.4409 0.3455 0.4315 

High school 0.0008 0.0009 0.0009 0.0008 0.0008 0.0009 0.0008 0.0008 

 

Table A.3.3 The influence of the parameters α and β on the quality of clustering solutions for Caltech36 and Reed98 datasets 

Data set Caltech36 Reed98 
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0 0 0.3212 0.3837 0.3181 0.2600 0.2534 0.3011 0.2279 0.0945 

0 0.1 0.3230 0.3825 0.2720 0.1563 0.2420 0.2932 0.1786 0.2103 

0 0.2 0.1981 0.2972 0.1547 0.0787 0.2358 0.2330 0.1746 0.1399 

0 0.3 0.1242 0.0840 0.1003 0.0770 0.0744 0.1266 0.0085 0.0421 

0 0.4 0.0867 0.0806 0.0896 0.0744 0.0843 0.0593 0.0778 0.0681 

0 0.5 0.0847 0.1023 0.0898 0.0746 0.0841 0.0557 0.0721 0.0735 

0 0.6 0.0821 0.0804 0.0828 0.0771 0.0655 0.0636 0.0735 0.0678 

0 0.7 0.0821 0.0803 0.0856 0.0768 0.0655 0.0550 0.0081 0.0411 

0 0.8 0.0821 0.0805 0.0812 0.0617 0.0655 0.0547 0.0659 0.0427 

0 0.9 0.0847 0.0806 0.0853 0.0592 0.0655 0.0552 0.0546 0.0414 

0 1 0.0821 0.0806 0.0860 0.0778 0.0655 0.0547 0.0373 0.0384 

0.1 0 0.3213 0.3872 0.3272 0.3144 0.2859 0.3200 0.2619 0.2304 

0.1 0.1 0.3212 0.3743 0.2480 0.2034 0.1946 0.2965 0.1716 0.1864 

0.1 0.2 0.3148 0.3603 0.1767 0.0787 0.1745 0.2945 0.1670 0.1357 

0.1 0.3 0.1025 0.2655 0.1040 0.0625 0.0551 0.2705 0.0112 0.0429 

0.1 0.4 0.0883 0.2789 0.0993 0.0768 0.1146 0.2566 0.1235 0.0681 

0.1 0.5 0.0863 0.0822 0.1664 0.0746 0.0945 0.0625 0.0813 0.0849 

0.1 0.6 0.0868 0.0819 0.0871 0.0746 0.0835 0.0550 0.0311 0.0490 

0.1 0.7 0.0848 0.0576 0.0693 0.0632 0.0824 0.1485 0.0755 0.0407 

0.1 0.8 0.0847 0.0805 0.0863 0.0778 0.0655 0.0545 0.0082 0.0411 

0.1 0.9 0.0821 0.0805 0.0856 0.0617 0.0824 0.0630 0.0659 0.0426 

0.1 1 0.0847 0.1484 0.0874 0.0592 0.0655 0.0555 0.0961 0.0412 
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0.2 0 0.3199 0.3868 0.3347 0.3301 0.2869 0.3263 0.2736 0.2486 

0.2 0.1 0.3247 0.3931 0.2570 0.2357 0.2184 0.2832 0.1729 0.2307 

0.2 0.2 0.3246 0.3097 0.2102 0.0806 0.1801 0.2871 0.1923 0.1407 

0.2 0.3 0.2365 0.2922 0.1150 0.0626 0.1846 0.2511 0.0108 0.0576 

0.2 0.4 0.1743 0.2844 0.1087 0.0780 0.0638 0.2991 0.1030 0.0585 

0.2 0.5 0.0867 0.0828 0.0967 0.0749 0.0903 0.0610 0.0965 0.0681 

0.2 0.6 0.0833 0.1927 0.1722 0.0800 0.1076 0.2610 0.0831 0.0897 

0.2 0.7 0.0920 0.0822 0.0894 0.0746 0.0893 0.2628 0.0863 0.0842 

0.2 0.8 0.0887 0.0589 0.0613 0.0632 0.0688 0.0631 0.0550 0.0393 

0.2 0.9 0.0833 0.0806 0.0885 0.0800 0.0831 0.0553 0.0085 0.0414 

0.2 1 0.0821 0.0806 0.0865 0.0619 0.0655 0.0617 0.0694 0.0419 

0.3 0 0.3014 0.3876 0.3435 0.3169 0.2871 0.3275 0.2831 0.2679 

0.3 0.1 0.3006 0.3936 0.2629 0.2932 0.2656 0.3307 0.2869 0.2571 

0.3 0.2 0.2566 0.3915 0.2745 0.2337 0.1897 0.2815 0.1926 0.1507 

0.3 0.3 0.2338 0.3186 0.1343 0.0820 0.2323 0.2978 0.1902 0.1782 

0.3 0.4 0.1690 0.2851 0.1182 0.0637 0.2001 0.2720 0.0140 0.0441 

0.3 0.5 0.1561 0.2665 0.1114 0.0752 0.1823 0.2699 0.1612 0.0678 

0.3 0.6 0.1443 0.0825 0.0887 0.0745 0.1003 0.0655 0.0939 0.0596 

0.3 0.7 0.0914 0.0851 0.1855 0.0800 0.0921 0.0629 0.0795 0.0563 

0.3 0.8 0.1158 0.1586 0.1631 0.0800 0.0902 0.2642 0.0817 0.0619 

0.3 0.9 0.0863 0.0804 0.0601 0.0632 0.0918 0.0659 0.0935 0.0678 

0.3 1 0.0897 0.2050 0.0963 0.0757 0.0708 0.0550 0.0108 0.0424 

0.4 0 0.3246 0.3918 0.3464 0.3471 0.2889 0.3285 0.2822 0.2760 

0.4 0.1 0.3235 0.3966 0.3388 0.3213 0.2630 0.3299 0.2948 0.2272 

0.4 0.2 0.3218 0.3947 0.2715 0.2322 0.2094 0.2671 0.1896 0.1416 

0.4 0.3 0.3160 0.3203 0.2006 0.0806 0.1948 0.3008 0.1926 0.1797 

0.4 0.4 0.2823 0.3160 0.1245 0.0629 0.2267 0.2799 0.0150 0.0445 

0.4 0.5 0.1029 0.2992 0.1259 0.0780 0.2648 0.2757 0.0288 0.0430 

0.4 0.6 0.1561 0.2926 0.1204 0.0750 0.1559 0.2726 0.1615 0.0693 

0.4 0.7 0.1429 0.0861 0.0966 0.0734 0.0956 0.2583 0.0951 0.0634 

0.4 0.8 0.0833 0.1945 0.1725 0.0800 0.1113 0.0695 0.0968 0.0573 

0.4 0.9 0.0833 0.1947 0.1859 0.0778 0.0908 0.0550 0.0399 0.0404 

0.4 1 0.0899 0.0822 0.0848 0.0578 0.0924 0.2548 0.0741 0.0678 

0.5 0 0.3219 0.3952 0.3470 0.3311 0.2830 0.3161 0.2852 0.2661 

0.5 0.1 0.3267 0.3950 0.3395 0.3017 0.2903 0.3319 0.2962 0.2590 

0.5 0.2 0.3236 0.3899 0.2692 0.2034 0.1958 0.3170 0.2411 0.2201 

0.5 0.3 0.3165 0.3659 0.2327 0.0816 0.1563 0.2840 0.2017 0.1539 

0.5 0.4 0.3285 0.3764 0.2040 0.0808 0.2015 0.3019 0.2013 0.1641 

0.5 0.5 0.2653 0.3189 0.1244 0.0622 0.2502 0.2823 0.0158 0.0574 

0.5 0.6 0.2260 0.3146 0.1230 0.0780 0.2643 0.2648 0.0160 0.0457 

0.5 0.7 0.1711 0.2966 0.1761 0.0775 0.2360 0.2800 0.2437 0.0748 

0.5 0.8 0.2715 0.3041 0.1176 0.0807 0.2436 0.2610 0.0979 0.0691 

0.5 0.9 0.0924 0.2190 0.0952 0.0800 0.2392 0.2589 0.0974 0.0805 

0.5 1 0.0926 0.1957 0.1902 0.0778 0.1708 0.2276 0.0960 0.0854 
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0.6 0 0.3309 0.3950 0.3544 0.3366 0.2883 0.3299 0.2839 0.2708 

0.6 0.1 0.3264 0.3764 0.3447 0.3487 0.2820 0.3319 0.2925 0.2560 

0.6 0.2 0.3282 0.3953 0.3330 0.2472 0.2244 0.3143 0.2529 0.2115 

0.6 0.3 0.3179 0.3914 0.2868 0.2081 0.1577 0.2691 0.1970 0.1246 

0.6 0.4 0.2768 0.3754 0.2506 0.2035 0.1806 0.2917 0.2083 0.1605 

0.6 0.5 0.2420 0.3862 0.2180 0.1496 0.1030 0.3053 0.2123 0.1931 

0.6 0.6 0.2439 0.3338 0.2049 0.0634 0.2348 0.1405 0.0158 0.0447 

0.6 0.7 0.1952 0.3082 0.1461 0.0627 0.2474 0.2770 0.0175 0.0581 

0.6 0.8 0.1069 0.3002 0.1426 0.0778 0.2454 0.2752 0.0869 0.0450 

0.6 0.9 0.1915 0.3115 0.1888 0.0777 0.2534 0.2808 0.2496 0.1593 

0.6 1 0.1550 0.2983 0.1821 0.0768 0.2448 0.2802 0.1078 0.0678 

0.7 0 0.3379 0.3999 0.3721 0.3362 0.2555 0.3246 0.2825 0.2602 

0.7 0.1 0.3308 0.4005 0.3634 0.3312 0.2673 0.3232 0.2888 0.2733 

0.7 0.2 0.2879 0.3976 0.3436 0.3234 0.2612 0.3295 0.2970 0.2434 

0.7 0.3 0.2194 0.3909 0.2991 0.2254 0.1719 0.3193 0.2704 0.2147 

0.7 0.4 0.2452 0.3950 0.2838 0.2236 0.1770 0.2755 0.1982 0.1511 

0.7 0.5 0.2382 0.3807 0.2421 0.0814 0.2000 0.2869 0.2015 0.1471 

0.7 0.6 0.2417 0.3870 0.2430 0.1955 0.1984 0.3051 0.2142 0.1729 

0.7 0.7 0.3233 0.3804 0.2209 0.2220 0.1842 0.2987 0.2131 0.1635 

0.7 0.8 0.2661 0.3424 0.2590 0.1617 0.2685 0.2752 0.2071 0.0456 

0.7 0.9 0.2634 0.3101 0.0874 0.0641 0.2818 0.2865 0.2122 0.0610 

0.7 1 0.2154 0.3029 0.1593 0.0777 0.2687 0.2747 0.0784 0.0717 

0.8 0 0.3378 0.3994 0.3733 0.3336 0.2885 0.3185 0.2759 0.2581 

0.8 0.1 0.3441 0.3996 0.3731 0.3403 0.2577 0.3176 0.2791 0.2611 

0.8 0.2 0.3201 0.3960 0.3651 0.3782 0.2914 0.3169 0.2882 0.2629 

0.8 0.3 0.3230 0.3991 0.3598 0.3246 0.2736 0.3269 0.2907 0.2797 

0.8 0.4 0.3226 0.3726 0.3499 0.2820 0.1534 0.3199 0.2769 0.1659 

0.8 0.5 0.3286 0.3930 0.2844 0.2144 0.2132 0.3039 0.2725 0.2135 

0.8 0.6 0.2476 0.3969 0.2919 0.2080 0.1950 0.2811 0.2009 0.1269 

0.8 0.7 0.3276 0.3830 0.2503 0.1529 0.2088 0.3008 0.2009 0.1269 

0.8 0.8 0.2430 0.3636 0.2209 0.1501 0.2163 0.2797 0.2031 0.1227 

0.8 0.9 0.2185 0.3702 0.2157 0.0783 0.2768 0.2941 0.2345 0.1304 

0.8 1 0.1898 0.3915 0.2544 0.0783 0.2777 0.2944 0.2345 0.1455 

0.9 0 0.3171 0.3976 0.3630 0.3304 0.2885 0.3244 0.2824 0.2683 

0.9 0.1 0.3037 0.3998 0.3636 0.3367 0.2881 0.3229 0.2851 0.2540 

0.9 0.2 0.3058 0.3962 0.3636 0.3436 0.2865 0.3225 0.2816 0.2694 

0.9 0.3 0.3253 0.3943 0.3653 0.3451 0.2832 0.3249 0.2836 0.2688 

0.9 0.4 0.3313 0.3998 0.3666 0.3394 0.2888 0.3217 0.2865 0.2686 

0.9 0.5 0.3325 0.3958 0.3676 0.3629 0.2939 0.3219 0.2838 0.2788 

0.9 0.6 0.3461 0.3986 0.3640 0.3569 0.2955 0.3247 0.2928 0.2831 

0.9 0.7 0.3284 0.3734 0.3649 0.3396 0.2974 0.3246 0.2938 0.2893 

0.9 0.8 0.3256 0.3957 0.3480 0.3328 0.2810 0.3157 0.2812 0.1607 

0.9 0.9 0.2453 0.3834 0.3312 0.2314 0.2545 0.3163 0.2812 0.1374 

0.9 1 0.2241 0.3915 0.2536 0.2340 0.2583 0.3149 0.2815 0.1451 
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1 0 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621 

1 0.1 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621 

1 0.2 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621 

1 0.3 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621 

1 0.4 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621 

1 0.5 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621 

1 0.6 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621 

1 0.7 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621 

1 0.8 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621 

1 0.9 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621 

1 1 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621 

 

Table A.3.4 The influence of the parameters α and β on the quality of clustering solutions for Haverford76 and 

Aassar85datasets. 

Data set Haverford76 Vassar85 
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0 0 0.3007 0.2911 0.2871 0.2403 0.3246 0.3891 0.3454 0.3351 

0 0.1 0.2689 0.3274 0.2419 0.2154 0.2747 0.3617 0.2236 0.2700 

0 0.2 0.2525 0.3230 0.2066 0.2071 0.2606 0.3693 0.3208 0.1291 

0 0.3 0.2437 0.3185 0.2455 0.0724 0.2655 0.3719 0.1108 0.0672 

0 0.4 0.1453 0.3122 0.1025 0.0943 0.1537 0.3459 0.2600 0.1277 

0 0.5 0.2433 0.2032 0.1034 0.1077 0.2667 0.1040 0.1100 0.1277 

0 0.6 0.2068 0.0943 0.1026 0.0714 0.1105 0.0957 0.1105 0.0679 

0 0.7 0.1022 0.0934 0.0990 0.0670 0.1564 0.1453 0.1063 0.1270 

0 0.8 0.1025 0.0948 0.1007 0.0670 0.1101 0.0957 0.1051 0.0678 

0 0.9 0.0938 0.0956 0.0953 0.0689 0.1101 0.0962 0.1053 0.1268 

0 1 0.1023 0.0938 0.1008 0.0689 0.1101 0.1008 0.1056 0.1276 

0.1 0 0.3035 0.3298 0.2920 0.2448 0.3499 0.3716 0.3622 0.3010 

0.1 0.1 0.2683 0.3289 0.2483 0.2749 0.3512 0.3477 0.2095 0.2685 

0.1 0.2 0.2391 0.3222 0.2357 0.2190 0.2554 0.3690 0.3114 0.1303 

0.1 0.3 0.2540 0.3202 0.2402 0.0756 0.1607 0.3717 0.1338 0.0669 

0.1 0.4 0.2427 0.3205 0.2399 0.2143 0.2683 0.3556 0.2524 0.0674 

0.1 0.5 0.2206 0.2073 0.1053 0.0974 0.2670 0.3670 0.1084 0.1277 

0.1 0.6 0.1468 0.0954 0.1055 0.0677 0.3153 0.3684 0.1104 0.1277 

0.1 0.7 0.2057 0.0961 0.1137 0.0648 0.1105 0.0957 0.1106 0.0721 

0.1 0.8 0.1018 0.0960 0.0971 0.0671 0.3214 0.3615 0.1093 0.1270 

0.1 0.9 0.1025 0.1224 0.1008 0.0704 0.1101 0.1046 0.1051 0.0679 

0.1 1 0.0949 0.0956 0.0982 0.0689 0.3470 0.3523 0.1089 0.0665 

0.2 0 0.2662 0.3305 0.2955 0.2858 0.2911 0.3913 0.3610 0.3600 

0.2 0.1 0.2691 0.3293 0.2542 0.2799 0.3518 0.3506 0.3563 0.3208 

0.2 0.2 0.2641 0.3237 0.2340 0.2168 0.2445 0.3669 0.2017 0.1296 

0.2 0.3 0.2394 0.3238 0.1094 0.0914 0.2700 0.3559 0.2736 0.1281 
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0.2 0.4 0.2424 0.3213 0.2659 0.0744 0.3295 0.3722 0.1181 0.0683 

0.2 0.5 0.1461 0.3184 0.1056 0.0943 0.1477 0.3452 0.2661 0.1277 

0.2 0.6 0.2215 0.0994 0.1094 0.0943 0.1565 0.3588 0.1091 0.1277 

0.2 0.7 0.1478 0.0954 0.1070 0.0657 0.3155 0.3686 0.1101 0.1276 

0.2 0.8 0.3035 0.2061 0.1021 0.0660 0.1110 0.0972 0.1106 0.1289 

0.2 0.9 0.0984 0.0960 0.0987 0.0659 0.1834 0.3659 0.1103 0.1271 

0.2 1 0.3135 0.2981 0.1025 0.0704 0.1481 0.0972 0.1067 0.0679 

0.3 0 0.3034 0.3305 0.2958 0.2920 0.3227 0.3898 0.3592 0.3221 

0.3 0.1 0.2708 0.3296 0.2674 0.2375 0.3511 0.3661 0.3590 0.3364 

0.3 0.2 0.2170 0.3218 0.2083 0.2368 0.2258 0.3190 0.1999 0.1294 

0.3 0.3 0.2881 0.3247 0.2873 0.2191 0.2634 0.3716 0.2622 0.1281 

0.3 0.4 0.2462 0.3232 0.2501 0.0688 0.2906 0.3729 0.1179 0.0682 

0.3 0.5 0.2779 0.3216 0.2585 0.0743 0.3207 0.3731 0.1194 0.0681 

0.3 0.6 0.2209 0.3134 0.1090 0.0943 0.1564 0.3710 0.1097 0.1277 

0.3 0.7 0.1476 0.2418 0.1097 0.0975 0.1569 0.2092 0.1102 0.1272 

0.3 0.8 0.1470 0.3137 0.1072 0.0642 0.3438 0.3703 0.2649 0.1277 

0.3 0.9 0.2409 0.2047 0.0911 0.0664 0.2894 0.3616 0.1106 0.1271 

0.3 1 0.3046 0.3145 0.1042 0.0659 0.1479 0.3458 0.1107 0.1271 

0.4 0 0.3052 0.3380 0.2984 0.2900 0.3253 0.3876 0.3556 0.3534 

0.4 0.1 0.2708 0.3308 0.2744 0.3002 0.3551 0.3823 0.3341 0.3471 

0.4 0.2 0.2762 0.3290 0.2701 0.2445 0.2715 0.3647 0.2836 0.2598 

0.4 0.3 0.2655 0.3256 0.2498 0.2161 0.2532 0.3731 0.2945 0.1294 

0.4 0.4 0.2391 0.3234 0.2323 0.0914 0.3170 0.3720 0.2755 0.1281 

0.4 0.5 0.2453 0.3242 0.2673 0.0721 0.1581 0.3720 0.1284 0.0710 

0.4 0.6 0.2832 0.3216 0.2590 0.1219 0.3210 0.3731 0.1369 0.0676 

0.4 0.7 0.2165 0.3200 0.1093 0.0974 0.2670 0.3469 0.1106 0.1272 

0.4 0.8 0.1477 0.3140 0.1094 0.0974 0.2671 0.3705 0.1111 0.1272 

0.4 0.9 0.1459 0.3178 0.1095 0.0974 0.1565 0.3480 0.1117 0.1277 

0.4 1 0.3156 0.3163 0.1061 0.0962 0.3469 0.3715 0.1102 0.0703 

0.5 0 0.2827 0.3379 0.2976 0.2937 0.3266 0.3884 0.3570 0.3577 

0.5 0.1 0.2711 0.3313 0.2824 0.3030 0.3468 0.3845 0.3618 0.3567 

0.5 0.2 0.2707 0.3293 0.2958 0.2431 0.3526 0.3651 0.2497 0.2548 

0.5 0.3 0.2953 0.3253 0.2737 0.2387 0.2256 0.3326 0.2609 0.1294 

0.5 0.4 0.2653 0.3242 0.2663 0.2190 0.2613 0.3748 0.2626 0.2515 

0.5 0.5 0.2492 0.3238 0.2520 0.0880 0.2395 0.3730 0.1239 0.0710 

0.5 0.6 0.2660 0.3200 0.2643 0.0667 0.3487 0.3728 0.1302 0.0692 

0.5 0.7 0.2797 0.3243 0.2768 0.0729 0.3355 0.3731 0.1364 0.0707 

0.5 0.8 0.2316 0.3198 0.1240 0.0981 0.2304 0.3713 0.2752 0.1280 

0.5 0.9 0.2170 0.3202 0.3028 0.0981 0.1834 0.3717 0.1118 0.1272 

0.5 1 0.2155 0.3191 0.2300 0.0981 0.1830 0.3688 0.1120 0.1272 

0.6 0 0.3023 0.3375 0.3027 0.3014 0.3009 0.3856 0.3535 0.3396 

0.6 0.1 0.2877 0.3296 0.2956 0.2999 0.3496 0.3877 0.3673 0.3710 

0.6 0.2 0.3031 0.3283 0.2605 0.2198 0.3500 0.3813 0.3480 0.3274 

0.6 0.3 0.2697 0.3296 0.2747 0.2333 0.3046 0.3647 0.3052 0.1301 
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0.6 0.4 0.2793 0.3263 0.2600 0.2266 0.2292 0.3723 0.2709 0.1294 

0.6 0.5 0.2654 0.3255 0.2826 0.2565 0.3376 0.3755 0.2892 0.1294 

0.6 0.6 0.2815 0.3236 0.2564 0.0885 0.3195 0.3737 0.2911 0.1282 

0.6 0.7 0.2910 0.3200 0.2757 0.0874 0.2500 0.3734 0.1283 0.0700 

0.6 0.8 0.2889 0.3198 0.2856 0.0755 0.3186 0.3735 0.1360 0.0716 

0.6 0.9 0.2976 0.3201 0.2562 0.1428 0.3497 0.3735 0.1456 0.0703 

0.6 1 0.1394 0.1036 0.1142 0.0974 0.1489 0.3726 0.1507 0.1289 

0.7 0 0.2715 0.3334 0.3006 0.3015 0.3007 0.3810 0.3505 0.3444 

0.7 0.1 0.2979 0.3376 0.3055 0.3091 0.3412 0.3941 0.3699 0.3540 

0.7 0.2 0.2983 0.3307 0.2860 0.3045 0.3572 0.3825 0.3704 0.3685 

0.7 0.3 0.2704 0.3277 0.2632 0.2173 0.3472 0.3801 0.2489 0.2649 

0.7 0.4 0.2701 0.3297 0.2772 0.2290 0.3246 0.3655 0.3111 0.2598 

0.7 0.5 0.2480 0.3265 0.2980 0.2009 0.2092 0.3193 0.2665 0.1302 

0.7 0.6 0.2485 0.3222 0.2678 0.2438 0.2423 0.3764 0.2893 0.1294 

0.7 0.7 0.2661 0.3268 0.2620 0.2812 0.2639 0.3770 0.2928 0.2409 

0.7 0.8 0.2849 0.3250 0.2750 0.1062 0.3427 0.3748 0.2913 0.2503 

0.7 0.9 0.2893 0.3244 0.2892 0.1058 0.3152 0.3739 0.1354 0.0684 

0.7 1 0.3013 0.3249 0.3006 0.0921 0.3508 0.3732 0.1447 0.0694 

0.8 0 0.2707 0.3280 0.2932 0.3101 0.3043 0.3866 0.3481 0.3532 

0.8 0.1 0.2708 0.3360 0.3001 0.3025 0.3047 0.3866 0.3512 0.3563 

0.8 0.2 0.2996 0.3362 0.3058 0.3079 0.3439 0.3933 0.3700 0.3621 

0.8 0.3 0.2950 0.3289 0.2981 0.3024 0.3516 0.3826 0.3798 0.3600 

0.8 0.4 0.3010 0.3286 0.2701 0.2731 0.3545 0.3806 0.3688 0.3374 

0.8 0.5 0.2702 0.3285 0.2717 0.2454 0.3204 0.3795 0.2205 0.2162 

0.8 0.6 0.2711 0.3274 0.2696 0.2511 0.3315 0.3825 0.2998 0.2234 

0.8 0.7 0.2557 0.3050 0.2927 0.0991 0.1339 0.3167 0.2700 0.1294 

0.8 0.8 0.2579 0.3270 0.2974 0.1838 0.1713 0.3421 0.2694 0.1305 

0.8 0.9 0.2798 0.3266 0.3093 0.2384 0.2567 0.3753 0.2845 0.1305 

0.8 1 0.3053 0.3266 0.3098 0.2293 0.2552 0.3759 0.2853 0.1302 

0.9 0 0.2325 0.3311 0.2807 0.3031 0.3038 0.3940 0.3472 0.3575 

0.9 0.1 0.2477 0.3377 0.2812 0.3031 0.3036 0.3901 0.3472 0.3445 

0.9 0.2 0.2527 0.3376 0.2820 0.2957 0.3023 0.3869 0.3476 0.3445 

0.9 0.3 0.2502 0.3322 0.2822 0.2972 0.3020 0.3929 0.3468 0.3453 

0.9 0.4 0.2668 0.3376 0.2880 0.2993 0.3009 0.3865 0.3521 0.3672 

0.9 0.5 0.2737 0.3306 0.2974 0.3013 0.3042 0.3882 0.3632 0.3706 

0.9 0.6 0.2731 0.3292 0.3011 0.2980 0.3494 0.3828 0.3791 0.3799 

0.9 0.7 0.2702 0.3303 0.2855 0.3059 0.3542 0.3822 0.3848 0.3796 

0.9 0.8 0.3026 0.3279 0.2622 0.2664 0.3464 0.3818 0.3872 0.3652 

0.9 0.9 0.3018 0.3277 0.2691 0.2308 0.3368 0.3797 0.2659 0.2594 

0.9 1 0.2677 0.3276 0.2695 0.2683 0.3383 0.3788 0.2680 0.2525 

1 0 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443 

1 0.1 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443 

1 0.2 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443 

1 0.3 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443 
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1 0.4 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443 

1 0.5 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443 

1 0.6 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443 

1 0.7 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443 

1 0.8 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443 

1 0.9 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443 

1 1 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443 

 

Table A.3.5 Attribute weights vs. missing edges for Caltech36 dataset 

% missing 

edges 

student/ 

faculty 
Gender major 

second major/ 

minor 
dormitory year High school 

0 0.4695 0.3102 0.0924 0.0002 0.2193 0.2195 0.0112 

5 0.4677 0.3166 0.0864 0.0008 0.2146 0.2021 0.0059 

10 0.4522 0.3065 0.0864 0.0020 0.2006 0.2085 0.0050 

15 0.4293 0.3166 0.0846 0.0042 0.1994 0.1820 0.0105 

20 0.4564 0.3110 0.0818 0.0016 0.2027 0.1966 0.0063 

25 0.4499 0.3209 0.0766 0.0007 0.1978 0.2014 0.0097 

30 0.4604 0.3208 0.0843 0.0040 0.2035 0.2122 0.0098 

35 0.4750 0.3325 0.0744 0.0010 0.2040 0.2312 0.0050 

40 0.4523 0.3119 0.0775 0.0022 0.2260 0.2066 0.0039 

45 0.4418 0.3108 0.1031 0.0057 0.2134 0.2229 0.0074 

50 0.4451 0.3093 0.0892 0.0007 0.2280 0.2279 0.0078 

 

Table A.3.6 Attribute weights vs. missing edges for Reed98 dataset 

% missing 

edges 

student/ 

faculty 
Gender major 

second major/ 

minor 
dormitory year 

High 

school 

0 0.5840 0.3180 0.0761 0.0064 0.0976 0.2698 0.0143 

5 0.5808 0.2931 0.0567 0.0048 0.0894 0.2667 0.0100 

10 0.5824 0.3141 0.0596 0.0061 0.0892 0.2575 0.0145 

15 0.5638 0.2920 0.0619 0.0044 0.0818 0.2567 0.0142 

20 0.5836 0.2997 0.0498 0.0049 0.0806 0.2875 0.0136 

25 0.5670 0.3065 0.0554 0.0041 0.0836 0.2501 0.0099 

30 0.5794 0.2940 0.0685 0.0028 0.0900 0.2580 0.0123 

35 0.5638 0.2777 0.0615 0.0040 0.0823 0.2671 0.0045 

40 0.5569 0.2928 0.0512 0.0059 0.0746 0.2600 0.0101 

45 0.5208 0.2790 0.0514 0.0053 0.0761 0.2422 0.0138 

50 0.5391 0.2917 0.0529 0.0062 0.0846 0.2543 0.0044 

 
Table A.3.7 Attribute weights vs. missing edges for Haverford76 dataset 

% missing 

edges 

student/ 

faculty 
Gender major 

second major/ 

minor 
dormitory year 

High 

school 

0 0.5815 0.3794 0.0387 0.0084 0.1582 0.3077 0.0079 

5 0.5995 0.3854 0.0344 0.0107 0.1541 0.3254 0.0097 

10 0.5950 0.3740 0.0323 0.0098 0.1610 0.3255 0.0101 

15 0.6025 0.3791 0.0423 0.0065 0.1444 0.3213 0.0051 

20 0.5966 0.3660 0.0355 0.0110 0.1619 0.3124 0.0049 
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25 0.5883 0.3640 0.0376 0.0127 0.1724 0.3096 0.0062 

30 0.5927 0.3716 0.0362 0.0081 0.1563 0.3202 0.0047 

35 0.5839 0.3411 0.0386 0.0093 0.1692 0.3195 0.0057 

40 0.6154 0.3741 0.0461 0.0117 0.1740 0.3460 0.0066 

45 0.5775 0.3455 0.0450 0.0136 0.1680 0.3031 0.0056 

50 0.5732 0.3594 0.0444 0.0118 0.1395 0.3150 0.0063 

 
Table A.3.8 Attribute weights vs. missing edges for Vassar85 dataset. 

% missing 

edges 

student/ 

faculty 
Gender major 

second 

major/minor 
dormitory year 

High 

school 

0 0.6188 0.3457 0.0442 0.0073 0.1964 0.3843 0.0102 

5 0.6337 0.3534 0.0420 0.0090 0.2058 0.3818 0.0095 

10 0.6293 0.3544 0.0438 0.0084 0.1979 0.3910 0.0094 

15 0.6179 0.3441 0.0392 0.0069 0.1936 0.3882 0.0071 

20 0.6264 0.3654 0.0444 0.0074 0.2066 0.3847 0.0105 

25 0.6215 0.3406 0.0413 0.0093 0.2076 0.3796 0.0104 

30 0.6066 0.3479 0.0433 0.0072 0.1983 0.3710 0.0090 

35 0.6142 0.3463 0.0405 0.0072 0.1957 0.3709 0.0077 

40 0.6105 0.3374 0.0456 0.0075 0.1934 0.3828 0.0076 

45 0.6064 0.3614 0.0450 0.0082 0.1937 0.3823 0.0095 

50 0.5894 0.3412 0.0408 0.0062 0.1831 0.3642 0.0089 

 
Table A.3.9 Number of community clusters vs. Missing edges for Caltech36 and Reed98 datasets 

Data set Caltech36 Reed98 
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0 9 4 10 7 12 4 72 8 5 3 6 4 7 3 78 6 

5 11 4 12 8 11 4 71 6 7 3 8 4 6 3 65 6 

10 12 4 13 8 11 5 77 6 11 3 9 4 6 3 72 5 

15 16 4 17 7 13 5 79 6 12 3 11 4 5 3 76 6 

20 20 4 19 8 9 4 78 6 15 3 13 4 6 3 78 7 

25 22 4 22 7 10 4 87 6 17 3 17 4 4 4 71 8 

30 24 4 25 7 11 4 89 7 18 3 18 5 5 3 77 5 

35 26 4 26 7 10 4 88 7 26 4 24 4 6 3 90 7 

40 32 4 33 8 11 5 98 8 27 4 27 4 6 4 96 6 

45 33 4 34 7 10 5 103 8 28 4 28 4 7 3 102 6 

50 39 4 39 8 10 4 104 8 36 4 34 4 8 4 114 6 
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Table A.3.10 Number of community clusters vs. missing edges for Haverford76 and Vassar85datasets 

Data set Haverford76 Vassar85 
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0 6 3 5 4 7 3 28 4 5 3 6 5 7 3 60 4 

5 5 3 7 4 7 3 37 5 7 3 8 5 7 3 55 4 

10 6 3 7 4 8 3 40 4 9 3 10 5 6 3 55 5 

15 8 3 9 4 8 3 42 5 12 3 13 5 7 3 67 5 

20 9 3 11 4 8 3 40 4 13 3 15 5 6 3 70 4 

25 10 3 11 4 8 3 43 5 16 3 17 5 8 4 73 4 

30 12 3 13 4 8 3 46 4 17 3 18 5 6 4 84 4 

35 14 3 14 4 10 3 49 5 21 3 23 5 5 3 89 4 

40 15 3 15 4 7 3 53 5 26 3 27 5 6 4 97 4 

45 18 4 18 4 10 3 55 5 33 3 32 5 8 3 102 4 

50 20 3 21 4 8 4 61 6 34 3 35 5 7 3 105 4 

 
Table A.3.11 Community size vs. missing edges for Caltech36 and Reed98 datasets 

D
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Caltech36 Reed98 
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0 85 192 77 110 64 185 11 100 192 313 160 221 137 321 12 162 

5 71 185 63 101 75 181 11 122 161 305 131 226 180 321 15 169 

10 64 192 60 102 75 169 10 125 92 300 113 231 189 321 14 196 

15 51 188 45 104 63 173 10 127 83 297 89 221 210 337 13 176 

20 40 182 40 102 89 185 10 121 68 297 78 236 191 313 13 167 

25 36 181 35 108 82 192 9 125 57 313 58 236 253 284 14 146 

30 32 185 31 105 82 182 9 118 54 313 54 212 213 305 13 199 

35 30 191 31 106 77 178 9 118 38 281 40 231 201 329 11 175 

40 24 195 24 103 77 165 8 103 36 292 36 241 174 306 10 182 

45 24 195 23 106 78 172 8 98 35 273 35 236 184 350 10 177 

50 20 183 20 100 83 188 7 101 27 281 29 221 158 287 8 164 
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Table A.3.12 Community size vs. missing edges for Haverford76 and Vassar85datasets 
D
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Haverford76 Vassar85 
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0 241 482 289 362 
20

7 
482 52 393 614 

102

3 
511 614 

43

8 

102

3 
51 736 

5 296 446 222 362 
21

1 
482 39 311 488 

102

3 
396 614 

48

0 

102

3 
56 752 

10 251 470 215 362 
18

5 
482 37 354 374 

102

3 
316 629 

56

7 
997 56 709 

15 196 499 170 362 
19

0 
482 35 345 269 

102

3 
236 614 

43

6 
972 47 721 

20 162 506 140 354 
21

3 
482 36 369 250 997 224 614 

59

2 
946 44 736 

25 143 506 132 362 
22

4 
470 34 342 200 

102

3 
188 614 

44

7 
895 42 736 

30 123 458 115 362 
23

7 
482 32 376 181 

102

3 
174 614 

59

7 
869 37 767 

35 111 446 103 362 
17

8 
482 30 352 148 

102

3 
140 614 

67

8 
972 35 752 

40 99 458 98 362 
28

2 
482 28 299 123 

102

3 
116 614 

57

2 
895 32 752 

45 83 431 81 362 
21

7 
446 27 275 96 997 97 614 

44

6 
946 30 721 

50 74 470 72 362 
24

0 
410 24 251 90 

102

3 
89 614 

55

3 

102

3 
30 782 

 
Table A.3.13 Modularity index vs. missing edges for Caltech36 dataset 

% 

missing 

edges 

FA 
Hybrid-

FA 
LA 

Hybrid-

LA 
LEA 

Hybrid-

LEA 
WA 

Hybrid-

WA 

0 0.3120 0.3174 0.3764 0.3935 0.3623 0.3445 0.3459 0.3133 
5 0.3224 0.3206 0.3877 0.3963 0.3602 0.3454 0.3414 0.3105 

10 0.3238 0.3177 0.3952 0.3932 0.3627 0.3411 0.3446 0.3135 
15 0.3246 0.3098 0.3897 0.3961 0.3573 0.3358 0.3412 0.3041 
20 0.3344 0.3033 0.3900 0.3910 0.3529 0.3217 0.3473 0.2923 
25 0.3134 0.3074 0.3891 0.3916 0.3562 0.3052 0.3440 0.2833 
30 0.3255 0.3119 0.3912 0.3900 0.3513 0.2914 0.3403 0.2784 
35 0.3233 0.2994 0.3890 0.3893 0.3507 0.2838 0.3443 0.2686 
40 0.3208 0.3012 0.3889 0.3853 0.3433 0.2669 0.3445 0.2658 
45 0.3207 0.3000 0.3873 0.3834 0.3451 0.2655 0.3341 0.2542 
50 0.3177 0.2938 0.3805 0.3815 0.3420 0.2372 0.3362 0.2369 
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Table A.3.14 Modularity index vs. missing edges for Reed98 dataset 

% 

missing 

edges 

FA 
Hybrid-

FA 
LA 

Hybrid-

LA 
LEA 

Hybrid-

LEA 
WA 

Hybrid-

WA 

0 0.2776 0.2423 0.3288 0.3199 0.2823 0.2785 0.2621 0.2411 

5 0.2711 0.2470 0.3214 0.3170 0.2858 0.2775 0.2617 0.2358 

10 0.2768 0.2473 0.3229 0.3142 0.2815 0.2739 0.2640 0.2223 

15 0.2731 0.2525 0.3190 0.3134 0.2800 0.2724 0.2649 0.2145 

20 0.2641 0.2532 0.3157 0.3153 0.2771 0.2662 0.2629 0.2152 

25 0.2649 0.2481 0.3099 0.3156 0.2737 0.2658 0.2678 0.2131 

30 0.2729 0.2430 0.3122 0.3104 0.2758 0.2583 0.2615 0.2075 

35 0.2814 0.2422 0.3086 0.3060 0.2726 0.2539 0.2515 0.1990 

40 0.2702 0.2457 0.3027 0.3073 0.2641 0.2443 0.2615 0.1938 

45 0.2696 0.2502 0.3014 0.3044 0.2686 0.2376 0.2504 0.1830 

50 0.2749 0.2439 0.2928 0.2986 0.2629 0.2400 0.2453 0.1747 

 
Table A.3.15 Modularity index vs. missing edges for Haverford76 dataset 

% 

missing 

edges 

FA 
Hybrid-

FA 
LA 

Hybrid-

LA 
LEA 

Hybrid-

LEA 
WA 

Hybrid-

WA 

0 0.2769 0.3010 0.3373 0.3293 0.2823 0.2736 0.3000 0.2573 

5 0.2706 0.2818 0.3324 0.3291 0.2811 0.2714 0.3024 0.2786 

10 0.2692 0.2706 0.3324 0.3285 0.2817 0.2699 0.2994 0.2701 

15 0.2651 0.2785 0.3342 0.3291 0.2814 0.2685 0.2982 0.2764 

20 0.2694 0.2757 0.3325 0.3259 0.2761 0.2657 0.2991 0.2641 

25 0.2709 0.2773 0.3301 0.3283 0.2772 0.2630 0.2983 0.2694 

30 0.2796 0.2753 0.3291 0.3278 0.2720 0.2615 0.2965 0.2584 

35 0.2811 0.2835 0.3265 0.3249 0.2756 0.2584 0.2958 0.2653 

40 0.2813 0.2761 0.3262 0.3275 0.2682 0.2570 0.2965 0.2607 

45 0.2794 0.2740 0.3236 0.3272 0.2692 0.2696 0.2896 0.2572 

50 0.2830 0.2809 0.3214 0.3261 0.2685 0.2836 0.2951 0.2531 

 

 
Table A.3.16 Modularity index vs. missing edges for Vassar85 dataset 

% 

missing 

edges 

FA 
Hybrid-

FA 
LA 

Hybrid-

LA 
LEA 

Hybrid-

LEA 
WA 

Hybrid-

WA 

0 0.3138 0.3354 0.3940 0.3809 0.3472 0.3307 0.3443 0.2688 

5 0.3176 0.3405 0.3889 0.3807 0.3470 0.3292 0.3498 0.2638 

10 0.3166 0.3420 0.3878 0.3786 0.3499 0.3257 0.3474 0.2580 

15 0.3156 0.3458 0.3841 0.3798 0.3478 0.3220 0.3457 0.2411 

20 0.3182 0.3414 0.3869 0.3795 0.3487 0.3188 0.3474 0.2650 

25 0.3250 0.3432 0.3843 0.3790 0.3492 0.3146 0.3518 0.2504 

30 0.3240 0.3440 0.3865 0.3784 0.3480 0.3068 0.3475 0.2379 

35 0.3172 0.3449 0.3844 0.3777 0.3463 0.3081 0.3467 0.2435 

40 0.3274 0.3412 0.3799 0.3773 0.3442 0.2968 0.3437 0.2447 

45 0.3237 0.3455 0.3823 0.3765 0.3442 0.2921 0.3429 0.2400 

50 0.3286 0.3417 0.3805 0.3762 0.3437 0.2901 0.3412 0.2231 
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