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Abstract—With the wide application of radio frequency 

identification (RFID) technology, the possibility of the collision 

among readers may increase. When the number of RFID readers 

is large, the dimension of the RFID reader collision problem will 

be huge. To solve the high-dimensional RFID reader-to-reader 

collision problem effectively, we improve the parallel cooperative 

co-evolution particle swarm optimization (PCCPSO) algorithm by 

adopting the hybrid adaptive strategy of the inertia weight. In 

addition, we make parallelism implementation of the improved 

algorithm. Then, we use the improved algorithm to solve the RFID 

reader-to-reader anti-collision problem. In the experiments, we 

compare the improved distributed parallel particle swarm 

optimization (IDPPSO) algorithm with the PCCPSO algorithm, 

and make Wilcoxon test on the results. The experimental results 

demonstrate IDPPSO algorithm has better performance. 
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I. INTRODUCTION 

RFID technique has been applied in many fields, such as 
vehicle networks [1] and [2], rail management [3] and [4], cargo 
tracking [5] [6], and student attendance monitoring [7] [11] [16], 
etc. However, as the application of the RFID system increases, 
it may lead to a large number of readers in the same deployment 
region. When the signal from a tag to a target reader encounters 
interference from the signal of another working reader, a reader-
to-reader collision problem may occur. In the case of dense 
deployment of readers, the reader-to-reader collision problems 
will become serious. These affect the identification rate and the 
reliability of RFID systems [8] [20] [22].  

A number of existing RFID reader anti-collision algorithms 
are based on resource scheduling strategy. The Distributed Color 
Selection (DCS) [9] protocol is a well-known strategy for the 
RFID reader collision problem. In this protocol, the reader which 
collides with others will randomly select a new time slot for 
communication. However, this protocol takes a long time to 
achieve good results. The work of [10] presented the Neighbor 
Friendly Reader Anti-collision (NFRA) protocol to manage time 
slots for readers; it uses “Listen Before Talk” strategy to reduce 
collisions among neighbors. NFRA is simple to implement, but 
it only considers the single channel situation and it needs extra 
hardware. Li et al. [21] proposed an RFID reader-to-reader anti-

collision model, in which the resources to be allocated are 
readers’ physical positions and transmitting power, as well as the 
time slots and frequency channels. They also proposed an 
artificial immune network algorithm with hybrid encoding for 
resource allocation (AINetHE-RA) to solve it. However, the 
AINetHE-RA algorithm performs poorly when handling high-
dimensional (relatively large numbers of readers) RFID reader 
anti-collision problems.  

A cooperative co-evolving particle swarm optimization 
(CCPSO) algorithm [12] was used to address the high-
dimensional non-separable problems. CCPSO integrated 
strategies of random grouping and adaptive weighting. 
Experiments have shown that CCPSO performs well only in a 
small number of evaluations. Furthermore, in the work of [13], 
by introducing dynamic grouping and a novel position-updating 
rule, a new cooperative coevolving particle swarm optimization 
(CCPSO2) algorithm was presented. CCPSO2 algorithm 
performs well at solving the optimization problem when the 
dimensions are up to 2000. In the work of [14], a Spark-based 
parallel cooperative co-evolution PSO algorithm (PCCPSO) was 
proposed by drawing the advantage of CCPSO2. Experimental 
results show that the PCCPSO algorithm had good optimization 
performance in dealing with high-dimensional problems. 
Therefore, this motivates us to make improvements based on 
PCCPSO algorithm, and use it to solve the RFID reader anti-
collision problem with relatively high dimensionality.  

Based on the PCCPSO algorithm, we adopt the hybrid 
adaptive strategy of the inertia weight. In addition, to improve 
the computational efficiency of the algorithm, we use the MPI 
parallel programming interface to conduct the parallelism of the 
algorithm. Then, we use the improved distributed parallel PSO 
algorithm (IDPPSO) for solving the RFID reader-to-reader anti-
collision optimization problem. 

The remainder of this paper is organized as follows. Section 
II describes the RFID reader collision problem and the RFID 
reader-to-reader anti-collision model. Our proposed algorithm, 
IDPPSO, is presented in detail in Section III. In Section IV, we 
describe the experimental results. Finally, we make a conclusion 
of this paper in Section V. 
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II. THE RFID READER-TO-READER ANTI-COLLISION MODEL 

A. The RFID Reader Collison Problem 

The RFID reader collision problem includes reader-to-tag 
and reader-to-reader collisions. When two readers 
simultaneously send signals to the same tag in the overlapped 
interrogation region of the two readers, a reader-to-tag collision 
occurs. An example is presented in Fig. 1, where  𝑟  is the 
interrogation radius of reader 𝑅1, and 𝑥 is the interference radius 
of reader 𝑅2. The interrogation range of reader 𝑅1 is occluded by 
both the interrogation range and the interference range of reader 
𝑅2. Tag 𝑇2 is within the interrogation ranges of readers 𝑅1 and 
𝑅2. When readers 𝑅1 and 𝑅2 transmit signal to tag 𝑇2 at the same 
time, a reader-to-tag collision occurs, resulting in two readers 
read/write failures. Additionally, when the target reader is 
located within the interference range of a working reader, the 
signal of the working reader performs as the interference signal 
to the target reader a reader-to-reader collision occurs. As shown 
in Fig. 1, 𝑇1  is within the interrogation range of 𝑅1  and the 
interference range of 𝑅2. When 𝑅1 transmits a signal to 𝑇1, if 𝑅2 
is also in an active state, its signal acts as an interference to 𝑅1. 
Moreover, if the power of the interference signal makes the 
interrogation radius of 𝑅1 smaller than the distance between 𝑅1 
and 𝑇1, the read/write (𝑅1 from/to 𝑇1) will fail. 

B. The RFID Reader-to-reader Anti-collision Model 

In the work of [21], the readers’ physical positions, 
transmitting power, time slots, and frequency channels are 
considered in a reader-to-reader anti-collision model. This 
model formulates the reader-to-reader anti-collision problem as 
an optimization problem of resource allocation to readers. The 
decision vector of the optimization problem contains the 
physical position of each reader, as well as frequency channel 
encoding and power encoding of each reader at each time slot. 
Therefore, the dimensionality of the candidate solution is: 

 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 = 𝑁𝑟𝑒𝑎𝑑𝑒𝑟 × 2 + 𝑁𝑟𝑒𝑎𝑑𝑒𝑟 × 𝑁𝑠𝑙𝑜𝑡 × 2, 

where 𝑁𝑟𝑒𝑎𝑑𝑒𝑟  and 𝑁𝑠𝑙𝑜𝑡  are the numbers of readers and time 
slots, respectively. In this model, the communication between 
reader 𝑖 and tag 𝑘 can be established at time slot 𝑡 only if the 

signal-to-interference-plus-noise ratio (𝑆𝐼𝑁𝑅𝑖(𝑡, 𝑥𝑖,𝑘)) of reader 

𝑖 is greater than a desired minimum value 𝑆𝐼𝑁𝑅𝑚𝑖𝑛. Therefore, 

the interrogation radius of reader 𝑖 at time slot 𝑡 is defined as 𝑟𝑖
𝑡 

, which can be calculated as follows:  

 𝑟𝑖
𝑡 = arg max

𝑥𝑖,𝑘

𝑆𝐼𝑁𝑅𝑖(𝑡, 𝑥𝑖,𝑘) ≥ 𝑆𝐼𝑁𝑅𝑚𝑖𝑛 , 

where 𝑥𝑖,𝑘  is the distance between reader 𝑖  and tag 𝑘 , the 

calculation formulation of 𝑆𝐼𝑁𝑅𝑖(𝑡, 𝑥𝑖,𝑘) is detailed in reference 

[21].  

Throughput is an important index for evaluating the 
performance of the RFID system. Therefore, based on the RFID 
reader-to-reader model proposed in [21], we consider the 
throughput of the RFID system in one interrogation round as the 
evaluating index of the model. One interrogation round includes 
𝑁𝑠𝑙𝑜𝑡  time slots. In this paper, the throughput is defined as the 
number of effectively identified tags in one interrogation round 

(suppose a certain number of tags randomly distributed in the 
specified deployment region). The calculation formula of the 
throughput is as follows: 

 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = ∑ 𝛿𝑘
𝑁𝑡𝑎𝑔

𝑘=1 , 

where 𝑁𝑡𝑎𝑔 is the number of tags, 𝛿𝑘 indicates whether tag 𝑘 is 

effectively identified in the interrogation round, 𝛿𝑘 = 1 
indicates tag 𝑘 is effectively identified, and it is calculated as 
follows[15]: 

 𝛿𝑘 = { 
1 ∃𝑡 ∈ 𝑆𝑆, ∃𝑖 ∈ 𝑆𝑅, 𝑠. 𝑡.  𝑥𝑖,𝑘 ≤ 𝑟𝑖

𝑡 ,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    

where 𝑆𝑅 = {1,2, … , 𝑁𝑟𝑒𝑎𝑑𝑒𝑟}, 𝑆𝑆 = {1,2, … , 𝑁𝑠𝑙𝑜𝑡}.  

III. IMPROVED DISTRIBUTED PARALLEL PSO ALGORITHM 

BASED ON MPI 

A. The Improved PSO Algorithm 

GPSO [19] algorithm has the advantage of fast convergence 
speed in solving unimodal problems, while the LPSO [17] 
algorithm can effectively avoid being trapped in local optima in 
multimodal problems. PCCPSO algorithm combined the GPSO 
algorithm and the LPSO algorithm, taking advantage of merits 
of both algorithms. Each particle contains the evolution 
information of both GPSO algorithm and LPSO algorithm. The 
two algorithms optimize independently, but in the optimization 
process, each algorithm will absorb advanced information of the 
other one. Before the position updating, GPSO algorithm 
updates its global optimal to the better one of the two algorithms’ 
global optimal positions; in the process of LPSO algorithm 
position updating, LPSO algorithm updates its position to the 
global optimal of GPSO algorithm based on a specified 
probability. This paper improves the PCCPSO algorithm, which 
will be illuminated in detail in the following. 

In the GPSO algorithm, particle position updating is 
formulated as follows:  

𝑣𝑖(𝑡 + 1) = 𝜔𝑣𝑖(𝑡) + 𝑐1𝑟1 (𝑝ℎ,𝑖(𝑡) − 𝑝𝑖(𝑡)) + 𝑐2𝑟2 (𝑝𝑔(𝑡) −

𝑝𝑖(𝑡)),  

 

Fig. 1. Illustration of reader collision problem. 

 



 𝑝𝑖(𝑡 + 1) = 𝑝𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) 

where 𝑡 is the current iteration number; 𝜔 is the inertia weight; 

𝑐1 and 𝑐2 are learning factors; 𝑝ℎ,𝑖 is the best position of the 𝑖𝑡ℎ 

particle found so far, 𝑝𝑔 is the best position found by the entire 

particle swarm so far, 𝑝𝑖  is the current position of the 𝑖𝑡ℎ 

particle; 𝑣𝑖 indicates the current velocity of the 𝑖𝑡ℎ particle; 𝑟1 
and 𝑟2 are random numbers within [0,1]. 

The inertia weight in PCCPSO algorithm is set to a constant. 
An adaptive inertia weight control strategy is proposed in the 
work of [18]. In this strategy, the inertia weight changes 
adaptively according to the optimization state of the algorithm. 
The inertia weight is calculated as follows:  

 𝜔𝑡(𝑓) =
1

1+1.5𝑒−2.6𝑓 , 𝑓 =
𝑑𝑔−𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥−𝑑𝑚𝑖𝑛
, 

 𝑑𝑖 =
1

𝑛−1
∑ √∑ (𝑥𝑗

𝑘 − 𝑥𝑖
𝑘)

2𝐷
𝑘=1

𝑛
𝑗=1,𝑗≠𝑖  

where  𝐷  is the dimension of the decision vector; 𝑛  is the 

population size; 𝑥𝑖
𝑘 is the 𝑘𝑡ℎ dimensional value of the decision 

vector; 𝑑𝑖 is the mean distance between particle 𝑖 and the other 
particles; 𝑑𝑚𝑎𝑥  and 𝑑𝑚𝑖𝑛   are the maximum and minimum 
distances, respectively; 𝑑𝑔 is the mean distance of the global 

best particle; 𝑓  is the evolutionary factor that tracks the 
optimization state of the algorithm. 

In the work of [19], an inertia weight adaptive strategy of 
linearly decreasing with the iterative generations is proposed. In 
this paper, we combine the two kinds of inertia weight adaptive 
strategies, the hybrid adaptive strategy of the inertia weight in 
this paper can be defined as follows:  

 𝜔𝑡 = { 
(𝜔𝑓−𝜔𝑖) 

𝑡

𝑇
+ 𝜔𝑖 ,  

𝑡

𝑇
≤ 𝑠

1

1+1.5𝑒−2.6𝑓 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    

here 𝑇  is the total number of iterations; 𝜔𝑓 , 𝜔𝑖  and 𝑠  are 
constants. In the early stage of the evolution, the inertia weight 
decreases linearly according to generation. This strategy can 
make the population search in a wider range of the search space, 
enhancing the population’s global search ability. In addition, 
when using the inertia weight linear decreasing strategy, it does 
not need to judge the optimization state of the algorithm in each 
iteration process, which takes a relatively short time and 
improves the efficiency of the algorithm. Moreover, when 
judging the optimization state of the algorithm according to 
equations (7) and (8), there may be a case of misjudgment. In the 
early stage of evolution, if inertia weight is changed according 
to the optimization state of the algorithm, it may cause a large 
change of the inertia weight because of the misjudgment. That 
may damage the coherence of the particle search. In the later 
stage of the evolution, the inertia weight adaptively changes 
according to the optimization state of the algorithm. When the 
algorithm is in the exploitation or convergence state, the value 
of the evolutionary factor 𝑓  is relatively small, so the inertia 
weight will also be relatively small, and the local search 
capability of the population is enhanced. When the algorithm is 

in the exploration state or jumping-out state (jump out of the 
local optimum), the value of the evolutionary factor 𝑓  is 
relatively large, so the inertia weight will also be relatively large, 
which can enable the population to search wider in the search 
region and enhance the global search ability. This strategy can 
improve the diversity of population distribution and prevent the 
population from falling into local optimum. To sum up, by 
combining the two inertia weight adaptive strategies, the hybrid 
adaptive strategy can absorb the advantages of the two strategies 
and enhance the effectiveness of the algorithm.  

B. Parallelism Implementation based on MPI 

In dense deployment of RFID readers application scenarios, 
the dimension of the problem to be solved may be very high. 
When attempting to solve this kind of complex and high-
dimensional optimization problem with the conventional serial 
method, the computation time may be very long. Therefore, to 
improve the computational efficiency of the proposed IDPPSO 
algorithm, we use the message passing interface (MPI) for 
parallel programming. In this paper, the parallelism has a coarse 
granularity: each process represents a particle and all of the 
processes execute in parallel. In the procedure of algorithm 
optimization, each process communicates with others through 
MPI to complete the information exchange among particles. 

IV. EXPERIMENTS 

A. Experimental Setup 

In the simulations, there are 1000 tags placed randomly in a 
100 × 100 𝑚2  rectangular region. The deployment area of 
readers is the same region. The parameters of the RFID reader-
to-reader anti-collision model are as follows: the number of 
time slots is 4, the number of communication channels is 10, 
and the maximum power of reader's transmitting signal is 1.0 
W; the other parameters of the model are the same as in [21]. In 
the experiment, we compare the effectiveness of the proposed 
IDPPSO algorithm and the PCCPSO algorithm when solving 
the RFID reader-to-reader anti-collision problem. In the 

proposed IDPPSO algorithm, 𝜔𝑓, 𝜔𝑖 and 𝑠 are set to 0.4, 0.9, 
and 0.5, respectively. The parameters of the PCCPSO algorithm 
is in reference [14]. 

In the evaluations, we use the Tianhe-2 supercomputer as 
the experimental platform to test the proposed IDPPSO 
algorithm. There are twenty-four cores in each node, and we 
used forty cores of two nodes. We also use coarse-grained 
parallelism in the proposed algorithm, with each process 
representing a particle (i.e. the number of particles is forty). 
Each test instance is executed twenty times, and the averaged 
fitness value is taken to be the result of the instance. For fair 
comparison, the FEs (number of fitness evaluations) settings in 
the proposed IDPPSO algorithm and the PCCPSO algorithm are 
the same: 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 × 103. 

B. Comparison of the Algorithms Effectiveness 

Here, we evaluate the effectiveness of the two algorithms in 
dealing with the RFID reader-to-reader anti-collision problem. 
We have considered five cases of RFID reader quantities, which 
are 20, 40, 60, 80, and 100, respectively. Fig. 2 illustrates the test 
results obtained by IDPPSO algorithm and PCCPSO algorithm. 
As shown in Fig.2, it can be seen that the proposed IDPPSO 



algorithm outperforms the PCCPSO algorithm at all of the tested 
dimensionalities. In addition, it can be seen from Fig.2, as the 
dimension increases, the gap between the two algorithms is also 
increasing. That is to say, the proposed IDPPSO algorithm 
performs well particularly in dealing with high-dimensional 
optimization problems. 

Fig. 3 depicts the deployment effect obtained by IDPPSO 
algorithm and PCCPSO algorithm when the number of readers 
is 20. In Fig. 3, the small black triangle represents the predefined 
candidate locations of readers; the small blue square represents 
the tag which is not effectively identified, and the red small 
square represents the tag which is effectively identified. As 
shown in Fig. 3, the four colors of the circle represent the four 
time slots (the representative colors of slots 1, 2, 3 and 4 are 
black, blue, green, and magenta, respectively). It can be seen 
from Fig. 3, the number of tags which are effectively identified 
in IDPPSO algorithm is larger than PCCPSO algorithm. That is 

to say, the throughput obtained by the proposed IDPPSO 
algorithm is better than PCCPSO algorithm. 

In addition, we perform the Wilcoxon test on the results in 
Fig. 2, and the statistical result is presented in Table I. Therefore, 
we can examine the significance of the difference between the 
results of the two algorithms. As shown in Table I, when 
IDPPSO algorithm is compared to PCCPSO algorithm, the R+ 
value is greater than the R- value, and the P-value is less than 
0.05. Therefore, we can conclude that IDPPSO algorithm is 
significantly better than PCCPSO algorithm at solving the RFID 
reader-to-reader anti-collision optimization problem in the tested 
dimensionalities. 

C. Comparison of the Computation Time 

The proposed IDPPSO algorithm uses the MPI parallel  
programming interface to improve the computational efficiency. 
We tested the computing time of the parallel version and the 
serial version of the proposed algorithm. In the evaluations, we 
used the Tianhe-2 supercomputer as the experimental platform 
of the parallel and serial programs. In the parallel programs, we 
used forty cores. As shown in Table II, we compared the 
computing time between the parallel version and the serial 
version of the proposed algorithm. We tested their computing 
time when solving with the 600, 1000 and 2000 dimensional 
RFID reader-to-reader anti-collision problems. The speedups of 
the parallel version compared to the serial version are about 
46.2%, 48.9%, and 82.6% with respect to the ideal speedup (i.e., 

 
 

(a) The proposed IDPPSO algorithm (b) The PCCPSO algorithm 

 

Fig. 3. 20 RFID readers' test results obtained by the proposed IDPPSO algorithm and the PCCPSO algorithm. 

 

 

 
Fig. 2. Test results obtained by IDPPSO algorithm and PCCPSO 

algorithm. 

 

TABLE I.  WILCOXON TEST RESULT OF IDPPSO AND PCCPSO. 

Algorithm R+ R- p-value α=0.05 

IDPPSO \ \ \ \ 

PCCPSO 15.0 0.0 0.030971 yes 

 

 

 



40) at 600, 1000, and 2000 dimensionalities, respectively. 
Therefore, the parallel version of the proposed algorithm reduces 
a large amount of computing time and improves the efficiency 
of the algorithm.  

V. CONCLUSION 

We apply the improved distributed parallel PSO algorithm to 
the RFID reader-to-reader anti-collision optimization problem. 
In the improved algorithm, we adopt the hybrid adaptive strategy 
of the inertia weight. To solve the high-dimensional RFID 
reader-to-reader anti-collision problem effectively and 
efficiently, we use the MPI parallel programming interface. We 
compared the improved algorithm with PCCPSO algorithm, and 
the findings demonstrated that the proposed IDPPSO algorithm 
performs significantly better than the PCCPSO algorithm. In 
addition, the experimental results show that the parallel strategy 
reduces a lot of computing time and improves the efficiency of 
the algorithm. The future work includes a refinement of the 
RFID reader anti-collision model and the improvement of the 
algorithm. 
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TABLE II.  THE COMPUTING TIME OF THE  PARALLEL VERSION  AND 

THE SERIAL VERSION OF IDPPSO. 

Dimension Parallel Version Serial Version  

600 2.28 E+01 s 4.21 E+02 s 

1000 5.48 E+01 s 1.07 E+03 s 

2000 1.92 E+02 s 6.35 E+03 s 

 


