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Abstract(100 words) 
 

It is both the best of times and the worst of times to be a medicinal chemist.  Massive amounts of 

data combined with machine learning / artificial intelligence (AI) tools to analyse it can increase 

our capabilities. However, drug discovery faces severe economic pressure and a high level of 

societal need against very challenging targets. We show how improving medicinal chemistry by 

better curating and exchanging knowledge can contribute to improving drug hunting in all disease 

areas. Securing intellectual property is a critical task for medicinal chemists, however it impedes the 

sharing of generic medicinal chemistry knowledge. Recent developments enable sharing 

knowledge both within and between organizations while securing intellectual property. Finally the 

effects of the structure of drug discovery's corporate ecosystem on knowledge sharing is explored. 

 

Critical Glossary 
 

Matched Molecular Pair Analysis (MMPA) a technique for chemical structure activity or 

 property analysis where single precise changes to molecule 

 structures are identified and the effect of the same change 

 (described as a transformation) is studied across multiple pairs 

 of molecules to identify transformations that are transferable 

 between chemical series[1] 

Quantitative Structure Activity  

Relationship models Mathematical models built from descriptors of individual  

 molecule structures that aim to predict biological or 

 physicochemical properties of new proposed molecules[2,3] 

Econometrics mathematical economics[4] 

Publication bias bias in research where the outcome of the research biases the 

 public disclosure, a particular problem in using public data sets 

 to infer knowledge[5,6] 

Hierarchy of evidence a ranking of different types of study when making decisions, 

 with the highest level being least prone to systematic bias and 

 the lowest level being anecdotes or expert opinion[7] 
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The goal of this paper is to show how it is possible to accelerate drug discovery by analyzing, 

systematizing and sharing medicinal chemistry knowledge in an unbiased and coherent way. This is 

at the core of AI approaches based on supervised learning. The fall in productivity of drug discovery 

is reviewed and the role medicinal chemistry has to play addressing this issue is highlighted. We 

discuss how the human aspects of working within a drug discovery team impact on the practice of 

medicinal chemistry and how using more evidence-driven approaches can counter-balance 

natural human cognitive biases. The central part of this work shows how application of modern 

approaches to systematizing knowledge in an unbiased way can both extract new knowledge and 

circumvent the confidentiality issues created by the need to generate intellectual property(IP). 

Finally, we discuss the corporate challenges and benefits to global drug discovery in sharing 

medicinal chemistry knowledge broadly between large Pharmaceutical companies and more 

widely with the academic, not-for-profit and biotech sectors. 

The Central Challenge for Chemists in Drug Discovery 
Drug discovery is facing severe economic stress against a background of increasing societal need. 

The output of global drug discovery has held surprisingly constant with a median of 16 NMEs 

launched per year between 1950 - 2014.  Taking a straightforward definition of productivity in drug 

discovery as the number of NCE's brought to market divided by cost, longitudinal analysis shows an 

average annual increase in cost of 8% per annum – christened "Erooms Law" [8]. A drop in 

productivity that few budgets in any industry can tolerate. Using 2016 prices: in 1950 a billion dollars 

would deliver over 30 drugs to market, today: less than one.  Against this background the repeated 

organizational "efficiency drives" in drug discovery have clearly failed to deliver the promised 

radical improvements in productivity. Even rigorous application of good decision making practice 

and focusing research resources as recently discussed by Pangalos et al[9] although useful are 

nowhere near returning us to the heights of 1950's productivity 

 Econometric analysis of the areas of cost in drug discovery challenges the traditional view 

that Phase III trials represent the highest cost section in the process. Accounting for attrition, portfolio 

modeling and the cost of capital, the true area for maximum process improvement is in the lead 

optimization phase, as it occurs relatively early in the research and development cycle, is long, 

expensive and has a significant attrition rate[4].  A recent analysis[10] of the contrast between the 

technological and organizational advances  made over the last 60 years makes the key point that 

accessing compounds active in a disease-relevant in vivo model remains the critical turning point in 

a drug discovery program from a scientific and investment perspective. The responsibility of the 

biologists in drug hunting teams is ensuring that the targets, assays and experimental models are 

aligned to the disease state. Here understanding the historic probability of success in different 

target classes may be of value[11], however the ingenuity of chemists has often overcome what 

were perceived as "undruggable" classes as demonstrated by recent progress in protein-protein 

interactions enabled by structural biology, fragment based lead generation and DNA encoded 

libraries[12]. There has been significant progress in this area using automated methods to identify 

better drug targets. The key roles of the chemists are to find and optimize compounds to the point 

where they can be dosed in vivo to the disease model and generate the critical data to select the 

right compound to take into the clinic. 

 Reducing the cost of lead optimization campaigns by accelerating them would allow more 

lead series to be studied per project and more biological approaches targeted per disease state. 

This has the potential to significantly increase the probability of developing new therapeutic 

approaches for an aging global population and address emerging threats from drug resistant 

pathogens.  

How can we accelerate Medicinal Chemistry? 
Accelerating lead optimization entails addressing the central technical challenge of medicinal 

chemistry, which is the need to optimize potency at the biological target while simultaneously 

maintaining bioavailability through the appropriate therapeutic route of administration and 

avoiding toxicity; a highly challenging multifactorial design problem.  Unsurprisingly, the design-

make-test-analyze cycle most commonly used as a cyclic prototyping process usually requires a 
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large number of cycles for success, with the chemists using experience, chemical knowledge and 

simple general rules for guidance. The challenge implicit in these approaches is the build up of 

mental models that may become rigid and a practitioner or team may become “stuck” in a 

chemical series unable to deliver compounds with adequate properties to use in vivo. 

 Medicinal chemistry has gathered huge amounts of in vitro testing data in the last three 

decades particularly addressing ADME and toxicology issues. The vast majority of this is held in data 

vaults that are in danger of becoming data tombs if the knowledge contained there cannot be 

exploited[13]. The key non-technical goal in medicinal chemistry is the requirement to generate 

intellectual property in order to generate a return on the investment in research. This constraint 

means inactive or compromised structures are usually not publicly disclosed to avoid weakening IP 

positions. This generates a very significant publication bias[5] of chemical matter as spectacularly 

shown by Kramer et al [14] analyzing the distribution of potency data in ChEMBL where the modal 

pKi is 8.5. No practicing medicinal chemist would expect “average” compounds to have 

nanomolar potency. This lack of balanced publications generates a conflict between the societal 

need to lower the cost of drug discovery by improving medicinal chemistry practice and the 

commercial imperative to secure patents.  

 Across all fields of science, the cycling between systematizing knowledge leading to 

experiments, analysis of the causes of relationships and the rationalization of exceptions has driven 

progress. Though all codification and classifications are partial and flawed they create a framework 

for exploration and dialogue. Although a map is not a full description of a territory, it may be 

sufficient for navigation. The exceptions to apparent “rules” are fertile locations for exploring the 

underlying drivers of phenomena. Historically, the Chemical Abstract Service, Beilstein, Gmelin and 

more recently the ChEMBL, PDB and CCDC databases have all made a significant difference to the 

progression of chemistry, although it is hard to quantify their exact value. 

 Systematization of medicinal chemistry has therefore three main benefits: 1) the immediate 

understanding of what effects a particular chemical modification is most likely to have on an 

ADMET property to solve problems in a drug hunting program, 2) to create a corpus of knowledge 

that enables trends and meta-rules to be extracted and finally, 3) to generate hypotheses to test 

mechanistic understanding. All of these should improve the discipline of medicinal chemistry and 

therefore drug hunting. This is a particularly pressing need, as a decade of corporate reorganization 

and consolidation has moved much medicinal chemistry into contract research organizations and 

off-shored suppliers without access to the historic corporate knowledge of large Pharma. Contract 

research organizations are constrained in the use of their clients’ data, so that knowledge mining 

across multiple projects is essentially impossible within these companies. 

Human aspects 
Discussions of technology often avoid the critical discussion that all methods are mediated through 

people. As in most professions, the key value of the human element in medicinal chemistry is to 

make the critical assessment of what situation a discovery project is currently in, and then to choose 

an appropriate strategy to respond with. Line and project managers therefore have to be aware 

that chemists are often making these critical decisions in the context of poor data with immature 

theory and their role is to support and challenge them appropriately.  All parties need to take 

responsibility to be on guard against the broad range of natural cognitive biases particularly the in-

group behaviors that can be expressed when working under pressure and this is where a more data 

driven approach can assist.  Across many fields, where an area is poorly quantified and tacit 

knowledge and experience are key, the Highest Paid Person's Opinion (HiPPO) may hold sway; this 

can obviously influence the uptake of new methods[15]. Some medicinal chemists may see a large 

knowledge base of potential solutions as a threat to their professional practice, and this may be the 

case if they only have a limited repertoire of tactics – or as a biologist colleague once described it 

"the chemists make the same compounds whatever the project". We must acknowledge that part 

of the development of professional medicinal chemistry is acceptance at a personal level that 

moving to more evidence led practice can be uncomfortable if it challenges our professional 

standing.  However we can choose to treat evidence led practice as a framework to develop our 

expertise as a medicinal chemist[16]. Finally, the learning from other disciplines is that increased 

access to automated knowledge enables an "augmentation strategy" where the person + machine 
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combination is more effective than either on their own[17]. These are described in the artificial 

intelligence literature as "centaur teams", with the possibility being held out that partnership 

between human and machine should allow the speed, thoroughness and lack of bias of machines 

to be complimented by the creativity, intuition and situational awareness of the human.  

 In the absence of an instruction manual of medicinal chemistry, which would describe how to 

change the structure of a compound to transform it into a drug, the practitioner must adhere to 

broad “rules” and theoretical principles. These necessitate playing safe and although no 

“transgressions against medicinal chemistry rules” might be made such as "never make an aniline" 

[18], by avoid challenging assumptions, they may also result in avoiding innovative solutions[19]. In 

an alternative extreme strategy, the practitioner may choose to believe in the “exceptionalism of 

the drug”, the “special” molecule that balances the conflicting properties; once this can be found, 

all will be well. The latter is a case of optimism bias, which can lead to an obsessive exploration of 

the end of a cul-de-sac when the overall picture may have been clear for some time. Under these 

circumstances, the argument may be made that “if only we find just the right compound it will be 

worth it when it gets to market”. Although true, the continued expenditure at the most expensive 

part of the drug discovery process, may represent a severe opportunity cost in that there may well 

be better series or projects to work on. 

 Within different organizations the process of capturing medicinal chemistry knowledge varies 

depending on an organization’s history, local culture and needs. Historically, the core process was 

essentially a scientific "apprenticeship" with experiential learning supported by older colleagues.  

The introduction of "wikis" – user maintained encyclopedias and storyboards of drug hunting 

projects has been discussed by others[20–22]. The offshoring and consolidation of medicinal 

chemistry has led to the move of significant numbers of experienced drug hunting medicinal 

chemists into universities. This clearly undermines the industrial "apprenticeship" approach. In both 

Europe and the United States the concern that medicinal chemistry education in industry is in 

trouble has been voiced with a view that industry-academia partnerships may present a 

solution[23–25]. This has enabled a more applied approach to the field being taught in universities 

but at the risk that those teaching are no longer practitioners and that the tools at their disposal are 

behind the current state of the art. Both of these approaches will still deliver a biased transfer of 

medicinal chemistry knowledge.   

Approaches to the systematization of medicinal chemistry 
If we seek the best guidance possible, we must develop a means to systematize medicinal 

chemistry knowledge. As for many disciplines, there are three main approaches to this: 1) case 

series - gathering together stories to identify common themes in success and failure, 2) a 

reductionist approach - attempting to define the underlying factors for compound efficacy, 

metabolism and toxicity, and 3) data mining and supervised learning/AI - identifying tactics which 

have a statistically robust evidence base. The requirement to gain intellectual property makes the 

sharing of compound data and structures (required for all three approaches) difficult as weak 

compounds within its scope may undermine a patent, and compounds outside a patent scope 

may represent an opportunity for others to exploit.  Although any of the approaches could be 

adopted either within private companies or on the censored public data, the broadest and most 

robust learning would be derived from access across both public and private data sets. 

 



 6 

 
Figure 1 Hierarchy of evidence for medicinal chemistry tactics 

 In medicine, there is an acknowledged “hierarchy of evidence”[7] whereby case studies are 

seen as valuable in rapidly alerting practitioners to potential emergent issues such as safety issues 

and in generating hypotheses to test either mechanistically, via retrospective studies or randomized 

controlled trials. Retrospective studies in medicine carry more weight, with mechanistic studies and 

finally meta-analyses give most support for decision making. In the same way, it is possible to 

structure future attempts at better systematizing medicinal chemistry with a broad base of case 

studies feeding into both experimental and retrospective analyses to collate evidence to support a 

hypothesis and explore. A mechanistic chain can then be developed from evidence to hypothesis 

[26]. 

Case Studies and Series in Medicinal Chemistry 
The majority of medicinal chemistry teaching has been based around case studies of individual 

drug discovery stories[27–29]. Though educational, these run the risk common to anecdotes that the 

specific case is extrapolated and believed to be generally applicable. Time and effort can be 

wasted following an approach that only worked once - an example of the “base rate fallacy”[30]. 

Recently a number of publications have gathered together data in a more thematic approach, 

looking at particular functional groups and their effects[31–33]. These provide a more reliable view 

than overemphasis of particular solutions such as “fluorine blocks metabolism” [34] and that 

tetrazole is a general replacement for an acid [28]. However they still suffer the intrinsic limit of case 

study approaches in being vulnerable to the quality of the reviewers’ literature searching and the 

limits on published data. The emerging challenge to the case study approach is that as the size of 

the literature for review grows exponentially larger, curating case studies in a comprehensive and 

unbiased way will inevitably become increasingly untenable. 

 

Can Medicinal Chemistry be codified without sharing IP-sensitive structures? 
Part of the challenge in medicinal chemistry is in describing exactly what is done. There is a conflict 

here between the physics model of molecules as collections of sub-atomic particles and the 

structural representations used as shorthand by synthetic organic chemists. One challenge for 

practicing medicinal chemists is that although certain properties may appear continuous, it is hard 

to change them precisely when the tools to modulate properties are adding and removing atoms. 

More prosaically: finding an atom with half the volume of a chlorine but the same electronic 

properties may not be feasible.  Relating a desired change in biological properties to a 

corresponding change in structure is therefore more useful than relating it to a change in an 

alternative property such a lipohilicity. This requires a language for the description of changes in 

chemical structure to be developed. 

For instance, “add a fluorine para to the substituent on a monosubstituted phenyl ring” is a clear, 

actionable instruction to a medicinal chemist. It can also be transformed into a query to identify all 
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previous examples of such a change to be identified. This is a first step in moving to an evidence 

based approach in medicinal chemistry.  

 

Level Description Comments 

0 C-HC- electron withdrawing group Carbon could be aromatic or 

aliphatic and a specific definition 

of "electron withdrawing group" is 

required. 

1 Ar-HAr-electron withdrawing group Ar = heteroaromatic rings of any 

size or composition, further 

substation allowed and not 

constrained 

2 Ar-HAr-Halo Halo defined as F,Cl,Br, I. 

3 Ar-HAr-F Only Ar is now variable 

4 Ph-HPh-F Specific to Ar = phenyl 

5 R-p-phenyl-H  R-p-phenyl-F Specific to substitution pattern on 

phenyl 

6 Whole-molecule-p-phenyl- H  

Whole-molecule-p-phenyl-F  

Single pair of compounds, an 

anecdote 

 
Table 1 Describing structural changes with increasing levels of detail 

Although the example described is a simple replacement of a substituent, the structural change 

could equally be a cyclisation, the shielding of a hydrogen bond acceptor by a vicinal methyl or 

the exchange of linking chains or core ring systems for isosteres. It is important to be sure that the 

structural change has been described and encoded in an appropriate fashion. The objective is to 

codify knowledge in a specific way so that the aggregated set of examples reveals a signal above 

the noise. For example, differing levels of specificity are shown in Table 1. Level 1 is the level at 

which a medicinal chemistry textbook might describe an approach, operating from the theoretical 

argument that because the predominant route of metabolism in aromatic rings is oxidative, 

destabilizing an incipient cation will reduce the rate of oxidation. As the transformation becomes 

more structurally specific, the number of examples will decrease and the variance of the effect will 

become smaller, indicating that the representation is capturing some correct feature of the 

chemical structure that influences the metabolic process. There is some evidence that aggregation 

at level 2 may offer some benefits as "fuzzy matched pairs"[35]. As soon as the transformations are 

aggregated, the details of the method of aggregation become an issue.  For example, if we were 

to group "aryl-hydrogen bond acceptor" as a component, the definition of what constitutes a 

hydrogen bond acceptor becomes important; the case of methoxy being a good acceptor on an 

aliphatic ring but poor on an aromatic ring is a simple example. At the other extreme, if just a single 

pair of compounds is specified, it completely describes the transformation, but is just a scientific 

anecdote. In the development of matched molecular pair methodology, two critical papers 

suggest that the level 3, Ar-HAr-F can be too unspecific and give a "smear" of outcomes, whereas 

the inclusion of more chemical context (equivalent to level 5 R-p-phenyl-H  R-p-phenyl-F) can 

give a result with a lower variance so increasing confidence that this could be a useful 

change[36][37].  The possibility of using context-encoded matched molecular pair analysis to share 

medicinal chemistry knowledge was proposed by Dossetter et al[38] in 2013, with a confirmation of 

the data security of such an approach provided by Swamidass[39] in 2014. 

Mining Unbiased Medicinal Chemistry Knowledge from Data 
The same root in physical chemistry that led to the study of model systems also drove the 

quantitative analysis of structure activity relationships (QSAR). The hope for broad scale models has 

been challenged by the shear size of accessible medicinal chemistry space[40]. Over the last two 

decades, three themes have been clear: the development of large scale QSAR models, the 

attempt to extract “simple rule models” for complex properties and the development of matched 

molecular pair analysis (MMPA) to analyze success frequencies for biological or physical 

properties[41]. 
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 Large-scale QSAR models have been developed mainly within Pharma as the only 

organizations with enough data to make adequately precise predictions. Their influence on 

broader practice has been limited by the constraint that it has been impossible to share the 

underlying structures between organizations or publicly. Even compounds anonymized by an 

identifier and the descriptors or fingerprints cannot be shared due to the information content in the 

descriptors presenting the opportunity to infer the probable structures[39]. The nature of the 

descriptors and the statistical approaches used also makes interpreting the models without access 

to the underlying structures difficult.  

 The "first wave" of simpler models were based on attempting to draw constraints around what 

may be “acceptable” chemical space and developed from the early and highly influential efforts 

of Lipinski [42]. Clearly the impact of poor solubility and permeability will have a negative effect 

throughout the drug discovery process from the validation of hits in cellular assays to in vivo studies.  

Further elaboration of the drug-likeness approach has been described by Congreve[43], 

Lovering[44] and Gleeson[45] and the PAINS style filters[46]. Recently, these have been critiqued for 

their methodology and more particularly for the underlying belief that  “Given that drug discovery 

would appear to be anything but simple, the simplicity of a drug-likeness model could actually be 

taken as evidence for its irrelevance to drug discovery.”[47,48]. It is not that focusing on simple 

molecular weight, logP hydrogen bond donor and acceptor counts is wrong, it is just usually not 

sufficient to solve medicinal chemistry problems. 

 In the early years of the 21st century, the formalization of matched molecular pair analysis 

(MMPA) was developed[1,49]. This is an approach that medicinal chemists had been using 

informally and with a rich statistical heritage in analogous medical matched cohort studies. The 

evolution of this approach was driven by its apparent simplicity and clarity of interpretation.  A 

number of large scale MMPA have been carried out for a range of physical and biological 

endpoints[38]. A variety of methods have been developed to automate the MMPA process. One 

difference between MMPA and QSAR that is often overlooked is that QSAR generates declarative 

knowledge – a QSAR model is presented with a molecule and it makes an estimate for the 

modeled property. MMPA creates procedural knowledge – “if you change this 

substituent/linker/scaffold to the suggested group it will give a certain change in the property”.  

MMPA presents new molecules to chemists as potential solutions.  

 In the last four years an approach has been tested to address the goal of sharing medicinal 

chemistry knowledge operating within the IP constraints around sharing primary structural data.  It 

was recognized that matched pair relationships could be used as a “one way mapping” or 

“trapdoor” function. Once compounds have been assigned as members of a pair by a 

transformation, the original structures can no longer be inferred from the transformation.  This has 

allowed aggregation of data across three large Pharma and consequently testing the question of 

whether particular medicinal chemistry methods are general or specific within a chemical class or 

project context. This addresses the critique that like QSAR models, the inferences depend on the 

data sets. Previously, either the results have been drawn from individual large Pharma datasets, 

where the risk is that particular individual projects or chemical series are generating an inference 

particular to that series, or from published data with the concomitant severe sample selection 

biases and small compound sets for some critically important biological endpoints. 

 The different approaches to automatic detection of matched molecular pairs have been 

reviewed[50]. Three critical features of a method for the capture of medicinal chemistry knowledge 

are: the ability of an algorithm to capture as many of the matched pairs a medicinal chemist would 

identify as possible, avoiding inclusion of "false pairs" and the transparent encoding of chemical 

environment as described above. A detailed analysis of the synergy between two complementary 

methods, "Fragment and Index" and "Multiple Common Sub Structure" (MCSS) has recently been 

published[51] showing on average a third of the pairs are found exclusively by one or other 

method, and a third are found by both.   
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Figure 2 Mean percent of matched pairs found over 6 public data sets by method (VEGF, Dopamine 

transporter, GABA-A receptor, human D2 receptor, acetylcholine esterase, monoamine oxidase) 

Examples of Medicinal chemistry Knowledge gained by sharing MMPA analysis: 
In the database created by merging medicinal chemistry knowledge from AstraZeneca, 

Genentech and Roche, a huge number of statistically significant medicinal chemistry rules were 

extracted as summarized in Table 2.  

 

Datasets(s) Number of increase / decrease/ 

neutral rules 

logD7.4 153,449 

Solubility 46,655 

In vitro microsomal clearance: 

human, rat ,mouse, cyno, dog 

88,423 

In vitro hepatocyte clearance : 

human, rat, mouse, cynomolgus monkey, dog 

26,627 

MDCK permeability A-B / B–A efflux 1,852 

Cytochrome P450 inhibition: 

2C9, 2D6 , 3A4 , 2C19 , 1A2 

40,605 

Cardiac ion channels 

NaV 1.5 , hERG ion channel inhibition 

15,636 

Glutathione Stability 116 

Plasma protein binding 

human, rat ,mouse, cynomolgus monkey, dog 

64,622 

Table 2 Number of Statistically significant rules found from merging AstraZeneca, Genentech and Roche 

in vitro ADMET knowledge 

Definition of a rule: 

 

There are several challenges in creating a definition for what constitutes a "rule". 

These are: managing out of range data, the contrast between the amount of evidence 

and the strength of the signal, avoiding the assumption that the data is normally 

distributed, and a metric simple enough to explain quickly to a non specialist. We therefore 

use a simple "coin flipping model" [51]. A given matched pair will either show an increase 

or a decrease in the measured property (where both members of a pair are out of range, 
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that pair is excluded). The number of increases and decreases are then treated as the 

equivalent of "heads" and "tails" in a binomial test. The results are tested to see if the 

distribution of increases and decreases would be outside what would be expected for a 

random distribution 95% of the time. Using this method, the more evidence (number of 

examples) that a rule has, the lower the frequency of a given direction is needed for it to 

pass statistical significance.  Four worked examples show some effects of this:   

32 matched pair examples of a rule are found: 23  (72%) lead to an increase this just passes 

the binomial test at 95% confidence with a p-value of 0.02; 

16 matched pair examples: 13 lead to an increase just passing the binomial test with a p-

value of 0.02, but now 81% of the examples need to increase to pass significance; 

8 matched pair examples: now all 8/8 examples must increase reporting a p-value of 0.007, 

however if only 7/8 examples show an increase the p-value is 0.07, so there is a 7% chance 

that this distribution could be seen from a random distribution of examples; 

5 matched pair examples: 5/5 show an increase in the property – this fails the binomial test 

with a p-value of 0.06, therefore even if 5 examples all show an increase from this rule, 

there is a 6% chance this could be due to a random distribution.  Only where there are 6 or 

more examples of a matched pair can the binomial test be passed. This is an important 

piece of learning for "anecdotal" medicinal chemistry discussions, unless there are 6 or 

more examples, using a simple binomial test, it is not possible to state with >95% confidence 

that the medicinal chemistry "rule" proposed is anything other than a random distribution. 

 

The large amount of unique knowledge found as shown in the filled donut diagram  (Figure 2) 

mirrored the expected lack of overlap between different Pharmaceutical company collections[52]. 

 

 

 

 
Figure 3 Origin of rules by company. The overlaps indicate the rules that contain examples from multiple 

companies, i.e. 58,000 rules had examples from all three companies, 139,000 rules were derived from 

company A data only. The total gain in rules by company was A:62%, B:156%, C:118%. 

 On inspecting this cross company database, one noticeable feature is the fine structural 

detail now available to direct medicinal chemistry. For example, previously the understanding of 

the probability of success of using a fluorine as a metabolic block could be summarized as 

“sometimes it works, sometimes it doesn’t” with a number of case studies available[32]. Given the 

frustration and waste when a hard to make or expensive building block fails to deliver the reduction 
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in metabolism hoped for, knowing the circumstances where a "fluorine block" is likely to work is a 

significant benefit. 

 

Figure 4 HF substitution effects on human microsomal clearance in different environments and extreme 
examples 

If the effect of HF is split for different chemical environments around the point of change (Figure 

4), the historical distribution of successful transformations can be seen. The summary of this is that for 

the vast majority of chemical environments, the H F transformation has made less than 2 fold 

difference in either direction in human microsomal clearance (-0.3 < log(Mic Clint) < 0.3). There 

are, however, precise situations where the H F transformation has been a good strategy, a 2 fold 

or more increase in metabolic stability would be expected (log(Mic Clint) <= -0.3), and similarly in a 

few precise environments, a HF transformation has significantly increased the rate of metabolism 

(log(Mic Clint) >= +0.3). Two of these extreme examples are shown in Figure 4. 

 

As recognized by Hussein and Rea[53], the vast majority of transformations have very few example 

pairs supporting them and overall form a Zipfian distribution. This is an unsurprising consequence of 

the vast size of chemical space. The effect of this is that in merging data between companies, for 

the very few, very commonly observed transformations little new information is gained, however for 

the vast majority of transformations there is the opportunity to learn more by pooling examples. For 

the human liver microsome set as shown Figure 5, 99% of the transformations in the data set had 

been observed less than 6 times (the minimum criteria for statistical testing). All of which represent 

an opportunity for increasing knowledge by pooling data. 



 12 

 
Figure 5 Distribution of number of pairs per transformation for a single company"s human microsomal 

clearance data 

 

In looking at the knowledge in the database, further questions can immediately be addressed: 

 Which medicinal chemistry changes are highly reproducible? 

 What should I usually expect for a given structural change? 

 What is the range I expect for that change (and therefore when to be suspicious?) 

 How do they relate to “theory” and “experience” 

 

 One example of this is in looking at the relationships between properties for the same 

chemical transformation. For example (Figure 6) when the large number of transformations for 

which there is both measured logD and measured solubility data is examined, a familiar broad 

trend is clear. As experience and theory suggest, overall solubility is negatively correlated with logD, 

as logD increases, solubility decreases – however several more inferences are possible from this 

data. First: overall a drop of 1 unit logD gave, on average, a increase in solubility of approximately 

0.6 log units (4 fold), second – the "lipophilic efficiency" of different transformations has a huge 

range.  For example for isolipophilic changes (median logD = 0), the effect on median solubility 

could range from -1.5 to +1.5, a 30 fold change in either direction. The colouring of regions of the 

solubility/logD transformation plot shows that the majority of transformations that increase 

solubility are inefficient for the amount of solubility gained with respect to change in logD – ie 

solubility < -   where solubility >0.  There are a small number of transformations that are 

unexpectedly good as outliers where logD can be increased and solubility increases as well, these 

represent very high value transformations to medicinal chemists. 
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Figure 6 Solubility vs logD effects, >=20 examples per rule, n=13453. R2 = 0.66, slope = -0.57, intercept = 0. 

Magenta line: line of slope -1, intercept 0, dark blue line linear best fit, pale blue density ellipse contains 

99% and the mid blue ellipse contains 50% of the transformations. 

A very similar picture is seen when we look at the relationship between metabolic stability and 

logD. The same form of analysis holds true for the other in vitro endpoints studied and 

interesting outliers have been identified [54].  

 

 
Figure 7 Human microsomal clearance vs logD, >=20 examples per rule, n=11,572. R2 = 0.40, slope 0.23, 

intercept = 0. Magenta line: line of slope 1, intercept 0, dark blue line linear best fit, pale blue density 

ellipse contains 99% and the mid blue ellipse contains 50% of the transformations. 

 

 Beyond analysis of the efficiency of medicinal chemistry transformations with respect to 

lipophilicity, other SAR insights can be gained. Comparing the effects of sets of transformations on 

different ion channels can be important; a transformation that reduces hERG binding but increases 

NaV1.5 ion channel binding would be a pyrrhic victory.  Similarly, how the same transformations 
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have different effects on hepatic metabolism according to species can help to avoid moving 

compounds forward that will have a beneficial effect on rodent metabolism but a poorer effect on 

human or dog.  These insights have the potential to make very considerable savings in the 

progression of compounds in late lead optimization. 

Potential Risks of collating Medicinal Chemistry Knowledge 
 

One risk that has been voiced in generating a large knowledge base is that "everyone will just do 

the same thing" in particular that it could lead to limiting medicinal chemistry to what has been well 

explored in the past.  There are several responses to this. The first is to acknowledge that actually 

given the evidence of multiple published analyses[55,56] and above (Figure 5 Distribution of 

number of pairs per transformation for a single company"s human microsomal clearance data) this 

is where medicinal chemistry is currently.  The evidence is that medicinal chemists apply a limited 

set of tactics very frequently. Understanding the historic success rates for these at least allows the 

best of the "common tactics" to be tried first. With a broader collection of medicinal chemistry 

knowledge the chemist may be prompted to explore outside their preferred set of tactics and 

exploit the learning of others more effectively.  Chemists may also then take on the higher level 

analysis grouping successful solutions into classes and generating more strategic hypotheses which 

then can be used to create new solutions to test. 

Medicinal Chemistry Knowledge Exploitation 
A database of validated medicinal chemistry transformations can be exploited in a number of 

ways. The most obvious is as a searchable resource to suggest alternatives and to benchmark 

proposed ideas. There are additional benefits in encoding the transformations as reactions in that 

enumeration software can be used to convert “problem” molecules into potential solutions.  This 

was originally recognized by Fujita with the development of EMIL[57] and then again in Abbott’s 

Drug Guru software[58] where manually encoded reactions were used to capture medicinal 

chemistry experience. Extension of this type of approach via cyclic enumeration and scoring can 

create "evolutionary optimization"[59],[60]. Integration of a knowledge base of transformations with 

an enumerator creates an expert system that can propose solutions to medicinal chemistry 

problems – one class of artificial intelligence. 

 Automated encoding of transformations between molecules also enables further possibilities 

such as using a set of known measured molecules to predict the properties of a proposed new 

molecule by matching the transformations from the known to the proposed generating a de facto 

“ratings” service. Further possibilities include a broader scale exploration of the matched series 

concept[61–63]. Here, a set of compounds with a common core but a range of different 

substituents generates an SAR "fingerprint". Biological targets demonstrating the same SAR can be 

aligned and useful questions like "given that the SARs of these two series align; what is the potency 

of this new substituent likely to be?", ""what is the most potent substituent that can be transferred 

from one aligned series to another?" and "what biological targets have the same SAR as my 

target?" Clearly this can address one of the other key weak points in the chemical arm of drug 

hunting: generating potent chemical leads. Even more generally, the network of transformations 

can be explored to see if knowledge can be inferred: if AB and B C can A C be estimated or 

will errors propagate too strongly? Alternatively if AB, AC, AD all lead to a decrease in toxicity, 

can A be designated a toxophore? 

What role for artificial intelligence to improve Medicinal Chemistry 
The last decade has seen a resurgence in artificial intelligence (AI). In its current form, the 

predominant AI paradigm is the analysis of very large data sets with statistical machine learning 

methods. The most ubiquitous uses have been in image recognition and natural language 

processing of textual data. These have developed from experimental identification of cat pictures 

and film review classification to ubiquitous face recognition and sentiment analysis in marketing. 

[64,65] This has been enabled by three factors: massive free training data sets harvested from the 
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internet, hardware acceleration driven by the gaming industry and these two factors in turn 

enabling the application of complex neural net architectures such as deep, convoluted and 

adversarial networks. The application of these methods in drug hunting has been demonstrated in 

high profile cases such as the Merck Kaggle challenge[66], the NIH Tox21 challenge[67] and the use 

of generative neural networks to identify novel RXR agonists[68]. More recent successes in the test 

arena of game playing, Alpha Go[69] and Alpha Go Zero[70] have demonstrated that extending 

neural net methodologies continues to create new opportunities. The potential to integrate AI 

systems with automated synthesis and testing synthesis "closing the loop" of cyclic prototyping has 

recently been reviewed[71] . This would have the potential of replacing the medicinal chemist, 

however as we discuss below, the machine learning methods and critically, data sets they are built 

on will have to significantly improve before "self-driving drug hunting" becomes a reality. Currently, 

AI appears to be at the peak of its latest hype cycle with the "Trough of Disillusionment" beckoning, 

hopefully this will  followed by more realistic integration into drug hunting and the "Plateau of 

Productivity".[72] 

 One simple question however is, will the current class of AI approaches be able to address the 

complex multi parameter optimization problem of drug discovery? A trite summary of the neural net 

based systems appears to be that "neural nets are good at tasks humans are good at". Asking the 

question: "what tasks in drug design are humans good at?" does not bode well for AI's based on this 

technology.  Indeed, multi-objective design remains an intrinsically hard problem because as the 

number of objectives rises the training data becomes increasingly sparse; this is the "curse of 

dimensionality". A further critical issue not often explicitly addressed is that the non-chemical 

successes in AI have been built on vastly larger training data sets than currently available within any 

given Pharma or publicly for drug hunting.  Machine learning approaches built on data sets that are 

too small tend to be "brittle": they appear reasonable until challenged with situations where they 

are undertrained at which point the predictions become poor. The "human backstop" in a human-

AI mixed team should mitigate this risk. Lack of interpretability is a further challenge in the 

application of neural net based and other "black box" machine learning algorithms. Unlike 

regression-based machine learning it's very hard to expose which factors (in chemical terms, which 

substructures) are driving the estimate the algorithm is generating. At a human level this 

disempowers the user as they are faced with "doing what the machine says" or not, but without a 

method to assess the validity of the prediction.  This may decelerate adoption of AI methods in the 

scientific arena.  Auditable AI is of such significant interest as to have been recognized by the US 

National Science and Technology Council as a key component to building trust in AI systems in their 

2016 R&D Strategic Plan.[73] At a technical level, the algorithm may be making a prediction on a 

very small subset of the data, or may have effectively encoded biases in the data. This algorithmic 

bias is an area of significant current concern and research [74]. Without being able to understand 

the drivers of predictions, the medicinal chemist may be just perpetuating existing organizational 

preferences but with the "fig leaf" of computational support.  Interpretability is a harder area to 

research than predictive accuracy since it requires a subjective assessment rather than a numerical 

score.  One can imagine uncritical overreliance on AI methods exposing drug hunting teams to 

significant risks. Without experienced medicinal chemists to audit the rationale behind suggestions, 

black box models operating outside their domain of applicability could be making wild suggestions 

and a project could waste significant resource in making unlikely compounds. This is particularly 

relevant as novel biological target classes are explored, where although chemists may not have 

specific knowledge of an area, they have the skills to construct sets of experiments to explore the 

parameters of the medicinal chemistry search space.  

 The success of AI and machine learning approaches in medicinal chemistry is critically 

dependent on access to large enough data sets to train on and methods that enable interrogation 

and interpretation. It seems most likely though, that to misquote McAfee and Brynjolfsson: "AI won’t 

replace medicinal chemists, but medicinal chemists who use AI will replace those who don’t".[75] 

 

Artificial Intelligence and Chemistry 

 

Artificial intelligence has addressed chemical problems throughout its history. .  

The  "expert system" era which used rules encoded by specialists produced DENDRAL [76] 

which could identify compounds from their mass spectra, CASE [77] and DEREK [78] for 
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identifying potential toxicities, EROS [79] and LHASA [80] the systems for proposing synthetic 

routes. All these were based on human experts encoding a set of "rules" in a format that could 

be used computationally to rank potential solutions.  As discussed above, the more modern 

"Big Data" approach is to use large data sets and statistical methods to infer either rules, or 

statistical algorithms (such as the variety of neural net architectures) that when presented with 

a problem will provide the most likely solution(s). The question "is this intelligence in chemistry?" 

can be addressed by a Feigenbaum test [81]: if you present a system with a chemistry based 

challenge and the response is indistinguishable from that which a trained chemist or group of 

chemists would provide, then it's indistinguishable from intelligence. 

 

Medicinal Chemistry Knowledge in the Drug Discovery Ecosystem 
As discussed at the start of this article, medicinal chemistry is an applied science. The majority of 

therapeutic agents have been discovered in the private sector and in the vast majority of cases 

developed there.  Drug discovery and development is highly regulated and expensive so 

organizations that carry this out need large capital reserves to develop and market new agents. 

Therefore the sharing of knowledge of how to discover and develop drugs better has an implicit 

tension. For a large Pharma, which has invested significantly in large scale compound synthesis and 

testing to generate data, the value of sharing knowledge with an equivalent sized organization is 

relatively straightforward to assess.  Both parties are expecting an approximately equal benefit. This 

can be described as a transactional relationship, although each party may not be able to estimate 

the exact return on investment, there is the assumption that for each party the knowledge will be 

equally useful. The value that can be extracted from the new knowledge gained depends on the 

efficiency with which research is undertaken in each organization. 

 Taking a more strategic view: Pharma could improve the quality of in-licensing candidates by 

sharing knowledge more widely with the academic, not-for-profit and biotech sectors. This would 

result in faster drug discovery in the non-large Pharma sector and hence cheaper and better in-

licensing candidates which in turn gives a better long term return on investment. However, this "rising 

tide lifts all boats" argument is harder to quantify as the benefits are more distant, and therefore it is 

more difficult for Pharma managers to make the case that it is valid.  This is an example of the 

cognitive bias of hyperbolic discounting – longer term, larger rewards being underestimated. A 

short term counter argument for internal Pharma research teams is that generating more external 

competition to their endeavors is a counterproductive to their own survival.   

 Within Pharma discovery teams, the argument is put forward that SAR knowledge represents 

key intellectual capital for their company. This appears to be rarely supported in practice as large 

Pharma frequently relocate research centres or outsource programmes which inevitably leads to 

loss of tacit knowledge. Within the not-for-profit sector it is proposed that "open source drug 

discovery" is analogous to "open source software". Though there are parallels in that both fields are 

involved in generation of intellectual property, there are very significant differences in the 

regulatory regimes for software and pharmaceuticals, consequences of errors and the product life 

cycles. Counterbalanced against this argument is the widely held visceral public view that drug 

discovery is a "public good", which leads to the Pharma sector demonstrating "corporate social 

responsibility" (CSR) in funding neglected disease research and providing low cost critical medicines 

to poorer parts of the world in for example in the treatment of HIV and parasitic worm infections. It is 

reasonable to expect that, as in the case of CSR, different companies will take different views on 

the strategic benefit of making their knowledge more widely available and then some may see this 

as another arena in which to compete for reputational gain. 

Conclusion 
From a technical perspective, a sufficiently large medicinal chemistry database of transformations 

may provide novel approaches to improving drug discovery. A record of historical successes can 

spur the development of novel solutions by combining old approaches or seeing a conceptual link 

between multiple previous successes. The question is asked perennially "what if in the end we all 

make the same compounds" which appears to ignore the evidence of the vast size of chemical 
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space, it's huge diversity and its under exploration by chemists to date. Huge numbers of ring 

systems are unsynthesised and the current exploration of macrocyclic molecules [82] towards 

creating synthetic natural-product-like structures extends the reach of medicinal chemistry space 

still further. Yet more knowledge is undoubtedly there for the elucidating, but it will only become 

clear when we have sufficient data. 

 Conceptually, the use of a sufficiently large corpus of knowledge may be considered 

analogous to the effect that massive datasets have in automated language translation, where 

above a certain threshold, prediction becomes highly effective[83]. Treatment of emerging 

pathogens and the diseases of an aging population may require new chemistries and the exploring 

of multiple biological targets. To bring these "within range" of the investment available needs the 

application of all the knowledge we have. Enhancing our medicinal chemistry knowledge seems a 

central component in this task. The value of a very large scale systematized medicinal chemistry 

knowledge base appears to be hard to dispute. The technical and legal challenges have been 

overcome. However, the strategies for sharing such knowledge are corporate issues to be 

addressed by the leaders in our industry.  

  



 18 

 

 

[1] Kenny PW, Sadowski J. Structure Modification in Chemical Databases. In: Oprea TI, editor. 

Methods Princ. Med. Chem., Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA; 

2005, p. 271–85. 

[2] Hansch C, Leo A, Hoekman DH, editors. Exploring QSAR. Washington, DC: American 

Chemical Society; 1995. 

[3] Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, et al. QSAR Modeling: 

Where Have You Been? Where Are You Going To? J Med Chem 2014;57:4977–5010. 

doi:10.1021/jm4004285. 

[4] Paul SM. How to improve R&D productivity: the pharmaceutical industry’s grand 

challenge. Nat Rev Drug Discov 2010;9:203–14. doi:10.1038/nrd3078. 

[5] Rothstein HR, Sutton AJ, Borenstein M. Publication Bias in Meta-Analysis. In: Rothstein HR, 

Sutton AJ, Borenstein M, editors. Publ. Bias Meta-Anal., Chichester, UK: John Wiley & Sons, 

Ltd; 2006, p. 1–7. doi:10.1002/0470870168.ch1. 

[6] Kramer C, Kalliokoski T, Gedeck P, Vulpetti A. The Experimental Uncertainty of 

Heterogeneous Public K i Data. J Med Chem 2012;55:5165–73. doi:10.1021/jm300131x. 
[7] Greenhalgh T. How to read a paper : getting your bearings (deciding what the paper is 

about). BMJ 1997;315:243–6. doi:10.1136/bmj.315.7102.243. 

[8] Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in 

pharmaceutical R&amp;D efficiency. Nat Rev Drug Discov 2012;11:191–200. 

doi:10.1038/nrd3681. 

[9] Morgan P, Brown DG, Lennard S, Anderton MJ, Barrett JC, Eriksson U, et al. Impact of a 

five-dimensional framework on R&D productivity at AstraZeneca. Nat Rev Drug Discov 

2018. doi:10.1038/nrd.2017.244. 

[10] Scannell JW, Bosley J. When Quality Beats Quantity: Decision Theory, Drug Discovery, and 

the Reproducibility Crisis. PLOS ONE 2016;11:e0147215. doi:10.1371/journal.pone.0147215. 

[11] Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, et al. A comprehensive 

map of molecular drug targets. Nat Rev Drug Discov 2017;16:19–34. 

doi:10.1038/nrd.2016.230. 

[12] Arkin MR, Tang Y, Wells JA. Small-Molecule Inhibitors of Protein-Protein Interactions: 

Progressing toward the Reality. Chem Biol 2014;21:1102–14. 

doi:10.1016/j.chembiol.2014.09.001. 

[13] Fayyad U, Uthurusamy R. Evolving data into mining solutions for insights. Commun ACM 

2002;45. doi:10.1145/545151.545174. 

[14] Kramer C, Fuchs JE, Whitebread S, Gedeck P, Liedl KR. Matched Molecular Pair Analysis: 

Significance and the Impact of Experimental Uncertainty. J Med Chem 2014;57:3786–

802. doi:10.1021/jm500317a. 

[15] McAfee A, Brynjolfsson E. Big Data: The Management Revolution. Harv Bus Rev 2012. 

[16] Ericsson KA, editor. The Cambridge handbook of expertise and expert performance. 
Cambridge ; New York: Cambridge University Press; 2006. 

[17] Davenport T, Kirby J. Beyond Automation. Harv Bus Rev 2015. 

[18] Kalgutkar AS, Gardner I, Obach RS, Shaffer CL, Callegari E, Henne KR, et al. A 

comprehensive listing of bioactivation pathways of organic functional groups. Curr Drug 

Metab 2005;6:161–225. 

[19] Birch AM, Groombridge S, Law R, Leach AG, Mee CD, Schramm C. Rationally Designing 

Safer Anilines: The Challenging Case of 4-Aminobiphenyls. J Med Chem 2012;55:3923–33. 

doi:10.1021/jm3001295. 

[20] Robb GR, McKerrecher D, Newcombe NJ, Waring MJ. A chemistry wiki to facilitate and 

enhance compound design in drug discovery. Drug Discov Today 2013;18:141–7. 

doi:10.1016/j.drudis.2012.09.002. 

[21] Mayweg A, Hofer U, Schnider P, Agnetti F, Galley G, Mattei P, et al. ROCK: the Roche 
medicinal chemistry knowledge application ? design, use and impact. Drug Discov 

Today 2011;16:691–6. doi:10.1016/j.drudis.2011.03.005. 



 19 

[22] Stahl M, Baier S. How Many Molecules Does It Take to Tell a Story? Case Studies, 

Language, and an Epistemic View of Medicinal Chemistry. ChemMedChem 

2015;10:949–56. doi:10.1002/cmdc.201500091. 

[23] Rafferty MF. No Denying It: Medicinal Chemistry Training Is in Big Trouble: Miniperspective. J 

Med Chem 2016;59:10859–64. doi:10.1021/acs.jmedchem.6b00741. 

[24] Macdonald SJF, Fray MJ, McInally T. Passing on the medicinal chemistry baton: training 

undergraduates to be industry-ready through research projects between the University 

of Nottingham and GlaxoSmithKline. Drug Discov Today 2016;21:880–7. 

doi:10.1016/j.drudis.2016.01.015. 

[25] Allen D. Where will we get the next generation of medicinal chemists? Drug Discov Today 

2016;21:704–6. doi:10.1016/j.drudis.2016.04.012. 

[26] Dearden JC, Cronin MTD, Kaiser KLE. How not to develop a quantitative structure–activity 

or structure–property relationship (QSAR/QSPR). SAR QSAR Environ Res 2009;20:241–66. 

doi:10.1080/10629360902949567. 

[27] Brimblecombe RW, Duncan WA, Durant GJ, Emmett JC, Ganellin CR, Leslie GB, et al. 

Characterization and development of cimetidine as a histamine H2-receptor antagonist. 

Gastroenterology 1978;74:339–47. 

[28] Wexler RR, Carini DJ, Duncia JV, Johnson AL, Wells GJ, Chiu AT, et al. Rationale for the 

chemical development of angiotensin II receptor antagonists. Am J Hypertens 

1992;5:209S–220S. 

[29] Dorsey BD, Levin RB, McDaniel SL, Vacca JP, Guare JP, Darke PL, et al. L-735,524: the 

design of a potent and orally bioavailable HIV protease inhibitor. J Med Chem 

1994;37:3443–51. 
[30] Kahneman D, Tversky A, editors. Choices, values, and frames. New York : Cambridge, UK: 

Russell sage Foundation ; Cambridge University Press; 2000. 

[31] Meanwell NA. Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design. 

J Med Chem 2011;54:2529–91. doi:10.1021/jm1013693. 

[32] Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. Applications of Fluorine in 

Medicinal Chemistry. J Med Chem 2015;58:8315–59. doi:10.1021/acs.jmedchem.5b00258. 

[33] Beno BR, Yeung K-S, Bartberger MD, Pennington LD, Meanwell NA. A Survey of the Role of 

Noncovalent Sulfur Interactions in Drug Design. J Med Chem 2015;58:4383–438. 

doi:10.1021/jm501853m. 

[34] Hagmann WK. The Many Roles for Fluorine in Medicinal Chemistry. J Med Chem 

2008;51:4359–69. doi:10.1021/jm800219f. 

[35] Geppert T, Beck B. Fuzzy Matched Pairs: A Means To Determine the Pharmacophore 

Impact on Molecular Interaction. J Chem Inf Model 2014;54:1093–102. 

doi:10.1021/ci400694q. 

[36] Papadatos G, Alkarouri M, Gillet VJ, Willett P, Kadirkamanathan V, Luscombe CN, et al. 

Lead Optimization Using Matched Molecular Pairs: Inclusion of Contextual Information for 

Enhanced Prediction of hERG Inhibition, Solubility, and Lipophilicity. J Chem Inf Model 

2010;50:1872–86. doi:10.1021/ci100258p. 

[37] Hajduk PJ, Sauer DR. Statistical analysis of the effects of common chemical substituents on 

ligand potency. J Med Chem 2008;51:553–64. 

[38] Dossetter AG, Griffen EJ, Leach AG. Matched Molecular Pair Analysis in drug discovery. 

Drug Discov Today 2013;18:724–31. doi:10.1016/j.drudis.2013.03.003. 

[39] Matlock M, Swamidass SJ. Sharing Chemical Relationships Does Not Reveal Structures. J 

Chem Inf Model 2014;54:37–48. doi:10.1021/ci400399a. 

[40] Polishchuk PG, Madzhidov TI, Varnek A. Estimation of the size of drug-like chemical space 

based on GDB-17 data. J Comput Aided Mol Des 2013;27:675–9. doi:10.1007/s10822-013-

9672-4. 

[41] Lombardo F, Desai PV, Arimoto R, Desino KE, Fischer H, Keefer CE, et al. In Silico 

Absorption, Distribution, Metabolism, Excretion, and Pharmacokinetics (ADME-PK): Utility 

and Best Practices. An Industry Perspective from the International Consortium for 

Innovation through Quality in Pharmaceutical Development: Miniperspective. J Med 

Chem 2017;60:9097–113. doi:10.1021/acs.jmedchem.7b00487. 



 20 

[42] Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational 

approaches to estimate solubility and permeability in drug discovery and development 

settings. Adv Drug Deliv Rev 1997;23:3–25. doi:10.1016/S0169-409X(96)00423-1. 

[43] Congreve M, Carr R, Murray C, Jhoti H. A “rule of three” for fragment-based lead 

discovery? Drug Discov Today 2003;8:876–7. doi:10.1016/S1359-6446(03)02831-9. 

[44] Gleeson MP. Generation of a set of simple, interpretable ADMET rules of thumb. J Med 

Chem 2008;51:817–34. doi:10.1021/jm701122q. 

[45] Lovering F, Bikker J, Humblet C. Escape from flatland: increasing saturation as an 

approach to improving clinical success. J Med Chem 2009;52:6752–6. 

doi:10.1021/jm901241e. 

[46] Baell JB, Holloway GA. New Substructure Filters for Removal of Pan Assay Interference 

Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. J Med 

Chem 2010;53:2719–40. doi:10.1021/jm901137j. 

[47] Kenny PW, Montanari CA. Inflation of correlation in the pursuit of drug-likeness. J Comput 

Aided Mol Des 2013;27:1–13. 

[48] Muthas D, Boyer S, Hasselgren C. A critical assessment of modeling safety-related drug 

attrition. Med Chem Commun 2013;4:1058–65. 

[49] Leach AG. Matched molecular pairs as a guide in the optimization of pharmaceutical 

properties; a study of aqueous solubility, plasma protein binding and oral exposure. J 

Med Chem 2006;49:6672–82. 

[50] Tyrchan C, Evertsson E. Matched Molecular Pair Analysis in Short: Algorithms, Applications 

and Limitations. Comput Struct Biotechnol J 2017;15:86–90. doi:10.1016/j.csbj.2016.12.003. 

[51] Lukac I, Zarnecka J, Griffen EJ, Dossetter AG, St-Gallay SA, Enoch SJ, et al. Turbocharging 

Matched Molecular Pair Analysis: Optimizing the Identification and Analysis of Pairs. J 

Chem Inf Model 2017;57:2424–36. doi:10.1021/acs.jcim.7b00335. 

[52] Kogej T, Blomberg N, Greasley PJ, Mundt S, Vainio MJ, Schamberger J, et al. Big pharma 

screening collections: more of the same or unique libraries? The AstraZeneca–Bayer 

Pharma AG case. Drug Discov Today 2013;18:1014–24. doi:10.1016/j.drudis.2012.10.011. 

[53] Hussain J, Rea C. Computationally Efficient Algorithm to Identify Matched Molecular Pairs 

(MMPs) in Large Data Sets. J Chem Inf Model 2010;50:339–48. doi:10.1021/ci900450m. 

[54] Kramer C, Ting A, Zheng H, Hert J, Schindler T, Stahl M, et al. Learning Medicinal Chemistry 

Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) Rules from Cross-

Company Matched Molecular Pairs Analysis (MMPA): Miniperspective. J Med Chem 

2017. doi:10.1021/acs.jmedchem.7b00935. 

[55] Walters WP, Green J, Weiss JR, Murcko MA. What Do Medicinal Chemists Actually Make? 

A 50-Year Retrospective. J Med Chem 2011;54:6405–16. doi:10.1021/jm200504p. 

[56] Brown DG, Boström J. Analysis of Past and Present Synthetic Methodologies on Medicinal 

Chemistry: Where Have All the New Reactions Gone?: Miniperspective. J Med Chem 

2015. doi:10.1021/acs.jmedchem.5b01409. 

[57] Fujita T, Adachi M, Akamatsu M, Asao M, Fukami H, Inoue Y, et al. Background and 

features of emil, a system for database-aided bioanalogous structural transformation of 

bioactive compounds. Pharmacochem. Libr., vol. 23, Elsevier; 1995, p. 235–73. 

[58] Stewart KD, Shiroda M, James CA. Drug Guru: A computer software program for drug 

design using medicinal chemistry rules. Bioorg Med Chem 2006;14:7011–22. 

doi:10.1016/j.bmc.2006.06.024. 

[59] Firth NC, Atrash B, Brown N, Blagg J. MOARF, an Integrated Workflow for Multiobjective 

Optimization: Implementation, Synthesis, and Biological Evaluation. J Chem Inf Model 

2015;55:1169–80. doi:10.1021/acs.jcim.5b00073. 

[60] Besnard J, Ruda GF, Setola V, Abecassis K, Rodriguiz RM, Huang X-P, et al. Automated 

design of ligands to polypharmacological profiles. Nature 2012;492:215–20. 

doi:10.1038/nature11691. 

[61] Wawer M, Bajorath J. Local Structural Changes, Global Data Views: Graphical 
Substructure−Activity Relationship Trailing. J Med Chem 2011;54:2944–51. 

doi:10.1021/jm200026b. 



 21 

[62] O’Boyle NM, Boström J, Sayle RA, Gill A. Using Matched Molecular Series as a Predictive 

Tool To Optimize Biological Activity. J Med Chem 2014;57:2704–13. 

doi:10.1021/jm500022q. 

[63] Keefer CE, Chang G. The use of matched molecular series networks for cross target 

structure activity relationship translation and potency prediction. MedChemComm 

2017;8:2067–78. doi:10.1039/C7MD00465F. 

[64] Le QV. Building high-level features using large scale unsupervised learning, IEEE; 2013, p. 

8595–8. doi:10.1109/ICASSP.2013.6639343. 

[65] Pang B, Lee L, Vaithyanathan S. Thumbs Up? Sentiment Classification Using Machine 

Learning Techniques. Proc. EMNLP, 2002, p. 79–86. 

[66] Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V. Deep Neural Nets as a Method for 

Quantitative Structure–Activity Relationships. J Chem Inf Model 2015;55:263–74. 

doi:10.1021/ci500747n. 

[67] Mayr A, Klambauer G, Unterthiner T, Hochreiter S. DeepTox: Toxicity Prediction using Deep 

Learning. Front Environ Sci 2016;3. doi:10.3389/fenvs.2015.00080. 

[68] Merk D, Friedrich L, Grisoni F, Schneider G. De Novo Design of Bioactive Small Molecules 

by Artificial Intelligence. Mol Inform 2018;37:1700153. doi:10.1002/minf.201700153. 

[69] Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. Mastering the 

game of Go with deep neural networks and tree search. Nature 2016;529:484–9. 

doi:10.1038/nature16961. 

[70] Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, et al. Mastering the 

game of Go without human knowledge. Nature 2017;550:354–9. 

doi:10.1038/nature24270. 

[71] Schneider G. Automating drug discovery. Nat Rev Drug Discov 2017;17:97–113. 

doi:10.1038/nrd.2017.232. 

[72] Panetta K. Top Trends in the Gartner Hype Cycle for Emerging Technologies, 2017. Top 

Trends Gart Hype Cycle Emerg Technol 2017 n.d. 

https://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-

emerging-technologies-2017/. 

[73] National Science and Technology Council. THE NATIONAL ARTIFICIAL INTELLIGENCE 

RESEARCH and DEVELOPMENT STRATEGIC PLAN. CreateSpace Independent Publishing 

Platform; 2016. 

[74] Castelvecchi D. Can we open the black box of AI? Nature 2016;538:20–3. 

doi:10.1038/538020a. 

[75] McAfee A, Brynjolfsson E. The Business of Artificial Intelligence. Harv Bus Rev 2017. 

[76] Lindsay RK, Buchanan BG, Feigenbaum EA, Lederberg J. DENDRAL: A case study of the 

first expert system for scientific hypothesis formation. Artif Intell 1993;61:209–61. 

doi:10.1016/0004-3702(93)90068-M. 

[77] Klopman G. Artificial intelligence approach to structure-activity studies. Computer 

automated structure evaluation of biological activity of organic molecules. J Am Chem 

Soc 1984;106:7315–21. doi:10.1021/ja00336a004. 

[78] Marchant CA, Briggs KA, Long A. In Silico Tools for Sharing Data and Knowledge on 

Toxicity and Metabolism: Derek for Windows, Meteor, and Vitic. Toxicol Mech Methods 

2008;18:177–87. doi:10.1080/15376510701857320. 

[79] Gasteiger J, Hutchings MG, Christoph B, Gann L, Hiller C, Löw P, et al. A new treatment of 

chemical reactivity: Development of EROS, an expert system for reaction prediction and 

synthesis design. Org. Synth. React. Mech., vol. 137, Berlin, Heidelberg: Springer Berlin 

Heidelberg; 1987, p. 19–73. doi:10.1007/3-540-16904-0_14. 

[80] Corey EJ, Wipke WT. Computer-Assisted Design of Complex Organic Syntheses. Science 

1969;166:178–92. doi:10.1126/science.166.3902.178. 

[81] Feigenbaum EA. Some challenges and grand challenges for computational intelligence. 

J ACM 2003;50:32–40. doi:10.1145/602382.602400. 

[82] Whitty A, Viarengo LA, Zhong M. Progress towards the broad use of non-peptide synthetic 

macrocycles in drug discovery. Org Biomol Chem 2017;15:7729–35. 

doi:10.1039/C7OB00056A. 



 22 

[83] Halevy A, Norvig P, Pereira F. The Unreasonable Effectiveness of Data. IEEE Intell Syst 

2009;24:8–12. doi:10.1109/MIS.2009.36. 

 


