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Abstract 134 

The present publication surveys several applications of in silico (i.e., computational) toxicology 135 

approaches across different industries and institutions. It highlights the need to develop standardized 136 

protocols when conducting toxicity-related predictions. This contribution articulates the information 137 

needed for protocols to support in silico predictions for major toxicological endpoints of concern (e.g., 138 

genetic toxicity, carcinogenicity, acute toxicity, reproductive toxicity, developmental toxicity) across 139 

several industries and regulatory bodies. Such novel in silico toxicology (IST) protocols, when fully 140 

developed and implemented, will ensure in silico toxicological assessments are performed and 141 

evaluated in a consistent, reproducible, and well-documented manner across industries and regulatory 142 

bodies to support wider uptake and acceptance of the approaches. The development of IST protocols is 143 

an initiative developed through a collaboration among an international consortium to reflect the state-144 

of-the-art in in silico toxicology for hazard identification and characterization. A general outline for 145 

describing the development of such protocols is included and it is based on in silico predictions and/or 146 

available experimental data for a defined series of relevant toxicological effects or mechanisms. The 147 

publication presents a novel approach for determining the reliability of in silico predictions alongside 148 

experimental data. In addition, we discuss how to determine the level of confidence in the assessment 149 

based on the relevance and reliability of the information. 150 

  151 
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1. Introduction 168 

In silico toxicology (IST) methods are computational approaches that analyze, simulate, visualize, or 169 

predict the toxicity of chemicals. IST encompasses all methodologies for analyzing chemical and 170 

biological properties generally based upon a chemical structure that represents either an actual or a 171 

proposed (i.e., virtual) chemical. Today, in silico approaches are often used in combination with other 172 

toxicity tests; however, the approaches are starting to be used to generate toxicity assessments 173 

information with less need to perform any in vitro or in vivo studies depending on the decision context. 174 

IST uses models which can be encoded within software tools to predict the potential toxicity of a 175 

chemical and in some situations to quantitatively predict the toxic dose or potency. These models are 176 

based on experimental data, structure-activity relationships, and scientific knowledge (such as structural 177 

alerts reported in the literature).  178 

There are a number of different situations where in silico methods serve an important role in the hazard 179 

assessment of existing chemicals or new substances under development that would benefit from the 180 

development of in silico toxicology protocols. These include:  181 

 emergency situations where rapid understanding of potential toxicological consequences from 182 

exposure is needed in the absence of existing toxicological testing data;  183 

 cases where there is only a limited supply of a test material available; 184 

 scenarios where there are challenges to conduct laboratory studies;  185 

 instances where synthesis of a complex test material is not feasible; and 186 

 situations where a less time-consuming and less expensive high-throughput approach than an 187 

experimental test is needed. 188 
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IST methods are one approach to generating additional information for complementing and ultimately 189 

enhancing the reliability or supporting a risk assessment, including an understanding of the structural 190 

and/or mechanistic basis that may contribute ideas for the rational design of new chemicals, 191 

development of a testing strategy or an overall weight-of-evidence evaluation. IST inherently supports 192 

the principle of the 3Rs (replacement, refinement and reduction) relating to the use of animals in 193 

research (Russell and Burch, 1959; Ford 2016). Table 1 outlines fifteen specific uses of IST to illustrate 194 

the diversity of applications that currently can benefit from in silico methods. Stanton and Kruszewski 195 

(2016) recently quantified the benefits of using in silico and read-across methods where they 196 

determined that the approach used across two voluntary high-production-volume (HPV) chemical 197 

programs for 261 chemicals obviated the use of 100,000 – 150,000 test animals and saved 50,000,000 198 

US$ to 70,000,000 US$.  199 

The increased interest and acceptance of in silico methods for regulatory data submission and chemicals 200 

evaluation is driving the adoption of its use for regulatory purposes. Several guidance documents have 201 

been drafted to improve standardization, harmonization, and uptake of in silico methods by regulatory 202 

authorities including  the International Council for Harmonization (ICH) M7 guideline (assessment and 203 

control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk) 204 

(ICH M7, 2017(R1)), the European Union’s Registration, Evaluation, Authorization, and restriction of 205 

Chemicals (REACH) regulation (EU 2006; ECHA 2008; ECHA 2015), European Food Safety Authority 206 

(EFSA) residue guidance (EFSA 2016), Canada’s chemicals management plan assessments for new and 207 

existing substances under the Canadian Environmental Protection Act (CEPA) (Canada 2016), and the 208 

Toxic Substances Control Act (TSCA) (TSCA 2016). A number of national and international initiatives have 209 

focused on developing specific documents supporting the use of in silico tools. The OECD has published 210 

a series of (Quantitative) Structure-Activity Relationship (Q)SAR validation principles that are discussed 211 

in detail in Section 2.3.2. (OECD 2004, OECD 2007) Other initiatives include the North American Free 212 
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Trade Agreement pesticides Quantitative Structure-Activity Relationship (QSAR) guidance (NAFTA 2012), 213 

considerations on the use of in silico approaches for assessing cosmetics ingredients (Amaral et al., 214 

2014), European Food Safety Agency report (EFSA 2014), European Chemicals Agency REACH supporting 215 

documentation (ECHA 2008; ECHA 2016, 2017), Organization for Economic Co-operation and 216 

Development (OECD) documentation (OECD 2007; OECD 2014; OECD 2015), and the ICH M7 guideline 217 

for prediction of mutagenicity (ICH M7, 2017(R1)), along with complementary peer reviewed 218 

publications outlining the process for implementation of such computational assessments (e.g., Amberg 219 

et al., 2016; Barber et al., 2015; Powley et al., 2015; Schilter et al., 2014). Certain projects have provided 220 

substantial guidance on the documentation of the models and prediction results (JRC 2014; Patlewicz et 221 

al., 2016) as well as principles and workflows to support safety assessments (Bassan and Worth, 2008; 222 

ECHA 2015; Worth et al., 2014; Berggren et al., 2017; Amaral et al., 2017). 223 

These prior initiatives provide a robust foundation for the current project to establish the IST protocols 224 

described here; however, several issues have hindered the general acceptance and use of in silico 225 

methods on a larger scale. In particular, there remains a lack of generally accepted procedures for 226 

performing in silico assessments for the toxicological endpoints. The lack of such procedures or 227 

protocols has led to inconsistency in the application and use of in silico tools across different 228 

organizations, industries, and regulatory agencies (e.g., searching databases, applying predictive models 229 

and alerts, performing an expert review/assessment, documenting and communicating the results and 230 

associated uncertainties). The use of traditional experimental evidence coupled with in silico 231 

information to support hazard identification and risk assessment also varies both across, and often 232 

within, organizations. Although not always, such ad hoc approaches may be time-consuming and the 233 

results poorly accepted. Standardization of protocols will enhance the acceptability of the methods and 234 

their results by end users. Additionally, there are misconceptions about when in silico predictions are 235 

appropriate to use as well as a lack of defined consensus processes for interpreting the result(s) of such 236 
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predictions (Bower et al., 2017; SCCS 2016). Some scientists view in silico methods as a “black box” that 237 

inhibits their ability to critically assess the predictions and their reliability. (Alves et al., 2016) Others lack 238 

expertise to interpret the results of in silico predictions, and some have an unrealistic expectation that 239 

an in silico prediction can always provide an unerring definitive assessment.  240 

Standardization of in silico tool use and interpretation of results would greatly reduce the burden on 241 

both industry and regulators to provide confidence in or justification for the use of these approaches. 242 

The objective of developing IST protocols is to define in silico assessment principles so the results can 243 

be generated, recorded, communicated, archived and then evaluated in a uniform, consistent and 244 

reproducible manner. Incorporating these principles routinely into the use of in silico methods will 245 

support a more transparent analysis of the results and serves to mitigate “black box” concerns1. This 246 

approach is similar to guideline studies that provide a framework for the proper conduct of 247 

toxicological studies and assurance in the validity of the results (such as OECD Guidelines for the 248 

Testing of Chemicals) (OECD 2017). The development of these protocols is driven by consensus 249 

amongst leading scientists representing industry, private sector and governmental agencies. 250 

Consequently, this project provides an important step towards a quality-driven science for IST or good 251 

in silico practice . 252 

Herein, we provide a framework to develop a series of procedures for performing an in silico assessment 253 

to foster greater acceptance. These IST protocols are being created for a number of toxicological 254 

endpoints (e.g., genetic toxicity, carcinogenicity, acute toxicity, reproductive toxicity, developmental 255 

toxicity) as well as other related properties (e.g., biodegradation and bioaccumulation) that could 256 

impact the chemical hazard classification. Throughout this publication, these toxicological and related 257 

                                                 
1It should be noted that black box models may be acceptable in certain situations, such as compound filtering and 
virtual screening, as long as they show acceptable performance in validation studies; however, for most 
applications the acceptance of this class of models is low. 
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endpoints are referred to as “major endpoints” and the protocols are referred to as IST protocols. These 258 

protocols will support the assessment of hazards and in some cases the prediction of quantitative 259 

values, such as a No Observed Adverse Effect Levels (NOAELs); however, these protocols do not define 260 

how a risk assessment will be performed. This publication outlines the components of an IST protocol, 261 

including schematics to describe how a prediction could be performed, approaches to assess the 262 

reliability and confidence of the results, and items that may be considered as part of an expert review. 263 

This publication also outlines the process for creating the IST protocols through an international 264 

consortium comprising representatives across regulatory agencies, government research agencies, 265 

different industrial sectors, academia and other stakeholders. Specific endpoint-dependent 266 

considerations will be described in future separate publications and IST protocols (developed as a result 267 

of this process) will also be published for widespread use and for incorporation into different technology 268 

platforms. 269 

2. In silico toxicology protocols 270 

2.1 Overview 271 

Each IST protocol describes the prediction process in a consistent, transparent, and well-documented 272 

manner. This includes recommendations on how to:  273 

1) plan the in silico analyses including identifying what toxicological effects or mechanisms to 274 

predict (Section 2.2), what in silico methodologies to use (Section 2.3.1), and other selection 275 

criteria for the in silico methods (Section 2.3.2),  276 

2) conduct the appropriate individual software predictions (Section 2.3.3) and further database 277 

searches (Section 2.5),  278 
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3) perform and document the in silico analysis (Sections 2.6 and 2.7) including expert review 279 

(Section 2.4), and  280 

4) report and share the information and assessment results, including information about 281 

uncertainties (Section 2.9).  282 

Section 2.8 provides a template for the individual IST protocols for major toxicological endpoints. IST 283 

protocols could be applicable for use with several in silico programs, including different in silico models 284 

and databases. 285 

2.2 Toxicological effects and mechanisms 286 

In an experimental approach, hazard is evaluated based on specific observations (toxicological effects) 287 

during toxicity studies. Often, toxicity of a chemical involves a biological event: a non-specific or specific 288 

interaction with a vital biological structure, which causes sequential perturbation of a physiological 289 

pathway at a cellular, tissue, organ and/or system level, leading to a toxicological effect observed at the 290 

organism level. Experiments evaluating the potential of a chemical to cause such a biological event (e.g., 291 

in vitro analysis of specific interaction with a cellular receptor or inhibition of an enzyme or non-specific 292 

cytotoxicity), may support hazard assessment and provide information about the mechanism of toxicity. 293 

Such an approach is utilized in the Adverse Outcome Pathway (AOP), where identification of a molecular 294 

initiating event supports assessment of the related adverse outcome at the organism level (Bell et al., 295 

2016; OECD 2016a; OECD 2016b).  A computational approach to hazard assessment may address the 296 

two complementary levels of hazard identification in a similar way (i.e., predicting the resulting 297 

manifestation (effect) or the molecular perturbation (mechanism) that led to the toxicological effect).  298 

Each IST protocol defines a series of known toxicological effects and mechanisms relevant to the 299 

assessment of the major toxicological endpoint. For example, in the reproductive toxicity IST protocol, 300 
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the list of toxicological effects/mechanisms may include reduced sperm count, androgen signaling 301 

disruption in vitro, and so on. Within each IST protocol, these effects/mechanisms may be species 302 

and/or route of administration specific. 303 

Figure 1 outlines a general approach to performing an in silico assessment. For each toxicological 304 

effect/mechanism, relevant information (as defined in the IST protocol) is collected, including any 305 

available experimental data as well as in silico predictions. The experimental data and/or in silico results 306 

are then analyzed and an overall assessment of the toxicological effect or mechanism is generated 307 

alongside a reliability score (defined in Section 2.6.2) that reflects the quality of the results. The 308 

assessment results and reliability scores for a range of relevant toxicological effects/mechanisms are 309 

then used to support a hazard assessment within the hazard assessment framework. 310 

2.3 In silico predictions 311 

2.3.1 In silico methodologies 312 

Several organizations develop and make available computer software packages for predicting toxicity or 313 

physicochemical properties of query chemical(s). These systems generally contain one or more models, 314 

where each model predicts the compound’s putative toxicological effect or mechanism of action. For 315 

example, a model may predict the results for bacterial gene mutation using data generated from the 316 

bacterial reverse mutation test or Ames test. These models may be revised over time as more data 317 

become available, structure-activity relationships are better characterized, and any data set used is 318 

updated. Each new or updated model is given a different version number because the results from 319 

different model versions may vary and it is important to track the source of the results. (Amberg et al., 320 

2016) 321 
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All IST protocols will identify the toxicological effects or mechanisms to be predicted as discussed in 322 

Section 2.2. These predictions may be dichotomous (e.g., predict mutagenic or non-mutagenic 323 

compounds), quantal (e.g., Globally Harmonized System [GHS] Classification and Labeling2 scheme) or 324 

quantitative/continuous (e.g., prediction of median toxic dose [TD50] values). The specific IST protocols 325 

will detail the type of prediction(s) ideally generated. 326 

The major in silico prediction methodologies include the following: 327 

 Statistical-based (or QSAR). This methodology uses a mathematical model that was derived 328 

from a training set of example chemicals. The training set includes the chemicals that were 329 

found to be positive and negative in a given toxicological study (e.g., the bacterial reverse 330 

mutation assay) or to induce a continuous response (e.g., NOAEL in teratogenicity) that the 331 

model will predict. As part of the process to generate the model, physicochemical property-332 

based descriptors (e.g., molecular weight, octanol water partition coefficient [log P]), electronic 333 

and topological descriptors (e.g., quantum mechanics calculations), or chemical structure-based 334 

descriptors (e.g., the presence or absence of different functional groups) are generated and 335 

used to describe the training set compounds. The model encodes the relationship between 336 

these descriptors and the (toxicological) response. After the model is built and validated (OECD 337 

2007; Myatt et al., 2016), it can be used to make a prediction. The (physico)chemical descriptors 338 

incorporated into the model are then generated for the test compound and are used by the 339 

model to generate a prediction. This prediction is only accepted when the test compound is 340 

sufficiently similar to the training set compounds (i.e., it is considered within the applicability 341 

domain of the QSAR model, often considering the significance of descriptors). (Netzeva et al., 342 

2005; Carrió et al., 2014; Patlewicz et al., 2016) This applicability domain analysis may be 343 

                                                 
2 A chemical is assigned to a category (e.g., 1, 2, 3, 4, or 5) based on distinct ranges of quantitative values (e.g., LD50). Examples 
of such ranges include LD50 <5mg/kg (i.e., category 1) or 50-300mg/kg (i.e., category 3). 
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performed automatically by some software to determine whether the training set compounds 344 

share similar chemical and/or biological properties with the test chemical. 345 

 Expert rule-based (or expert/structural alerts). This methodology uses structural rules or alerts 346 

to make predictions for specific toxicological effects or mechanisms of toxicity. These rules are 347 

derived from the literature or from an analysis of data sets generated by scientists. Structural 348 

alerts are defined as molecular substructures that can activate the toxicological effect or 349 

mechanism. The rules may also encode situations where the alert is deactivated. Expert rule-350 

based models often include a description of the toxic mechanism and examples from the 351 

literature or other reference sources to justify the structural alert. A positive prediction is 352 

generally made when a structural alert is present (without deactivating structural features or 353 

properties) in the test compound. When no alerts are triggered for a test chemical, a negative 354 

prediction may be generated for well investigated endpoints; however, additional analysis is 355 

generally required to make this assessment as discussed further in Section 2.4.3. 356 

 Read-across: Read-across uses data on one or more analogs (the “source”) to make a prediction 357 

about a query compound or compounds (the “target”). Source compounds are identified that 358 

have a structurally or toxicologically meaningful relationship to the target compound, often 359 

underpinned by an understanding of a plausible biological mechanism shared between the 360 

source and target compounds. The toxicological experimental data from these source 361 

compounds can then be used to “read-across” to the specific target compound(s). Read-across is 362 

an intellectually-derived endpoint-specific method that provides justification for why a chemical 363 

is similar to another chemical (with respect to chemical reactivity, toxicokinetics, 364 

mechanism/mode of action, structure, physicochemical properties, and metabolic profile). (Wu 365 

et al., 2010; ECETOC 2012; Patlewicz et al., 2013a; Patlewicz et al., 2013b; OECD 2014; Blackburn 366 
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and Stuard, 2014; Patlewicz (2014); Patlewicz et al., 2015; Schultz et al., 2015; Ball et al., 2016; 367 

ECHA 2017b) 368 

 Other approaches: In certain cases, other in silico methodologies may be appropriate. Examples 369 

include the use of molecular dynamics (e.g., simulating interactions of a query chemical with a 370 

metabolic enzyme) and receptor binding as an indication of a possible Molecular Initiating Event 371 

(e.g., estrogen receptor-ligand docking).  372 

Each IST protocol will include an assessment of key computational aspects and specific issues to 373 

consider. For example, when performing read-across, issues such as the data quality of the source 374 

compound(s), how to perform an assessment of non-reactive chemical features and selection of 375 

grouping approaches used to form categories will be discussed to ensure source compound(s) are 376 

sufficiently similar, both chemically and biologically, for the endpoint being considered. 377 

Each methodology has its strengths and weaknesses, which often depend on the type of toxicological 378 

effect or mechanism being predicted. This will be discussed in the individual IST protocols. In addition, 379 

there may be cases of unique or novel compounds for which it is not possible to make a prediction or for 380 

which confidence in the predictions is so low as to render it meaningless or unhelpful. 381 

2.3.2 In silico methods selection criteria 382 

In silico methods selection may include the following five considerations: 383 

1. Relevant toxicological effects or mechanisms. As discussed in Section 2.2, each IST protocol will 384 

define a series of toxicological effects or mechanisms relevant to a specific endpoint and 385 

appropriate in silico models need to be selected that predict these specific effects or 386 

mechanisms. 387 
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2. Model validity. Best practices for validation of (Q)SAR in silico models have been documented in 388 

a number of publications (Cherkasov et al.; 2014, Raies and Bajic, 2016; Myatt et al., 2016), and 389 

models built using these best practices may be preferred. The OECD has published a series of 390 

validation principles for in silico models (OECD 2004; OECD 2007) and valid statistical-based or 391 

expert rule-based in silico methods. Such (Q)SAR methods have: 1) a defined endpoint; 2) an 392 

unambiguous algorithm; 3) a defined domain of applicability; 4) appropriate measures of 393 

goodness-of-fit, robustness and predictivity; and 5) a mechanistic interpretation, if possible. Any 394 

in silico model must include documentation that supports an assessment of the model’s 395 

scientific validity, including the toxicological effect or mechanism being predicted, version 396 

number, type of methodology, training set size and content, as well as any predictive 397 

performance information. Validation performance is documented in report formats such as the 398 

QSAR Model Reporting Format (QMRF) (JRC 2014). The level of adherence to the OECD 399 

principles and the performance statistics need to be appropriate for the purpose of the 400 

assessment.  401 

3. Chemical space. Often, in silico models will only make predictions for specific classes of 402 

chemicals, the so called “applicability domain”. The chosen in silico model(s) may report the 403 

applicability domain assessment to demonstrate its proficiency for this class of compounds. Vice 404 

versa, only models are ideally chosen where the query compound is in the applicability domain. 405 

(Netzeva et a l., 2005; Carrió et al., 2014; Patlewicz et al., 2016) 406 

4. Model combinations. Complementary or independent in silico models may be selected, as 407 

concurring results increase the reliability of the prediction (as discussed in Section 2.6.2).  408 

5. Supporting an expert review. For QSAR models, tools to help the expert review (see Section 2.4) 409 

include the ability to allow examination of the descriptors and weightings used in the model, 410 

underlying training set data, and how the applicability domain assessment was defined. For 411 
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expert rule-based systems, this could include how the alert was defined (including any factors 412 

that activate or deactivate the alert), any mechanistic understanding associated with the alert, 413 

citations, and any relevant known examples of alerting chemicals. 414 

Read across may be used when there are experimental data from high quality databases for one or more 415 

substances which are similar enough to the target chemical of interest. The Read-Across Assessment 416 

Framework (RAAF), or similar published and established frameworks, may be used to document the 417 

read-across assessment and to support its scientific plausibility (ECHA 2017b; Patlewicz et al., 2013b; 418 

Blackburn & Stuard 2014; Schultz et al., 2015; Patlewicz et al., 2015). The OECD has also produced 419 

guidance on the process of grouping chemicals and other considerations as part of a read-across 420 

assessment (OECD 2014), and ECHA has generated guidelines on the process of performing a valid read-421 

across assessment (ECHA 2008).  422 

2.3.3 Running the in silico models 423 

All in silico systems require an electronic representation of the chemical structure and any errors in this 424 

representation will result in invalid predictions. Therefore, it is important to ensure that the chemical 425 

structure is properly curated and entered following conventions set out by the model’s developer, 426 

including appropriate representations for tautomers, aromaticity, salt forms, stereochemistry, charges, 427 

and specific functional groups (e.g., nitro or carboxylic acid groups). It is possible that different formats 428 

(i.e., SMILES vs. MOL files) may be processed differently. It is also important to verify that the software 429 

correctly interprets the structural representation during processing, particularly for complex molecules. 430 

For some types of chemicals, in silico models may not be applicable due to the structural representation 431 

or the unsuitability of the experiment assay for the specific chemical class. Examples include non-432 

discrete chemical substances, UVCBs (unknown/variable composition, complex reaction products and 433 
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biologicals), metals, inorganics, polymers, mixtures, organometallics and nano-materials. (Mansouri et 434 

al., 2016)  435 

Some models, such as statistical-based models, allow for prediction settings to be adjusted or turned off 436 

(e.g., they report “positive” when a value is greater than a predetermined threshold). The settings are 437 

ideally selected in a way that does not compromise the model’s validity (such as changing the validation 438 

statistics of the model) and appropriately reported. 439 

A thorough documentation of all selected models and computer software packages including, version 440 

numbers, and any parameters set, is needed as part of the materials and methods in sufficient detail to 441 

assess and potentially repeat the analysis (discussed in Section 2.9). In addition, the results need to be 442 

presented in enough detail to fully understand how they were generated and to critically assess the 443 

findings. 444 

2.4 In silico expert review 445 

2.4.1 Overview 446 

As with in vitro or in vivo study data, in silico predictions may be critically assessed and an expert review 447 

of the output is often prudent (Dobo et al., 2012; Sutter et al., 2013). Frameworks for conducting an 448 

expert review ensure that it is performed in a consistent and transparent manner. Examples of such a 449 

review framework include the Office of Health Assessment and Translation (OHAT) systematic review 450 

and evidence integration (Rooney et al., 2014), weight-of-evidence assessments (ECHA 2017a), and 451 

Integrated Approaches to Testing and Assessment (IATA) (OECD 2016a; OECD 2016b).  452 

The purpose of an in silico expert review is to evaluate the reliability of the prediction. The outcome of 453 

the review provides information to include in the assessment of the toxicological effect or mechanism. 454 

As part of this review, the expert might agree with, or refute, individual in silico predictions. In addition, 455 
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these reviews might support cases when a chemical is out of the applicability domain of the model, 456 

support the use of an equivocal prediction (i.e., there is evidence both for and against the supposition), 457 

or support cases where multiple predictions do not agree. A checklist of items to consider and report 458 

will help to ensure such reviews are performed in a consistent manner (as illustrated in Tables 2 and 3). 459 

This review may include knowledge from proprietary information available within an organization from 460 

the testing of related chemicals. 461 

When an expert review assesses multiple predictions from different in silico systems, it is important to 462 

justify how they complement each other with regard to the training set (i.e., the use of relevant 463 

guideline studies plus relevant chemical classes), methodology (e.g., expert rule-based vs. statistical-464 

based vs. read-across), or QSAR descriptor sets. 465 

It is essential to document the reasoning and decisions of the expert review steps so they can be 466 

retraced at any time, including the information used as the basis for the review. 467 

2.4.2 Expert review of statistical models 468 

An expert review of a statistical-based model involves a critical assessment of how the model generated 469 

the prediction. This includes examining the weightings of the model descriptors (e.g., structural features 470 

or physicochemical properties related to toxicity), underlying data, chemical space of the training set of 471 

the model, and the experimental results for analog compounds and model performance for these 472 

analogs (e.g., nearest-neighbor list of compounds) (Amberg et al., 2016). This may also incorporate an 473 

understanding of the mechanism of toxicity or knowledge of factors that activate or deactivate the 474 

toxicity. The items described in Table 2 provide a checklist of elements to consider as part of any QSAR 475 

expert review to ensure such a review is as objective as possible, transparent and based on a consistent 476 

set of considerations. An expert review may increase the reliability of statistical model results based on 477 

one or more elements defined in Table 2. 478 
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Individual IST protocols will outline specific points to consider when performing an expert review, such 479 

as how the similarity of analogs could be assessed. 480 

2.4.3 Expert review of expert rule-based (structural) alert systems 481 

An expert review of the results from an expert rule-based alert system may involve inspection of the 482 

underlying information as well as external knowledge. Special emphasis needs to be placed on the 483 

assessment of chemicals where no alerts are identified in the expert alert system. When no alert is fired 484 

(i.e., it is not predicted active), it is often not reported if the prediction is negative, equivocal, or out of 485 

the applicability domain of the model and often no prediction is generated. An expert review may 486 

increase the reliability of the results based on one or more elements defined in Table 3. 487 

2.4.4 Read-across expert review 488 

Read-across contains an expert assessment by its nature: it requires expert judgment of the analogs, 489 

their data and extrapolation to the query chemical. For example, read-across assessments performed 490 

and documented according to the RAAF (i.e., following the detailed RAAF Assessment Elements), or 491 

similar frameworks, as discussed earlier, incorporate an expert review as part of the assessment. This 492 

type of assessment includes a strong justification for biological plausibility of any analogs selected 493 

(including an assessment of the structural differences and similarities to the target structure, and an 494 

analysis of potential metabolism). It also includes an expert assessment when a read-across prediction 495 

concludes there is an absence of effects. In addition, an assessment of supporting evidence (including 496 

the reliability of the source data), any weight-of-evidence considerations, and an assessment of any 497 

possible bias in the selection of source chemicals is required.  498 

2.5 Assessment of available experimental data 499 

Experimental data may have been previously generated and reported for a chemical being assessed, for 500 

example, in the literature or through a public or proprietary database. To support the identification of 501 
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experimental data, each IST protocol will identify a series of relevant study types and specific result(s) 502 

corresponding to the identified toxicological effects or mechanisms, as discussed in Section 2.2. To 503 

illustrate, in the assessment of the toxicological effect/mechanism bacterial gene mutation (part of the 504 

genetic toxicity IST protocol), the overall mutagenic or non-mutagenic results from a bacterial reverse 505 

mutation assay may be used. A more complex example is in the assessment of the toxicological 506 

effect/mechanism of sperm morphology (part of the reproductive IST protocol). Here, specific results 507 

from potentially different study types, such as one- or two- generation reproductive studies, repeated 508 

dose toxicity studies or segment I (fertility) studies, and possibly also from different species (rat, mouse, 509 

rabbit) will be applicable. 510 

The selection of experimental study types need focus on those that have general value based on 511 

scientific justification. This includes study types that have widespread use in risk assessments, regulatory 512 

acceptance and that follow internationally recognized test guidelines. In addition, other types of data 513 

may be considered relevant on a case-by-case basis. Numerous guidance documents discuss acceptable 514 

studies, their relevancy, and their use in hazard identification, hazard characterization and risk 515 

assessment. These include guidance documents from the ICH (ICH 2017), OECD (OECD 2017), European 516 

Food Safety Authority (EFSA) (EFSA 2017a), Scientific Committee on Consumer Safety (SCCS) (SCCS 517 

2017), REACH /ECHA (ECHA 2008; ECHA 2015), United States Environmental Protection Agency (EPA) 518 

Office of Chemical Safety and Pollution Prevention (OCSPP 2015), and National Institute of 519 

Environmental Health Sciences (NIEHS) (NIEHS 2017) guidance documents. Such guidance documents 520 

provide a useful basis for test considerations but may not always be harmonized across legislation, 521 

industrial sector or geographical regions, as requirements may differ across guidance documents.  522 

The IST protocols will discuss how to assess and document the experimental data and uncertainties to 523 

ensure the proper justification of the experimental results’ reliability, including defining what specific 524 
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elements or fields are important to document. With older studies pre-dating existing guidelines, it will 525 

often still be possible to perform an expert review to determine the adequacy of the data, but it will be 526 

important to document specifically why the study results were considered acceptable or dismissed as 527 

unacceptable. The IST protocols will also provide recommendations on how to select a result when 528 

multiple studies (with potentially conflicting results) for the same effect or mechanism are reported. 529 

Klimisch scores are a widely used approach adopted to support an assessment of experimental data 530 

reliability (Table 4; Klimisch et al., 1997). The Klimisch score (1 to 4) is based on factors including 531 

whether the test was compliant with the OECD principles of Good Laboratory Practices (GLP) or Good In 532 

Vitro Methods Practices (GIVIMP) standards (OECD 2016c), whether the data were generated using 533 

accepted test guidelines, whether the data are available for independent inspection, and the quality of 534 

the report. ECHA uses this score, for example, as part of its data submission process (ECHA 2011), and 535 

there are tools to support the assignment of Klimisch scores (ECVAM 2017; Schneider et al., 2009). 536 

Another approach to the assessment of the reliability of the experimental data is the Science in Risk 537 

Assessment and Policy (SciRAP) application, a web-based reporting and evaluation resource created to 538 

help understand how academic toxicity-related studies can be used as part of any regulatory assessment 539 

(Molander et al., 2014). An approach proposed by EFSA is a detailed analysis of different parameters of 540 

the study (e.g. statistical power; verification of measurement methods and data; control of experimental 541 

variables that could affect measurements; universality of the effects in validated test systems using 542 

relevant animal strains and appropriate routes of exposure, etc.) with detailed documentation of the 543 

process (EFSA, 2011).  544 
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2.6 Combined assessment of experimental data and in silico predictions 545 

2.6.1 Toxicological effect or mechanism assessment 546 

Reliable data, generally defined by Klimisch scores 1 or 2 reviewed by an expert (see Table 4), is ideally 547 

used for the toxicological effect or mechanism (shown in Figure 1) whenever available3. In the absence 548 

of adequate experimental data, results from one or more in silico models can be used to support 549 

assessment of the toxicological effect or mechanism. When multiple in silico model results, from 550 

potentially different methodologies, or QSAR models using different descriptors and/or training sets, are 551 

generated per toxicological effect or mechanism, the individual results need to be compiled to provide 552 

one overall assessment, as shown in Figure 1. This assessment may take into consideration information 553 

from any expert review of the in silico results, as certain results may need to be refuted. Similarly, when 554 

there are data assigned Klimisch 3 or 4 and/or there are in silico results, this information needs to be 555 

compiled into an overall assessment. Individual IST protocols will document such procedures. 556 

There are multiple approaches to compile results. A cautious approach is to use the most conservative 557 

data or prediction for this assessment. For example, when predicting the results of the bacterial reverse 558 

mutation test using two models, if either model’s prediction result is mutagenic then the overall 559 

assessment is mutagenic. Other options include a weight-of-evidence or consensus approach or 560 

selection of the prediction with the highest confidence (e.g., predictive probability score and relevance 561 

of analogous structures). Specific considerations per endpoint may be addressed in the individual IST 562 

protocols and may be dependent on the problem formulation.  563 

                                                 
3 As mentioned in Section 2.5, where high quality experimental data are available (as shown in Figure 1), it may not be 

necessary to run in silico models. However, generating in silico predictions for chemicals with known values is sometimes 
performed to verify experimental results because an unexpected positive or negative experimental result in a physical assay 
may be explained by the presence of an active impurity or to provide additional weight-of-evidence or for other reasons. 
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2.6.2 Reliability scores 564 

Reliability, in this context, is defined as the inherent quality of the experimental study (Klimisch, 1997) 565 

and/or in silico analysis. It is used to support any hazard assessment, in combination with other 566 

information. A reliability score (RS) is associated with the toxicological effect or mechanism assessment 567 

(as shown in Figure 1). As noted earlier, when data from the literature or other sources are considered, 568 

Klimisch scores can be used to assess the reliability of the results. However, the Klimisch framework was 569 

never intended to assess the reliability of in silico predictions.  It is also important to note that regardless 570 

of the approach taken, reliability assessments will contain subjective decisions. 571 

A number of general factors can affect the reliability of in silico results: 572 

 Multiple in silico results: Combining results from multiple complementary or independent in 573 

silico tools which use different methodologies or QSAR descriptors and/or training sets, has 574 

been shown to improve overall sensitivity, but it can lower specificity by increasing false positive 575 

rates (Myatt et al., 2016). In the case of quantitative predictions, such process are overly 576 

conservative estimates. Hence, consistency across several different models can increase the 577 

reliability of the results. 578 

 Expert review: A plausible and well-documented read-across (consistent with the RAAF or 579 

similar frameworks) may be acceptable as part of a REACH regulatory submission as an 580 

alternative to experimental data. A structured expert review is implicit in any read-across 581 

assessment (as discussed in Section 2.4.4). Similarly, an explicit expert review (following the 582 

elements described in Sections 2.4.2 and 2.4.3) of the in silico predictions can improve the 583 

reliability of the final results, especially for negative predictions. (Dobo et al., 2012)  584 
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To generate an overall reliability score for assessments based on experimental data and/or in silico 585 

predictions, the Klimisch score has been adapted (as shown in Figure 2) to include an assessment of in 586 

silico prediction results. 587 

Experimental data assigned a Klimisch score of 1 or 2 is assigned a score of RS1 and RS2, respectively, in 588 

this revised scheme. In silico results are not assigned a score of RS1 or RS2 since adequate experimental 589 

data is preferred over in silico predictions. Since in silico results may be used directly as part of certain 590 

regulatory submissions, whereas experimental data with a Klimisch score of 3 or 4 would not (or only as 591 

supporting data under REACH, for example), the next two categories (RS3 and RS4) represent, in part, in 592 

silico predictions. The following may be acceptable as part of a regulatory submission: (1) an adequately 593 

performed read-across prediction (EU 2006), or (2) an expert review of in silico and/or other 594 

experimental data (ICH M7, 2017(R1); EU 2006); they are assigned a reliability score of RS3. A score of 595 

RS4 would be assigned when two or more predictive models are available that are complementary, with 596 

concurring results (with no expert review), and no supporting literature data are available. Examples 597 

include those predictive models that use either substantially different QSAR descriptors and/or QSAR 598 

training sets or different in silico methodologies. If two or more in silico model results do not agree, then 599 

an expert review would be required to assess the results. This review might increase the confidence in 600 

the assessment, resulting in an increased reliability score of RS3. A single acceptable (as discussed in 601 

Section 2.3.2) in silico model result, without further expert review, is afforded the same reliability score 602 

of RS5 as an actual test result of lowest reliability (Klimisch 3 or 4). The in silico result is placed in the 603 

same category as low reliability data because such models inform decisions based on a series of 604 

compounds or trends However, this reliability score may be increased following expert review. This 605 

reliability score closely follows the ICH M7 guideline, where submissions corresponding to reliability 606 

scores RS1-RS4 would be accepted according to the guideline. In addition to this score, it may be helpful 607 
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to document any additional considerations that may be important to the overall assessment. Individual 608 

IST protocols may deviate from this scheme with appropriate justification. 609 

2.6.3 Worked examples 610 

Three examples from Amberg et al. (2016) illustrate how the framework described in this publication 611 

can be used for determining a toxicological effect or mechanism assessment and reliability score, based 612 

on experimental data and/or in silico predictions. Assessing reliability is an initial step in the overall 613 

assessment of hazard, where it will be combined with other information, including an evaluation of the 614 

relevance of the information, to support decision making. 615 

In the example in Figure 3, no experimental data were identified. Two in silico models were run; the 616 

statistical-based model prediction was negative and the expert rule-based alert prediction was negative. 617 

The initial score would be RS4 based on multiple concurring prediction results; however, an expert 618 

review was performed on the results from both methodologies and the negative result was confirmed 619 

with increased reliability. The review concluded there were no potentially reactive features in the 620 

chemical. This resulted in a negative overall assessment and a reliability score of RS3 (as a result of the 621 

expert review increasing the reliability).  622 

In the example in Figure 4, no experimental data were identified. Two in silico models were run; the 623 

statistical model prediction was positive and the expert alert prediction was positive. No expert review 624 

of the results was performed. The overall assessment was therefore positive and a reliability score of 625 

RS4 was assigned as a result of two concurring positive predictions using complementary in silico 626 

methodologies but without expert review.  627 

In the example in Figure 5, no experimental data were identified. Two in silico models were run; the 628 

statistical model prediction was positive and the expert alert prediction was negative. An expert review 629 
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was performed on the results from both methodologies, refuting the statistical model’s positive 630 

prediction. This review was based on an analysis of the test chemical’s potential to react with DNA and 631 

the highlighted structural feature was determined to be irrelevant for the mechanism of interaction with 632 

DNA. This resulted in a negative overall assessment and a reliability score of RS3 (as a result of the 633 

expert review increasing the reliability).  634 

2.7 Hazard assessment framework 635 

2.7.1 Toxicological endpoints 636 

Figure 6 illustrates a general scheme for the prediction of a major toxicological endpoint. In this scheme, 637 

the specific toxicological effects or mechanisms are used to support the assessment of a series of 638 

toxicological endpoints. These toxicological endpoint assessments are, in turn, used in the overall 639 

assessment of the major toxicological endpoint. In Figure 6, effect/mechanism 1 is identified as being 640 

relevant to an assessment of a specific toxicological endpoint (Endpoint 1). For example, bacterial gene 641 

mutation (effect/mechanism 1) is relevant to the assessment of gene mutation (endpoint 1). Endpoint 1 642 

is, in turn, one of the endpoints that are relevant to the major toxicological endpoint (e.g., genetic 643 

toxicity). Other identified toxicological effects or mechanisms are associated with toxicological 644 

endpoints as shown in Figure 6. For example, the mammalian gene mutation (effect/mechanism 2) is 645 

also relevant to the assessment of gene mutations (endpoint 1) and clastogenicity (endpoint 2) is 646 

another endpoint to be used in the assessment of genetic toxicity (a major toxicological endpoint). 647 

Figure 6 also includes another example to illustrate how this scheme might be used to assess male 648 

reproductive toxicity. 649 

The hazard assessment framework scheme for each IST protocol will contain different numbers of 650 

toxicological endpoints as needed to support the assessment of each major toxicological endpoint in a 651 

complete and transparent manner.  652 
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It is noteworthy that only the toxicological endpoints required to support a particular problem 653 

formulation need to be assessed. For example, in certain applications only an assessment of gene 654 

mutation may be needed (i.e., it may not be necessary to compute clastogenicity or the genetic toxicity 655 

major toxicological endpoint). 656 

2.7.2 Relevance 657 

Relevance, in this context, is defined as the scientific predictivity of the each toxicological effect or 658 

mechanism for the purpose of assessing a specific toxicological endpoint. As shown in Figure 6, the 659 

assessment of toxicological endpoints may be based on the associated toxicological effects or 660 

mechanisms. To support a transparent overall analysis, the relevance of the toxicological 661 

effect/mechanism information in support of the assessment of the associated toxicological endpoint will 662 

be defined in the IST protocols. This relevance will be based on the collective experience of the 663 

consortium and available validation information.  664 

2.7.3 Toxicological endpoint assessment 665 

The assessment of each toxicological endpoint (as shown in Figure 6) is a function of all associated 666 

toxicological effects or mechanisms and, in some cases, other toxicological endpoints. For example, in 667 

Figure 6, bacterial gene mutation and mammalian gene mutation (toxicological effects or mechanisms) 668 

are associated with gene mutation, whereas gene mutation and clastogenicity (both toxicological 669 

endpoints) are associated with genetic toxicity. Rules or general principles for combining all associated 670 

results for each endpoint will be defined in the upcoming IST protocols. For example, a rule may state 671 

that if one of the associated effects/mechanisms is positive then the endpoint assessment is positive. 672 

These rules or principles will take into consideration how combinations of different toxicological 673 

effects/mechanisms are evaluated to generate an assessment for any toxicological endpoint which may 674 

include a sequence of steps and incorporate Boolean logic.  675 
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2.7.4 Toxicological endpoint confidence 676 

Confidence, in this context, is defined as a score that combines the reliability and relevance of the 677 

associated toxicological effects or mechanisms. This is an additional score associated with toxicological 678 

endpoints. The score may, in some cases, use other toxicological endpoint confidence scores (as shown 679 

in Figure 6). This score will also take into consideration the completeness of the information available; 680 

for example, the confidence score may be lowered when information on an effect or mechanism is 681 

missing. It will also include complementary effects or mechanisms that need to be considered. This 682 

score will be generated based on a series of general principles and/or rules defined in each IST protocol. 683 

Each protocol will outline the different confidence values to generate, such as high, medium or low. 684 

A confidence score is one of the most important items to generate. Different decision contexts tolerate 685 

a different level of confidence in the assessment result as exemplified in the following two scenarios.  686 

1) Scenario 1. The decision is to prioritize a large number of chemicals to screen as part of 687 

product development. In this scenario, selecting a small subset of compounds using in silico 688 

methods supports strategic resource utilization with the eventual goal of reducing overall 689 

costs.  690 

2) Scenario 2. A regulatory submission for a new cosmetic ingredient is being prepared based 691 

on results from in silico methods.  692 

Although in both scenarios, toxicological endpoint assessments generated at the highest level of 693 

confidence would be preferable, Scenario 1 could still make beneficial use of lower confidence 694 

predictions because the safety consequences of a false negative is lower than in Scenario 2. Therefore, a 695 

risk assessment which takes into account the acceptable tolerance for a wrong prediction can be used to 696 

evaluate the necessity for high confidence. 697 
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The assignment of the confidence score for each toxicological endpoint has to support the decision 698 

context(s), regulatory framework and the type of product being assessed. Minimum confidence scores 699 

for regulatory purposes may need to be set; however for other applications, the use of these scores may 700 

be based on the individual organization’s risk tolerance or based on the context, a decision on the 701 

maximum permitted effort to be expended (since higher confidence score may be generated with 702 

additional resources), or an organization’s internal policy for using the confidence scores for specific 703 

tasks. 704 

2.7.5 Expert review of toxicological endpoints 705 

In certain situations, an expert review of the toxicological endpoint assessment and/or confidence may 706 

be warranted, and specific points to consider as part of such an expert review will be detailed in the 707 

individual IST protocols. This review may take into consideration the context of the assessment, that is, 708 

the type of product being assessed and any potential regulatory framework. It may be helpful to 709 

document any additional considerations concerning the assessment and confidence to support an 710 

overall assessment. 711 

2.8 In silico toxicology protocol components 712 

Ongoing efforts are concentrated on the development of individual IST protocols for major endpoints 713 

including genetic toxicity, carcinogenicity, acute toxicity, repeated dose toxicity, reproductive toxicity, 714 

and developmental toxicity. Table 5 outlines proposed common components for these IST protocols. 715 

2.9 Reporting formats 716 

Standardized reporting of the results and expert review is good scientific practice and assures that when 717 

such information is communicated to regulatory authorities, it is complete, consistent and transparent; 718 
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this may avoid requests for additional information and maintain a consistent, expedient, and streamline 719 

regulatory review process. Table 6 outlines a proposed structure for the report format. 720 

The proposed report format is more comprehensive than existing data formats by including information 721 

on overall assessment and expert reviews. For example, the “QSAR prediction reporting format” (QPRF; 722 

JRC 2014) could be used to report the individual model results (as shown in Section D of Table 6), or 723 

“QSAR model reporting format” (QMRF) can be used to report the QSAR model’s details (as shown in 724 

Section H of Table 6). 725 

The new proposed report format collects enough details on how the predictions were generated to 726 

enable another expert to repeat the process. It is also important that the reasoning and decisions of the 727 

expert review steps are transparently documented and can be retraced at any time, including the 728 

information used as their basis for conclusions. 729 

3. Summary and outlook 730 

IST is poised to play an increasingly significant role in the assessment of chemicals in a range of chemical 731 

exposure scenarios that have the potential to impact public health. Thus, this is an opportune time for 732 

the development of IST protocols. As expected, the quality and quantity of experimental data will vary 733 

as will the available in silico methods. For example, experimental data could be from a variety of 734 

sources, studies, protocols and laboratories using or not using GLP standards. Similarly, several in silico 735 

methods and approaches are available for assessment of toxicity. Thus, accepted selection criteria have 736 

to be defined for experimental data and in silico methods, for consistent and uniform use. The 737 

development of IST protocols will support the use and adoption of in silico methods in the same manner 738 

in which in vitro and in vivo test guidelines support the use and adoption of those assays.  739 
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Figure 7 summarizes the steps to perform an in silico assessment consistent with the framework defined 740 

in this publication. The key elements needed for the development of IST protocols are outlined in this 741 

publication, including: 1) how to select, assess and integrate in silico predictions alongside experimental 742 

data for defined toxicological effects or mechanisms, including a new methodology for establishing the 743 

reliability of this assessment, 2) a hazard assessment framework for systematic assessment of these 744 

toxicological effects or mechanisms to predict specific endpoints and assess the confidence in the 745 

results. Wherever possible, this is based on mechanistic knowledge on different biological levels of 746 

organization. (Bell et al., 2016; OECD 2016a; OECD 2016b) Overall, the IST protocols will contain 747 

information to ensure predictions are performed in a consistent, repeatable, transparent and ultimately 748 

accepted manner and will include a checklist (as defined in Section 2.4) to guide an expert review of the 749 

information. Each individual IST protocol will address how predictions will be performed in alignment 750 

with the framework discussed in this publication. These new protocols will provide specific guidance for 751 

each toxicological endpoint, including situations where no AOP or IATA is currently available. These 752 

protocols build on and fully incorporate wherever possible the considerable work previously reported, 753 

such as the OECD validation principles (see Sections 2.3.2), IATAs (see Sections 2.2), AOPs (see Sections 754 

2.2), read-across frameworks (see Sections 2.3.2, 2.6.2), the Klimisch score (see Sections 2.5, 2.6.1, 755 

2.6.2)  and the QMRF/QPRF (see Sections 2.3.2, 2.9). 756 

The IST protocols do not define how a risk assessment will be performed; they solely define the process 757 

which will lead to the prediction of the potential toxicity (hazard) of a chemical. Risk analysis depends on 758 

the exposure scenario, industry, regulatory framework and decision context based on the level of 759 

tolerated uncertainty and is performed in the hands of an expert. 760 

The process of developing IST protocols requires an understanding of the best practices and science 761 

across various organizations, different industries and regulatory authorities. To develop such protocols, 762 
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an international consortium was established comprising regulators, government agencies, industry, 763 

academics, model developers, and consultants across many different sectors. This consortium initially 764 

developed the overall strategy outlined in this publication. Working subgroups will develop individual 765 

IST protocols for major endpoints including genetic toxicity, carcinogenicity, acute toxicity, reproductive 766 

toxicity, and developmental toxicity. As each IST protocol is established, it will be reviewed internally 767 

within each organization and published. This process will evolve over time, as computational technology 768 

progresses, as will the assays and other information relevant to assessing these major endpoints 769 

emerges. Hence, similar to other test guidelines, the IST protocols will need to be periodically reviewed 770 

and updated. The implementation of IST protocols will also require user-friendly tools for performing 771 

such analyses and reporting the results, education, as well as further collaboration with organizations to 772 

support global adoption. 773 
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Figure Legends 1079 

Figure 1: Overview of the IST protocol framework, showing how experimental data or in silico model(s) 1080 

for each defined toxicological effect/mechanism are assessed and used to support a hazard assessment. 1081 

(Note Effect/Mechanism N is used to illustrate that there can be any number of effects/mechanisms in 1082 

each protocol) 1083 

Figure 2: Reliability of toxicity assessments based computational models and experimental data 1084 

Figure 3: Determining the bacterial gene mutation assessment and reliability score for two concurring in 1085 

silico results with expert review 1086 

Figure 4: Determining the bacterial gene mutation assessment and reliability score for two concurring in 1087 

silico results with no expert review 1088 

Figure 5: Determining the bacterial gene mutation assessment and reliability score where there is no 1089 

experimental data available and conflicting in silico results 1090 

Figure 6: Hazard assessment framework 1091 

Figure 7: Summary of the IST protocol process 1092 
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Tables 1095 

 1096 
Table 1: Applications of in silico toxicology 1097 

In silico toxicology 
application 

Discussion 

1. Alternative to 
test data. 

The use of non-animal alternative methods including in silico approaches, may substitute for 
other types of tests in regulatory submissions in certain cases. Acceptable alternative methods 
for filling data gaps are outlined in Annex XI of the European Union’s REACH regulation (EU 
2006). In the United States, Frank R. Lautenberg Chemical Safety for the 21st Century Act revised 
the Toxic Substances Control Act (TSCA) to include predictive models and expert review as part 
of an overall assessment (TSCA 2016). The United States Food and Drug Administration (US FDA) 
Center for Devices and Radiological Health (CDRH) issued a guidance for industry and FDA staff. 
This guidance is on the use of International Standard ISO 10993-1 for biological evaluation of 
medical devices and indicates in the absence of experimentally derived carcinogenicity 
information, structure activity relationship modeling for these materials may be needed (CDRH 
2016). The FDA draft guidance on Electronic Nicotine Delivery Devices (ENDS) also discusses the 
use of computational toxicology models in the absence of toxicological data for potential 
toxicants created by the aerosolization process (PMTA/FDA 2016). When chemicals with limited 
toxicity data are required to be classified and labeled for shipping or other purposes, in silico 
toxicology provides an alternative method for quickly filling the data gaps in the toxicity/safety 
information, such as predictions of acute toxicity to support assignment to the Globally 
Harmonized System of Classification and Labelling category (Freidig et al., 2007; ECHA 2015). 

2. As part of the 
weight-of-
evidence in 
regulatory 
submissions. 

There are currently several regulatory frameworks where only specific laboratory tests for an 
endpoint of concern may be submitted (such as for drugs or food additives). However, in such 
cases, in silico predictions can be submitted alongside standard toxicological data to 
complement the assessment. This may include in silico assessments provided as supporting data 
or adjuncts to the primary in vivo or in vitro studies to give a mechanistic understanding of the 
observed results and/or allow a better definition of experimental needs. Additionally, in silico 
methods may be used to guide or prioritize in vitro testing (EU 2012). The European Union’s 
Cosmetics Regulation (EU 2009a) prohibits the use of animal testing for products or ingredients 
and a complete marketing ban of such products tested as a whole or containing tested 
ingredients. This requires the use of alternative methods, such as IST, in the assessment of new 
cosmetics ingredients. In a recent memorandum, the European Commission’s Scientific 
Committee for Consumer Safety (SCCS), which is responsible for the risk assessment of cosmetic 
ingredients, acknowledged the importance and limitations of in silico methods; the SCCS 
recommended that in silico methods be used either for internal decision making or as part of a 
weight-of-evidence (WOE) approach to estimate toxicity risks before embarking on any 
experimental testing (SCCS 2016). 

3. Mixtures 
assessment. 

Most exposures are not to a single chemical but rather to complex mixtures of chemicals that 
may be found in food, beverages, the environment, cigarette smoke, electronic nicotine delivery 
systems (ENDS) aerosols, botanical drugs or natural products. In certain situations, it may be 
possible to use in silico methods to assess individual components since today’s in silico analysis 
can only be performed on discrete identifiable chemicals. While preliminary analytical work is 
required to identify all chemicals in the mixture above appropriate Analytical Evaluation 
Thresholds (AET) (Ball and Norwood 2012), leveraging in silico approaches may avoid having to 
synthesize or purify each of the potentially large number of mixture components to perform 
standard toxicological tests (Mumtaz et al., 2010). Careful consideration is required for mixtures 
when there are multiple chemicals for interactions, such as synergistic or additive effects that 
may have the same, similar or different mechanisms of action (MOA). 

4. Assessment of 
impurities and 
degradation 
products. 

Chemicals, such as pharmaceuticals or plant protection products, may contain low levels of 
impurities produced during manufacturing and degradation. Many such substances, when 
present at levels above accepted thresholds, need to be assessed. In most cases, mutagenicity 
evaluation of the impurity under question is required as a first step of the risk assessment. 
(Harvey et al., 2017) The ICH M7 guideline provides specific recommendations for assessing drug 
impurities (ICH M7, 2017(R1)), including the use of two complementary computational 
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toxicology methodologies (i.e., statistical and expert based models) to predict bacterial 
mutagenicity. 

5. Residues of 
plant 
protection 
products. 

Residues of plant protection products may be evaluated as a part of residue definition for 
dietary risk assessment of plant protection products (EU 2009b). In this context, in silico 
methods provide a useful alternative approach. (EFSA 2016) 

6. Assessment of 
extractables 
and leachables. 

Medical devices, such as inhaled aerosols, food-contact substances, and consumer product 
packaging materials may pose a risk for human health due to release of potentially harmful 
chemicals that are used in the production of the components (Bossuyt et al., 2017). These 
include plasticizers, copolymers, vulcanization additives, etc. for which toxicological data is often 
lacking but where a risk assessment must be performed. A migration or leachables study 
supports the discovery, identification, and quantification of any leachables. An in silico 
toxicological assessment, in certain situations, can provide sufficient data for the risk 
assessment. 

7. Workers’ safety 
and 
occupational 
health. 

Chemicals used in the manufacture of a product are assessed for mutagenicity, carcinogenicity, 
skin and respiratory sensitization, irritation (skin, eye and respiratory), and reproductive and 
developmental toxicity and possibly acute toxicity. In silico assessments make it possible to 
estimate the potential toxicity of chemicals and adopt proper engineering controls and personal 
protective equipment usage to protect workers who could be exposed to these substances 
during production, transfer, storage, and delivery processes (EU 2006). In silico approaches have 
been utilized to assess these major toxicological endpoints in the occupational safety setting. In 
silico methods to predict respiratory sensitization potential of industrial chemicals have recently 
been reviewed by Seed and Agius (2017). 

8. Metabolite 
analysis. 

Metabolites can present an increased or decreased risk of local or systemic toxicity compared 
with the parent chemical (Mumtaz and Durkin, 1992). While reactive or toxic metabolites may 
be formed by an organism, their identification, separation as well as possible synthesis for 
testing purposes may be challenging. In silico methods provide a practical alternative approach 
to understanding the safety profiles of this potentially large number of chemicals as well as to 
support the prediction of metabolites. 

9. Ecotoxicology. Various chemicals are discharged into the environment that may cause harm. Furthermore, the 
parent compounds can be transformed by hydrolysis, redox-reactions, or photolysis into 
numerous additional chemicals. IST methods often provide the most practical approach to assess 
the potential effects on the environment and wildlife species of the many chemicals that are 
discharged. Prediction of physicochemical parameters supports assessment of potential 
environment exposure to the chemical (e.g., persistence and distribution). As an example, Chen 
at al., 2015 describes the use of in silico assessment of potentially hazardous contaminants 
present in water. 

10. Green 
chemistry and 
safer 
alternatives. 

In silico methods can play an important role when identifying alternative chemicals that may 
have a safer profile than existing chemicals (Rastogi et al., 2014). This includes, for example, 
alternatives for use in manufacturing processes, alternative packaging/delivery materials and the 
use of specific additives. In silico methods can provide insights about structural features 
responsible for the toxicity of different groups of chemicals and thereby allow for the rational 
design of intrinsically safer chemicals. 

11. Selection of 
product 
development 
candidates. 

In early product discovery or development, many thousands of compounds may be evaluated. In 
silico methods may provide a helpful approach to selecting candidates, since in silico methods 
are inexpensive, rapid to perform, and high throughput. In addition, in silico methods can 
suggest which molecular substructures (toxicophores) are responsible for the predicted toxic 
activity, thereby supporting the optimization of future compounds (Hillisch et al., 2015; Myatt et 
al., 2016). Later in the product development process, a smaller number of chemicals may be 
selected as candidates to take forward for further development; in normal situations, preference 
would be given to the candidate(s) with the most advantageous safety profile(s) (Myatt et al., 
2016). 

12. Emergency 
response 
situations. 

When one or more chemicals are unexpectedly released into the environment (e.g., the West 
Virginia chemical spill (NTP 2016)) or into a production process, it is important to quickly 
evaluate the potential effects on humans, wildlife, and the environment. In such emergency 
situations the toxicological profile of the released chemicals needs to be established as quickly as 
possible to support the proper emergency response and to protect emergency services staff and 
bystanders (Hochstein et al., 2008; Schilter, et al., 2014). In such a limited timeframe and in the 
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absence of previously generated data, in silico approaches may be a practical option for rapid 
hazard identification. 

13. Prioritizing 
testing of 
chemicals. 

In silico approaches can help prioritize in vitro and in vivo toxicology testing, based upon the 
chemical’s exposure and prediction of toxicity; they are an important aspect of the work at 
several organizations such as the US EPA, National Toxicology Program, Environment and 
Climate Change Canada and ECHA (Schwetz 1995). In silico methods may be used to prioritize 
(based on potential toxicological liabilities) the order in which a series of toxicological studies will 
be performed (Myatt et al., 2016).  

14. Rationalization 
of in vivo or in 
vitro study 
results. 

As mentioned previously in the description of the in silico application titled “As part of the 
weight-of-evidence in regulatory studies”, results from quantitative structure-activity 
relationship (QSAR) models (toxicophore information, chemical fragments or physicochemical 
properties) may be used in conjunction with biological data to infer a mechanism of action 
(MOA), molecular initiating event (MIE), or mode of toxicity as part of an adverse outcome 
pathway (AOP) (Martin et al., 2015; Ellison et al., 2016). Information from in silico methods can 
also be used to tailor an in vivo study, e.g., by inclusion of additional endpoints. When existing 
experimental data on a compound are equivocal or when not all relevant safety information are 
available or accessible, in silico data may be used as additional information as part of the weight-
of-evidence approach in reaching a more informed decision (Kruhlak et al., 2012). 

 1098 
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  1100 
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Table 2: Checklist of elements to consider as part of an expert review of a QSAR model result  1101 

Expert review elements Considerations 

A. Inspection of model output  A review of the applicability domain information provided by the model’s 

software might increase or decrease reliability in the prediction. 

 The results of the QSAR model might include a score (e.g., a probability of 

a positive outcome). The prediction reliability may be increased where a 

score indicating a high likelihood can be justified through an expert review 

of the available information. 

B. Analysis of structural descriptors 

and corresponding training set data 

(see Note A) 

 As part of the process of building a QSAR model, structural descriptors are 

selected (often automatically) when there is a statistical association to the 

(toxicological) data to be predicted; however, the selected descriptors 

might not be biologically meaningful for the predicted toxicological 

effect/mechanism, as discussed in Powley (2015). This assessment may be 

supported by inspecting the training set examples that match the 

descriptors wherever possible. An expert review may determine the result 

is incorrect if other structural moieties in the training set examples are 

more likely responsible for the biological activity, (i.e., the descriptors 

identified were coincidental and in fact irrelevant) (Amberg et al., 2016).  

 Another scenario is when the structural descriptors map to experimental 

data that is incorrect and attributable to known problems with an assay. 

Again, these features may be discounted if they are not relevant to the 

toxicological effect or mechanism and this may lead to a reversal of the 

overall assessment. For example, chemicals containing acid halides may 

give false positive results due to possible interaction with the solvent 

DMSO in the Ames assay (Amberg et al., 2015). 

 Descriptors identified as significant by the model that are also present in 

the query compound may be associated with a biological mechanism. An 

expert review may evaluate whether the mechanism is plausible for the 

query compound, including potential metabolism consideration. For 

example, does the highlighted feature represent a known reactive group 

or a known toxicophore? This analysis may lead to an increase in 

prediction reliability.  

 In some systems, it is possible to inspect the training set’s experimental 

data and references for those examples that are primarily used in the 

prediction. An assessment of these full studies for these examples (as 

discussed in Section 2.5) could be used to justify an increase in the 

reliability of the prediction result. 

 The structural diversity of the underlying chemicals for each significant 

descriptor may be reviewed as part of an expert review. Structural 

features that map to a large number of structurally diverse compounds 

would provide additional evidence that the toxicological effects or 

mechanisms associated with the descriptor could be extrapolated across 

different chemical classes (increasing reliability in the prediction), 

whereas a structural feature whose underlying data constitutes a 

congeneric series might not, especially if the query compound is 

structurally distant (decreasing reliability in the prediction). 

C. Analysis of physicochemical 

descriptors used by model (see 

 Is there any supporting information from the literature or elsewhere to 

support any correlation between the physicochemical properties 
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Note B) identified as significant by the model and the toxicological 

effect/mechanism? 

 An evaluation of the quality of the experimental data of the training set 

chemicals used for building of the model (e.g., if a guideline study was 

used to generate these data) may increase the reliability of the prediction 

result. 

D. Assessment of other information  An evaluation of the performance of the model for structurally similar 

substances with known activity (selected by the user or provided by the 

system) might affect the evaluation of the reliability of the prediction. 

(Note A: items to consider when the QSAR model includes structure-based descriptions; Note B: items to consider when the 1102 
QSAR model includes physicochemical descriptors) 1103 
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Table 3: Checklist of elements to consider as part of an expert review of results from expert rule-1105 

based 1106 

Expert 4review elements Considerations 

A. Alert score or qualitative output  The results from the alert system might include information related to the 
likelihood of a positive outcome (e.g., precision of the alert). The reliability 
of the prediction may be increased when such a score can be justified 
through an expert review of the information provided. 

B. Justification of negative prediction  Additional considerations may be important where no alerts are identified 
in the test chemical. Such analysis may focus on similar analogs as well as 
other chemicals containing the different structural elements of the test 
chemical to verify there is no potential toxicity attributable to these 
fragments, such as additional reactive features. Such analysis may be used 
to evaluate the reliability of the negative prediction.  

 If a negative prediction has a structure of concern, a further inspection of 
the rules may determine why the compound was not included to 
elucidate the underlying cause for firing no alert. Is the prediction really 
negative, equivocal, or not in of the applicability domain of the model?.   

C. Reliability of the mechanism of 
toxicity 

 Although the presence of a structural alert increases the potential of the 
chemical to exert a toxicological effect or mechanism, this effect may 
depend on other features of the molecule. If a mechanism of toxicity is 
proposed for the structural alert, then an expert may assess the 
plausibility of the mechanism for the query compound. For example, the 
presence of other substituents in the molecule may impact the activity, 
potentially deactivating the alerting structure. This may include 
metabolism considerations. 

D. Inspection of chemicals and 
experimental data matching the 
alert 

 The reliability of the prediction can be assessed by the quality of the 
experimental data of the reference set substances used to make the 
prediction (e.g., if a guideline study to generate these data). 

 The structural diversity of the matching chemical may also be considered. 
For example, alerts that match diverse structures may increase the 
reliability over alerts where the matching chemicals are from a tight 
congeneric series. This is especially true when the reference set examples 
are structurally dissimilar from the query chemical. 

 Review of the scientific literature to support the alert to understand the 
strengths and limitations of the experimental data supporting it. 
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Table 4: Summary of Klimisch scores for data reliability (adapted from Klimisch et al., 1997) (Note 1108 

“restriction”, as part of scores 1 and 2, implies restricted quality) 1109 

Score Description Summary 

1 Reliable without restriction  Well documented and accepted study or data from the literature 

 Performed according to valid and/or accepted test guidelines (e.g., 
OECD) 

 Preferably performed according to good laboratory practices (GLP) 

2 Reliable with restriction  Well documented and sufficient  

 Primarily not performed according to GLP 

 Partially complies with test guideline 

3 Not reliable  Inferences between the measuring system and test substance 

 Test system not relevant to exposure 

 Method not acceptable for the endpoint 

 Not sufficiently documented for an expert review 

4 Not assignable  Lack of experimental details 

 Referenced from short abstract or secondary literature 
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Table 5: Common components of an IST protocol (IATA = Integrated Approaches to Testing and 1112 

Assessment; AOP = Adverse Outcome Pathways) 1113 

Introduction 
 

 Describe the major toxicological endpoint being assessed 

 Outline the general hazard assessment framework, including how a series of 
toxicological effects or mechanisms are related to one or more endpoints  

 Provide citations to any applicable AOPs or IATAs used 

In silico methodologies and 
models 
 

 Identify toxicological effects or mechanisms that might realistically be predicted 

 Define what in silico methodologies are appropriate to use 

 Specify additional considerations as to what constitutes an acceptable model 

 Discuss issues to be considered as part of any read-across analysis 

Experimental data 
 

 Define specific study types and result(s) relevant to each toxicological effect or 
mechanism 

 Define and justify the relevance of the information to the assessment of the 
toxicological endpoint (defined in the hazard assessment framework) 

 Define specific factors to consider when assessing the results and documenting the 
reliability of any available data or reference specific test guideline(s) 

 Identify sources of data that may be considered 

Toxicological effects or 
mechanisms assessment and 
reliability scores 

 Describe how each toxicological effect or mechanism assessment may be generated 
from available experimental data and/or in silico prediction(s) 

 Define additional items to consider as part of an expert review 

 Discuss any endpoint specific issues to consider as part of the reliability score  

Toxicological endpoint 
assessment and confidence 

 Describe the toxicological endpoints that will be used as part of the hazard assessment 
framework 

 Describe the rules or principles for determining each endpoint assessment, based on 
the associated effect/mechanisms or other endpoints 

 Define the rules or principles for determining each toxicological endpoint confidence, 
based on the relevance and reliability (from associated effects/mechanisms) or 
confidence (from associated endpoints) 

 Identify points to consider as part of any expert review 

Reporting  Define a format for a report of the results, expert review and conclusions 

Other considerations  Case studies 
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Table 6: Elements of an in silico toxicology report (QMRF = QSAR Model Reporting Format) 1115 

Section Content 

Title page - Title (including information on the decision context) 
- Who generated the report and from which organization 
- Who performed the in silico analysis and/or expert review, including their organization 
- Date when this analysis was performed 
- Who the analysis was conducted for 

Executive summary - Provide a summary of the study 
- Describe the toxicity or properties being predicted 
- Include a table or summary showing the following: 

o The chemical(s) analyzed  
o Summary of in silico results, reviewed experimental data and overall 

assessment for each toxicological effect or mechanism 
o Summary of toxicological endpoint assessment and confidence 
o Summary of supporting information 

Purpose - Specification of the problem formulation 

Materials and methods - QSAR model(s), expert alerts, and other models used with version number(s) and any 
parameters set as part of the prediction (e.g., QMRF format) 

- Databases searched with version number(s) 
- Tools used as part of any read-across with version number(s) 

Results of Analysis - Details of the results and expert review of the in silico models and any experimental 
data, including results of the applicability domain analysis 

- Report of any read-across analysis, including source analogs and read-across 
justifications 

Conclusion - Summarize the overall analysis including experimental data, in silico methods and expert 
review  

- Final prediction that is based on expert judgment 

References - Complete bibliographic information or links to this information, including test guidelines 
referred to in the experimental data, etc. 

Appendices (optional) - Full (or summary) study reports used or links to the report, detailed (or summary) in 
silico reports, reports on the models used (e.g., QMRF reports) 

 1116 
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Figures 1118 

 1119 
Figure 1: Overview of the IST protocol framework, showing how experimental data or in silico 1120 

model(s) for each defined toxicological effect/mechanism are assessed and used to support a hazard 1121 

assessment. (Note Effect/Mechanism N is used to illustrate that there can be any number of 1122 

effects/mechanisms in each protocol) 1123 
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Figure 2: Reliability of toxicity assessments based on computational models and experimental data 1125 
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Figure 3:  etermining the bacterial gene mutation assessment and reliability score for two concurring in 1127 

silico results with expert review 1128 

 1129 

 1130 

 1131 
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Figure 4: Determining the bacterial gene mutation assessment and reliability score for two concurring in 1133 

silico results with no expert review  1134 
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Figure 5: Determining the bacterial gene mutation assessment and reliability score where there is no 1137 

experimental data available and conflicting in silico results 1138 

 1139 
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Figure 6: Hazard assessment framework 1141 
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Figure 7: Summary of the IST protocol process 1144 
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