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ABSTRACT
The cloud-scale physics of star formation and feedback represent the main uncertainty in
galaxy formation studies. Progress is hampered by the limited empirical constraints outside
the restricted environment of the Local Group. In particular, the poorly-quantified time evolu-
tion of the molecular cloud lifecycle, star formation, and feedback obstructs robust predictions
on the scales smaller than the disc scale height that are resolved in modern galaxy formation
simulations. We present a new statistical method to derive the evolutionary timeline of molec-
ular clouds and star-forming regions. By quantifying the excess or deficit of the gas-to-stellar
flux ratio around peaks of gas or star formation tracer emission, we directly measure the rela-
tive rarity of these peaks, which allows us to derive their lifetimes. We present a step-by-step,
quantitative description of the method and demonstrate its practical application. The method’s
accuracy is tested in nearly 300 experiments using simulated galaxy maps, showing that it is
capable of constraining the molecular cloud lifetime and feedback time-scale to < 0.1 dex
precision. Access to the evolutionary timeline provides a variety of additional physical quan-
tities, such as the cloud-scale star formation efficiency, the feedback outflow velocity, the
mass loading factor, and the feedback energy or momentum coupling efficiencies to the am-
bient medium. We show that the results are robust for a wide variety of gas and star formation
tracers, spatial resolutions, galaxy inclinations, and galaxy sizes. Finally, we demonstrate that
our method can be applied out to high redshift (z . 4) with a feasible time investment on
current large-scale observatories. This is a major shift from previous studies that constrained
the physics of star formation and feedback in the immediate vicinity of the Sun.

Key words: stars: formation – ISM: evolution – galaxies: evolution – galaxies: formation –
galaxies: ISM – galaxies: stellar content

1 INTRODUCTION

Current theoretical and numerical models aiming to reproduce the
observed galaxy population are strongly limited by uncertainties in
the baryonic physics (e.g. Hopkins et al. 2011; Haas et al. 2013;
Vogelsberger et al. 2014; Schaye et al. 2015). While the bound-
ary conditions provided by cosmology and the hierarchical growth
of the dark matter haloes in which galaxies reside are relatively
well-constrained (e.g. Springel et al. 2005b; Planck Collaboration
et al. 2014), connecting these haloes to the visible galaxy popula-
tion hinges critically on the unknown physics of star formation and
feedback (McKee & Ostriker 2007; Kennicutt & Evans 2012).

? kruijssen@uni-heidelberg.de

Galaxy formation simulations generally describe star forma-
tion using the phenomenological, galaxy-scale relations between
the gas mass and the star formation rate (SFR), observed from
nearby spiral galaxies (e.g. Bigiel et al. 2008; Schruba et al. 2011;
Kennicutt & Evans 2012; Leroy et al. 2013) out to high redshift
(e.g. Daddi et al. 2010; Genzel et al. 2010; Tacconi et al. 2013).
Broadly, these galactic ‘star formation relations’ represent varia-
tions of the form

SFR =
εsf
τsf
Mgas, (1)

where εsf represents the star formation efficiency, τsf is the star
formation time-scale, and Mgas indicates the gas mass. One of
the main reasons that the physics underpinning the galactic star
formation relation have been so challenging to constrain (see e.g.
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Krumholz & McKee 2005; Hennebelle & Chabrier 2011; Ostriker
& Shetty 2011; Padoan & Nordlund 2011; Krumholz et al. 2012,
among many others) is that the star formation efficiency and time-
scale represent degenerate quantities in the above expression. It
is impossible to determine from the star formation relation alone
whether star formation is rapid and inefficient or slow and effi-
cient. This problem is exacerbated by the fact that both quantities
are notoriously hard to measure – star formation takes place on
time-scales much longer than a human lifetime, implying that τsf
cannot be measured directly and εsf cannot be obtained by simply
considering the initial and final states of a single system. However,
knowing either εsf or τsf would allow one to immediately constrain
the other. Analogously to equation (1), the commonly-used star for-
mation ‘recipes’ in galaxy formation simulations generally assume
that gas is turned into stars on some time-scale τsf with some effi-
ciency εsf . Both quantities are unknown on the small (10–100 pc)
scales of the individual gas clouds resolved in modern galaxy for-
mation simulations, but strongly affect the structure of simulated
galaxies (e.g. Hopkins et al. 2013; Braun & Schmidt 2015; Se-
menov et al. 2016). It is therefore a priority to obtain empirical
constraints on these quantities and their variation with the galactic
environment.

Likewise, the deposition of mass, momentum and energy by
feedback is often based on a simple representation of supernova
(SN) feedback, i.e. by injecting an amount of energy appropri-
ate for the expected number of SNe into the interstellar medium
(ISM) surrounding each young stellar population (e.g. Springel &
Hernquist 2003) or by defining an empirical mass outflow rate in
units of the SFR that may depend on the local galactic environmen-
tal conditions (e.g. Oppenheimer & Davé 2006, 2008). However,
it is shown by theory (e.g. Murray et al. 2010; Dale et al. 2013;
Agertz et al. 2013) and observations (e.g. Pellegrini et al. 2010;
Lopez et al. 2011, 2014) of nearby star-forming regions that other
feedback mechanisms (e.g. photoionization, stellar winds, radiation
pressure) can be at least equally effective as SNe (see e.g. the recent
reviews by Kruijssen 2013; Krumholz et al. 2014; Dale 2015). Ob-
taining an empirically-motivated prescription for stellar feedback
in galaxy formation simulations is crucial, because most discrep-
ancies between the observed and simulated galaxy populations can
be alleviated with a suitable (but possibly ad-hoc) choice of feed-
back model (e.g. Hopkins et al. 2014; Schaye et al. 2015).

In Kruijssen & Longmore (2014, hereafter KL14), we pre-
sented a new statistical model, named the ‘uncertainty principle for
star formation’, which explains how the galaxy-scale star formation
properties of a galaxy emerge by the summation over its constituent
population of independent star-forming regions. In particular, the
‘KL14 principle’ predicts that the star formation relation changes
form towards small (. kpc) spatial scales in a way that depends
sensitively on the evolutionary timeline of star-forming regions.
We showed that it can therefore be used to directly measure the
efficiencies and time-, size- and velocity-scales of cloud collapse,
star formation, and feedback without requiring individual clouds to
be resolved. By comparing the flux ratios between tracers of gas
and star formation on 0.1–1 kpc scales across a galaxy, the method
effectively counts the relative occurrence of these phases without
resolving them spatially, thereby directly constraining their char-
acteristic lifetimes and spatial separations. The method is easy to
apply and could potentially be used to characterize cloud-scale star
formation and feedback across cosmic history.

The KL14 principle does not provide the first attempt of char-
acterising cloud-scale star formation and feedback. For instance,
molecular cloud lifetimes have been estimated in the Local Group

for the Milky Way, the Magellanic Clouds, and M33 (Engargiola
et al. 2003; Kawamura et al. 2009; Murray 2011), as well as for
M51 (Meidt et al. 2015), stellar feedback energy and momentum
deposition rates have been determined for the Magellanic Clouds
(Pellegrini et al. 2010; Lopez et al. 2011, 2014), and the rapid-
ity and efficiency of star formation have been quantified for star-
forming clouds in the Milky Way, albeit with a broad range of out-
comes (e.g. Elmegreen 2000; Krumholz & Tan 2007; Evans et al.
2009; Kruijssen et al. 2015; Barnes et al. 2017). The common short-
coming of the methods used in these studies is that they can only
be applied to the limited range of galactic environments present in
Local Group galaxies or to exceptionally high-resolution observa-
tions of external galaxies, because they require individual clouds to
be resolved. The main improvement of the KL14 principle is that it
can be applied out to much larger distances because only the typical
separation length between clouds must be (marginally) resolved. In
addition, the robust statistical basis of the method enables its appli-
cation to large galaxy samples with little computational effort or
human intervention.

In this paper, a general framework for applying the KL14 prin-
ciple is presented and the method is validated using numerical sim-
ulations of isolated disc galaxies. We first summarise the basic con-
cepts behind the KL14 principle (Section 2). We then present a
step-by-step description of the method’s application to integrated
intensity maps of gas and star formation tracers across galaxies
(Section 3). We validate the process by applying it to numerical
simulations of disc galaxies and verifying the accuracy of the ex-
tracted quantities (Section 4), the results of which are summarised
as a set of guidelines for the reliable application of the method
(Section 4.4). The extracted quantities are then used to calculate
several derived quantities that are demonstrated to accurately de-
scribe cloud-scale star formation and feedback (Section 5). We then
use the several performed tests of the method to determine out to
which distances reliable constraints on cloud-scale star formation
and feedback can be obtained (Section 6). We include an exten-
sive discussion of the method’s caveats and limitations, as well as
of its planned future improvements (Section 7). The paper is fin-
ished with a summary of our conclusions and a discussion of the
method’s potential for future applications (Section 8). Finally, Ap-
pendices A–D provide the necessary background for a number of
technical considerations in this paper, as well as the complete set
of test results used in Section 4.

The reader less interested in the quantitative details of the
method and its validation can refer to parts of the paper for a qual-
itative summary. For a cursory overview of the results, we recom-
mend consulting only Sections 1, 2, 3.1, 4.4, 6, and 8. This effec-
tively shortens the paper to a little over ten pages.

2 SUMMARY OF THE FORMALISM

The fundamental concept underpinning the KL14 principle is that
a galaxy consists of some number of independent star-forming re-
gions (hereafter ‘independent regions’) separated by some length-
scale λ, which each reside in an evolutionary phase independently
of their neighbours. Figure 1 shows the evolutionary timeline for
a single independent region. The physical meaning of the phases
depends on the adopted tracers. While this example shows the tran-
sition from gas to stars, a similar timeline can be constructed for
pairs of gas tracers or star formation tracers. By combining many
such tracer pairs, a long timeline of several different, partially-
overlapping phases is obtained.

MNRAS 000, 1–80 (2018)
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Gas StarsOverlap

Time

tgas

tstar

tover

τ

Figure 1. Schematic representation of the timeline of an individual star-
forming region, which starts out being visible in gas tracer emission
(e.g. HI, CO or HCN), and ends up being visible in young stellar tracer
emission (e.g. Hα or FUV). In between, there is an overlap phase during
which both tracers are visible. The duration of each corresponding time-
scale is indicated below the timeline.

2.1 The star formation relation must break down on small
spatial scales

In its most general form, the first result of KL14 is that if a macro-
scopic correlation (e.g. the star formation relation between the gas
mass Mgas and the SFR) is caused by a time evolution (e.g. the
conversion from gas to stars), then it must break down on small
spatial scales because the subsequent phases of that time evolution
are being resolved. When treating galaxies as a whole, this is gen-
erally not a concern, because most often they consist of a number
of independent regions sufficiently large to ensure that the timeline
of Figure 1 is well-sampled.1 However, there must be some spa-
tial scale below which this is no longer true. Given some typical
separation length λ between independent regions, the KL14 prin-
ciple predicts that the relative uncertainty or Poisson error on the
star formation relation is only smaller than unity (i.e. the relation
is well-defined and does not ‘break down’) when the condition is
satisfied that

∆x∆t1/2 > λτ1/2. (2)

Here, ∆x is the size scale over which the star formation relation
is evaluated (the ‘aperture size’), ∆t is the shortest2 evolutionary
phase from Figure 1, λ is the separation length of independent re-
gions, and τ is the total duration of the evolutionary timeline as in
Figure 1. In KL14, we showed that the observed scale dependence
of the scatter on the star formation relation (e.g. Bigiel et al. 2008;
Schruba et al. 2010; Onodera et al. 2010; Liu et al. 2011; Leroy
et al. 2013) is quantitatively reproduced by this simple model.3

The key insight drawn from reproducing the observed, scale-
dependent scatter with the simple schematic model of Figure 1, is
that the observed relation on 0.1–1 kpc scales provides information
on processes taking place on much smaller scales. Another impor-
tant implication is that the galactic-scale star formation relation re-
sults from taking an ensemble average over the cloud-scale physics.

1 Certain dwarf galaxies, high-redshift galaxies, and galaxy mergers may
represent exceptions to this idea if they host a limited number of star-
forming regions, or their star-forming regions are subject to a large-scale
synchronisation of their evolutionary states.
2 This minimization only draws from the gas and young stellar phases (tgas

and tstar) and does not include the ‘overlap’ phase tover.
3 While Figure 1 shows a Lagrangian model that follows a single idealised
region in time, a similar conclusion was reached by Feldmann et al. (2011,
2012) using a Eulerian model describing instantaneous snapshots of popu-
lations of independent regions.

This is particularly relevant for interpreting the recent work show-
ing that the cloud-scale star formation relations of actively star-
forming regions have gas depletion times (tdepl ≡ Mgas/SFR)
shorter by a factor of 5–50 than the galactic star formation relation
(e.g. Heiderman et al. 2010; Lada et al. 2010, 2012).

In the context of the KL14 principle, the difference between
the star formation relations on cloud and galaxy scales is not sur-
prising. In order to place a single region in the sameMgas–SFR di-
agram as galaxies, it must both contain gas and star formation tracer
emission. For the timeline of Figure 1, this is equivalent to requir-
ing the region to reside in the overlap phase. As a result, cloud-scale
star formation relations cannot consider gaseous regions on the part
of the timeline preceding the overlap phase and they therefore omit
the gas emission from all regions outside the overlap phase. As-
suming that the gas flux of a gaseous region (i.e. a region residing
in the phase covered by tgas) does not strongly depend on the evo-
lutionary phase, this means that the gas depletion times of individ-
ual regions should be a factor of tover/tgas shorter than on galactic
scales. For fiducial values of tover ∼ 3 Myr and tgas ∼ 30 Myr,
this implies a bias of roughly one order of magnitude, which is con-
sistent with the large offset observed between tdepl ∼ 100 Myr on
the cloud-scale (using CO, Heiderman et al. 2010; Lada et al. 2012)
and tdepl ∼ Gyr on the scales of entire galaxies (Bigiel et al. 2008;
Schruba et al. 2011).4 An example of how to account for the region
selection bias in targeted star formation studies is given in Schruba
et al. (2017).

Next to setting the absolute value of the gas depletion time,
the part of the evolutionary timeline that is being traced should also
influence the scatter of the star formation relation. Selecting higher-
density gas (tracers) as in Lada et al. (2010) places even stronger
limits on the part of the evolutionary timeline that is being probed
than when using low-density gas (defined by using CO or a cer-
tain level of extinction), thus limiting the sample to regions at even
more similar evolutionary stages. As a result, the scatter on the star
formation relation should decrease towards higher gas densities, as
is indeed observed by Lada et al. (2010).

2.2 The scale dependence of the star formation relation
reveals cloud-scale physics

The second result presented in KL14 is that the way in which star
formation relations depend on the spatial scale is a direct probe
of the physics of star formation and feedback on the cloud scale. It
exploits the aforementioned notion that the observed star formation

4 This depletion time bias can be increased further by differences in the
adopted tracers. For instance, the quoted example adopts CO-based gas
masses and depletion times, but cloud-scale studies often use a dense gas
tracer like HCN or a minimum extinction contour containing even less mass
than traced with CO. Such a choice results in an even shorter gas depletion
time. Differences in SFR tracers are less important, because these are gen-
erally calibrated to translate the observed flux to a rate (which implicitly
involves division by a reference time-scale). This is why the cloud-scale
SFR inferred from young stellar object counts and galaxy-scale SFR mea-
surements using Hα do not necessarily differ by orders of magnitude, even
though they technically trace different phases in Figure 1. These differences
and similarities between SFR and gas tracers are physical in nature and re-
flect the time evolution of the collapse and star formation process. No em-
pirical star formation relation is therefore intrinsically incorrect. However,
unless the appropriate care is taken to compare the right quantities, it may
be misleading to compare different star formation relations.

MNRAS 000, 1–80 (2018)
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example: tgas≈ 4× tstar
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Figure 2. Schematic example of how the KL14 principle can be used to characterize the cloud-scale evolutionary timeline of star formation and feedback.
Left panel: cartoon of a ‘galaxy’ consisting of a random distribution of independent regions (circles), which are situated on the timeline of Figure 1 in a way
that is uncorrelated to their neighbours. Orange circles indicate regions in the gas phase, whereas blue circles indicate those in the young stellar phase. In this
example, the duration of the gas phase is 4 times that of the young stellar phase. The large circles represent apertures focused on a gas peak (orange) or a stellar
peak (blue). Right panel: relative change of the gas depletion time (or the gas-to-stellar flux ratio) when focusing apertures on gas peaks (top branch) or young
stellar peaks (bottom branch), as a function of the aperture size. On large scales, the galactic average is retrieved and the relative change is unity. However, on
small scales (corresponding to the separation length λ, which is typically several times the cloud size), the excess or deficit of the gas depletion time in this
‘tuning fork diagram’ is a non-degenerate, direct probe of the time and size scales governing the timeline of Figure 1.

relation on 0.1–1 kpc scales provides information on processes tak-
ing place on much smaller scales. However, contrary to phrasing
the scale-dependence in terms of the scatter of the star formation
relation to access this information, this feature of the KL14 prin-
ciple uses the absolute change (or ‘bias’) of the gas depletion time
when focusing a small aperture on gas or young stellar peaks to
determine how rare or common the central peak is. That way, the
KL14 principle can be used to constrain the time-scales governing
the evolutionary timeline of Figure 1.

We illustrate how the KL14 principle is applied to characterize
cloud-scale star formation with an idealised example in Figure 2.
Imagine a two-dimensional, random distribution of points repre-
senting independent regions. Some part of these are dominated by
gas, whereas the other part is dominated by young stellar emission.
These regions represent two successive phases in the star formation
process that do not overlap in time. Let us assume that time spent
by a star-forming region in the ‘gas’ phase is 4 times longer than
the time spent in the ‘stellar’ phase. This means that gas-dominated
regions (‘gas peaks’) will be 4 times more numerous than stellar-
dominated regions (‘stellar peaks’). If we then consider a small re-
gion around a gas peak (defining an aperture of some size smaller
than the galaxy), the local gas depletion time (i.e. the gas-to-stellar
flux ratio) in that region will be elevated compared to the galaxy-
wide average, because focusing on a gas peak guarantees some
excess gas flux to be present, whereas the rest of the aperture is
randomly filled with gas or stellar peaks according to the galactic

average. However, the depletion time excess will be minor – the
gas peaks are 4 times more common than the stellar peaks, hence
the relative effect of guaranteeing the already-ubiquitous gas flux
to be present is small. By contrast, if we focus an aperture on one
of the rare stellar peaks (with a duration 4 times shorter than the
gas phase), the corresponding decrease of the local gas depletion
time is large compared to the galactic average, because a very rare
phase is guaranteed to be present in the aperture.

This idealised example illustrates the fundamental thought be-
hind the KL14 principle: the relative rarity of the subsequent phases
in the cloud-scale star formation process is set by their relative du-
rations and can be constrained from variations of the gas depletion
time on small spatial scales. The KL14 principle provides a way
of ‘counting’ (and assigning relative time-scales to) these phases
even if the two-dimensional structure of their emission is continu-
ous and hard to quantise. If the duration of one of the two phases is
known, then the relative time-scales translate to an absolute evolu-
tionary timeline. In practice, this known ‘reference time-scale’ will
often refer to the stellar phase in the examples of Figures 1 and 2,
because stellar population synthesis models provide the age range
over which a coeval stellar population is bright in commonly-used
SFR tracers such as Hα, FUV, and NUV (Haydon et al. 2018). As
demonstrated in KL14, the small-scale excess or deficit of the de-
pletion time when focusing apertures on gas or young stellar peaks
(with a known lifetime) is then set by the three free parameters
tgas, tover, and λ. Most importantly, we showed that these free pa-

MNRAS 000, 1–80 (2018)
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rameters describe the ‘tuning fork diagram’ of Figure 2 in a non-
degenerate way. The absolute timeline of Figure 1 can therefore be
uniquely constrained by fitting a model tuning fork to observations.

The sampling effects described by the KL14 principle mani-
fest themselves on spatial scales much larger than the sizes of in-
dividual clouds or star-forming regions (Schruba et al. 2010), be-
cause they emerge on size scales comparable to the typical sepa-
ration between such regions. This new method is therefore highly
suitable for application to observations with physical resolutions of
10–103 pc, depending on the properties of the target galaxy. This
provides a strong contrast with respect to previous methods, which
required individual clouds to be resolved and could therefore only
be applied to galaxies in (or around) the Local Group. Here, we
present the step-by-step process for applying the KL14 principle to
observations and carry out detailed numerical tests using numerical
simulations of isolated disc galaxies.

3 STEP-BY-STEP DESCRIPTION OF APPLYING THE
METHOD TO GALAXY MAPS

In this section, we first describe the method in qualitative terms,
before turning to a detailed description. The reader interested in
obtaining a cursory understanding of the method is referred to Sec-
tion 3.1. Anyone planning practical applications of the method to
observations or to simulated galaxy maps is encouraged to also give
Section 3.2 a close read.

3.1 Qualitative description of the method

We have named the machinery for applying the method the
‘HEISENBERG’ code. HEISENBERG has been developed in the In-
teractive Data Language (IDL),5 which is commonly used for han-
dling and analysing astrophysical data sets and is well-supported
through several public libraries. It is compatible with IDL versions
7.0 and later. A translation of the code into PYTHON is planned
for the near future. HEISENBERG currently has a couple of de-
pendences on publicly available routines, most notably from the
IDL Astronomy User’s Library,6 the IDL Coyote Library,7 and
CLUMPFIND (Williams et al. 1994).8 Several of these routines have
required modifications to ensure or optimise their compatibility
with HEISENBERG. The public release of HEISENBERG will there-
fore include these modified routines.9

In summary, the method is aimed at the systematic and quan-
titative application of the formalism sketched in Section 2.2 to real
data sets. This process requires five basic ingredients:

(i) selecting two maps of tracers that represent causally-related
phases in a Lagrangian timeline as depicted in Figure 1;

(ii) identifying emission peaks in this pair of maps;

5 http://www.harrisgeospatial.com/
ProductsandSolutions/GeospatialProducts/IDL.aspx
6 https://idlastro.gsfc.nasa.gov/
7 http://idlcoyote.com/
8 http://www.ifa.hawaii.edu/users/jpw/clumpfind.
shtml
9 The HEISENBERG code for applying the described method is currently
still proprietary, but it is planned to become publicly available in the near
future, some time after the appearance of the present paper. It will become
available at https://github.com/mustang-project/. The in-
terested reader is welcome to contact the first author for further details.

(iii) measuring the flux ratio of both maps around these peaks as
a function of the spatial averaging scale;

(iv) fitting a statistical model that describes the time-scale de-
pendence of the resulting flux ratios (cf. the tuning fork diagram of
Figure 2);

(v) carrying out the full error propagation and calculating any
derived quantities that follow from the time-scales.

As we show in this paper, these steps enable the characterisation
of the cloud-scale physics of star formation and feedback across a
statistically representative galaxy sample.

In principle, the method can be applied to a pair of galaxy
maps showing any tracer of interest, but physically meaningful re-
sults are only obtained if the tracer pair is related by a Lagrangian
evolutionary step as in Figure 1. Throughout this paper, we will
mainly assume the example case in which ‘gas’ (traced by e.g. HI,
CO, HCN, HCO+, or sub-mm dust continuum) turns into (young)
‘stars’ (traced by e.g. Hα, FUV, or NUV). However, it is also pos-
sible to mask these tracers by any physical quantity for which one
expects a monotonic change with time, in order to measure the
time-scale on which this change takes place. For instance, if one
assumes that molecular clouds evolve towards higher densities and
excitation conditions during their collapse towards star formation,
it is possible to set a maximum or minimum CO(3–2)/CO(1–0) ra-
tio for which the CO(1–0) emission is shown, resulting in two CO
maps of low- and high-excitation CO. A characteristic lifetime can
be obtained for each of these, providing a time-scale for the evolu-
tion towards high-excitation conditions. Another example would be
to mask by velocity dispersion in order to measure turbulent energy
dissipation time-scales in clouds that evolve towards star formation.
Similarly, ionized emission line ratios at optical wavelengths can be
used to isolate individual stellar feedback mechanisms such as pho-
toionising radiation, stellar winds, and supernovae, each of which
take place on different time-scales, or physical quantities such as
electron temperatures and densities (e.g. Blair & Long 2004; Pel-
legrini et al. 2010; McLeod et al. 2015, 2016). Masking maps of
ionized emission lines based on these mechanisms or quantities can
thus provide insight in the anatomy of cloud-scale stellar feedback.
These are just a few examples – there exist many more applications
to a broad variety of astrophysical problems.

The practical application of the above five steps requires sev-
eral additional steps to be taken. Figure 3 shows the structure of the
HEISENBERG code, which has been developed for this purpose.
Starting from the bottom of the schematic and proceeding in the
clockwise direction, the method goes through the following steps
(each also listing the subsection numbers in Section 3.2 where that
step is discussed in detail).

(i) Section 3.2.1: Read in the input parameter file that contains
the settings for carrying out the analysis and use these to derive any
additional parameters.

(ii) Section 3.2.2: Read in the FITS galaxy maps and determine
the smallest possible aperture size given their spatial resolutions.
One of these maps must show a phase from the timeline of Figure 1
with a known duration.

(iii) Section 3.2.3: Regrid the galaxy maps by convolving them
to the best common spatial resolution and changing the pixel grid
to avoid extreme oversampling of a resolution element.

(iv) Section 3.2.4: Apply any masks or cuts in galactocentric ra-
dius that are specified in the parameter file to either restrict the
analysis of the galaxy maps to these areas or to omit them from the
analysis.

(v) Section 3.2.5: Convolve the galaxy maps to the range of spa-
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Figure 3. Schematic representation of the method that is presented and validated in this paper, specifically following the structure of the HEISENBERG code.
The red circles indicate key steps in the process, with section numbers referring to the subsections in Section 3.2 that detail each step. The procedure runs from
the bottom (‘read parameters’, Section 3.2.1) in the clockwise direction along the red connections until it is back at the bottom (‘write output’, Section 3.2.15).
Several of the steps interact with files on disk, by reading files or producing output. These steps are indicated with green wedges that connect to the green
central ‘I/O files’ circle. Temporary file output is not shown. The information content indicated in each wedge is contained by the circle at the wide end and
flows towards the narrow end of the wedge. Likewise, the blue curved wedges indicate the flow of the highlighted variables or information between the several
steps in the process. To avoid cluttering, these represent the most important (but non-exhaustive) subset of all information flows in the procedure.

tial scales (i.e. aperture sizes) specified in the parameter file using
the chosen convolution kernel, with the goal of measuring the flux
within a given radius around each position in the maps.

(vi) Section 3.2.6: Determine the sensitivity limit and flux zero
point of each galaxy map by fitting a Gaussian to the low-flux end
of the pixel flux probability distribution function (PDF).

(vii) Section 3.2.7: Identify flux peaks in the two galaxy maps

with CLUMPFIND,10 if desired using a different pair of maps than

10 There exist several modern, more accurate ways of defining clumps,
overdensities, or structures and their properties in astrophysical data sets
(e.g. Rosolowsky & Leroy 2006, Henshaw et al. 2016, and ASTRODENDRO,
see http://www.astrodendro.org). However, for the purpose of
the presented method, we only need an algorithm to identify local maxima
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those used in the multi-scale flux integration, omit peaks with total
fluxes below the sensitivity limit or those that should be excluded
due to the area masking, and output images of the maps highlight-
ing the positions of the included peaks.

(viii) Section 3.2.8: Calculate the fluxes within the apertures of
varying size focused on each peak, as well as the effective aper-
ture size and areas accounting for masked pixels, and the distances
between all possible peak pairs.

(ix) Section 3.2.9: Calculate the flux ratio ‘bias’ (i.e. excess or
deficit) relative to the galactic average for each set of peaks as in
the tuning fork diagram of Figure 2. For each aperture size and
within apertures focused on each of the two sets of flux peaks, first
calculate the total flux enclosed by the apertures in each of the two
maps. This results in four total fluxes per aperture size: the flux in
the first/second map around the peaks identified in the first/second
map. For each aperture size and peak type, these fluxes are obtained
by drawing Monte-Carlo realisations of peak subsets that have non-
overlapping apertures, to ensure no pixels are counted twice, and by
then taking the mean of the resulting total fluxes across all realisa-
tions. The flux ratio excess (i.e. the top branch from Figure 2) then
follows by taking the peak sample from the first map and divid-
ing the total flux around these peaks in the first map by that in the
second map. The flux ratio deficit (i.e. the bottom branch from Fig-
ure 2) then follows by taking the peak sample from the second map
and dividing the total flux around these peaks in the first map by
that in the second map. These flux ratio biases are then normalised
by the average flux ratio between both maps across the entire field.

(x) Section 3.2.10: Determine the uncertainties on the observed
flux ratio bias measurements. The sources of uncertainty that
should be considered are the sensitivity limits of the maps, which
leads to flux uncertainties, and the variety of region masses, which
manifests itself as a non-zero variance of the fluxes in individual
apertures. Because the data points are flux ratios and thus originate
from two fluxes, it is necessary to subtract the covariance between
the numerator and the denominator, which reflects spatial trends in
region properties. Finally, the uncertainty on each individual data
point differs from the effective error bar when fitting a model to the
data points, because the data points are not independent between
different aperture sizes. Each data point on a branch in the tuning
fork (Figure 2) represents a different aperture size that is centred
on the same set of peaks, implying that larger apertures (partially)
contain the same flux as smaller apertures. We account for this by
calculating the ‘independence fraction’ of each data point relative
to all other data points.

(xi) Section 3.2.11: Derive a model that connects the flux ratio
biases in the tuning fork diagram of Figure 2 to the evolutionary
timeline of Figure 1. Such a model was presented in KL14, which
considered a random distribution of point-like regions that are sit-
uated at random positions on the evolutionary timeline and also al-
lowed these regions to undergo flux evolution between the overlap-
ping and ‘isolated’ phases in Figure 1. However, practical applica-
tions of this model also require it to deal with regions of finite den-
sities, i.e. regions characterized by extended emission rather than
point particles. The present paper greatly improves on KL14 by
assuming that the regions follow a certain spatially-extended pro-
file and then using the flux density contrast between the peaks and

in two-dimensional maps. These peak coordinates should be measured re-
liably, but we do not use the clump properties derived by CLUMPFIND for
any important steps in the analysis. This is a relatively simple task for which
the results provided by CLUMPFIND are entirely adequate.

their immediate surroundings to determine the characteristic sizes
of these regions in units of the region separation length.

(xii) Section 3.2.12: Carry out a reduced-χ2 fit of the model to
the data points and their (independence-weighted) uncertainties to
determine the quantities describing the time-evolution of indepen-
dent regions. In the context of Figure 1, we thus constrain the best-
fitting values of the lifetime of the first phase tgas (assuming that
the second phase provides the reference time-scale described in
Section 2.2), which in applications to molecular gas maps repre-
sents the molecular cloud lifetime, the duration of the overlap phase
tover, which in applications to molecular gas and SFR tracer maps
represents the feedback time-scale, and the mean separation length
between independent regions λ. Because we carry out a reduced-χ2

fit, the fitting process also returns the three-dimensional PDF of the
above three model parameters. Additional quantities that are also
returned by the fitting process (but are not specifically fitted for) are
βstar and βgas, which refer to the mean flux ratios of regions resid-
ing in the overlap phase relative to their ‘isolated’ phases, i.e. out-
side of the overlap phase (see Section 3.3 of KL14). These two
parameters capture the (possibly complex) flux evolution of both
tracers over the evolutionary timeline. This step also generates the
output tuning fork diagram including the best-fitting model as a
figure and as an ASCII table.

(xiii) Section 3.2.13: Get the marginalised, one- and two-
dimensional PDFs of each of the (pairs of) three free parameters
in the model, i.e. tgas, tover, and λ, and write the resulting figures
and ASCII tables to disk. The error bars on the best-fitting values
returned by the procedure refer to the 32nd percentile of the part of
the one-dimensional PDF below the best-fitting value and the 68th
percentile of the part of the PDF above the best-fitting value.

(xiv) Section 3.2.14: Calculate derived quantities using the fun-
damental free parameters tgas, tover, and λ. These quantities are
the total star formation tracer lifetime including the overlap phase
(tstar), the total duration of the evolutionary timeline (τ ), the re-
gion radii (rstar and rgas), the region size-to-separation ratios or
filling factors (ζstar and ζgas), the feedback outflow velocity (vfb),
the field-wide gas depletion time (tdepl), the star formation effi-
ciency per star formation event (εsf ), the star formation and mass
removal rates per star formation event (Ṁsf and Ṁfb), the instan-
taneous and time-averaged mass loading factors (ηfb and ηfb), and
the feedback energy and momentum efficiencies (χfb,E and χfb,p).
The one-dimensional PDFs of each of these quantities are deter-
mined using Monte-Carlo error propagation, where we draw from
the complete, three-dimensional PDF of tgas, tover, and λ obtained
from the fitting process as well as from the PDF of any other, inde-
pendent quantities that are used to derive the above quantities. This
typically leads to well-defined, nearly-noiseless cumulative PDFs.
As in the previous step, each of the resulting PDFs are written to
disk as figures and ASCII tables.

(xv) Section 3.2.15: Write the output files as ASCII tables that
summarise all constrained quantities and their error bars, as well
as the logfile containing all of the command line analysis output.
These are critical for evaluating and interpreting the results.

The above steps can be carried out on modern personal com-
puters or laptops within a reasonable computing time. On such sys-
tems, we have achieved typical runtimes of 1–20 minutes per ex-
periment, both for the experiments carried out in this paper and for
the first applications of this method (Kruijssen et al. 2018; Haydon
et al. 2018; Hygate et al. in prep.; Schruba et al. in prep.; Chevance
et al. in prep.; Ward et al. in prep.). This means that the method can
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readily be applied to observational and numerical data sets without
requiring special-purpose hardware or supercomputing time.

3.2 Detailed description of the method

We now turn to a detailed description of the method summarised
in Section 3.1 and Figure 3. In this procedure, we extract the quan-
tities describing the time evolution of Figure 1 from two galaxy
maps that each show the emission from one phase in the timeline.
For simplicity and clarity, we assume in this description that one
of the two maps shows molecular gas traced by CO (referred to as
‘gas’) and the other shows star formation traced by Hα (referred to
as ‘stars’ or ‘stellar’, even though it should technically be ‘young
stars’ or ‘massive stars’). Of these two maps, the stellar phase has
a known duration and therefore acts as a ‘reference time-scale’ that
sets the absolute scale of the entire timeline of Figure 1 – stellar
population synthesis models show that the Hα line is emitted over
a 5 Myr time-scale (Haydon et al. 2018). Even though this partic-
ular example is used here, we expressly reiterate that the method
is capable of handling any pair of emission maps that represent
causally-related phases in a Lagrangian timeline as shown in Fig-
ure 1. Other examples of tracers that could be used are atomic gas
(i.e. HI), dense gas (e.g. traced by HCN), 24 µm emission, ion-
ized emission line tracers (e.g. [OIII] or [NII]), or UV emission,
but these are by no means exhaustive.11

3.2.1 Input parameters

In order to carry out the analysis depicted in Figure 3, we must
first specify a set of flags and input parameters. These are listed in
Tables 1 and 2, respectively, and are listed in an input parameter
file that is read by the HEISENBERG code. Focusing first on Ta-
ble 1, the flags are divided into four main categories, separated by
white space in the table. The first category concerns optional code
modules or steps, the second enables the use of ancillary maps for
carrying out the peak identification, the third covers the masking-
related options, and the fourth lists the analysis options. Table 1
highlights the default choice of each of these flags, which will be
used throughout the paper unless stated otherwise.

While the descriptions of the flags in Table 1 are mostly self-
explanatory, we should comment in some detail on a subset for
which the choice between the available options may not be obvious.

(i) The tophat flag enables the use of either a two-dimensional
Gaussian or tophat kernel to convolve the maps to larger aperture
sizes. Technically, only the tophat kernel does this correctly – for
each pixel, it adds up all flux within the specified aperture area
centred on that pixel. The Gaussian kernel adds up the surrounding
flux too, but weighs it by a Gaussian profile. We do not use this
kernel in the present paper, because it under-represents the distant
pixels within the specified aperture size, but leave it as an available
option for future work.

(ii) The loglevels flag specifies whether the contour lev-
els that are used to identify peaks with CLUMPFIND are equally-
spaced in linear or logarithmic space. In principle, there is no cor-
rect choice – it depends on the maps to be analysed which option
best identifies peaks of interest. Some trial-and-error is necessar-
ily involved. However, given that the mass functions of molecu-
lar clouds and stellar clusters are characterized by power laws (see

11 Applications of the presented method to a wide variety of different trac-
ers in the Large Magellanic Cloud will be presented by Ward et al. in prep.

e.g. the reviews by Portegies Zwart et al. 2010; Dobbs et al. 2014;
Kruijssen 2014), we prefer using logarithmically-spaced contour
levels. As demonstrated below, this results in a satisfactory identi-
fication of peaks in the maps used in this paper.

(iii) The flux weight flag enables the peak position to cor-
respond to the brightest pixel or the flux-weighted mean within the
peak area. The latter option uses the area of the peak as defined by
CLUMPFIND. Because there is no obvious physical definition of the
peak edge (and hence its area), we prefer to use the brightest pixel.

(iv) The tstar incl flag indicates whether, in the context of
the evolutionary timeline shown in Figure 1, the specified ‘ref-
erence’ time-scale tstar,ref (see Section 2.2) includes the overlap
phase (with duration tover) or not. This depends entirely on the trac-
ers used. In the present paper, we use pairs of maps generated from
galaxy simulations. These map pairs can consist of two stellar maps
covering star particles with two different, specified ranges of ages
(used to test whether the method retrieves the correct evolution-
ary timeline, see Section 4.2), or of one such stellar map together
with a gas map (used to correct the accuracy of the method under
a variety of observational conditions, see Section 4.3). In the cases
where we use pairs of stellar maps, the reference time-scale in-
cludes the time overlap with the other stellar map. However, when
using a stellar map and a gas map, the reference time-scale does
not include this overlap phase, because new star particles may form
as long as a region still contains gas. Similar considerations will
hold in observational applications. When applying the presented
method to measure a molecular cloud lifetime as traced by CO and
using an ionized emission line like Hα or broadband UV to trace
star formation, it is reasonable to assume that the corresponding
reference time-scale does not include the overlap phase. Hα and
UV emission trace unembedded, massive stars, which locally have
blown out the residual gas while massive star formation may still
be ongoing in other parts of the star-forming region (e.g. Ginsburg
et al. 2016). The emission lifetimes of SFR tracers such as Hα and
FUV or NUV are set by stellar population synthesis models, which
assume a coeval stellar population (Haydon et al. 2018, also see
Leroy et al. 2012), and therefore do not include the time tover dur-
ing which stars may still be forming – the clock starts ticking when
there is no molecular gas left.

Turning to the description of the input parameters in Table 2,
there are six main categories, again separated by white space in
the table. The first category contains quantities describing the basic
galaxy properties and manipulation of the maps, the second cov-
ers the definition of the aperture sizes to be used in the analysis,
the third concerns the peak identification, the fourth describes the
quantities needed to define the evolutionary timeline, the fifth sets
the parameters for carrying out the fit of our model to the data, and
the sixth lists conversion factors and constants needed to calculate
the derived physical quantities discussed in Sections 3.2.14 and 5.

As before, many of the input parameters in Table 2 are self-
explanatory, but we will discuss a subset of twelve items for which
the choice of value is non-trivial.

(i) The parameters Rmin and Rmax can be chosen to limit the
analysis to a certain galactocentric radial interval within a galaxy (if
cut radius = 1), which can be of great interest when studying
any of the quantities constrained by our method, e.g. the molecular
cloud lifetime, star formation efficiency, or outflow velocity. How-
ever, care must be taken that the radial interval does not become
too narrow, i.e. when the area contains too few peaks (this state-
ment is quantified in Section 4.3.8) or that it limits the maximum
attainable effective aperture size such that the galactic average in
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Table 1. Flags to be set for the presented analysis

Flag Values (default) Description

mask images 0/1 Mask images (off/on)
generate plot 0/1 Generate output plots and save to PostScript files (off/on)
derive phys 0/1 Calculate derived physical quantities as described in Section 3.2.14 (off/on)
write output 0/1 Write results to output files (off/on)

use star2 0/1 Use a second map for identifying stellar peaks and use the default map for performing the flux calculation (off/on)
use gas2 0/1 Use a second map for identifying gas peaks and use the default map for performing the flux calculation (off/on)

mstar ext 0/1 Mask areas in stellar map exterior to regions listed in a specified DS9 region file (off/on)
mstar int 0/1 Mask areas in stellar map interior to regions listed in a specified DS9 region file (off/on)
mgas ext 0/1 Mask areas in gas map exterior to regions listed in a specified DS9 region file (off/on)
mgas int 0/1 Mask areas in gas map interior to regions listed in a specified DS9 region file (off/on)
cut radius 0/1 Mask maps outside a specified radial interval within the galaxy (off/on)

set centre

{
0 Pixel coordinates of the galaxy centre are set to the central pixel of the map
1 Specify pixel coordinates of the galaxy centre (default)

tophat?
{

0 Use Gaussian kernel to convolve maps to larger aperture sizes
1 Use tophat kernel to convolve maps to larger aperture sizes (default)

loglevels?
{

0 Contour levels for peak identification are equally-spaced in linear space
1 Contour levels for peak identification are equally-spaced in logarithmic space (default)

flux weight?
{

0 Peak positions correspond to brightest pixel in peak area (default)
1 Peak positions correspond to flux-weighted mean position of peak area

calc ap area 0/1 Calculate the effective aperture area using the number of unmasked pixels within the target aperture area (off/on)

tstar incl?
{

0 Reference time-scale tstar,ref does not include the overlap phase (i.e. tstar = tstar,ref + tover, default)
1 Reference time-scale tstar,ref includes the overlap phase (i.e. tstar = tstar,ref )

peak prof


0 Model independent regions as points
1 Model independent regions as constant-surface density discs
2 Model independent regions as two-dimensional Gaussians (default)

?These flags are discussed specifically in Section 3.2.1. For the other flags, the descriptions in this table are considered to be largely self-explanatory.
Examples of setting some of these flags are given in the pertinent subsections below.

Figure 2 cannot be reached. This requires some iteration after the
first application of the analysis to a particular data set.

(ii) The parameter Nsamp indicates the maximum number of
pixels used to sample the smallest aperture size [which is typically
chosen to match the full width at half maximum (FWHM) of the
native point spread function (PSF), see below] after regridding the
input maps to the same pixel grid. For instance, for the default value
of Nsamp = 10 and a minimum aperture size of lap = 50 pc, the
maps will be placed on a grid with lap/Nsamp = 5 pc pixels. Clas-
sical Nyquist sampling corresponds to Nsamp = 2.5, which yields
maps with a factor of 16 fewer pixels than our default value and
therefore results in improved performance on slow machines. How-
ever, we find that this sampling of the aperture size is too coarse
to enable the peak identification process to identify all peaks in
crowded regions. Setting Nsamp = 10 enables accurate peak iden-
tification at an acceptable increase in computing time.

(iii) The parameter θast defines the maximum allowed tolerance
between the pixel coordinates and pixel dimensions of the maps.
After the maps have been regridded to an optimal pixel scale (see
Section 3.2.3), we verify in Section 3.2.4 that the pixel grids are
the same to within θast, based on the pixel coordinates and dimen-
sions specified in the headers of the FITS files containing the galaxy
maps. We adopt a default tolerance of θast ∼ 10−6 deg ∼ 3 mas,
which corresponds to ∼ 0.01 pc in our simulated galaxy maps
(D = 840 kpc), to ∼ 1 pc at a distance of D ∼ 60 Mpc, and
to ∼ 30 pc at z ∼ 3. This default angle of 3 mas is well below
the spatial resolution used in this paper or the resolution generally
achieved with modern observatories. This guarantees that the pixel
grid cannot be a source of positioning errors. Of course, this as-
sumes that the pixel coordinates specified in the FITS headers are

correct. The astrometric precision of the maps should be verified
manually before applying the presented method (see Section 3.2.2).

(iv) The parameter Nbins sets the number of bins that is used
to sample the pixel flux PDF and fit a Gaussian to determine the
sensitivity limit of each map. The default number is Nbins = 20,
which is somewhat arbitrary but yields accurate results.

(v) The parameters lap,min, lap,max, andNap together define the
array of aperture sizes (i.e. diameters) to which the maps are con-
volved and at which the analysis is carried out. Specifically, the
apertures are logarithmically spaced, such that:

lap(i) = lap,min

(
lap,max

lap,min

) i
Nap−1

, (3)

with {i ∈ N | 0 6 i 6 Nap − 1}. The desired values of lap,min,
lap,max, andNap strongly depend on the problem at hand. The min-
imum aperture size lap,min should be similar to the coarsest resolu-
tion across both maps, whereas lap,max should be large enough to
enable the large-scale convergence of the curves in the tuning fork
diagram of Figure 2 to the galactic average. The choice of maxi-
mum aperture size may therefore require some iteration. Likewise,
there is no a priori rule for choosing the number of aperture sizes
Nap. Most importantly, it should be large enough to sample the
shape of the curves in the tuning fork diagram. The possible over-
sampling of these curves with a large number of aperture sizes (and
hence observational data points) is harmless, because the statisti-
cal part of our analysis corrects for correlations between the data
points (see Section 3.2.10). However, using an unnecessarily large
number of aperture sizes can greatly slow the analysis. Again, some
iteration may be required to optimize this choice for the maps under
consideration. For the tests performed in this paper, we find that the
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Table 2. Input parameters of the presented analysis

Quantity [unit] Default Description

D [pc] – Distance to galaxy
i [◦] 0 Inclination angle
φ [◦] 0 Position angle
icen [pix] – Index of x-axis coordinate of galaxy centre (only used if set centre = 1, otherwise set to central pixel in map)
jcen [pix] – Index of y-axis coordinate of galaxy centre (only used if set centre = 1, otherwise set to central pixel in map)
Rmin [pc]? 0 Minimum inclination-corrected radius for analysis (only used if cut radius = 1)
Rmax [pc]? 10000 Maximum inclination-corrected radius for analysis (only used if cut radius = 1)
Nsamp

? 10 Maximum number of pixels per unit FWHM of a map resolution element after regridding the maps
θast [◦]? 10−6 Allowed tolerance between the pixel coordinates and pixel dimensions in both maps
Nbins

? 20 Number of bins used during sensitivity limit calculation to sample the flux PDFs and fit Gaussians

lap,min [pc]? 50 Minimum inclination-corrected aperture size (i.e. diameter) to convolve the input maps to
lap,max [pc]? 6400 Maximum inclination-corrected aperture size (i.e. diameter) to convolve the input maps to
Nap

? 8 Number of aperture sizes used to create logarithmically-spaced aperture size array in the range [lap,min, lap,max]

Npix,min
? 20 Minimum number of pixels for a valid peak (use Npix,min = 1 to allow single points to be identified as peaks)

Nσ 5 Flux multiple of the derived sensitivity limit needed for a peak to be included
∆ log10 Fstar

? 2 Logarithmic range below flux maximum covered by flux contour levels for stellar peak identification
δ log10 Fstar

? 0.5 Logarithmic interval between flux contour levels for stellar peak identification
∆ log10 Fgas

? 2 Logarithmic range below flux maximum covered by flux contour levels for gas peak identification
δ log10 Fgas

? 0.5 Logarithmic interval between flux contour levels for stellar peak identification
Nlin,star

? 11 Number of contours for stellar peak identification with range min (Fstar)–max (Fstar) (only used if loglevels = 0)
Nlin,gas

? 11 Number of contours for gas peak identification with range min (Fgas)–max (Fgas) (only used if loglevels = 0)

tstar,ref [Myr]? – Reference time-scale spanned by star formation tracer
σ−(tstar,ref) [Myr] 0 Downwards uncertainty on reference time-scale
σ+(tstar,ref) [Myr] 0 Upwards uncertainty on reference time-scale
tgas,min [Myr] 0.1 Minimum value of tgas considered during fitting process
tgas,max [Myr] 3000 Maximum value of tgas considered during fitting process
tover,min [Myr] 0.01 Minimum value of tover considered during fitting process

Nmc,peak
? 1000 Number of Monte-Carlo realisations of independent peak samples to be generated and averaged over

Ndepth
? 4 Maximum number of free parameter array refinement loops for obtaining best-fitting value

Ntry
? 101 Size of each free parameter array to obtain the best-fitting value

Nmc,phys
? 106 Number of Monte-Carlo draws used for error propagation of derived physical quantities

log10 Xstar
? – Logarithm of conversion factor from map pixel value to an absolute SFR in M� yr−1 (only used if derive phys = 1)

σrel(Xstar) 0 Relative uncertainty (i.e. σx/x) of Xstar (only used if derive phys = 1)
log10 Xgas

? – Logarithm of conversion factor from map pixel value to an absolute gas mass in M� (only used if derive phys = 1)
σrel(Xgas) 0 Relative uncertainty (i.e. σx/x) of Xgas (only used if derive phys = 1)
ΨE [m2 s−3]? – Light-to-mass ratio of a desired feedback mechanism (only used if derive phys = 1)
ψp [m s−2]? – Momentum output rate per unit mass of a desired feedback mechanism (only used if derive phys = 1)

?These parameters are discussed specifically in Section 3.2.1. For the other parameters, the descriptions in this table are considered to be largely
self-explanatory. Examples of setting some of these parameters are given in the pertinent subsections below.

default values of lap,min, lap,max, andNap provide accurate results.
In Section 4.3.6, we vary lap,min and Nap to carry out a resolution
test and quantify the requirements for observational applications of
the method.

(vi) The parameter Npix,min represents the minimum area of a
peak identified by CLUMPFIND (see Figure 2 of Williams et al.
1994) to be considered in the remainder of the analysis. The de-
fault value of Npix,min = 20 avoids unreliable detections with-
out obstructing the identification of unresolved point sources. For
illustration, the default pixel sampling rate Nsamp = 10 means
that the typical area within an FWHM is 75 pixels, implying that a
minimum area of 20 pixels enables the identification of unresolved
point sources. To apply the analysis to maps of point-like regions
(see Section 4), it is necessary to set Npix,min = 1.

(vii) The parameters ∆ log10 F and δ log10 F (with subscripts
‘star’ and ‘gas’ referring to stars and gas, respectively) set the
logarithmic range and separation of the contour levels used by
CLUMPFIND to identify peaks (see Section 3.2.7 for a summary
of how this identification is performed, or Williams et al. 1994 for

a detailed discussion). Choosing the best values of these param-
eters requires the visual inspection of the maps produced by the
analysis (see Figure 3). If faint but relevant peaks are not identified,
∆ log10 F should be increased, whereas it should be decreased if
spurious peaks are identified. If adjacent but independent peaks are
not distinguished, one should decrease δ log10 F , whereas it should
be increased if multiple peaks within a single independent region
are each identified individually. Lacking a quantitative definition
of ‘independent regions’ other than the idealised description given
in Section 2.1, these choices are necessarily somewhat arbitrary.
However, the details of the peak identification do not strongly af-
fect the constrained quantities as long as an ‘obvious’ set of phys-
ically relevant peaks is identified, because we carry out Monte-
Carlo sampling of peaks to discard close pairs (see below and Sec-
tion 3.2.8). The default values of ∆ log10 F and δ log10 F provide
a good starting point for applications of the method and are used
for most of the experiments discussed in this work. The same ap-
proach applies to the choice of Nlin,star and Nlin,gas. These quan-
tities define the contour level spacing if linearly-spaced contours

MNRAS 000, 1–80 (2018)



Cloud-scale star formation across cosmic history 11

are chosen (i.e. loglevels = 0) and should be chosen by visual
inspection of the maps produced by the analysis. In general, it is
important to realise that the peak identification should have access
to most of the tracer emission in the maps. If the peak positions of
either tracer are biased to areas of the map that do not host most of
the tracer emission, e.g. due to differences in spatial structure and
clumpiness, this negatively affects the accuracy of the method.

(viii) The parameter tstar,ref represents the ‘reference time-
scale’ that is used to translate the derived relative evolutionary
timeline to an absolute one (cf. Figure 1). Throughout this paper,
we assume that tstar,ref refers to the SFR tracer map, because stellar
population synthesis models like STARBURST99 (Leitherer et al.
1999) can provide an absolute ‘lifetime’ for the emission from mas-
sive stars. Although the characteristic lifetimes of SFR tracers such
as Hα, FUV, and NUV can vary by more than an order of mag-
nitude depending on the definition used (Leroy et al. 2012, Table
3), they have been calibrated specifically for use in the presented
method by Haydon et al. (2018), who also considered the effect of
sampling from the initial mass function (IMF) in low-SFR envi-
ronments. These lifetimes are the best choice for observational ap-
plications of the method. Of course, once the lifetime of any other
tracer (e.g. CO) in the galaxy under consideration has been mea-
sured using our method, it becomes possible to use that lifetime
as a reference time-scale for other measurements. In the specific
context of our tests of the method using galaxy simulations in Sec-
tion 4, we use maps of the star particles in specific age bins, which
grants us full control over the value of tstar,ref .

(ix) The parameter Nmc,peak denotes the number of Monte-
Carlo experiments used to draw independent peak samples from
the parent sample at each aperture size. In other words, we gener-
ateNmc,peak different (but inevitably partially overlapping) subsets
of peaks such that none of these peaks has any neighbours within
lap. As described in Section 3.1, this is a necessary step to make
sure that flux around peaks in crowded regions is not counted more
than once. The total gas and stellar fluxes around each peak type
(i.e. gas peaks in the top branch of Figure 2, as well as stellar peaks
in the bottom branch) are then averaged over the Nmc,peak experi-
ments. Setting Nmc,peak too low can result in run-to-run variations
of the data points and thus the best-fitting quantities. It is therefore
important to choose a sufficient number of Monte-Carlo samples,
even if this goes at the expense of computing time (which scales as
N2

mc,peak due to looping over all peak pairs). We find that at the de-
fault Nmc,peak = 1000, the run-to-run variation is of the order 1–2
per cent, which is appreciably smaller than the uncertainties on the
best-fitting quantities. This value requires a few minutes of runtime
on modern laptops and is therefore used throughout the paper.

(x) The parameters Ndepth and Ntry govern the fitting process.
This part of the analysis takes up a significant fraction of the com-
puting time and can even dominate altogether. As discussed in Sec-
tion 3.1, we carry out the fit in a three-dimensional parameter space
of tgas, tover, and λ. To achieve a reasonable computing time with-
out sacrificing precision, we therefore iteratively refine the fitting
grid by zooming in on the best-fitting point in parameter space. The
parameter Ndepth sets the maximum number of refinement steps
(see Section 3.2.12 for details) andNtry sets the number of array el-
ements in each of the three free parameters that is evaluated during
each refinement step, resulting in a total number of N3

try elements.
This third-power scaling of the total number of elements means
that it is very important to optimize the choice of Ndepth and Ntry.
For the default values of Ndepth = 4 and Ntry = 101, we obtain
well-converged results within a reasonable runtime, to the extent

that Ndepth is typically not even reached because the condition for
convergence is already satisfied during an earlier refinement step.

(xi) The parameter Nmc,phys sets the number of Monte-Carlo
draws used to perform the error propagation for the derived quan-
tities in Section 3.2.14. Again, this process can be quite time-
intensive, implying that there is a trade-off between runtime and
the smoothness of the PDFs of the derived physical quantities. For
the default value of Nmc,phys = 106, the noise on the PDFs of the
derived quantities is effectively unnoticeable, whereas it is entirely
absent in the cumulative distribution functions (CDFs). To mini-
mize the computing time, Nmc,phys can be lowered by up to two
orders of magnitude, resulting in PDFs that have noticeable noise,
but CDFs that are still smooth and well-defined. Throughout the
paper, we adopt the default value listed in Table 2.

(xii) The parameters log10 Xstar and log10 Xgas represent the
logarithm of the conversion factors from a pixel value to an abso-
lute SFR (in M� yr−1) and an absolute gas mass (in M�), respec-
tively. Their values account for the conversion of the input maps’
flux units to the physical units adopted in HEISENBERG. As such,
log10 Xstar and log10 Xgas depend on the units of the maps un-
der consideration as well as the distance of the galaxy, implying
that these parameters need to be calculated prior to applying the
method to a certain data set. The native input maps considered in
the present paper show gas and stellar surface densities on a pixel
scale of ∆x = 14.25 pc (see Section 4), which means that the
conversion factor to an SFR is given by

log10 Xstar = log10

[(
∆x

pc

)2(
tstar

yr

)−1
]
, (4)

where the division by the stellar lifetime is necessary to convert a
stellar surface density in a known age bin to a corresponding time-
average SFR. For the experiments in this paper, assuming a value
of tstar = 1 Myr would imply log10 Xstar = −3.692. Likewise,
the conversion factor to a gas mass is given by

log10 Xgas = log10

[(
∆x

pc

)2
]
, (5)

which for the experiments in this paper becomes log10 Xgas =
2.308. These conversion factors are updated whenever the maps
are regridded to a different pixel scale. Note that other data sets will
require other expressions and values. The above examples are in-
tended to illustrate the definition of these conversion factors. Also,
we emphasize that the conversion factors are only used when calcu-
lating the derived physical quantities in Section 5. The KL14 prin-
ciple itself and the associated method to constrain the evolutionary
timeline of Figure 1 both rely on flux ratios relative to the galactic
average, implying that the conversion factors cancel.12

(xiii) Finally, the parameters ΨE and ψp are the light-to-mass
ratio (or energy injection rate per unit mass) and momentum out-
put rate per unit mass, respectively. They are only used when cal-
culating the feedback energy and momentum efficiencies in Sec-
tion 5, which is done by comparing the effective output energy and
momentum injection rates constrained by the method to the total
rates implied by the young stellar populations in the star-forming
regions. These parameters are needed to derive the total injection
rates – their values depend on the feedback mechanism under con-
sideration and the time-scale over which the rates are averaged. For

12 This only holds if the conversion factors do not vary across the map. See
Section 3.2.2 for a discussion of ways to apply the method to galaxies with
non-uniform conversion factors.
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most feedback mechanisms, suitable numbers for these quantities
can be obtained from stellar population synthesis models (e.g. Lei-
therer et al. 1999; Agertz et al. 2013).

All flags and input parameters are specified in an input file,
which is read in by HEISENBERG. Next to the elements listed in
Tables 1 and 2, it also contains the full path of the maps and any
DS9 region files used in the analysis to mask the maps.13 In addi-
tion, the input file includes a small number of quantities that are not
listed in Tables 1 and 2 because they are not relevant to the present
paper, but are required to run the analysis. They are included in the
HEISENBERG documentation when it is made publicly available.

3.2.2 Selecting and reading in galaxy maps

The next step in the analysis process is to read in the galaxy maps
in FITS format to which the method is applied. In Section 3.1, we
explained that these maps can show any tracer pair of interest that
follows a Lagrangian evolutionary connection as in Figure 1. As
stated previously, here we follow an example case in which ‘gas’
turns into (young) ‘stars’, but we reiterate that the presented method
applies much more generally.

Irrespective of their physical nature, the pair of maps should
satisfy a number of conditions.

(i) The maps should be two-dimensional and share the same di-
mensions and pixel grid. In the case of a spectral cube containing
line emission data, this means one should use a moment-0 map.
The pixel grid is defined using pixel coordinates {i, j}, with {i ∈
N | 0 6 i 6 Npix,x−1} and {j ∈ N | 0 6 j 6 Npix,y−1}, where
{Npix,x, Npix,y} represent the number of pixels in the {x, y} di-
rections. The pixel values represent the stellar and gas flux densities
Fstar,ij and Fgas,ij , respectively.

(ii) The astrometric precision of the pair of maps should be suf-
ficient, such that positional uncertainties are considerably smaller
than the resolution FWHM. The presented method correlates the
spatial structure in pairs of tracer maps to derive the underlying
evolutionary timeline. It therefore relies strongly on accurate posi-
tion information. We have quantified this by carrying out experi-
ments with a positional offset in one of the maps, which show that
an acceptable astrometric precision is ∼ 1/3 of the FWHM. This
is commonly achieved with modern observatories, which routinely
achieve astrometric precision of the order of 10 per cent of the
FWHM or better. For instance, ALMA achieves a precision of 0.05
times the FWHM, with a minimum of 3 mas.14 Maps for which the
astrometric uncertainty exceeds 1/3 of the FWHM cannot be used
for measuring tover, because such large positional offsets prohibit
the statistical identification of physically co-spatial regions in both
maps. If the astrometric uncertainties are not much smaller than the
FWHM, the duration of the overlap phase tover (see Figure 1) will
be underestimated.

(iii) One has to be relatively confident that each cloud or star-
forming region that is visible in one tracer is also visible in the
other tracer at some point in its lifecycle. The constrained lifetimes

13 To create the DS9 region files used for masking (see below), DS9 is
available at http://ds9.si.edu. In addition, DS9 region files may
be created manually, using the region file description that can be found at
http://ds9.si.edu/doc/ref/region.html.
14 See the ALMA Technical Handbook at https://almascience.
eso.org/documents-and-tools/.

are a population average over all regions, meaning that if this con-
dition is not satisfied, the lifetime includes a zero-duration contri-
bution from those regions that never appear in one of the tracers.
However, it does not necessarily pose a problem if regions never
appear in either tracer, because then they are simply omitted from
the population-average evolutionary timeline altogether. In such a
case, the method returns the ‘visibility time-scale’ and ‘visible sep-
aration length’ of the tracers. The retrieved time-scales still match
the ‘true’ underlying lifetimes if the number of invisible regions is
small or these regions are consistent with being a randomly drawn
subset of the parent population. There are no general guidelines
for dealing with region visibility, because its implications depends
strongly on the question at hand and the tracers used. Specific ex-
amples are discussed in Sections 4.3.3 and 7.2.2.

(iv) Contamination should be minimized such that the emission
from each tracer can be considered to be almost exclusively as-
sociated with the physical objects of interest. In the case of Hα
emission, one would want to avoid emission from shock-heated
galactic accretion or outflows that are not driven by stellar feed-
back. Likewise, 24µm emission may trace both young and evolved
stars, which complicates its interpretation as a star formation tracer.
In general, diffuse emission due to unresolved, low-mass objects
or photon scattering at large distances from the emission sources
should be removed from the maps. Ideally, this filtered emission is
added back into the image by rescaling the pixel values. The main
reason for filtering diffuse emission is that it does not belong to
the population of peaks that is being studied. In extreme cases, the
presence of a large flux reservoir without peaks in one of the tracers
can result in a tracer deficit relative to the galactic average when fo-
cusing on the corresponding tracer peaks, because the diffuse flux
contributes to the galactic average without contributing to the flux
around the identified peaks (see Section 4.3.9 for a detailed dis-
cussion). This should be avoided. A new module in HEISENBERG

has the purpose of automatically filtering out diffuse emission (Hy-
gate et al. 2018), but if this module is not used, the maps should be
visually inspected and pre-processed if necessary.

(v) The emission maps should be as homogeneous as possi-
ble, avoiding major variations of extinction, excitation conditions
(e.g. temperature), and chemical abundances across the considered
area. In principle, it is one of the method’s main strengths that it
is insensitive to galaxy-to-galaxy variations of the uncertain con-
version factors between gas tracer flux and the gas mass that are
well-known to hamper studies of extragalactic star formation (e.g.
Daddi et al. 2010). However, if these quantities do vary strongly
within a map (e.g. in the case of radial gradients in galaxies), this
may pose a problem. In that case, one can still apply the method,
but it should be acknowledged that a tracer lifetime will be obtained
under the population-average conditions of the varying quantity. If
this is undesirable (e.g. due to a spatially-varying CO-to-H2 con-
version factor), it is recommended to either apply this conversion
factor to the map beforehand, or to apply the method separately to
radial bins in which any variation is within acceptable limits.

(vi) The sensitivities or detection limits of the maps should en-
able a representative fraction of the tracer emission of interest to be
recovered.

(vii) The spatial resolution of the maps should enable the char-
acteristic separation length between independent regions λ to be
resolved. This can only be verified after applying the method and
is discussed in detail in Section 4.3.6.

(viii) The largest effective aperture size (after subtracting any
masked pixels from the aperture) should enable the convergence
towards the galactic average in Figure 2 to be reached. If this is
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not achieved, any masks or limits on the range of galactocentric
radii should be relaxed to increase the largest effective aperture
size. Should the galactic average still not be retrieved in any cir-
cular aperture (this is possible for irregular fields), the individual
maps may be unsuitable for applying the method. The method may
still be applied to such galaxies by combining the images of multi-
ple galaxies at the same physical scale side-by-side in a single map,
or combining the peak samples obtained for the individual galax-
ies, as long as these combinations are carried out prior to fitting the
model. In this case, the method constrains the population-average
evolutionary timeline of Figure 1 for the combined galaxy sample.

(ix) If one wishes to recover absolute time-scales, then the life-
time of the tracer shown in one of the maps must be known, either
directly from stellar population synthesis modelling (e.g. when us-
ing Hα, FUV, or NUV, see Haydon et al. 2018), or by having been
calibrated to such a reference time-scale in a separate application of
the method. In other words, if the CO lifetime has been measured
by applying the method to an Hα map and a CO map, then either
of these can be used as a reference time-scale when measuring the
lifetimes of HI clouds across the same area.

While it may seem that the above points set stringent limits on the
applicability of the method, there currently exists a broad range
of observational data sets that satisfy these conditions. These con-
ditions are merely intended as guidelines to carefully consider
when selecting the maps. In general, the KL14 principle should
be thought of as a purely empirical method that as such will not
necessarily yield a ‘wrong’ answer if any of the above conditions
are violated. However, the choice of maps and their properties to-
gether define the question that is answered by applying the method.
Therefore, the interpretation of the results depends on to what ex-
tent these guidelines for selecting the maps are satisfied. In prac-
tice, some of the above guidelines cannot be evaluated in advance
(e.g. points vii and viii) and must be addressed a posteriori, after the
analysis with HEISENBERG is completed. The above list should be
evaluated in addition to the guidelines for observational applica-
tions from Section 4.4. We note that all of the above conditions are
satisfied by the simulated maps that are used in this paper.

It is possible to select different maps for the peak identifica-
tion and for the flux integration. An example where this may be
of interest is when using CO(1–0) observations to trace molecu-
lar gas. These position-position-velocity data cubes can be quite
noisy, meaning that a signal-masked moment-0 map showing only
the emission above a minimum signal-to-noise level is often needed
to select the real peaks in the map and avoid selecting noise peaks.
However, this omits real flux from the map, because part of the
emission below the signal-to-noise threshold is real. In this case,
it may be desirable to use a different map that does include this
emission when calculating the fluxes in the apertures focused on
each peak. For instance, a moment-0 map that is generated with-
out a signal-to-noise threshold, but instead uses a certain velocity
mask around the velocity field of atomic gas (if available) may help
to include and isolate all real CO emission even in the presence of
noise. A flux calculation based on such a map would be accurate on
scales larger than a few times the PSF, because the noise maxima
and minima should then statistically cancel.

Given a selected set of maps, HEISENBERG reads in the FITS
files. Throughout the description of the method, we will use a pair
of example maps to illustrate the application of the method. These
are taken from the high-resolution, extended emission simulated
maps of experiment ID 37 in Section 4.3. We describe later how
these particular maps were generated – at this point of the paper,

Gas mapSFR map

5 kpc

Figure 4. Example of two simulated galaxy maps (the high-resolution,
extended-emission versions of experiment ID 37 in Section 4.3) that are
used for illustrating the method throughout this section. Shown are the SFR
(left) and gas (right) maps on a logarithmic stretch over three orders of mag-
nitude. The spatial scale is indicated by the scale bar at the bottom.

they exclusively serve an illustrative purpose. The maps are pre-
sented in Figure 4 and represent the input for later illustrations of
the analysis. When reading in the maps, HEISENBERG immediately
applies individual masks ξstar,ij and ξgas,ij according to the DS9
region files that are specified for each of them. These region files
may be composites of any number of sub-regions and can be used
to either include or exclude any pixels of which the pixel centres
reside within the area enclosed by the region files. The values of
excluded pixels are set to NaN in each individually-masked map.
The synchronisation of each of these masks across all maps is de-
ferred to a later step, in which any cuts in galactocentric radius are
also applied (see Section 3.2.4).

After reading in the input file as described in Section 3.2.1
and subsequently reading in the maps, their FITS headers, and the
DS9 region files, the analysis is self-contained and does not re-
quire reading any further files. Before continuing the analysis, we
compare the PSF sizes and determine the largest PSF size lPSF,max

across the set of maps. Assuming a Gaussian PSF, this size corre-
sponds to an FWHM. Given the grid of aperture sizes lap defined
by the input file and provided in equation (3), we determine the
aperture size that is closest to the maximum PSF size in logarith-
mic space, i.e. we minimize the quantity | log10(lap/lPSF,max)|,
and set lap,min to the aperture size where this minimum is reached.
This ensures that we only consider aperture sizes that are at least
marginally resolved in both of the maps.

3.2.3 Regridding the galaxy maps

The runtime of the analysis increases with the area of the maps
in units of square pixels. For this reason, we regrid the galaxy
maps to a smaller number of pixels if the original pixel size lpix

allows doing so. As discussed in Section 3.2.1, the target pixel size
is lap,min/Nsamp, which ensures that resolution elements are re-
solved by a sufficient number of pixels to reliably identify emis-
sion peaks. We therefore regrid the maps if the target pixel size
lap,min/Nsamp > 1.2lpix, where the factor of 1.2 is added to skip
the regridding if this yields less than a 30 per cent decrease of the
map area in units of square pixels. In addition, the maps are con-
volved with a two-dimensional Gaussian PSF to a common res-
olution of lap,min, provided that lap,min > 1.05lPSF. Again, the
factor of 1.05 is added to skip the convolution if only a 5 per cent
change of resolution would be achieved. If the beam is non-circular,
we use the effective beam width lPSF = (lPSF,alPSF,b)

1/2, where
lPSF,a and lPSF,b indicate the beam width along the semi-minor
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and semi-major axes, respectively. The convolution of the maps
then proceeds with a kernel FWHM of (l2ap,min − l2PSF)1/2, which
ensures that the final resolution equals lap,min irrespective of the
original circular PSF size. The FITS header is updated with the new
map dimensions {Npix,x, Npix,y}, coordinates of the galactic cen-
tre {icen, jcen} (which are taken to correspond to the central pixel
of the image if set centre = 0), and pixel size θpix. Finally, the
updated FITS file is written to disk for later use. The above proce-
dure is applied to each of the maps under consideration.

After the regridding is completed, we update several of the
quantities needed for the remainder of the analysis.

(i) The original position of the galactic centre pixel {icen, jcen}
is converted to a fraction of the dimensions of the original maps
in units of pixels {Npix,x, Npix,y}. Interpolation of the pixel di-
mensions of the regridded maps then provides the position of the
central pixel in the new maps and thus updates the original values
of {icen, jcen}.

(ii) The pixel size in pc is determined from the angular size θpix

in the FITS file header of the regridded map by writing

lpix =
D tan θpix√

cos i
, (6)

where the square root in the denominator accounts for the fact that
a non-zero inclination only affects one of the pixel dimensions and
thus does not enter linearly in the effective pixel size. If the dis-
tance or inclination angle are poorly constrained, we recommend
carrying out the analysis for a reasonable range of distances or in-
clination angles to probe the impact of their uncertainties on the
inferred quantities.

(iii) We check that there are at least two elements in the aper-
ture size array lap that exceed the pixel diagonal

√
2lpix to enable

a numerically (but not necessarily physically) meaningful applica-
tion of the method. If this is not satisfied, the analysis is stopped to
modify the grid of aperture sizes to increase lap. This can happen
if Nsamp <

√
2 and the dynamic range of lap is too small, or if the

original pixel size was too large to enable regridding.
(iv) If the smallest aperture size lap,min is smaller than the pixel

diagonal, lap,min is changed to the first element of lap that does ex-
ceed the pixel diagonal. This can only happen if Nsamp <

√
2, or

if the original pixel size was too large to enable regridding. Increas-
ing lap,min ensures that all aperture sizes can be assigned accurate
enclosed fluxes.

(v) Finally, we multiply the conversion factors Xstar and Xgas

that translate the pixel value to an absolute SFR in M� yr−1 and
an absolute gas mass in M� by a factor of (lpix/lpix,orig)2 (with
lpix,orig the original pixel size) to account for the fact that the pixel
size was changed by regridding the maps. This step is required be-
cause the regridding process treats the pixel values as surface den-
sities and thus does not conserve the sum of all pixel values.

3.2.4 Applying the masks

Having regridded the maps on to an optimal pixel grid and after re-
defining several of the related quantities, the masks applied to each
of the individual maps ξstar,ij and ξgas,ij in Section 3.2.2 must be
synchronised and applied uniformly to all maps. In addition, any
desired cuts in galactocentric radius should be made here. Before
proceeding, it should first be verified that the pixel grid of the maps
is the same to within the specified tolerance angle θast. We carry
out the following checks.

(i) All maps must have identical dimensions {Npix,x, Npix,y}.

Gas mapSFR map

5 kpc

Figure 5. Example of applying a galactocentric radius mask to the simu-
lated galaxy maps from Figure 4. Only radii 2 < R/kpc < 7 are included
and the masked pixels are shown in greyscale. For the remainder of Sec-
tion 3.2, any further illustrations of the method will be restricted to this
radial interval.

(ii) All maps must have identical equinoxes (e.g. J2000).
(iii) Any differences in pixel size θpix between the maps must

be within the specified tolerance, i.e. |θpix,star − θpix,gas| 6 θast.
(iv) To definitively exclude any discrepancies between the maps,

we carry out the brute-force test of checking whether all pix-
els in the map have the same right ascension α and declination
δ within the specified tolerance, i.e. |αstar − αgas| 6 θast and
|δstar − δgas| 6 θast.

If any of the above conditions is not satisfied, we abort the analysis.
In such a case, the regridding should be redone and verified.

The individually-masked maps ξstar,ij and ξgas,ij are then
used to create a joint mask Ξij that is applied to all maps. If any
pixel has a NaN value in any of the maps, that pixel value is set
to NaN across all maps. We also create a mask array Ξ0

ij in which
the masked pixels have a value of zero and the unmasked pixels
have a value of unity. This array enables the straightforward calcu-
lation of effective aperture sizes in the later steps of the analysis,
or the calculation of quantities that are integrated over the entire
map. In addition, we perform any radial cuts specified in the input
file, accounting for the position angle and inclination of the host
galaxy. For each pixel, we calculate the Xpix and Ypix distances to
the galactic centre (which is taken to correspond to the central pixel
of the image if set centre = 0) as

Xpix = D tan(θpix) [cos(φ)(ipix − icen)−
sin(−φ)(jpix − jcen)] ,

(7)

and

Ypix = D
tan(θpix)

cos(i)
[sin(−φ)(ipix − icen)+

cos(φ)(jpix − jcen)] ,

(8)

for a position angle φ. The galactocentric radius of each pixel is

Rpix =
√
X2

pix + Y 2
pix. (9)

We remind the reader that the units of ipix, icen, jpix, and jcen

are in units of pixels, whereas Xpix and Ypix share the units of
D and represent distances in pc. With the galactocentric radii of
the pixels known, we set the values of the pixels across all maps
to NaN if they satisfy Rpix < Rmin or Rpix > Rmax. Figure 5
illustrates the application of a mask that selects galactocentric radii
2 < R/kpc < 7 for the example maps considered in this section.

After including any cuts in galactocentric radius in the total
mask arrays Ξij and Ξ0

ij , the mask is applied to all maps and the
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updated FITS files are written to disk for later use. A number of
important quantities describing the maps are calculated as follows.
The total area Atot of the unmasked pixels in the map is

Atot = l2pix

∑
i,j

Ξ0
ij . (10)

The total stellar and gas flux in the map (Fstar,tot and Fgas,tot,
respectively) are given by summation over all unmasked pixels:

Fstar,tot = l2pix

∑
i,j

Fstar,ijΞ
0
ij , (11)

and

Fgas,tot = l2pix

∑
i,j

Fgas,ijΞ
0
ij . (12)

Likewise, we determine the total SFR and gas mass Mgas in the
unmasked part of the map by summation over all unmasked pixels:

SFR = Xstar

∑
i,j

Fstar,ijΞ
0
ij , (13)

and

Mgas = Xgas

∑
i,j

Fgas,ijΞ
0
ij . (14)

The uncertainties on SFR and Mgas (including the statistical un-
certainty) is captured in those of the conversion factors, i.e.

σ(SFR) = σrel(Xstar)SFR, (15)

and

σ(Mgas) = σrel(Xgas)Mgas. (16)

These quantities represent the most important macroscopic proper-
ties of the maps. Given that we will not use the original maps at any
point of the analysis below, the term ‘map’ from hereon refers to
the unmasked part of a map, i.e. where Ξij = 1. This excludes any
masked pixels, unless specified otherwise.

3.2.5 Convolution of the maps

The next step is to create the maps in which the emission peaks
will be identified and to generate the convolved maps for deter-
mining the stellar and gas flux around the peak positions. For con-
sistency with the minimum aperture size lap,min considered in the
analysis, we do not identify the peaks in the original maps, but
in maps that have been convolved to a resolution with an FWHM
equal to lap,min (as in Figure 5). If no separate maps are specified
for this purpose, the peaks will simply be identified in the regrid-
ded maps and no convolution is needed, because the maps used
as input for the regridding were already convolved to a PSF size
equal to lap,min. However, if the peak identification does use sepa-
rate maps, we convolve them with a two-dimensional Gaussian PSF
with FWHM (l2ap,min− l2PSF)1/2, analogous to convolution carried
out prior to the regridding in Section 3.2.2.

As described in Section 3.1, the calculation of the flux around
emission peaks is performed by convolution of the maps with a
kernel of the desired size and shape. Various papers in the literature
have used Gaussian kernels for this purpose, with a final FWHM
equal to the size scale of interest (e.g. Bigiel et al. 2008; Liu et al.
2011; Leroy et al. 2013, 2016). While we have included the Gaus-
sian kernel as an option in HEISENBERG, we stress that this is not
the optimal choice for the problem at hand, because it includes flux

beyond the target radius and emphasizes emission close to the aper-
ture centre. When aiming to obtain an unbiased measurement of the
total flux within some radius of a given position in the map, this is
achieved by convolution with a two-dimensional tophat kernel:

W (r, h) =

{
1 if r 6 h
0 if r > h.

(17)

To define an aperture of size (i.e. diameter) lap, we set h = lap/2.
However, the numerical application of this kernel is carried out on
the pixel grid, which means that the effective aperture radius in
units of pixels becomes

h

pix
=

lap

2lpix
=

lap

√
cos i

D tan θpix
. (18)

This expression accounts for the fact that the effective pixel size
increases with the inclination, which results in an aperture size in
units of the number of pixels that decreases with the inclination.

While the functional form of equation (17) is very simple, its
numerical application on a discretised pixel grid is more involved.
If we define Wij as the kernel value of a pixel with coordinates
{i, j}, then we trivially obtain Wij = 1 and Wij = 0 for any pix-
els that fall entirely within or outside the circular aperture bound-
ary defined by r = h, respectively. However, the aperture bound-
ary also intersects with a significant number of pixels, for which
the kernel value should become a real number between zero and
unity, i.e. {Wij ∈ R | 0 6 Wij 6 1}. For each intersected pixel,
we decompose the geometry of the intersection with the aperture
into a combination of squares, rectangles, triangles, and/or circu-
lar segments, which can then be added or subtracted to analytically
calculate the exact fraction of the pixel area fencl that is enclosed
by the aperture. The details of this calculation are provided in Ap-
pendix A. By settingWij = fencl for any pixels that are intersected
by the aperture, we obtain a tophat kernel that achieves flux conser-
vation at machine precision when convolved with the maps.

Having defined the convolution kernel, we obtain convolved
stellar and gas maps for each aperture size, i.e. Fstar,ij(lap) and
Fgas,ij(lap), as well as convolved mask arrays Ξ0

ij(lap). Note that
we do not subtract the PSF size from the kernel size as we did
previously when regridding the maps and convolving them to a
common Gaussian FWHM (see Section 3.2.2), because the goal of
the current convolution is to obtain the exact flux within the spec-
ified aperture radius. If the target aperture size lap 6 1.05lPSF,
HEISENBERG returns a warning to notify the user that flux is being
measured in an aperture smaller than the PSF, but proceeds none
the less. The result of convolving the maps with tophat kernels of
sizes lap(i) as defined in equation (3) is shown in Figure 6 for the
example pair of maps that is used throughout this section to illus-
trate the method. The sequence of maps nicely visualises how each
pixel is assigned the mean flux surface density in a circular aperture
centred on that position. While this does not noticeably affect the
maps for aperture sizes lap 6 100 pc, it leads to the appearance of
disc-like features on intermediate (lap = {800, 1600} pc) scales.
Towards the largest aperture sizes, the maps become homogeneous
and the ‘galactic average’ introduced in Figure 2 is retrieved.

3.2.6 Sensitivity limits

In order to enable a reliable peak identification and to quantify the
uncertainties on the observed flux ratios, the sensitivity limits of the
maps are determined next. Ideally, this should be done by fitting
a one-dimensional Gaussian to the noise-dominated range of the
pixel value PDF. However, it is non-trivial to estimate which range
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SFR maps Gas maps
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Figure 6. Application of tophat convolution with different aperture sizes
lap(i) to the pair of maps from Figure 5. The aperture sizes are shown in
the middle of each row. The sequence of maps illustrates how each pixel
value represents the mean flux surface density in a surrounding aperture.

of pixel values are affected by noise without having a measure-
ment of the sensitivity limit. For radio or sub-mm interferometric
data, noise manifests itself as a normally-distributed, random com-
ponent in the pixel value PDF that is symmetric around the back-
ground flux (which we here assume to be zero). For optical data,
noise results from low photon counts and manifests itself as a Pois-
son distribution at pixel values above the background flux. These
two cases require a different range of pixel values over which the
sensitivity limit is characterized.

The range over which a Gaussian is fitted to the pixel value
PDF is taken to be

min (Fij) 6 Fij 6 Fref , (19)

where Fij represents the array of all pixel values, following the
notation of Section 3.2.4, and we define

Fref =

{
|min (Fij)| if min (Fij) < 0
median (Fij) if min (Fij) > 0.

(20)

The first of these two cases would typically apply to an interfero-
metric image, whereas the second would typically apply to an op-
tical image or simulated map, provided that the noise follows the
pattern described above.

To carry out the fits and measure the sensitivity limits, the
pixel value PDF of each image is binned over the above range, with
a bin width chosen to enable an accurate Gaussian fit. We first de-
termine the standard deviation of Fij in the to-be-fitted range as

σF =
√
〈F2

ij〉 − 〈Fij〉2 for min (Fij) 6 Fij 6 Fref , (21)

and define the bin width as

δF =
σF
Nbins

. (22)

After defining the bins, we generate the corresponding pixel value
PDF and carry out a least-square fit of a one-dimensional Gaussian
p(F) to the distribution. The sensitivity limits σF,star and σF,gas

of the stellar and gas map, respectively, are then defined as the
dispersion of the corresponding Gaussian fit. Likewise, the back-
ground flux levels Fback,star and Fback,gas of the stellar and gas
map, respectively, are defined as the peak flux of each correspond-
ing Gaussian fit.

While it is appealing to handle the sensitivity calculation auto-
matically through the Gaussian fitting process described here, this
represents a somewhat idealised situation that is not always achiev-
able. For instance, the maps at hand may be signal masked or fil-
tered to remove the diffuse emission (see Section 4.3.9). In such
cases, the noise properties have been modified and the sensitivity
limit cannot be obtained by fitting a Gaussian to the pixel value
PDF. The sensitivity limit should then be measured by hand using
an unprocessed map and be provided to HEISENBERG.

3.2.7 Peak identification

To identify emission peaks in each of the maps, we use the two-
dimensional version of the publicly available CLUMPFIND algo-
rithm (Williams et al. 1994). As mentioned in Section 3.1, there
exist more sophisticated identification methods, but the main goal
in this step of the analysis is to obtain accurate peak coordinates,
for which CLUMPFIND is entirely adequate. The peak identification
is performed using the high-resolution, masked maps (see the top
panels of Figure 6), unless separate maps have been provided for
this purpose (see Section 3.2.1 and Table 2), in which case these
separate maps will also have been masked (see Section 3.2.4).
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In brief, the CLUMPFIND algorithm loops over a predefined set
of flux levels, starting at the highest level, and identifies closed con-
tours for each of them. For the default choice of flux weight =
0 (see Table 1), the pixel with the highest flux value within the
closed contour is taken to represent the peak position {i, j}peak.15

If this position has not previously been identified (i.e. it is absent
at higher flux levels), it is saved as a new peak. The lowest flux
level in the set is only used to grow previously-defined peaks to
their final sizes and no new peaks are assigned. The total flux of
each peak Fpeak is taken to be the sum of all pixel values within its
lowest contour. If the lowest contour encloses more than one peak,
the pixels are assigned to individual peaks within the contour us-
ing a friend-of-friends algorithm. For further details, we refer the
reader to Williams et al. (1994) and the CLUMPFIND website (see
Section 3.1).

To apply CLUMPFIND within HEISENBERG to identify the
emission peaks in the maps, we define the parameters listed in the
third block of Table 2. First, we define the contours that are used
by CLUMPFIND to perform the peak identification. For the default
choice of using logarithmic spacing, we define the levels as

log10 Flev(i) = log10 Flev,max −
Nlev − 1− i
Nlev − 1

∆ log10 F , (23)

where {i ∈ N | 0 6 i 6 Nlev − 1}. In this expression, the maxi-
mum level is defined as

log10 Flev,max =

{⌊
log10 max (Fij)

δ log10 F

⌋
− 1

}
δ log10 F , (24)

which rounds down the maximum pixel value in the map to the
nearest multiple of the level interval and subtracts another level in-
terval. This latter step is made to ensure that the top level in which
peaks are identified is sufficiently wide to encompass a significant
fraction of the flux envelope around the brightest peaks and avoid
fragmentation of these peaks. The number of levels follows as

Nlev =
∆ log10 F
δ log10 F

+ 1. (25)

These definitions imply that equation (23) covers a total logarith-
mic range equal to ∆ log10 F , with the highest level given by equa-
tion (24) and using intervals between the levels of δ log10 F . Fi-
nally, if linearly-spaced contours are preferred, the levels are de-
fined as

Flev(i) = min (Fij) +
i

Nlin − 1
[max (Fij)−min (Fij)], (26)

where {i ∈ N | 0 6 i 6 Nlin − 1}. Throughout the present paper,
we will use the logarithmic spacing of equation (23), but the linear
spacing of equation (26) is available as an option for future work.

For both maps, we run CLUMPFIND at the highest working
resolution (lap,min) with the specified flux levels. Any identified
peaks are included if they satisfy the following two conditions.

(i) The total number of pixels assigned to the peak (i.e. the peak
area in pixels) should be at least Npix,min (defined in Table 2).

(ii) The total flux of the peak should exceed NσσF + Fback,
i.e. it must be detected against the background flux with a total
signal-to-noise ratio of at least Nσ (defined in Table 2).

15 If flux weight = 1, then the peak position is taken to be the flux-
weighted mean of all pixels associated with the peak. This option is avail-
able in HEISENBERG (see Table 1), but is not used in the present paper.

Gas mapSFR map

5 kpc

Figure 7. Outcome of the peak identification process for the example maps
used throughout this section. The peak positions are indicated by red (left)
and blue (right) crosses. Most of the peaks that one would visually identify
are also identified by CLUMPFIND.

Applying the above procedure to each of the maps results in two
final samples of reliable stellar peaks and gas peaks, from which
the peak positions {i, j}peak will be used in the rest of the analysis.
This provides a total of Npeak peaks, with Npeak,star stellar ones
and Npeak,gas gas peaks. Finally, HEISENBERG outputs images of
the two maps on which the positions of the peaks are highlighted.

An outcome of the peak identification process is shown in Fig-
ure 7 for the standard example maps. The figure nicely illustrates
that the default input parameters result in an accurate sample of
peaks identified by CLUMPFIND. Applications of the method to
other maps may require other values of these parameters, depend-
ing on the dynamic range of the pixel values, the relative degree
of blending between peaks, the sensitivity limits of the maps, and
the typical peak area in pixels. Because there is no quantitative rule
for setting the input parameters that govern the peak identification,
visual inspection of the output maps is required to verify if the out-
come is satisfactory. It is important to reiterate that, if the identified
peak sample is incomplete or biased to a certain part of the sam-
ple, the evolutionary timeline of Figure 1 that is constrained by the
method is not necessarily incorrect, because the method is empiri-
cal in nature – it applies to whatever subset of the peak sample is
selected, as long as it is representative for the flux-emitting regions
in the maps. The only way in which the outcome of the method can
be truly incorrect, is if a significant fraction of the total flux in the
map is inaccessible by the peak identification process. This occurs
if a map contains a large reservoir of diffuse emission (Hygate et al.
2018), or if the depth of the peak identification (∆ log10 F) is cho-
sen to be too small to reach the peaks that contain most of the flux.
As long as these situations are avoided, we find that the details of
the peak identification process do not strongly affect the outcome
of the method, implying that the derived timeline is robust.

3.2.8 Aperture placement on peaks

With the peak positions in hand, we calculate the total fluxes in cir-
cular apertures centred on these peaks, as well as the effective aper-
ture areas and peak-to-peak distances. To quantify the flux within
an aperture, we prefer to use the flux density in that aperture, which
is equivalent to the pixel value at the peak position in the map con-
volved to the desired aperture size (see Section 3.2.5), rather than
the absolute flux within the aperture. To obtain an absolute flux
rather than a flux density, the latter quantity should be multiplied
by πlap

2/4. However, the remainder of the presented analysis deals
with flux ratios at each aperture size, implying that this geomet-
ric factor cancels. We therefore use Fstar,ij(lap, {i, j}peak) and
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Fgas,ij(lap, {i, j}peak) to describe the flux within each aperture,
where the terms in parentheses indicate that the flux is evaluated
at each peak position {i, j}peak in a map convolved to an aperture
size lap.

Even though the aperture size is formally defined by equa-
tion (3), each aperture focused on a particular peak has an effective
aperture size lap,eff 6 lap because it may contain masked pixels.
To account for this effect throughout the analysis, we calculate the
included fraction of the intended aperture area in each case as

fA,ij(lap, {i, j}peak) = Ξ0
ij(lap, {i, j}peak). (27)

This expression is so simple, because the pixel values in the con-
volved mask array Ξ0

ij(lap) (in which the masked pixels have been
set to zero) are equivalent to the unmasked fraction of the aperture
area at each position. The effective aperture size then follows as

lap,eff =
√
〈fA,ij〉lap. (28)

where 〈fA,ij〉 takes the ensemble average over all peaks and is
placed within the square-root, because the flux is proportional to
the aperture area rather than its size. This quantity will be used in
Section 3.2.9 to place each measurement of the flux ratio excess
or deficit at the correct effective aperture size in the tuning fork
diagram of Figure 2.

Finally, we calculate the distances between all peak pairs as

dkl = lpix|{i, j}peak,k − {i, j}peak,l|, (29)

where {k, l ∈ N | 0 6 k, l 6 Npeak − 1} represent the indices
used to select elements from the list of peaks. This distance is used
in Section 3.2.9 to draw Monte-Carlo realisations of peak sam-
ples with non-overlapping apertures and ensure that no pixels are
counted twice in the flux ratio calculation.

3.2.9 Gas-to-stellar flux ratio bias around peaks

At this point in the analysis, all necessary flux levels have been
determined. It is now possible to turn these fluxes into a gas-to-
stellar flux ratio ‘bias’ (i.e. excess or deficit) relative to the galactic
average as a function of the aperture size (see the cartoon of the
tuning fork diagram in Figure 2). This bias is defined as the ratio of
two gas-to-stellar flux ratios, i.e.

Bstar(lap) =
Rstar(lap)

Rtot
, (30)

and

Bgas(lap) =
Rgas(lap)

Rtot
, (31)

for the bias towards stellar and gas peaks, which represent the bot-
tom and top branches of the tuning fork diagram, respectively. The
denominators represent the ‘galactic average’ flux ratio, i.e. the to-
tal gas-to-stellar flux ratio across the entire unmasked area of the
maps, for which the fluxes have been calculated in Section 3.2.4:

Rtot =
Fgas,tot

Fstar,tot
. (32)

The numerators in equations (30) and (31) represent the gas-to-
stellar flux ratio of apertures focused on stellar or gas peaks, respec-
tively. In principle, such a ratio can be determined in two ways that
have a different meaning. Firstly, one can obtain the gas-to-stellar
flux ratio for each individual peak of a given type, after which the
average ratio is taken across all peaks of that type. Secondly, one
can calculate the total stellar flux and gas flux across all apertures

focused on a given peak type and then take the ratio between these
total aperture fluxes. The model of the KL14 principle follows the
latter approach, because it is straightforward to predict analytically
and is less sensitive to peak-to-peak variations or correlations be-
tween the local stellar and gas flux.

Before being able to provide the expressions for Rstar(lap)
and Rgas(lap) that are used in the method to represent the ob-
served gas-to-stellar flux ratios, there is an important practical
point to consider. Across each of the two peak samples, there
will be a minimum distance between all peak pairs dkl, as de-
fined in equation (29). For aperture sizes lap > min (dkl), this
means that at least some apertures will overlap. If the total aper-
ture flux is obtained by summation over all apertures irrespec-
tive of their (in)dependence, then pixels could be counted twice.
In the best case [lap,max ∼ min (dkl)], this would not signifi-
cantly affect the observed gas-to-stellar flux ratio bias. However,
for lap,max � min (dkl), the observed flux ratio bias would count
large numbers of pixels multiple times, particularly in regions of
high peak density. This would lead to an inaccurate measure of the
true flux ratio bias.

To address this problem, we draw Monte-Carlo realisations
of independent peak samples for each peak type and aperture size,
which will be averaged over to obtain the gas-to-stellar flux ratio.
This is done by drawing candidate peaks in a random order. For
each candidate peak, it is verified whether its distance to all previ-
ously drawn peaks is larger than the aperture size, i.e.:

lap < min (d̂kl), (33)

where the hat indicates that this expression only considers the sub-
set of previously drawn and accepted peaks. If equation (33) is sat-
isfied, then the peak candidate is accepted and added to the Monte-
Carlo sample. If the condition is not satisfied, then the peak is
erased from the candidate list. This process is repeated until all
candidate peaks have been considered. The resulting realisations
of the peak samples {̂i, j}peak,star and {̂i, j}peak,gas with their
correspondingly-positioned apertures each only include indepen-
dent apertures – no pixel is included more than once in each of the
samples. For each aperture size lap, we follow the above procedure
Nmc,peak times to generate Nmc,peak Monte-Carlo realisations of
independent stellar and gas peak samples. At small apertures, these
samples will hold close to the total number of peaks, because most
peaks will have no neighbours closer than the minimum aperture
size lap,min. However, at large apertures (e.g. lap = lap,max), the
samples may contain only a handful of peaks, because the aper-
ture sizes approach the diameter of the entire unmasked area in the
map. The mean number of peaks considered at each aperture size
is determined as

Nstar,mc(lap) =
〈
N̂star(lap)

〉
mc
, (34)

and

Ngas,mc(lap) =
〈
N̂gas(lap)

〉
mc
, (35)

where the average 〈. . . 〉mc takes place over all Monte-Carlo real-
isations and the hat indicates that these expressions only consider
the subset of accepted peaks.

With the Monte-Carlo realisation of the peak samples in hand,
it is straightforward to calculate the gas-to-stellar flux ratios for
apertures focused on stellar (Rstar) and gas (Rgas) peaks as a func-
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Figure 8. Example of the gas-to-stellar flux ratio bias as a function of the
aperture size lap when focusing apertures on stellar peaks (Bstar, blue dots)
or gas peaks (Bgas, red dots) in the maps shown in Figure 7. The dotted
line indicates the ‘galactic average’ gas-to-stellar flux ratio. Note the small
differences in aperture size between the blue and red symbols towards the
right. This reflects slightly different effective aperture areas due to masking,
which affects both peak samples differently, because stellar and gas peaks
are not co-spatial and thus apertures centred on the two different populations
do not necessarily contain the same number of masked pixels (see the text
for a detailed explanation). The characteristic ‘tuning fork’ shape of this
quantitative application of the method resembles the qualitative behaviour
described in Section 2.2 and Figure 2.

tion of the aperture size. We write

Rstar =
Fgas,star

Fstar,star
=

〈∑
{̂i,j}peak,star

Fgas,ij(lap)
〉

mc〈∑
{̂i,j}peak,star

Fstar,ij(lap)
〉

mc

, (36)

and

Rgas =
Fgas,gas

Fstar,gas
=

〈∑
{̂i,j}peak,gas

Fgas,ij(lap)
〉

mc〈∑
{̂i,j}peak,gas

Fstar,ij(lap)
〉

mc

, (37)

where the average 〈. . . 〉mc again takes place over all Monte-Carlo
realisations and the summation is performed only over the ac-
cepted, independent peaks in each realisation, as indicated by the
hat in {̂i, j}peak. Note that these equations contain four different
fluxes due to the fact that both flux types are measured around both
peak types. This results in subscripts to the flux that contain two
instances of ‘star’ and ‘gas’ (appearing after the first equality in
these expressions), where we follow the convention that first word
indicates the type of flux and the second word indicates the type of
peak that the apertures are focused on. The gas-to-stellar flux ratios
Rstar and Rgas are substituted into equations (30) and (31) to ob-
tain the flux ratio bias when focusing apertures on stellar and gas
peaks, respectively. Figure 8 shows an example of the resulting gas-
to-stellar flux ratio bias for the pair of maps used throughout this
section, clearly highlighting how the qualitative behaviour of the
tuning fork diagram in Figure 2 is reproduced in the quantitative
application of the method.

Before continuing, we emphasize that these flux ratio biases

are not affected by any uncertainties on the conversion factors from
a stellar or gas flux to an SFR or gas mass, as long as these factors
do not vary significantly across the maps. In that case, the conver-
sion factors on scales of lap . λ are similar to the map average
(lap ∼ lap,max), implying that the conversion factors cancel when
taking the ratio of the two flux ratios in equations (30) and (31).

We also need to re-evaluate the effective aperture size of equa-
tion (28) after having generated the Monte-Carlo realisations, be-
cause the differing coverages of the masked pixels in each Monte-
Carlo realisation of the peak sample lead to different effective aper-
ture sizes around stellar and gas peaks. We calculate these as

lap,star =

〈[∑
{̂i,j}peak,star

fA,ij(lap)

N̂peak,star

]1/2

lap

〉
mc

. (38)

and

lap,gas =

〈[∑
{̂i,j}peak,gas

fA,ij(lap)

N̂peak,gas

]1/2

lap

〉
mc

. (39)

for the aperture sizes for stellar and gas peaks, respectively. In these
expressions, the term in square brackets averages the unmasked
fraction of the aperture area over all peaks in a Monte-Carlo re-
alisation, after which the square-root and multiplication with lap

result in an effective aperture size for that realisation. The average
〈. . . 〉mc then provides the final effective aperture sizes by averag-
ing over all realisations. Note that these revised aperture sizes do
not affect the gas-to-stellar flux ratios of equations (36) and (37),
because the aperture sizes in the numerator and denominator of
each of these expressions are identical. The change only affects the
horizontal positions of the data points in Figure 8.

In addition to determining the gas-to-stellar flux ratio bias as
a function of size scale around emission peaks, we also use the
Monte-Carlo sampling to obtain the necessary constraints on the
flux evolution of independent regions. As explained in KL14, re-
gions may undergo any form of flux evolution during the evolu-
tionary timeline of Figure 1. The KL14 principle discretises that
timeline into three phases and allows one to measure their rela-
tive durations. Because this method is based on flux ratio measure-
ments, it effectively uses the mean flux level integrated over each
of these phases. If one is not interested in the overlap phase, but
only in determining the ratio between the gas and stellar lifetimes,
then the measurement is therefore entirely independent of the flux
evolution of each tracer. Only when concerned with the duration of
the overlap phase it is necessary to account for time-averaged rela-
tive flux level changes of a tracer between the different phases. To
capture this evolution, we determine the quantities βstar and βgas,
which refer to the mean flux ratios of regions residing in the overlap
phase relative to their ‘isolated’ phases, i.e. outside of the overlap
phase. For the purpose of our method, these two parameters fully
capture the (possibly complex) flux evolution of both tracers over
the evolutionary timeline. Assuming that there exists a way of de-
termining which peaks reside in the overlap and isolated phases,
βstar and βgas can be defined as

βstar =

〈
N̂peak,star,iso

∑
{̂i,j}peak,star,over

Fstar,ij(lap,min)

N̂peak,star,over

∑
{̂i,j}peak,star,iso

Fstar,ij(lap,min)

〉
mc

,

(40)
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and

βgas =

〈
N̂peak,gas,iso

∑
{̂i,j}peak,gas,over

Fgas,ij(lap,min)

N̂peak,gas,over

∑
{̂i,j}peak,gas,iso

Fgas,ij(lap,min)

〉
mc

,

(41)

where N̂peak,star,iso, N̂peak,gas,iso, N̂peak,star,over, and
N̂peak,gas,over represent the number of peaks in a Monte-Carlo
realisation that reside in the isolated stellar, isolated gas, stellar
overlap, and gas overlap phases, respectively, and the subscripts to
{̂i, j} refer to the peak coordinates of these same subsets of peaks.
Equations (40) and (41) determine the mean flux level within an
aperture of size lap,min for isolated peaks and for peaks residing
in the overlap phase, take the ratio between both flux levels, and
average the resulting ratio over all Monte-Carlo realisations. They
thus represent the ‘overlap-to-isolated flux ratios’ of independent
regions.

The key question is now how one determines whether a peak
resides in the isolated or overlap phase. Without further knowledge
regarding the evolutionary timeline of Figure 1, there is no objec-
tive way of making that decision. One solution could be to define
a critical flux contrast between stellar and gas flux to consider a
peak in the isolated or overlap phase. However, this would not only
be arbitrary, but most importantly it would also be degenerate with
the idea that the duration of the overlap phase can be constrained
by measuring flux ratios. Fortunately, there exists an objective way
of distinguishing between isolated and overlap-phase peaks if one
assumes that the identified peaks homogeneously sample the com-
plete evolutionary timeline and are thus representative for the un-
derlying flux evolution. This is a strong assumption – so strong in
fact, that in its most extreme interpretation it would enable one to
derive the evolutionary time-scales of Figure 1 by simply counting
the identified peaks and using the relative counts as a proxy for the
relative time-scales. However, it would be a grave mistake to do
so, because it results in a timeline that is entirely dependent on the
peak identification process, which (as discussed in Section 3.2.7)
relies on by-eye verification and is therefore much too subjective to
draw such an immediate quantitative conclusion.

Here, we propose a much weaker version of the above assump-
tion. If the peaks reasonably homogeneously sample the evolution-
ary timeline of converting one tracer into the next, which happens
in the discussed example by converting gas into stars and expelling
the residual gas by feedback, then a peak sample that is sorted by
decreasing gas-to-stellar flux ratio reflects a trend of increasing evo-
lutionary age. The sorted peak sample can then be roughly divided
into peaks residing in the overlap and isolated phases as a function
of the evolutionary time-scale ratios fstar,over = tover/tstar and
fgas,over = tover/tgas, by requiring that the fraction of peaks resid-
ing in a certain phase must be the same as the fraction of the tracer
lifetime covered by that phase. Because these time-scales are con-
strained during the fitting process (see Section 3.2.12), such a de-
pendence would imply functional dependences of βstar(fstar,over)
and βgas(fgas,over), allowing both quantities to be derived as a
byproduct of the fitting process. This version of assuming that
the identified peaks are representative for the evolutionary time-
line is much weaker than in the earlier example of directly using
peak counts to constrain the evolutionary timeline, because (as we
show in the example below) βstar and βgas only vary weakly with
fstar,over and fgas,over, respectively – typically by a few tens of per
cent over factors of several in the underlying time-scales.

Quantitatively, the above method for deriving βstar(fstar,over)

0.0 0.2 0.4 0.6 0.8 1.0
fstar, over = tover/tstar

0.0

0.5

1.0

1.5

2.0

2.5
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β
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Figure 9. Dependence of the overlap-to-isolated stellar flux ratio βstar on
the relative duration of the overlap phase fstar,over = tover/tstar for the
example maps that are used throughout this section. The flux ratio βstar

captures the (possibly complex) flux evolution of the SFR tracer in the pre-
sented method. The best fitting value of tover and tstar (see Section 3.2.12)
and the corresponding best-fitting value of βstar are shown by the black dot
and the dotted lines. In this example, βstar is well-constrained, because it
varies only weakly over most of the range of fstar,over.

and βgas(fgas,over) is applied as follows. First, the arrays for
fstar,over and fgas,over are discretised by writing

fstar,over(k) =
k

N̂peak,star − 1
, (42)

with {k ∈ N | 0 6 k 6 N̂peak,star − 1}, and

fgas,over(l) =
l

N̂peak,gas − 1
, (43)

with {l ∈ N | 0 6 l 6 N̂peak,gas − 1}. For each Monte-Carlo
realisation and for each fstar,over(k):

(i) we assign the N̂peak,star,iso = k + 1 stellar peaks that have
the lowest Fgas,ij(lap,min)/Fstar,ij(lap,min) ratio to the isolated
stellar phase, which thus defines {̂i, j}peak,star,iso;

(ii) we assign the N̂peak,star,over = N̂peak,star − k − 1 stellar
peaks that have the highest Fgas,ij(lap,min)/Fstar,ij(lap,min) ratio
to the overlap phase, which thus defines {̂i, j}peak,star,over.

Vice versa, for each Monte-Carlo realisation and for each
fgas,over(l):

(i) we assign the N̂peak,gas,iso = l + 1 gas peaks that have the
lowest Fstar,ij(lap,min)/Fgas,ij(lap,min) ratio to the isolated gas
phase, which thus defines {̂i, j}peak,gas,iso;

(ii) we assign the N̂peak,gas,over = N̂peak,gas − l− 1 gas peaks
that have the highest Fstar,ij(lap,min)/Fgas,ij(lap,min) ratio to the
overlap phase, which thus defines {̂i, j}peak,gas,over.

This way, we can evaluate equations (40) and (41) and obtain
βstar(fstar,over) and βgas(fgas,over) for use in the fitting process
of Section 3.2.12. An example of βstar(fstar,over) is given in Fig-
ure 9, which illustrates the earlier statement that β typically varies
weakly with fover. In addition to βstar(fstar,over), Figure 9 also
shows the best-fitting value to βstar that results from the fitting
process in Section 3.2.11 below. When fitting the observed gas-
to-stellar flux ratio bias as a function of the aperture size, we obtain
the time-scales tgas and tover for a given tstar. This immediately
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provides fstar,over and fgas,over, implying that βstar and βgas are
byproducts of the fitting process. We demonstrate in Section 4.2.5
that these overlap-to-isolated flux ratios give an accurate represen-
tation of the underlying flux evolution.

Finally, we determine a set of quantities making use of the flux
distribution in the maps that are used at later points in the analysis.
The first of these is the flux density contrast of emission peaks rel-
ative to the average flux density on a size scale lap for each tracer.
This contrast will be used to determine the region sizes in units of
the mean separation length λ (i.e. their filling factor) when fitting
the model in Sections 3.2.11 and 3.2.12. Because the region sepa-
ration length is unknown at this stage, we calculate the flux density
contrast relative to all size scales lap and interpolate this later to the
desired size scale for measuring the background flux density. Anal-
ogously to equations (36) and (37), this contrast can be expressed
as

Estar(lap) =

〈∑
{̂i,j}peak,star

Fstar,ij(lap,min)
〉

mc〈∑
{̂i,j}peak,star

Fstar,ij(lap)
〉

mc

× Nstar,mc(lap)

Nstar,mc(lap,min)
,

(44)

and

Egas(lap) =

〈∑
{̂i,j}peak,gas

Fgas,ij(lap,min)
〉

mc〈∑
{̂i,j}peak,gas

Fgas,ij(lap)
〉

mc

× Ngas,mc(lap)

Ngas,mc(lap,min)
.

(45)

These expressions effectively yield the mean flux density (aver-
aged over all Monte-Carlo realisations and all peaks) at the small-
est aperture size in units of the mean flux density at larger aperture
sizes. As stated above, the resulting flux density contrasts of sin-
gle peaks relative to the background population will be used when
fitting the model in Sections 3.2.11 and 3.2.12.

Secondly, we calculate a quantity that is similar to the flux
density contrasts of equations (44) and (45) above, but instead
measures the flux density contrast between the flux on some size
scale lap and the entire map. This ‘global’ flux density contrast
can be used in observational applications of the method to account
for large-scale morphological features of the target system (or the
spatial clustering of independent regions) when converting map-
averaged flux densities to the mean flux density per independent
region, which in turn can be useful for deriving a variety of phys-
ical quantities (see e.g. Section 4.3.3). As before, this requires us
to calculate the flux density contrast as a function of size scale lap

and interpolate this to the mean separation length λ once it has been
obtained from the fitting process in Section 3.2.12. The contrast is
expressed as

Estar,glob(lap) =

〈∑
{̂i,j}peak,star

Fstar,ij(lap)
〉

mc

Nstar,mc(lap)

Atot

Fstar,tot
,

(46)

and

Egas,glob(lap) =

〈∑
{̂i,j}peak,gas

Fgas,ij(lap)
〉

mc

Ngas,mc(lap)

Atot

Fgas,tot
, (47)

These expressions effectively yield the mean flux density (averaged
over all Monte-Carlo realisations and all peaks) at an aperture size

lap in units of the mean flux density of the entire map. As stated
above, an example of using the resulting flux density contrasts is
provided in Section 4.3.3.

3.2.10 Determination of uncertainties

Section 3.2.9 presents a derivation of the gas-to-stellar flux ratio
bias when focusing on stellar and gas peaks, but these are meaning-
less without an estimate of the uncertainties (cf. Figure 8). The data
points also require error bars in order to constrain our best-fitting
statistical model (see Section 3.2.11) to the data in Section 3.2.12.
We now describe how the uncertainties are quantified. This includes
a discussion of how we account for the covariance between the data
points in the tuning fork diagram – after all, apertures of different
sizes are focused on the same peaks, implying that they are at least
partially sharing the same information.

We start by identifying the main sources of uncertainty in the
data points of equations (36) and (37), which are shown in Figure 8.

(i) The stellar and gas fluxes used in each of the data points are
uncertain due to the finite signal-to-noise level of the data. To in-
clude this uncertainty, we use the measurements of the sensitivity
limits σF,star and σF,gas in Section 3.2.6.

(ii) The peak flux levels exhibit an intrinsic variance because
they do not all represent the same SFR or mass. This variance arises
because the region mass function is not a delta function, but also be-
cause the individual regions may undergo some flux evolution, as
discussed in Section 3.2.9. It leads to an uncertainty on the derived
gas-to-stellar flux ratio biases, because we have used a finite num-
ber of peaks to determine these biases. For an infinite number of
regions, this uncertainty would approach zero.

(iii) Finally, we should account for the covariance between the
numerator and denominator of the gas-to-stellar flux ratios in equa-
tions (36) and (37). It is possible that bright peaks from both pop-
ulations are in close proximity to one another, either because of
the evolutionary connection between both peak populations (e.g. a
bright stellar region emerging from a bright gas region), or be-
cause there may exist a systematic environmental variation of peak
brightnesses in the considered maps. These effects are captured by
subtracting the covariance between the stellar and gas flux from the
total uncertainty.

Mathematically, we account for the above sources of uncer-
tainty as follows. We first assume that the uncertainties on the aper-
ture flux ratios are much larger than those on the galactic average
flux ratios. This allows us to set the relative uncertainties of the flux
ratio biases equal to the relative uncertainties of the gas-to-stellar
flux ratios around stellar and gas peaks, i.e.

σB,star(lap,star)

Bstar(lap,star)
=
σR,star(lap,star)

Rstar(lap,star)
, (48)

and

σB,gas(lap,gas)

Bgas(lap,gas)
=
σR,gas(lap,gas)

Rgas(lap,gas)
. (49)

The relative uncertainties of the flux ratios are then defined as

σR,star(lap,star)

Rstar(lap,star)
=
(
σ2

sens,star + σ2
star,star + σ2

gas,star

−2σstar,starσgas,starρstar)
1/2 ,

(50)
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and

σR,gas(lap,gas)

Rgas(lap,gas)
=
(
σ2

sens,gas + σ2
star,gas + σ2

gas,gas

−2σstar,gasσgas,gasρgas)
1/2 ,

(51)

respectively, where each of the uncertainties in parentheses repre-
sent relative uncertainties and the negative terms represent the co-
variance between the stellar and gas flux in the apertures. Each of
these terms is defined below. As before, in the subscripts containing
a comma, the word after the comma indicates the peak type that the
apertures are focused on. The first term represents the uncertainty
due to the finite signal-to-noise level (or non-zero sensitivity), the
second term represents the uncertainty on the stellar flux, the third
term represents the uncertainty on the gas flux, and the fourth term
represents the covariance of the second and third terms. Finally,
all terms have a dependence on the aperture size, but these depen-
dences are omitted in the notation for brevity.

For the uncertainties due to the finite signal-to-noise level, we
write

σ2
sens,star =

[(
σF,star

Fstar,star

)2

+

(
σF,gas

Fgas,star

)2
]

×
(
lap,star

lap,min

)−2

Nstar,mc,

(52)

and

σ2
sens,gas =

[(
σF,star

Fstar,gas

)2

+

(
σF,gas

Fgas,gas

)2
]

×
(
lap,gas

lap,min

)−2

Ngas,mc,

(53)

for apertures focused on stellar and gas peaks, respectively. As in
equations (36) and (37), the double subscripts of the total fluxes
follow the order of indicating the flux type before the peak type.
The relative uncertainty on the total flux due to noise in these ex-
pressions follows normal statistics. Firstly, as mentioned in Sec-
tions 3.2.3 and 3.2.5, the pixel flux values represent surface den-
sities, implying that their uncertainty due to noise should decrease
with the square-root of the number of pixels in the apertureNpix,ap

and thus σ2 ∝ N−1
pix,ap ∝ lap

−2. Secondly, the flux ratios of
equations (36) and (37) include the summation over all peaks in
the Monte-Carlo realisation, which means that the uncertainty σ
on the numerator and denominator should scale with N1/2

gas,mc and
N

1/2
star,mc, respectively. Both of these dependences are included in

equations (52) and (53). The division by the total flux in these equa-
tions converts the absolute uncertainties to relative ones.

The uncertainties due to the intrinsic variance of the peak flux
(e.g. by flux evolution or a region mass spectrum) are also straight-
forward to define. Specifically, we take the standard deviation of the
aperture fluxes for each of the four flux measurements (i.e. each of
the two flux types around each of the two peak types) and convert
this to a relative uncertainty on the sum of all flux measurements
by writing

σ2
star,star =

〈F2
star,ij〉peak,star − 〈Fstar,ij〉2peak,star

F2
star,star

Nstar,mc,

(54)

and

σ2
gas,star =

〈F2
gas,ij〉peak,star − 〈Fgas,ij〉2peak,star

F2
gas,star

Nstar,mc, (55)

for apertures focused on stellar peaks (i.e. Rstar). Likewise, for
apertures focused on gas peaks (i.e.Rgas) we define

σ2
star,gas =

〈F2
star,ij〉peak,gas − 〈Fstar,ij〉2peak,gas

F2
star,gas

Ngas,mc, (56)

and

σ2
gas,gas =

〈F2
gas,ij〉peak,gas − 〈Fgas,ij〉2peak,gas

F2
gas,gas

Ngas,mc. (57)

In these expressions, the numerator represents the variance (i.e. the
standard deviation squared) of the flux in a single aperture across
the population of stellar (subscript ‘peak,star’) or gas (subscript
‘peak,gas’) peaks, the denominator represents the total flux that is
used in the flux ratios of equations (36) and (37), and the factor N
at the end converts the variance of the flux in a single aperture to
that of the total flux.

Having defined all relative uncertainty terms that contribute to
equations (50) and (51), we should subtract the relative covariance
between the stellar and gas fluxes in the apertures, because Rstar

andRgas represent the ratios of these fluxes. For apertures focused
on stellar and gas peaks, the relative covariances are

cov(F)peak,star =〈Fstar,ijFgas,ij〉peak,star

− 〈Fstar,ij〉peak,star〈Fgas,ij〉peak,star,
(58)

and

cov(F)peak,gas =〈Fstar,ijFgas,ij〉peak,gas

− 〈Fstar,ij〉peak,gas〈Fgas,ij〉peak,gas,
(59)

respectively. These covariances define the correlation coefficients
between the stellar and gas fluxes in the apertures in equations (50)
and (51) as

ρstar =
cov(F)peak,star

σstar,starσgas,star
, (60)

for apertures focused on stellar peaks and

ρgas =
cov(F)peak,gas

σstar,gasσgas,gas
, (61)

for apertures focused on gas peaks, respectively. Together, equa-
tions (50)–(61) define the uncertainty on each individual data point
in equations (30) and (31). These are converted to uncertainties on
the logarithmic flux ratio bias by writing

σlog10 B =
1

ln 10

σB
B . (62)

The result of the presented uncertainty calculation is illustrated by
the error bars in Figure 10 for the example maps used throughout
this section.

To determine the variances and covariances in equations (54)–
(59), we calculate the flux averages across all peaks, instead of
evaluating the variance for each Monte-Carlo realisation of non-
overlapping aperture samples and then taking the mean variance,
or calculating the variance of the total flux across all Monte-Carlo
realisations. As a result, equations (54)–(59) may seem lacking in
two regards.

(i) Firstly, these expressions do not account for the fact that
overlapping apertures are omitted in each Monte-Carlo realisation.
However, this is not necessarily incorrect, because pixels contained
by multiple apertures are more likely to be drawn. Determining the
variance for each realisation would overestimate the variance due to
the range of environments covered by the maps. In the extreme ex-
ample of large aperture sizes, the flux variance in each Monte-Carlo
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Figure 10. Illustration of the uncertainties on the example tuning fork dia-
gram of Figure 8. The error bars with hats indicate the uncertainty on each
individual data point, without accounting for the covariance between the
data points. By contrast, the red (top) and blue (bottom) shaded areas be-
hind each of the data points indicates the effective uncertainty range that
accounts for the correlation between the data points (see the text). These
‘effective’ uncertainties are used when obtaining the best-fitting model in
Section 3.2.12 and provide the correct point of reference when visually as-
sessing the quality of a fit.

realisation may be based on a small number of peaks in widely dif-
ferent parts of a galaxy, leading to a large aperture-to-aperture flux
variance, even if the total flux may be similar in each Monte-Carlo
realisation. Such a scenario arises naturally when the same environ-
ments are included in each realisation. Overestimating the variance
in this way would be highly undesirable.

(ii) Alternatively, one could take the variance of the total fluxes
across all Monte-Carlo realisations. However, this would underesti-
mate the variance – if none of the peaks is overlapping, then the to-
tal flux variance between the Monte-Carlo realisations will be zero,
because all peaks are included in each realisation. This would give
the erroneous impression that the variance is constrained to infinite
precision, which gravely underestimates the variance at small aper-
ture sizes. However, the non-zero variance only reflects the point
that the total number of peaks in the maps is finite. This finite peak
sample itself should be seen as one possible realisation of an under-
lying physical distribution of peak fluxes, which implies a non-zero
variance of the total flux even if all peaks are included.

We find that taking the variance of all aperture fluxes, irrespec-
tive of whether an aperture is included or not, provides an accurate
middle ground between the above two extremes. It accounts for
the fact that pixels contained by multiple apertures are more likely
to be drawn in each Monte-Carlo realisation, while also properly
accounting for the fact that the peak population itself represents
one possible realisation of the underlying physical flux distribu-
tion function. The uncertainties due to the intrinsic variance of the
peak flux are therefore defined by averaging over all peaks in equa-
tions (54)–(59).

The error bars derived above are corrected for the correlation
between the numerator and denominator in the gas-to-stellar flux

ratios of equations (36) and (37), but they do not account for the
fact that the data points in the tuning fork diagram are not inde-
pendent. This dependence arises because the apertures of different
sizes are focused on the same peaks, implying that some fraction
of the flux contained by apertures of a certain size is also present
in apertures of other sizes. We correct for this dependence between
the data points during the fitting process in Section 3.2.12 by cal-
culating their normalised ‘independence fraction’, which represents
the fraction of the flux in a data point that is independent from the
flux in all other data points, and using this quantity to weigh the
contribution of each data point to the goodness-of-fit statistic. The
sum of these independence fractions corresponds to the total num-
ber of independent data points that the model from Section 3.2.11
is fitted to. The net effect of accounting for the correlation between
data points is to decrease the number of degrees of freedom, lead-
ing to a larger difference between the model and the data. This is
equivalent to decreasing the error bars on the data points, which is
illustrated by the red and blue shaded areas behind each data point
in Figure 10. These shaded areas represent ‘effective’ uncertainties
that should be used for visually evaluating the quality of a fit. In the
text below, we derive these effective uncertainties.

First, we determine for each aperture size which fraction of
the flux is independent from the flux in the other apertures. For
the stellar and gas flux around stellar peaks, we define the fraction
of the flux at an aperture size lap(j) that is also contained by an
aperture of (smaller) size lap(i), with {i, j ∈ N|i 6 j}, to be

Nstar,star =
Fstar,star[lap(i)]

Fstar,star[lap(j)]

Nstar,mc[lap(j)]

Nstar,mc[lap(i)]

[
lap(i)

lap(j)

]2

, (63)

and

Ngas,star =
Fgas,star[lap(i)]

Fgas,star[lap(j)]

Nstar,mc[lap(j)]

Nstar,mc[lap(i)]

[
lap(i)

lap(j)

]2

, (64)

respectively. Similarly, for the stellar and gas flux around gas peaks,
we define the fraction of the flux at an aperture size lap(j) that is
also contained by an aperture of (smaller) size lap(i), with {i, j ∈
N|i 6 j}, to be

Nstar,gas =
Fstar,gas[lap(i)]

Fstar,gas[lap(j)]

Ngas,mc[lap(j)]

Ngas,mc[lap(i)]

[
lap(i)

lap(j)

]2

, (65)

and

Ngas,gas =
Fgas,gas[lap(i)]

Fgas,gas[lap(j)]

Ngas,mc[lap(j)]

Ngas,mc[lap(i)]

[
lap(i)

lap(j)

]2

, (66)

respectively. As before, we have followed the convention that the
first word of a subscript indicates the type of flux and the second
word indicates the peak type that the apertures are focused on. We
symmetrise these four arrays by setting

N(j, i|i 6 j) = N(i, j|i 6 j), (67)

for each of them. As a result, array elements with i > j indicate the
fraction of the flux at an aperture size lap(i) that is also contained
by an aperture of (smaller) size lap(j). For all four arrays, setting
i = j gives N = 1, indicating the trivial result that an aperture
contains all of the flux within that aperture.

Equations (63)–(66) define the fraction of the flux in a larger
aperture that is ‘reused’ from a smaller aperture, for each aperture
size pair. The above definitions imply that by performing a summa-
tion over one of the dimensions in these ‘reuse’ fraction arrays, one
obtains the non-integer number of data points that are constituted
by the flux contained within an aperture of size lap(i), i.e.

Ndata(i) =
∑
j

N(i, j), (68)
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which returns a number 1 < Ndata[lap(i)] 6 Nap. We then define
the ‘independence fraction’ of the flux at an aperture size lap(i) as
the inverse of this number

fdata(i) =
1

Ndata
=

1∑
j N(i, j)

, (69)

which takes values of 0 < fdata < 1. Because the flux ratio biases
of equations (30) and (31) that are shown in Figure 10 represent
flux ratios, we define the independence fraction of each data point
as the mean of the fluxes in the numerator and the denominator,
resulting in

fdata,star(i) =
1

2
∑
j Nstar,star(i, j)

+
1

2
∑
j Ngas,star(i, j)

, (70)

and

fdata,gas(i) =
1

2
∑
j Nstar,gas(i, j)

+
1

2
∑
j Ngas,gas(i, j)

, (71)

respectively. The total number of independent data points in each
of the arms of the tuning fork diagram then follows as

Nindep,star =
∑
i

fdata,star(i), (72)

and

Nindep,gas =
∑
i

fdata,gas(i), (73)

for the bottom arm and the top arm of the diagram, focusing on
stellar peaks and gas peaks, respectively. The total number of inde-
pendent data points is therefore smaller than twice the number of
aperture sizes, i.e.

Nindep = Nindep,star +Nindep,gas < 2Nap. (74)

As stated above, the correlation between data points is ac-
counted for during the fitting process of Section 3.2.12 by weigh-
ing the contribution of each data point to the goodness-of-fit statis-
tic by its normalised independence fraction. We also decrease the
number of degrees of freedom by using the total number of inde-
pendent data points Nindep rather than the total number of data
points 2Nap. The net effect of these changes is equivalent to de-
creasing the uncertainties σB to becoming ‘effective uncertainties’
σ′B. The weights and degrees of freedom are discussed in detail in
Section 3.2.12, but here we provide these effective uncertainties.
Relative to the error bars defined in equations (48) and (49), we
obtain correction factors of

σ′log10 Bstar(i)

σlog10 Bstar(i)
=

√
Nindep

2fdata,star(i)Nap

Nindep −Nfit

2Nap −Nfit
, (75)

and

σ′log10 Bgas(i)

σlog10 Bgas(i)
=

√
Nindep

2fdata,gas(i)Nap

Nindep −Nfit

2Nap −Nfit
, (76)

for the gas-to-stellar flux ratio bias when focusing on stellar peaks
and gas peaks, respectively. The square-roots in these expressions
contain two ratios. The first term reflects the inverse of the weight
that is assigned to the data points when evaluating the goodness-of-
fit statistic. The second term represents the decrease of the number
of degrees of freedom by only counting the effective number of
independent data points, where Nfit refers to the number of free
parameters (this is Nfit = 3 for the problem considered here, see
Section 3.2.12 for details). The above two expressions provide the
effective uncertainties shown by the shaded areas in Figure 10.

3.2.11 Model for interpreting the gas-to-stellar flux ratio bias

We now turn to the derivation of the theoretical model for the gas-
to-stellar flux ratio bias that will be fitted to the observed tuning
fork diagram of Figure 10 in Section 3.2.12 below. The presenta-
tion in the original KL14 principle paper already included a the-
oretical model for the flux ratio bias (see their Appendix C), but
the model presented here eliminates an important assumption of
the previous version. Previously, the model assumed that all inde-
pendent regions in the map resemble point sources, implying that
the surface densities approach infinity in the limit of lap ↓ 0. This
then leads to a flux ratio bias that diverges at small aperture sizes if
tover = 0 (see Figure 4 of KL14). In the present paper, we describe
the regions by spatial profiles with finite central densities, which is
obviously appropriate for real-Universe regions. This implies that
a non-diverging flux ratio bias at small aperture sizes does not nec-
essarily require tover > 0. This change is critical for the accu-
racy of observational applications of the method. After presenting
the derivation of the new model, we will briefly discuss the effect
on the predicted flux ratio bias of changing the model parameters.
These include the to-be-fitted, free parameters tgas, tover, and λ, as
well as input parameters of the method (tstar and peak prof) and
parameters that have been extracted from the maps in the previous
sections (βstar, βgas, Estar, and Egas).

In deriving the new model, we will start by taking the result
from KL14 and then modify it to introduce the peak surface density
profiles. In the original model, the gas-to-stellar flux ratio bias is
obtained by counting regions within the aperture. The flux from the
peak type (i.e. stars or gas) that the apertures are focused on is con-
stituted by the sum of the central peak and the statistically expected
background flux from other peaks. By contrast, the flux from the
other tracer is constituted by the sum of the statistically expected
background flux from other peaks and the central peak if it spends
any time in the overlap phase. This latter contribution depends on
the time-scales involved – for stellar peaks, the probability that
the central peak also contains gas flux is fstar,over = tover/tstar,
whereas the probability that gas peaks also contain stellar flux is
fgas,over = tover/tgas. This contribution should also be corrected
for any evolution of the peak flux, which may result in fluxes dur-
ing the overlap phase that differ from those in the isolated phase (as
captured by the parameters βstar and βgas, see Section 3.2.9).

The expressions for the gas-to-stellar flux ratio bias are de-
rived in Appendix C of KL14 and we refer the interested reader
to that earlier work for the details of the derivation. The gas-to-
stellar flux ratio bias when focusing apertures on stellar peaks (cor-
responding to the bottom branch in the tuning fork diagram) is

BKL14
star =

[
1 + β−1

gas

(
tgas

tover
− 1
)]−1

+ tstar
τ

(
lap

λ

)2

1 + tstar
τ

(
lap

λ

)2 . (77)

When focusing on gas peaks (top branch in the tuning fork dia-
gram), the bias is given by

BKL14
gas =

1 +
tgas
τ

(
lap

λ

)2

[
1 + β−1

star

(
tstar
tover

− 1
)]−1

+
tgas
τ

(
lap

λ

)2 , (78)

Each of the variables in these expressions have already been in-
troduced, but for clarity we briefly repeat them. The time-scale
τ = tstar+tgas−tover is the total duration of the evolutionary time-
line in Figure 1, tstar is the duration of the stellar phase, tgas is the
duration of the gas phase, tover is the duration of the overlap phase,
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λ is the mean separation length between independent regions, lap

is the aperture size, and βstar and βgas represent the flux ratios be-
tween the overlap phase and the isolated phase of stellar peaks and
gas peaks, respectively. In both of the above two expressions, the
terms containing the square of the aperture size represent the back-
ground flux from other peaks, the ‘1’ represents the peak that the
aperture is focused on, and the terms containing tover represent the
contribution from that peak to the other tracer if it resides in the
overlap phase. A change relative to KL14 that is not immediately
visible in these expressions is that βstar and βgas are now treated as
functions of fstar,over = tover/tstar and fgas,over = tover/tgas. In
the exploration of the model behaviour below, we will treat these
as independent parameters, but when fitting the model to the ob-
served tuning fork diagram in Section 3.2.12, βstar and βgas are
not independent variables.

As a consequence of fully counting the peak that is being fo-
cused on (as well as fully counting any contribution from this peak
to the other tracer if it resides in the overlap phase), irrespective
of the aperture size, these formulations implicitly assume that the
peak profiles are delta functions, i.e. that their radii are infinitesi-
mally small. As a result, gas-to-stellar flux ratios of equations (77)
and (78) diverge when tover ↓ 0. This can be seen directly by taking
the limits of lap ↓ 0, which yields

lim
lap↓0

BKL14
star =

[
1 + β−1

gas

(
tgas

tover
− 1

)]−1

, (79)

and

lim
lap↓0

BKL14
gas = 1 + β−1

star

(
tstar

tover
− 1

)
. (80)

If tover ↓ 0, these expressions approach zero and infinity, respec-
tively. This result led us to conclude in KL14 that the flattening of
the tuning fork diagram at small aperture sizes provides a way of
measuring tover. While this is still true, we pointed out above that
the real-Universe situation is more complex, because the flattening
of the tuning fork diagram is not unique to a non-zero duration of
the overlap phase. Real molecular clouds or star-forming regions
are not infinitesimally small and their finite central densities pro-
vide another way of avoiding divergence.

We account for the peak surface density profiles by introduc-
ing an extra factor in equations (77) and (78) that takes values be-
tween 0 and 1 and represents the fraction of the flux from the central
peak that is contained within the aperture. This factor is only added
to the terms that represent the stellar and gas flux contribution from
the central peak. For the randomly-distributed, background popula-
tion of spatially-extended peaks in and around the aperture, the flux
contributions from peaks with centres outside of the aperture can-
cel on geometric grounds with the flux loss from peaks with centres
within the aperture. As a result, the background flux in the aperture
is exclusively set by the number surface density of the peaks and is
insensitive to their individual surface density profiles.16 This allows
us to formulate the updated version of the KL14 principle model as

Bmod
star =

fgas

[
1 + β−1

gas

(
tgas

tover
− 1
)]−1

+ tstar
τ

(
lap

λ

)2

fstar + tstar
τ

(
lap

λ

)2 , (81)

16 We thank Sophie Kruijssen for pointing out this logic, which has led to
an important simplification of the model.

and

Bmod
gas =

fgas +
tgas
τ

(
lap

λ

)2

fstar

[
1 + β−1

star

(
tstar
tover

− 1
)]−1

+
tgas
τ

(
lap

λ

)2 , (82)

where fstar and fgas represent the fraction of the central peak flux
that is contained by the aperture, with the subscripts referring to
stellar peaks and gas peaks respectively. These expressions are used
throughout the rest of this paper.

Equations (81) and (82) do not yet show how fstar and fgas

depend on the aperture size. We will specify this below for a small
number of useful peak surface density profiles. However, in defin-
ing the above expressions, we have already made an important as-
sumption. The enclosed flux fraction of the central peak is assumed
to differ between both tracers, because a factor of fgas appears in
the numerator and a factor of fstar appears in the denominator of
equations (81) and (82). This means that we allow the flux from
both tracers to follow different profiles, which provides some use-
ful flexibility and is consistent with observations (e.g. Walker et al.
2015, 2016). However, we also assume that there is no difference in
profile shape between peaks of a given tracer that reside in the iso-
lated and overlap phases, because the same factors of fstar and fgas

are used in equations (81) and (82). This may introduce a minor in-
consistency in cases where there is considerable time-evolution of
the peak size. In practical applications, however, this typically hap-
pens on size scales below the resolution limit, because we convolve
the maps to a common resolution lap,min (see Section 3.2.3). It is
demonstrated in Section 4 that the method yields accurate measure-
ments of tover, to such an extent that any effect of this inconsistency
must fall within acceptable limits. Indeed, we have verified that
the results do not change (i.e. they stay well within the obtained
uncertainties) when dividing the peak sample in peaks residing in
the isolated and overlap phases before determining the flux density
profiles. It is therefore undesirable to add another layer of com-
plexity that could address this, in particular because we have no a
priori constraints on how the peak profiles change with evolution-
ary stage.

We consider three different types of surface density profiles to
model the peak emission, all of which are available in HEISEN-
BERG. However, only the third of these profiles will be used
throughout the rest of the paper, for reasons outlined below. Each
of these profiles is normalised to have a total flux fraction of unity
(i.e. limlap→∞

f(lap) = 1), so that at infinitely large aperture sizes
the entire peak resides within the aperture. The profiles are as fol-
lows.

(i) A two-dimensional delta function that is centred on the peak
position, resulting in an enclosed flux fraction as a function of aper-
ture size that is given by

fδ(lap) = 1. (83)

This corresponds to the case derived in KL14, where we assumed
that the peaks correspond to points.

(ii) A two-dimensional, constant surface density disc that is cen-
tred on the peak position, resulting in an enclosed flux fraction as a
function of aperture size that is given by

fdisc(lap) =

{
(lap/2rpeak)2 if lap < 2rpeak

1 if lap > 2rpeak.
(84)

In this expression, rpeak represents the radius of the constant sur-
face density disc. We discuss below how this radius is obtained
from the galaxy maps.
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(iii) A two-dimensional Gaussian centred on the peak position,
resulting in an enclosed flux fraction as a function of aperture size
that is given by

fGauss(lap) = 1− exp

[
−1

2

(
lap

2rpeak

)2
]
. (85)

In this expression, rpeak represents the dispersion of the two-
dimensional Gaussian. We discuss below how this scale radius is
obtained from the galaxy maps.

The second and third of these profiles require the characteris-
tic peak radius rpeak to be known. However, it is straightforward
to obtain this from the galaxy maps once a peak profile has been
assumed to approximate the flux density profiles of the peaks in
the maps. In Section 3.2.9, we measured the flux density contrast
of emission peaks to the average flux density on a size scale lap in
equations (44) and (45). This flux ratio contrast can be related to
the ratio between the central surface density of peaks and the back-
ground surface density of the peak population. In turn, this allows
us to express the peak radius rpeak in units of the region separa-
tion length λ. For the stellar and gas flux, the background number
densities of independent regions are

Σback,star =
tstar

τ

(
πλ2

4

)−1

, (86)

and

Σback,gas =
tgas

τ

(
πλ2

4

)−1

, (87)

respectively. In these expressions, the term in parentheses uses the
mean separation length between independent regions to represent
the area per region, whereas the multiplications by tstar/τ and
tgas/τ reduce the resulting total number densities to only refer to
the number densities of stellar peaks and gas peaks, respectively.

For a constant surface density disc normalised to unity, the
central surface density is

Σdisc =
1

πr2
peak

, (88)

whereas for a two-dimensional Gaussian normalised to unity, the
central surface density is

ΣGauss =
1

2πr2
peak

. (89)

With the expected background and central flux densities in hand,
it is now possible to relate these to the flux density contrasts Estar

and Egas as a function of aperture size obtained in equations (44)
and (45) above (see Section 3.2.9). This will provide the peak ra-
dius rpeak in units of the region separation length λ.

Because Estar and Egas represent flux density contrasts mea-
sured relative to a variable aperture size, there is some freedom in
choosing the size scale on which the flux density contrast is evalu-
ated. We find that it is desirable to define Estar and Egas on a size
scale λ, because on larger scales the considered maps may contain
voids or other morphological features that change the surface num-
ber density of regions from the density in the direct vicinity of the
peaks implied by the best-fitting λ. By setting the size scale to λ,
the background surface number density of neighbouring peaks best
corresponds to the measured region separation length. In practice,
this means that when fitting the observed tuning fork diagram in
Section 3.2.12 below, Estar and Egas are both varied with λ and are
constrained as a byproduct of the fitting process.

On a size scale λ, the measured flux ratio contrasts defined
in equations (44) and (45) can be expressed in terms of the above
central and background number densities as

Estar ≡ Estar(λ) =
Σpeak + Σback,star

(πλ2/4)−1 + Σback,star
, (90)

and

Egas ≡ Egas(λ) =
Σpeak + Σback,gas

(πλ2/4)−1 + Σback,gas
, (91)

where Σpeak refers to Σdisc or ΣGauss depending on the adopted
profile. In these two expressions, the numerator represents the flux
density on a size scale lap,min, consisting of the central surface den-
sity of the peak (first term) and the background population (second
term), and the denominator represents the flux density on a size
scale λ, consisting of the entire central peak (first term) and the
background population (second term).

Rearranging the above expressions allows the characteristic
peak radii to be expressed in terms of quantities that are either mea-
sured directly from the maps (Estar and Egas), or represent free pa-
rameters during the fitting process in Section 3.2.12 (τ , tgas, and
λ). If we represent the peaks with constant surface density discs,
we obtain for the radii of stellar peaks

rstar =
λ

2

√
τ/tstar

Estar(1 + τ/tstar)− 1
, (92)

and for the radii of gas peaks

rgas =
λ

2

√
τ/tgas

Egas(1 + τ/tgas)− 1
. (93)

Likewise, if we represent the peaks with two-dimensional Gaussian
profiles, we obtain for the radii of stellar peaks

rstar =
λ

2

√
τ/tstar

2Estar(1 + τ/tstar)− 2
, (94)

and for the radii of gas peaks

rgas =
λ

2

√
τ/tgas

2Egas(1 + τ/tgas)− 2
. (95)

Equations (92)–(95) are substituted into the enclosed flux fractions
as a function of aperture size from equations (84) and (85). Sub-
stitution of the result into equations (81) and (82) yields the pre-
dicted gas-to-stellar flux ratio bias when focusing apertures on stel-
lar peaks and gas peaks, respectively, in terms of measurable quan-
tities and free parameters of the fitting process in Section 3.2.12.

When applying the method to real-Universe observations or to
the simulated galaxy maps in Section 4, the Gaussian peak surface
density profile fGauss is generally the best choice to make. Above
all, it is versatile – in the limit of a very large flux ratio excess E , the
peak radii approach zero and hence the possible range of profiles
includes a reasonable approximation of the delta function profile
fδ to represent point particles. This feature is also shared by the
constant surface density disc profile fdisc, but the Gaussian profile
is more suitable for two other reasons. Firstly, the regridding of the
maps in Section 3.2.3 is accompanied by a convolution of the maps
with a Gaussian PSF to a common resolution. This means that un-
resolved peaks have Gaussian profiles by definition and resolved
peaks at least have a Gaussian component. Secondly, real-Universe
molecular clouds and star-forming regions generally follow cen-
trally concentrated morphologies, rather than having constant sur-
face densities (e.g. Walker et al. 2015, 2016). Gaussian profiles
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provide a better representation of this behaviour. Of course, it is
straightforward to select any other desired analytical profile and
derive expressions equivalent to equations (92)–(95) for that par-
ticular choice. This may yield differences in the best-fitting quanti-
ties, but for the above reasons we expect these to be minor. In the
remainder of this paper, we use the Gaussian profile to represent
the peaks in the map.

Substitution of the stellar and gas peak radii into the Gaussian
profile of equation (85) provides the enclosed flux fraction of stellar
and gas peaks as a function of the aperture size, i.e.

fstar(lap) = 1− exp

[
1− Estar (1 + τ/tstar)

τ/tstar

(
lap

λ

)2
]
, (96)

and

fgas(lap) = 1− exp

[
1− Egas (1 + τ/tgas)

τ/tgas

(
lap

λ

)2
]
, (97)

respectively. We will use these two expressions in combination with
the gas-to-stellar flux ratios of equations (81) and (82) to fit the
observed tuning fork diagram that was obtained in Section 3.2.10.

To avoid overly long expressions, we do not explicitly pro-
vide the (trivial) substitution of the peak density profiles into equa-
tions (81) and (82), but it is useful to consider the limit of lap ↓ 0 to
highlight the difference in behaviour relative to the original model
of KL14. For small aperture sizes, we obtain

lim
lap↓0

Bmod
star =

1

Estar

(
1 + τ

tstar

) +
1− E−1

star

(
1 + τ

tstar

)−1

1 + β−1
gas

(
tgas

tover
− 1
) ,

(98)

for the gas-to-stellar flux ratio bias when focusing on stellar peaks
and

lim
lap↓0

Bmod
gas =

 1

Egas

(
1 + τ

tgas

) +
1− E−1

gas

(
1 + τ

tgas

)−1

1 + β−1
star

(
tstar
tover

− 1
)

−1

,

(99)

when focusing on gas peaks. It is straightforward to verify that we
obtain the old limits of equations (79) and (80) when we consider
point particles and thus let Estar → ∞ and Egas → ∞. However,
the change relative to the old limits is best illustrated by considering
the case of tover ↓ 0, which yields

lim
tover↓0

(
lim
lap↓0

Bmod
star

)
=

1

Estar

(
1 + τ

tstar

) , (100)

and

lim
tover↓0

(
lim
lap↓0

Bmod
gas

)
= Egas

(
1 +

τ

tgas

)
, (101)

for the bottom and top branches of the tuning fork diagram, re-
spectively. These limits show immediately that setting Estar → ∞
and Egas → ∞ to represent point-like regions results in a gas-to-
stellar flux ratio bias that diverges to 0 or ∞ for stellar and gas
peaks, respectively, as in KL14. However, they also quantify that
for peak surface density profiles with a finite central density, the
gas-to-stellar flux ratio bias does not diverge to 0 or ∞ towards
small aperture sizes as in KL14, but instead takes values propor-
tional to the (inverse) flux density contrast, i.e. E−1 or E . The two

Table 3. Model parameter values explored in Figure 11

Quantity low middle high

free parameter
tgas [Myr] 5 10 20

tover [Myr] 0 2 4
λ [pc] 100 300 1000

function of free parameters
tstar [Myr] 2.5 5 10

βstar 0.5 1 2

βgas 0.5 1 2
Estar 2.5 5 10

Egas 2.5 5 10

fixed parameter
peak prof points discs Gaussians

The boldface numbers indicate the fiducial values used
in each of the panels in Figure 11.

factors in these limits represent the contribution from the peak flux
relative to a size scale λ (the factor E) and from the background
peak population within λ relative to the galactic average (the fac-
tor 1 + τ/t). The first of these factors follows from the definition
of E and the second is easily verified by evaluating equations (81)
and (82) at lap = λ. By combining these two factors, we obtain the
central flux ratio bias of a peak relative to the galactic average. The
qualitative behaviour of these limits is also as expected when set-
ting tover = 0. Firstly, a low filling factor (high E) implies a large
difference between the central peak and the background population
within λ, leading to a strong bias. Secondly, a rarity of tracer peaks
within an aperture of size λ (i.e. when tstar or tgas is much smaller
than τ ) implies a large difference between the flux density on a size
scale λ and the galactic average, also leading to a strong bias.

The immediate implication of equations (100) and (101) is
that the flattening of the tuning fork diagram towards small aper-
ture sizes is still a measure of the duration of the overlap phase
tover, but there is a degeneracy with the central flux ratio excess of
peaks relative to the background. However, this degeneracy is lifted
by directly obtaining the peak flux ratio excess from the maps, as
discussed in Section 3.2.9. In practice, a finite flux ratio excess pro-
vides a minimum amount of flattening. Any additional flattening
indicates a non-zero duration of the overlap phase and thus still
provides a way of directly measuring tover.

We now turn to a brief discussion of how the gas-to-stellar
flux ratio biases as a function of aperture size vary with each of
the quantities involved in our model. Table 3 lists the nine quanti-
ties that together determine the flux ratio biases of equations (81)
and (82), as well as three typical values for each of these quanti-
ties that we will consider during a quantitative illustration of the
model below. The first three of these (tgas, tover, and λ) represent
the three free parameters in the model and are obtained by fitting
the model in Section 3.2.12 to the observed gas-to-stellar flux ratio
bias of Section 3.2.10 and Figure 10. The second set of five quan-
tities (tstar, βstar, βgas, Estar, and Egas) depend on the three free
parameters and are therefore constrained during the fitting process,
but are not free parameters themselves. The default definition of
tstar = tstar,ref + tover implies a dependence on the duration of
the overlap phase, but if the flag tstar incl = 1 (see Table 1),
then tstar = tstar,ref is fixed in the input file and becomes indepen-
dent of the free parameters. In this example, we specify tstar, im-
plying that tstar,ref changes when tover changes, which effectively
corresponds to tstar incl = 1. By contrast, βstar(fstar,over)
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and βgas(fgas,over) always depend on the free parameters, because
they depend on the ratios tover/tstar and tover/tgas, respectively,
as described in Section 3.2.9 and illustrated in Figure 9. Likewise,
Estar(λ) and Egas(λ) both depend on the mean separation length λ
(see Section 3.2.9). While these five quantities will vary as a func-
tion of tgas, tover, and λ in practical applications of the method,
we consider them as free parameters in the example given here,
with the goal of isolating their effects. The final quantity in Table 3
(peak prof) represents a fixed parameter that is set in the input
parameter file. This quantity therefore influences the shape of the
modelled tuning fork diagram, but does not vary during the fitting
process of Section 3.2.12.

Figure 11 systematically shows how each of the nine quan-
tities from Table 3 affect the shape of the modelled gas-to-stellar
flux ratio bias as a function of the aperture size. The main result
of the parameter study in the figure is that each of the nine quan-
tities in general, but especially the three free parameter in particu-
lar, have a unique effect on the shapes of the curves. This means
that the gas-to-stellar flux ratio bias is a non-degenerate function
of these quantities, allowing the free parameters to be measured
by fitting the model to observed tuning fork diagrams. The basic
behaviour is the same as in the schematic of Figure 2. When fo-
cusing apertures on stellar (gas) peaks, the gas-to-stellar flux ratio
is smaller (larger) than the galactic average. This gas-to-stellar flux
ratio bias increases towards decreasing aperture sizes, because the
central peak contributes a larger fraction to the total flux ratio in
the aperture when a smaller population of other peaks is included.
However, the bias does not grow indefinitely towards small aper-
tures. As discussed in the above derivation, this arises for two rea-
sons. Firstly, if the stellar and gas phases overlap in time, then there
is a non-zero probability that a peak resides in the overlap phase and
emission from both tracers is present. This limits the gas-to-stellar
flux ratio bias when preferentially selecting one type of tracer. Sec-
ondly, peaks have finite central surface densities, implying that for
the smallest aperture sizes, the gas-to-stellar flux ratio bias reflects
the overdensity of the peaks relative to the background population
of other peaks, as demonstrated in equations (100) and (101).

Starting with the top row of Figure 11, we see in panel (a) that
increasing tgas decreases the bottom branch of the tuning fork dia-
gram, i.e. it leads to a larger gas-to-stellar flux deficit when focusing
on stellar peaks. This happens because for larger tgas, the overlap
phase (which sets the bias at small aperture sizes) takes up a smaller
fraction of the total duration of the gas phase, implying that stellar
peaks residing in the overlap phase contribute a smaller fraction of
the galactic gas flux. Due to the relatively smaller ‘damping’ effect
of the gas flux from stellar peaks in the overlap phase the bottom
branch flattens less if tgas is larger. By contrast, changing the du-
ration of the gas phase does not affect the relative contribution of
the stellar flux from gas peaks in the overlap phase to the galac-
tic stellar flux, because this is mainly set by the ratio tover/tstar

in equation (82). The flattening of the top branch is therefore only
weakly affected by changing tgas. There is a small decrease of the
aperture size below which the gas-to-stellar flux ratio bias sets in
when increasing tgas. This is easily understood – gas peaks become
more common as tgas increases, causing their number density to in-
crease too. Therefore, a smaller aperture size is required to isolate
the contribution from the gas peak that the aperture is focused on.

The second free parameter is the duration of the overlap phase
tover. Panel (b) shows that the effect of increasing tover is that the
probability that the central peak in the aperture also contains emis-
sion from the other tracer increases. This limits the gas-to-stellar
flux ratio bias relative to the galactic average that can be achieved

at the smallest aperture sizes and therefore leads to a stronger flat-
tening of the model tuning fork diagram towards larger tover. The
figure again illustrates the key difference relative to KL14, namely
that the branches of the tuning fork do not diverge towards small
aperture sizes when tover = 0, due to the finite central surface
densities of the two-dimensional Gaussians used here. Most im-
portantly, the behaviour due to tover fundamentally differs from the
influence of tgas on the gas-to-stellar flux ratio bias. While the latter
affects the vertical position of one of the branches and only weakly
affects the horizontal position of the other branch, the former sym-
metrically sets the vertical positions of both branches.

The third free parameter is the mean separation length be-
tween independent regions λ. Its effect on the shape of the tun-
ing fork is easy to understand. Panel (c) shows that increasing the
separation length means that the entire model tuning fork diagram
shifts to larger aperture sizes, because recovering the galactic aver-
age by encompassing a sufficient number of regions in the aperture
requires a larger aperture area. Crucially, the effect of the separa-
tion length is orthogonal to that of tgas and tover, as it controls the
overall horizontal position of the diagram.

We briefly summarise the effects of the three free parameters
during the fitting process of our model.

(i) The ratio between tgas and tstar sets the vertical asymmetry
of the model tuning fork diagram.

(ii) The duration of the overlap phase tover sets the flattening of
the tuning fork towards small aperture sizes.

(iii) The mean separation length of independent regions λ sets
the horizontal position of the model tuning fork.

The quantities in panels (d)–(h) of Figure 11 depend on the
free parameters tgas, tover, and λ from the first row. When chang-
ing either of these free parameters during the fitting process, their
effect on the tuning fork diagram will therefore be accompanied
by the change seen in one or more of panels (d)–(h). The duration
of the stellar phase tstar = tstar,ref + tover is varied in panel (d)
and mirrors the behaviour of changing tgas in panel (a). In addi-
tion, because tstar increases with tover, the increased flattening of
the curves towards large values of tover is accompanied by a slight
increase of the gas-to-stellar flux ratio excess in the top branch and
an even smaller inwards shift of the bottom branch. We note that
the effect of changing tstar on the bottom branch in panel (d) is
larger than that of changing tgas on the top branch in panel (a).
This is caused by the fact that we have set tgas > tstar in this
example. As a result of this dissimilarity, the flattening of the top
branch in panel (a) is affected more strongly by the high probability
that young stellar peaks reside in the overlap phase and are there-
fore included when focusing on gas peaks, which does not depend
on tgas, whereas the flattening of the bottom branch in panel (d)
is affected more strongly by the flux density contrast of the central
peak relative to its immediate surroundings, which does depend on
tstar. This difference can be quantitatively verified by inspection of
equations (98) and (99).

Panel (e) shows the influence of changing the overlap-to-
isolated flux ratio of stellar emission. Unsurprisingly, this only af-
fects the top branch, where the incidence of stellar emission from
gas peaks in the overlap phase flattens the tuning fork. This flat-
tening becomes stronger if the stellar emission from peaks in the
overlap phase is brighter than from those in the isolated phase
(i.e. βstar > 1) and weakens if the stellar emission from peaks in
the overlap phase is fainter (i.e. βgas < 1). The same behaviour is
seen for the bottom branch in Panel (f), which shows the influence
of changing the overlap-to-isolated flux ratio of gas emission. Be-
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Figure 11. Predicted gas-to-stellar flux ratio bias as a function of the aperture size when focusing apertures on stellar peaks (bottom branches) or gas peaks
(top branches), as indicated by the grey labels in panel (a). In each panel, the effect of varying one model quantity is shown relative to the fiducial parameter
set (see Table 3). The values in the top right corner of each panel show the values used, with the fiducial choice shown in black. In the bottom right corner
of each panel, we list the nature of each quantity. The quantities varied in panels (a)–(c) are all free parameters in the model, meaning that they are fitted
for in Section 3.2.12. The quantities varied in panels (d)–(h) are all a function of the three free parameters in the top row, implying that while they will be
constrained during the fitting process, they are not free parameters as such. Finally, the quantity peak prof that is varied in panel (i) is fixed prior to starting
the fitting process. The figure shows that each of the free parameters has a unique effect on the shapes of the curves, implying that they are non-degenerate and
can therefore be measured by fitting our model to observed tuning fork diagrams.

cause βstar and βgas depend on tover/tstar and tover/tgas, respec-
tively, a change of the model tuning fork diagram due to any of the
three time-scales can be accompanied by a change as seen in pan-
els (e) or (f). This could hamper the accuracy of the method if the
corresponding changes in βstar and βgas would systematically can-
cel the impact of changing the above time-scales. However, there is
no obvious reason why the relations between βstar and βgas should

scale with these time-scale ratios in a particular direction, or even
monotonically. The applications to simulated maps in Section 4,
as well as early applications of the method to observational data
(e.g. Kruijssen et al. 2018; Hygate et al. in prep.; Chevance et al. in
prep.) show no strong systematic patterns in these relations.

If the relation between βstar(fstar,over) and βgas(fgas,over)
would be monotonic, we would still not expect any significant
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change of the tuning fork diagram due to the propagation of time-
scale changes through βstar and βgas, because βstar and βgas typi-
cally only change by a small amount across the range of tover/tstar

and tover/tgas (see e.g. Figure 9, where βstar = 1.3–1.7 for
tover/tstar = 0.05–0.85 and compare this dynamic range to Fig-
ure 11). Even if this would occur in individual cases, it is impor-
tant to note that the effects of βstar and βgas differ fundamentally
from the free parameters in panels (a)–(c). The greatest similarity
is between tgas and βgas, both of which affect the vertical posi-
tion of the bottom branch. In that case, a systematic decrease of
βgas with tover/tgas would mean that the widening of the tuning
fork by increasing tgas would be compensated by the accompany-
ing decrease of tover/tgas, the resulting increase of βgas, and the
corresponding vertical compression of the tuning fork. In such a
situation, tgas would be ill-constrained, but this is unlikely to oc-
cur for two reasons. Firstly, in the vast majority of the experiments
considered in this paper, we find that βstar and βgas weakly in-
crease with tover/tstar and tover/tgas, respectively (see e.g. Fig-
ure 9). This trend is opposite to what would be needed for changes
in the tuning fork diagram due to the evolutionary timeline to be
compensated by changes in βstar and βgas. Secondly, even in this
rather specific case, the detailed change of the tuning fork due to
varying tgas and βgas differs. The former affects the vertical posi-
tion of the bottom branch over the entire range of aperture sizes,
whereas the latter only affects the part where the overlap phase
dominates the flux ratio bias in the aperture (i.e. where lap < λ).
In summary, we therefore do not expect any systematic variation of
βstar or βgas with tover/tstar or tover/tgas to negatively influence
the accuracy with which the free parameters can be constrained.

Panels (g) and (h) demonstrate the influence of changing the
flux ratio contrast Estar and Egas between the central peak and the
flux measured on a size scale λ. The effect of changing these quan-
tities on the model tuning fork diagram is similar to that of βstar and
βgas, with the key difference that Estar and Egas are functions of λ
rather than tover/tstar or tover/tgas. We see that increasing the flux
ratio contrast of single peaks relative to the background leads to a
larger gas-to-stellar flux ratio excess (when focusing on gas peaks)
or deficit (when focusing on stellar peaks) at the smallest aperture
sizes. This is easily understood, because on these size scales, the
central surface density of the peak sets the flux ratio bias. Because
Estar and Egas depend on λ, a change of λ can be accompanied by
a change as seen in panels (g) or (h). As before, this could hamper
the accuracy of the method if the corresponding changes in Estar

and Egas would systematically cancel the impact of changing the
separation length λ. Fortunately, Figure 11 clearly shows that the
effects of changing λ and E are orthogonal – the former causes a
horizontal shift of the model tuning fork, while the latter vertically
shifts a single branch. Therefore, we do not expect any systematic
variation of Estar or Egas with λ to negatively influence the accu-
racy with which the free parameters can be constrained.

The final quantity in panel (i) of Figure 11 is fixed and there-
fore does not change during the fitting process. However, it is still
useful to understand its impact of the gas-to-stellar flux ratio bias
as a function of aperture size. Panel (i) shows how the shape of the
surface density profile chosen to represent the peaks affects the re-
sulting model tuning fork diagram. Because this only concerns the
central peak in each aperture, we expect this choice to affect the
shape only for apertures lap < λ. The delta function profile, reflect-
ing point-like regions, corresponds to the model from KL14. If we
instead represent the regions as constant surface density discs with
radius rpeak, the tuning fork abruptly flattens once lap < 2rpeak,
because there the enclosed surface density no longer increases with

decreasing aperture size. Adopting a two-dimensional Gaussian
profile results in the same central gas-to-stellar flux ratio bias as
for the disc profile, but the additional flattening sets in at larger
aperture sizes, because the extended nature of the Gaussian pro-
file leads to flux loss from the aperture already for lap > 2rpeak.
While the effective change from the point particle representation
to the two-dimensional Gaussian may seem minor, it is critical for
accurately retrieving the duration of the overlap phase. As we will
discuss in Section 3.2.14, this change is therefore instrumental for
deriving any feedback-related physical quantities.

Thanks to its purely analytical form, the derived model for
the gas-to-stellar flux ratio bias is easy to interpret and readily ap-
plicable to the type of observational measurement made in Sec-
tions 3.2.1–3.2.10. By fitting the model to observed ‘tuning fork
diagrams’, the six quantities in the top two rows of Figure 11 can
be obtained, which provide a direct measurement of the evolution-
ary timeline of independent star-forming regions. With this timeline
in hand, it is possible to derive a broad range of other quantities de-
scribing the cloud-scale physics of star formation and feedback.

3.2.12 Fitting the model to the data

Having obtained the observed gas-to-stellar flux ratio bias and its
uncertainties as a function of the aperture size in Section 3.2.10 and
having derived a model to describe its behaviour in Section 3.2.11,
we now describe how the model is fitted to the data. The best fit
is obtained by minimising the goodness-of-fit statistic χ2

red over
{tgas, tover, λ} space. We then marginalise the resulting three-
dimensional PDF to obtain the one-dimensional PDF of each free
parameter (see Section 3.2.13). At the end of the fitting process,
a figure of the best-fitting tuning fork diagram is written to disk,
together with ASCII tables containing the data points, their error
bars, and the best-fitting model.

Before performing the fit, we need to define the arrays describ-
ing the values of the free parameters that are evaluated. Because the
parameter space under consideration is three-dimensional, increas-
ing the number of elementsNtry in these arrays significantly slows
down the fitting procedure. For that reason, we attain the desired
precision of the fit not by using a high value of Ntry, but by itera-
tively ‘zooming in’ on the best-fitting part of parameter space and
refining the free parameter arrays. We define Ndepth as the max-
imum number of zooms (including the first, unrefined fit), with a
default value of Ndepth = 4 (see Table 2). Note that most fits do
not reach this number of iterations, but finish earlier to avoid omit-
ting too much of parameter space (see below). When using the de-
fault number ofNtry = 101 array elements per free parameter (and
thus N3

try elements in total), this approach allows the fit to reach a
precision that falls comfortably within the error bars on each free
parameter.

The free parameter arrays are defined as follows. For the du-
ration of the gas phase we use

tgas(i) = tgas,min

(
tgas,max

tgas,min

) i+1/2
Ntry

, (102)

where {i ∈ N | 0 6 i 6 Ntry − 1} and the range of tgas is
specified in the input parameter file (see Table 2), with default lim-
its of tgas,min = 0.1 Myr and tgas,max = 5000 Myr. Note that
we do not allow tgas,max to exceed the gas depletion time tdepl =
Mgas/SFR, which would be unphysical. If tdepl < tgas,max, we
set tgas,max = tdepl. Likewise, for the duration of the overlap phase
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we define

tover(j) = tover,min

(
tover,max

tover,min

) j+1/2
Ntry

, (103)

where {j ∈ N | 0 6 j 6 Ntry − 1} and the default value of
tover,min = 0.01 Myr (see Table 2) effectively corresponds to
tover = 0, but is chosen to avoid divergence in the model expres-
sions for the gas-to-stellar flux ratio bias (see Section 3.2.11). The
upper limit of the range of tover follows from the fact that the du-
ration of the overlap phase cannot exceed the lifetime of the stellar
or gas tracer. We therefore set tover,max = tgas,max in the default
case of tstar incl = 0 (i.e. tstar does not include the dura-
tion of the overlap phase) and tover,max = min (tstar, tgas,max) if
tstar incl = 1. Finally, for the mean separation length we use

λ(k) = λmin

(
λmax

λmin

) k+1/2
Ntry

, (104)

where {k ∈ N | 0 6 k 6 Ntry − 1} and we define
the limits as λmin = 0.3 min (lap,star, lap,gas) and λmax =
3 max (lap,star, lap,gas). For all three free parameters, the defined
limits effectively enclose (even more than) the physically reason-
able part of parameter space.

By defining the three arrays in equations (102)–(104) as we
have, the lowest and highest values in the array do not correspond
to the specified limits. This is caused by the addition of 1/2 in
each of the exponents. However, this offset of half a logarithmic
separation step enables the straightforward integration of the PDF
using these same arrays. In logarithmic space, the integration steps
are constant and the array elements are situated in the centre of each
step. The integration steps are defined as

dtgas(i)

tgas(i)
=

[(
tgas,max

tgas,min

) 1
2Ntry

−
(
tgas,max

tgas,min

)− 1
2Ntry

]
, (105)

for the duration of the gas phase,

dtover(j)

tover(j)
=

[(
tover,max

tover,min

) 1
2Ntry

−
(
tover,max

tover,min

)− 1
2Ntry

]
,

(106)

for the duration of the overlap phase, and

dλ(k)

λ(k)
=

[(
λmax

λmin

) 1
2Ntry

−
(
λmax

λmin

)− 1
2Ntry

]
, (107)

for the mean separation length.
Across allN3

try elements covered by {tgas(i), tover(j), λ(k)},
we use equations (81) and (82) to calculate the predicted gas-to-
stellar flux ratio bias when focusing on stellar peaks (Bmod

star ) or gas
peaks (Bmod

gas ). If tstar incl = 0, the duration of the stellar
phase is defined as tstar = tstar,ref + tover(j) and we thus update
its value for each j. Likewise, the values of βstar and βgas depend
on fstar,over = tover(j)/tstar and fgas,over = tover(j)/tgas(i), re-
spectively. The dependence of both quantities on the time-scales
that the fitting process explores is quantified in Section 3.2.9. For
each combination of tgas(i) and tover(j), we linearly interpolate
the grids of fstar,over and fgas,over to obtain the appropriate values
of βstar and βgas. In the same way, the values of Estar and Egas de-
pend on λ(k). These dependences are quantified in equations (44)
and (45). We interpolate E(λ) in double-logarithmic space to ob-
tain the values of Estar and Egas for each explored value of λ(k).

The above process provides us with the predicted tuning fork dia-
gram for each point in parameter space, i.e. Bmod

star (i, j, k, lap) and
Bmod

gas (i, j, k, lap).
For each point in parameter space, the goodness-of-fit statistic

χ2
red is calculated by evaluating the difference between the obser-

vations and the model prediction in logarithmic space. We define
this difference as

∆star[lap,star(l)] =

{
log10[Bstar(lap,star)/Bmod

star (lap,star)]

σlog10 B,star(lap,star)

}2

,

(108)

for the gas-to-stellar flux ratio bias when focusing on stellar peaks
(bottom branch in the tuning fork diagram) and

∆gas[lap,gas(l)] =

{
log10[Bgas(lap,gas)/Bmod

gas (lap,gas)]

σlog10 B,gas(lap,gas)

}2

,

(109)

for the gas-to-stellar flux ratio bias when focusing on gas peaks
(top branch in the tuning fork diagram). In both expressions, we
have {l ∈ N | 0 6 l 6 Nap − 1}, analogously to equation (3). The
χ2 statistic of the point in parameter space then follows as

χ2 =

Nap−1∑
l=0

∆star[lap,star(l)]wstar(l) + ∆gas[lap,gas(l)]wgas(l),

(110)

where wstar(l) and wgas(l) represent the weights of the data points
on the bottom and top branches of the tuning fork diagram, respec-
tively. These weights were briefly mentioned in Section 3.2.10 and
here we define them formally. As discussed in Section 3.2.10, none
of the data points in the tuning fork diagram is truly independent,
because they reflect the flux ratios in apertures of different sizes that
are focused on the same emission peaks. We defined the ‘indepen-
dence fractions’ fdata,star(l) and fdata,gas(l) of the data points in
equations (70) and (71). These quantities represent the fraction of
each data point that is truly independent from all other data points.
When calculating the goodness-of-fit statistic, we should weigh the
difference between model and observation for each data point by
its independence fraction, so that highly independent data points
contribute more strongly than correlated data points. This ensures
that each independent measurement has the same total contribution
to the goodness-of-fit statistic. The weights are defined by normal-
ising the independence fractions to their mean value, i.e.

wstar(l) = fdata,star

(
Nindep

2Nap

)−1

, (111)

and

wgas(l) = fdata,gas

(
Nindep

2Nap

)−1

. (112)

In these weights, Nindep represents the total number of indepen-
dent data points as defined in equation (74), which is the sum of
the independence fractions across both branches of the tuning fork
diagram. The quantity Nindep/2Nap thus represents the mean in-
dependence fraction across all data points. By normalising the in-
dependence fractions to their mean value, we guarantee that the
mean weight is unity. That way, any change of χ2 due to weigh-
ing the data points in equation (110) only reflects a change of their
relative contributions, rather than a change of the absolute number
of data points. This absolute number is decreased by independence
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fractions smaller than unity, but that effect is accounted for by de-
creasing the number of degrees of freedom below, not by modifying
the weights of the data points.

The χ2 statistic is converted to the goodness-of-fit statistic
χ2

red by division by the number of degrees of freedom Ndeg, i.e.

χ2
red(i, j, k) =

χ2(i, j, k)

Ndeg
, (113)

where the indices (i, j, k) have been added to emphasize that the
described process is repeated for each point in parameter space.
The number of degrees of freedom is defined as

Ndeg = Nindep −Nfit. (114)

In this expression, the number of free parameters is Nfit = 3. If
none of the data points in the tuning fork diagram would have been
correlated, then Nindep = 2Nap by definition. However, as dis-
cussed at length, the fact that the data points are not independent
implies that Nindep < 2Nap. This leads to a decrease of the num-
ber of degrees of freedom, which in turn causes the goodness-of-fit
statistic χ2

red to increase.
The best-fitting solution across the covered parameter space

corresponds to the element where χ2
red is minimal, i.e.

χ2
red,min ≡ min [χ2

red(i, j, k)], (115)

with best-fitting values of {tgas(ibest), tover(jbest), λ(kbest)}.
However, this best fit may be improved by refining the free parame-
ter arrays in the space around the best fit. A refinement step consists
of first updating the minimum and maximum parameter values in
equations (102)–(104), defining the refined free parameter arrays,
and then repeating the fitting process. This way, we carry out a max-
imum of Ndepth fitting loops. The criterion for refinement makes
use of the one-dimensional PDFs of the free parameters, which are
described in the error analysis of Section 3.2.13 below. We there-
fore defer the quantitative description of the refinement process to
that discussion.

After the last refinement step is completed, the final best-
fitting solution has been obtained. HEISENBERG outputs a figure
of the tuning fork diagram, figures of βstar and βgas as a function
of the time fraction spent in the overlap phase (i.e. Figure 9), as
well as ASCII tables that contain the data points, their error bars,
and the best-fitting model. Figure 12 shows the best-fitting solu-
tion for the example maps used throughout this section. The figure
demonstrates that the method provides an accurate representation
of the ‘observed’ gas-to-stellar flux ratio bias, which in this case
is reflected in the goodness-of-fit statistic of χ2

red,min = 0.20. The
best-fitting quantities are tgas = 3.06 Myr, tover = 0.90 Myr,
and λ = 194 pc, whereas the additional quantities that are also
constrained during the fitting process are tstar = 10.90 Myr,
βstar = 1.45 (as was already shown in Figure 9), βgas = 0.44,
Estar = 1.34, and Egas = 1.49. We emphasize that these numbers
have little-to-no physical meaning, because we applied the method
to a simulated data set in this example. In Section 3.2.13, we use
these numbers to show that the relative uncertainties on the best-
fitting quantities are small, implying that the fitting process pro-
vides precise measurements of these quantities.

3.2.13 Error analysis and parameter space refinement

After having performed a first fit using the unrefined free param-
eter arrays of equations (102)–(104), equation (113) provides the
goodness-of-fit statistic for each element in parameter space. It is

102 103 104

lap[pc]

10-1

100

101

B

gas peaks

stellar peaks

galactic average

Figure 12. Best-fitting model to the example tuning fork diagram of Fig-
ure 10. When visually assessing the quality of the fit, the reader should use
the shaded areas as the effective error bars, because they account for the cor-
relation between the data points and the resulting decrease of the number of
degrees of freedom (see the text in Sections 3.2.10 and 3.2.12). By fitting
the model of Section 3.2.11, we obtain the best-fitting values and their un-
certainties of the lifetimes of gas peaks tgas, the coexistence time-scale of
gas and stellar peaks tover, and the characteristic peak separation length λ.
The aperture size where lap = λ is highlighted by the grey arrow.

straightforward to convert this statistic to a three-dimensional PDF
of the free parameters by writing

Ptot(tgas, tover, λ) ≡ d3p

dtgasdtoverdλ
= I−1

χ e−χ
2
red/2, (116)

with a normalisation given by

Iχ =

∫∫∫
e−χ

2
red/2dtgasdtoverdλ

=
∑
i,j,k

e−χ
2
red(i,j,k)/2dtgas(i)dtover(j)dλ(k),

(117)

where the second equality accounts for the discretisation of param-
eter space into the free parameter arrays of equations (102)–(104).
The one-dimensional, differential PDFs of the individual free pa-
rameters then follow trivially, for the duration of the gas phase:

P1D(tgas) ≡
dp

dtgas
=

∫∫
Ptot(tgas, tover, λ)dtoverdλ, (118)

for the duration of the overlap phase:

P1D(tover) ≡
dp

dtover
=

∫∫
Ptot(tgas, tover, λ)dtgasdλ, (119)

and for the region separation length:

P1D(λ) ≡ dp

dλ
=

∫∫
Ptot(tgas, tover, λ)dtgasdtover. (120)

These are converted to their cumulative forms by defining

P1D(X 6 x) ≡
∫ x

xmin

P1D(X)dX, (121)

for each of the PDFs in equations (118)–(120). The numerical im-
plementations in HEISENBERG of the six (differential and cumu-
lative) PDFs described by equations (118)–(121) are discretised

MNRAS 000, 1–80 (2018)



Cloud-scale star formation across cosmic history 33

analogously to the second equality of equation (117). Finally, we
also calculate the three different two-dimensional PDFs by sepa-
rately integrating out each single variable in equation (116). These
two-dimensional distributions can be used to visualise the degree of
correlation and thus degeneracy between the three free parameters.

To compute the uncertainties on the best-fitting values of the
free parameters, we use the one-dimensional cumulative PDFs. For
most of the applications discussed in Section 4 and the early ob-
servational applications of the presented method, the differential
PDFs are asymmetric and non-Gaussian. One way of appropriately
representing this asymmetry would be to define the uncertainties
by using the 1σ percentiles in a Gaussian, i.e. 16 and 84 per cent.
However, this can result in situations where the best-fitting value is
found outside of the 16–84 percentile range, leading to negative un-
certainties. To avoid such a (rare) situation, we choose to define the
uncertainties used in this work differently. Given a best-fitting value
xbest, we divide the variable range in two around xbest and define
the uncertainties analogously to the Gaussian case as the 32nd per-
centile of the part of the PDF below xbest and the 68th percentile
of the part of the PDF above xbest. If the PDF is Gaussian, this
corresponds to the formal definition of the 1σ uncertainties, but for
asymmetric PDFs it deviates.

Mathematically, the above procedure results in the following
steps. First, we define the percentiles of the 1σ uncertainties in a
Gaussian PDF as usual, i.e.

pmin,Gauss = 1− 1

2

[
1 + erf

(
1√
2

)]
≈ 0.16, (122)

for the downward uncertainty, and

pmax,Gauss =
1

2

[
1 + erf

(
1√
2

)]
≈ 0.84, (123)

for the upward uncertainty. We can normalise these to the range
on either side of the best-fitting value in a Gaussian PDF
(i.e. pbest,Gauss = 0.5) and thus determine an equivalent fraction
of that range corresponding to the above percentiles by writing

fmin,Gauss =
pmin,Gauss

pbest,Gauss
≈ 0.32, (124)

for the downward uncertainty, and

fmax,Gauss =
pmax,Gauss − pbest,Gauss

1− pbest,Gauss
≈ 0.68, (125)

for the upward uncertainty. The corresponding percentiles around
the best-fitting value xbest then follow by multiplication with the
PDF ranges on either side of xbest, i.e.

pmin = fmin,GaussP1D(x 6 xbest)

≈ 0.32P1D(x 6 xbest),
(126)

for the downward uncertainty, and

pmax = P1D(x 6 xbest) + fmax,Gauss[1− P1D(x 6 xbest)]

≈ 0.32P1D(x 6 xbest) + 0.68,

(127)

for the upward uncertainty. For the Gaussian value of P1D(x 6
xbest) = 0.5, these reduce to equations (122) and (123). The pa-
rameter values x− and x+ at the percentiles of equations (126)
and (127) are obtained by numerically solving∫ x−

xmin

P1D(x)dx = pmin, (128)

for x− and∫ x+

xmin

P1D(x)dx = pmax, (129)

for x+. This results in downward and upward error bars on the
best-fitting values of

σ−(x) = xbest − x−, (130)

and

σ+(x) = x+ − xbest, (131)

respectively.
The uncertainties obtained through the above procedure are

used after each iteration of the fitting process to determine whether
it requires another iteration and, if so, within which value range
the free parameter arrays of equations (102)–(104) should be
re(de)fined. At the end of a complete fitting step with these ar-
rays, we determine the part of the three-dimensional parameter
space that corresponds to the 3σ confidence ellipsoid and encloses
99.73 per cent of the total probability, with the intention of restrict-
ing the fitting range to this volume during the next fitting step. The
surface corresponding to this ellipsoid has a goodness-of-fit param-
eter value of

χ2
red = χ2

red,min +
∆χ2

Ndeg
, (132)

where ∆χ2 depends on the number of free parameters. The prob-
lem under consideration has Nfit = 3, which for the 3σ ellipsoid
results in ∆χ2 = 14.2 (Press et al. 1992, chapter 15.6). For each of
the free parameter arrays of equations (102)–(104), we then deter-
mine at each element what the minimum value of χ2

red is across the
full range of both other free parameters. The refined array for the
next fitting step is restricted to the range of elements where χ2

red

is smaller than the reference value of equation (132), plus one ele-
ment on either side of this range. This removes any free parameter
values for which no elements in the complete, three-dimensional
χ2

red array fall within the 3σ ellipsoid.
The above steps update the values of tgas,min, tgas,max,

tover,min, tover,max, λmin, and λmax that are used in equa-
tions (102)–(104) for the next fitting step, with the added condition
that if tover,min > tgas,min, we set tover,min = tgas,min to avoid
the unphysical situation that the minimum duration of the overlap
phase exceeds the duration of the gas phase for some part of the
range of tgas. Even if this enables a next fitting step in principle,
we carry out four additional checks of the new free parameter lim-
its, three of which can prevent entering the next fitting step. These
checks are as follows.

(i) If the best-fitting value resides within four array elements of
the edge of a new parameter space range, which can happen in
the rare situation that χ2

red increases very steeply from χ2
red,min to

χ2
red,min + ∆χ2/Ndeg, the free parameter range at that edge is ex-

panded. For lower limits, we expand the updated minimum through
multiplication by xmin/xmax, whereas for upper limits, the updated
maximum is expanded through multiplication by xmax/xmin. In ei-
ther case, the updated minimum (maximum) is not allowed to fall
below (exceed) the value set at the beginning of the fitting process,
as defined in Section 3.2.12 for equations (102)–(104). This check
does not prevent the next fitting step, but it ensures that the best-
fitting solution does not end up at the edge of parameter space.

(ii) If both the downward and upward 1σ ranges of all free pa-
rameters reach within four array elements of the edge of the current,
unrefined parameter space, the refinement is aborted and the fitting
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Figure 13. One-dimensional PDFs of tgas (left), tover (middle), and λ (right), which are the free parameters in the fit of the tuning fork diagram in Figure 12.
The PDFs are normalised to their maximum probability density. Vertical dashed lines indicate the best-fitting values (also indicated in the top left of each
panel), whereas the vertical dotted lines represent the 1σ uncertainty range as defined in the text. These three PDFs are representative of the PDFs that are
typically obtained when applying the method and illustrate that they are close to symmetric and Gaussian.

process is concluded. This check is added as a safety feature against
removing relevant parts of parameter space.

(iii) If the absolute logarithmic difference between all six of
the old and new parameter space limits is smaller than a certain
tolerance value δlim, another refinement step is deemed unneces-
sary, because the added precision is negligible. We use a value of
δlim = 0.01, which implies that if the change of all parameter space
limits is smaller than 2.3 per cent, the refinement is aborted and the
fitting process is concluded.

(iv) Finally, we cap the number of fitting steps at Ndepth, corre-
sponding to a maximum of Ndepth−1 refinements. For the default
value of Ndepth = 4 (see Table 2, this cap is often not reached.
Instead, the refinement is aborted because the absolute logarithmic
difference between the old and new limits falls below the specified
tolerance (as discussed in the previous check).

The fitting process continues through the cycle of obtaining a
fit and refining the free parameter arrays until any of the three exit
conditions specified above are met. Once it is completed, we ob-
tain the final best-fitting values and their uncertainties. For the ex-
ample galaxy maps used throughout this section, these are tgas =
3.06+0.30

−0.29 Myr, tover = 0.90+0.14
−0.12 Myr, and λ = 194+23

−19 pc.
As stated before in Section 3.2.12, due to the nature of the exper-
iment these values have no particular physical meaning, but they
highlight that the quantities are very well-constrained, with rel-
ative errors of 16 per cent or smaller in all three cases. Finally,
HEISENBERG writes the differential one-dimensional PDFs to disk
in ASCII format and also outputs figures of all nine free parame-
ter PDFs calculated here, i.e. the three differential one-dimensional
PDFs, the three cumulative one-dimensional PDFs, and the three
two-dimensional PDFs of each free parameter pair. The best-fitting
values and their uncertainties are also indicated in these plots.

For the familiar example maps, the one-dimensional differen-
tial PDFs of tgas, tover, and λ are shown in Figure 13. These PDFs
are well-behaved in that they are quite symmetric and even fairly
close to Gaussian, as evidenced by the fact that the 1σ lines inter-
sect with the PDFs near the expected exp (−1/2) ≈ 0.61 times
the peak value. The kinks in the tover PDF result from the discrete
nature of the relation between βstar, βgas, and tover (see Figure 9),
which is unavoidable given that any galaxy map hosts a finite num-
ber of emission peaks. We note that these PDFs are representative

for the applications of our method in Section 4, as well as the on-
going observational applications. Having said that, it is possible
to retrieve asymmetric PDFs if the tuning fork diagram provides
less strong constraints than in this example (e.g. when one of the
branches remains nearly flat over the full range of aperture sizes,
which is indicative of a long duration of the overlap phase). For
this reason, we emphasize that future applications of the method
should generally present the PDFs rather than the best-fitting values
and their uncertainties, especially when the downward and upward
uncertainties on one of the best-fitting values are dissimilar.

3.2.14 Calculation of derived quantities and error propagation

As the final quantitative step of the method, we use the constraints
on the evolutionary timeline of independent star-forming regions
and their characteristic separation lengths to derive additional phys-
ical quantities describing the star formation and feedback process.
Unsurprisingly, having access to the evolutionary time-scales pro-
vides a powerful avenue for constraining these physics. By carrying
out Monte-Carlo sampling from the complete, three-dimensional
PDF of tgas, tover, and λ from Section 3.2.13, we self-consistently
obtain the one-dimensional PDFs of all derived quantities and fully
account for the covariance between the three free parameters. This
error propagation process also provides us with the complete co-
variance matrix between all constrained quantities. In what follows,
we first discuss the expressions used to obtain each of the derived
quantities, before treating the Monte-Carlo error propagation.

We first describe a set of quantities that represent byproducts
of the fitting process, in that they play a role in the equations de-
scribing the model in Section 3.2.11, but do not act as free param-
eters in the fitting process, because they are functions of tgas and
tover. In Section 3.2.1, we described that the input file contains the
stellar ‘reference time-scale’ used to convert the relative timeline
constrained by the method to an absolute timeline. However, we
also introduced the flag tstar incl = {0, 1}, which encodes
whether the reference time-scale excludes or includes the overlap
time-scale, respectively. A physical example of the first case would
be Hα emission, because star-forming regions with a non-zero age
spread may continue forming stars while they are already visible in
Hα, implying that only when star formation has ceased and any
residual star-forming gas is expelled, the final massive star has

MNRAS 000, 1–80 (2018)



Cloud-scale star formation across cosmic history 35

formed and the stellar evolutionary ‘clock’ of the reference time-
scale starts ticking. By contrast, in the numerical experiments car-
ried out in Section 4.2, we use star particles within a certain age
range to provide the stellar map and reference time-scale, in which
case the reference time-scale is equivalent to this age range and
includes the duration of the overlap phase. Mathematically, these
cases correspond to

tstar = tstar,ref + tover, (133)

if tstar incl = 0 and tstar,ref does not include tover, and

tstar = tstar,ref , (134)

if tstar incl = 1 and tstar,ref does include tover. Throughout
this paper, we will indicate which definition of tstar,ref we are using
for each experiment. Similarly to tstar, the total duration of the
evolutionary timeline shown in Figure 1 follows by combining the
time-scales

τ = tstar + tgas − tover, (135)

where the subtraction of tover is needed to avoid counting it twice,
because the duration of the overlap phase is included both in tstar

and tgas.
The next quantities that are obtained as byproducts of the

fitting process are βstar and βgas. They are defined by equa-
tions (40) and (41), where they are given as a function of
fstar,over = tover/tstar and fgas,over = tover/tgas, respectively
(also see Figure 9). HEISENBERG stores the numerical relations
βstar(fstar,over) and βgas(fgas,over) from Section 3.2.9 and uses
these after constraining the best fit to the tuning fork diagram to de-
termine the values of βstar and βgas. The PDFs of these quantities
are determined below using the same relations in the Monte-Carlo
error propagation process.

The third set of quantities that are constrained as byproducts
of the fitting process are Estar, Egas, Estar,glob, and Egas,glob, which
are defined in equations (44)–(47) as a function of a size scale
lap that is set to lap = λ in Section 3.2.11. As with βstar and
βgas, HEISENBERG stores the relations between these quantities
and λ and uses these after obtaining the best-fitting value of λ to
determine the corresponding values of Estar, Egas, Estar,glob, and
Egas,glob. These relations are also used for determining the PDFs
of these quantities by Monte-Carlo error propagation.

We now turn to a number of derived quantities that are them-
selves not used directly in the fitting process, but follow immedi-
ately from the quantities determined so far. Firstly, the radii of the
stellar and gas emission peaks, rstar and rgas, are defined by equa-
tions (92)–(95), depending on whether it is assumed that the peak
profiles follow constant surface density discs or two-dimensional
Gaussians. Throughout this paper, we adopt the latter case, as this
is more representative of typical emission peak profiles, both in ob-
servations and in our simulated maps (see Sections 3.2.11 and 4).
From these radii, we immediately derive the relative filling factors
of the peaks, i.e. their diameters in units of the mean separation
length of independent regions. For the stellar peaks, we write this
quantity as

ζstar =
2rstar

λ
, (136)

while for the gas peaks this becomes

ζgas =
2rgas

λ
. (137)

In Section 4, we find that a reliable measurement of the dura-
tion of the overlap phase tover and, hence, the characterisation of

feedback-related quantities requires ζstar and ζgas to be lower than
a certain maximum value (also see Appendix B). These quantities
therefore represent an important benchmark in assessing the accu-
racy of the method’s results.

Finally, by combining the mean separation length and the du-
ration of the overlap phase, we obtain the characteristic velocity
vfb by which the residual gas is removed from independent star-
forming regions by feedback:

vfb =
λ

2tover
. (138)

The physical meaning of this velocity depends on the feedback
mechanism responsible for removing the gas. If the gas is kineti-
cally removed, the feedback velocity simply represents the outflow
velocity averaged over the distance from the feedback source to
half the region separation length λ/2. However, if the gas tracer is
rendered invisible by a change in phase or emissivity (e.g. through
photoevaporation, ionization, excitation conditions, or a chemical
reaction), then the feedback velocity corresponds to the velocity of
the phase transition or emissivity front. In that case, the relevant
length scale is not the region separation length, but the gas region
radius rgas. The same applies if the gas becomes undetectable by
dilution once the shell escapes the cloud boundary. These situations
may arise in regions of low gas surface density, where molecular
clouds are embedded in an atomic-dominated medium (e.g. Blitz
& Rosolowsky 2006; Krumholz et al. 2009). The feedback velocity
is then defined as

vfb,r =
rgas

tover
. (139)

Both feedback velocities are calculated by HEISENBERG. Most
generally, vfb and vfb,r bracket the range of possible feedback ve-
locities, but distinguishing between these is possible through a vari-
ety of metrics. In the context of the presented method, the duration
of the overlap phase tover may rule out the importance of certain
feedback mechanisms, e.g. when the gas is removed on a time-
scale shorter than 3 Myr, it is certain that core-collapse SNe are
not responsible (e.g. Ekström et al. 2012). In addition, we specify
the feedback energy and momentum coupling efficiencies in equa-
tions (148), (149), (152) and (153) below, which indicate whether
a given feedback mechanism provides the energy or momentum re-
quired for the removal of the gas over length scales λ/2 or rgas.
Independent constraints from ancillary observations can also help.
For instance, it is possible to directly measure the expansion veloc-
ities of shell-like features around individual star-forming regions.
Comparing these to vfb as defined above provides a conclusive way
of identifying the relevant length scale – if the typical expansion
velocity is similar to vfb,r rather than vfb, this means that the gas
tracer vanishes at a radius rgas rather than λ/2, due to dilution or a
change in phase or emissivity.

The final set of derived physical quantities is referred to as
composite quantities, because they depend on additional quantities
that are not directly constrained by the method itself. In particular,
by combining the obtained time-scales and size scales with the ab-
solute SFR and gas mass (or their surface densities), we obtain sev-
eral of the key quantities describing cloud-scale star formation and
feedback. This is an important implication of the presented method,
albeit not necessarily surprising. Recall the example given in equa-
tion (1), which showed that the degeneracy between the star for-
mation time-scale and the star formation efficiency can be lifted by
directly measuring one of these. This is exactly what we have done
in the method presented above.
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Firstly, we define the SFR surface density as

ΣSFR =
SFR

Atot
, (140)

which uses the total area and the SFR defined in equations (10)
and (13). The uncertainty on ΣSFR is assumed to be dominated by
the uncertainty of the conversion factor Xstar and we therefore set
the relative uncertainty σrel(ΣSFR) = σrel(Xstar). Likewise, the
gas surface density is defined as

Σgas =
Mgas

Atot
, (141)

which uses the total area and the gas mass defined in equations (10)
and (14). Again, we assume that the uncertainty on the conversion
factor Xgas dominates and therefore set the relative uncertainty
σrel(Mgas) = σrel(Xgas). The ratio of the gas mass and the SFR
(surface densities) corresponds to the gas depletion time

tdepl =
Σgas

ΣSFR
, (142)

which represents the time it takes to exhaust the presently available
gas reservoir at the present SFR.

As shown by equation (1), the ratio between the gas mass and
the SFR (surface densities) provides the ratio between the star for-
mation efficiency and the star formation time-scale. Given that our
method provides the duration of the gas phase (over which star for-
mation can proceed), we obtain the mean star formation efficiency
per unit cloud lifetime by dividing the surface density of the formed
stars tgasΣSFR by the gas surface density:

εsf =
tgasΣSFR

Σgas
=

tgas

tdepl
, (143)

where the second equality shows that this is equivalent to the ratio
between the duration of the gas phase (or cloud lifetime) and the gas
depletion time. By constraining the evolutionary timeline of cloud-
scale star formation, we can now determine whether star formation
is rapid and inefficient or slow and efficient.

The expressions derived so far allow us to formulate a set
of important dimensionless quantities describing cloud-scale feed-
back. These quantities are similar to those used in galaxy forma-
tion simulations, but here they describe feedback on a size scale λ,
whereas in simulations they are often considered on a larger spatial
scale. Firstly, a comparison of the instantaneous SFR and outflow
rates per region of equations (154) and (155) provide the instanta-
neous mass loading factor, i.e. the outflow rate during the overlap
phase in units of the SFR during the gas phase:

ηfb =
Ṁfb

Ṁsf

=
(1− εsf)tgas

εsftover
=
tdepl − tgas

tover
. (144)

This expression does not reflect the total mass budget, because it
considers the instantaneous rates of star formation and mass out-
flow, both of which take place on different time-scales (tgas and
tover). By contrast, the time-averaged mass loading factor does re-
flect the total mass budget, i.e. it balances the total mass ejected by
feedback (1 − εsf)Σgas by the total stellar mass formed tgasΣSFR

and thus becomes a simple ratio of either star formation efficiencies
or time-scales:

ηfb =
(1− εsf)Σgas

tgasΣSFR
=

1− εsf
εsf

=
tdepl

tgas
− 1. (145)

While the mass loading factor of equation (144) may be appropri-
ate for comparison to observational estimates of the mass loading
factor based on observed mass outflow rates and SFRs, the defini-
tion in equation (145) is appropriate for comparison to theoretical

models, which often consider the total ejected mass in terms of the
total stellar mass (e.g. Krumholz et al. 2017).

Likewise, it is possible to compare the total energy and mo-
mentum imparted by feedback on the ISM to the total injected en-
ergy and momentum, resulting in the feedback energy and momen-
tum coupling efficiencies χfb,E and χfb,p. The total imparted ki-
netic energy per unit area is given by

Efb =
1

2
(1− εsf)Σgasv

2, (146)

where v is vfb or vfb,r . The total injected energy per unit area is

Etot = εsfΣgasΨEtover, (147)

with ΨE the energy output rate per unit mass (i.e. the light-to-mass
ratio). The first half of this expression (εsfΣgas) represents the total
mass surface density of new-born stars, whereas the second half
(ΨEtover) represents the total energy output per unit mass. With
these two energy budgets in hand, it is straightforward to define the
feedback energy efficiency as the ratio between Efb and Etot:

χfb,E =
Efb

Etot
=

(1− εsf)v2
fb

2εsfΨEtover
, (148)

for expansion out to λ/2 and

χfb,E,r =
Efb

Etot
=

(1− εsf)v2
fb,r

2εsfΨEtover
, (149)

if the gas vanishes already at rgas by dilution or a change in phase
or emissivity. Clearly, the feedback energy efficiency depends on
the light-to-mass ratio ΨE , which should be specified. However,
the appropriate value of ΨE depends on the problem under con-
sideration. With the output from stellar population synthesis mod-
els, it is possible to define this parameter for individual feedback
mechanisms or any combination thereof. Typical values range from
ΨE = 10−4–100 m2 s−3, which covers core-collapse SNe, stellar
winds, and radiative feedback (e.g. Agertz et al. 2013). A feed-
back energy efficiency in excess of unity (χfb,E > 1) indicates
that the feedback mechanisms accounted for by the adopted value
of ΨE are insufficient to drive the observed feedback energy im-
parted on the ISM, whereas χfb,E < 1 provides constraints on the
inefficiency of feedback energy coupling to the ISM due to e.g. the
porosity of the ISM or radiative losses.

Analogously to the total imparted kinetic energy per unit area,
we define the total imparted momentum per unit area as

pfb = (1− εsf)Σgasv, (150)

where v again refers to vfb or vfb,r . The total injected momentum
per unit area is

ptot = εsfΣgasψptover, (151)

with ψp the momentum output rate per unit mass, which has units
of acceleration. As in equation (147), the first half of this expres-
sion (εsfΣgas) represents the total mass surface density of new-born
stars, whereas the second half (ψptover) represents the total mo-
mentum output per unit mass. With these two momentum budgets
in hand, it is straightforward to define the feedback momentum ef-
ficiency as the ratio between pfb and ptot:

χfb,p =
pfb

ptot
=

(1− εsf)vfb

εsfψptover
. (152)

for expansion out to λ/2 and

χfb,p,r =
pfb

ptot
=

(1− εsf)vfb,r

εsfψptover
. (153)
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if the gas vanishes already at rgas by dilution or a change in phase
or emissivity. Evaluating these expressions requires the momen-
tum output rate per unit mass ψp to be specified. As before, the
appropriate value can be chosen to represent individual feedback
mechanisms or to reflect their combined effect. For stellar winds,
typical values are ψp = 10−11–10−10 m s−2 (e.g. Agertz et al.
2013). Analogously to the feedback energy efficiency, a feedback
momentum efficiency in excess of unity (χfb,p > 1) indicates that
the feedback mechanisms accounted for by the adopted value of
ψp are insufficient to drive the observed feedback momentum im-
parted on the ISM, whereas χfb,p < 1 provides constraints on the
inefficiency of the feedback momentum coupling to the ISM due to
e.g. the porosity of the ISM or opposing forces (such as the ambient
gas pressure).

In general, a comparison of the measured χfb,E and χfb,p

helps determine whether outflow is energy-driven or momentum-
driven. If ΨE and ψp are chosen such that they contain all possi-
ble contributions to the injected energy and momentum and either
χfb,E or χfb,p exceeds unity, this indicates that the other driving
process dominates, because the observed outflow cannot be gener-
ated when χfb > 1. When both χfb,E & 1 and χfb,p & 1, this
suggests that the gas is rendered invisible at a radius rgas rather
than λ/2, necessitating the use of χfb,E,r and χfb,p,r instead. If all
four coupling efficiencies exceed unity, this either points towards a
problem in the input parameters chosen for the analysis, leading to
inaccurate measurements of tover, vfb, vfb,r , or εsf , or indicates that
the (models motivating the) choice of ΨE and ψp are incorrect or
incomplete. The former situation would require the user to revisit
the input and correct any mistakes, but the latter case would count
as a falsification of the tested feedback description and would hint
at the importance of additional feedback mechanisms.

Finally, the obtained characteristic time-scales and size scales
governing cloud-scale star formation and feedback can be used
to derive absolute properties of the average cloud or star-forming
region in the considered maps. This can be done by multiplying
the mean surface densities across the maps with the region area
π(λ/2)2. However, this requires the strong assumption that the
number densities of regions on a size scale λ are similar to that
across the entire map, i.e. that the regions are randomly distributed
in space. While a similar assumption is made in deriving the model
of Section 3.2.11, it is much stronger here. In the general context of
the model, we assume a random distribution of independent regions
(see Section 7.2.1) on size scales up to a few times the mean sep-
aration length λ. On larger size scales, the flux ratio biases of the
tuning fork diagram converge to the galactic average, irrespectively
of (possibly strong) deviations from a random spatial distribution.
However, it is a much stronger assumption to obtain a region mass
by multiplying the map-averaged surface density with the region
separation length, because this conversion will be affected by large-
scale morphological features such as spiral arms, rings, and bars.
Due to the associated uncertainty of calculating the absolute prop-
erties of independent regions, we intend to consider these quantities
in more detail in future work and only provide two examples here.

We determine the typical absolute SFRs and feedback out-
flow rates of the independent star-forming regions described by our
model. The mean separation length λ provides the characteristic
size scale within which star formation proceeds, implying a region-
averaged SFR during the gas phase of

Ṁsf = π

(
λ

2

)2

ΣSFR = π

(
λ

2

)2
εsfΣgas

tgas
. (154)

The first expression given here is trivial – it simply multiplies the

area-averaged SFR surface density by the area per region to get
the SFR per region. The second expression obtains the SFR sur-
face density in terms of gas tracer properties to enable a straight-
forward comparison to equation (155) below. Analogously to equa-
tion (154), we can derive the region-averaged mass outflow (or re-
moval) rate due to feedback during the overlap phase:

Ṁfb = π

(
λ

2

)2
(1− εsf)Σgas

tover
, (155)

where the numerator denotes the gas surface density of the resid-
ual gas and the denominator represents the feedback time-scale
(i.e. the duration of the overlap phase). We reiterate that both
equations (154) and (155) assume a homogeneous distribution of
independent regions, without large-scale morphological features
or a strong spatial clustering of the regions, such that the aver-
age surface densities ΣSFR and Σgas yield meaningful SFRs or
masses when multiplying by π(λ/2)2. When applying the method
to galaxies with prominent morphological features, the risk exists
that the global surface density underestimates the surface density
in the direct vicinity of star-forming regions or gas clouds. In such
a situation, the above expressions for the absolute SFR and mass
outflow rate are accurate when a part of the galaxy with relatively
homogeneous structure is selected by masking. Alternatively, it is
possible to correct for morphology using the flux density contrasts
Estar,glob and Egas,glob from equations (46) and (47). We do not
provide a detailed derivation here, but defer it to a future applica-
tion of the method for which a morphological correction is needed.

After having determined all of the quantities described in this
section for the best-fitting model of the tuning fork diagram, we
obtain their PDFs through Monte-Carlo error propagation. To fully
account for any covariance between the three free parameters tgas,
tover, and λ, it is necessary to draw from their complete three-
dimensional PDF of equation (116). Drawing numbers from a dis-
cretised PDF is trivial in one dimension, because one simply inter-
polates the cumulative one-dimensional PDF, but this is not possi-
ble when dealing with a three-dimensional PDF. We therefore draw
each Monte-Carlo realisation of the three free parameters through
three correlated, one-dimensional representations of the relevant
parts of the three-dimensional PDF.

First, we draw a value tgas,mc from its marginalised, one-
dimensional cumulative PDF by numerically solving

ql = P1D(tgas 6 tgas,mc), (156)

for tgas,mc, where ql represents a random number {ql ∈ R|0 6
ql 6 1}. In practice, this requires interpolating the discretised
form of P1D(tgas < tgas,mc).17 To obtain tover,mc, we evaluate the
marginalised, two-dimensional PDF of tgas and tover at tgas,mc,
resulting in the one-dimensional PDF of tover given the value of
tgas,mc. This one-dimensional PDF is obtained by interpolation be-
tween the two discrete one-dimensional PDFs:

P2D[tover 6 tover,mc|tgas(i)],

P2D[tover 6 tover,mc|tgas(i+ 1)],
(157)

where i denotes the index such that tgas(i) 6 tgas,mc 6 tgas(i+1).
We then draw tover,mc by numerically solving:

ql+1 = P2D(tover 6 tover,mc|tgas,mc), (158)

17 When drawing the Monte-Carlo realisations from the three-dimensional
PDF, the interpolations are carried out on the logarithmic grids of equa-
tions (102)–(104), but they are linear in the random number and the cumu-
lative probability.
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for tover,mc, where the increment of the subscript in ql+1 indi-
cates that we use a new random number. As before, the drawn
value tover,mc is obtained by interpolating the discretised form
of P2D(tover < tover,mc|tgas,mc). To obtain λmc, we evalu-
ate the complete three-dimensional PDF of tgas, tover, and λ at
{tgas,mc, tover,mc}, resulting in the one-dimensional PDF of λ
given the values of tgas,mc and tover,mc. This one-dimensional
PDF is obtained by interpolation between the four discrete one-
dimensional PDFs:

P3D[λ 6 λmc|tgas(i), tover(j)],

P3D[λ 6 λmc|tgas(i), tover(j + 1)],

P3D[λ 6 λmc|tgas(i+ 1), tover(j)],

P3D[λ 6 λmc|tgas(i+ 1), tover(j + 1)],

(159)

where i is defined as before and j denotes the index such that
tover(j) 6 tover,mc 6 tover(j + 1). We then draw λmc by nu-
merically solving:

ql+2 = P3D(λ 6 λmc|tgas,mc, tover,mc), (160)

for λmc, where we have again used a new random number. As be-
fore, the drawn value λmc is obtained by interpolating the discre-
tised form of P3D(λ 6 λmc|tgas,mc, tover,mc).

Through the above procedure, we obtain a Monte-Carlo
realisation of a fit to the observed tuning fork diagram,
i.e. {tgas,mc, tover,mc, λmc}, by drawing from the three-
dimensional PDF. In addition, we generate Monte-Carlo real-
isations of the duration of the reference time-scale tstar,ref and the
SFR and gas surface densities ΣSFR and Σgas. The uncertainties
on each of these quantities are defined either directly in the input
file (see Table 2) or by analytical error propagation, as detailed in
the discussion of equations (140) and (141). We assume that the
underlying PDFs are Gaussian,18 implying that the Monte-Carlo
realisations of these three quantities are obtained by drawing
Gaussian random numbers. This is repeated a total of Nmc,phys

times and thus requires a total of Nrnd = 3Nmc,phys random
numbers {ql ∈ R|0 6 ql 6 1} and the same number of Gaussian
random numbers {q′l ∈ R}, where we adopt a default value of
Nmc,phys = 106 for a total of Nrnd = 6 × 106 random numbers.
We find that 106 Monte-Carlo realisations yield PDFs of the
derived quantities (obtained below) that are essentially noise-free
and well-defined.

For each Monte-Carlo realisation, we calculate the quantities
described in this section. The total ensemble of Monte-Carlo real-
isations then provides the marginalised, one-dimensional PDF for
each of these quantities. We obtain the upward and downward un-
certainties from these PDFs in the same way as for the three free
parameters tgas, tover, and λ, as described in equations (122)–(131)
of Section 3.2.13. In addition, we obtain the covariance and corre-
lation matrices for all quantity pairs {Xi, Xj} as usual, i.e.

cov(Xi, Xj) = 〈XiXj〉 − 〈Xi〉〈Xj〉, (161)

and

ρij =
cov(Xi, Xj)

σiσj
, (162)

for the covariance and correlation matrix, respectively, where 〈. . . 〉
takes the mean over all Monte-Carlo realisations. In equation (162),

18 We allow asymmetric error bars on tstar,ref in Table 2. If the upward
and downward uncertainties differ, we use the mean uncertainty and still
generate the uncertainties from a symmetric Gaussian.
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Figure 14. One-dimensional PDFs of the feedback outflow velocity vfb

(left) and the star formation efficiency per star formation event εsf (right),
providing two examples of the quantities that can be derived from the fit in
Figure 12. The PDFs are normalised to their maximum probability density.
Vertical dashed lines indicate the best-fitting values (also indicated in the
top left of each panel), whereas the vertical dotted lines represent the 1σ un-
certainty range as defined in the text. These two PDFs are representative for
the PDFs of the derived quantities and illustrate that they are well-defined
by the Monte-Carlo error propagation procedure described in the text.

the quantities σi and σj represent the standard deviations of the
Monte-Carlo samples of Xi and Xj . The covariance and correla-
tion matrices are written to disk in ASCII format. HEISENBERG

writes each differential one-dimensional PDF to disk in ASCII for-
mat too and also outputs figures of all PDFs calculated here, i.e. the
differential and cumulative one-dimensional PDFs for each derived
quantity. The best-fitting values and their uncertainties are indi-
cated in these plots. For illustration, Figure 14 shows the differ-
ential PDFs of the feedback velocity vfb and the star formation ef-
ficiency per star formation event εsf for the example maps used
throughout Section 3. The PDFs are well-defined and show almost
no statistical noise. In addition, the uncertainty ranges on the quan-
tities are small, with relative errors less than 10 per cent, showing
that even the derived quantities can be determined to high precision.

3.2.15 Model output

At this point in the application of the method, all quantities of in-
terest have been calculated and the information needed for further
analysis should be written to disk. Table 4 lists all constrained quan-
tities for which PDFs and uncertainties are calculated and for which
ASCII tables and figures have been produced. In the final step of the
process, HEISENBERG generates an ASCII table that contains the
best-fitting quantities from Table 4 and their uncertainties, as well
as the absolute SFR and gas mass Mgas, the number of stellar and
gas peaksNpeak,star andNpeak,gas, and the minimum aperture size
used lap,min. In addition, HEISENBERG outputs a single table row
containing all of these quantities, which is straightforward to copy
into a master table of multiple runs. Finally, a log file is written
to disk, which contains all terminal output produced during steps
described in this section.

The text files generated during this final step add to the output
files written to disk at earlier steps, as summarised in Figure 3.
Upon completing the application of the method to a pair of galaxy
maps, we have access to:

(i) The masked maps showing the identified peak positions.
(ii) Figures and ASCII tables of the observed and best-fitting

tuning fork diagram.
(iii) ASCII tables of βstar(fstar,over), βgas(fgas,over), Estar(λ),

and Egas(λ).

MNRAS 000, 1–80 (2018)



Cloud-scale star formation across cosmic history 39

Table 4. Quantities constrained by the presented analysis

Quantity [unit] Classa Equation Description

χ2
red,min fundamental 113 Goodness-of-fit statistic
tgas [Myr] fundamental 116 Best-fitting gas tracer lifetime (e.g. the cloud lifetime)
tover [Myr] fundamental 116 Best-fitting overlap lifetime (e.g. the feedback time-scale)
λ [pc] fundamental 116 Best-fitting mean separation length of independent regions (e.g. the fragmentation length)

tstar [Myr] byproduct 133, 134 Star formation tracer lifetime
τ [Myr] byproduct 135 Total region lifetime
βstar byproduct 40 Ratio between the mean flux of overlapping and isolated star formation tracer peaks
βgas byproduct 41 Ratio between the mean flux of overlapping and isolated gas tracer peaks
Estar byproduct 44 Ratio between the central peak flux density and that on a size scale λ for star formation tracer peaks
Egas byproduct 45 Ratio between the central peak flux density and that on a size scale λ for gas tracer peaks
Estar,glob byproduct 46 Ratio between the flux density on a size scale λ and the map average for star formation tracer peaks
Egas,glob byproduct 47 Ratio between the flux density on a size scale λ and the map average for gas tracer peaks

rstar [pc] derived 92, 94 Disc radius or Gaussian dispersion radius of star formation tracer peaks
rgas [pc] derived 93, 95 Disc radius or Gaussian dispersion radius of gas tracer peaks
ζstar derived 136 Star formation tracer peak concentration parameter
ζgas derived 137 Gas tracer peak concentration parameter
vfb [km s−1] derived 138 Feedback-driven expansion velocity of ejecta if gas vanishes at λ/2
vfb,r [km s−1] derived 139 Feedback-driven expansion velocity of ejecta if gas vanishes at rgas

ΣSFR [M� yr−1 pc−2] composite 140 SFR surface density
Σgas [M� pc−2] composite 141 Gas surface density
tdepl [Gyr] composite 142 Gas depletion time
εsf composite 143 Star formation efficiency per star formation event
ηfb composite 144 Instantaneous mass loading factor
ηfb composite 145 Time-integrated mass loading factor
χfb,E composite 148 Feedback energy efficiency using vfb

χfb,E,r composite 149 Feedback energy efficiency using vfb,r

χfb,p composite 152 Feedback momentum efficiency using vfb

χfb,p,r composite 153 Feedback momentum efficiency using vfb,r

Ṁsf [M� yr−1] composite 154 SFR per star formation event during the gas phase
Ṁfb [M� yr−1] composite 155 Feedback mass removal rate per star formation event during the overlap phase

a The listed classes of quantities are fundamental (obtained directly from the fitting process), byproducts (of the fitting process), derived (from fundamental
quantities), or composite (obtained using additional constants such as conversion factors).

(iv) Figures of the marginalised, two-dimensional PDFs of the
three free parameters.

(v) Figures and ASCII tables of the marginalised, one-
dimensional PDFs of all constrained quantities (see Table 4).

(vi) The correlation and covariance matrices of all constrained
quantities.

(vii) The output files listing the best-fitting values and uncertain-
ties of all constrained quantities.

(viii) The log file of the terminal window.

In future work, we aim to extend the method further. In partic-
ular, we have included the option of closing the loop in Figure 3 and
iteratively applying the method, such that the output of one analy-
sis run can be used to modify the input maps and rerun the analysis
with the updated maps (Hygate et al. 2018). This approach can be
used to filter out diffuse emission from the maps that does not be-
long to independent regions as defined by the application of the
method, or plausibly to account for distinct morphological features
in the galaxy maps such as strong spiral arms or rings.

4 VALIDATION USING DISC GALAXY SIMULATIONS

To test the method described in Section 3, we require pairs of
galaxy maps to which the method can be applied. For this purpose,
we carry out hydrodynamical simulations of isolated disc galaxies
and create a large number of different maps from these simulations,

showing their gas and stellar content in a variety of ways. Because
these are simulated rather than observed systems, we can perform
a variety of controlled experiments to assess the accuracy of the
method. These simulations are carried out using commonly-used,
sub-grid models for star formation (e.g. Katz 1992) and feedback
(see Hu et al. 2014 for a detailed description of the code used). Even
though such models result in galaxies with macroscopic properties
that provide a reasonable match to the observed galaxy population
(e.g. Vogelsberger et al. 2014; Schaye et al. 2015), the star forma-
tion and feedback prescriptions are certainly inadequate when con-
cerned with the cloud-scale processes discussed here (e.g. Hopkins
et al. 2014). However, this is not a concern in the context of the
problem at hand. The goal of this work is not to accurately model
cloud-scale star formation and feedback, but to determine whether
the presented method accurately retrieves the quantities describing
what happens in the simulated maps, irrespective of whether the
underlying physics are correct. If the method successfully extracts
these quantities, then it can be applied to observations of real galax-
ies to motivate improved models for star formation and feedback in
galaxy simulations. As we show in this section, the method indeed
provides accurate measurements of these quantities and is suitable
for application to a large variety of observed galaxies.
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4.1 Disc galaxy models

We briefly describe the setup and properties of the numerical disc
galaxy models used. In order, we summarise the hydrodynamical
method used, the cooling, star formation, and feedback model, the
initial conditions, and the resulting properties of the isolated disc
galaxy models.

4.1.1 Hydrodynamical method

The galaxy simulations presented here have been performed with
the smoothed particle hydrodynamics (SPH, Monaghan 1992) code
P-GADGET-3 (Springel 2005), using the SPHGAL implementation
of the hydrodynamics solver by Hu et al. (2014). SPH is a Galilean
invariant, Lagrangian method for hydrodynamical simulations that
adopts a particle representation of the fluid. The implementation by
Hu et al. (2014) contains a number of important improvements rel-
ative to classical SPH flavours and alleviates many of the numerical
issues that affected SPH models in recent years (see Agertz et al.
2007 and Hu et al. 2014 for discussions). In brief, these improve-
ments are as follows.

(i) We use a Wendland C4 smoothing kernel (Dehnen & Aly
2012) to enable the use of Nngb = 200 neighbouring particles
without suffering from the pairing instability (Price 2012). Using
this high number of neighbours reduces the noise originating from
the ‘E0 error’ in the SPH momentum equation (Read et al. 2010)
and improves the convergence rate.

(ii) The classical density-entropy formulation of SPH is unable
to accurately model contact discontinuities or fluid mixing. To rem-
edy this, we use the pressure-entropy formulation of the SPH equa-
tions of motion (e.g. Ritchie & Thomas 2001; Saitoh & Makino
2013; Hopkins 2013). This formulation smoothes over the pres-
sure rather than the density and therefore avoids spurious pressure
jumps, which fundamentally improves the numerical approxima-
tion of the force field.

(iii) We include a strong artificial viscosity limiter as defined
in Hu et al. (2014) and progressing from the weak limiter from
Cullen & Dehnen (2010). This updated limiter keeps the fluid from
being too viscous in a differentially rotating disc, while retaining
the ability to capture shocks properly.

(iv) We adopt an artificial thermal energy conduction term
to dampen the entropy jumps at hydrodynamic shocks, which
smoothes the resulting pressure and force fields (see e.g. Read &
Hayfield 2012). This term only operates across shocks (not shear-
ing flows) and is highly pertinent in pressure-entropy SPH, because
pressure jumps can exceed density jumps by orders of magnitude.

(v) Finally, the time steps of particles in the vicinity of strong
shocks are limited to ensure that they are similar to within a factor
of a few (Saitoh & Makino 2009). In addition, particles become
active whenever they are subject to a feedback energy injection
(Durier & Dalla Vecchia 2012).

Together, these improvements are chosen to optimise the accu-
racy of the hydrodynamical modelling in differentially-rotating
disc galaxies (Hu et al. 2014), as considered in this paper. The sim-
ulations include the evolutionary cycling between gas and star par-
ticles, as well as a live dark matter halo.

4.1.2 Cooling, star formation, and feedback

The thermal evolution of the gas particles proceeds according to the
metal enrichment and cooling scheme from Aumer et al. (2013),

Table 5. Particle resolution of the simulated galaxies

Component NLR NHR mLR [M�] mHR [M�]

Halo 400000 1000000 2.3× 106 9.0× 105

Stellar disc 462000 2310000 1.4× 104 2.7× 103

Gas disc 308000 1540000 1.4× 104 2.7× 103

Bulge 20000 100000 1.4× 104 2.7× 103

which traces the 11 elements H, He, C, N, O, Ne, Mg, Si, S, Ca,
and Fe. Once a star particle forms (see below), it inherits the abun-
dances from its parent gas particle. The chemical enrichment in-
cludes ejecta from SNe types Ia and II, as well as AGB stars. After
metals are deposited into the ISM, they are advected with the flow
and undergo metal diffusion as in Aumer et al. (2013) to account
for turbulent mixing. The resulting cooling rate of each particle is
obtained for each element by assuming the gas is optically thin and
subject to the UV/X-ray background (Wiersma et al. 2009). We
adopt a cooling floor of T = 10 K, which is not reached in practice
(see Section 4.1.4).

Gas particles are eligible for star formation once they have
temperatures T < 1.2 × 104 K and hydrogen particle densities
nH > 0.5 cm−3 (assuming atomic gas). Star-forming gas particles
are converted into stars stochastically, according to the prescription
from Katz (1992):

ρSFR = ε
ρg

tdyn
, (163)

where ρSFR is the SFR volume density, ρg is the gas particle vol-
ume density, ε = 0.02 is the star formation efficiency per dynami-
cal time, and

tdyn =
1√

4πGρg

, (164)

is the dynamical time. In practice, this expression implies that, dur-
ing a timestep dt, the probability that a gas particle is converted
into a star particle is given by

psf = 1− exp (−εdt/tdyn). (165)

The effective timescale of the exponential is thus tdyn/ε, which
at the minimum density for star formation corresponds to 1.6 Gyr.
In practice, clouds consist of a large number of particles (recall
that Nngb = 200), implying that they begin forming stars on a
correspondingly shorter time-scale.

The deposition of mass, (radial) momentum, and (thermal) en-
ergy into the ISM is driven by SN explosions, which adds these to
the 10 gas particles closest to the star particle according to the ker-
nel weighting. Type II SNe take place after 3 Myr, whereas Type Ia
SNe occur continuously between 0.1–1 Gyr. SN ejecta correspond
to ∼ 19 per cent of the particle mass and carry 1051 erg of energy,
with a velocity of 3000 km s−1. The momentum is added to the
gas particles according to an inelastic collision and the remaining
energy added to the thermal energy budget of these particles. See
Scannapieco et al. (2006) and Hu et al. (2014) for further details.

4.1.3 Initial conditions

We generate the initial conditions of two isolated disc galaxies ac-
cording to the method by Springel et al. (2005a). The galaxies con-
sist of a live dark matter halo, a mixed gas-stellar disc, and a stel-
lar bulge. The halo is taken to follow a Hernquist (1990) profile
with an equivalent Navarro et al. (1997) concentration parameter
of c = 12, a virial mass of M200 = 9.0 × 1011 M�, and a virial

MNRAS 000, 1–80 (2018)



Cloud-scale star formation across cosmic history 41

LR, Σstar

5 kpc

LR, Σgas LR, Tgas HR, Σstar HR, Σgas HR, Tgas

Figure 15. Maps of the simulated galaxies, showing (from left to right) the stellar surface density, gas surface density, and density-weighted temperature along
the line of sight, for the low-resolution simulation (LR, left three columns) and the high-resolution simulation (HR, right three columns). The top row shows
the edge-on views of the galaxies, whereas the bottom row shows the face-on views. The colour scale is logarithmic in all panels, with stellar surface densities
covering log10(Σ/M� pc−2) = 0.5–3.5 in the edge-on maps and log10(Σ/M� pc−2) = 0.5–2.5 in the face-on maps. The upper limits on the gas surface
densities are 0.5 dex lower. For both the edge-on and face-on temperature maps, {red, white, blue} corresponds to log10(T/K) = {3, 4, 5}. All panels are
20 kpc on a side and the top-left panel includes a scale bar for reference.

radius of r200 = 2.2 × 102 kpc. We set the halo spin parameter
to λ = J |E|1/2/GM5/2

200 = 0.030, where J is the halo angular
momentum and E is the halo energy. The disc has a total mass of
Md = 1.05 × 1010 M� and an angular momentum fraction set to
be equal to the disc mass fraction. The stellar disc constitutes 60 per
cent of the total disc mass (Md,s = 6.3× 109 M�) and follows an
exponential profile with a scale radius of rd,s = 3.1 kpc and a scale
height of hd = 0.14 kpc. The gas disc constitutes 40 per cent of
the total disc mass (Md,g = 4.2×109 M�) and follows a compos-
ite radial profile, consisting of an exponential profile with a scale
radius of rd,g = 6.3 kpc (holding 5 per cent of the gas mass) and a
constant surface density HI disc that extends out to rHI = 12.5 kpc
(holding 95 per cent of the gas mass). Finally, the galaxies host a
Hernquist (1990) bulge with massMb = 2.7×108 M� and a scale
length of rb = 0.23 kpc. Over the course of the simulation, hd and
rb increase somewhat, by up to 40 per cent. The above parame-
ters have been chosen to be somewhat representative of near-L?,
flocculent spiral galaxies in the local Universe.

To sample the three-dimensional mass distribution of the
galaxy models, we use four families of particles with numbers and
masses listed in Table 5. The dependence on numerical resolution
is assessed by considering two galaxy models with different res-
olutions. The low-resolution (subscript ‘LR’) model consists of a
total of 1.19 × 106 particles, whereas the high-resolution (sub-
script ‘HR’) model consists of a total of 4.95 × 106 particles.
Gravitational forces between the particles are calculated using a
softening length for the halo particles of hhalo = 100 pc and for
the baryonic particles in the {low, high}-resolution simulations of
hLR,bary = 20 pc and hHR,bary = 10 pc, respectively. Note that
the smoothing lengths enclosing Nngb = 200 neighbours used for
determining the local fluid properties are considerably larger than
the above softening lengths, with typical map-averaged values of
hsmooth,LR ∼ 250 pc and hsmooth,HR ∼ 100 pc (see Section 5.1).
Finally, the particle masses listed in Table 5 are not sufficient to
resolve the cold gas, because the mass contained in an SPH ker-
nel is NngbmHR,g ∼ 5× 105 M�. However, they are sufficient to
marginally resolve the Jeans mass at the onset of cloud formation,
which suffices for the main goals of this paper (see Section 4.1.4).

4.1.4 Simulated disc galaxy properties

We run the disc galaxy simulations for a total duration of trun =
2.2 Gyr before generating the maps on which the method of Sec-
tion 3 is to be tested. For reference, we show the stellar and gas
particle maps at t = trun in Figure 15. The time covered by the
simulations exceeds the dynamical time at the virial radius and cor-
responds to over a dozen dynamical times within the galaxy itself
(at R < 10 kpc). The galaxies achieve equilibrium on the order of
a few disc dynamical times, well before the snapshots at trun that
we will consider throughout the rest of this paper. Indeed, Figure 15
shows that the simulated galaxies are stable and do not exhibit any
obvious transient morphological features. This is confirmed by vi-
sual inspection of all preceding snapshots.

To assess the behaviour of the ISM, Figure 16 shows the phase
diagram of the gas discs at t = trun, demonstrating that the ISM
in the simulations is stable too. Star formation takes place in the
regime where cooling from the atomic phase has set in and the
Jeans mass is sufficiently well-resolved to identify where the cool-
ing track sets in. Some hot and dense feedback ejecta can be seen
along the vertical white lines in the top right of each panel. The in-
creased resolution of the high-resolution simulation enables more
efficient gas cooling than in the low-resolution simulation due to
the higher densities. In Section 4.3, we will be testing the method
of this paper by using gas maps of these galaxies above minimum
volume densities indicated by the vertical white lines. Figure 16
shows that these volume density thresholds trace star-forming gas
in all but one (LR, dotted line) case. The total SFR in the simula-
tions averaged over the 10–300 Myr preceding these snapshots is
0.2–0.3 M� yr−1.

4.2 Age-binned stellar maps

As a first test of the method presented in Section 3, we exclusively
use maps of the star particles in the simulations. The major advan-
tage of using star particles is that their ages are known. By only
displaying the star particles in specified age ranges, the duration of
the evolutionary phase displayed in each map is known, allowing
the accuracy of the method to be directly quantified. In this subsec-
tion, we use these ‘age-binned’ stellar maps to assess how well the
method retrieves the ‘cloud lifetime’ tgas, the ‘feedback time-scale’
tover, and the overlap-to-isolated flux ratios βstar and βgas. Even
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Figure 16. Phase diagram of the gas particles in the low-resolution (left) and high-resolution (right) simulations. The part of phase space where gas particles
are eligible for star formation is represented by the hatched region, indicated with ‘SF’. The vertical dotted, dashed, and solid lines indicate the critical volume
densities above which the simulated gas maps are generated in Section 4.3. Converting densities from M� pc−3 to cm−3 ormH cm−3 requires the addition
of 1.25 dex (assuming a mean molecular weight µ = 2.3) or 1.61 dex, respectively. These phase diagrams show that the simulations resolve cooling down
to temperatures of several 100 K and densities of ∼ 10 cm−3, covering the onset of molecular cloud condensation. The Jeans mass is resolved with at least
200 particles for fluid elements above the red diagonal line, which applies to all gas at the onset of the collapse towards star formation, in the top left corner of
the hatched region. At both resolutions, some feedback-heated and shocked gas in star-forming regions is present at high densities and temperatures.

though we only use stellar maps in this subsection and all phases
of the evolutionary timeline therefore represent stellar phases, we
keep referring to the first phase as ‘gas’ (this includes its associated
quantities such as tgas and βgas) to remain consistent with the rest
of the paper.

4.2.1 Procedure for creating the maps

To generate age-binned maps of the star particles in the galaxy
models, we first need to define the age bins for which the parti-
cles are displayed. The duration of the stellar phase tstar represents
the width of the age bin for which the star particles are shown in
the stellar map. This time-scale is taken to be known and is used
during the fitting process to determine the other time-scales. The
duration of the ‘gas’ phase tgas represents the width of the age bin
for which the star particles are shown in the ‘gas’ map. The dura-
tion of the ‘overlap’ phase tover represents the age range for which
star particles are included in both maps. We add a fourth time-scale
toff that represents the offset of the age bins from an age of zero
(t = 0). For each experiment, these four time-scales define the
adopted age bins. The stellar phase includes the star particles in the
age bin spanning t = 〈toff +tgas−tover, toff +tgas +tstar−tover〉,
whereas the ‘gas’ phase includes the star particles in the age bin
spanning t = 〈toff , toff + tgas〉. The above definitions are consis-
tent with the evolutionary timeline in Figure 1 and imply that the
youngest star particles are shown in the ‘gas’ map, whereas the old-
est star particles are shown in the stellar map. As will be discussed
in Section 4.2.2, we have set toff = 0 for all but two experiments.

In addition to the above time-scales, we specify the overlap-
to-isolated flux ratios βstar and βgas. To do so, we first identify the
star particles in the age range t = 〈toff + tgas − tover, toff + tgas〉,
which corresponds to the overlap phase. When creating the stellar
map, we then multiply the masses of these star particles by βstar,
while for the ‘gas’ map, we multiply their masses by βgas. Note
that out of the six quantities discussed here, only tstar is used as

an input parameter in the method of Section 3. The method is not
informed of the values of the other five quantities. Instead, we are
using the experiments carried out here to assess how well the best-
fitting values of these quantities match their input values.

Having defined the age bins for which the star particles are
shown in each map, we generate the surface density maps of the
particles in these bins. These maps are square with a diameter of
20 kpc and 1403 pixels, corresponding to a pixel scale of 14.25 pc.
Two types of maps are made for each galaxy model. The ‘point par-
ticle’ surface density maps show the distribution of particles as-is,
for each pixel adding up the enclosed mass of the particles (modulo
a factor β if it contains particles in the overlap phase) and dividing
by the pixel area. At the adopted numerical resolution of the simula-
tions and the pixel scale of 14.25 pc, the typical number of particles
per pixel with ages in the selected age bins is zero or unity. By con-
trast, the ‘extended emission’ surface density maps account for the
extended morphology expected for real star-forming regions. In the
case of gas particles, this extended emission is set by the smooth-
ing kernel and smoothing length, but normally there is no need to
smoothen the star particles (only their gravitational force is soft-
ened). For consistency with the gas maps discussed in Section 4.3.1
below, we generate the extended emission surface density maps of
the star particles by calculating their smoothing length following
the same procedure as for the gas particles, i.e. by using the 200
nearest neighbours to define the smoothing length and adopting a
Wendland C4 smoothing kernel (Dehnen & Aly 2012) to distribute
the mass around each particle position. This choice implies coarser
resolution in low-density regions and is made for consistency with
P-Gadget, in which the same kernel is used to smoothen the gas
particles in the simulations (as discussed in Section 4.1).

The maps resulting from the above procedure are written to
disk in the FITS file format and include a FITS header that contains
their key properties, consistent with common conventions for ob-
servational data delivery. For the particular case of tgas = 30 Myr
and toff = 0 Myr, Figure 17 shows four examples of a typical ‘gas’

MNRAS 000, 1–80 (2018)



Cloud-scale star formation across cosmic history 43

LR, point particles

5 kpc

HR, point particles

LR, extended emission HR, extended emission

Figure 17. The four different types of ‘gas’ maps used in Section 4.2. From
left to right, top to bottom, these are maps of the low-resolution (LR) point
particle distribution, the high-resolution (HR) point particle distribution, the
LR extended emission (generated by using a smoothing kernel, see the text),
and the HR extended emission. In these examples, the maps show the distri-
bution of star particles in the age range t = 〈0, 30〉Myr. In Section 4.2.2,
we present the 22 different sets of age ranges (and thus maps) for which our
method is tested, for a total of 4× 22 = 88 experiments.

map that these experiments are carried out with, illustrating the
similarities and differences between the two types of maps (‘point
particles’ and ‘extended emission’) for both disc galaxy models
(‘low resolution’ and ‘high resolution’). Because we are using age-
binned stellar maps both to generate the stellar maps and the ‘gas’
maps, the stellar maps have the same general properties as the ‘gas’
maps shown in Figure 17. In contrast to the pairs of age-binned stel-
lar maps discussed here, Section 4.3 below concerns a second set
of experiments that each combine a stellar map with an actual gas
map of the gas particles in the disc galaxy models.

4.2.2 Description of the experiments

Table 6 summarises the experiments carried out using the age-
binned stellar maps, specifying the values of tstar, tgas, tover, βstar,
and βgas for each experiment. It also lists the symbols used to in-
dicate each experiment in the figures presented in Section 4.2.3
and 4.2.4. The experiments are divided into six main categories,
reflected by the differently coloured symbols in the final column.

(i) The first set of experiments (black symbols) is aimed at in-
vestigating the role of galactic dynamics. This is the simplest pos-
sible experiment, with equal stellar and ‘gas’ time-scales (tstar =
tgas), no overlap (tover = 0 Myr), no age offset (toff = 0 Myr),
and no flux difference between particles in the isolated and overlap
phases (βstar = 1 and βgas = 1). By spanning 1.5 dex in total
duration (ranging from just a few Myr in the first experiment to
more than an orbital time in the fourth experiment), we can assess
whether the gradual dispersion of groups of young star particles
affects the accuracy of our method.

(ii) The second set of experiments (blue symbols) adds a first

Table 6. Experiments carried out using age-binned stellar maps

ID tstar tgas tover toff βstar βgas Symbol

1 3 3 0 0 1.0 1.0 �
2 10 10 0 0 1.0 1.0 �
3 30 30 0 0 1.0 1.0 �
4 100 100 0 0 1.0 1.0 �

5 1 3 0 0 1.0 1.0 N

6 3 1 0 0 1.0 1.0

N

7 10 30 0 0 1.0 1.0 N

8 30 10 0 0 1.0 1.0

N

9 1 10 0 0 1.0 1.0 H
10 10 1 0 0 1.0 1.0 N
11 3 30 0 0 1.0 1.0 H
12 30 3 0 0 1.0 1.0 N

13 10 10 2 0 1.0 1.0 �
14 10 10 4 0 1.0 1.0 �
15 10 10 8 0 1.0 1.0 �

16 10 30 4 0 1.0 1.0 N

17 30 10 4 0 1.0 1.0

N

18 10 10 4 0 0.5 1.0 �
19 10 10 4 0 1.0 0.5 �
20 10 10 4 0 0.5 0.5 �

21 10 30 4 500 1.0 1.0 N

22 30 3 0 500 1.0 1.0 N

All time-scales are in units of Myr.

level of additional complexity by considering various degrees of
asymmetry between tstar and tgas. In the first four experiments,
both time-scales differ only by a factor of three, whereas the final
four experiments have time-scales differing by an order of magni-
tude. These experiments are intended to test how well the method
retrieves the tgas if it is very dissimilar from the reference time-
scale tstar.

(iii) The third set of experiments (red symbols) reverts to equal
stellar and ‘gas’ time-scales, but adds a non-zero overlap (tover >
0 Myr). These experiments allow us to determine how well our
method retrieves tover for various durations of the overlap phase.

(iv) The fourth set of experiments (green symbols) combines the
second and third sets, but considering dissimilar tstar and tgas and
including an overlap phase. This setup reminisces the situation one
would expect to occur in nature. We consider two cases, one where
tgas > tstar and one where tgas < tstar.

(v) The fifth set of experiments (cyan symbols) is an extension
of the third set, this time varying the overlap-to-isolated flux ra-
tios βstar and βgas. We consider two cases where only one of these
quantities deviates from unity (meaning that either βstar = 0.5 or
βgas = 0.5, which corresponds to the particles being half as bright
when they are in the overlap phase than when they are in the iso-
lated phase) and also include an experiment where both βstar = 0.5
and βgas = 0.5. These experiments are included to evaluate how
well our method retrieves tover when there is any flux evolution of
independent regions during the covered timeline, as well as to see
how well we retrieve the parameters βstar and βgas that capture this
flux evolution.

(vi) The sixth set of experiments (magenta symbols) considers
a large age offset of toff = 500 Myr from the star particle for-
mation time. One experiment represents a typical set of time-scales
(cf. the fourth set) and one reflects the extreme contrast between the
stellar and ‘gas’ time-scale (cf. the second set). These experiments
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consider cases where any initial structure has entirely been erased
by galactic dynamics and is aimed at testing how well the method
works for smoothed distributions of particles or regions.

The above sets of experiments are carried out using the ‘point
particle’ or the ‘extended emission’ surface density maps (see Sec-
tion 4.2.1), both for the low and high-resolution simulations. We
thus have a total of 88 experiments using age-binned stellar maps.
Some of the parameters used in these experiments deviate from the
default values in Section 3. Firstly, we are dealing with maps show-
ing star particles with specified age ranges, for which the reference
time-scale includes the time for which these age ranges overlap. We
therefore set tstar incl = 1, indicating that tstar,ref includes
tover and thus tstar = tstar,ref . Secondly, we set Npix,min = 1
for the point particle experiments, to enable single pixels to be
identified as peaks. Thirdly, for the low-resolution runs we set
lap,min = 100 pc to remove sub-resolution apertures, as well as
∆ log10 F = 2.5 and δ log10 F = 0.25 for the identification of
both the stellar peaks and gas peaks, because the low-resolution
maps used in this work require a finer and deeper contour level
spacing to identify the relevant emission peaks.

4.2.3 Accuracy of the ‘cloud lifetime’ tgas

The first test carried out using the 4 × 22 = 88 experiments pre-
sented in Section 4.2.2 is to determine how well the duration of
the ‘gas’ phase (tgas) is retrieved by our new method. The quan-
tity tgas can have a variety of physical meanings depending on the
(gas) tracers used. For the specific, real-Universe example of trac-
ing (molecular) gas with CO, this quantity refers to the time spent
by a region in a CO-bright state preceding a star formation event,
commonly referred to as the molecular cloud lifetime. As discussed
in Section 3, our method provides the complete PDF for each of
the quantities constrained in the fitting process, including tgas. Fig-
ure 18 shows the best-fitting value of tgas (referred to as tgas,out)
as a function of the input value of tgas from Table 6 (referred to as
tgas,in) for all 88 experiments.

4.2.3.1 Point particles Because the method assumes that inde-
pendent regions can be easily identified and the evolutionary time-
line is well-sampled, the best agreement between input and out-
put values is expected for the high-resolution point particle exper-
iments (top-right panel). A comparison between the scatter of the
data points around the one-to-one relation (σtrue) in the four pan-
els of Figure 18 shows that this is indeed the case. The logarithmic
scatter in the top-right panel is just 0.06 dex, corresponding to just
∼ 14 per cent. The fact that this scatter is similar in magnitude to
the mean error bar size of 0.07 dex means that the observed scatter
is entirely accounted for by the uncertainties on the best-fitting val-
ues tgas,out. In other words, the method does not have any funda-
mental systematic biases in determining tgas for the high-resolution
point particle maps.

Even though this subset of experiments is expected to return
the best results, the close agreement is non-trivial. For instance, the
method assumes that independent regions are randomly distributed
in space up to a spatial scale of a few times the mean separation
length λ, which corresponds to ∼ 1 kpc in these experiments. As
is evident from Figure 17, the distribution of particles in the simu-
lation is substructured. It is encouraging that the deviation from a
random distribution seen here does not strongly influence the accu-
racy of the method. In Section 7.2, we will discuss more extreme
situations in which it may be important to account for substructure

in the spatial distribution of independent regions. The method also
assumes that the SFR has been constant to within the error bars on
the best-fitting value of tgas – any excess star formation during one
phase relative to the other phase will proportionally bias the mea-
sured time-scales. Again, the good agreement observed here shows
that variations of the SFR in the simulated isolated disc galaxy with
an M33-like mass are sufficiently small in principle to avoid biases
in the measured value of the ‘gas’ phase lifetime.

The agreement between input and output is less pronounced in
the low-resolution point particle experiments (top-left panel). With
a smaller number of independent regions, the evolutionary timeline
of Figure 1 is more sparsely sampled, implying that the Poisson
noise of the star formation history increases and the measured time-
scales are more prone to being biased. The number of independent
regions scales inversely with the particle mass, which is a factor of
five larger than in the high-resolution simulation. We thus expect
the Poisson noise to be a factor of

√
5 ≈ 2.2 larger than in the high-

resolution simulation, which is indeed the difference between the
scatter observed in the top-left and top-right panels (0.13/0.06 ≈
2.2). This ‘true’ scatter around the one-to-one relation is consistent
with the scatter expected for the size of the error bars (σerrors),
indicating that the error bars on the measurements are accurate.

The scatter around the one-to-one relation does not need to
be random. Because these experiments all use the same simulation
snapshot, deviations from a constant SFR may affect all experi-
ments covering a similar age range in the same way. Especially for
the low numbers of independent regions considered in the top-left
panel of Figure 18, this can lead to a systematic deviation of the
measured time-scales, which explains at least part of the discrepant
data points at tgas,in = 30 Myr. If we consider the example of
experiment 11, the number ratio between the particles in the stel-
lar and ‘gas’ phases is 0.08 dex (20 per cent) higher than expected
for the relative durations of these phases. This causes the retrieved
value of tgas to be 0.08 dex lower than it should be and represents
yet another example of Poisson noise, illustrating that the sampling
statistics of having smaller numbers of regions contribute to many
of the differences between the top-left and top-right panels. In addi-
tion, the spatial structure of these maps deviates more strongly from
a random distribution than for the high-resolution experiments (see
Figure 17). As we will discuss in Section 7.2, this substructure may
also contribute somewhat to the deviation from the one-to-one re-
lation.

4.2.3.2 Extended emission The bottom two panels of Figure 18
show the results of the experiments based on maps of the extended
emission, i.e. for a non-zero smoothing length (see Figure 17). Us-
ing extended emission maps rather than point particle maps again
increases the scatter around the one-to-one relation, as would be
expected. After all, compared to the point particle maps it is less
trivial to identify independent regions as peaks when their emis-
sion is smoothed over a certain area. This smoothing also adds an
emission background around each region that may overlap in space
with neighbouring regions and may be mistaken for a time overlap
(see Section 4.2.4).

In the method of Section 3, we deal with the above issues
by representing the independent regions as two-dimensional Gaus-
sians. In our formalism, each Gaussian stands for one region, im-
plying that its two-dimensional integral must be equal to unity. This
property is used to relate the surface density contrast between peaks
and the average across the map to the width (i.e. the Gaussian dis-
persion) of each peak. Mathematically, this is the correct approach
and it works very well in practice when peaks are marginally re-
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Figure 18. Accuracy of the ‘gas’ phase lifetimes (tgas) retrieved by our new method, for the low-resolution (LR, left panels) and high-resolution (HR, right
panels) simulations, using point particles (top panels) and extended emission (bottom panels). Shown is the best-fitting value tgas,out as a function of the
input value tgas,in specified for each experiment (see Table 6). The data points indicate the results for each experiment (see Table 6 and the legends in
the top panels for the meanings of the symbols), with error bars indicating the 16th and 84th percentiles of the tgas,out PDF. Note that only five values of
tgas,in = {1, 3, 10, 30, 100}Myr are considered in these experiments. The small horizontal offsets of the data points relative to these exact values have been
added to improve the legibility of the figure. Transparent symbols do not pass the guidelines for the reliable application of our method presented in Section 4.4
below and should therefore be omitted from further analysis. The dotted line indicates the one-to-one agreement and the grey areas illustrate different amounts
of scatter. The lightest shade represents a factor of two, the middle shade represents the standard deviation of log10(tgas,out/tgas,in) (i.e. the scatter around
the diagonal) for all data points (including the unreliable, transparent ones), and the darkest shade indicates the standard deviation of log10(tgas,out/tgas,in)

exclusively for the opaque (reliable) data points. Three different measures of the scatter around the one-to-one relation are given in the top left corner of each
panel. The first (subscript ‘errors’) is the scatter around the one-to-one relation expected for the error bars of the opaque data points (this is effectively the mean
error bar). The second (subscript ‘true’) is the actual scatter around the one-to-one relation for the opaque data points (corresponding to the darkest shade of
grey). The third (subscript ‘sys’) is the difference between the first and second values (defined as σ2

sys = σ2
true−σ2

errors, with the additional requirement that
σ2

sys > 0), which is the part of the scatter that cannot be accounted for by the error bars. As such, this represents the ‘systematic’ inaccuracy of the method.
In all cases, the intrinsic accuracy of the method is σsys . 0.2 dex, whereas at the high resolutions reached for local-Universe galaxies with telescopes like
ALMA, the accuracy is even higher with σsys . 0.1 dex.
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solved in observed galaxy maps, because the observational point
spread function typically resembles a Gaussian (see Section 5).
However, it is possible (e.g. due to substructure, blending, highly-
resolved independent regions, or a different point spread or smooth-
ing function19) that the assumption of Gaussian surface density
profiles is invalid. In this case, the measured time-scales may be
a bad representation of the true evolutionary timeline.

The bottom panels of Figure 18 demonstrate that any devia-
tions resulting from the above assumptions is modest. The excess
of the scatter beyond the mean error bar size (which is a measure
for the inaccuracy of the method) indeed increases, but it remains
within reasonable limits. The experiments using high-resolution
extended emission maps have a spatial resolution that is comfort-
ably obtained with ALMA. For these experiments, the excess scat-
ter around the one-to-one relation is 0.11 dex (which is less than
30 per cent). While this residual scatter is non-zero, it is an encour-
aging accuracy given the discussed assumptions. It is also sufficient
for astrophysical purposes. Current discussions in the literature re-
garding the molecular cloud lifetime discuss order-of-magnitude
differences (e.g. Dobbs et al. 2014; Jeffreson & Kruijssen 2018),
which our method can plausibly distinguish at the > 8σ level.

4.2.3.3 General conclusions We see that across all panels of
Figure 18, the largest outliers (ignoring the transparent symbols)
are upward or downward-pointing triangles. These symbols repre-
sent the experiments in which tstar and tgas differ by a factor of
10. Throughout the experiments carried out for this study (also see
Section 4.3.4), we have noticed that the most accurate results are
obtained when tstar and tgas are similar. This occurs because the
‘tuning fork’ diagram of Figure 2 becomes asymmetric for dissim-
ilar values of tstar and tgas, which moves one of the two branches
in the diagram closer to the B = 1 line, where the shape of the
diagram becomes less sensitive to the underlying time-scales. This
can limit the accuracy of the method.

To optimize the reliability of the results, the tracer for which
the time-scale is known (i.e. the ‘reference’ time-scale, which in
practice will often refer to the star formation tracer lifetime tstar)
should be chosen to be as similar as possible to the measured time-
scale (which in practice will often refer to the cloud lifetime tgas).
This may require iteration or running multiple experiments with
different reference maps (e.g. using Hα, FUV, and NUV, see Hay-
don et al. 2018) to converge on the best tracer to use. Figure 18
shows that the inaccuracy of the upward and downward-pointing
triangles is not unacceptable – the deviations from the one-to-one
relation are generally less than a factor of two and there are several
such symbols that lie right on top of the one-to-one relation. How-
ever, larger deviations would begin to impede astrophysical appli-
cations of the method. For practical applications, we therefore rec-
ommend an a posteriori evaluation to discard results for which the
difference between tstar and tgas exceeds an order of magnitude.
By contrast, time-scale measurements can be considered reliable
when | log10(tstar/tgas)| 6 1.

4.2.4 Accuracy of the ‘feedback time-scale’ tover

The second test carried out using the 88 experiments from Sec-
tion 4.2.2 is to determine how well the duration of the ‘overlap’
phase (tover) is retrieved by our method. Like tgas before, tover can

19 We note that the shape of the Wendland C4 smoothing kernel used here
to generate the maps is very similar to a Gaussian.

have a variety of physical meanings depending on the gas and star
formation tracers used. For the specific, real-Universe example of
tracing (molecular) gas with CO and star formation with an ioniza-
tion tracer like Hα, this quantity refers to the time it takes the CO
emission from a molecular cloud to disappear once the first ionis-
ing photons have started to emerge from the embedded star-forming
region. We refer to this duration as the feedback time-scale. Anal-
ogously to Section 4.2.3, we obtain the complete PDF of tover and
show the best-fitting value of tover (referred to as tover,out) as a
function of the input value of tover from Table 6 (referred to as
tover,in) for all 88 experiments in Figure 19. On both axes, we nor-
malise tover to the total duration of the timeline τ , thus comparing
the input fraction of a region’s lifetime during which it is visible in
both maps to the retrieved fraction.

4.2.4.1 Point particles As in Section 4.2.3, we expect the point
particle experiments to yield the best results, owing to the straight-
forward identification of independent regions. The top panels of
Figure 19 indeed demonstrate good agreement, with standard de-
viations around the one-to-one relation (σtrue) of 2–4 per cent in
tover/τ . In both cases, this scatter is larger than expected based on
the errors, indicating that there is a systematic uncertainty associ-
ated with the method. This uncertainty does not take the form of a
systematic bias, but represents an increase of the statistical uncer-
tainty. As previously, there are two possible sources of the added
scatter. Firstly, it is possible that the substructure in the spatial dis-
tribution of regions somehow influences tover more strongly than
tgas (on which the influence for the amount of substructure in these
simulations is negligible, see Section 4.2.3). Secondly, deviations
from a constant SFR could lead to biases in the measurements of
tover. This should affect tover more strongly than tgas, because it
covers a shorter duration and thus is more susceptible to Poisson
noise.

We test the hypothesis that variations in the SFR are respon-
sible for the main outliers in the top panels of Figure 19. In the
left-hand panel, the main outlier is experiment 13 (the red square
at {tover,in/τin, tover,out/τout} = {0.11, 0.05}), whereas in the
right-hand panel, the main outliers are experiments 14, 18, 19,
and 20 (the cluster of squares at {tover,in/τin, tover,out/τout} =
{0.25, 0.16}). The latter four experiments cover the same age bins
and only differ in terms of the overlap-to-isolated flux ratios βstar

and βgas (see Section 4.2.5). The fact that these four points show
an almost identical discrepancy compared to the input values while
sharing the same timeline coverage strongly suggests that SFR vari-
ations are the cause of their deviation. We verify this by compar-
ing the fraction fM (tover) of the total stellar mass in each map
formed during tover to the corresponding time fractions tover,in/τin
and tover,out/τout. If SFR variations cause the observed offsets,
then fM (tover) should match the measured value of tover,out/τout

rather than the stellar mass fraction expected for a constant SFR
tover,in/τin.

For experiment 13 in the top-left panel of Figure 19, we find
that fM (tover) = 0.05, whereas for the cluster of points around ex-
periment 14 in the top-right panel, we find that fM (tover) = 0.16.
Within the displayed precision, both of these numbers are identi-
cal to the retrieved values of tover,out/τout (0.05 and 0.16, respec-
tively). Therefore, we conclude that the systematic uncertainty of
σsys = 2–4 per cent identified in the top panels of Figure 19 is
caused by deviations from a constant SFR during the covered part
of the timeline. This is a real effect that will also affect observa-
tional applications of our method. Assuming that the simulations
considered in this paper provide a reasonable representation of SFR
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Figure 19. Accuracy of the ‘overlap’ phase lifetimes (tover) retrieved by our new method, normalised to the total duration of the timeline (τ ), for the low-
resolution (LR, left panels) and high-resolution (HR, right panels) simulations, using point particles (top panels) and extended emission (bottom panels).
Shown is the best-fitting value tover,out/τout as a function of the input value tover,in/τin specified for each experiment (see Table 6). The data points
indicate the results for each experiment (see Table 6 and the legends in the top panels for the meanings of the symbols), with error bars indicating the 16th and
84th percentiles of the tover,out/τout PDF. Note that only four values of tover,in/τin = {0, 0.11, 0.25, 0.67} are considered in these experiments. The small
horizontal offsets of the data points relative to these exact values have been added to improve the legibility of the figure. Transparent symbols do not pass the
guidelines for the reliable application of our method presented in Section 4.4 below and should therefore be omitted from further analysis. The red ellipses and
annotation in the bottom panels indicate real outliers that are not due to any inaccuracy of the method (part of this tover/τ excess is caused by the fact that the
extended emission maps contain peaks consisting of multiple particles that have a non-zero age spread, see the text). The dotted line indicates the one-to-one
agreement and the grey areas illustrate different amounts of scatter. The lightest shade represents a scatter of 0.1 (i.e. 10 per cent of the timeline duration
τ ), the middle shade represents the standard deviation of tover,out/τout − tgas,in/τin (i.e. the scatter around the diagonal) for all data points (including
the unreliable, transparent ones), and the darkest shade indicates the standard deviation of tover,out/τout − tgas,in/τin exclusively for the opaque (reliable)
data points. Three different measures of the scatter around the one-to-one relation are given in the top left of each panel. The first (subscript ‘errors’) is the
scatter around the one-to-one relation expected for the error bars of the opaque data points (this is effectively the mean error bar). The second (subscript ‘true’)
is the actual scatter around the one-to-one relation for the opaque data points (corresponding to the darkest shade of grey). The third (subscript ‘sys’) is the
difference between the first and second values (defined as σ2

sys = σ2
true − σ2

errors, with the additional requirement that σ2
sys > 0), which is the part of the

scatter that cannot be accounted for by the error bars. As such, this represents the ‘systematic’ inaccuracy of the method. The intrinsic accuracy of the method
is σsys . 0.05 (see the text), implying that tover can be determined to about 5 per cent of τ . Any tover < 0.05τ is therefore consistent with tover = 0.
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variations in disc galaxies, we recommend a minimum uncertainty
of 5 per cent in tover/τ , even if the formal error is smaller. In prac-
tice, this means that tover/τ < 0.05 is consistent with no over-
lap and tover/τ > 0.95 is consistent with completely overlapping
phases.

4.2.4.2 Extended emission Contrary to the good performance
of the method in retrieving tover/τ when applying it to the point
particle maps in the top panels of Figure 19, the bottom panels of
Figure 19 show a group of experiments with measured values of
tover that are significantly higher than the input values (highlighted
by the light red ellipses). This excess of tover only occurs in some
(but not all) of the experiments with low tover,in/τin. While this
deviation from the one-to-one relation may look like a major inac-
curacy of the method at first sight, it is largely physical in nature.

When determining how well tover is retrieved from the ex-
tended emission maps discussed in Figure 17, it is important to
realise that only the point particle maps may exhibit one-to-one
agreement between input and output. In these maps, it is possi-
ble to control the value of tover by specifying the age ranges for
which the particles are included in the map, because individual star
particles have a single formation time. This does not hold for the
extended emission maps, because their independent regions con-
sist of groups of star particles that have a non-zero, intrinsic age
spread – the star formation history of each progenitor cloud is not
a delta function. As a result, the descendant groups of star particles
may be present in both maps even in the experiments for which we
specify tover,in = 0. Therefore, any value of tover retrieved from
the extended emission maps should correspond to the sum of the
number specified in Table 6 and the age spread of each region. This
explains why mostly experiments with low tover,in/τin show the
tover excess. In these experiments, the intrinsic age spread of the
regions in the simulation is more likely to dominate over the im-
posed age spread tover,in.

It is important to realise that tover can only contain an intrin-
sic age spread for regions that consist of a sufficient number of star
particles to sample this age spread. In practice, the mean number
of particles per region depends on the total duration of each phase.
A very rough estimate of this number can be made by dividing the
number of regions in the point particle experiments by the number
of regions in the extended emission experiments (cf. the tables in
Appendix D1). A minimum of two particles per region is required
for both tracers to sample any age spread at all. This is only con-
sistently achieved in experiments 3 and 4 (see Table 6), where the
duration of both phases exceeds 30 Myr and the mean number of
star particles per region is 4–15 for each phase. The other experi-
ments have less than two particles per region on average, implying
that the age spread is only resolved in a subset of the regions in the
map. This dependence on the numerical sampling implies that the
excess of tover depends on the total duration of the timeline, and
is only fully included in experiments 3 and 4. For phase durations
shorter than∼ 30 Myr, the tover excess is smaller than the true age
spread, because the likelihood of sampling the timeline with a suf-
ficient number of particles to cover the full overlap phase is smaller
than unity.

We reiterate that the above increase of the intrinsic age spread
with the total duration of the timeline is entirely numerical in nature
and results from the quantisation of the mass reservoir into particles
of 1.4 × 104 M� (low resolution) and 2.7 × 103 M� (high reso-
lution). In real star-forming regions, this type of quantisation could
potentially take place in ionization-based star formation tracers
such as Hα, because such emission is generated by individual mas-

sive stars. However, such a quantisation will have a much weaker
effect than in our simulations, because roughly one O-star is formed
per 100 M�, assuming a normal IMF (e.g. Chabrier 2003). A sin-
gle star particle in our high-resolution simulation would host 27 O-
stars, i.e. the sampling rate of a real star-forming region is a factor
of ∼ 30 higher, meaning that an age spread like the one we see in
the simulations would be well-sampled already for tstar ∼ 1 Myr
rather than the limit of tstar ∼ 30 Myr that we see in the exper-
iments. The commonly-used star formation tracers Hα, FUV, and
NUV all cover time-scales well in excess of 1 Myr (Haydon et al.
2018). Therefore, we conclude that the method is capable of accu-
rately retrieving the overlap (or feedback) time-scale from observed
(molecular) gas and star formation tracer maps.

The bottom panels of Figure 19 contain two additional trans-
parent data points (indicative of not satisfying the guidelines for the
reliable application of our method presented in Section 4.4 below)
relative to those in Figure 18. These are the largest outliers in the
bottom-right panel and correspond to experiments 3 and 4, which
have large-to-extreme tover excesses of tover,out = 4.87+0.58

−0.62 Myr
and tover,out = 39.27+3.13

−2.74 Myr, respectively. Visual inspection
of the maps reveals extreme blending of the regions, caused by the
long timelines covered by these experiments (see Table 6) and the
resulting high spatial density of the regions. The large discrepancy
between the input and output value of tover in these experiments
highlights that blending can negatively affect the accuracy of mea-
suring tover with our method.

Interestingly, blending does not influence the accuracy of the
tgas measurements in Section 4.2.3, because it affects both phases
of the timeline in Figure 1 in proportion to their number densities
in the maps and therefore in proportion to their durations, result-
ing in the same relative change of either time-scale. Fundamen-
tally, our method measures the relative time-scale difference be-
tween both phases, implying that the measurement of tgas is not
affected by blending. However, this does not hold when measur-
ing tover, because that quantity is obtained by measuring the cor-
relation between both phases in excess of the statistical correlation
expected for a random distribution in the plane. It is easy to pic-
ture the influence of blending on this measurement with an exam-
ple. If one would convolve both the stellar and ‘gas’ maps with a
point spread function that matches the size of the simulated galaxy,
both phases would be fully correlated in the convolved maps and
the ratio between both maps would equal the galactic average ev-
erywhere. Naturally, this should result in a duration of the overlap
phase equal to the total duration of the timeline, irrespective of what
the true duration of the overlap phase would have been in the un-
convolved maps. This extreme example shows that blending adds
to the true time overlap between the phases.

In order to minimize the effects of blending on the measure-
ment of tover with our method, two potential effects should be ac-
counted for. Firstly, blending can inhibit the identification of inde-
pendent regions, because the blending decreases the contrast be-
tween the flux density minimum in between adjacent peaks and the
peaks themselves. For a logarithmic spacing δ log10 F between the
flux levels used to identify peaks (see Section 3), there exists a min-
imum distance between the peaks (in units of the peak radius) such
that they can still be identified. The mathematical derivation of this
distance is provided in Appendix B, but here we give the ratios
between the separation lengths and the peak radius needed to iden-
tify the peaks in our experiments. For the {low, high} resolution
simulations, we use a logarithmic spacing of δF = {0.25, 0.5},
which requires that λ/r > {3.14, 3.84} or, when expressed in
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terms of the region concentration parameter ζ ≡ 2r/λ, requires
that ζ < {0.64, 0.52}.

Secondly, the blending of adjacent peaks also causes the emis-
sion of each individual region to be increased by some factor. This
leads to an overestimation of the duration of the overlap phase, be-
cause blending combines the emission from regions with indepen-
dent (and therefore most likely different) ages into a single region.
We quantify this effect in Appendix B, where we consider two ad-
jacent, two-dimensional Gaussian peaks and calculate as a function
of λ/r which fraction of the emission on one side of the equidis-
tance line is constituted by contamination from the neighbour. This
fraction steeply decreases as a function of distance and should be
lower than the desired accuracy of the tover measurement. The top
panels of Figure 19 demonstrate that the intrinsic accuracy of the
method is∼ 0.05 in tover/τ due to deviations from a constant SFR.
Therefore, it is desirable that much less than 5 per cent of the emis-
sion in any region comes from neighbouring emission peaks. The
condition that peaks are separated by ∼ 1.7 times their FWHM
(corresponding to λ/r > 4 or ζ ≡ 2r/λ < 0.5) results in a
contamination percentage of ∼ 5 per cent. This satisfies the above
requirements and we will use this condition to determine if blend-
ing may have influenced the measurements of tover. If regions are
marginally resolved, this requirement translates to having a resolu-
tion (FWHM) of λ/1.7 or better. This is discussed further in Sec-
tion 4.3.6, where we carry out resolution tests designed to explore
these issues further.

The above upper limits on ζ (and hence blending) successfully
identify experiments 3 and 4 in the bottom-right panel of Figure 19
as an inaccurate measurement of the duration of the overlap phase.
It also successfully identifies several of the experiments using the
real gas maps of the simulations in Section 4.3 below, which upon
visual inspection are all clearly affected by blending as well. How-
ever, it fails to identify experiments 4 and 21 in the bottom-left
panel of Figure 19, which also have large tover excesses due to
blending. We expect that this is caused by a large radial variation
of ζ within the maps, which implies that the mean ζ is not repre-
sentative for a non-negligible fraction of the regions, especially to-
wards the inner galaxy. Therefore, we recommend to always carry
out a visual inspection of the maps to verify if they show any region
blending. This is particularly useful because the measured value of
ζ is an average over the entire map. If there is substantial spatial
variation of ζ (e.g. as a function of galactocentric radius), then it
is possible that blending can only be identified by visual inspec-
tion, after which parts of the maps may be masked to obtain a more
homogeneous and representative measurement of ζ. We have ex-
panded the method with a new way of filtering out emission on
size scales exceeding the region separation length λ (Hygate et al.
2018), which will help to avoid blending without human interven-
tion.

4.2.4.3 General conclusions In summary, we see that the
method is capable of measuring the fraction of the timeline in
which both phases overlap (tover/τ ) with an accuracy of about 0.05
or 5 per cent. A higher accuracy could be obtained in principle, but
fluctuations of the SFR imply that our assumption of a constant
SFR is violated, thus limiting the attainable accuracy. We propose
that the above accuracy is appropriate for disc galaxies, but will nat-
urally be worse in systems with strongly varying SFRs, i.e. starburst
systems like dwarf galaxies or mergers. Should the star formation
history of the observed field be known over the entire duration of
the timeline τ (e.g. by stellar population synthesis fitting), then it
is possible to correct the time-scales retrieved by our method for

variations in the SFR over the fraction of the timeline covered by
the stellar phase.

The method’s accuracy may be decreased if no measures are
taken to avoid the blending of regions in the tracer maps used. For
this reason, we recommend that max (ζstar, ζgas) < ζcrit (to al-
low the regions to be identified by the clump finding algorithm; see
Appendix B for the derivation of ζcrit as a function of δ log10 F)
and max (ζstar, ζgas) < 0.5 (to avoid the contamination of peaks
by nearby regions). In case of a strong spatial variation of ζ across
either of the maps, we recommend to carry out a visual inspection
to verify the degree of blending and to mask the maps if neces-
sary, or to filter out diffuse emission on size scales larger than λ
(Hygate et al. 2018). If any of these conditions is not satisfied and
region blending does affect the analysis, then the measured value
of tover is not necessarily incorrect, but it reflects the duration for
which both tracers coexist at the blending scale. This composite
value of tover may then exceed the ‘Lagrangian’ duration of the
overlap phase when following an individual region through its evo-
lution.

As discussed at the beginning of this section, we expect that
real-Universe applications of the method’s ability to constrain the
duration of the overlap phase will help provide insight in (molec-
ular cloud destruction by) stellar feedback. Of course, the physical
meaning of tover depends on the adopted tracers. In the example of
tracing (molecular) gas with CO and star formation with Hα, tover

corresponds to the feedback time-scale, i.e. the time over which ex-
cess CO emission disappears once ionising photons start to escape
from a region.

In order to distinguish between various feedback mechanisms,
it is essential that the accuracy of the tover measurement allows re-
solving the time-scale differences expected between these mecha-
nisms. For instance, ruling out SNe in favour of early (e.g. pho-
toionization) feedback would require an accuracy of the order
3 Myr. In view of the expected ∼ 5 per cent accuracy in tover/τ ,
this example would necessitate the use of gas and star formation
tracers that together cover τ < 60 Myr. This can be ensured by
adopting tracers with short lifetimes, e.g. Hα (which contributes
tstar ∼ 5 Myr, Haydon et al. 2018) to trace star formation. Con-
trary to some star formation tracers, the lifetime of the molecu-
lar gas tracer is not known a priori. If the molecular gas tracer
[e.g. 12CO(1–0) or 12CO(2–1)] turns out to be longer-lived than
tgas ∼ 50 Myr, one can probe feedback-driven gas dispersal by
switching to a higher-density gas tracer such as 13CO(1–0) or HCN
(e.g. Leroy et al. 2017), which are expected to have much shorter
lifetimes. In addition to using the time-scale associated with ion-
ising photons to determine which feedback mechanism is respon-
sible for molecular cloud destruction, it should be possible to dis-
tinguish between feedback mechanisms in even more detail if addi-
tional tracers can be identified that are associated with single mech-
anisms (see Section 8.2). Combining the above considerations, our
method should then allow measurements of the feedback time-scale
in galaxies with an accuracy better than 1 Myr, which is sufficient
to distinguish between several of the possible feedback mecha-
nisms. The above distinctions between feedback mechanisms share
the benefit of not depending on feedback models. However, it will
also be possible to directly compare the cloud destruction time-
scales predicted for individual feedback mechanisms (or combina-
tions thereof) to measurements of tover obtained with our method.
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Table 7. Mean best-fitting values of β using age-binned stellar maps

Runs 〈βstar〉1.0 〈βstar〉0.5 〈βgas〉1.0 〈βgas〉0.5

LR points 0.99+0.03
−0.02 0.52+0.04

−0.02 0.94+0.04
−0.03 0.48+0.02

−0.00

HR points 0.98+0.01
−0.00 0.50+0.01

−0.00 0.93+0.01
−0.01 0.47+0.01

−0.00

LR extended 0.95+0.26
−0.11 0.55+0.09

−0.05 1.12+0.39
−0.10 0.87+0.03

−0.02

HR extended 1.02+0.03
−0.03 0.74+0.03

−0.04 0.91+0.03
−0.02 0.62+0.05

−0.04

4.2.5 Accuracy of the overlap-to-isolated flux ratio β

Next to the gas phase lifetime tgas and the duration of the overlap
phase tover, our method also measures the mean flux ratio between
regions in the overlap phase to those not in the overlap phase (which
we refer to as being ‘isolated’ in time rather than spatially). This
overlap-to-isolated flux ratio β is calculated for both tracers, im-
plying that we have measurements of βstar and βgas. As discussed
in Section 3 and KL14, knowledge of this flux ratio is sufficient to
account for the effect of the flux evolution history of either tracer
on the retrieved time-scales. In Table 6, all experiments with a non-
zero value of tover result in a meaningful measurement of βstar and
βgas. For most experiments, we have set both quantities to unity,
but experiments 18–20 are chosen to explore the effects of varying
β on the best-fitting quantities.

Table 7 shows the mean obtained values of βstar and βgas

for different subsets of experiments. We divide up the experiments
in the four types of Figure 17, i.e. low-resolution point particles,
high-resolution point particles, low-resolution extended emission,
and high-resolution extended emission. For each of these, the mean
output values of βstar and βgas are calculated for the experiments
where the input values are set to unity (columns indicated by
〈β〉1.0) and to 0.5 (columns indicated by 〈β〉0.5). We only con-
sider experiments for which tover,in > 0. As expected, the values
of βstar and βgas in the point particle experiments are in excellent
agreement with the input values. This shows that the method is ca-
pable of capturing the mean flux evolution of independent regions
by correctly retrieving the overlap-to-isolated flux ratio, even if the
error bars may be underestimated by up to a factor of 2.20. For
the extended emission experiments with input value β = 0.5, the
agreement is generally poor. However, as in Section 4.2.4, this is a
real effect rather than a flaw in the method, because the regions in
the extended emission maps consist of collections of particles. This
means that it is no longer possible to control which particles re-
side in the overlap phase, implying that the overlap-to-isolated flux
ratio of these composite regions should be in the range β = 0.5–
1.0. Table 7 shows that this is indeed the case to within the error
bars. While this broad range clearly shows that the extended emis-
sion experiments provide no particularly strong test of the method’s
accuracy in retrieving the overlap-to-isolated flux ratios βstar and
βgas, it is encouraging that the output values are consistent with the
expected range.

4.3 Gas and stellar maps

Our second set of tests is based on maps of both the gas and the
star particles in the simulations. Having established the accuracy of
the method with the controlled experiments of Section 4.2, we can

20 We obtain this factor by considering that across eight numbers, only two
or three should deviate by more than 1σ, whereas currently this applies to
half of the measurements. Increasing the error bars by a factor of 2 would
result in two numbers deviating by more than 1σ.

now turn to a more realistic set of experiments. By using the actual
distributions of gas particles in the simulations and combining these
with the ‘age-binned’ stellar maps as before, we can investigate
dependences that may affect practical applications of the method
to observations. Specifically, we consider the effects of

(i) diffuse emission in the maps, i.e. emission emerging from
scales > λ;

(ii) the (stellar) reference time-scale, reflecting the star forma-
tion tracer used (e.g. Leroy et al. 2012; Haydon et al. 2018);

(iii) the volume density threshold above which the gas is visible,
reflecting the gas tracer used (e.g. Shirley 2015; Leroy et al. 2017);

(iv) the spatial resolution, reflecting the observational setup and
the target distance or redshift;

(v) the galaxy inclination angle;
(vi) the number of independent regions in the maps, represented

by the identified number of peaks.

4.3.1 Procedure for creating the maps

For the experiments discussed here, the age-binned maps of the
star particles are generated for different age ranges in exactly the
same way as described in Section 4.2.1. To generate maps of the
gas particles in the galaxy models, we first need to define the min-
imum volume densities above which the particles are displayed.
In the phase diagrams of Figure 16, vertical white lines indicate
volume densities of ρ = {0.5, 1, 2} cm−3 (low resolution) and
ρ = {1, 2, 4} cm−3 (high resolution). As shown by the hatched re-
gion, these critical densities provide a reasonable match to the min-
imum density for particles to become star-forming (ρ = 0.7 cm−3)
and together span roughly an order of magnitude, across which
different fractions of the star-forming ISM are traced. Therefore,
we use the three volume densities indicated in each panel of Fig-
ure 16 to generate the gas particle maps, where the central values
of ρmin,LR = 1 cm−3 (low resolution) and ρmin,HR = 2 cm−3

(high resolution) act as the default choices.
In addition to the above reference time-scales tstar and min-

imum gas volume densities ρmin, we specify two other quantities
that are investigated here. Firstly, the spatial resolution of the maps
is specified by changing lap,min in Table 2 and settingNap such that
the other aperture sizes remain unchanged. For instance, to change
the spatial resolution to 200 pc instead of the default 50 pc, we set
lap,min = 200 pc and Nap = 6 (instead of the default Nap = 8)
to retain the same aperture size spacing as before. Secondly, we
vary the inclination angle of the galaxy maps. This is achieved by
rotating the simulation output around the x-axis by an angle in the
range i = [0, 90]◦ prior to generating the maps. The remaining
quantities of interest (diffuse emission fraction and number of in-
dependent regions) are not specified, but vary sufficiently across
the set of experiments to draw meaningful conclusions about their
influence on the results. We note that out of the quantities used to
generate the maps, only tstar and i are used as input parameters in
the method of Section 3. The method is not informed of the values
of the other quantities. Having said that, the choice of stellar and
gas tracer (each associated with their own time-scale or minimum
density, respectively) needs to be considered when setting the input
parametersXstar andXgas for converting between pixel values and
SFR and gas mass.

Having defined the subsets of particles that are shown in each
map, we generate the surface density maps of these particles as
described in Section 4.2.1. The maps are square with a projected
diameter of 20 kpc and 1403 pixels, corresponding to a projected
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LR, point particles

5 kpc

HR, point particles

LR, extended emission HR, extended emission

Figure 20. The four different types of ‘gas’ maps used in Section 4.3. From
left to right, top to bottom, these are maps of the low-resolution (LR) point
particle distribution, the high-resolution (HR) point particle distribution, the
LR extended emission (generated by using a smoothing kernel, see the text),
and the HR extended emission. In these examples, the {LR, HR} maps
show the distribution of gas particles with densities in excess of ρmin =

{1, 2} cm−3, respectively. In Section 4.3.2, we present 50 different sets
of map pairs for which our method is tested, for a total of 4 × 50 = 200
experiments.

pixel scale of 14.25 pc before correcting for inclination.21 As be-
fore, two types of maps are made for each galaxy model. The ‘point
particle’ surface density maps show the distribution of particles as-
is, for each pixel adding up the enclosed mass of the particles and
dividing by the pixel area. At the adopted numerical resolution of
the simulations and the pixel scale of 14.25 pc, the typical number
of gas particles per pixel is zero or exceeds unity – contrary to the
stellar particles, which each generally occupy their own pixel (see
Figure 17). This difference arises because high-density gas parti-
cles cluster more strongly than the young star particles, which are
stochastically spawned from the high-density gas particles. As a re-
sult, the point particle maps display a morphology that is broadly
similar to the ‘extended emission’ surface density maps, which ac-
count for the extended morphology expected for real star-forming
regions. This extended emission is obtained by using a smoothing
kernel with a smoothing length chosen to be consistent with the
treatment of the gas particles in the simulations (see Section 4.1),
i.e. by using the 200 nearest neighbours to define the smoothing
length and adopting a Wendland C4 smoothing kernel (Dehnen &
Aly 2012) to distribute the mass around each particle position. As
before, this results in coarser resolution in low-density regions.

The maps resulting from the above procedure are written to
disk in the FITS file format and include a FITS header that con-
tains their key properties, consistent with common conventions for
observational data delivery. The header contains the resolution of

21 A non-zero inclination results in non-circular resolution elements that
are elongated in the direction of the inclination by a factor of (cos i)−1,
implying that the effective resolution is larger by a factor of (cos i)−1/2

[see equation (6)].

the map to determine the minimum aperture size used (see Sec-
tion 3.2.3), which is taken to be 50 per cent of the minimum
smoothing length across the displayed subset of particles. This
translation from the smoothing length to the resolution (or FWHM)
is a reasonable approximation, because the Wendland C4 kernel
adopted here has an FWHM of 0.56 times the smoothing length.
Figure 20 shows four examples of a typical gas map that these ex-
periments are carried out with, illustrating the similarities and dif-
ferences between the two types of maps (‘point particles’ and ‘ex-
tended emission’) for both disc galaxy models (‘low resolution’ and
‘high resolution’), adopting ρmin = {1, 2} cm−3 (for {low, high}
resolution) and i = 0◦. As expected due to the increased cluster-
ing of high-density gas particles relative to young stellar particles,
the point particle and extended emission maps differ considerably
less than seen in the stellar maps from Section 4.2. In the following
experiments, the stellar maps have the same general properties as
before (see Figure 17).

4.3.2 Description of the experiments

Table 8 summarises the experiments carried out using the com-
bination of age-binned stellar maps and gas maps above a cer-
tain critical volume density, specifying the values of tstar, i,
ρmin,ref , lap,min,LR, and lap,min,HR for each experiment. Because
the high-resolution simulation reaches higher gas volume densities
than the low-resolution simulation, we set {ρmin,LR, ρmin,HR} =
{1, 2}ρmin,ref for the {low, high}-resolution experiments. The ex-
periments are divided into four main categories.

(i) The first set of experiments is aimed at investigating the role
of the adopted SFR tracer through varying the reference time-scale.
This is an important experiment, because the duration of the young
stellar phase cannot be freely chosen in practical applications of the
method – it depends on the availability of the observational data. It
is therefore necessary to identify any biases of the derived timeline
as a function of tstar or tstar/tgas. By spanning 2.5 dex in the ref-
erence time-scale (ranging from just 1 Myr in the first experiment
to more than an orbital revolution in the eleventh experiment), we
can assess whether the choice of reference time-scale affects the
accuracy of our method.

(ii) The second set of experiments investigates the choice of gas
tracer by considering various minimum volume densities for the
gas to be visible. For both the low and high-resolution simulations,
the densities cover a factor of 4. As stated above, the minimum den-
sities for the high-resolution simulations are taken to be twice the
reference values listed here. As a result, the low and high-resolution
experiments together span an order of magnitude in minimum den-
sity. For each minimum density, we consider a set of three different
reference time-scales tstar. These experiments are intended to show
if applying the method to different gas tracers results in different
time-scales, so that a multi-tracer chronology of cloud condensa-
tion and collapse can be obtained from observations.

(iii) The third set of experiments probes the dependence on the
observational setup and target distance or redshift by varying the
spatial resolution through the minimum aperture size lap,min. We
consider spatial resolutions in the range lap,min = 25–800 pc, each
at three different reference time-scales tstar, with the goal of deter-
mining the critical value of the size scale ratio lap,min/λ above
which our method fails. This will limit the cosmic distances out to
which the method can be applied with current and upcoming ob-
servational facilities and, hence, how representatively the galaxy
population can be covered.
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(iv) The fourth set of experiments varies the galaxy inclination
angle i to identify any corresponding limits on the applicability
of our method. As before, we consider three different reference
time-scales for each inclination angle. This set of experiments is
expected to show some degeneracy with the third set (spatial reso-
lution), because increasing the inclination results in an increase of
the effective resolution scale by a factor of (cos i)−1/2.

As outlined in Section 4.3.1, we additionally investigate how the
accuracy of the results changes as a function of the number of in-
dependent regions hosted in each of the maps and make a first esti-
mate of how diffuse emission affects the results (this latter depen-
dence will be quantified in more detail by Hygate et al. 2018). Both
of these are relevant tests for applications of our method to obser-
vations. The diffuse fraction cannot always be controlled a priori
(e.g. Pety et al. 2013; Caldú-Primo & Schruba 2016) and obtaining
an understanding of its effects is thus important. By contrast, if we
can identify a minimum number of independent regions needed for
reliable applications of the method, this can be an important driver
for choosing the spatial coverage in observational campaigns.

The above sets of experiments are carried out using the ‘point
particle’ or the ‘extended emission’ surface density maps (see Sec-
tion 4.3.1), both for the low and high-resolution simulations. We
thus have a total of 200 experiments using pairs of age-binned stel-
lar maps and gas maps. Some of the parameters used in these ex-
periments deviate from the default values in Section 3. Firstly, the
inclinations and spatial resolutions (i.e. minimum aperture sizes)
of the maps vary on a case-by-case basis, as shown by Table 8. We
therefore adjust i, lap,min, and Nap accordingly for each experi-
ment. Secondly, we adjust the range of galactocentric radii to avoid
large empty areas in the maps and set Rmax = 10 kpc (7 kpc)
for the low-resolution (high-resolution) simulations. Thirdly, we
set Npix,min = 1 for the point particle experiments, to enable sin-
gle pixels to be identified as peaks. Finally, for the low-resolution
runs we choose a default resolution of lap,min,LR = 100 pc to re-
move sub-resolution apertures, as well as ∆ log10 F = 2.5 and
δ log10 F = 0.25 for the identification of both the stellar peaks
and gas peaks, because the low-resolution maps used in this work
require a finer and deeper contour level spacing to identify the rel-
evant emission peaks. Contrary to Section 4.2.2, these experiments
use the default value of tstar incl = 0 (see Table 1), implying
that tstar,ref represents the duration of the isolated stellar phase.
This choice is motivated by the fact that a gas concentration may
form star particles with a certain age spread, implying that the to-
tal lifetime of the group of star particles spawned can exceed the
duration of the stellar age bin used for generating the map.

In the remainder of this section, we will evaluate how the free
parameters constrained by the method (i.e. tgas, tover, and λ) are
affected by changing the parameters listed in Table 8, as well as
by the number of independent regions. Each of these effects is dis-
cussed in a dedicated subsection and makes use of 2 × 2 × 50
experiments (cf. Table 8).

4.3.3 Expected values of the free parameters

Before discussing the measurements of the ‘cloud lifetime’ tgas,
the ‘feedback time-scale’ tover, and the region separation length λ
in each of the experiments discussed above, we derive which val-
ues we expect to obtain based on the baryonic physics captured in
the simulations. This is helpful for assessing the accuracy of the
method, even if this is not quite straightforward, because the ex-
periments discussed in this section are less controlled than those in

Table 8. Experiments carried out using gas maps

ID tstar i ρmin,ref lap,min,LR lap,min,HR

[Myr] [◦] [mH cm−3] [pc] [pc]

1 1 0.0 1 100 50

2 1.75 0.0 1 100 50
3 3 0.0 1 100 50

4 6 0.0 1 100 50

5 10 0.0 1 100 50
6 17.5 0.0 1 100 50

7 30 0.0 1 100 50

8 60 0.0 1 100 50
9 100 0.0 1 100 50

10 175 0.0 1 100 50

11 300 0.0 1 100 50

12 3 0.0 0.5 100 50

13 10 0.0 0.5 100 50
14 30 0.0 0.5 100 50

15 3 0.0 2 100 50

16 10 0.0 2 100 50
17 30 0.0 2 100 50

18 3 0.0 1 25 25
19 10 0.0 1 25 25

20 30 0.0 1 25 25

21 3 0.0 1 50 100
22 10 0.0 1 50 100

23 30 0.0 1 50 100

24 3 0.0 1 200 200
25 10 0.0 1 200 200

26 30 0.0 1 200 200
27 3 0.0 1 400 400

28 10 0.0 1 400 400

29 30 0.0 1 400 400
30 3 0.0 1 800 800

31 10 0.0 1 800 800

32 30 0.0 1 800 800

33 3 33.6 1 100 50

34 10 33.6 1 100 50
35 30 33.6 1 100 50

36 3 48.2 1 100 50

37 10 48.2 1 100 50
38 30 48.2 1 100 50
39 3 60.0 1 100 50

40 10 60.0 1 100 50
41 30 60.0 1 100 50

42 3 70.5 1 100 50

43 10 70.5 1 100 50
44 30 70.5 1 100 50

45 3 80.4 1 100 50
46 10 80.4 1 100 50

47 30 80.4 1 100 50
48 3 87.1 1 100 50
49 10 87.1 1 100 50

50 30 87.1 1 100 50

Section 4.2. There, the duration of the entire evolutionary timeline
was predefined, whereas the current set of experiments only speci-
fies the duration of the (isolated) stellar phase tstar,ref . The values
of tgas and tover are emergent properties of the simulations. We
remind the reader that the goal is not to reproduce the star forma-
tion and feedback properties of galaxies in the real Universe, but
to retrieve what happens in the simulations. In terms of the sub-
grid recipes for star formation and feedback, the simulations differ
markedly from observational results. As such, the expected values
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derived here are not necessarily relevant in the context of the ob-
servational literature, but only serve as a point of reference when
interpreting the experiments summarised in Section 4.3.2.

The expected duration of the gas phase tgas,exp is obtained
by assuming that feedback from star formation destroys the dense
gas that is displayed in the gas maps. Fundamentally, star forma-
tion in the simulations is possible for all gas particles above the
critical density for star formation22 ρcrit and is represented as a
Poisson process that takes place on the dynamical time defined in
equation (164), with a star formation efficiency ε = 0.02. These
numbers result in an effective star formation time-scale of tdyn/ε,
which is about 1.6 Gyr at ρg = ρcrit. This would be the expected
gas lifetime if the gas maps would show all gas above the critical
density, i.e. ρmin = ρcrit. However, Table 8 shows that most maps
have higher minimum gas densities, implying not only shorter dy-
namical times, but also that some star formation is taking place
below the gas visibility threshold. To phrase this in terms of the La-
grangian timeline of Figure 1, the gaseous progenitors of some of
the young star particles never reached the gas densities high enough
to have been visible in the gas map. The effect of this invisibility
in the context of the formalism used here is that the expected gas
lifetime is decreased in proportion to the fraction of young star par-
ticles for which the progenitors reached densities ρg > ρmin. Sta-
tistically, this fraction can be calculated as the probability of a gas
particle to have been unaffected by star formation prior to reaching
these densities.

It is important to emphasise that the conversion of gas into
stars below the density threshold of the simulated gas map is unique
to these simulations (as well as many other simulations in the lit-
erature) and does not apply to observed gas maps. In the real Uni-
verse, the collapse of gas clouds continues to extremely high densi-
ties, before the densest gas pockets reach their eventual end state as
stars. Gas tracers with increasing critical densities therefore remain
the progenitors of these stars and do not represent a phase that can
simply be skipped. Indeed, the correlation between gas and star for-
mation becomes tighter with increasing critical density (e.g. Usero
et al. 2015), up to values (n > 105 cm−3, see e.g. Leroy et al.
2017) that are three orders of magnitude higher than the critical
density of a classical molecular gas tracer like CO(1-0). Of course,
it may be that the gas tracer is not detected (e.g. at low metallicity),
but that is a matter of sensitivity and can be alleviated with a longer
observing time. It does not correspond to a fundamental absence
of the gas tracer under consideration, contrary to the stochastic star
formation model used in the simulations.

In Appendix C, we derive an expression for the probability
of gas particles to be unaffected by star formation until reaching
a density ρg, under the assumption that the gas density increases
with time according to the gravitational free-fall of a homogeneous
sphere. This assumption is appropriate for simulations that resolve
the disc scale height, which is achieved for our high-resolution sim-
ulation, but not for the low-resolution simulation. We account for
this by introducing a correction factor below. Note that in the state-
ment ‘unaffected by star formation’, we include any of the Nngb

particles within a particle’s smoothing kernel. The final expression

22 This critical density corresponds to hydrogen particle density of nH =
0.5 cm−3 and a total mass density of ρcrit = 0.68 mH cm−3 for an
assumed hydrogen mass fraction of 0.76.

obtained this way is

pgas(ρg) =

[
1 +

√
1− (ρcrit/ρg)1/3

1−
√

1− (ρcrit/ρg)1/3

]−√3/2εNngb

, (166)

which is defined for ρg > ρcrit and behaves as expected: for ρg =
ρcrit, we obtain pgas = 1, whereas in the limit ρg → ∞, we find
pgas = 0.

We can now combine the gas particle ‘survival fraction’ with
the time-scale for star formation to obtain an expression for the
expected lifetime of gas with densities ρg > ρmin

tgas,exp(ρmin) =

[
tdyn(ρmin)

ε
+ tfb(ρmin)

]
pgas(ρmin)

ft
, (167)

where we include the time expected for feedback to remove the
gas once star particles have formed (tfb, as defined below). The
expression also includes a correction factor ft > 1, which applies
to simulations that do not resolve the disc scale height and thus
have insufficient resolution to estimate the mid-plane free-fall time
using a kernel average. For the high-resolution simulation, the scale
height of the gas disc is marginally resolved and we set ft = 1,
but for the low-resolution simulation this is not the case, implying
that the mass distribution within the smoothing kernel is anisotropic
and the kernel-averaged free-fall time overestimates the true free-
fall time in the disc mid-plane. In addition, the intrinsic feedback
energy of a single star particle in the low-resolution simulation is
higher by a factor of 5 than that in the high-resolution simulation
due to the difference in particle mass, causing feedback events from
single particles (i.e. 0.5 per cent of a smoothing kernel) to be much
more disruptive at fixed ambient gas pressure. This may lead to the
destruction of the gas condensation by the first star particle that
forms, whereas this need not be the case at higher resolution. Both
of these effects mean that the expected gas lifetime is overestimated
for the low-resolution simulation. We can correct for this problem
by setting ft > 1. For the experiments based on the low-resolution
simulation discussed in this section, a value ft = 3 provides an
accurate match to the obtained results.

Using the maps at the fiducial densities (e.g. experiment IDs
1–11) as an example, equation (167) predicts that we should ex-
pect to find gas phase lifetimes of tgas,exp = 15 Myr for the
low-resolution simulations and tgas,exp = 2.6 Myr for the high-
resolution simulations. As stated previously, these values have no
physical meaning, but act as a point of reference when interpreting
the results of the experiments.

The expected duration of the overlap phase tover,exp can be
obtained analogously to the duration of the gas phase. Following
Kruijssen (2012, equation 20), Reina-Campos & Kruijssen (2017,
equation 4), and Pfeffer et al. (2018, equation 5), we define the ex-
pected feedback time-scale as the time required for the feedback-
driven energy density to overcome the ambient turbulent gas pres-
sure, i.e.

tfb =
tSN

2

(
1 +

√
1 +

4tdyn(ρg)σ2

χfb,EφfbεtSN
2

)
, (168)

where tSN = 3 Myr is the time after which the SN feedback is
applied, σ ≈ 15 km s−1 is the local turbulent velocity dispersion,
and φfb ≈ 3.2 × 10−4 m2 s−3 ≈ 104 (km s−1)2 Myr−1 is a
constant indicating the energy deposition rate per unit mass for a
normal (e.g. Chabrier 2003) stellar IMF, and χfb,E ≈ 1 × 10−3

is the feedback-to-ISM coupling efficiency that we typically find
for the experiments with minimum densities closest to the density
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threshold for star formation. As before, we account for star for-
mation below the density threshold used to generate the gas maps,
i.e. stellar regions of which the gaseous progenitor would have been
invisible at the adopted minimum volume density, by writing

tover,exp = tfb(ρmin)
pgas(ρmin)

ft
, (169)

with pgas(ρg) as defined in equation (166). This final expression
provides the expected measured duration of the overlap phase. For
the maps at the fiducial densities (e.g. experiment IDs 1–11), equa-
tion (169) predicts that we should expect to find overlap phase life-
times of tover,exp = 1.7 Myr for the low-resolution simulations
and tover,exp = 0.35 Myr for the high-resolution simulations.

Finally, the expected region separation length λexp can be es-
timated by geometric considerations. For this, we require the SFR,
the total duration of the evolutionary timeline, and the stellar mass
formed per region to calculate the total number of regions, which
in combination with the total area of the map gives an indication
of how ‘crowded’ the maps are and what the expected separation
length is. First, we calculate the expected total number of regions
across both the gas and the young stellar maps as

Nreg =
τexpSFR

Npart,sfmpart
, (170)

where we use SFR = 0.3 M� yr−1 (see Section 4.1.4) and
set mpart according to Table 5 for the low-resolution and high-
resolution simulations. This expression assumes conservation of
numbers, such that a single stellar region is formed from a sin-
gle gaseous region. The expected total duration of the evolutionary
timeline τexp is

τexp = tgas,exp + tstar,ref , (171)

which does not subtract tover,exp (see below), because in these ex-
periments we have set tstar incl = 0 (see Table 1) and hence
tstar,ref represents the duration of the isolated stellar phase (see
Section 4.3.2). Finally, the number of star particles formed per re-
gion (Npart,sf ) is obtained by combining the typical star forma-
tion efficiency per star formation event that we find in Section 5
(εsf ≈ 0.01) with the number of neighbours, i.e.

Npart,sf = εsfNngb, (172)

which results inNpart,sf = 2 and is consistent with the idea that the
first 1–2 star particles formed in a region cause its destruction by
feedback. Together, equations (170)–(172) provide the total num-
ber of regions expected to be present in both maps.

With the number of regions in hand, their geometrically ex-
pected mean separation length follows as

λgeo = 2fstruc

√
R2

max −R2
min

Nreg
, (173)

where Rmin and Rmax reflect the minimum and maximum radii of
the area considered (see Table 2), which for the experiments dis-
cussed here are set to Rmin = 0 and Rmax = {10, 7} kpc for
the {low, high}-resolution simulations. The quantity fstruc in equa-
tion (173) is a correction factor that is necessary to account for the
substructure in the map. For a random, unclustered distribution of
points, we have fstruc = 1. However, the simulated galaxy maps
contain substructure and voids (see Figure 20), which means that
the particles cluster in space and the geometric average implied by
setting fstruc = 1 overestimates the region separation length in the
direct vicinity of emission peaks. Fortunately, the value of fstruc

can be constrained using the quantities Estar,glob and Egas,glob (see

Section 3.2.9), which represent the flux surface density contrast be-
tween a size-scale λ and the entire map, thus providing a measure
of the degree of flux clustering. Assuming that changes in the flux
density with spatial scale are driven by changes in filling factor, we
expect that fstruc scales with Eglob as

fstruc ≈ E−1/2
glob . (174)

In the experiments considered here, we measure mean values of
Eglob = 6–12 for the low-resolution simulation and Eglob = 5–
10 for the high-resolution simulation, resulting in fstruc = 0.29–
0.41 and fstruc = 0.32–0.46, respectively. Therefore, we adopt
fstruc = 0.35 for the low-resolution simulation and fstruc = 0.40
for the high-resolution simulation.23

For an infinitely large number of regions, λgeo approaches
zero. However, infinitesimally small separation lengths cannot be
attained in practice due to limits imposed by the spatial resolution
of the maps. As will be discussed in Section 4.3.6, the retrieved
separation length never drops below two resolution elements. We
therefore expand the expression from equation (173) to write the
expected region separation length as

λexp =
√
λ2

geo + (2lap,min)2, (175)

in which the first term represents the geometrically expected sep-
aration length and the second term reflects the minimum separa-
tion imposed by the spatial resolution of the maps. For the exper-
iments of Table 8, the range of expected region separation lengths
is λexp = 200–1000 pc for the low-resolution simulation and
λexp = 100–400 pc for the high-resolution simulation.

The expected values of tgas,exp, tover,exp, and λexp from equa-
tions (167), (169), and (175) will be included in the figures dis-
cussed in Sections 4.3.4–4.3.7. Note that they should only be com-
pared to measurements using the extended emission maps (cf. Fig-
ure 20). Any comparison to the results for the point particle maps
would not be insightful, because each of the expressions depends
on kernel-averaged densities and the number of neighbours used
to construct the kernel. As will be shown below, the method accu-
rately retrieves the numbers expected from the above expressions
when applied to the extended emission maps.

4.3.4 Dependence on the reference time-scale

We first carry out a test using the top 4×11 = 44 experiments pre-
sented in Section 4.3.2 (i.e. ID 1–11) to determine how the choice
of the reference map (which sets the reference time-scale tstar,ref )
affects the constrained quantities tgas, tover, and λ. In Section 4.2.3,
we showed that the reference time-scale is important, because the
method provides accurate constraints on cloud-scale star formation
and feedback when tstar and tgas differ by at most an order of mag-
nitude. Fortunately, real-Universe applications of our method have
some freedom in making the choice of reference map. When us-
ing an SFR tracer to set the reference time-scale, Hα, FUV, and

23 We stress that these numbers are specific to the simulations used. It is
unclear whether they would also provide a reasonable description of ob-
served galaxies and it is undoubtedly a function of the galaxy morphology.
In observational applications, the quantities Estar,glob and Egas,glob can be
used to infer the degree of spatial clustering and, through equation (174),
the difference between the geometrically-expected value of the separation
length for a random distribution of regions (corresponding to fstruc = 1)
and the measured, typical separation length around emission peaks in a pos-
sibly substructured medium (fstruc < 1).
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Figure 21. Influence of the choice of SFR tracer (captured by varying the reference time-scale tstar) on the best-fitting values of the duration of the gas
phase (tgas, top), the duration of the overlap phase (tover, middle), and the mean separation length between independent regions (λ, bottom), for experiments
ID 1–11 in Table 8 using point particle maps (left panels) and extended emission maps (right panels). Transparent symbols represent experiments that do
not satisfy each of the conditions for the reliable application of the method summarised in Section 4.4. Non-transparent symbols are connected by lines as
shown by the legend. In the right-hand panels, the thick blue (low resolution) and red (high resolution) lines show the expected values from Section 4.3.3. In
the top panel, the black dotted line indicates tgas = tstar with the grey-shaded area indicating the area where both time-scales differ by less than a factor
of 10 (i.e. | log10(tstar/tgas)| 6 1). In the middle panel, downward arrows indicate upper limits (see Section 4.4) and the blue (low resolution) and red
(high resolution) dotted lines illustrate a proportionality to the total duration of the timeline τ , as indicated by the legends. This figure shows that the (non-
transparent) values of tgas, tover, and λ behave as expected, in that they either show little variation with tstar or follow the predicted dependence, implying
that the method can be applied reliably to constrain the cloud-scale physics of star formation and feedback using a variety of star formation tracers.

NUV together cover characteristic time-scales from tstar,ref = 5–
50 Myr (Haydon et al. 2018). This provides a large dynamic range,
implying that in many observational applications it is feasible to
minimise the difference between tstar and tgas. To quantify the sta-
bility of the constrained quantities across a wide dynamic range, we
consider values of tstar = 1–300 Myr, which extends well beyond
the limits of observational applications.

Figure 21 shows the best-fitting values of tgas, tover, and λ for
all 44 experiments considered here. As discussed in Section 4.3.3,
when calculating the expected values of the constrained quanti-
ties we make use of the particle smoothing kernels, which cover
Nngb = 200 neighbours. Therefore, the expected values are only
shown in comparison to the extended emission experiments in the

right-hand panels. Across the diagram, we see that the agreement
with the expected values is good. The non-transparent symbols ei-
ther show no dependence on tstar (for tgas and tover) or the ex-
pected dependence (for λ). The first-order result of these experi-
ments is therefore that the method can be applied reliably, irrespec-
tive of the choice of reference map, as long as the requirements
from Section 4.4 below are satisfied.

Specifically, the top panels of Figure 21 confirm the finding
of Section 4.2.3 that the duration of the gas phase is accurately
constrained provided that tstar and tgas differ by at most an or-
der of magnitude, which is indicated by the grey-shaded region in
the figure. Experiments outside of this area have highly dissimi-
lar durations of the (young) stellar and gas phases, which results
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in highly asymmetric tuning fork diagrams. In such cases, one of
the two branches in the diagram closely approaches the B = 1
line (corresponding to the galactic average gas-to-stellar flux ra-
tio), where the shape of the diagram is much less sensitive to the
underlying time-scales. As a result, the method becomes less accu-
rate at constraining the time-scales and the measurements of tgas

begin to deviate considerably from the expected values, in extreme
cases even to the extent that tgas ∝ tstar. However, as long as
| log10(tstar/tgas)| 6 1, we find that tgas varies as a function of
tstar by less than a factor of 2, and typically by less than 50 per cent.
The most stable and reliable solutions are found when tstar and
tgas differ by less than a factor of 4, or | log10(tstar/tgas)| 6 0.6.
This means that, when combining the range of reference time-
scales covered by Hα (tstar,ref ∼ 5 Myr, Haydon et al. 2018),
FUV, and NUV (tstar,ref = 15–35 Myr, Haydon et al. 2018)
emission, the method can be applied at the highest accuracy for
tgas = 1–140 Myr, which comfortably encompasses the (hotly
debated) range of molecular cloud lifetimes considered in the liter-
ature (cf. Dobbs et al. 2014).

Moving to the duration of the overlap phase (tover) in the mid-
dle panels of Figure 21, we see that the point particle experiments
invariably provide upper limits on tover. This occurs in cases where
the retrieved duration occupies less than 5 per cent of the entire
timeline (i.e. tover/τ < 0.05), because that percentage corresponds
to the precision at which the method can constrain tover at the
adopted critical region filling factor ζ (see Section 4.2.4 and Ap-
pendix B). Any value tover/τ < 0.05 is therefore consistent with
tover = 0. Indeed, the values shown in the left middle panel of the
figure are very low (tover ∼ 0.1 Myr), which is expected given that
single gas and star particles can never coexist in the simulations.

The above behaviour changes when considering the extended
emission experiments in the middle right panel of Figure 21. In
these cases, the retrieved durations of the overlap phase are longer
(of the order tover ∼ 1 Myr) and in reasonable agreement with
the expected values from Section 4.3.3. This change relative to
the point particle experiments occurs because the extended emis-
sion maps are generated by smoothing the particle population over
Nngb = 200 neighbours, implying that we should start to see a
physical time overlap between the gas and stellar phases. Interest-
ingly, many of the symbols in this panel are transparent, particu-
larly at tstar > 10 Myr. For these experiments, we find that the
retrieved region filling factors ζstar and ζgas both exceed the criti-
cal value ζcrit = 0.5 above which the spatial blending of regions
affects the accuracy of the tover measurement (see Section 4.2.4).
When ζ > ζcrit, it becomes difficult (and sometimes impossible)
to statistically distinguish between the time overlap of the stellar
and gas phases in a single region and the spatial overlap between
physically unrelated regions. The magnitude of this degeneracy is
determined by the level of region crowding in the maps, which in
turn is set by the total duration of the timeline τ . For this reason, ex-
periments that are strongly affected by blending result in retrieved
values of tover that increase linearly with tstar and, given that these
are found where tstar � tgas, also with τ . This shows the impor-
tance of applying our recommended upper limit of ζcrit = 0.5. If
observational applications of the method yield higher values of ζ,
it should be kept in mind that the uncertainty on tover will exceed
0.05τ , as shown in Appendix B.

Finally, the constrained values of the region separation length
λ shown in the bottom panels of Figure 21 are in good agreement
with the dependence on tstar expected from Section 4.3.3. Over-
all, the separation length should decrease with increasing tstar for
geometric reasons. A longer duration of the evolutionary timeline

implies a larger number of regions, which in turn results in smaller
separation lengths. While this behaviour is mostly followed by the
experiments, there are two exceptions. The first occurs in the low-
resolution point particle experiments, for which λ increases with
tstar at tstar < 100 Myr. This is caused by the fact that the young
star particles in the low-resolution simulation are closely packed in
spiral structures (see Figure 17) mirroring the gas structures from
which they were born (see Figure 20). Over time, the older star par-
ticles disperse and occupy the large voids outside the dense birth
sites, increasing the distance to their neighbours. This results in an
increasing trend of λ with tstar that is only reversed when the voids
get crowded and λ decreases for geometric reasons, as expected.
The high-resolution and extended emission experiments do not fol-
low this same trend reversal, because either the star formation is
much more distributed and the maps are lacking major voids (in
the high-resolution simulation), or the closely-packed young star
particles are merged to constitute single regions by the use of a
smoothing kernel when generating the extended emission maps.

The second case of λ (gently) increasing with tstar occurs in
the extended emission experiments at large values of tstar. This
reflects a crowding of the regions. By increasing tstar, the space
between the regions has vanished and the overlapping envelopes of
the regions give rise to a diffuse emission reservoir, within which
single regions become increasingly hard to distinguish. As a re-
sult, the retrieved value of λ increases and the accuracy of all con-
strained quantities is negatively affected. In Section 4.3.9, we pro-
vide a quantitative criterion to identify applications of the method
that are affected by diffuse emission reservoirs. Illustrative exam-
ples in Figure 21 are the two low-resolution, extended emission
experiments at tstar > 100 Myr, which are therefore shown as
transparent symbols.

In summary, the experiments summarised in Figure 21 show
that the method can be reliably applied across a broad range of
reference time-scales. Primarily, tstar and tgas should not differ by
more than an order of magnitude due to the decreasing sensitivity of
the method to the underlying timeline towards larger differences. It
can be verified after applying the method whether this requirement
is satisfied. For typical SFR tracers such as Hα (tstar,ref ∼ 5 Myr,
Haydon et al. 2018), FUV, and NUV (tstar,ref = 15–35 Myr, Hay-
don et al. 2018) emission, this requirement should not be problem-
atic, as together the tracers cover a wide range of gas phase du-
rations that would be deemed reliable, i.e. tgas = 0.5–50 Myr
and tgas = 1.5–350 Myr, respectively. Next to this immediate re-
quirement of the method that (somewhat) limits the range of tstar,
changing the duration of tstar can have secondary implications that
negatively affect the results, mostly due to region crowding and
blending. These effects are captured not in intrinsic limits on tstar,
but on other quantities, such as the region filling factor ζ (see Sec-
tion 4.2.4) and the shape of the tuning fork diagram B (see Sec-
tion 4.3.9). All requirements for reliable applications of the method
are summarised in Section 4.4 below.

4.3.5 Dependence on the gas density threshold

The next test we carry out uses 4 × 9 = 36 experiments from Ta-
ble 8, with IDs 3, 5, 7, and 12–17, to determine how the choice of
gas tracer (represented by the minimum gas volume density used to
construct the gas map) affects the constrained quantities tgas, tover,
and λ. The choice of gas tracer or its excitation density is expected
to strongly influence the retrieved duration of the gas phase, be-
cause higher-density gas represents a more advanced stage of col-
lapse towards star formation. More specifically, high-density gas
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Figure 22. Influence of the choice of gas tracer (captured by varying the minimum gas volume density ρmin) on the best-fitting values of the duration of the gas
phase (tgas, top), the duration of the overlap phase (tover, middle), and the mean separation length between independent regions (λ, bottom), for experiments
ID 3, 5, 7, and 12–17 in Table 8 using point particle maps (left panels) and extended emission maps (right panels). Transparent symbols represent experiments
that do not satisfy each of the conditions for the reliable application of the method summarised in Section 4.4. Non-transparent symbols are connected by
lines as shown by the legend. The grey-shaded area indicates the density range where gas particles are ineligible for star formation (see Section 4.1). In the
right-hand panels, the thick blue (low resolution) and red (high resolution) lines show the expected values from Section 4.3.3, with line styles chosen to match
the legend. In the middle panel, downward arrows indicate upper limits (see Section 4.4). This figure illustrates how a combination of gas tracers covering a
variety of critical densities can be used to probe the evolutionary time-scales at different stages of the cloud lifecycle.

is short-lived in any star formation theory in which star formation
proceeds on the gas free-fall time (e.g. Elmegreen 2002; Krumholz
& McKee 2005; Padoan & Nordlund 2011; Hennebelle & Chabrier
2011; Federrath & Klessen 2012). In the simulations considered
here, star formation does indeed proceed on a free-fall time, which
will lead to a decrease of tgas towards higher values of ρmin. Fur-
thermore, we showed in Section 4.3.3 that the use of minimum gas
volume densities above the star formation threshold enables star
particles to form from gas that could not have been visible in the
gas map. The absence of visible progenitors to young stellar emis-
sion peaks leads to an additional (and even stronger) decrease of
tgas and tover with ρmin, through the factor pgas in equation (167)
and (169), which is propagated into the expected region separation
length λ through equations (170)–(175). This strong variation of

the constrained quantities as a function of the minimum gas density
is physical. By varying the gas tracer such that it covers a range of
different excitation densities, the method can thus be used to assign
lifetimes to gas at these densities and, by inversion, to probe the gas
density evolution of the gas towards star formation as a function of
absolute time. In order to test this behaviour, we consider an order
of magnitude range in ρmin, by using ρmin,LR = 0.5–2 mH cm−3

and ρmin,HR = 1–4 mH cm−3.

In Figure 22, we test if the dependence of the constrained
quantities tgas, tover, and λ on the minimum gas density of the
gas map follows the relations predicted in Section 4.3.3. As be-
fore in Section 4.3.4, we are only including the expected values in
the right-hand panels showing the extended emission experiments.
Across the three panels, we find remarkably good agreement be-
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tween the values retrieved using the presented methods and the
expected values. To first order, we see that the method performs
well in tracing the gas density evolution as a function of absolute
time. This is encouraging in the light of the wide variety densities
probed by gas tracers that are readily detectable with ALMA in
nearby galaxies (e.g. Shirley 2015; Leroy et al. 2017).

Specifically, the top panels of Figure 22 show that the ex-
pected, steep dependence of tgas on ρmin is quantitatively repro-
duced by the method. There is remarkably little difference between
the point particle and extended emission experiments, which high-
lights that at the high densities probed here, the individual gas par-
ticles within a single region are so crowded (see Figure 20) that
they are not separated, but together constitute a region in the point
particle maps. The small vertical offset between the low-resolution
and high-resolution measurements is attributed to a numerical res-
olution effect in Section 4.3.3.

The middle panels of Figure 22 exhibit contrasting trends. In
the point particle experiments (middle left panel), the upper limits
on the data points show that the duration of the overlap phase tover

is very short (tover < 1 Myr), which may be expected given that a
single star particle never coexists with its parent gas particle. How-
ever, the point-like nature of the emission peaks in these maps only
fundamentally applies to the stellar maps (Figure 17), because the
gas particles are so strongly spatially correlated that it is hard to
discriminate individual gas particles in the gas maps (Figure 20). It
turns out that the point-like nature of the stellar maps is sufficient
to maintain a short duration of the overlap phase.

The measurements of tover obtained in the extended emission
experiments (middle right panel) behave quite differently to the
point particle experiments, yet follow a relation with ρmin that is
very similar to the gas phase lifetime in the top panels. As explained
in the derivation of Section 4.3.3, this is not surprising. Because
the regions consist of large numbers of neighbours with long star
formation time-scales, the expected duration of the overlap phase
is long (∼ 100 Myr) at the density threshold for star formation
ρcrit. At higher densities, the gaseous progenitors to young stellar
regions may be lost to star formation before they reach sufficiently
high densities to be visible in the gas maps. This decreases the in-
ferred duration of the entire timeline and thus affects tgas and tover

to an equal extent.
We remind the reader that, even though the steep dependence

of tgas and tover on ρmin behaves as predicted in Section 4.3.3, this
is strictly a numerical effect due to the stochastic star formation
algorithm used in the simulations. In observational applications of
the method, any dependence of the evolutionary timeline on the gas
tracer density should be considerably shallower. In real-Universe
systems, gaseous regions attain higher densities as they evolve to-
wards star formation. As long as the observational sensitivity is suf-
ficiently high, the high-density gaseous progenitor to young stellar
populations should always be detectable, because stars represent
the evolutionary end state of the evolution towards increasing den-
sities. This presents a strong contrast to the simulations, in which
stars may form out of low-density gas, provided that it has a density
in excess of the star formation threshold (ρg > ρcrit).

Despite the fundamentally different physics at play, the steep
dependence of the retrieved time-scales on ρmin serves as both a
warning and an exciting prospect for observational applications of
the method. The warning is that the observations must be suffi-
ciently sensitive to have been able to detect the gaseous progenitors
to the young stellar emission peaks considered, as well as to have
been able to detect the young stellar populations that may eventu-
ally emerge from the gas emission peaks hosted by the maps (also

see the discussion in KL14). The exciting prospect of the density
dependences shown in the top and middle panels of Figure 22 is
that by probing gas of various densities, it is not only possible to
reconstruct the density evolution as a function of time towards star
formation, but also the dissociation of the dense gas during the stel-
lar feedback phase.

Finally, the bottom two panels in Figure 22 show the region
separation lengths retrieved by the method, which (in the bottom
right panel) again show good agreement with the expected values.
The naive expectation shown by the thick lines is that these should
increase with ρmin. At higher minimum gas densities, the emis-
sion peaks are shorter lived, implying that the gas maps should host
fewer of them, in turn leading to larger separation lengths. This be-
haviour is indeed followed by the point particle experiments, but
for the extended emission maps this expectation only applies to the
experiments with short stellar reference time-scales (tstar,ref ). For
tstar,ref > 10 Myr, the bottom right panel shows that λ decreases
with ρmin. We find that this trend occurs due to the fact that higher-
density gas more closely traces the spiral structure in the simula-
tions than the low-density gas. As a result, the high-density gas is
more spatially correlated, which may lead to smaller region sepa-
ration lengths if the stellar regions follow the spiral structure too.
Indeed they do, but the clustering of the stellar regions near spiral
arms only becomes statistically noticeable if they are sufficiently
numerous to sample the spiral structure well, which happens for
tstar,ref > 10 Myr.

In summary, the experiments summarised in Figure 22 show
that by varying the tracer (and specifically such that different char-
acteristic excitation densities are probed), the physical dependence
of the constrained quantities on the gas density can be probed. The
presented examples cover an order of magnitude in gas density,
which is considerably smaller than the ∼ 3 orders of magnitude in
density that are plausibly spanned by observations of nearby galax-
ies with ALMA (e.g. Leroy et al. 2017). Therefore, this test illus-
trates how the application of the method to well-chosen sets of gas
tracers can provide even more insight in the cloud-scale star forma-
tion process.

4.3.6 Dependence on the spatial resolution or distance

We now use 4 × 18 = 72 experiments from Table 8, with IDs 3,
5, 7, and 18–32, to test how the spatial resolution of the maps (in
units of the mean separation length) affects the constrained quanti-
ties tgas, tover, and λ. This is a critical test for future applications
of the method, because any limitations placed on the spatial resolu-
tion will directly set the maximum distance up to which the method
can be applied (also see Section 6 below). With high-sensitivity
interferometers like ALMA being operational and 30-metre class
optical telescopes with adaptive optics coming online in the near
future, the application of the method out to large distances using
high-resolution imaging presents a logical research avenue. To de-
fine a point of reference for these applications, we convolve the
simulated maps to a wide range of spatial resolutions that are de-
fined by the minimum aperture size, covering lap,min = 25–800 pc
or 1.5 dex in PSF size.

In Figure 23, we test the accuracy of the method across the
above range of spatial resolutions, which for the purpose of the
comparison here are normalised to the region separation length λ.
This is a necessary normalisation to enable a quantitative compar-
ison between all experiments and reflects the fact that the charac-
teristic size scale of the gas-to-stellar flux ratio bias modelled in
Section 3.2.11 is set entirely by the region separation length (see
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Figure 23. Influence of the physical spatial resolution (FWHM or lap,min) in units of the mean separation length on the best-fitting values of the duration
of the gas phase (tgas, top), the duration of the overlap phase (tover, middle), and the mean separation length between independent regions (λ, bottom), for
experiments ID 3, 5, 7, and 18–32 in Table 8 using point particle maps (left panels) and extended emission maps (right panels). Transparent symbols represent
experiments that do not satisfy each of the conditions for the reliable application of the method summarised in Section 4.4. Non-transparent symbols are
connected by lines as shown by the legend. The light grey shaded region indicates resolutions worse than 0.67λ (or ζ > 0.56 for unresolved point sources),
above which the measurements of tover and λ start to show systematic deviations. The dark grey shaded regions indicate resolutions worse than λ (or ζ > 0.84

for unresolved point sources), above which tgas shows minor deviations. In the right-hand panels, the thick blue (low resolution) and red (high resolution)
lines show the expected values from Section 4.3.3, with line styles chosen to match the legend. In the middle panel, downward arrows indicate upper limits
(see Section 4.4). This figure shows that (especially) the non-transparent retrieved quantities depend only weakly on the spatial resolution, implying that the
method can be reliably applied as long as the region separation length λ is resolved by at least one (for tgas) or 1.5 (for tover and λ) resolution elements.

the top right panel of Figure 11). Again, we display the expected
values from Section 4.3.3 in the right-hand panels showing the
results from the extended emission experiments. Across the three
panels, we find good agreement between the values retrieved us-
ing the presented methods and the expected values, as well as little
dependence of the constrained quantities on the spatial resolution,
provided that lap,min/λ � 1. Around lap,min/λ ∼ 1, some of
the measurements start to show deviations from both the higher-
resolution measurements and the expected values. We see that all
of the experiments have lap,min/λ < 1.5, despite the fact that the
largest PSF size used (lap,min = 800 pc) is an order of magni-
tude larger than the smallest region separation length (λ ≈ 80 pc).
This shows that convolving the maps with a PSF much larger than

the region separation length will simply result in a larger retrieved
value of λ, reflecting the unsurprising result that is not possible to
retrieve sub-resolution separations. Therefore, the first-order result
of Figure 23 is that the constrained quantities tgas, tover, and λ do
not strongly depend on the spatial resolution, as long as the region
separation length is well-resolved. Below, we quantify this state-
ment further for each of the three quantities.

Another general observation that can be made for each of tgas,
tover, and λ, is that the results of the point particle experiments ap-
proach those of the extended emission experiments towards large
lap,min/λ. Again, this is not necessarily surprising – the lifecycle
and separation of individual particles differs from those of concen-
trations of particles within a smoothing kernel, but the convolution

MNRAS 000, 1–80 (2018)



60 J. M. D. Kruijssen et al.

with a large PSF to worsen the resolution of the maps obscures that
difference. Indeed, for lap,min � hsmooth, the point particle maps
are visually nearly indistinguishable from the extended emission
maps. For the {low, high} resolution simulations, we find that the
differences between the point particle and extended emission exper-
iments start to vanish at aperture sizes of lap,min > 400, 200} pc.
Given that typical values of λ are of the same order at high spatial
resolutions (see Appendix D), we expect the results of the point
particle and extended emission experiments to yield similar results
for lap,min/λ > 0.5. Figure 23 shows that this is indeed the case.

If we now first focus on the top panels in Figure 23, it is clear
that the retrieved durations of the gas phase closely match the ex-
pected value, independently of the spatial resolution. The point par-
ticle maps return longer lifetimes than the extended emission maps,
which is to be expected given that individual particles should be
longer-lived than collections of particles if these regions are de-
stroyed by stellar feedback. The lack of correlation between tgas

and lap,min/λ is encouraging for future application of the method.
Only at lap,min/λ & 1 (highlighted by the dark grey area), some of
the data points show large upward error bars or overestimate tgas

relative to the expected value. The large upward error bars are easy
to understand in the context of the tuning fork diagram of Figure 2
– at low spatial resolution, the separation of the two branches is not
well-resolved. If one of the branches does not deviate strongly from
the galactic average (i.e. it is consistent with B = 1 at 1–2σ), then
the retrieved duration of the gas phase may be arbitrarily long-lived
(up to the galaxy-wide gas depletion time). Likewise, the measure-
ment of longer lifetimes at large lap,min/λ can be understood in
terms of a smaller deviation from the galactic average gas-to-stellar
flux ratio at larger aperture sizes, which results in more extended
evolutionary timelines. This is an undesirable outcome and shows
that measurements of tgas obtained with our method should only
be used if lap,min < λ.

In the middle panels of Figure 23, the retrieved durations of
the overlap phase (tover) behave roughly as expected. In the point
particle experiments, we obtain very low (tover < 1 Myr) upper
limits, which approach the higher values found for the extended
emission experiments as lap,min/λ approaches unity. The results
of the extended emission experiments are consistent with the ex-
pectations from Section 4.3.3. Unfortunately, most of the experi-
ments do not pass the requirements for reliably constraining tover

listed in Section 4.4 below, which inhibits drawing firm conclu-
sions regarding any trends of tover with the spatial resolution of
the maps. The transparent symbols mostly do not satisfy these re-
quirements because the retrieved region filling factors (ζ ≡ 2r/λ)
exceed the critical value (ζcrit = 0.5), implying that spatial over-
lap between regions obstructs constraining their temporal overlap.
However, if we focus on the trustworthy experiments (shown as the
opaque data points) that reach the largest lap,min/λ, i.e. the exper-
iments with tstar = 3 Myr (filled circles on solid lines), then the
middle right panel of Figure 23 does show that following set of
unreliable (transparent) experiments remain close to the results ob-
tained at high spatial resolution until λ is resolved by less than 1.5
resolution elements (highlighted by the light grey area). Therefore,
we recommend to disregard measurements of tover resulting from
applications for which lap,min/λ > 0.67.

Finally, the bottom panels of Figure 23 show that the region
separation length λ is well-constrained until about lap,min/λ ∼
0.67, similarly to tover. As discussed above, this is not surprising.
The retrieved value of λ cannot be much smaller than a resolution
element, implying that applications of the method to low-resolution
maps must overestimate the region separation length. In the ex-

treme case of PSF sizes much larger than the sub-resolution region
separation length, we expect that the measured separation length
satisfies λ ∝ lap,min. Indeed, this behaviour can be seen in the bot-
tom right panel of Figure 23 near lap,min/λ = 1. This shows that
region separation lengths measured with our method should only
be used if they are sufficiently well-resolved, which we quantify as
lap,min/λ < 0.67 (highlighted by the light grey area).

In summary, the spatial resolution of the map is a key quan-
tity in assessing the accuracy of measurements obtained with the
method. We require lap,min/λ < 1 when measuring tgas and
lap,min/λ < 0.67 when measuring tover or λ. Fortunately, these
are rather weak requirements. The typical separation lengths ob-
tained in the presented experiments (see Appendix D) and in the
first observational applications that we are currently carrying out
(Kruijssen et al. 2018; Hygate et al. in prep.; Schruba et al. in
prep.; Chevance et al. in prep.; Ward et al. in prep.) are all com-
fortably resolved out to tens of Mpc with modern observatories
(see Section 6). This implies that our method enables the system-
atic characterisation of the evolutionary timeline of cloud-scale star
formation across the galaxy population.

4.3.7 Dependence on the galaxy inclination

We now use 4 × 21 = 84 experiments from Table 8, with IDs 3,
5, 7, and 33–50, to test how the galaxy inclination affects the con-
strained quantities tgas, tover, and λ. While the inclination angles
of galaxies are weakly correlated with the orientation of the cosmic
web by which they have been fed and torqued (e.g. White 1984;
Dekel et al. 2009a; Forero-Romero et al. 2014), their distribution
of inclination angles can be assumed to be flat for the purposes in
this paper. As a result, by determining the inclination angle above
which the method no longer returns accurate results, we can effec-
tively determine which fraction of the galaxy population should be
avoided in observational applications. Because galaxies are found
with all inclination angles, our experiments are chosen to cover a
(nearly) complete range of i = 0.0–87.1◦. At the maximum incli-
nation angle, the projected diameter and thickness of the simulated
galaxy discs are equal.

In Figure 24, we test the accuracy of the method across the
above range of galaxy inclination angles, which for the purpose of
the comparison here are expressed as 1−cos i. This is a useful rep-
resentation, because the distances in the disc plane are scaled by a
factor of cos i in projection. The term cos i is subtracted from unity
to have the inclination increase towards the right (see the top axis).
As before, we display the expected values from Section 4.3.3 in
the right-hand panels showing the results from the extended emis-
sion experiments. Across the three panels, we find good agreement
between the values retrieved using the presented methods and the
expected values from Section 4.3.3, as well as little dependence of
the constrained quantities on the inclination.

This figure exhibits great similarity to Figure 23, in that the
retrieved quantities are accurate until the galaxy is inclined so far
that the region separation length is no longer resolved. In the figure,
this regime is shown by the blue (low-resolution) and red (high-
resolution) shaded areas – in the bottom panels, the light shades
apply to the requirement for tover and λ to resolve the region sepa-
ration length with 1.5 resolution elements, whereas the dark shades
reflect the requirement for tgas that λ is resolved with a single res-
olution element (see Section 4.3.6). The critical inclination angles
above which the projected region separation lengths are no longer
resolved are i = 65–75◦ for the point particle experiments and
i = 75–80◦ for the extended emission experiments.
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Figure 24. Influence of the galaxy inclination angle i on the best-fitting values of the duration of the gas phase (tgas, top), the duration of the overlap phase
(tover, middle), and the mean separation length between independent regions (λ, bottom), for experiments ID 3, 5, 7, and 33–50 in Table 8 using point particle
maps (left panels) and extended emission maps (right panels). Transparent symbols represent experiments that do not satisfy each of the conditions for the
reliable application of the method summarised in Section 4.4. Non-transparent symbols are connected by lines as shown by the legend. In the right-hand panels,
the thick blue (low resolution) and red (high resolution) lines show the expected values from Section 4.3.3, with line styles chosen to match the legend. In the
bottom panel, the light blue (low-resolution) and red (high-resolution) shaded regions indicate resolutions worse than 0.67λ (or ζ > 0.56), above which the
measurements of tover and λ start to show systematic deviations. Likewise, the dark shaded regions indicate resolutions worse than λ (or ζ > 0.84), above
which tgas shows minor deviations. The coloured dotted vertical lines indicate the inclination angles above which the retrieved region separation length is
no longer well-resolved, whereas the black dash-dotted vertical line marks the inclination angle at which the galaxy diameter and vertical thickness have the
same projected dimension. In the top and middle panel, the shaded regions indicate the inclination angles for which the retrieved region separation lengths are
ill-resolved. In the middle panel, downward arrows indicate upper limits. This figure shows that all of the retrieved quantities show only a weak dependence
on the inclination angle, enabling reliable applications of the method up to i ∼ 75◦.

In the top panels of Figure 24, we see that the duration of
the gas phase does not depend on the inclination angle until i >
cos−1(lap,min/λ) (indicated by the blue and red shaded areas).
Above these inclinations, the scatter of the measurements increases
and the retrieved values of tgas are slightly elevated relative to low
inclinations. These effects are relatively minor, implying that mea-
surements of the gas phase lifetime are robust against variations of
the inclination angle. If real-Universe systems have similar region
separation lengths as the experiments used here (λ = 100–400 pc)

and are observed at a similar spatial resolution (lap,min = 50 pc),
then tgas can be reliably constrained up to i = 75◦. More gener-
ally, we require λ > lap,min/ cos i when measuring tgas, which
generalises the result from Section 4.3.6 to arbitrary inclinations.

The middle panels of Figure 24 show similar results as before
in Section 4.3.4–4.3.6. The point particle experiments return dura-
tions of the overlap phase that are short, as indicated by upper lim-
its tover . 1 Myr. Similarly to Figure 23 showing the dependence
of the constrained quantities on the spatial resolution, the opaque
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symbols (indicative of satisfying all requirements for the reliable
application of the method listed in Section 4.4) do not extend to
high inclination angles in the measurements of tover. Perhaps un-
surprisingly, this occurs for the same reason as in Figure 23. Al-
ready at intermediate inclinations (i ∼ 60◦), the region filling fac-
tors exceed the critical value above which region blending prohibits
placing accurate constraints on the duration of the overlap phase
(i.e. 2r/λ > 0.5). For the measurements that can be considered to
be accurate, the middle right panel shows that the retrieved values
of tover reproduce the expectation from Section 4.3.3. At large in-
clinations, we observe a slight increase of the retrieved tover, which
mirrors the trend from Figure 23, as well as the behaviour of tgas

in the top panels of Figure 24. Therefore, we maintain the require-
ment from Section 4.3.6 that the region separation length should
be resolved by at least 1.5 resolution elements to place accurate
constraints on tover and generalise it to λ > 1.5lap,min/ cos i. For
λ = 200 pc and lap,min = 50 pc, this corresponds to i 6 68◦.

Finally, the bottom panels of Figure 24 confirm the above
results by demonstrating that the region separation length is in-
sensitive to the inclination angle, provided that λ is resolved by
at least 1.5 resolution elements in projection (indicated with the
light shaded blue and red areas). When this requirement is satis-
fied, the retrieved values of λ are consistent with the expected val-
ues from Section 4.3.3. In line with Section 4.3.6, we thus again
require λ > 1.5lap,min/ cos i, or i 6 68◦ for λ = 200 pc and
lap,min = 50 pc. We note that this is a very conservative limit, be-
cause the bottom panels in Figure 24 both do not show significant
deviations from the low-inclination measurements for i < 75◦.

In summary, the galaxy inclination angle only weakly affects
the applicability of the method. For the dimensions and properties
of the simulated galaxies considered here, we require i 6 75◦ (or
generally λ > lap,min/ cos i) when measuring tgas and i 6 68◦

(or generally λ > 1.5lap,min/ cos i) when measuring tover or λ.
Assuming a flat distribution of inclination angles, this implies that
future applications of our method are not noticeably affected by the
galaxy inclination for ∼ 80 per cent of the galaxy population. In
conjunction with the resolution requirements from Section 4.3.6,
this means that the method is readily applicable to a statistically
significant galaxy sample. We quantify this statement in Section 6.

4.3.8 Dependence on the number of independent regions

Finally, we use all 4 × 50 = 200 experiments from Table 8 to
quantify how the number of identified emission peaks (related to
the size of the maps in units of the region separation length) affects
the error bars on the constrained quantities tgas, tover, and λ. At
low numbers of emission peaks, the uncertainties are expected to
increase due to Poisson noise. If we make the assumption that the
peak identification algorithm roughly selects independent regions
(see Section 3.2.7), then this test places a lower limit on the galaxy
size for a given value of the region separation length. Specifically,
if we define a circular, face-on disc galaxy with outer radius Rmax

that hosts a population of randomly distributed independent regions
and require at least a number of emission peaks Nmin, this places a
lower limit on the galaxy radius of

Rmax >
λ

2

√
Nmin

fstruc
, (176)

where the factor 0 < fstruc 6 1 accounts for deviations from a ran-
dom distribution (fstruc = 1), as in equation (173) of Section 4.3.3.

Of course, the above assumptions only enable an order-of-
magnitude estimate of Rmax. We have already seen in the pre-

ceding discussion that independent regions are not randomly dis-
tributed – for the simulations considered here, we find fstruc ≈ 0.4
(see Section 4.3.3). In addition, one of the reasons for using the pre-
sented method rather than just counting emission peaks to derive
their relative time-scales is that it allows us to be agnostic about
what constitutes an independent region. After all, it is unknown a
priori under which conditions the structures selected by peak iden-
tification algorithms correspond to independent regions. In spite of
these caveats, equation (176) serves as a rough indication of how
identifying a minimum number of emission peaks may help select
suitable target galaxies given an expected value of λ. More gen-
erally, it is of immediate empirical relevance to define a value of
Nmin above which the error bars on the constrained quantities are
acceptably small, because a visual check of a possible target galaxy
can already give an indication of the rough number emission peaks
that may plausibly be identified. Across all 200 experiments in Ta-
ble 8, we define Nmin for each experiment as

Nmin = min (Npeak,star, Npeak,gas), (177)

so that it reflects the smallest number of peaks identified between
both maps. By using all experiments, we cover the largest possi-
ble range in Nmin, spanning nearly 2.5 orders of magnitude from
Nmin = 7–1700.

In Figure 25, we show the logarithmic (i.e. relative) error bars
on the retrieved quantities, taking the logarithmic average of the
upward and downward error for each experiment, as a function of
Nmin. Even if the figure can be used to determine the method’s pre-
cision continuously as a function ofNmin, we consider two charac-
teristic uncertainties of 50 per cent (i.e. 0.2 dex, corresponding to
the boundary between the white and light grey areas) and one order
of magnitude (i.e. 1 dex, corresponding to the boundary between
the dark and light grey areas) to determine a minimum number
of emission peaks. The first of these defines the number of peaks
above which the evolutionary timeline of cloud-scale star formation
and feedback is characterised at high precision, whereas the second
limit represents a firm minimum – while order-of-magnitude pre-
cision may be sufficient at high redshift to place first constraints
on clump lifetimes, the diagnostic power of the method vanishes at
even lower precision.

Across all panels in Figure 25 except the middle left (which
is discussed below), the error bars roughly scale as the inverse
square-root of the number of emission peaks Nmin, as expected for
Poisson-dominated errors. Another similarity between the panels
is the normalisation of this trend – in nearly all panels, the median
relation (thick black line) reaches the critical 0.2 dex uncertainty
at just below 50 emission peaks and the critical 1 dex uncertainty
at a little over 10 emission peaks. However, note that the median
is calculated for all experiments. If we restrict ourselves to the ex-
periments that satisfy all of the requirements listed in Section 4.4
(opaque symbols), we find that the number of emission peaks at
which a 0.2 dex uncertainty is reached can be constrained quite
well, at Nmin ≈ 35. This is not possible for the 1 dex uncertainty
level, because none of the opaque data points have such large er-
ror bars. Using the transparent data points, we find that a 1 dex
uncertainty is typically reached at Nmin ≈ 15.

Exceptions exist to both of these rules of thumb. Most notably,
there are four opaque data points with error bars well in excess of
1 dex in the top panels. These experiments are easily identified as
the data points with large error bars in the top panels of Figure 23
and have in common that they barely resolve the region separation
length. While this boosts their upward error bars, both their abso-
lute values and downward error bars are not negatively affected by
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Figure 25. Influence of the smallest number of emission peaks in either of the two maps on the logarithmic uncertainties of the duration of the gas phase
(tgas, top), the duration of the overlap phase (tover, middle), and the mean separation length between independent regions (λ, bottom), for all experiments
in Table 8 using point particle maps (left panels) and extended emission maps (right panels). The uncertainties correspond to the logarithmic average of
the upward and downward error for each experiment. Transparent symbols represent experiments that do not satisfy each of the conditions for the reliable
application of the method summarised in Section 4.4. Non-transparent symbols represent the low- and high-resolution simulations as indicated by the legends,
with open symbols in the middle panels denoting upper limits. The thick black lines show the median uncertainties across five bins that are equally spaced in
the logarithm of the number of peaksNmin. For reference, the dotted line shows the expected trend for the standard deviation of the average, i.e.∝ N−1/2

min . In
the white region, the typical logarithmic uncertainties are< 0.2 (i.e.< 50 per cent), whereas the dark grey shaded area indicates where the typical uncertainty
exceeds unity. The figure shows that meaningful quantitative measurements are obtained when each of the maps containsNmin > 35 emission peaks, whereas
order-of-magnitude estimates are possible if Nmin > 15.

the poor resolution. The other main exception to the above mini-
mum numbers of emission peaks is found in the middle left panel,
showing the uncertainty on the duration of the overlap phase in the
point particle experiments. Nearly all data points in this panel have
large error bars, with a median error of about 1 dex. Again, this
is not surprising. The retrieved values of tover in the point particle
experiments are all close to zero and often represent upper limits.
Physically, such an outcome is understandable, because individual
gas particles in the simulation are instantaneously converted into
stellar particles, without any time overlap. However, if we compare
the retrieved small values of tover ∼ 0.1 Myr (see Figure 21–24) to
its typical precision of 0.05τ & 1 Myr, it is instantly clear that the
typical uncertainty on tover must span an order of magnitude, even

if the absolute uncertainty is still small. Therefore, the elevated er-
ror bars in the middle left panel are no fundamental shortcoming of
the method, but correspond to an acceptable uncertainty.

In summary, Figure 25 shows that the method constrains the
quantities tgas, tover, and λ to a precision of < 0.2 dex (or 50 per
cent) if both maps contain at least Nmin > 35 identified emission
peaks. For order-of-magnitude estimates (1 dex precision), we re-
quire Nmin > 15. Turning to equation (176), these numbers of
regions can be translated to minimum galaxy radii. We assume a re-
gion separation length of λ = 200 pc, which is reasonable in view
of both the experiments carried out here and the first observational
applications of the method (Kruijssen et al. 2018; Hygate et al. in
prep.; Schruba et al. in prep.; Chevance et al. in prep.; Ward et al. in
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prep.), and adopt a typical correction factor for galactic structure of
fstruc = 0.4 to find minimum galaxy radii of Rmax > 1.5 kpc
for 0.2 dex precision and Rmax > 1 kpc for order-of-magnitude
estimates. If we characterise galaxies by their half-light radii, then
the relation between stellar mass and half-light radius for local-
Universe, late-type star-forming galaxies (Shen et al. 2003) can be
used to convert the above limits on galaxy radii to a limit on the
galaxy stellar mass of M? & 109 M�. Practically, the above fields
of view can also comfortably be covered, even with high-resolution
(e.g. lap,min = 50 pc) observations on facilities like ALMA.

For a region separation length more appropriate for a high-
redshift environment of λ = 1.5 kpc (see Section 6) and a
galactic structure correction factor appropriate for galaxies with-
out dominant spiral structure (fstruc = 1), we instead find mini-
mum galaxy radii of Rmax > 4.4 kpc for 0.2 dex precision and
Rmax > 2.9 kpc for order-of-magnitude estimates. Again, such
fields of view are easily achieved with current facilities. However,
these numbers do show that some care should be taken in target-
ing sufficiently large galaxies (or galaxy samples) at high redshift.
In view of the above estimates, we conclude that most galaxies
of interest should host a sufficient number of emission peaks for
the method to provide meaningful constraints on the cloud-scale
physics of star formation and feedback.

4.3.9 The influence of diffuse emission

Finally, we briefly comment on how the presence of a diffuse emis-
sion reservoir affects the derived evolutionary timeline. In this con-
text, ‘diffuse’ refers to emission on spatial scales larger than the
region separation length λ. If such a reservoir is present in a given
tracer, it decreases the rarity of the emission found in the identified
peaks, resulting in different lifetimes for that tracer. Physically, this
means that the diffuse phase is included in the timeline and there-
fore affects its duration. This is not necessarily incorrect, but does
require that the diffuse and clumpy emission follow the same large-
scale distribution throughout the maps. If diffuse emission is more
prominent in one region and emission peaks can only be identified
in another, the diffuse emission only contributes to the galactic av-
erage emission (obtained for large aperture sizes) and not to the
peaks (which dominate at small aperture sizes). As a result, the
presence of diffuse emission that is systematically displaced from
emission peaks can lead to the counterintuitive situation in which
focusing a small aperture on emission peaks of a certain tracer
causes a flux deficit of that tracer relative to the galactic average
gas-to-stellar flux ratio (Hygate et al. 2018). In the tuning fork di-
agram of Figure 2, this would manifest itself as a branch crossing
the galactic average (B = 1) into the opposite half of the diagram.
Therefore, quantitative applications of our method can be funda-
mentally obstructed by considerable amounts of diffuse emission.

To minimise the impact of diffuse emission on the constrained
quantities, any tuning fork diagram showing signs of a substan-
tial contribution from diffuse emission should be discarded. In the
present work, we therefore rule out the extreme case in which fo-
cusing on an emission peak of a certain tracer results in a deficit of
that tracer by more than 1σ. Formally, we thus require

max (Bstar − σlog10 Bstar) 6 1, (178)

and

min (Bgas + σlog10 Bgas) > 1. (179)

These conditions can be satisfied in two ways. Firstly, there may
not exist any substantial diffuse emission reservoirs in either map,

which is the simplest situation and the one most conducive to the
application of the method. Alternatively, diffuse emission reser-
voirs may exist, but they have similar contributions to both the
young stellar and gas maps while having a similar spatial distribu-
tion to the clumpy emission. Such a configuration does not change
the galactic average gas-to-stellar flux ratio relative to a strictly
clumpy distribution and implies that the flux ratios around the iden-
tified peaks are representative for most of the emission in the map.
As a result, the gas phase lifetime obtained from the tuning fork
diagram is accurate, even if the presence of diffuse emission may
increase the effective region filling factors ζstar and ζgas and thus
lead to overestimated durations of the overlap phase. However, such
cases are easily dealt with by following the guidelines for the per-
mitted range of region filling factors presented in Section 4.2.4.

While the above conditions already provide a good way of
avoiding any major uncertainties due to diffuse emission, we will
quantify this further in Hygate et al. (2018) by testing how the ac-
curacy of the quantities constrained by the method depends on the
‘diffuse fraction’ of the maps, i.e. the total fraction of the emission
that arises on size scales larger than λ, obtained by analysing the
two-dimensional Fourier transforms of the maps. We will use this
to define a critical diffuse fraction above which the obtained results
are no longer reliable. While the definition of such a critical value
is useful for evaluating the accuracy of a measurement, it does not
allow one to improve on a rejected experiment, because a map’s
suitability for the method is unchanged. However, a more active
approach is to filter out the diffuse emission in a map and obtain
the best-fitting quantities for the resulting map. This requires an
iterative approach, in which the original map is used to derive λ,
after which emission on scales > λ is filtered out, and the analy-
sis is repeated using the updated, filtered map, until convergence is
reached. This process is expected to lead to convergence, because
filtering a map should increase λ and thus require less filtering dur-
ing the next iteration. We have developed a module of HEISEN-
BERG that extends the method described in this paper by filtering
out diffuse emission in Fourier space, enabling the application of
the method to observed maps that contain substantial diffuse emis-
sion reservoirs. This optional module is described and validated in
Hygate et al. (2018).

4.4 Summary: guidelines for observational applications

Sections 4.2 and 4.3 report on how we have systematically tested
the method presented in Section 3 with 288 experiments, in which
it has been applied to simulated galaxy maps. The goal of these
experiments has been to push the method to its extremes and quan-
titatively assess under which circumstances the retrieved charac-
terisation of the cloud lifecycle are still accurate. Across these
tests, we have found that the resulting limits on the applicability
of the method are encouraging, enabling systematic applications
from the local Universe out to high redshift (see Section 6 below).
We now summarise the requirements for obtaining accurate con-
straints on the three quantities that are fundamentally obtained with
the method, i.e. the duration of the gas phase tgas, the duration of
the overlap phase tover, and the region separation length λ. For a de-
tailed explanation of the origin and consequences of these require-
ments, we refer to the above tests. The accuracy of the additional,
derived quantities is discussed in Section 5.

We first list the requirements that apply to all three quantities:

(i) | log10(tstar/tgas)| 6 1 (Sections 4.2.3 and 4.3.4): This con-
dition states that the durations of the gas and stellar phases should
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not differ by more than an order of magnitude. For larger differ-
ences, the retrieved time-scales exhibit systematic biases.

(ii) λ > Nreslap,min/ cos i (Sections 4.3.6 and 4.3.7): This con-
dition states that the region separation length should be resolved
in projection by at least Nres resolution elements. We require
Nres = 1 for tgas and Nres = 1.5 for tover and λ. At insufficient
resolution (or too small a separation length given the resolution),
all three quantities exhibit systematic biases.

(iii) Nmin > {15, 35} (Section 4.3.8): This condition states
that the smallest number of emission peaks identified in either of
the two maps should be at least 15 or 35. The identification of at
least 15 emission peaks enables order-of-magnitude estimates of
the constrained quantities, whereas a minimum of 35 peaks yield
a precision better than 0.2 dex (50 per cent). In Section 4.3.8, we
convert the minimum number of peaks to a lower limit on the spa-
tial extent of the target galaxy. Finally, we note that this is a soft
requirement in the sense that the logarithmic precision scales con-
tinuously as σlog ∝ N

−1/2
min . A higher precision is achieved at a

larger number of identified emission peaks.
(iv) max (Bstar − σlog10 Bstar) 6 1 when focusing on stellar

peaks and min (Bgas + σlog10 Bgas) > 1 when focusing on gas
peaks (Section 4.3.9): This condition states that focusing on a stel-
lar or gaseous emission peak should never lead to a deficit of that
tracer relative to the galactic average. Such a deficit indicates the
presence of a diffuse emission reservoir, which negatively impacts
the accuracy of the derived quantities.

(v) | log10[SFR(t 6 τ)/SFR(0)]|dt={tstar,tgas} 6 0.2 (Sec-
tion 4.2.3): This condition states that, if available, the SFR as a
function of age t 6 τ should not vary by more than 0.2 dex when
averaged over age intervals with a width of tstar or tgas. This en-
sures that any bias of the retrieved tgas due to SFR variations is
less than 50 per cent.

(vi) Each independent region should be detectable in both tracer
maps at some point in its lifecycle (Section 4.3.5): This condition
states that tracer pairs in which some regions in one tracer would
never be visible in the other tracer should be avoided. This is un-
likely to occur for the transition from gas to young stars traced
by e.g. CO and Hα, as gas concentrations generally pass through
a molecular phase before forming massive stars. However, other
(rare) tracers may not be visible in all regions. In that case, the
measured duration of that phase is decreased proportionally.

Across all tests discussed in this section, we have removed any ex-
periments that do not satisfy any of the conditions (i)–(iv). These
experiments are shown as transparent symbols in the figures. In or-
der for an experiment to be represented by a non-transparent sym-
bol in any of the panels, it must satisfy all four conditions (i)–(iv).

For feedback-related quantities depending on tover, we formu-
late an additional set of requirements:

(vii) max (ζstar, ζgas) < ζ(δ log10 F) (Section 4.2.4 and Ap-
pendix B): This condition states that the emission peak size in units
of the region separation length should be small enough for the peak
identification algorithm to identify adjacent peaks. If this condition
is not satisfied, the value of tover is overestimated.

(viii) max (ζstar, ζgas) < 0.5 (Section 4.2.4 and Appendix B):
This condition states that the emission peak size in units of the
region separation length should be small enough to limit the flux
contamination from adjacent peaks to 5 per cent. For unresolved
point sources, the peak size is set by the PSF (i.e. lap,min) and this
requirement closely matches the condition of point (ii). If this con-

dition is not satisfied, the value of tover may be overestimated by
more than the corresponding uncertainty of 0.05τ .

(ix) 0.05 < tover/τ < 0.95 (Sections 4.2.4 and 4.3.8): This
condition states that the duration of the overlap phase should not
be too close to zero or the duration of the entire timeline. If this
condition is not satisfied, then the retrieved value of tover is either
an upper limit (if toverτ < 0.05) or a lower limit (if tover/τ >
0.95). These numbers are based on a fixed precision at which tover

is measured of 0.05τ . However, this precision is set by ζstar and
ζgas as summarised in point (viii) and shown in Appendix B, so any
value of ζ > 0.5 will increase the 5 per cent systematic uncertainty
range due to region blending.

(x) | log10[SFR(t 6 τ)/SFR(0)]|dt=tover
6 0.2 (Sec-

tion 4.2.4): This condition states that, if available, the SFR as a
function of age t 6 τ should not vary by more than 0.2 dex when
averaged over age intervals with a width of tover. This ensures that
any bias of the retrieved tover due to SFR variations is less than 50
per cent.

(xi) A visual inspection of the maps does not reveal abundant re-
gion blending (Section 4.2.4): This condition accounts for the fact
that, while the above quantitative requirements greatly increase the
accuracy of tover measurements, a visual check of the maps is de-
sirable to rule out region blending. Visibly isolated emission peaks
rule out any contamination of the retrieved temporal overlap by
spatial overlap.

Across all tests discussed in this section that assess the accuracy
of constraining tover, we have removed any experiments not satis-
fying conditions (vii) and (viii), in addition to conditions (i)–(iv).
These experiments are shown as transparent symbols in the figures.
In order for an experiment to be represented by a non-transparent
symbol in tover-related panels, it must satisfy all six conditions (i)–
(iv) and (vii)–(viii). If condition (ix) is not satisfied, then the quoted
value of tover is considered to be a lower limit (if tover/τ 6 0.05)
or an upper limit (if tover/τ > 0.95). Throughout Section 4.3, such
cases are represented by symbols with arrows.

When all of the above conditions are satisfied, the fitted quan-
tities (tgas, tover, λ) should be considered to be fully accurate for
point particle maps and accurate to within ∼ 0.1 dex for extended
emission maps, as shown by the various tests in this section. This
refers to a systematic uncertainty and adds in quadrature to the
formal logarithmic uncertainty returned by the method. The accu-
racy of the derived quantities varies (cf. Section 5) and is obtained
through the formal error propagation of the systematic error ac-
cording to the equations provided in Section 3.2.14. Depending on
the specific quantity, this can decrease the logarithmic accuracy by
some factor > 1. The most extreme case is the feedback energy ef-
ficiency of equations (148), which in the limit εsf � 1 effectively
scales as χfb,E ∝ λ2tgas

−1tover
−3. If we assume the extreme case

of zero covariance between the systematic uncertainties on tgas,
tover, and λ, this boosts the systematic uncertainty by a factor of√

6 ≈ 2.5 relative to a single fitted quantity. We therefore conclude
that, for extended emission maps, the systematic uncertainties of
the derived quantities fall within a range of 0.1–0.3 dex.

The public release of HEISENBERG will automatically verify
that the guidelines listed in this section are satisfied upon the com-
pletion of the analysis. Any violations of these conditions are iden-
tified in the output. This evaluation also includes those guidelines
for selecting appropriate input maps from Section 3.2.2 that are
suitable for an automated quantitative assessment.
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5 DERIVED QUANTITIES DESCRIBING CLOUD-SCALE
STAR FORMATION AND FEEDBACK

The previous section showed that the three free parameters tgas,
tover, and λ are accurately retrieved by the method presented in
Section 3. We now turn to a brief set of examples demonstrating
that also the derived quantities describing cloud-scale star forma-
tion and feedback are well-constrained. This section serves as a
proof of concept and is not as exhaustive as Section 4 – rather than
providing a discussion of all quantities listed in Table 4, we fo-
cus on five of these that we expect to be of immediate physical
interest in future applications of the method. These are the radii
of stellar regions rstar, the radii of gas regions rgas, the feedback
outflow velocity vfb, the star formation efficiency per star forma-
tion event εsf , and the mass loading factor ηfb. Firstly, we estimate
the values that we expect to measure based on our knowledge of
the simulations. Secondly, we carry out a quantitative comparison
between these values and the retrieved quantities. This compari-
son exclusively uses the experiments combining the gas maps and
young stellar maps from Section 4.3 and only considers those based
on extended emission maps (cf. Figure 20). To avoid large spreads
in the discussed quantities due to their likely physical dependence
on the minimum gas density used to generate the maps, we also
restrict ourselves to the maps with the fiducial values of ρmin,
i.e. ρmin,LR = 1 mH cm−3 and ρmin,HR = 2 mH cm−3. This al-
lows us to narrow down the range of expected and retrieved values
and isolate the accuracy of the method in constraining the derived
quantities. Finally, we only consider the experiments that satisfy
the conditions for the reliable application of the method listed in
Section 4.4, i.e. the opaque data points from Figures 21–25.

5.1 Expected values of the derived quantities

Here, we briefly provide expressions for the expected values of the
five derived quantities considered here. Analogously to the discus-
sion in Section 4.3.3, these cannot necessarily be obtained directly
from the simulations themselves, because the minimum gas den-
sities exceed the density threshold for star formation (i.e. ρmin >
ρcrit). As a result, only a fraction of the progenitors of the young
stellar regions could have been visible in the gas maps, which
changes the retrieved time-scales and other quantities from the true
values in the simulation. This is strictly a numerical effect, caused
by the stochastic model for star formation used in the simulations,
in which stars can be spawned from low-density gas without ever
going through a high-density phase. Real-Universe applications of
the method will not suffer from this behaviour, because the collapse
towards star formation eventually causes the gas to emit in any of
the commonly-used gas tracers. Most importantly for the question
at hand, we can easily accommodate how the above effect changes
the retrieved quantities, such that their expected values can still be
accurately predicted based on our knowledge of the simulations.
In equations (167) and (169), this is done by including a factor
pgas(ρg), which represents the fraction of gaseous regions that sur-
vives to a density ρg without forming stars. The values of tgas,exp,
tover,exp, and λexp that we thus predict to be retrieved using the
method are accurate, as shown in Sections 4.3.4–4.3.7.

The first two quantities that we consider are the radii of the
young stellar and gaseous regions, denoted as rstar and rgas, re-
spectively. Out of the five quantities discussed in this section, these
are the only ones that can be predicted directly from the simu-
lations, without accounting for the numerical effects due to the
stochastic star formation model. As evident from equation (85), we

define the region radius as its Gaussian dispersion, such that we can
express the expected radius as

rexp =
1

2

√
f2

Wendh
2
smooth + l2ap,min

2 ln 2
, (180)

where the first term in the numerator represents the mean FWHM of
the smoothing kernels of the particles from the simulation shown in
the maps, the second term in the numerator represents the minimum
aperture size, which sets the FWHM of the resolution at which the
maps are analysed, and the denominator converts the FWHM to
a Gaussian dispersion. For a Wendland C4 kernel defined on the
interval 0 < r/h < 1, the FWHM spans a fraction fWend ≡
∆(r/h) = 0.56 of the smoothing length. The mean smoothing
length h is determined by averaging over all gas particles with den-
sities above the minimum density (i.e. ρg > ρmin,LR for the low-
resolution simulation and ρg > ρmin,LR for the high-resolution
simulation), which is hsmooth,LR = 267 pc for the low-resolution
simulation and hsmooth,HR = 126 pc for the high-resolution sim-
ulation. The minimum aperture size ranges from lap,min,LR = 50–
400 pc for the low-resolution simulation and lap,min,HR = 25–
400 pc for the high-resolution simulation. These minimum aperture
sizes cover a wide range, because in Section 4.3.6 we changed the
spatial resolution to quantify the requirements for the reliable appli-
cation of the method. Together, the above numbers imply expected
radii of rexp,LR = 67–181 pc for the low-resolution simulation and
rexp,HR = 32–172 pc for the high-resolution simulation. Because
the young stellar maps and the gas maps are both constructed using
a Wendland C4 smoothing kernel with 200 neighbours, we do not
distinguish between the radii expected for both types of maps – the
retrieved values of rstar and rgas should be similar.

The third quantity that we consider is the feedback outflow
velocity vfb. As explained above, the expected value of this quan-
tity cannot be estimated directly from the simulations, because the
measured time-scales are affected by the stochastic star formation
model used in the simulations. Fortunately, it is straightforward to
express the value of vfb that we expect to retrieve with the method
in terms of the expected duration of the overlap phase and the ex-
pected region separation length, i.e.

vfb,exp =
λexp

2tover,exp
. (181)

Given the mean expected values of tover,exp = {1.7, 0.35} Myr
and λexp = {548, 284} pc for the experiments considered here
(see Section 4.3.3) based on the {low, high}-resolution simulations,
we thus expect to measure typical feedback outflow velocities of
vfb,exp = {162, 408} km s−1, where we have taken the mean ve-
locity over all experiments.

The final two quantities discussed here are closely related.
The first is the star formation efficiency per star formation event,
which by definition follows from the star formation relation in
equation (1) as the ratio between the cloud lifetime (over which
stars can form) and the galactic gas depletion time (reflecting how
long it takes the galaxy to run out of gas at the current SFR), i.e.

εsf,exp =
tgas,exp

tdepl
. (182)

For the {low, high}-resolution simulations, we find expected du-
rations of the gas phase of tgas,exp = {15, 2.6} Myr (see Sec-
tion 4.3.3) while for ρg > {1, 2} mH cm−3, the simulations
have gas depletion times of tdepl = {1.0, 0.3} Gyr. After again
taking the mean over all experiments, we thus expect to mea-
sure typical star formation efficiencies per event of εsf,exp =
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Figure 26. Comparison between five ‘derived’ quantities describing cloud-scale star formation and feedback and the expected values based on the simulations
(as described in Section 5.1). Shown are the cumulative distributions (black solid lines) of the measured quantities for the subset of experiments that satisfy
the guidelines from Section 4.4 (see the text for details on the sample selection), with the median values, dispersions, and logarithmic mean measurement
uncertainties highlighted by vertical dashed lines, dotted lines, and grey bands, respectively. The dispersions of the distributions are derived using the same
approach as for the PDFs described in Section 3.2.13. For comparison, the (range of) expected values from the simulations as derived in the text are highlighted
by thick red arrows or vertical lines. These results are shown for the low and high-resolution simulations (top and bottom panels, respectively). The figure
shows that not just the three free parameters discussed in Section 4 are well-constrained, but also the derived quantities are accurately retrieved using the
method presented in this paper.

{1.5, 0.85} per cent. The final considered quantity is the average
mass loading factor, i.e. the time-integrated mass outflow rate in
units of the star formation rate, of which the expected value fol-
lows from εsf,exp immediately as

ηfb,exp =
1− εsf,exp

εsf,exp
, (183)

dividing the outflowing mass fraction by the star-forming mass
fraction. For the above numbers, we expect to find typical mass
loading factors of ηfb,exp = {67, 117}, averaged over all experi-
ments as before.

5.2 Comparison to the measurements using the method

Figure 26 shows the cumulative distributions of the five derived
quantities considered in this section as retrieved by our method
from the low and high-resolution, extended emission experiments
that satisfy the conditions for the reliable application of the method
(see Section 4.4). For reference, the expected values based on the
lines of reasoning presented in Section 5.1 are displayed in red.
Across the ten panels in Figure 26, there is good agreement be-
tween the red and black lines. In the bottom-right two panels,
the expected values fall marginally outside the 1σ-equivalent per-
centiles (dotted lines), which is approximately the statistically ex-
pected number when considering ten distributions. Therefore, the
main result of this comparison is that the method does not only ac-
curately retrieve the free parameters tgas, tover, and λ, but also puts

reliable constraints on the derived quantities describing cloud-scale
star formation and feedback.

It is particularly worth commenting on the region radii rstar

and rgas, for which the horizontal arrows highlight ranges rather
than typical values. For these quantities, we expect a range of val-
ues, because the spatial resolution of the experiments used to con-
struct the distribution varies through the minimum aperture size
(lap,min). This is highlighted by the fact that the dispersion of the
retrieved values (dotted lines in Figure 26) significantly exceeds the
mean measurement uncertainty (indicated with the grey area), espe-
cially for the high-resolution simulation. Equation (180) quantifies
how we expect a change of lap,min to affect the retrieved region
radii. While this is not directly shown by the cumulative distribu-
tion shown here, there is indeed a strong correlation between rstar

or rgas and lap,min, which quantitatively traces the prediction from
equation (180) with a mean difference of just 30 per cent. In fact,
all experiments fall within a factor of two of the radius expected for
their minimum aperture size.

The range of minimum aperture sizes is large enough to cover
both the regimes where the smoothing kernels are resolved into
several (1–10) resolution elements, which occurs at lap,min <
{150, 70} pc for the {low, high}-resolution simulations, and where
they are smaller than one resolution element, which applies to
larger values of lap,min. Thanks to this dynamic range, the good
agreement between the measured and expected region radii has two
important implications. Firstly, it shows the obvious result that the
radii (and hence densities) of clouds and star-forming regions can
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be constrained to high accuracy with the presented method. Sec-
ondly, the good performance at lap,min > {150, 70} pc (for the
{low, high}-resolution simulations) also illustrates that even sub-
resolution sizes can be measured by subtracting the PSF disper-
sion in quadrature from the measured region radii, somewhat anal-
ogously to the early work on stellar clusters by Larsen (1999).

Across the remaining three variables, i.e. the feedback veloc-
ity vfb, the star formation efficiency εsf , and the mass loading fac-
tor ηfb, the dispersions of the retrieved values (dotted lines) largely
match the mean measurement uncertainties (grey areas). This im-
plies that the method obtains well-converged measurements, as is
evidenced by the good agreement between the medians and the ex-
pected values shown by the red vertical lines in Figure 26. We also
note that the dispersions are small in an absolute sense, at about
30 per cent (or 0.1 dex), which is similar to the mean difference be-
tween the measured region radii and their expected values. Only the
feedback velocity of the low-resolution simulation seems to show
a systematic variation, with a large (0.4 dex) dispersion that clearly
exceeds the mean uncertainty. This discrepancy is largely driven by
experiment IDs 20 and 23, which are run with a longer reference
time-scale (tstar = 30 Myr) than the other experiments considered
here (tstar = 3–10 Myr). Even though the stellar maps of these ex-
periments do not have unacceptably large values of the region fill-
ing factor ζstar, the relatively long reference time-scale does lead
to visible region blending, because the emission peaks have rela-
tively extended envelopes in the low-resolution simulation. As a
result, the two experiments pass the quantitative criteria for reliable
measurements of the duration of the overlap phase in Section 4.4,
but they do not pass the qualitative criterion that the maps should
not exhibit any visual signs of region blending. In practical appli-
cations of the method, they would therefore have been considered
unreliable. Quantitatively, the blending leads to overestimated du-
rations of the overlap phase and, hence, underestimated feedback
velocities. This behaviour does not occur for the high-resolution
simulation, which better resolves the regions and does not show as
high a degree of blending as the low-resolution simulation. There-
fore, the dispersion of the retrieved feedback velocities in the high-
resolution simulation matches the mean measurement uncertainty.

In summary, Figure 26 demonstrates that the derived quan-
tities describing cloud-scale star formation and feedback that are
obtained using the method are accurate. While we have only con-
sidered five examples in this section to act as a proof of concept,
the other quantities are derived using similarly simple and straight-
forward steps (see Section 3.2.14). We thus conclude that the diag-
nostic power of the method is very promising, provided that it can
be systematically applied to large samples of galaxies. In the next
section, we quantitatively show that this can readily be achieved
with current observational facilities.

6 APPLICABILITY ACROSS COSMIC HISTORY

In Section 4.4, we have summarised the requirements for the suc-
cessful application of the method detailed in Section 3 to observed
galaxy maps. Broadly speaking, these requirements can be divided
into a ‘soft’ and a ‘hard’ category. By soft requirements, we refer
to necessary target properties, which can be satisfied by picking the
right galaxy. Examples are a low inclination, a sufficient number of
independent regions (usually corresponding to a sufficient spatial
extent of the galaxy), a relatively constant SFR over a time-scale τ ,
and best-fitting time-scales tgas and tover in the range where they
are considered reliable. Not all of these are necessarily known a pri-

ori, but when applying the method to a sample of sensibly-selected
galaxies with a variety of gas and SFR tracers to choose from, these
requirements should generally be satisfied for at least some (and
usually most) of the targets.

By hard requirements we mean those that are technically re-
strictive when formulating observing strategies for applying the
method. The two main examples of such requirements are the de-
sired sensitivity [see requirement (vi) in Section 4.4] and spatial
resolution [see requirement (ii) in Section 4.4]. In principle, any
sensitivity can be obtained with infinite observing time, but the spa-
tial resolution is fundamentally limited by the specifications of the
observational facility. Therefore, resolution requirements present
the most stringent condition for the observational application of
our method. The method’s validation in Section 4 demonstrates that
accurate results are obtained for a minimum aperture size (i.e. res-
olution) of at most λ cos i (for tgas) or λ cos i/1.5 (for tover and
λ). In other words, a suitable observation must resolve the typical
separation between independent regions along the minor axis of an
inclined galaxy. This requirement can be evaluated for current and
upcoming observational facilities with a high resolving power.

In Figure 27, we show the spatial resolution required for the
application of our method to a typical low-redshift star-forming
galaxy (blue band) and a typical high-redshift star-forming galaxy
(red band). In this context, a ‘galaxy’ is characterised by a choice
of the region separation length λ and the galaxy inclination i. For
local-Universe galaxies, it is possible to carry out a physically-
motivated decomposition of position-velocity data cubes into co-
herent structures that are commonly referred to as clouds or HII

regions (e.g. Rosolowsky & Leroy 2006; Henshaw et al. 2016),
which have typical separation lengths of the order λ = 100–200 pc
(e.g. Colombo et al. 2014; Freeman et al. 2017). Early applications
of our method yield broadly similar values of λ (Kruijssen et al.
2018; Hygate et al. in prep.; Schruba et al. in prep.; Chevance et
al. in prep.; Ward et al. in prep.). We therefore characterise low-
redshift star-forming galaxies with λ = 100–200 pc in Figure 27.
By contrast, high-redshift galaxies exhibit clumpy morphologies on
much larger scales, of order 1–2 kpc (e.g. Genzel et al. 2011, 2014;
Swinbank et al. 2011, 2012; Hodge et al. 2012). While observations
using gravitational lensing (Dessauges-Zavadsky et al. 2017) and
numerical simulations (e.g. Behrendt et al. 2016; Oklopčić et al.
2017) suggest that these clumps may fragment into smaller struc-
tures when observed at higher spatial resolution, it is important to
consider that λ represents the separation length between indepen-
dent regions. The clumps seen in high-redshift galaxies are thought
to represent the largest self-gravitating scale (Dekel et al. 2009b;
Reina-Campos & Kruijssen 2017), which means that the evolution-
ary phases of the expected substructure within these clumps will be
correlated rather than independent. We therefore adopt λ = 1–
2 kpc to characterise the separation length in high-redshift star-
forming galaxies. Finally, we adopt a range of inclinations i = 0–
60◦, although we note that this is mainly for illustrative purposes.
For these choices, the spreads of λ and i contribute equally to the
width of each band in Figure 27.

For comparison, the lines in Figure 27 show the spatial res-
olutions that can be attained as a function of redshift for a num-
ber of key spectral lines with current and upcoming observational
facilities. The legend indicates which spectral lines are observed
at the maximum resolution of which facility. We consider several
CO transitions for tracing molecular gas, HI for tracing atomic gas,
and Hα for tracing recent star formation. For the CO lines, we
show the maximum attainable resolution with ALMA, the resolu-
tion in HI is shown for the Karl G. Jansky Very Large Array (JVLA)
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Figure 27. Comparison between the spatial resolution required for applying the method to galaxies with certain properties (shaded bands) and the resolution
attained by current and upcoming observational facilities (lines) as a function of redshift (bottom x-axis) or distance (top x-axis). The blue-shaded band
assumes mean separation lengths 100–200 pc, which is characteristic for local-Universe galaxies, whereas the red-shaded band assumes mean separation
lengths 1–2 kpc, which is seen in high-redshift systems. Both shaded bands cover a range of inclination angles i = 0–60◦. The spreads in λ and i contribute
equally to the widths of the bands. As long as the lines are below or within the bands, the attainable resolution is sufficient for the application of our method.
The figure shows that, in terms of spatial resolution and wavelength coverage, the method is comfortably applicable out to z ∼ 4. However, the rapid decrease
of the sensitivity with redshift implies that observations at z > 1 require a major (but feasbile) time investment (see the text).

and the Square Kilometer Array (SKA), and the resolution in Hα
is shown for the Very Large Telescope (VLT; using the MUSE
or SINFONI instruments with adaptive optics enabled), the Hub-
ble Space Telescope (HST; using WFC3), the James Webb Space
Telescope (JWST; using NIRCam or MIRI), and the European Ex-
tremely Large Telescope (E-ELT; using HARMONI, MICADO, or
METIS). Some of the lines exhibit resolution jumps at certain red-
shifts, which is caused by the lines redshifting into a different band
or instrument, leading to a change in the maximum attainable res-
olution. All resolutions are taken from the instruments’ technical
specifications prior to the submission of this paper. Whenever the
documentation provides a single resolution per band, it is assumed
that it applies to the centre of the central wavelength of that band
λband.24 The resolution at the wavelength of a line at a given red-
shift λline(z) is obtained by scaling the band’s central resolution by
a factor λline(z)/λband = (1 + z)λline(0)/λband.

Figure 27 shows that currently available facilities (JVLA,
ALMA, VLT, HST) allow the application of our method to typical
low-redshift galaxies up to distances of D ∼ 500 Mpc (or redshift
z ∼ 0.1 for CO and Hα, whereas for atomic hydrogen this can be
achieved within D < 10 Mpc (with prohibitively long integration
times already beyond a few Mpc). This implies that the lifecycle of
molecular clouds and star-forming regions can be probed system-
atically using our method across hundreds of low-redshift galaxies
covering a wide variety of properties. First efforts in this direction
are currently ongoing (Kruijssen et al. 2018; Hygate et al. in prep.;

24 For the JVLA, we include an additional factor of 1.5 to represent natural
weighting rather than uniform weighting.

Schruba et al. in prep.; Chevance et al. in prep.; Ward et al. in prep.).
Upon the arrival of the SKA, we will be able to include atomic hy-
drogen across a distance range similar to the CO and Hα, enabling
the evolutionary analysis of molecular cloud condensation from the
atomic phase.

Only a modest time investment is required for achieving the
required spatial resolution and sensitivity across a representative
sample of nearby galaxies. Observations of the molecular gas are
generally the most prohibitive. We are currently undertaking a
75-hour ALMA Large Programme as part of the PHANGS col-
laboration, which targets all 80 massive (109.75 < M?/M� <
1011), not edge-on (i < 75◦), actively star-forming (SFR/M? >
10−2 Gyr−1) galaxies at distances D < 17 Mpc (Leroy et al.,
in preparation), which is sensitive to individual molecular clouds
of masses M > 105 M� at a spatial resolution 1′′ (correspond-
ing to 50–80 pc, depending on distance). Optical and UV obser-
vations of SFR tracers at matched spatial resolution can either be
obtained with small, ground-based telescopes or have already been
taken with HST. This shows that the observations required for the
systematic application of our method can be attained with modern
facilities.

In addition, Figure 27 demonstrates that the method can be
applied to typical high-redshift galaxies out to z ∼ 2.6 using cur-
rently available facilities. This redshift range is limited by the ac-
cessibility of Hα with the VLT and HST until the first light of the
JWST and the E-ELT. Once these facilities are online, the redshift
range will instead be limited by access to the peak of the CO spec-
tral line energy distribution (SLED) with ALMA, which is expected
to be around CO(5-4) in high-redshift galaxies (Carilli & Walter
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2013). For CO line observations up to the peak of the CO SLED,
the method’s range of application thus reaches out to z = 4–5.

We do note that these kinds of high-redshift observations are
highly time-consuming. At z ∼ 1, ALMA observations of galaxies
with the highest CO surface brightnesses at a sensitivity of 0.1 mJy
and a required resolution of < 0.2” take > 20 hours per galaxy.
By z ∼ 4, reaching the required sensitivity at a similar resolution
requires > 100 hours (also see Hodge et al. 2012), which is not
fundamentally prohibitive, but does imply that a large programme
is required to apply the presented method at z & 2.25 Eventually,
it will be possible to systematically characterise the lifecycle of
molecular and ionised clumps in high-redshift galaxies for 10–20
galaxies at z ∼ 1 and a handful of targets at z > 2. These num-
bers increase by a factor of several if the dust continuum is used
to trace the molecular ISM. Such maps lack kinematic informa-
tion, but require less integration time because the dust continuum
is brighter than CO line emission. While this may not seem like
a large number, we stress that the questions under consideration
here previously represented Local Group or solar neighbourhood
science. Being able to systematically probe the cloud-scale physics
of star formation and feedback for any statistical sample of galaxies
(let alone out to z ∼ 4) is an unprecedented and exciting prospect
that is now within reach.

7 DISCUSSION

In Sections 3–6, we have presented and validated a new method
for probing the cloud-scale physics of star formation and feedback
across cosmic history. The described elements of the method repre-
sent an optimised set of tools – they have been carefully designed to
yield the most accurate measurements of the constrained quantities.
We now turn to a broader discussion of the results, paying partic-
ular attention to other approaches that we have tested and did not
yield satisfactory results, as well as the limitations of the method as
described in Section 3.

Specifically, the presented method is based on several choices
of parameters and algorithmic approaches, most of which are ei-
ther straightforward or carry a clear advantage relative to the al-
ternatives. However, there are a number of these choices where (at
face value) reasonable alternatives would have been possible. These
warrant some further discussion. Below, we discuss the methods
used for determining the overlap-to-isolated flux ratios βstar and
βgas, the way in which we account for the spatially extended na-
ture of emission peaks, the influence of galactic morphology or sub-
structure, and the general reliance of our method on the central limit
theorem. Readers interested in specific, quantitative guidelines for
observational applications are referred to Sections 4.4 and 8.

25 Another way of gaining access to a larger galaxy sample may be to in-
clude high-resolution observations of gravitationally lensed galaxies (e.g.
Swinbank et al. 2011; Livermore et al. 2015). However, our method relies
strongly on the spatial structure of the galaxy maps, implying that lensed
galaxies will require an extremely high-precision lens model to obtain ac-
curate images in the source plane.

7.1 Unsuccessful alternative approaches

7.1.1 Methods for determining the overlap-to-isolated flux ratios
βstar and βgas

The (possibly complex) time evolution of the young stellar or gas
flux in a region can influence the best-fitting evolutionary timeline
(see Section 3.2.11). In the context of our method, this time evolu-
tion is captured by the parameters βstar and βgas, which represent
the ratio between the flux regions residing in the overlap phase of
Figure 1 relative to that of regions outside of that phase (i.e. in the
‘isolated’ phase). This simplistic representation of flux evolution is
enabled by the fact that the method decomposes that evolution in
just two phases per tracer. As discussed in Section 3.2.9 and Fig-
ure 9, βstar and βgas are determined by sorting the gas-to-stellar
(stellar-to-gas) flux ratios of all stellar (gas) peaks and assigning
the fraction tover/tstar (tover/tgas) of the highest flux ratios to the
overlap phase, whereas the remainder is taken to reside in the iso-
lated phase. However, the best-fitting time-scales tstar, tgas, and
tover are only obtained after fitting the model to the data in Sec-
tion 3.2.12. It is therefore necessary to calculate βstar and βgas as
a function of tover/tstar and tover/tgas, respectively, and let these
two parameters vary with the time-scales during the fitting process.

As discussed in Section 4.2.5, the above procedure results
in accurate measurements of βstar and βgas. However, it assumes
that the identified peaks reasonably sample the underlying timeline.
Even if the uncertainty resulting from this assumption is small (see
Section 3.2.9), it is worth investigating if other approaches yield
more accurate results. Therefore, we have evaluated two alterna-
tive methods for determining βstar and βgas.

Firstly, one could attempt to define a critical gas-to-stellar flux
ratio (or its contrast relative to the galactic average) for deciding
whether an emission peak is considered to reside in the overlap
phase. However, for gradually evolving flux levels of independent
regions, defining a critical flux ratio is entirely ad hoc. In practice,
it would also depend on the specific tracer used, as different trac-
ers will exhibit different typical evolutionary histories. As demon-
strated by Figure 9, there are no obvious jumps near the best-fitting
value of (in this example) βstar that would enable identifying a
threshold value. The other experiments show similar behaviour. We
have experimented with several different thresholds, such as requir-
ing the gas-to-stellar flux ratio to reside within a certain factor of the
galactic average to identify a region as ‘overlap’, where we let that
factor (or its inverse) vary from 0.05–0.5. The resulting values of
βstar and βgas vary greatly as a function of the adopted threshold
value, even if the impact on the best-fitting time-scales is modest
(as expected, see Section 3.2.9). Only for the subset of stellar point
particle experiments discussed in Section 4.2.5 it is possible to de-
fine a threshold, but this is enabled exclusively by the imposed step
function flux evolution of the particles in these experiments, which
experience a flux change by a factor of 2 upon entering or emerging
from the overlap phase (see Section 4.2.2). In other words, defining
a critical flux ratio for deciding whether an emission peak resides
in the overlap phase may only work with prior knowledge of the
evolutionary timeline. This approach is therefore undesirable.

Secondly, one could try to iteratively constrain βstar and βgas,
i.e. by applying the procedure of Section 3.2.9–3.2.13 for some ini-
tial guess of these parameters to obtain the best-fitting tstar, tgas,
and tover and use these best-fitting values to refine βstar and βgas

analogously to how we currently use the time-scales to determine
the fraction of peaks that should reside in the overlap phase. This
can then be repeated until convergence is obtained. To some extent,
this approach is a less elegant version of how we determine βstar
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and βgas in Section 3.2.9, because during a single iteration this ver-
sion (incorrectly) assumes that the time-scales can be varied with-
out changing the overlap-to-isolated flux ratios accordingly. In ad-
dition, it is computationally more expensive, because the procedure
of Section 3.2.9–3.2.13 needs to be repeated multiple times. Most
importantly, an iterative approach ends up being highly unreliable
– tests of this approach often identify two ‘attractor’ solutions that
the iteration keeps alternating between, implying that convergence
is never obtained.

In summary, the adopted approach for determining the
overlap-to-isolated flux ratios βstar and βgas is the most accurate,
most computationally efficient, and the most self-consistent of the
options that we have considered. Due to a lack of feasible alterna-
tives, we have not included any other (optional) approaches in the
HEISENBERG code.

7.1.2 Accounting for the extended nature of emission peaks

Contrary to the original model (KL14) for the ‘tuning fork di-
agram’ of Figure 2, the model described in Section 3.2.11 does
not assume that emission peaks are point sources, but accounts for
their extended nature. This is a critical enhancement of the model
– in the original form, the flattening of the tuning fork diagram at
small aperture sizes is unambiguously interpreted as being due to
a non-zero overlap time-scale tover > 0, whereas such a flatten-
ing is also caused by extended emission peaks with finite central
surface densities. As a result, distinguishing the influences of ex-
tended emission and the duration of the overlap phase on the flat-
tening of the gas-to-stellar flux ratio at aperture sizes smaller than
the region separation length (i.e. lap < λ) is critical for obtain-
ing a non-degenerate characterisation of the evolutionary timeline.
As evident by comparing panel (b) with panels (g) and (h) in Fig-
ure 11 (in which E → ∞ corresponds to delta function-shaped
peak profiles), avoiding this degeneracy may be difficult, but can
be achieved using our method. However, this relies quite strongly
on which functional form is assumed for the emission peak pro-
files. This represents the main uncertainty when using our method
to constrain feedback-related physics, because it predominantly af-
fects the measurement of the duration of the overlap phase tover.
We have therefore evaluated various profiles and their possible vari-
ation with tracer or evolutionary phase.

Practical applications of the method will often need to deal
with objects near the resolution limit. Therefore, we make a strong
case in Section 3.2.11 that two-dimensional Gaussians are the pre-
ferred profile, because these represent both the observational PSF
and the convolution kernel used when convolving the input maps to
a common spatial resolution. However, HEISENBERG also includes
the option of using point (delta function) or constant surface density
disc profiles. When applying these profiles to the extended emis-
sion experiments from Section 4, the results become less accurate
than when using two-dimensional Gaussians, as expected. Adopt-
ing point particle profiles invariably leads to overestimated overlap
time-scales, because any flattening of the tuning fork caused by the
peak profile is erroneously attributed to the duration of the over-
lap phase. A constant surface density disc generally does better,
because its finite surface density at small aperture sizes appropri-
ately decreases tover and could be preferred over a two-dimensional
Gaussian, because it is ‘simple’. However, it also provides less ac-
curate results, because a constant surface density does not properly
describe the actual peak emission profiles. In the context of the tun-
ing fork in Figure 2, this profile requires the gas-to-stellar flux ratios
to be constant once lap < 2r, which implies a sudden transition in

the model tuning fork (i.e. a discontinuity in its first derivative) as
shown in panel (i) of Figure 11 that is not present in the observed
data points. This mismatch leads to an unsatisfactory recovery of
the input time-scales in the experiments of Section 4.2. Therefore,
we recommend using a two-dimensional Gaussian peak profile.

Even if a Gaussian profile is preferred, it remains to be decided
how to set its width, which we express in terms of a dispersion ra-
dius r. In Section 3.2.11, we use the contrast between the flux level
of the emission peaks and the average across the map to determine
the ratio ζ ≡ 2r/λ. This is done separately for young stellar peaks
and gas peaks, which is the sensible choice for peaks in the ‘iso-
lated’ phase, i.e. that do not reside in the overlap phase. However,
it is not obvious how to determine the peak radii for peaks resid-
ing in the overlap phase. Should the stellar and gas components of
a single ‘overlap’ peak be allowed to have different radii? If so,
should these radii be assumed to be the same across the entire peak
sample, irrespective of whether they reside in the isolated or over-
lap phase, or should a distinction be made between the evolutionary
phases? Depending on these choices, it may be necessary to obtain
up to four different peak radii.

We start by addressing the first of these questions with an ex-
ample. If we select a stellar or gas peak that resides in the overlap
phase and allow its radius to be different for the gas and stellar flux
in the numerator and denominator of the gas-to-stellar flux ratio,
then the extreme of the gas-to-stellar flux ratio bias may be reached
at a radius larger than the smallest aperture size if the radius dif-
ference between both tracers is large enough. In other words, the
‘tuning fork’ curve is no longer monotonically increasing (when
focusing on a gas peak) or decreasing (when focusing on a young
stellar peak) towards smaller aperture sizes, but exhibits a mini-
mum or maximum at some finite aperture size. This happens when
the peak that is being focused on is more extended in its primary
tracer (by which it was selected) than in its secondary tracer (the
presence of which makes the peak reside in the overlap phase). In
that case, the primary tracer (which drives the bias of the gas-to-
stellar flux ratio relative to the galactic average) reaches the central
surface density at a larger size scale than the secondary tracer does,
implying that at smaller apertures the secondary tracer contributes
more of the flux density and the degree of flux ratio bias decreases.

The behaviour in which a secondary tracer is considerably
more centrally concentrated than the primary tracer might manifest
itself on the small scales of individual molecular clumps, which of-
ten exhibit a higher star formation efficiency in their central regions
than globally (e.g. Kruijssen et al. 2012; Longmore et al. 2014;
Ginsburg et al. 2016). However, on the scales of entire molecular
clouds (or ‘independent regions’) considered here, the structure of
the ISM is scale-free (e.g. Elmegreen & Falgarone 1996; Mac Low
& Klessen 2004), which implies that the distribution of star for-
mation should roughly trace the distribution of mass in the cloud
even if the stars themselves form at the small-scale density peaks.
As a result, the trend reversal described above has not been ob-
served in the several observational applications of our method that
are currently underway (Kruijssen et al. 2018, Hygate et al. in prep.,
Schruba et al. in prep., Chevance et al. in prep., Ward et al. in prep.),
which cover over a dozen different galaxies and tracer pairs. This
suggests that using different radii for the stellar and gas emission
of a peak in the overlap phase is not the right approach.

However, differences in peak radius are expected as a function
of evolutionary stage. For instance, a molecular cloud may contract
due to self-gravity or grow by accretion, whereas HII regions may
expand before shrinking when the most massive stars have ended
their lives. As a result, it is not obvious that the peak radii during
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Figure 28. Influence of galactic morphology on the predicted gas-to-stellar
flux ratio bias as a function of the aperture size when focusing apertures on
stellar peaks (bottom branches) or gas peaks (top branches), with param-
eters corresponding to the fiducial model in Figure 11 (see Table 3). The
black lines represent the random distribution of independent regions in two
dimensions adopted in our model, whereas the red lines indicate the same
model when the regions are randomly positioned along a line. These two ex-
tremes bracket the range of ‘tuning fork’ shapes expected for real galaxies
with prominent morphological features. The aperture size where lap = λ
is highlighted by the grey arrow.

the overlap phase should be the same as during the isolated stellar
and gas phases. Indeed, tests using a description in which peaks
in the isolated and overlap phases share the same radius (but still
differ between gas and stars) show less accurate results than when
the peak radius is allowed to vary with evolutionary phase for each
tracer. Therefore, it is necessary to account for the evolution of the
peak radii – the flux contrast between the emission peaks and the
map average should be determined separately for peaks in the iso-
lated and overlap phases, as is done in Section 3.2.11.

In summary, exploring alternative descriptions for the radius
evolution shows that the model presented in Section 3.2.11 pro-
vides the best match to simulated and observed tuning fork dia-
grams. It thus most accurately constrains the free parameters.

7.2 Current limitations of the method

7.2.1 The influence of galactic morphology or substructure

The model that is fitted to observed ‘tuning fork’ diagrams in Sec-
tion 3.2.12 and is described in Section 3.2.11 assumes that indepen-
dent regions are randomly distributed in two dimensions. Specifi-
cally, this assumption implies that the number of regions enclosed
by an aperture Nreg scales as Nreg = (lap/λ)2, which determines
how steeply the gas-to-stellar flux ratio bias (in small apertures)
transitions to the galactic average (in large apertures) around a char-
acteristic aperture size lap = λ. By contrast, if the regions are not
randomly distributed in two dimensions, but are situated along a
line, then the number of regions enclosed by an aperture scales as
Nreg = lap/λ. Real galaxies that exhibit some degree of substruc-

ture like spiral arms or a ring may have an Nreg scaling in between
these two extremes.

Figure 28 illustrates the effect of morphology or substruc-
ture on the tuning fork diagram by considering both the two-
dimensional distribution and the linear sequence of regions. The
difference between both models is modest, especially when consid-
ering that the black and red lines represent morphological extremes.
However, a characteristic distinction is that the linear model transi-
tions more gradually between the single-peak and galactic-average
regimes of the aperture size range. Based on these model predic-
tions, it is clear that galactic morphology does not affect the mea-
surement of λ (as both models match at lap = λ), but may influence
the obtained evolutionary timeline, particularly if any morpholog-
ical features are more prominent in one tracer than in the other
(i.e. one branch of the tuning fork follows a red line in Figure 28,
whereas the other follows a black line).

We have attempted to account for galactic morphology by let-
ting the (lap/λ)2 terms in equations (36) and (37) vary according
to the actual substructure in the considered maps by stacking the
radial emission profiles around the identified emission peaks. How-
ever, this is a highly delicate exercise. As before, much of the un-
certainty in accounting for morphology comes from the treatment
of regions in the overlap phase, for which the spatial structure in
both maps needs to be combined. In our experiments investigating
this problem, we find that a morphology correction to the default
Nreg = (lap/λ)2 is very sensitive to the definition of which re-
gions reside in the isolated or overlap phases. To remedy such a
dependence, the present paper follows the conservative assumption
that the regions are randomly distributed in two dimensions. The
validity of this assumption is supported by the fact that the galaxy
simulations on which the method is tested do exhibit some degree
of substructure (see Figure 15, 17, and 20), yet the retrieved evolu-
tionary timelines are in good agreement with the input values (see
Section 4.2). This suggests that the influence of galactic morphol-
ogy on the accuracy of the method is limited.

As shown by Figure 28, our model for the gas-to-stellar flux
ratio as a function of aperture size can provide predictions for the
two bracketing cases of substructure, as well as morphologies in
between. The challenge is to characterise the substructure in a way
that provides a clean measurement of Nreg as a function of lap/λ
for any pair of galaxy maps without relying too strongly on the def-
inition of a ‘region’. This line of research is currently being contin-
ued and is planned to be addressed in a future paper. Until the com-
pletion of that work, we recommend applications of the method to
galaxies dominated by strong spiral arms or rings to visually in-
spect how well the model matches the slope of the observed tun-
ing fork near lap = λ. A discrepancy between both slopes would
indicate non-random morphological features. Such cases may be
improved by the partial masking of the young stellar and gas maps
used, or by filtering them at different emission levels to enhance or
suppress their morphological features.

If the current version of the method is applied to a galaxy with
dominant one-dimensional morphological features such as spiral
arms, bars, or rings that propagate down to scales lap ≈ λ, the
constrained quantities may be inaccurate. Figure 28 shows that λ
is unaffected, as the flux ratio bias at lap = λ is insensitive to
the dimensionality of the emission structure. By contrast, the best-
fitting value of tgas will be incorrect if the morphological features
are present down to a scale lap ≈ λ only (or mainly) in one of
the maps. In that case, the tuning fork diagram becomes asymmet-
ric, with one branch providing a bad match to the modelled two-
dimensional morphology. This affects the accuracy of tgas, because
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in our model it controls the asymmetry of the tuning fork diagram
(see Figure 11). In other words, varying tgas is somewhat degen-
erate with morphological differences between both maps. Fortu-
nately, such cases are easily recognised, because the fitting pro-
cedure then often returns a best-fitting solution that reproduces one
branch of the tuning fork diagram, but not the other. Finally, tover is
relatively unaffected, because it is set on the smallest scales, where
lap < λ and the lap/λ term in the model becomes unimportant.

In closing, it is important to emphasise that while our model
assumes a random distribution of regions, this only affects the qual-
ity of the fit around lap = λ. At aperture sizes lap � λ, the gas-
to-stellar flux ratio bias is set by the properties of the central peak,
specifically the central flux density and the duration of the overlap
phase. At aperture sizes lap � λ, the gas-to-stellar flux ratio con-
verges to the galactic average, meaning that large-scale morpholog-
ical features do not affect the accuracy of the results. In an obser-
vational context, this means that spiral arms, bars, or rings can only
affect the constrained quantities if they persist down to lap ≈ λ. In
practice, we find that a reasonable degree of two-dimensional spa-
tial isotropy is only needed for lap 6 2λ. This is implies a much
weaker requirement than ruling out any applications of the method
to all galaxies with prominent morphological features. We plan to
further investigate the applicability of the method to galaxies with
pronounced morphological features in future work, as part of our
ongoing observational surveys of the nearby galaxy population (see
Section 6).

7.2.2 The method’s reliance on the central limit theorem

A final point worth discussing is that our method relies quite
strongly on the central limit theorem by attributing a common evo-
lutionary timeline to all regions. This approach effectively assumes
that region-to-region variations can be linearly combined to re-
trieve an intensity-weighted average gas-to-stellar flux ratio bias
[see equations (36) and (37) in Section 3.2.9]. We demonstrated
in KL14 (Figure 5) that this assumption is correct when the re-
gions follow a mass spectrum of non-zero width. The only effect
of such a mass spectrum is to increase the statistical uncertainty
on the observed gas-to-stellar flux ratio bias, but it does not affect
the absolute value of the bias.26 We note that this increased uncer-
tainty due to the mass spectrum is accounted for in the derivation
of the uncertainties in Section 3.2.10. Even if regions of different
masses experience different evolutionary timelines, our method of
constraining a timeline is not incorrect as long as it is kept in mind
that it represents a flux-weighted population average. In essence, it
provides a characteristic evolutionary history for Lagrangian mass
elements in a galaxy.

Our approach is less adequate when some subset of the inde-
pendent regions never evolves through a phase in which it is bright
in either of the tracers. Section 4.3.5 provides a numerical example
based on the stochastic star formation model used in our simula-
tions. In real galaxies, a subset of the molecular cloud population
may be disrupted by galactic shear, without ever being associated
with high-mass star formation. Alternatively, low-mass clouds may

26 This also applies to the environmental variation of other region prop-
erties, such as their sizes, expansion velocities, or emissivities. If a major
variation of these properties is a concern (e.g. due to a sharp radial metal-
licity gradient in the target galaxy), we recommend sub-dividing the galaxy
into fields or radial annuli across which these properties are more homoge-
neous.

have too low star formation efficiencies to produce massive stars
that are traced by Hα, FUV, or NUV. In both cases, the rarity of
the stellar phase is increased relative to the gas phase, implying
that the cloud lifetime inferred with our method will be longer than
the lifetime of the star-forming subset of clouds. Specifically, if a
fraction fvis of all clouds will at a later stage also be visible in the
young stellar phase, then the observed lifetime will be a factor of
f−1

vis longer than the lifetime of (eventually) star-forming clouds. A
good way of picturing this is that our method measures the statis-
tical average of the total amount of time spent by a mass element
in the gas phase before becoming associated with the young stellar
phase. For instance, if a cloud is disrupted by shear before it forms
massive stars, its lifetime is effectively added to that of a similar
cloud that will become associated with star formation.

It depends on the science question at hand whether the above
behaviour is desirable. For instance, the theory for cloud lifetimes
by Jeffreson & Kruijssen (2018) follows a similar statistical ap-
proach by adding up cloud destruction rates due to various mech-
anisms and subtracting the mechanism that is not associated with
star formation (i.e. shear), such that it increases the effective cloud
lifetime. In that case, theory and observation are dealing with the
same quantities. However, if one is interested in the absolute life-
time of a certain ionised emission line (e.g. Hβ, [OII], [OIII], [NII],
or [SII]), which is linked to a stellar evolutionary time-scale, it is
undesirable to obtain the population-integrated lifetime. In such a
case, an effort should be made to mask or filter out emission from
regions that will never be visible in the other tracer. For gas maps,
this can be achieved by filtering out emission from low-mass clouds
(possibly in a diffuse form), which typically have higher virial pa-
rameters (Dobbs et al. 2011) and are more prone to destruction
by shear. Low-mass clouds are also statistically less likely to form
high-mass stars due to the effects of IMF sampling, but this effect
is accounted for in our calibrations of the lifetimes of young stel-
lar tracers such as Hα, FUV, and NUV, which decrease towards
low region masses due to stochastic effects (Haydon et al. 2018).
In practice, the impact of low-mass clouds and star-forming regions
may be limited, because the luminosity functions (dN/dL ∝ Lγ)
of both populations have slopes γ > −2, implying that most of the
flux emerges from massive clouds and regions (e.g. Elmegreen &
Falgarone 1996; Lee et al. 2012).

The examples considered above show that there are feasi-
ble ways of dealing with tracer pairs for which the population-
averaged evolutionary timeline may not provide meaningful time-
scales. However, there is no universal way of doing so. The best
approach depends on the tracer pair and sometimes even on the par-
ticular data set. This highlights a fundamental point – the method
presented in this paper does not represent a ‘black box’ and should
not be used as such. A sound astrophysical interpretation of the
measurements requires the user to carefully evaluate to what extent
the constrained quantities match the physical quantities of interest.
When such care is taken, the presented method can provide strong
and powerful constraints on important physical quantities describ-
ing cloud-scale star formation and feedback across cosmic history.

8 CONCLUSIONS

8.1 Summary

We present a new method for measuring the key quantities de-
scribing the cloud-scale physics of star formation and feedback
from high-resolution imaging of the ISM and star formation across
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galaxy discs. These quantities include the (molecular) cloud life-
time, the feedback time-scale, the mean separation length between
independent regions, the region size, the star formation efficiency
per star formation event, the feedback outflow velocity, the mass
loading factor, the feedback-to-ISM coupling efficiency, as well as
several other important quantities (Table 4). This paper explains the
method in detail (Section 3) and demonstrates its accuracy using
nearly 300 controlled applications to hydrodynamical simulations
of star-forming galaxies (Sections 4 and 5), finding that the method
is suitable for systematic applications across statistically relevant
samples of galaxies, from the nearby Universe out to high red-
shift (Section 6). This extends the ‘Local Group science’ of cloud-
scale star formation and feedback into the realm of galaxy evolution
across cosmic time. The main results of this work are as follows.

(i) Section 2: Star formation in galaxies can be described as
an ensemble average over a population of ‘independent regions’,
i.e. concentrations of gas or young stars that reside on a timeline of
star formation in an evolutionary phase that is independent of their
neighbours. The star formation relation between the gas mass (sur-
face density) and the SFR (surface density) observed when averag-
ing these quantities over large areas of galaxies breaks down be-
low a few times the region separation length λ, where the discreti-
sation of a galaxy into independent regions introduces significant
departures from the galaxy-wide average relation due to region-to-
region differences in evolutionary phase. These departures become
systematic when focusing small (lap . 2λ) apertures on emission
peaks of either gas or young stars, such that the gas-to-stellar flux
ratio (tracing the gas mass per unit SFR or the gas depletion time)
becomes biased to elevated or suppressed values, respectively, be-
cause specific evolutionary stages are preferentially selected. The
magnitude of these biases directly probes the underlying evolution-
ary timeline of the regions.

(ii) Section 3: We introduce the code HEISENBERG, developed
in IDL, which applies the above formalism to obtain quantitative
measurements of the duration of each evolutionary phase and the
region separation length from observed galaxy maps. The evolu-
tionary phases are defined by the emission maps used, such that a
timeline consists of two phases reflected by each map and a third
‘overlap’ phase during which regions are visible in both maps. The
method works by identifying emission peaks in the maps, measur-
ing the flux ratio between both maps around the identified peaks as
a function of the spatial averaging scale (or aperture size) in a ‘tun-
ing fork diagram’ (Figure 2), and fitting a statistical model that pre-
dicts the flux ratio bias as a function of size scale and the underlying
evolutionary timeline. This way, the method directly translates the
observed flux ratio bias when focusing apertures on emission peaks
in either map into the (relative) lifetimes of these peaks. Fundamen-
tally, the method only measures relative lifetimes, but these can be
converted into absolute time-scales by using a ‘reference time’ if
one of the tracer lifetimes is known.

In the context of star formation in molecular gas clouds and feed-
back from young stars, obvious emission tracers are CO and Hα,
although it is one of the method’s main strengths that it can be ap-
plied to any pair of emission maps that represent different phases
of an evolutionary progression. The choice of the SFR tracer is im-
portant, because it can be used to set the aforementioned ‘refer-
ence time’. For instance, Hα has a lifetime of about 5 Myr (Leroy
et al. 2012; Haydon et al. 2018). Because the method makes use of
flux ratio biases, only relative flux differences are important. As a
result, the measured time-scales and separation lengths are them-
selves independent of the (uncertain) conversion factors from flux

to physical quantities such as gas masses or SFRs, provided that
these conversion factors are roughly constant across the analysed
field. However, by combining the measured evolutionary timeline
with these physical quantities, a range of important derived quanti-
ties (such as the star formation efficiency and mass loading factor)
can be constrained. The method employs Monte-Carlo error propa-
gation, providing the complete PDF for each constrained quantity.

(iii) Section 4: The method is systematically tested and validated
using simulated galaxy maps, with the goal of identifying exactly
under which conditions it reliably characterises cloud-scale star for-
mation and feedback. To this end, we performed hydrodynamical
simulations of isolated, star-forming disc galaxies, which are used
to generate gaseous and young stellar emission maps. The first set
of 88 controlled experiments (described in Section 4.2) uses pairs
of stellar maps showing only the stars in specific age bins, grant-
ing us complete control over the duration of each phase. These
tests show that the obtained time-scales are accurate to within
30 per cent or 0.11 dex. The largest source of uncertainty is the
variation of the SFR across the duration of the timeline. We also
find that the duration of the overlap phase can be obtained to an
accuracy of ∼ 5 per cent of the total duration of the evolution-
ary timeline jointly spanned by both maps. In order to accurately
measure the duration of the overlap phase, it is important that the
region diameters in both maps do not exceed half the region sep-
aration length to avoid the misidentification of spatial overlap as
temporal overlap.

The second set of 200 controlled experiments (described in Sec-
tion 4.3) combines age-binned stellar maps with maps of the gas
in the simulations, with the goal of addressing the applicability of
the method as a function of observational conditions, such as the
choice of SFR tracer and its characteristic lifetime, the choice of
gas tracer and its characteristic gas volume density, the spatial res-
olution of the maps, the inclination angle of the galaxy, the number
of independent regions per map, and the diffuse emission fraction.
The main results of these tests are as follows.

(a) The lifetimes of the gas and SFR tracers should not differ
by more than an order of magnitude. This means that the choice
of SFR tracer (which sets the reference time-scale as described
by Haydon et al. 2018) may need to be modified after apply-
ing the method. For an SFR tracer lifetime of 5 Myr (typical of
e.g. Hα), accurate cloud lifetimes are obtained for tgas = 0.5–
50 Myr. By including high-resolution FUV or NUV coverage,
the upper limit of this range is increased to several 100 Myr, im-
plying that the method is not limited by the availability of suit-
able reference time-scales.

(b) The measured cloud lifetimes depend on the gas tracer
used and the characteristic volume densities it traces. This de-
pendence is physical in nature and opens up the exciting possi-
bility that the density evolution of gas clouds towards star forma-
tion can be probed as a function of absolute time by combining
different gas tracers.

(c) After correcting for galaxy inclination, the maps need to
have a spatial resolution sufficient to resolve the region separa-
tion length λ in order to accurately measure the tracer lifetimes.
To obtain the duration of the overlap phase and λ itself, we find
that it is necessary to resolve λ/1.5. For cloud separation lengths
that are characteristic of nearby galaxies (λ ∼ 200 pc), this im-
plies spatial resolutions of the order 2”, whereas at clump sepa-
rations seen in high-redshift galaxies (λ ∼ 2 kpc), this implies
spatial resolutions of the order 0.2”.

(d) In terms of the galaxy inclination angle, the above require-
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ments on the spatial resolution typically require i < 75◦, even
though this is somewhat dependent on galaxy properties. This
implies that galaxy inclination does not significantly limit the
method’s applicability.

(e) To constrain the measured time-scales to better than
50 per cent, at least 35 emission peaks per map are needed.
Making order-of-magnitude estimates of the evolutionary time-
line requires 15 emission peaks per map. For the aforementioned
separation lengths and accounting for substructure, the require-
ment of 35 emission peaks translates to minimum galaxy radii of
R > 1.5 kpc in local galaxies and R > 4.4 kpc at high redshift.

(f) The presence of a large diffuse emission reservoir can
cause the selected tracer to be underemphasised around emission
peaks relative to the galactic average. This manifests itself as a
negative emission bias in the tuning fork diagram of Figure 2
and leads to inaccurate results. Applications showing signs of
large diffuse emission fractions should be discarded or spatially
filtered (see Hygate et al. 2018).

As discussed in Section 4, the above conditions are comfort-
ably satisfied with modern observatories such as ALMA and
VLT/MUSE across the nearby galaxy population. The method is
even readily applicable at high redshift (see below).

(iv) Section 5: The accuracy of the derived physical quantities is
assessed by comparing the retrieved values to those expected from
the numerical simulations. Specifically, we consider the region radii
in both the gas and stellar maps, the feedback velocity, the star for-
mation efficiency per star formation event, and the mass loading
factor. We show that each of these is consistent with the values
expected based on the included physics, usually to within the un-
certainties, but universally to within 50 per cent. This shows that
the method provides an accurate way of quantitatively constraining
the cloud-scale physics of star formation and feedback.

(v) Section 6: We consider the spatial resolutions attainable by
current observational facilities as a function of distance and redshift
and compare these to the spatial resolutions required for applica-
tions of our method, assuming the aforementioned region separa-
tion lengths that are typical of galaxies in the local Universe and
at high redshift. With currently available facilities (ALMA, VLT,
HST), the method can be applied to typical low-redshift galaxies up
to D ∼ 500 Mpc or z ∼ 0.1 for molecular gas traced by CO and
star formation traced by Hα. The atomic gas phase can currently
be included up to a few Mpc with the JVLA before it becomes
prohibitively time-consuming, but the arrival of the SKA will ex-
tend the method’s applicability to HI to a similar distance range as
for CO. Across the wavelength range, the method can be applied
to hundreds of nearby galaxies spanning a variety of masses, mor-
phologies, and SFRs. At high redshifts (z > 1), the method can
be applied to CO line imaging of 10-20 galaxies at z ∼ 1 with
a reasonable time investment and a handful of galaxies at z > 2.
When dust continuum is used to trace the gas phase, the number of
galaxies that can be observed within a feasible time-scale increases
considerably. These numbers mean that the lifecycle of molecu-
lar clouds and star-forming regions can be probed systematically
for more than a hundred galaxies across cosmic time, spanning a
representative range of cosmic environments. This is a major step
relative to previous methods and facilities, for which studying the
cloud-scale physics of star formation and feedback was restricted
to the Local Group or the solar neighbourhood.

(vi) Section 7: The presented method is the end result of a wide
variety of renditions that we have explored over the past years. We
document the most important subset of these various approaches

by discussing a number of key choices and current limitations of
the method and comparing these to the alternatives. We show that
our current method for quantifying the flux evolution of indepen-
dent regions between the isolated and overlap phases (captured by
the parameters βstar and βgas) is accurate and performs better than
reasonable alternatives. The same holds for the way in which we ac-
count for the extended density profiles of the emission peaks. How-
ever, extremely extended emission components (i.e. diffuse emis-
sion) still negatively affect the obtained results. We present reason-
able ways of dealing with this problem in Section 4.3.9, whereas
a new approach to systematically filter diffuse components from
emission maps is presented by Hygate et al. (2018).

Another current limitation of the method is that it assumes a
random spatial distribution of independent regions on a size scale
lap ≈ λ and does not account for galactic structure such as domi-
nant spiral arm patterns or bars, which could persist down to these
small scales. We quantitatively show that this does not negatively
impact the accuracy of tover and λ, but can prohibit accurate mea-
surements of tgas. Fortunately, such cases are easily recognised as
a bad fit to the observed ‘tuning fork diagram’, reproducing only
one branch while poorly matching the other. We intend to explore
this further in future work and currently list points of attention for
applications to galaxies with prominent morphological features to
ensure accurate results. Finally, we discuss how the method’s re-
liance on the central limit theorem, in which regions are connected
through an evolutionary timeline and the galactic average incidence
ratio between their evolutionary phases emerges on scales much
larger than the region separation length, can fail if some regions
are never visible in one of the tracers considered, or appear mul-
tiple times in one tracer before becoming visible in the other. We
present practical ways of interpreting the results in such cases.

8.2 Applicability and future work

To conclude this paper, we present a brief outlook on how real-
Universe applications of the method are expected to provide in-
sight into the physics of star formation and feedback. Through-
out this work, we have mostly presented examples in which our
method is applied to a star formation rate tracer map and a (molec-
ular) gas tracer map. However, it has also been reiterated that the
method can be applied to any pair of tracer maps that share an evo-
lutionary connection according to the schematic timeline of Fig-
ure 1. For instance, the method can be applied to pairs of different
gas tracer maps, pairs of different ionised emission line maps, or
any combination of these. This enables a broad range of applica-
tions, including measurements of the molecular cloud lifetime, the
cloud condensation time-scale, the feedback time-scale for cloud
destruction, feedback outflow velocity, the mass loading factor, the
feedback-ISM coupling efficiency, the star formation efficiency, the
fragmentation length of galaxy discs, and many more. The system-
atic applicability to a broad wavelength and redshift range is key in
achieving a census of cloud-scale star formation and feedback as a
function of galactic environment.

Each of the above quantities can not only be obtained across
a sample of different galaxies, but also as a function of galactocen-
tric radius or local environment within single galaxies. Different
tracers can be combined to obtain maps of derived physical quanti-
ties such as the density or electron temperature, which can then be
used to mask the emission maps prior to applying the method, pro-
viding a way to measure the time-scales on which these quantities
change. The generality of the method provides an enormous free-
dom in choosing such applications. Varying the gas tracer (e.g. HI,
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CO, HCN, HCO+) constrains the absolute time-evolution towards
increasing densities during cloud condensation, gravitational col-
lapse, and star formation. When considering the physics of feed-
back, it may even be possible to choose different tracers to highlight
individual feedback mechanisms. For instance, SN remnants can be
traced by an elevated [SII]/Hα ratio (e.g. Kreckel et al. 2017), im-
plying that their time evolution can be probed by combining a ref-
erence map with a young stellar map masked by a critical [SII]/Hα
line ratio. Similarly, the infrared photon processing that drives ra-
diation pressure feedback may be traced with JWST in the near-
infrared, whereas photoionization feedback is traced by Hα. These
examples show that a promising way forward is to simultaneously
observe a variety of feedback tracers with MUSE on the VLT to
measure the individual time-scales of each mechanism.

In addition to the observational applications of the presented
method, it may be applied to numerical simulations of galaxy for-
mation and evolution. Such applications can serve a variety of pur-
poses. For instance, the method may be used to infer the lifecycle of
clouds and star-forming regions in simulations with sparse output
intervals, in which the evolution of individual structures cannot be
followed between different snapshots. In addition, galaxy simula-
tions may be used to test the method further by considering galax-
ies spanning a wider variety of physical properties than included
in this work. By post-processing such simulations to generate syn-
thetic observations of (molecular) gas or SFR tracers (see e.g. Paw-
lik & Schaye 2011; da Silva et al. 2012; Krumholz 2014; Haworth
et al. 2017), it is possible to derive the tracer lifetimes and test how
the method’s performance is affected by environmental variations
in tracer emissivity. First efforts in this direction are currently in
progress.

This reference paper is accompanied by two companion pa-
pers. Firstly, in Haydon et al. (2018), we apply the method to
synthetic SFR tracer maps of simulated disc galaxies, to calibrate
the reference time-scales of the main SFR tracers (e.g. Hα, FUV,
NUV) as a function of the metallicity and SFR surface density. Both
of these quantities are expected to change the SFR tracer lifetimes
due to differences in massive star lifetimes and varying degrees of
IMF sampling, respectively. The results presented by Haydon et al.
(2018) systematically quantify these dependences and thus provide
the reference time-scales needed for the systematic application of
the method to large galaxy samples. Secondly, in Hygate et al.
(2018), we develop a new approach for quantifying the amount
of diffuse emission in tracer maps and correcting for its presence.
To this end, we extend the method with a module for filtering out
the diffuse component. This enables the method’s application to
galaxies with high diffuse fractions, which generally have high sur-
face densities. The approach presented by Hygate et al. (2018) thus
greatly increases the method’s range of possible applications.

With the presented method at hand, it is possible to empirically
constrain the main unknowns in galaxy formation simulations, such
as the star formation time-scale, the star formation efficiency, the
feedback outflow rate, and its coupling efficiency. We are currently
carrying out systematic applications of the method to a large sam-
ple of nearby galaxies aimed at probing and understanding these
physical quantities as a function of the galactic environment. Ini-
tially, this focuses on single-tracer observations of individual galax-
ies, such as NGC300 (Kruijssen et al. 2018), M33 (Hygate et al. in
prep.), and M31 (Schruba et al. in prep.), enabling a detailed un-
derstanding of the interplay between galactic environment and the
cloud lifecycle across the face of nearby galaxies, as well as provid-
ing a point of reference for comparison to previous work. In the in-
termediate term, we intend to capitalise on the method’s straightfor-

ward applicability by extending these applications to large galaxy
samples (Chevance et al. in prep.) and panchromatic observations
of many different pairs of emission maps, initially in the Large
Magellanic Cloud (Ward et al. in prep.), but eventually covering the
nearby galaxy population. We anticipate that the resulting measure-
ments will provide the most systematic and accurate constraints
to date on the cloud-scale physics of star formation and feedback
across the galaxy population, that way providing a critical point of
reference for calibrating the sub-grid physics in the next generation
of large-scale galaxy formation models.
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Oppenheimer B. D., Davé R., 2008, MNRAS, 387, 577
Ostriker E. C., Shetty R., 2011, ApJ, 731, 41
Padoan P., Nordlund Å., 2011, ApJ, 730, 40
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APPENDIX A: CALCULATING THE EXACT ENCLOSED
PIXEL AREA WHEN INTERSECTED BY A CIRCULAR
APERTURE

As discussed in Section 3.2.5, the numerical use of a tophat kernel
convolution to determine all flux within an aperture of a certain size
must account for the fact that the kernel boundary intersects with
pixels, for which the kernel value is a real number between zero and
unity, i.e. {Wij ∈ R | 0 6 Wij 6 1}. This number represents the
fraction of the pixel area enclosed by the aperture. In this appendix,
we explain how the exact fraction of each intersected pixel’s surface
area for which r 6 h is analytically calculated by dividing up the
pixel area into square, rectangular, triangular, or circular segment
shapes and adding or subtracting the appropriate parts of the pixel.

To determine the area of an intersected pixel that falls within
the aperture boundary, we first determine the coordinates of the
pixel corners and consider the five separate cases of N =
{0, 1, 2, 3, 4} corners enclosed by the aperture. By considering
these different cases, we can easily generalise the problem to deal-
ing with aperture-pixel intersections having eight different topolo-
gies, which are shown in Figure A1. Intersections 0(a) and 4 rep-
resent the trivial cases of pixels residing entirely outside or within
the aperture, respectively. Each of the six remaining cases can be
assembled by adding and subtracting squares, rectangles, triangles,
and circular segments. Intersection 0(c) shows the shape of a sin-
gle circular segment, which consists of a straight line and a circular
arc. If we define the thickness of the circular segment lcs as the
maximum distance between the straight line and the arc, measured
perpendicularly to the straight line, then the area under the circular
segment is expressed analytically as

Acs =
lap

2

4
cos−1

(
R− lcs

R

)
− (R− lcs)

√
2Rlcs − l2cs. (A1)

In combination with the familiar expressions for the areas of a
square, rectangle, and triangle, this means that for each of the pixels
that are intersected by the aperture boundary, it is straightforward to
obtain the exact fraction of the pixel area enclosed by the aperture.

APPENDIX B: REQUIREMENTS FOR MINIMISING THE
EFFECTS OF BLENDING FROM ADJACENT PEAKS

Here we quantify the effects of the blending between adjacent
peaks with two-dimensional Gaussian surface density profiles (see
Section 4.2.4). Specifically, we focus on the identification of those
peaks using the clump finding algorithm (see Section 3) and on the
mutual contamination between these peaks.

B1 Peak identification

To identify peaks, our method uses a commonly-used clump find-
ing algorithm (Williams et al. 1994) that selects peaks by looking
for closed contours in the maps. By default, these contours are log-
arithmically spaced by a specified amount δ log10 F . For the {low,
high} resolution simulations, we use δ log10 F = {0.25, 0.5}.
In order to identify two adjacent peaks, the contrast between the
logarithms of the peak flux and the minimum in between both
peaks should be at least δ log10 F . For a set of two Gaussian pro-
files with standard deviation r, centred on (x, y) = (0, 0) and
(x, y) = (λ, 0), the flux in the two-dimensional plane is

F(x, y) ∝ e−(x2+y2)/2r2 + e−[(x−λ)2+y2]/2r2 , (B1)

with the partial derivative along the line connecting both Gaussians
(y = 0) given by

∂F(x, 0)

∂x
∝ (λ− x)e−(x−λ)2/2r2 − xe−x

2/2r2 . (B2)

We numerically solve ∂F(x, 0)/∂x = 0 to locate the peaks and
the minimum between both peaks. The profile only has a minimum
for separation lengths λ > 2r (or filling factors ζ ≡ 2r/λ < 1),
because for smaller separations (or larger filling factors) the Gaus-
sians blend together into a single peak. For λ > 2r, the positions of
both peaks are shifted inwards relative to the centres of the isolated
Gaussians, due to the asymmetry of having a neighbour contribut-
ing emission from only one direction. The observed peak separation
is therefore smaller than the true separation between the underlying
Gaussians and the measured filling factor ζ exceeds the true filling
factor. However, the difference is minor – for ζ 6 0.6, the true and
observed filling factor are effectively indistinguishable.

Having located the locations of the blended minimum and
maxima in the double-Gaussian profile, it is trivial to evaluate the
combined flux at each of these positions and determine the flux con-
trast between maximum and minimum as a function of ζ. This is
shown in the top panel of Figure B1. We highlight the flux contrasts
used to identify the peaks in the simulated maps as horizontal and
vertical dotted lines, which define the maximum values ζcrit below
which the contrast is large enough to identify peaks. We discard all
experiments with ζ > ζcrit, where for the {low, high} resolution
simulations we obtain ζcrit = {0.64, 0.52}.

B2 Contamination

Given two adjacent Gaussians, the integrated flux under each of
these includes some contribution from the other peak. For our
method to accurately determine the fraction of time for which both
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0(a) 0(b) 0(c) 1 2(a) 2(b) 3 4

Figure A1. Illustration of all possible intersections (black lines enclosing purple-shaded areas) between circular apertures (red circles) and pixels (blue
squares). From left to right, the panels show all cases of having {0, 1, 2, 3, 4} corners of the pixel within the aperture. The numbers (with letters) along the
bottom of the figure indicate the eight possible topologies. These illustrate that the surface areas of all intersections can be calculated through simple geometry
by adding and subtracting squares, rectangles, triangles, and circular segments. For reference, the intersection of pixel 0(c) resembles a single circular segment.
Note that the relative sizes and positions of the apertures and pixels are chosen to best illustrate the different topologies, but are not representative of the relative
sizes (or positions) when calculating the total flux within apertures of various sizes in Section 3.2.5. Typical aperture sizes exceed the pixel size by a factor
3–500 (see Sections 3 and 4), implying that the curvature of the aperture boundary on the scale of a pixel varies as a function of aperture size from being
highly significant to effectively unnoticeable.

tracers coexist (i.e. the duration of the overlap phase tover), we wish
to limit the contamination by adjacent peaks. To determine this con-
tamination as a function of the filling factor ζ, we determine the
fraction of the integrated flux on one side of the equidistance line
(x = λ/2) between both Gaussians that is contributed by the peak
on the other side of that line. Due to symmetry, the total integrated
flux on each side of the line must equal to the integrated flux of a
single Gaussian. If we normalise each (two-dimensional) Gaussian
to unity, the contamination fraction fcont reduces to the integral of
a single two-dimensional Gaussian with standard deviation r over
x > λ/2. It is straightforward to show that fcont then follows as

fcont =

∫ ∞
λ/2

1

π
arccos

(
λ

2x

)
xe−x

2/2r2dx, (B3)

which is a one-dimensional function of ζ ≡ 2r/λ.
Our method determines the duration of the overlap phase by

measuring the correlation between both tracers in excess of the
statistical correlation expected for a random distribution in the
plane. This measurement assumes a linear relation between the
population-integrated photon flux and the mean lifetime. There-
fore, the amount by which blending affects the relative duration
of the overlap phase tover/τ is equal to the contamination frac-
tion from equation (B3). If we express this amount as a blending-
induced uncertainty, we can thus define σ(tover/τ) ≡ fcont. This
uncertainty is shown as a function of ζ in the bottom panel of
Figure B1. Given that our method is able to determine tover/τ at
an accuracy of ∼ 5 per cent (see Section 4.2.4), we require that
σ(tover/τ) < 0.05. This condition is satisfied for ζ < 0.50, which
corresponds to the requirement that regions are separated by at least
1.69 times their FWHM. We impose this condition to guarantee the
reliability of the measured values of tover, resulting in an average
blending-induced uncertainty of σ(tover/τ) < 0.05. Of course, it
is possible to impose a higher upper limit on ζ, as long as Figure B1
is used to quantify the associated blending-induced uncertainty on
(or possible overestimation of) the duration of the overlap phase.

APPENDIX C: THE PROBABILITY OF GAS REACHING
HIGH DENSITIES PRIOR TO STAR FORMATION

As discussed in Section 4.3.3, the duration of the gas phase re-
trieved from the simulations is affected by the fact that some re-
gions never reach the gas densities necessary for being shown in the
gas map before being destroyed by feedback. Because star-forming
regions in the real Universe do not form stars stochastically like
our simulations do, this is not expected to influence observational
applications of our method. However, for interpreting the results of
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Figure B1. Effects of Gaussian blending on the identification of peaks and
on the contamination of regions by neighbouring peaks. Top panel: loga-
rithmic density contrast δ log10 F between the peak flux and the minimum
in between two adjacent Gaussian profiles with standard deviation r and
separation λ, as a function of the filling factor ζ ≡ 2r/λ. The dotted lines
indicate the contrasts used to identify peaks in the simulated maps of Sec-
tion 4. The grey-shaded areas indicate the range of filling factors where
blending inhibits the identification of the peaks. Bottom panel: systematic
uncertainty of the relative duration of the overlap phase due to blending as a
function of the filling factor ζ. This uncertainty is equal to the fraction of the
integrated flux on one side of the equidistance line between two Gaussians
(x = λ/2) that is contributed by the peak on the other side of that line.
The dotted line indicates the desired maximum level of such contamination
(see the text) and the grey-shaded area indicates the range of filling factors
where this maximum is exceeded. In both panels, the dashed line uses the
true separation between both Gaussians (λ), whereas the solid line accounts
for the blending-induced shift of both peaks towards one another.
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our experiments, it is important to derive the fraction of gas parti-
cles that is capable of reaching the minimum density shown in the
gas map ρmin without being affected by star formation.

The formation of star particles within a given smoothing ker-
nel in the simulation is a Poisson process with an occurrence rate
λp set by

λp =
εNngb

tdyn
, (C1)

where the factor Nngb = 200 represents the number of neighbours
and accounts for the fact that any star formation event within the
smoothing kernel will associate that kernel with star formation. For
a constant dynamical time-scale, the probability of k particles being
turned into stars after a time t is given by

p(k) =
(λpt)

k

k!
e−λpt, (C2)

such that the probability of a gas concentration to be unaffected by
star formation (i.e. k = 0) for at least a time t is

pgas = e−λpt. (C3)

However, the dynamical time-scale on which the particles are
spawned is time-dependent, because it is set by the kernel-averaged
gas density. We therefore use a more general expression

pgas(t) = e−λ̃p(t), (C4)

where we define

λ̃p(t) =

∫ t

0

λp(t
′)dt′, (C5)

as the integral over a time-dependent occurrence rate λ[tdyn(t)].
While equation (C5) accounts for the time-dependence of

λp(t), we are not interested in obtaining pgas at a given time, but at
a given gas density. In order to obtain such an expression, we need
to describe how the density changes with time. For this purpose, we
define a dimensionless quantity

ξρ ≡
(
ρcrit

ρg

)1/3

, (C6)

that reflects the relative density increase beyond the star formation
threshold ρcrit. This will allow us to derive a relation ξρ(t) and
rewrite equation (C5) as

λ̃p(ξρ) =

∫ ξρ

1

λp(ξ
′
ρ)

dt

dξ′ρ
dξ′ρ, (C7)

so that we obtain pgas(ξρ) and, hence, pgas(ρg).
The key missing ingredient allowing us to derive an expres-

sion for pgas(ξρ) is the time-evolution of the gas density, or ξρ(t),
so that we can specify its (inverse) time-derivative dt/dξρ in equa-
tion (C7). For this purpose, we describe the star-forming gas by the
gravitational free-fall of a homogeneous sphere. Defining the ini-
tial and current radii of the sphere as R and r, respectively, and its
mass as M , the textbook rate of collapse is

dr

dt
= −

√
2GM

(
1

r
− 1

R

)
, (C8)

which can be rewritten as

dt

dξρ
= −

(
3

8πGρcrit

)1/2(
ξρ

1− ξρ

)1/2

, (C9)

where we have set the initial density of the homogeneous sphere

equal to the critical density for star formation in the simulations,
i.e. ρcrit = 3M/4πR3.

We now combine equation (C9) with the density-dependent
occurrence rate, which follows from equation (C1) as

λp(ξρ) = εNngb(4πGρcrit)
1/2ξ−3/2

ρ , (C10)

upon which substitution into equation (C7) results in an integral
that can be solved analytically (recall that 0 < ξρ 6 1):

λ̃p(ξρ) =−
(

3

2

)1/2

εNngb

∫ ξρ

1

(
ξ′ρ

2 − ξ′ρ
3
)−1/2

dξ′ρ

=

(
3

2

)1/2

εNngb

[
2 tanh−1

(√
1− ξ′ρ

)]ξ′ρ=ξρ

ξ′ρ=1

=

(
3

2

)1/2

εNngb ln

(
1 +

√
1− ξρ

1−
√

1− ξρ

)
.

(C11)

This provides the required expression of the integrated density-
dependent occurrence rate. Substitution into equation (C4) then
yields the probability that a gas concentration is unaffected by star
formation until at least a density ρg has been reached as

pgas(ξρ) =

(
1 +

√
1− ξρ

1−
√

1− ξρ

)−√3/2εNngb

, (C12)

or, in terms of the volume density, as

pgas(ρg) =

[
1 +

√
1− (ρcrit/ρg)1/3

1−
√

1− (ρcrit/ρg)1/3

]−√3/2εNngb

, (C13)

which is valid for ρg > ρcrit. For ρg < ρcrit, we set pgas = 1.

APPENDIX D: COMPLETE RESULTS OF THE
PERFORMED EXPERIMENTS

Here we tabulate the best-fitting solutions from all experiments dis-
cussed in Section 4, including some of the derived quantities.

D1 Age-binned stellar maps

Section 4.2 discusses 88 different experiments using the star par-
ticles in the numerical simulations described in Section 4.1. These
are constituted by a 2 × 2 matrix of the 22 experiments listed in
Table 6, using maps of {point particles, extended emission} in the
{low, high} resolution galaxy simulations. The output is listed in
Table D1–D4, which represent the low-resolution point particle ex-
periments, the high-resolution point particle experiments, the low-
resolution extended emission experiments, and the high-resolution
extended emission experiments, respectively.

D2 Gas and stellar maps

Section 4.3 discusses 200 different experiments using the gas and
star particles in the numerical simulations described in Section 4.1.
These are constituted by a 2 × 2 matrix of the 50 experiments
listed in Table 8, using maps of {point particles, extended emis-
sion} in the {low, high} resolution galaxy simulations. The out-
put is listed in Table D5–D8, which represent the low-resolution
point particle experiments, the high-resolution point particle exper-
iments, the low-resolution extended emission experiments, and the
high-resolution extended emission experiments, respectively.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Table D1. Best-fitting solutions for age-binned stellar maps (low resolution, point particles)

ID Nstar Ngas tgas tover λ βstar βgas ζstar ζgas χ2
red Symbol

1 57 49 1.91+0.98
−0.44 0.01+0.01

−0.00 907+88
−73 0.49+0.00

−0.00 1.00+0.00
−0.00 0.09+0.01

−0.01 0.10+0.01
−0.01 5.38 �

2 158 157 10.85+3.80
−1.89 0.01+0.09

−0.00 579+46
−33 0.48+0.15

−0.00 0.99+0.00
−0.00 0.16+0.01

−0.01 0.17+0.01
−0.01 0.78 �

3 420 426 24.53+4.62
−3.88 0.04+0.22

−0.02 513+41
−20 1.57+0.00

−0.30 0.67+0.16
−0.00 0.19+0.01

−0.01 0.21+0.01
−0.01 0.55 �

4 977 1219 135.56+15.20
−12.52 0.01+1.58

−0.00 300+19
−6 0.96+0.03

−0.02 0.87+0.14
−0.00 0.32+0.01

−0.02 0.31+0.01
−0.01 0.49 �

5 26 49 1.69+1.07
−0.45 0.01+0.01

−0.00 1226+134
−159 0.49+0.00

−0.00 0.90+0.01
−0.00 0.07+0.01

−0.01 0.07+0.01
−0.01 4.31 N

6 59 15 0.62+0.51
−0.17 0.07+0.07

−0.02 1134+414
−180 1.04+0.00

−0.05 1.01+0.02
−0.00 0.08+0.01

−0.02 0.08+0.02
−0.02 1.24

N

7 174 426 18.99+4.70
−3.68 0.03+0.13

−0.01 543+52
−29 1.13+0.00

−0.07 0.91+0.19
−0.01 0.18+0.01

−0.01 0.19+0.01
−0.01 0.42 N

8 452 157 10.79+3.58
−1.50 0.01+0.20

−0.00 488+54
−22 0.48+0.24

−0.00 0.99+0.00
−0.02 0.19+0.01

−0.01 0.21+0.01
−0.02 0.57

N

9 15 157 19.89+20.73
−6.61 0.08+0.12

−0.04 561+147
−164 0.53+0.10

−0.03 0.95+0.09
−0.00 0.17+0.07

−0.03 0.15+0.04
−0.02 2.79 H

10 156 15 0.82+0.82
−0.23 0.11+0.12

−0.04 695+322
−112 1.03+0.01

−0.01 1.01+0.01
−0.01 0.13+0.02

−0.03 0.14+0.03
−0.05 2.45 N

11 61 426 12.88+6.29
−2.71 0.14+0.06

−0.06 704+89
−120 1.07+0.02

−0.01 1.04+0.46
−0.14 0.14+0.03

−0.02 0.16+0.02
−0.01 0.43 H

12 442 49 3.15+1.46
−0.60 0.01+0.05

−0.00 528+90
−43 0.48+0.08

−0.00 1.02+0.00
−0.00 0.18+0.01

−0.01 0.19+0.02
−0.03 1.94 N

13 148 157 12.03+3.08
−2.03 1.05+0.21

−0.20 584+72
−72 0.92+0.05

−0.02 0.93+0.01
−0.00 0.16+0.02

−0.01 0.16+0.02
−0.01 0.31 �

14 149 157 10.80+1.68
−1.19 3.77+0.38

−0.33 577+115
−97 0.99+0.03

−0.02 0.93+0.03
−0.01 0.16+0.03

−0.02 0.16+0.02
−0.02 0.26 �

15 148 157 11.05+0.96
−0.69 8.32+0.43

−0.31 603+438
−184 1.04+0.01

−0.05 0.87+0.02
−0.00 0.15+0.05

−0.05 0.15+0.05
−0.05 0.36 �

16 176 426 23.53+4.03
−3.07 3.17+0.31

−0.29 582+96
−87 1.02+0.01

−0.00 1.01+0.09
−0.08 0.17+0.02

−0.02 0.18+0.02
−0.01 0.42 N

17 452 157 9.23+1.53
−1.25 3.43+0.43

−0.43 479+72
−62 0.96+0.03

−0.02 0.96+0.00
−0.04 0.19+0.02

−0.01 0.21+0.02
−0.02 0.67

N

18 148 157 10.64+1.49
−1.20 3.65+0.22

−0.33 573+97
−100 0.52+0.05

−0.02 0.92+0.01
−0.00 0.16+0.03

−0.02 0.16+0.03
−0.02 0.35 �

19 149 157 10.84+2.22
−1.05 3.71+0.44

−0.36 581+90
−105 0.99+0.02

−0.02 0.47+0.02
−0.01 0.16+0.03

−0.02 0.16+0.03
−0.02 0.17 �

20 148 157 10.95+1.94
−1.13 3.61+0.25

−0.39 565+82
−95 0.51+0.04

−0.01 0.48+0.02
−0.00 0.16+0.03

−0.02 0.16+0.02
−0.02 0.25 �

21 163 348 20.91+3.12
−2.21 3.87+0.35

−0.32 643+105
−95 1.00+0.00

−0.00 0.98+0.02
−0.02 0.14+0.02

−0.02 0.14+0.02
−0.02 0.31 N

22 336 58 4.84+3.17
−1.03 0.02+0.12

−0.01 707+153
−61 1.00+0.73

−0.00 1.29+0.00
−0.00 0.13+0.01

−0.01 0.14+0.01
−0.02 0.29 N

All time-scales are in units of Myr. All length-scales are in units of pc.

Table D2. Best-fitting solutions for age-binned stellar maps (high resolution, point particles)

ID Nstar Ngas tgas tover λ βstar βgas ζstar ζgas χ2
red Symbol

1 321 309 3.30+0.61
−0.44 0.01+0.01

−0.00 460+21
−18 1.00+0.01

−0.00 0.97+0.00
−0.00 0.10+0.00

−0.00 0.10+0.00
−0.00 0.85 �

2 956 838 8.48+0.89
−0.74 0.01+0.01

−0.00 328+9
−7 0.94+0.01

−0.00 0.99+0.00
−0.01 0.15+0.00

−0.00 0.15+0.00
−0.00 3.60 �

3 2302 2195 27.84+1.89
−1.54 0.01+0.07

−0.00 208+5
−3 0.97+0.01

−0.00 1.09+0.31
−0.00 0.22+0.00

−0.00 0.23+0.00
−0.00 1.16 �

4 5668 5998 111.20+3.62
−3.55 0.01+0.11

−0.00 126+1
−1 1.02+0.07

−0.05 0.91+0.00
−0.03 0.37+0.00

−0.00 0.37+0.00
−0.00 10.34 �

5 126 309 3.25+0.85
−0.55 0.01+0.00

−0.00 573+41
−44 1.01+0.00

−0.00 1.00+0.00
−0.00 0.08+0.01

−0.01 0.08+0.00
−0.00 1.66 N

6 345 89 0.87+0.30
−0.14 0.01+0.01

−0.00 588+66
−36 0.99+0.02

−0.00 1.02+0.01
−0.00 0.08+0.00

−0.00 0.08+0.01
−0.01 0.31

N

7 786 2195 27.92+2.54
−2.31 0.01+0.03

−0.00 255+9
−6 0.96+0.04

−0.00 0.97+0.00
−0.03 0.19+0.00

−0.01 0.19+0.00
−0.00 0.73 N

8 2178 838 11.91+1.13
−0.91 0.01+0.02

−0.00 268+8
−6 0.95+0.02

−0.00 0.93+0.00
−0.00 0.18+0.00

−0.00 0.19+0.00
−0.00 2.10

N

9 108 838 8.72+2.05
−1.52 0.02+0.01

−0.00 370+34
−32 0.99+0.01

−0.00 0.93+0.05
−0.00 0.13+0.01

−0.01 0.12+0.01
−0.01 0.45 H

10 852 89 0.97+0.29
−0.14 0.01+0.01

−0.00 364+47
−23 1.03+0.00

−0.00 1.02+0.00
−0.01 0.12+0.01

−0.01 0.13+0.01
−0.02 0.58 N

11 241 2195 28.88+4.46
−4.00 0.02+0.04

−0.01 273+21
−16 1.04+0.00

−0.04 0.94+0.03
−0.01 0.18+0.01

−0.01 0.17+0.01
−0.01 0.34 H

12 2158 309 4.18+0.58
−0.43 0.01+0.02

−0.00 267+15
−11 0.93+0.05

−0.00 0.98+0.03
−0.00 0.18+0.00

−0.00 0.18+0.01
−0.01 1.42 N

13 944 838 8.73+0.70
−0.61 1.28+0.08

−0.09 313+15
−16 0.98+0.00

−0.00 0.92+0.00
−0.00 0.15+0.01

−0.01 0.15+0.01
−0.01 0.38 �

14 916 838 8.92+0.53
−0.47 2.66+0.11

−0.13 318+21
−21 0.98+0.00

−0.00 0.93+0.03
−0.01 0.15+0.01

−0.01 0.15+0.01
−0.01 0.26 �

15 858 838 9.59+0.19
−0.25 7.54+0.10

−0.15 318+50
−41 1.01+0.01

−0.00 0.93+0.01
−0.01 0.14+0.02

−0.01 0.14+0.02
−0.01 0.35 �

16 773 2195 33.13+2.40
−1.98 3.61+0.15

−0.17 255+15
−16 0.98+0.01

−0.00 0.95+0.02
−0.01 0.19+0.01

−0.01 0.18+0.01
−0.01 0.32 N

17 2124 838 9.73+0.71
−0.59 2.93+0.18

−0.17 243+14
−12 0.95+0.01

−0.00 0.92+0.01
−0.00 0.19+0.01

−0.01 0.20+0.01
−0.01 0.56

N

18 926 838 8.72+0.59
−0.52 2.56+0.11

−0.15 315+17
−19 0.50+0.01

−0.00 0.92+0.01
−0.00 0.15+0.01

−0.01 0.15+0.01
−0.01 0.28 �

19 916 849 9.01+0.65
−0.44 2.61+0.14

−0.14 314+18
−20 0.98+0.00

−0.00 0.47+0.02
−0.01 0.15+0.01

−0.01 0.15+0.01
−0.01 0.18 �

20 926 849 8.83+0.65
−0.48 2.53+0.13

−0.16 315+15
−18 0.50+0.00

−0.00 0.46+0.01
−0.00 0.15+0.01

−0.00 0.15+0.01
−0.01 0.20 �

21 1075 2458 26.50+1.56
−1.26 4.26+0.14

−0.14 249+12
−14 0.98+0.01

−0.01 0.96+0.00
−0.00 0.19+0.01

−0.01 0.18+0.01
−0.01 0.64 N

22 2400 320 3.91+0.54
−0.38 0.01+0.01

−0.00 297+16
−12 0.96+0.01

−0.00 0.98+0.00
−0.00 0.16+0.00

−0.00 0.16+0.01
−0.01 1.74 N

All time-scales are in units of Myr. All length-scales are in units of pc.
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Table D3. Best-fitting solutions for age-binned stellar maps (low resolution, extended emission)

ID Nstar Ngas tgas tover λ βstar βgas ζstar ζgas χ2
red Symbol

1 49 43 2.44+1.15
−0.68 0.18+0.16

−0.07 908+225
−129 1.35+0.16

−0.17 0.89+0.12
−0.22 0.30+0.04

−0.05 0.31+0.04
−0.05 0.36 �

2 87 87 20.31+5.75
−3.83 2.04+0.76

−0.71 533+80
−81 0.58+0.02

−0.02 1.58+0.10
−0.12 0.44+0.04

−0.03 0.44+0.04
−0.03 0.76 �

3 117 105 16.41+7.49
−3.15 4.08+2.42

−0.77 700+246
−95 1.94+0.28

−0.44 1.62+0.13
−0.04 0.44+0.02

−0.05 0.44+0.03
−0.06 0.10 �

4 145 114 180.02+54.06
−43.37 46.33+9.52

−8.42 547+199
−130 1.23+0.15

−0.03 1.95+0.08
−0.13 0.49+0.06

−0.06 0.47+0.05
−0.04 0.65 �

5 22 43 2.37+1.35
−0.65 0.12+0.07

−0.05 1273+303
−267 0.92+0.09

−0.04 0.64+0.04
−0.01 0.26+0.07

−0.05 0.22+0.04
−0.03 0.16 N

6 46 15 0.54+0.48
−0.13 0.16+0.09

−0.04 1292+647
−253 0.90+0.06

−0.05 0.87+0.11
−0.01 0.22+0.04

−0.05 0.26+0.06
−0.08 0.28

N

7 94 105 12.67+3.92
−2.66 1.88+0.85

−0.43 773+268
−161 1.50+0.20

−0.25 1.66+0.62
−0.91 0.39+0.05

−0.06 0.41+0.04
−0.06 0.19 N

8 111 87 15.81+5.46
−2.06 4.88+1.75

−0.75 616+138
−81 0.92+0.01

−0.06 0.95+0.04
−0.01 0.42+0.03

−0.03 0.43+0.03
−0.04 0.43

N

9 11 87 17.60+6.14
−5.42 0.63+0.19

−0.11 875+317
−180 0.98+0.01

−0.25 0.82+0.07
−0.06 0.39+0.07

−0.09 0.31+0.05
−0.06 0.18 H

10 81 15 1.39+1.45
−0.34 0.36+0.33

−0.08 1078+594
−179 0.91+0.01

−0.10 1.06+0.01
−0.13 0.28+0.03

−0.06 0.31+0.06
−0.11 0.39 N

11 50 105 8.31+4.17
−2.55 0.88+0.25

−0.35 977+202
−240 1.38+0.65

−0.08 1.16+1.02
−0.24 0.32+0.08

−0.04 0.34+0.05
−0.03 0.23 H

12 101 43 4.93+1.78
−0.89 1.62+0.47

−0.23 574+193
−82 0.59+0.21

−0.25 0.79+0.03
−0.02 0.42+0.03

−0.04 0.45+0.04
−0.06 0.42 N

13 85 87 21.49+2.87
−3.76 3.39+0.30

−0.61 564+116
−94 0.68+0.05

−0.04 1.28+0.14
−0.06 0.44+0.04

−0.04 0.42+0.04
−0.04 0.54 �

14 81 87 13.49+2.70
−2.20 5.53+0.24

−0.71 569+173
−146 0.68+0.01

−0.02 1.10+0.17
−0.07 0.42+0.07

−0.05 0.42+0.08
−0.05 0.38 �

15 77 87 11.39+1.97
−0.85 8.46+0.82

−0.08 931+722
−423 1.44+0.42

−0.23 1.33+0.03
−0.11 0.29+0.12

−0.09 0.31+0.13
−0.10 0.17 �

16 98 105 13.24+2.78
−1.58 3.92+0.51

−0.62 848+213
−213 1.13+0.05

−0.06 1.09+0.99
−0.17 0.38+0.06

−0.05 0.38+0.05
−0.04 0.13 N

17 114 87 17.31+3.52
−2.57 8.05+0.73

−1.28 674+130
−137 1.02+0.11

−0.12 1.04+0.14
−0.04 0.41+0.04

−0.03 0.41+0.05
−0.04 0.25

N

18 82 87 15.18+2.63
−3.18 5.20+0.26

−0.72 612+227
−174 0.55+0.12

−0.04 1.28+0.06
−0.10 0.40+0.07

−0.06 0.40+0.08
−0.06 0.48 �

19 81 84 13.06+1.84
−1.90 4.70+0.34

−0.78 574+163
−139 0.69+0.52

−0.04 0.83+0.03
−0.02 0.42+0.06

−0.05 0.41+0.07
−0.05 0.25 �

20 82 84 14.36+2.83
−2.21 4.41+0.50

−0.65 574+164
−136 0.54+0.05

−0.05 0.91+0.04
−0.03 0.41+0.06

−0.05 0.41+0.07
−0.05 0.38 �

21 110 141 16.03+2.60
−2.61 5.55+0.68

−0.68 776+207
−178 1.03+0.08

−0.10 0.69+0.03
−0.10 0.39+0.06

−0.06 0.34+0.05
−0.04 0.19 N

22 145 48 8.68+11.11
−2.41 1.91+0.37

−0.32 1119+507
−233 1.83+2.47

−1.15 2.45+2.18
−0.41 0.29+0.04

−0.04 0.27+0.05
−0.06 0.18 N

All time-scales are in units of Myr. All length-scales are in units of pc.

Table D4. Best-fitting solutions for age-binned stellar maps (high resolution, extended emission)

ID Nstar Ngas tgas tover λ βstar βgas ζstar ζgas χ2
red Symbol

1 248 230 3.31+0.53
−0.38 0.10+0.07

−0.04 455+36
−28 0.89+0.00

−0.08 0.95+0.14
−0.12 0.31+0.02

−0.02 0.30+0.01
−0.02 0.22 �

2 447 435 8.42+0.73
−0.70 0.32+0.13

−0.17 283+15
−14 0.64+0.09

−0.17 0.69+0.05
−0.09 0.44+0.01

−0.01 0.44+0.01
−0.01 0.47 �

3 567 514 23.37+1.70
−1.49 4.87+0.58

−0.62 253+19
−19 0.85+0.03

−0.05 0.85+0.02
−0.03 0.49+0.02

−0.02 0.51+0.02
−0.01 0.21 �

4 454 396 123.83+7.34
−7.22 39.27+3.13

−2.74 198+19
−16 0.83+0.02

−0.01 0.98+0.03
−0.03 0.59+0.01

−0.02 0.58+0.01
−0.02 0.56 �

5 114 230 3.00+0.71
−0.44 0.07+0.03

−0.03 593+55
−64 1.13+0.17

−0.15 0.79+0.09
−0.02 0.27+0.03

−0.02 0.23+0.02
−0.01 0.34 N

6 250 83 0.99+0.29
−0.13 0.01+0.02

−0.00 588+61
−27 0.46+0.22

−0.01 0.77+0.09
−0.00 0.24+0.01

−0.02 0.25+0.01
−0.02 0.40

N

7 449 514 20.11+1.87
−1.65 1.73+0.16

−0.30 298+23
−26 0.87+0.01

−0.02 0.84+0.26
−0.13 0.44+0.02

−0.02 0.46+0.02
−0.02 0.31 N

8 527 435 14.65+1.47
−1.16 1.38+0.38

−0.34 267+19
−18 1.02+0.05

−0.22 0.92+0.01
−0.03 0.47+0.02

−0.01 0.47+0.02
−0.02 0.43

N

9 99 435 8.07+1.34
−1.31 0.08+0.03

−0.03 398+47
−35 0.79+0.12

−0.14 0.82+0.08
−0.01 0.38+0.02

−0.04 0.33+0.02
−0.02 0.39 H

10 432 83 1.39+0.34
−0.20 0.08+0.05

−0.04 426+53
−33 0.52+0.29

−0.07 0.63+0.18
−0.05 0.32+0.02

−0.02 0.34+0.03
−0.04 0.36 N

11 201 514 17.79+2.72
−1.68 0.40+0.09

−0.09 336+24
−30 0.98+0.04

−0.15 0.71+0.06
−0.02 0.43+0.02

−0.02 0.43+0.02
−0.01 0.24 H

12 524 230 5.97+0.80
−0.61 0.60+0.19

−0.14 290+24
−17 0.82+0.10

−0.30 0.80+0.03
−0.15 0.44+0.01

−0.01 0.44+0.02
−0.02 0.50 N

13 429 435 10.02+0.86
−0.66 1.62+0.19

−0.21 294+25
−20 0.93+0.02

−0.00 0.84+0.06
−0.02 0.44+0.02

−0.02 0.42+0.02
−0.02 0.53 �

14 423 435 9.98+0.68
−0.58 2.92+0.20

−0.18 312+29
−25 1.11+0.02

−0.03 0.96+0.02
−0.03 0.42+0.02

−0.02 0.41+0.02
−0.02 0.44 �

15 433 435 10.25+0.27
−0.30 7.92+0.15

−0.16 323+86
−55 1.11+0.05

−0.06 0.88+0.04
−0.03 0.39+0.05

−0.05 0.38+0.04
−0.05 0.11 �

16 432 514 26.49+2.49
−2.13 4.25+0.36

−0.24 287+29
−26 1.11+0.02

−0.02 1.05+0.02
−0.03 0.46+0.02

−0.02 0.46+0.02
−0.02 0.37 N

17 503 435 14.95+1.27
−1.19 4.41+0.36

−0.43 274+22
−19 1.01+0.04

−0.01 0.91+0.02
−0.03 0.46+0.02

−0.02 0.46+0.02
−0.02 0.39

N

18 424 435 10.97+0.98
−0.82 2.18+0.23

−0.15 301+26
−20 0.81+0.01

−0.03 0.90+0.01
−0.01 0.43+0.02

−0.02 0.41+0.02
−0.02 0.59 �

19 423 423 9.23+0.75
−0.72 2.22+0.24

−0.23 309+25
−19 0.95+0.04

−0.01 0.68+0.02
−0.02 0.42+0.02

−0.02 0.41+0.02
−0.02 0.37 �

20 424 423 9.68+0.71
−0.59 1.82+0.20

−0.21 307+25
−25 0.66+0.05

−0.05 0.56+0.06
−0.05 0.42+0.02

−0.02 0.42+0.02
−0.02 0.42 �

21 607 675 17.92+1.10
−0.97 4.98+0.23

−0.16 281+24
−22 0.96+0.02

−0.05 0.85+0.01
−0.02 0.45+0.02

−0.02 0.46+0.02
−0.02 0.58 N

22 651 276 4.65+0.57
−0.40 0.54+0.13

−0.11 296+21
−16 0.98+0.03

−0.11 0.77+0.05
−0.02 0.45+0.01

−0.01 0.45+0.02
−0.02 0.29 N

All time-scales are in units of Myr. All length-scales are in units of pc.
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Table D5. Best-fitting solutions for gas maps (low resolution, point particles)

ID Nstar Ngas tgas tover λ βstar βgas ζstar ζgas χ2
red

1 15 314 287.61+418.18
−156.25 0.81+2.01

−0.38 167+71
−37 1.00+0.04

−0.01 1.48+0.15
−0.00 0.53+0.08

−0.12 0.59+0.05
−0.08 1.23

2 26 314 90.02+421.01
−35.90 0.25+1.61

−0.14 235+83
−100 0.96+0.13

−0.02 1.48+0.19
−0.00 0.41+0.19

−0.10 0.51+0.13
−0.07 1.17

3 49 314 72.98+137.29
−21.91 0.36+1.13

−0.22 227+53
−79 0.98+0.04

−0.02 0.65+0.24
−0.00 0.42+0.15

−0.08 0.52+0.09
−0.05 0.57

4 104 314 96.86+62.39
−25.44 0.53+1.43

−0.34 177+41
−33 0.97+0.02

−0.00 0.14+0.45
−0.00 0.51+0.06

−0.07 0.58+0.04
−0.05 0.90

5 157 314 71.79+30.17
−16.06 0.01+0.70

−0.00 217+32
−32 0.97+0.02

−0.00 0.14+0.38
−0.00 0.44+0.06

−0.06 0.54+0.04
−0.04 0.72

6 269 314 48.27+11.57
−8.52 0.01+0.69

−0.00 265+24
−19 0.00+0.79

−0.00 0.21+0.32
−0.01 0.35+0.03

−0.03 0.50+0.02
−0.02 0.70

7 426 314 41.18+8.08
−6.27 0.27+0.93

−0.18 293+26
−14 0.71+0.18

−0.27 0.21+0.61
−0.00 0.32+0.02

−0.02 0.49+0.01
−0.02 0.23

8 803 314 36.21+5.73
−4.18 1.64+1.08

−0.96 305+20
−17 0.96+0.01

−0.01 0.68+0.09
−0.51 0.29+0.02

−0.02 0.49+0.01
−0.01 0.78

9 1219 314 37.96+5.46
−3.98 3.89+1.43

−1.50 308+19
−19 0.97+0.00

−0.01 0.72+0.06
−0.03 0.29+0.02

−0.01 0.50+0.01
−0.01 1.49

10 1714 314 54.78+7.66
−5.40 10.70+2.47

−3.06 296+22
−24 0.95+0.03

−0.03 0.78+0.03
−0.08 0.31+0.02

−0.02 0.51+0.02
−0.01 2.02

11 2587 314 66.96+7.95
−5.70 20.54+4.10

−4.19 277+26
−21 0.98+0.02

−0.02 0.77+0.05
−0.01 0.35+0.02

−0.02 0.53+0.02
−0.02 2.61

12 49 1230 1857.33+603.85
−754.59 5.16+1.93

−2.35 109+12
−8 0.94+0.01

−0.02 1.26+0.03
−0.01 0.67+0.03

−0.04 0.69+0.02
−0.02 1.47

13 157 1230 646.41+630.03
−146.66 2.10+4.20

−1.03 128+13
−22 0.99+0.00

−0.02 1.14+0.15
−0.01 0.62+0.07

−0.03 0.66+0.04
−0.02 1.58

14 426 1230 370.96+118.86
−65.21 0.02+1.44

−0.01 183+21
−20 0.03+0.83

−0.00 0.91+0.69
−0.00 0.51+0.03

−0.03 0.61+0.02
−0.02 0.77

15 49 74 3.64+2.70
−0.96 0.05+0.11

−0.03 638+141
−77 1.01+0.00

−0.02 1.32+0.12
−0.00 0.14+0.02

−0.02 0.24+0.02
−0.03 0.52

16 157 74 4.46+1.51
−0.88 0.01+0.15

−0.00 380+54
−23 1.00+0.02

−0.00 0.59+0.56
−0.00 0.22+0.01

−0.02 0.37+0.02
−0.03 0.67

17 426 74 5.98+1.54
−0.97 0.45+0.29

−0.22 352+46
−32 0.98+0.01

−0.03 1.20+0.05
−0.09 0.24+0.02

−0.02 0.40+0.03
−0.03 0.64

18 50 7541 471.59+173.05
−148.21 0.13+0.17

−0.08 81+19
−12 1.02+0.00

−0.01 0.75+0.00
−0.01 0.29+0.05

−0.05 0.35+0.03
−0.03 1.10

19 167 7541 271.56+62.26
−58.19 0.01+0.13

−0.00 116+15
−10 1.01+0.01

−0.00 0.76+0.08
−0.01 0.20+0.02

−0.02 0.31+0.01
−0.01 2.20

20 495 7541 190.93+27.21
−30.26 0.07+0.14

−0.04 162+12
−9 0.56+0.47

−0.00 0.74+0.07
−0.00 0.14+0.01

−0.01 0.29+0.00
−0.00 8.00

21 50 1579 312.08+173.40
−109.06 0.01+0.53

−0.00 98+29
−16 1.00+0.01

−0.01 0.34+0.28
−0.00 0.48+0.05

−0.11 0.52+0.04
−0.06 0.82

22 164 1579 153.08+38.62
−34.84 0.01+0.33

−0.00 154+22
−15 1.03+0.01

−0.02 0.43+0.06
−0.00 0.31+0.03

−0.04 0.43+0.02
−0.02 1.21

23 476 1579 76.22+14.91
−10.82 0.46+0.27

−0.27 237+15
−16 0.92+0.16

−0.18 0.42+0.10
−0.12 0.20+0.01

−0.01 0.38+0.01
−0.01 2.20

24 46 171 57.83+497.53
−18.01 2.34+20.68

−0.96 363+71
−113 0.91+0.17

−0.00 0.58+0.26
−0.23 0.51+0.13

−0.06 0.57+0.08
−0.05 0.24

25 126 171 53.51+35.02
−10.89 4.55+3.81

−1.93 292+61
−62 1.04+0.05

−0.03 0.28+0.29
−0.10 0.56+0.09

−0.06 0.62+0.05
−0.03 0.23

26 274 171 44.78+9.73
−7.83 0.73+2.46

−0.49 295+37
−20 0.55+0.33

−0.15 0.04+0.14
−0.03 0.56+0.02

−0.04 0.63+0.01
−0.02 0.41

27 40 92 50.42+575.57
−17.15 4.74+64.32

−1.78 530+169
−124 0.98+0.07

−0.10 0.76+0.21
−0.19 0.60+0.10

−0.08 0.61+0.10
−0.07 0.14

28 84 92 47.08+600.70
−11.45 10.28+150.84

−3.85 482+162
−126 1.16+0.18

−0.10 0.70+0.17
−0.20 0.63+0.07

−0.07 0.64+0.06
−0.07 0.31

29 130 92 34.88+11.09
−5.46 6.92+5.59

−3.89 382+124
−77 1.17+0.33

−0.32 0.27+0.24
−0.11 0.71+0.00

−0.08 0.71+0.00
−0.07 0.50

30 32 38 17.91+609.93
−6.48 5.84+183.83

−2.32 1281+573
−533 1.01+0.12

−0.09 0.68+0.17
−0.37 0.53+0.18

−0.10 0.57+0.14
−0.08 0.27

31 45 38 57.94+649.02
−21.91 27.65+392.63

−10.87 753+4079
−313 1.69+0.14

−0.39 0.51+0.63
−0.12 0.71+0.00

−0.45 0.71+0.00
−0.34 0.41

32 53 38 33.41+673.41
−6.48 20.36+496.81

−12.19 647+3767
−288 2.29+2.37

−0.80 0.36+0.14
−0.21 0.71+0.00

−0.39 0.71+0.00
−0.38 0.69

33 49 320 74.19+201.30
−23.57 0.35+1.65

−0.21 233+56
−87 0.98+0.01

−0.02 0.84+0.38
−0.03 0.41+0.16

−0.08 0.53+0.10
−0.05 0.46

34 156 320 77.41+35.13
−17.21 0.01+0.71

−0.00 215+34
−34 1.08+0.05

−0.05 0.97+0.12
−0.07 0.44+0.06

−0.06 0.55+0.04
−0.04 0.57

35 421 320 50.27+10.45
−7.21 0.32+0.97

−0.21 286+26
−16 0.81+0.09

−0.30 0.31+0.76
−0.01 0.33+0.02

−0.03 0.50+0.01
−0.02 0.46

36 49 375 114.89+159.95
−37.73 0.30+1.15

−0.18 192+52
−51 0.79+0.13

−0.24 0.98+0.12
−0.00 0.49+0.09

−0.10 0.57+0.06
−0.06 0.52

37 156 375 65.14+19.48
−12.18 0.01+0.39

−0.00 243+25
−24 0.06+0.59

−0.00 0.36+0.15
−0.00 0.40+0.04

−0.04 0.52+0.02
−0.02 1.14

38 414 375 50.66+9.47
−8.22 0.01+0.89

−0.00 283+23
−14 0.55+0.38

−0.00 0.43+0.11
−0.04 0.33+0.02

−0.03 0.51+0.01
−0.01 0.41

39 48 417 163.41+328.18
−61.16 0.57+2.25

−0.32 175+51
−49 0.92+0.06

−0.10 0.55+0.17
−0.00 0.51+0.11

−0.10 0.58+0.07
−0.05 0.37

40 155 417 144.62+58.09
−44.57 0.63+1.28

−0.41 180+46
−28 0.61+0.26

−0.52 0.18+0.21
−0.00 0.50+0.05

−0.08 0.58+0.03
−0.05 0.61

41 424 417 49.46+13.11
−7.58 1.90+0.83

−0.81 310+32
−29 0.98+0.01

−0.23 0.40+0.38
−0.11 0.30+0.03

−0.03 0.49+0.01
−0.01 0.70

42 43 563 51.66+47.38
−16.70 0.01+0.19

−0.00 316+70
−80 1.01+0.01

−0.00 0.77+0.33
−0.00 0.31+0.10

−0.06 0.46+0.05
−0.03 0.44

43 151 563 149.92+51.85
−50.87 0.01+1.17

−0.00 188+54
−25 0.65+0.28

−0.10 0.31+0.11
−0.00 0.49+0.04

−0.10 0.57+0.03
−0.05 0.67

44 425 563 70.45+20.46
−11.05 1.99+0.86

−0.97 293+25
−32 0.92+0.02

−0.03 0.43+0.12
−0.15 0.32+0.04

−0.03 0.49+0.02
−0.01 0.63

45 39 1052 482.90+319.90
−157.14 0.77+1.46

−0.45 145+32
−25 0.90+0.05

−0.11 0.62+0.13
−0.04 0.57+0.07

−0.06 0.60+0.05
−0.05 0.17

46 137 1052 333.58+141.32
−80.62 0.91+1.85

−0.58 156+30
−23 0.89+0.09

−0.19 0.36+0.14
−0.05 0.55+0.05

−0.05 0.58+0.04
−0.04 0.30

47 395 1052 200.92+41.01
−44.20 0.01+1.87

−0.00 210+32
−17 0.53+0.41

−0.00 0.27+0.17
−0.00 0.45+0.03

−0.06 0.53+0.02
−0.03 1.42

48 36 2656 981.95+26.15
−281.42 0.01+0.61

−0.00 116+37
−4 1.02+0.00

−0.02 0.94+0.06
−0.02 0.63+0.01

−0.12 0.63+0.01
−0.10 0.16

49 127 2656 738.60+178.95
−131.87 0.01+0.47

−0.00 139+16
−13 1.14+0.00

−0.13 0.66+0.16
−0.00 0.56+0.04

−0.04 0.56+0.04
−0.04 1.39

50 368 2656 601.10+91.14
−76.62 0.01+1.11

−0.00 156+13
−10 1.05+0.00

−0.08 0.51+0.08
−0.00 0.51+0.02

−0.03 0.52+0.02
−0.02 1.12

All time-scales are in units of Myr. All length-scales are in units of pc.
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Table D6. Best-fitting solutions for gas maps (high resolution, point particles)

ID Nstar Ngas tgas tover λ βstar βgas ζstar ζgas χ2
red

1 61 462 12.37+9.18
−3.03 0.15+0.08

−0.05 263+51
−72 0.99+0.02

−0.00 1.05+0.23
−0.43 0.18+0.07

−0.03 0.30+0.07
−0.03 0.60

2 125 462 8.61+3.25
−1.52 0.13+0.06

−0.05 261+30
−41 1.02+0.01

−0.01 0.70+0.26
−0.48 0.18+0.03

−0.02 0.31+0.03
−0.02 0.16

3 217 462 8.71+2.30
−1.27 0.22+0.07

−0.08 248+24
−30 1.01+0.00

−0.01 0.68+0.19
−0.41 0.18+0.03

−0.02 0.33+0.03
−0.02 0.32

4 448 462 8.17+1.45
−0.99 0.14+0.09

−0.07 210+12
−11 1.01+0.01

−0.01 0.16+0.28
−0.03 0.21+0.01

−0.01 0.38+0.01
−0.01 0.42

5 622 462 10.45+1.40
−1.34 0.09+0.11

−0.05 191+8
−6 1.01+0.05

−0.02 0.13+0.04
−0.00 0.23+0.01

−0.01 0.41+0.01
−0.01 0.44

6 1131 462 9.51+0.83
−1.11 0.01+0.12

−0.00 185+6
−4 1.08+0.01

−0.04 0.26+0.09
−0.05 0.23+0.00

−0.01 0.43+0.01
−0.01 0.66

7 1603 462 11.17+1.03
−1.05 0.14+0.16

−0.08 174+5
−4 1.26+0.09

−0.11 0.17+0.06
−0.00 0.25+0.01

−0.01 0.45+0.01
−0.01 0.83

8 2860 462 11.32+0.90
−0.74 0.71+0.29

−0.24 152+6
−4 0.98+0.03

−0.00 0.30+0.20
−0.08 0.29+0.01

−0.01 0.49+0.01
−0.01 1.45

9 4070 462 13.40+0.88
−0.74 2.23+0.33

−0.40 139+5
−5 0.96+0.02

−0.03 0.55+0.06
−0.06 0.32+0.01

−0.01 0.52+0.01
−0.01 2.79

10 5250 462 20.21+1.16
−1.09 5.42+0.57

−0.70 132+5
−6 1.04+0.01

−0.01 0.59+0.02
−0.06 0.36+0.01

−0.01 0.53+0.01
−0.01 3.80

11 6021 462 29.49+1.81
−1.53 9.34+1.03

−1.04 125+6
−6 1.14+0.03

−0.03 0.50+0.03
−0.05 0.41+0.01

−0.01 0.55+0.01
−0.01 4.20

12 217 1037 183.35+191.23
−39.14 0.97+1.58

−0.41 81+7
−15 1.01+0.02

−0.01 0.52+0.18
−0.05 0.54+0.07

−0.03 0.61+0.04
−0.01 0.62

13 622 1037 74.85+14.60
−10.95 0.01+0.20

−0.00 122+9
−9 0.99+0.03

−0.00 0.27+0.08
−0.00 0.39+0.03

−0.03 0.53+0.02
−0.01 3.65

14 1603 1037 52.66+4.57
−4.82 0.01+0.32

−0.00 146+5
−4 0.03+0.90

−0.00 0.27+0.19
−0.00 0.32+0.01

−0.01 0.51+0.00
−0.01 6.46

15 217 108 0.94+0.38
−0.17 0.09+0.04

−0.02 385+87
−52 1.05+0.00

−0.02 0.91+0.31
−0.11 0.10+0.02

−0.01 0.20+0.03
−0.03 0.62

16 622 108 1.35+0.42
−0.24 0.07+0.05

−0.03 203+24
−15 1.12+0.04

−0.00 0.38+0.04
−0.04 0.19+0.01

−0.01 0.35+0.02
−0.03 0.70

17 1603 108 1.73+0.47
−0.32 0.11+0.06

−0.05 159+17
−13 1.50+0.16

−0.08 0.30+0.02
−0.01 0.25+0.02

−0.02 0.42+0.03
−0.03 0.68

18 222 1667 18.14+5.32
−3.39 0.05+0.04

−0.03 162+16
−17 1.01+0.02

−0.01 0.52+0.09
−0.04 0.14+0.02

−0.01 0.31+0.01
−0.01 3.62

19 696 1667 15.34+1.82
−1.73 0.01+0.02

−0.00 173+6
−5 1.02+0.02

−0.00 0.47+0.10
−0.00 0.12+0.00

−0.00 0.32+0.00
−0.00 4.66

20 2013 1667 16.42+1.15
−1.41 0.01+0.04

−0.00 158+4
−3 1.12+0.22

−0.00 0.54+0.13
−0.04 0.13+0.00

−0.00 0.35+0.00
−0.00 7.49

21 201 286 7.60+2.32
−1.21 0.26+0.19

−0.15 261+35
−31 1.09+0.01

−0.07 0.32+0.21
−0.20 0.35+0.05

−0.04 0.44+0.04
−0.03 0.04

22 489 286 11.02+1.29
−1.88 0.04+0.38

−0.02 206+15
−6 0.47+0.51

−0.02 0.08+0.03
−0.00 0.44+0.01

−0.03 0.54+0.01
−0.02 0.83

23 905 286 12.55+1.37
−1.75 0.01+0.34

−0.00 196+11
−8 0.82+0.54

−0.00 0.02+0.07
−0.00 0.46+0.01

−0.02 0.57+0.01
−0.02 1.80

24 169 172 6.12+1.92
−1.07 0.29+0.41

−0.18 301+70
−35 1.01+0.07

−0.11 0.14+0.50
−0.08 0.54+0.04

−0.07 0.58+0.03
−0.05 0.21

25 264 172 6.35+1.26
−0.71 1.48+0.53

−0.72 258+40
−34 1.18+0.09

−0.14 0.31+0.15
−0.22 0.59+0.06

−0.05 0.63+0.04
−0.03 0.37

26 321 172 8.19+1.99
−1.09 2.57+0.70

−1.00 226+26
−21 1.69+0.08

−0.07 0.22+0.10
−0.13 0.66+0.03

−0.03 0.67+0.03
−0.03 0.39

27 94 65 4.17+4.07
−0.86 1.46+1.99

−0.77 447+275
−151 1.17+0.31

−0.14 0.38+0.19
−0.11 0.65+0.06

−0.14 0.66+0.04
−0.13 0.26

28 94 65 5.37+233.79
−1.22 4.35+182.55

−1.58 402+9995
−143 1.43+1.29

−0.05 0.42+0.04
−0.01 0.69+0.02

−0.42 0.70+0.01
−0.47 0.28

29 35 65 6.52+244.80
−1.70 4.69+182.89

−3.02 303+1691
−64 3.65+2.99

−1.04 0.29+0.03
−0.01 0.71+0.00

−0.28 0.71+0.00
−0.41 0.60

30 17 20 22.22+171.97
−9.37 9.01+92.86

−4.66 2255+2037
−1260 3.26+0.38

−2.43 0.46+0.01
−0.09 0.46+0.15

−0.04 0.39+0.23
−0.09 0.08

31 7 20 244.49+45.77
−105.33 143.26+69.35

−85.76 3063+4255
−1969 1.54+1.18

−0.00 0.35+0.08
−0.15 0.40+0.06

−0.01 0.33+0.25
−0.06 0.01

32 10 20 8.63+236.94
−2.31 8.57+193.38

−5.60 580+1664
−236 3.48+0.12

−1.17 0.27+0.05
−0.00 0.71+0.00

−0.17 0.71+0.00
−0.33 0.62

33 211 461 9.47+2.40
−1.53 0.22+0.08

−0.07 250+25
−29 0.99+0.05

−0.01 0.75+0.15
−0.28 0.18+0.02

−0.02 0.33+0.03
−0.02 0.24

34 613 461 10.64+1.60
−1.15 0.18+0.10

−0.10 203+10
−9 1.02+0.06

−0.02 0.33+0.20
−0.17 0.21+0.01

−0.01 0.40+0.01
−0.01 0.58

35 1548 461 12.03+1.19
−1.11 0.17+0.16

−0.09 180+5
−5 1.21+0.07

−0.11 0.25+0.10
−0.05 0.24+0.01

−0.01 0.45+0.01
−0.01 1.10

36 213 488 9.20+2.70
−1.35 0.19+0.06

−0.07 263+23
−31 0.99+0.00

−0.00 0.84+0.16
−0.38 0.17+0.02

−0.01 0.33+0.02
−0.01 0.54

37 611 488 11.24+1.54
−1.33 0.10+0.11

−0.06 206+10
−7 0.95+0.09

−0.00 0.26+0.20
−0.10 0.21+0.01

−0.01 0.40+0.01
−0.01 0.69

38 1776 488 11.23+1.09
−0.94 0.20+0.17

−0.11 174+5
−4 1.09+0.18

−0.04 0.28+0.10
−0.01 0.25+0.01

−0.01 0.46+0.01
−0.01 0.82

39 217 519 9.22+2.71
−1.44 0.13+0.06

−0.06 267+27
−30 0.89+0.03

−0.08 0.90+0.35
−0.40 0.17+0.02

−0.02 0.35+0.02
−0.02 0.31

40 627 519 11.15+1.46
−1.29 0.07+0.10

−0.04 212+10
−7 0.99+0.04

−0.02 0.22+0.32
−0.02 0.21+0.01

−0.01 0.42+0.01
−0.01 0.65

41 1679 519 12.09+1.06
−1.00 0.17+0.16

−0.10 177+5
−4 1.01+0.04

−0.01 0.34+0.11
−0.16 0.25+0.01

−0.01 0.48+0.00
−0.01 1.04

42 214 786 18.94+4.61
−4.26 0.01+0.08

−0.00 208+26
−18 1.02+0.00

−0.02 0.27+0.29
−0.00 0.23+0.02

−0.03 0.42+0.01
−0.02 1.32

43 656 786 17.10+2.10
−2.29 0.01+0.08

−0.00 203+10
−7 1.00+0.00

−0.00 0.27+0.07
−0.03 0.22+0.01

−0.01 0.44+0.00
−0.01 1.81

44 1865 786 19.33+1.96
−1.76 0.31+0.25

−0.18 167+5
−4 1.05+0.03

−0.05 0.26+0.16
−0.04 0.27+0.01

−0.01 0.49+0.00
−0.00 2.24

45 209 1356 27.22+13.17
−5.33 0.18+0.08

−0.09 210+24
−37 1.03+0.00

−0.01 0.54+0.10
−0.20 0.18+0.04

−0.02 0.34+0.02
−0.01 2.18

46 619 1356 32.18+5.96
−4.31 0.17+0.16

−0.10 188+13
−12 1.03+0.01

−0.01 0.46+0.24
−0.15 0.20+0.02

−0.01 0.36+0.01
−0.01 4.27

47 1710 1356 43.00+4.94
−3.83 0.45+0.29

−0.27 157+7
−6 1.04+0.03

−0.01 0.48+0.22
−0.16 0.24+0.01

−0.01 0.40+0.00
−0.00 9.27

48 176 499 49.87+51.85
−14.52 0.01+0.20

−0.00 184+36
−53 1.06+0.01

−0.04 0.74+0.05
−0.00 0.38+0.16

−0.06 0.48+0.11
−0.03 3.54

49 485 499 47.56+11.39
−7.34 0.01+0.28

−0.00 189+15
−15 1.07+0.00

−0.07 0.26+0.33
−0.00 0.36+0.03

−0.03 0.48+0.02
−0.01 6.19

50 1147 499 79.12+11.28
−9.60 0.01+0.68

−0.00 152+9
−6 0.89+0.15

−0.00 0.26+0.21
−0.00 0.45+0.02

−0.03 0.55+0.01
−0.01 12.44

All time-scales are in units of Myr. All length-scales are in units of pc.
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Table D7. Best-fitting solutions for gas maps (low resolution, extended emission)

ID Nstar Ngas tgas tover λ βstar βgas ζstar ζgas χ2
red

1 15 137 27.21+653.94
−9.80 1.01+27.84

−0.30 695+121
−171 1.54+0.31

−0.22 1.31+0.18
−0.11 0.46+0.08

−0.04 0.42+0.07
−0.03 0.38

2 25 137 20.13+625.50
−6.50 1.67+55.31

−0.44 878+184
−247 1.25+1.79

−0.03 1.06+0.09
−0.17 0.38+0.10

−0.05 0.37+0.08
−0.04 0.50

3 42 169 12.72+3.99
−2.51 1.25+0.51

−0.31 598+107
−70 0.66+0.05

−0.02 1.03+0.11
−0.09 0.40+0.03

−0.03 0.37+0.03
−0.03 0.85

4 74 169 13.85+2.67
−2.92 3.64+0.82

−0.87 610+117
−101 0.87+0.04

−0.01 0.97+0.03
−0.07 0.39+0.04

−0.03 0.38+0.05
−0.04 1.25

5 86 169 10.92+2.76
−1.35 2.87+1.13

−0.51 377+103
−52 0.92+0.09

−0.02 0.83+0.08
−0.12 0.52+0.02

−0.06 0.52+0.03
−0.07 0.66

6 100 169 11.47+5.06
−1.55 4.40+2.57

−0.87 329+112
−45 0.99+0.01

−0.05 0.81+0.15
−0.10 0.52+0.03

−0.05 0.55+0.03
−0.07 0.37

7 108 169 16.14+6.10
−2.19 6.40+3.07

−1.29 325+86
−43 1.06+0.07

−0.07 0.62+0.09
−0.05 0.55+0.02

−0.03 0.56+0.03
−0.04 0.20

8 109 169 17.87+4.60
−2.96 12.20+3.23

−2.23 339+88
−52 0.96+0.10

−0.03 0.71+0.02
−0.02 0.54+0.03

−0.03 0.56+0.03
−0.05 0.30

9 114 169 21.59+6.21
−2.75 18.26+4.69

−2.57 352+120
−52 1.04+0.20

−0.08 0.59+0.05
−0.02 0.53+0.03

−0.05 0.56+0.03
−0.07 0.29

10 108 169 36.08+36.07
−5.00 35.98+32.34

−5.82 376+352
−68 1.08+0.14

−0.09 1.74+0.00
−1.11 0.52+0.03

−0.11 0.55+0.03
−0.17 0.90

11 85 169 66.92+37.49
−9.73 66.15+30.82

−11.96 397+189
−65 0.83+0.11

−0.04 0.68+0.05
−0.13 0.51+0.03

−0.07 0.54+0.03
−0.11 0.65

12 42 206 598.74+1452.38
−210.80 28.35+73.57

−9.67 444+73
−52 0.22+0.03

−0.07 1.59+0.02
−0.09 0.50+0.03

−0.03 0.53+0.03
−0.03 0.70

13 86 206 2608.31+222.74
−872.57 301.92+37.24

−102.52 381+57
−43 0.39+0.13

−0.10 1.30+0.03
−0.03 0.56+0.02

−0.03 0.56+0.02
−0.03 0.94

14 108 206 1022.09+1303.32
−280.18 143.67+181.92

−43.61 350+56
−54 1.09+1.23

−0.52 1.30+0.06
−0.02 0.58+0.02

−0.02 0.57+0.03
−0.02 0.58

15 42 64 1.22+0.63
−0.30 0.20+0.13

−0.12 666+194
−143 0.93+0.02

−0.01 0.45+0.24
−0.26 0.34+0.05

−0.05 0.29+0.06
−0.05 0.46

16 86 64 0.84+0.36
−0.18 0.56+0.16

−0.11 274+88
−48 1.36+0.08

−0.10 1.28+0.20
−0.42 0.56+0.04

−0.05 0.54+0.06
−0.07 0.24

17 108 64 1.44+0.76
−0.25 1.38+0.31

−0.29 262+98
−43 2.08+0.09

−0.01 1.18+0.10
−0.42 0.57+0.03

−0.05 0.55+0.05
−0.08 0.20

18 42 169 12.72+3.96
−2.52 1.25+0.51

−0.31 598+109
−70 0.66+0.05

−0.02 1.03+0.11
−0.09 0.40+0.03

−0.03 0.37+0.03
−0.03 0.85

19 88 198 10.25+2.35
−1.05 2.68+0.92

−0.38 346+83
−43 0.85+0.00

−0.03 0.75+0.12
−0.13 0.47+0.02

−0.03 0.48+0.03
−0.04 0.99

20 116 198 20.01+4.68
−3.76 8.72+2.55

−2.16 345+65
−49 0.77+0.07

−0.02 0.67+0.06
−0.06 0.45+0.02

−0.02 0.49+0.03
−0.03 0.38

21 42 169 12.72+3.98
−2.51 1.25+0.51

−0.31 591+109
−66 0.66+0.05

−0.02 1.03+0.11
−0.09 0.41+0.03

−0.03 0.38+0.03
−0.03 0.85

22 88 198 10.25+2.35
−1.05 2.68+0.92

−0.38 348+83
−43 0.85+0.00

−0.03 0.75+0.12
−0.13 0.46+0.02

−0.03 0.48+0.03
−0.04 0.97

23 116 198 20.01+4.69
−3.76 8.72+2.55

−2.16 345+66
−49 0.77+0.07

−0.02 0.67+0.06
−0.05 0.45+0.02

−0.02 0.49+0.03
−0.03 0.39

24 40 137 11.86+4.19
−2.11 1.49+0.71

−0.32 699+227
−120 1.04+0.32

−0.11 1.00+0.18
−0.17 0.46+0.05

−0.08 0.43+0.05
−0.06 0.33

25 80 137 12.21+3.39
−1.85 4.29+1.62

−1.01 519+169
−108 1.28+0.06

−0.10 0.90+0.11
−0.13 0.54+0.07

−0.07 0.52+0.07
−0.07 0.58

26 95 137 17.70+4.29
−2.57 8.26+2.96

−1.67 381+116
−63 1.11+0.17

−0.08 0.58+0.04
−0.06 0.63+0.02

−0.06 0.61+0.03
−0.07 0.24

27 35 84 13.81+626.59
−3.13 2.59+130.64

−0.71 850+314
−206 1.32+1.12

−0.14 0.90+0.27
−0.12 0.52+0.08

−0.09 0.51+0.07
−0.09 0.26

28 65 84 15.49+6.21
−2.89 5.80+3.24

−1.68 597+380
−142 1.22+0.28

−0.14 1.04+0.11
−0.06 0.61+0.06

−0.11 0.61+0.07
−0.12 0.60

29 71 84 17.25+5.06
−2.93 9.70+3.54

−2.62 461+213
−106 1.46+0.30

−0.17 0.64+0.07
−0.06 0.67+0.03

−0.06 0.67+0.04
−0.07 0.43

30 30 35 13.03+641.06
−4.81 4.27+211.70

−1.55 1324+814
−574 1.18+6.36

−0.16 1.04+0.47
−0.41 0.54+0.17

−0.13 0.56+0.15
−0.12 0.20

31 44 35 21.18+692.71
−4.90 12.67+442.59

−5.14 1058+5997
−495 1.87+4.25

−0.34 0.69+0.42
−0.09 0.62+0.09

−0.33 0.62+0.09
−0.34 0.49

32 37 35 25.26+713.28
−5.54 16.33+539.97

−9.51 685+7399
−328 2.09+6.93

−0.93 0.60+0.10
−0.04 0.71+0.00

−0.43 0.71+0.00
−0.47 0.71

33 40 172 11.82+4.95
−2.08 1.11+0.64

−0.29 568+101
−67 0.70+0.07

−0.01 0.85+0.19
−0.07 0.43+0.03

−0.03 0.41+0.03
−0.04 0.90

34 78 172 9.01+2.41
−1.07 3.02+1.15

−0.47 352+126
−48 0.79+0.09

−0.02 0.91+0.09
−0.04 0.53+0.02

−0.06 0.55+0.03
−0.07 0.32

35 98 172 16.50+4.26
−2.35 8.45+2.81

−1.71 340+94
−50 0.86+0.11

−0.02 0.65+0.04
−0.02 0.52+0.03

−0.04 0.57+0.03
−0.05 0.11

36 40 153 11.56+4.31
−2.07 1.51+0.69

−0.32 634+136
−70 0.73+0.06

−0.04 0.96+0.15
−0.05 0.43+0.02

−0.03 0.40+0.03
−0.04 1.12

37 70 153 9.24+3.57
−1.15 3.19+1.73

−0.54 345+129
−48 0.76+0.04

−0.02 0.89+0.13
−0.09 0.52+0.03

−0.05 0.57+0.02
−0.07 0.40

38 84 153 15.90+4.77
−2.19 9.75+3.38

−1.84 332+94
−48 0.77+0.09

−0.03 0.66+0.04
−0.01 0.52+0.03

−0.04 0.58+0.02
−0.05 0.10

39 37 139 13.62+4.52
−2.76 2.32+0.93

−0.60 642+142
−83 0.52+0.05

−0.02 0.84+0.07
−0.03 0.46+0.03

−0.03 0.42+0.03
−0.04 0.72

40 66 139 9.98+3.24
−1.23 4.27+1.93

−0.69 350+147
−55 0.57+0.07

−0.03 0.83+0.07
−0.13 0.52+0.03

−0.06 0.58+0.02
−0.08 0.30

41 76 139 15.25+7.47
−2.55 11.30+5.77

−2.22 356+164
−57 0.78+0.05

−0.01 0.82+0.17
−0.11 0.51+0.03

−0.05 0.59+0.02
−0.09 0.14

42 35 90 10.25+6.04
−2.36 1.76+1.38

−0.53 804+263
−136 0.64+0.10

−0.01 1.05+0.14
−0.08 0.48+0.04

−0.06 0.45+0.04
−0.08 0.46

43 49 120 9.26+1.82
−1.18 4.00+1.20

−0.65 400+133
−61 0.64+0.07

−0.01 0.90+0.06
−0.12 0.52+0.03

−0.06 0.58+0.02
−0.07 0.35

44 61 120 16.49+10.73
−2.87 14.10+8.81

−2.63 435+185
−66 0.67+0.05

−0.07 1.06+0.40
−0.27 0.46+0.02

−0.03 0.57+0.03
−0.08 0.37

45 32 78 6.10+2.29
−1.13 1.35+0.81

−0.41 849+315
−169 0.50+0.17

−0.07 0.72+0.20
−0.10 0.47+0.05

−0.06 0.51+0.05
−0.08 0.27

46 35 78 7.09+1.93
−1.02 3.97+1.38

−0.71 579+236
−96 0.75+0.03

−0.01 0.96+0.41
−0.06 0.53+0.04

−0.06 0.60+0.03
−0.06 0.12

47 34 82 18.08+4.17
−3.06 15.56+3.14

−3.06 573+145
−98 0.65+0.04

−0.01 1.27+0.51
−0.32 0.45+0.04

−0.04 0.57+0.03
−0.03 0.18

48 19 33 11.19+675.54
−3.34 3.57+290.54

−1.50 940+1310
−320 0.37+9.10

−0.06 0.82+0.10
−0.08 0.58+0.07

−0.18 0.60+0.06
−0.21 0.15

49 20 41 8.70+5.29
−1.59 4.86+3.75

−0.91 632+294
−127 0.84+0.08

−0.26 0.92+0.07
−0.11 0.57+0.03

−0.07 0.64+0.02
−0.05 0.18

50 15 41 39.00+32.87
−8.42 38.18+23.76

−9.98 776+411
−249 0.37+0.06

−0.03 0.73+0.10
−0.02 0.44+0.09

−0.04 0.61+0.03
−0.08 0.21

All time-scales are in units of Myr. All length-scales are in units of pc.
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Table D8. Best-fitting solutions for gas maps (high resolution, extended emission)

ID Nstar Ngas tgas tover λ βstar βgas ζstar ζgas χ2
red

1 58 293 6.95+2.13
−1.39 0.31+0.11

−0.06 374+73
−54 1.13+0.16

−0.14 0.80+0.12
−0.10 0.33+0.04

−0.05 0.29+0.03
−0.03 0.21

2 109 293 3.93+0.87
−0.49 0.27+0.09

−0.09 339+46
−55 1.31+0.02

−0.16 0.60+0.13
−0.23 0.34+0.04

−0.03 0.33+0.04
−0.03 0.38

3 180 293 3.38+0.51
−0.40 0.39+0.09

−0.12 295+40
−40 1.08+0.09

−0.08 0.57+0.12
−0.16 0.37+0.04

−0.03 0.37+0.04
−0.03 0.61

4 297 293 3.21+0.42
−0.27 0.52+0.12

−0.18 212+24
−23 1.01+0.12

−0.12 0.38+0.12
−0.16 0.47+0.03

−0.03 0.49+0.03
−0.03 0.33

5 353 293 3.64+0.49
−0.30 0.74+0.10

−0.15 174+15
−14 1.17+0.20

−0.12 0.32+0.11
−0.04 0.52+0.02

−0.01 0.54+0.02
−0.01 0.37

6 414 293 2.76+0.33
−0.18 1.07+0.12

−0.09 137+13
−9 1.41+0.03

−0.19 0.46+0.08
−0.05 0.58+0.01

−0.02 0.59+0.01
−0.02 0.20

7 409 293 3.99+0.48
−0.40 1.96+0.15

−0.23 140+12
−10 1.43+0.07

−0.01 0.54+0.04
−0.05 0.58+0.01

−0.01 0.59+0.01
−0.01 0.32

8 351 293 5.84+0.78
−0.58 4.11+0.33

−0.40 144+15
−12 1.39+0.12

−0.08 0.49+0.06
−0.03 0.57+0.02

−0.02 0.59+0.02
−0.02 0.29

9 274 293 6.99+1.18
−0.42 6.96+0.89

−0.51 136+19
−9 1.45+0.01

−0.03 0.46+0.17
−0.00 0.60+0.01

−0.02 0.60+0.01
−0.02 1.59

10 239 293 14.48+2.90
−1.07 14.46+2.38

−1.24 150+25
−12 1.26+0.01

−0.04 0.70+0.00
−0.22 0.60+0.01

−0.02 0.58+0.02
−0.03 0.63

11 170 293 21.31+2.27
−1.82 21.31+1.98

−2.05 145+15
−13 1.51+0.01

−0.00 0.38+0.12
−0.00 0.60+0.01

−0.01 0.59+0.02
−0.02 2.99

12 180 371 36.17+11.18
−5.75 2.37+0.84

−0.38 218+21
−18 0.86+0.02

−0.01 1.03+0.02
−0.01 0.49+0.03

−0.03 0.50+0.02
−0.02 0.80

13 353 371 33.33+3.81
−3.28 4.11+0.64

−0.57 183+11
−11 0.88+0.04

−0.01 0.75+0.04
−0.08 0.55+0.01

−0.01 0.55+0.01
−0.01 0.95

14 409 371 28.50+2.42
−1.91 5.75+0.74

−0.78 170+11
−11 1.02+0.05

−0.01 0.73+0.02
−0.01 0.57+0.01

−0.01 0.58+0.01
−0.01 1.11

15 180 94 0.25+0.13
−0.05 0.06+0.05

−0.03 223+105
−40 1.17+0.23

−0.12 0.61+0.22
−0.29 0.41+0.06

−0.10 0.40+0.06
−0.12 0.46

16 353 94 0.20+0.12
−0.04 0.11+0.03

−0.02 98+34
−13 2.90+0.24

−0.05 0.56+0.10
−0.22 0.64+0.01

−0.07 0.63+0.02
−0.08 0.33

17 409 94 0.39+3.25
−0.01 0.39+1.82

−0.01 93+743
−8 1.93+0.75

−0.38 0.88+0.16
−0.34 0.65+0.01

−0.36 0.63+0.01
−0.49 1.17

18 180 293 3.38+0.51
−0.40 0.39+0.09

−0.12 295+39
−40 1.08+0.09

−0.08 0.57+0.12
−0.16 0.37+0.04

−0.03 0.37+0.04
−0.03 0.61

19 361 316 3.50+0.33
−0.29 0.62+0.07

−0.11 165+12
−12 0.95+0.05

−0.05 0.43+0.02
−0.08 0.48+0.01

−0.01 0.51+0.01
−0.01 0.40

20 467 316 3.49+0.37
−0.26 1.70+0.15

−0.09 127+10
−7 1.31+0.03

−0.05 0.61+0.03
−0.02 0.54+0.01

−0.01 0.57+0.01
−0.02 0.29

21 171 251 4.21+0.75
−0.57 0.42+0.14

−0.20 320+45
−54 1.21+0.14

−0.25 0.56+0.07
−0.38 0.43+0.06

−0.03 0.43+0.05
−0.03 0.47

22 294 251 4.06+0.66
−0.39 0.87+0.28

−0.29 197+23
−18 1.30+0.03

−0.11 0.27+0.13
−0.14 0.59+0.02

−0.04 0.60+0.01
−0.03 0.25

23 298 251 4.19+0.72
−0.51 1.95+0.24

−0.25 150+16
−12 1.98+0.03

−0.06 0.41+0.02
−0.12 0.64+0.01

−0.01 0.65+0.01
−0.01 0.43

24 157 159 4.11+0.95
−0.67 0.58+0.30

−0.28 349+72
−58 1.13+0.16

−0.05 0.47+0.04
−0.35 0.55+0.05

−0.06 0.56+0.04
−0.05 0.12

25 198 159 3.66+0.57
−0.44 2.17+0.45

−0.43 251+53
−38 1.28+0.06

−0.03 0.55+0.03
−0.09 0.64+0.05

−0.05 0.65+0.04
−0.04 0.37

26 151 159 5.17+0.92
−0.59 3.96+0.65

−0.53 213+38
−25 1.76+0.06

−0.08 0.55+0.05
−0.16 0.69+0.02

−0.03 0.69+0.02
−0.04 0.52

27 90 63 3.66+3.56
−0.71 1.44+2.22

−0.74 476+446
−163 1.30+0.21

−0.15 0.43+0.16
−0.24 0.63+0.07

−0.17 0.65+0.06
−0.16 0.28

28 81 63 4.83+231.65
−1.17 4.35+183.22

−1.37 418+8529
−141 1.46+1.61

−0.02 0.80+0.08
−0.37 0.67+0.03

−0.40 0.69+0.02
−0.46 0.21

29 22 63 5.46+246.66
−1.25 5.18+194.68

−3.10 300+2109
−67 3.43+1.00

−0.97 0.51+0.02
−0.22 0.71+0.00

−0.31 0.71+0.00
−0.43 0.55

30 17 20 64.46+132.87
−28.57 26.60+80.29

−13.42 2212+2111
−1248 1.63+1.18

−0.84 0.47+0.01
−0.09 0.47+0.16

−0.05 0.39+0.23
−0.09 0.07

31 7 20 309.14+0.00
−135.03 175.19+56.84

−121.53 3065+7254
−1956 1.56+1.18

−0.00 0.34+0.07
−0.16 0.41+0.06

−0.01 0.33+0.24
−0.08 0.00

32 10 20 7.76+238.08
−2.02 7.75+192.65

−5.06 532+1719
−210 3.65+0.66

−1.32 0.27+0.05
−0.00 0.71+0.00

−0.16 0.71+0.00
−0.34 0.65

33 166 281 3.37+0.47
−0.42 0.43+0.08

−0.12 311+36
−42 1.04+0.03

−0.08 0.65+0.04
−0.16 0.37+0.04

−0.02 0.37+0.04
−0.02 0.61

34 318 281 3.38+0.40
−0.30 0.77+0.16

−0.13 177+19
−15 1.30+0.02

−0.03 0.38+0.05
−0.11 0.54+0.01

−0.02 0.54+0.02
−0.02 0.27

35 329 281 4.06+0.50
−0.45 2.23+0.03

−0.28 144+10
−12 1.44+0.08

−0.01 0.52+0.04
−0.04 0.58+0.01

−0.01 0.59+0.02
−0.01 0.13

36 162 254 3.07+0.47
−0.33 0.46+0.10

−0.10 333+46
−45 1.06+0.06

−0.07 0.62+0.08
−0.13 0.38+0.03

−0.03 0.38+0.04
−0.03 0.41

37 281 254 2.86+0.35
−0.23 0.93+0.17

−0.10 185+21
−16 1.34+0.00

−0.05 0.49+0.03
−0.06 0.54+0.01

−0.02 0.56+0.01
−0.02 0.19

38 259 254 3.76+0.43
−0.39 2.52+0.09

−0.20 150+12
−13 1.52+0.01

−0.03 0.64+0.02
−0.10 0.59+0.01

−0.01 0.60+0.01
−0.01 0.12

39 152 235 2.68+0.36
−0.33 0.41+0.08

−0.09 326+43
−42 1.19+0.09

−0.10 0.64+0.07
−0.12 0.41+0.03

−0.02 0.42+0.03
−0.02 0.45

40 236 235 2.72+0.36
−0.24 1.02+0.20

−0.13 193+26
−18 1.39+0.01

−0.03 0.52+0.07
−0.04 0.56+0.01

−0.03 0.58+0.01
−0.03 0.22

41 196 235 3.18+0.44
−0.17 2.90+0.03

−0.05 148+14
−11 1.76+0.12

−0.24 0.56+0.05
−0.02 0.60+0.01

−0.01 0.62+0.01
−0.01 0.16

42 126 164 2.32+0.50
−0.27 0.47+0.13

−0.12 357+53
−55 1.35+0.06

−0.23 0.52+0.04
−0.04 0.48+0.04

−0.03 0.51+0.03
−0.03 0.41

43 183 187 2.83+0.26
−0.25 1.44+0.14

−0.16 221+31
−24 1.07+0.16

−0.03 0.56+0.02
−0.04 0.54+0.03

−0.03 0.57+0.03
−0.03 0.17

44 139 187 4.11+0.36
−0.19 4.10+0.23

−0.26 186+22
−14 1.31+0.02

−0.00 0.58+0.08
−0.07 0.58+0.01

−0.02 0.61+0.01
−0.02 0.45

45 97 121 1.81+0.35
−0.23 0.45+0.12

−0.13 365+52
−50 1.10+0.03

−0.06 0.42+0.06
−0.03 0.52+0.03

−0.03 0.56+0.02
−0.02 0.44

46 96 138 2.13+0.29
−0.21 1.43+0.20

−0.16 227+34
−23 1.39+0.06

−0.02 0.48+0.01
−0.02 0.56+0.02

−0.02 0.61+0.02
−0.02 0.25

47 58 138 4.37+0.71
−0.18 4.37+0.65

−0.24 203+36
−18 1.36+0.00

−0.04 0.81+0.00
−0.27 0.54+0.01

−0.02 0.63+0.01
−0.03 1.16

48 41 45 1.20+0.22
−0.15 0.67+0.08

−0.12 440+106
−94 1.24+0.32

−0.26 0.50+0.07
−0.05 0.57+0.05

−0.05 0.63+0.03
−0.03 0.28

49 37 48 3.04+0.61
−0.33 2.52+0.53

−0.26 336+79
−51 1.42+0.04

−0.11 0.55+0.02
−0.07 0.58+0.02

−0.03 0.62+0.02
−0.03 0.12

50 23 48 22.36+5.34
−5.88 22.01+5.15

−5.56 1456+67
−186 2.14+0.06

−0.14 0.20+0.06
−0.00 0.44+0.02

−0.01 0.36+0.03
−0.01 4.31

All time-scales are in units of Myr. All length-scales are in units of pc.
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