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Abstract

Body mass prediction from the skeleton most commonly employs femoral head diameter (FHD). However, theoretical predic-
tions and empirical data suggest the relationship between mass and FHD is strongest in young adults, that bone dimensions reflect
lean mass better than body or fat mass and that other femoral measurements may be superior. Here, we generate prediction
equations for body mass and its components using femoral head, neck and proximal shaft diameters and body composition data
derived from dual-energy x-ray absorptiometry (DXA) scans of young adults (n = 155, 77 females and 78 males, mean age 22.7
+ 1.3 years) from the Andhra Pradesh Children and Parents Study, Hyderabad, India. Sex-specific regression of log-transformed
data on femoral measurements predicted lean mass with smaller standard errors of estimate (SEEs) than body mass (12—14% and
16—-17% respectively), while none of the femoral measurements were significant predictors of fat mass. Subtrochanteric
mediolateral shaft diameter gave lower SEEs for lean mass in both sexes and for body mass in males than FHD, while FHD
was a better predictor of body mass in women. Our results provide further evidence that lean mass is more closely related to
proximal femur dimensions than body or fat mass and that proximal shaft diameter is a better predictor than FHD of lean but not
always body mass. The mechanisms underlying these relationships have implications for selecting the most appropriate mea-
surement and reference sample for estimating body or lean mass, which also depend on the question under investigation.

Keywords Lean mass estimation - Fat mass estimation - India - Archaeology - Forensics - DXA

Introduction their behaviour, diet, mortality risk and life history (Charnov

1993; Harvey and Clutton-Brock 1985; Harvey and Read

Research continues to address the problem of estimating body
mass from the skeleton since body size is an important char-
acteristic of a species or population linking many aspects of
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1988; Robson and Wood 2008; Sibly and Brown 2007; Will
et al. 2017). Secular trends in body size (height and mass) in
recent centuries are also of significant interest for the insight
they offer into temporal changes in living conditions and their
implications for contemporary growth and health, particularly
in relation to obesity-linked conditions (Ng et al. 2014; Xi et
al. 2012). It is important to adjust for body mass when exam-
ining evolutionary changes in the relative size of organs such
as the brain (e.g. McHenry 1988; Ruff et al. 1997) or to stan-
dardise bone properties to infer activity levels using limb bone
cross-sectional geometry (Ruff 2008), which require body
mass to be estimated. Body mass is also an important charac-
teristic in forensic profiling (Houck 2017; Moore and Schaefer
2011).

A number of studies have focussed on using femoral head
diameter (FHD) to estimate body mass, and the three most
commonly used equations are those of McHenry (1992),
Grine et al. (1995) and Ruff et al. (1991). Femoral head size
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is assumed to relate to loading (body mass) at the end of
growth before the femoral head fuses, after which no changes
in the size of the joint occur regardless of changes in loading
due to mass or activity (Lieberman et al. 2001; Ruff et al.
1991; Trinkaus et al. 1994). The same principle is thought to
apply to other joint surfaces, so joint dimensions of other
major long bones and the first metatarsal have also been used
to estimate body mass (Chevalier et al. 2018; De Groote and
Humphrey 2011; Elliott et al. 20164, b; Grabowski et al. 2015;
Grine et al. 1995; Lorkiewicz-Muszynska et al. 2013;
McHenry 1992; Moore 2008; Moore and Schaefer 2011;
Ruff 2007; Ruff et al. 2018; Squyres and Ruff 2015;
Wheatley 2005; Will and Stock 2015).

An alternative to such ‘mechanical’ approaches is Ruff’s
morphometric method (Ruff 1991) which uses stature and bi-
iliac breadth to estimate body mass. This method requires
good skeletal preservation and despite compound estimation
errors when applied to skeletons (estimating stature and living
bi-iliac breadth and in turn body mass), it offers somewhat
better reliability than predictions based on joint sizes (Ruff
et al. 1991, 2005; Schaffer 2016).

Many of the FHD equations have relatively high associated
errors (e.g. Ruff et al. 1991 report standard errors of estimate
(SEE) of > 14%), and they have been found to be unreliable
when the equations are applied to individuals of known body
mass (Chevalier et al. 2016; Elliott et al. 2016a; Heyes and
MacDonald 2015). For example, Elliott et al. (2016a) report
that in a cadaveric sample of European origin, estimated body
mass using FHD was only within 20% of true body mass for
58% of females and 76% of males using the best-performing
equations. This may in part be because studies such as Elliott
et al.’s (2016a, b) examined older individuals from wealthier
countries, where weight gain in middle and later adulthood
can be considerable and obesity is an increasing problem.
Such trends may weaken the relationship between joint size
(reflecting mass in early adulthood) and body mass. Squyres
and Ruff (2015) analysed distal femoral dimensions of young
adults for this reason and recorded reduced SEEs of 9.9—
13.2% for body mass estimation. In contrast, Elliott et al.
(2016b) did not find consistently improved results when the
equations they derived from a variety of postcranial measure-
ments were based only on individuals aged 18-39 years com-
pared with the full range (to 91 years). (See Ruff et al. 2018 for
a further review of previous studies and their limitations).

Some evidence suggests that joint sizes and other external
bone dimensions may be most strongly related to skeletal mus-
cle or lean mass (Baker et al. 2013; Chumlea et al. 2002; Himes
and Bouchard 1985; LeBrasseur et al. 2012; Pomeroy et al.
2018; Reeves 2014; Semanick et al. 2005; Taes et al. 2009;
Wu et al. 2007) and only weakly to fat mass (Bailey and
Brooke-Wavell 2010; Beck et al. 2001, 2009; Cole et al.
2012; El Hage and Baddoura 2012; Farr et al. 2014; Hu et al.
2012; Leslie et al. 2014; Mallinson et al. 2013; Moon et al.
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2015; Pomeroy et al. 2018; Semanick et al. 2005; Sioen et al.
2016; Taes et al. 2009; Travison et al. 2008; Wu et al. 2007) and
thus show weaker relationships to total body mass. This closer
relationship of bone dimensions to lean mass than to fat mass
may result from the functional relationship between bone and
skeletal muscle (Edwards et al. 2013; Fricke and Schoenau
2007; Judex et al. 2016; Parfitt 1997; Puthucheary et al. 2015;
Rauch and Schoenau 2001; Schoenau 2005; Schoenau and
Fricke 2006; but see, e.g. Judex et al. 2016) and/or shared
developmental origins (DiGirolamo et al. 2013; Karasik et al.
2009; Lang et al. 2009; Mikkola et al. 2009; Seeman et al.
1996). A closer relationship between bone properties and lean
mass than fat mass would mean that bone dimensions give
particularly poor body mass estimates for recent, relatively ad-
ipose samples. It may also be that other bone measurements,
such as femoral neck or shaft diameter (Elliott et al. 2016b;
Pomeroy et al. 2018; Ruff et al. 1991), are more sensitive to
actual mechanical loads and thus may prove better predictors of
body mass and its components.

The potential to estimate different components of body mass
from the skeleton is of interest since humans are characterised
by relatively high body fat and low skeletal muscle mass (a
major constituent of lean mass) compared with other primates
(Muchlinski et al. 2012; Zihlman and Bolter 2015) and fossil
hominins such as Neanderthals (Churchill 1998, 2006;
Trinkaus 1983; Trinkaus et al. 1991; Wells 2010, 2017).
Furthermore, different human populations are known to vary
widely in body composition. For example, South Asians have
relatively low lean mass in proportion to height and total body
mass, which is implicated in their elevated susceptibility to type
2 diabetes (reviewed in Wells et al. 2016), while Pacific
Islanders have high lean mass relative to height and total body
mass, which is hypothesised to reflect cold stress experienced
while at sea (Houghton 1996; Wells 2012; Wilberfoss 2012).
The ability to estimate lean and fat mass from the skeleton
would therefore enable us to investigate when and why such
inter- and intra-specific differences in body composition arose.

The aim of this study is to derive new equations for body,
lean and fat mass estimation using measurements of the prox-
imal femur derived from dual-energy x-ray absorptiometry
(DXA) scans of living young adults of known body mass
and estimated body composition. We test the hypotheses that
(1) lean mass can be more reliably estimated from skeletal
measurements than fat mass or total body mass and (2) other
bone measurements (femoral neck and shaft dimensions) are
equally good, if not superior, for predicting body mass and its
components than FHD.

Materials and methods

Whole-body and regional hip DXA scans of young adult par-
ticipants in the Andhra Pradesh Children and Parents Study
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(APCAPS) were used in this study. APCAPS is a large, inter-
generational epidemiological study of children, their parents
and siblings living in villages surrounding Hyderabad, India
(see Kinra et al. 2014 for an overview). The study was ap-
proved by the ethics committees of the National Institute of
Nutrition, Hyderabad, and the London School of Hygiene and
Tropical Medicine, and participants provided informed
consent.

Sample selection has been described previously (Pomeroy
et al. in press), but briefly, participants underwent whole-body
and regional hip and lumbar spine DXA scans at various
stages of APCAPS, and scans from the third survey wave
(2010-2012) were selected to ensure that as many participants
as possible were in their early 20s, and so had completed their
growth: the participants selected were aged between 20 and
26 years. A random stratified sample containing equal num-
bers of males and females was selected to give even coverage
across the range of height and body mass. Only the whole-
body and regional hip scans were used in our analyses.

All DXA scans were performed on a Hologic Discovery A
(Bedford, MA, USA) at the National Institute of Nutrition,
Hyderabad, India. The scanner was calibrated daily during
the study, and the left hip scanned for bone density analysis.
Stature was measured using a Leicester Height Measure
(Chasmors, Camden, London, UK) to the nearest centimetre,
and body composition was estimated from whole-body DXA
scans taken at the same time using inbuilt software (version
12.5). Standard software options were used to calculate the
total lean mass and fat mass. Weight was measured to the
nearest 0.1 kg in light clothes without footwear using a digital
Seca scale (www.seca.com).

The proximal femur scan ‘P’ files were exported from the
Hologic APEX software and opened in ImageJ (Rasband
1997-2016) using the P Reader plugin developed by
Minxuan Dong (Dr Neil Dong, pers. comm. 2015). The auto-
matic brightness and contrast adjustment in ImageJ was ap-
plied to enhance the clarity of the image in a standard manner,
and images were scaled using known hip scan area dimen-
sions provided by the manufacturer. Supero-inferior head di-
ameter, minimum diameter of the femoral neck, and
mediolateral diameter of the subtrochanteric region of the fe-
mur were measured using the line measurement tool in ImageJ
following osteological definitions of these measurements
(Bréauer 1988; Martin and Saller 1957) as closely as possible
(Fig. 1). All measurements were taken by two of the authors
(EP and VM) and the mean of their measurements used in
subsequent analyses.

The repeatability of the DXA measurements (intra- and
inter-observer error) were assessed using the technical error
of measurement (TEM) and the coefficient of reliability (R),
calculated following Ulijaszek and Lourie (1994). We also
calculated TEM as a percentage of the mean for that measure-
ment (%TEM). Inter-observer error was calculated from all

Key

---------- Femoral head diameter
= = = Minimum femoral neck diameter
= « = Subtrochanter medio-lateral diameter

Fig. 1 Example of a hip DXA scan showing measurements collected in
this study

data collected by EP and VM, while intra-observer error was
calculated from repeated measurements of 10 individuals tak-
en by EP at least 1 day apart. While there are no universally
accepted objective limits for TEM, %TEM or R, the results in
Table | indicate that intra-observer error is low: The coeffi-
cient of reliability was >0.93 and TEM <2.4%. This com-
pares with R >0.86 and TEM < 3.3% for inter-observer error,
suggesting that the repeatability of the measurements is fairly
good. An additional limitation is that the resolution of the
scans, which for this dataset is approximately 2 pixels per
millimetre, may also affect measurement accuracy even when
measurement to the sub-pixel level is enabled in Imagel.
However, the averaging of multiple measurements will help
to improve the reliability of the measurements.

Processing DXA measurements The Hologic Discovery A
uses a fan beam of x-rays which leads to magnification in
the mediolateral plane of the body, but not the cranio-caudal
plane (Boudousq et al. 2005; Griffiths et al. 1997). The extent
of this effect depends on the distance of the object of interest
(in this case, the proximal femur) from the source. Bone di-
mensions that are not orientated cranio-caudally on the DXA

@ Springer



Archaeol Anthropol Sci

Table 1 Intra- and inter-observer
reliability statistics for proximal
femoral measurements derived

Measurement

Intra-observer Inter-observer

from left hip DXA scans TEM (mm) %TEM R TEM (mm) %TEM R
Supero-inferior head diameter 0.76 1.8 096 14 33 0.86
Supero-inferior neck diameter 0.64 24 093 0.7 2.7 0.93
Subtrochanteric mediolateral shaft diameter ~ 0.29 1.0 099 0.7 2.3 0.91

TEM technical error of measurement, R coefficient of reliability

scans therefore need to be corrected for underlying tissue
thickness.

The relationship between degree of magnification and dis-
tance from the scanner bed was assessed by scanning a
stepped calibration block supplied by the manufacturer. This
has three metal plates measuring 100 mm square set on an
acrylic block at 40, 95 and 210 mm above the base. This block
was scanned in full-body mode in three positions on the bed
(in the midline oriented longitudinally on the bed, and orient-
ed mediolaterally with the higher end to the right side and then
to the left). The metal plates were measured using Mitutoyo
sliding callipers to the nearest 0.1 mm, and also on each of the
scans using ImageJ. The percentage magnification of each
plate measurement was calculated with reference to the calli-
per measurements of the same plates. The percentage magni-
fication was then plotted against the known height of each
plate above the base of the acrylic block. An ordinary least
squares (OLS) regression line was fitted to these data, and the
equation to estimate percentage magnification based on height
above the table was derived (Eq. 1):

Magnification (%)

= 100—(~0.186 * height above table in millimetres + 131.5)
(1)

The Hologic Discovery A DXA images of the hip include
an estimate of total tissue thickness at the hip based on x-ray
attenuation (7), equivalent to inches of acrylic. To transform
this to body tissue equivalent, 7 must be multiplied by 1.18 to
account for differences in density of these materials (T.L.
Kelly, Hologic Inc., pers. comm. August 2015), and converted
to centimetres by multiplying by 2.54.

Total body thickness (cm) = 1.18 x T x 2.54 (2)

This gives a total body thickness, but the height of the
proximal femur above the bed must be estimated to correct
the actual bone measurements. McKay et al. (2005) state that
based on computed tomography observations, the femur lies
in the mid-sagittal plane around the hip, but they do not pres-
ent the data on which this is based. Pocock et al. (1997) dem-
onstrated that among 30 Australian women, aged 32—65 years,
the mean height of the femoral head above the scanning bed
was 11.2 cm (range 7.1-15.8 cm). The Hologic software gives

@ Springer

total tissue thickness at the hip, but it is unclear what total
body thickness was in the Australian dataset and so whether
our dataset is comparable.

To test the height of the femur at the hip in a supine posi-
tion, we measured the height of the femoral head above the
bed in pelvic MRI scans of 53 young women of South Asian
heritage living in London, UK, collected by MKS as part of a
separate research project. MRI scans were 3D volumetric T,-
weighted acquisitions (144 contiguous coronal slices; TR
15.5 ms; TE 5.1 ms, flip angle 25°, voxel size 1.2 mm3) per-
formed at Great Ormond Street Hospital for Children NHS
Trust using a 3T Siemens Magnetom Prisma scanner
(Siemens, Erlangen, Germany). The height of the centre of
the femoral head from the bed was measured in OsiriX version
8.5 (Rosset et al. 2004). Mean height of the centre of the
femoral head above the table was 61% of body thickness
(standard deviation 2.5%). The degree of magnification for a
given individual was then calculated using Eq. 1, where

Height above table (cm) = 0.61 x total body thickness (3)

To correct bone measurements for magnification of the hip
scans in the mediolateral, but not cranio-caudal direction, the
linear measurement (for example FHD) and the angle of the
measurement as reported in ImageJ were taken, and adjusted
measurements were calculated using Pythagoras’ theorem on
an imaginary right angle triangle constructed treating the
Image] length as the hypotenuse. These new adjusted mea-
surements were then used in subsequent analyses.

Ordinary least squares (OLS) regression was used to derive
equations to estimate body, lean and fat mass from each of the
proximal femur measurements. While there is ongoing discus-
sion regarding the most appropriate regression model to use
for such analyses (Elliott et al. 2016b; Ruff et al. 2012; Smith
2009), others have reported that reduced major axis (RMA)
regression produces greater average errors (Elliott et al.
2016b) and it is less appropriate for multivariable regression.

Regression models were calculated for each of the individ-
ual femoral measurements for males and females separately,
given established sex differences in body composition.
Natural logarithms of all data were used to account for poten-
tial allometry and non-normality in the distribution of some
variables (Glazier 2013; Huxley 1932; Sokal and Rohlf 1987).
Models were also calculated for the raw data but yielded
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slightly higher SEEs (data not shown), so log-transformed
data were preferred. Given variability in archaeological pres-
ervation, equations based on single measurements are poten-
tially most useful, but a model containing multiple measure-
ments might offer greater accuracy where all measurements
can be taken. We therefore also ran a forward stepwise multi-
ple regression model including all three femoral measure-
ments as potential predictors. The relative performance of
the regression models was assessed from the adjusted R
values and SEEs. All analyses were conducted using SPSS
for Windows v. 24.0 (IBM Corporation, Chicago), with p
values < 0.05 considered significant.

Results

The characteristics of the study sample are summarised in
Table 2. Mean age was 22.7 years, with even numbers of
males and females. The regression models are presented in
Tables 3 and 4 for females and males, respectively. For both
sexes, lean mass could be estimated most reliably from mea-
surements of the proximal femur (SEE = 12.0-13.5%), while
the estimation of body mass was less reliable (SEE =15.9—
16.9%) and fat mass prediction showed poor reliability with
statistically non-significant models (SEE =33.5-44.5%). It
should be noted that for females, the regressions for body
mass were also non-significant for femoral neck and
subtrochanteric shaft diameter. Example scatterplots for body,
lean and fat mass against femur subtrochanter mediolateral
diameter are shown in Fig. 2; those for other femoral measure-
ments are similar (not shown). For lean mass in females and
both body and lean mass in males, the subtrochanteric
mediolateral diameter yielded better models with lower
SEEs and adjusted R? values, while for females, FHD was
the best predictor of body mass.

Although the regression coefficients for lean mass on bone
measurements were similar for males and females, in a
pooled-sex analysis, sex was highly significant when added

Table 2 Demographic characteristics of the study sample

as a term to the model, but the interaction between sex and
bone measurement was not (results not shown). This indicates
that while the regression lines by sex are parallel, they are not
coincident, so sex-specific estimation equations are
preferable.

The stepwise regression procedure based on all three fem-
oral variables resulted in only one statistically significant mul-
tivariable equation. This equation was to predict lean mass
among women from FHD and mediolateral subtrochanteric
femoral shaft diameter, although this only reduced the SEE
by 0.2% compared with the best univariable model (data not
shown).

Discussion

Our study demonstrates that in a sample of young adults from
the region around Hyderabad, India, lean mass can be estimat-
ed from measurements of the proximal femur with an SEE of
12.2%. The estimation of body mass is less reliable with SEEs
around 16.5%, while fat mass is only poorly estimated (SEE >

35.5%)—indeed, bone measurements were not significant
predictors of fat mass. It is worth noting that there is no widely
accepted or objectively defined standard for acceptable rates
of error for such estimation equations. While statistics such as
the proportion of individuals whose estimates were within 10,
15 or 20% of known values (e.g., Elliott et al. 2016a;
Lorkiewicz-Muszynska et al. 2013; Ruff et al. 2005), these
are arbitrary thresholds. The performance of equations is best
judged by taking into account errors associated with estimates
generated for a target individual/sample and the purpose for
which the estimates are being derived.

In terms of relative accuracy, the errors associated with our
equations are similar to or smaller than those reported for
equivalent equations from other samples, although thorough
comparisons are hampered by the fact that different studies
report different measures of error associated with their equa-
tions. We therefore focus our comparisons on studies

Variable

Combined sex (n=155)

Females (n=77) Males (n="78)

Age (years) 22.7 (1.3: 20.3-25.6)

23.0(1.3:20.4-25.6) 22.4 (1.2: 20.3-24.9)

Height (cm) 160.3 (9.2: 138.0-180.0) 153.8 (6.4: 138.0-166.0) 166.8 (6.6: 147.0-180.0)
Body mass (kg) 51.1 (10.1: 27.6-80.5) 46.2 (8.1: 27.6-72.9) 55.9 (9.6: 35.5-80.5)
Body mass index (kg/mz) 19.7 (2.9: 13.7-28.8) 19.5 (3.0: 13.7-28.8) 20.0 (2.9: 15.4-28.7)

383 (8.6: 22.2-61.9)
11.8 (5.0: 4.0-29.0)

38.9 (3.2: 31.4-50.8)
24.5 (2.4: 19.3-30.4)
22.1 (1.6: 18.5-26.4)

Lean mass (kg)

Fat mass (kg)

Femur head diameter (mm)
Femur neck diameter (mm)

Femur subtrochanter shaft diameter (mm)

31.5 (4.2: 22.2-43.9)
13.9 (4.6: 5.9-29.0)

36.8 (2.2: 31.4-42.0)
22.8 (1.6: 19.3-26.3)
21.2 (1.4: 18.5-26.0)

45.1 (6.3: 29.7-61.9)
9.7 (4.4: 4.0-23.0)
41.1 (2.5: 36.4-50.8)
26.1 (1.8: 21.9-30.4)
23.0 (1.2: 20.0-26.4)

Values given as mean (standard deviation: range)
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Table 3  Regression equations for estimating body, lean and fat mass
from measurements of the proximal femur in females

Equation r Adjusted B> %SEE  p value
Body mass
1.377+0. 678 x head 024  0.05 16.5 0.03
2.732 +0.348 x neck 0.15  0.02 16.9 0.2
2.100 +0.563 x subtrochanter 0.22  0.04 16.7 0.06
Lean mass
0.536 +0.854 x head 037 0.12 12.5 0.001
1.573 +0.599 x neck 032 0.09 12.7 0.004
0.697 + 0.899 x subtrochanter 0.44  0.19 120  <0.001
Fat mass
1.276 +2.287 x head 0.07 -0.01 335 0.6
2.681-0.031 x neck 0.01  0.00 335 0.9
3.104-0.170 x subtrochanter ~ 0.03 —0.01 335 0.7

Note that all variables are natural logs. Raw bone diameters originally in
millimetres, and raw mass in kilogrammes

%SEE = SEE % 100 as natural log transformation of the data results in
SEEs which are already percentages when multiplied by 100 (Cole
2000; Cole and Altman 2017)

Head femoral head super-inferior diameter, Neck femoral neck minimum
superior-inferior diameter, Subtrochanter femur subtrochanter
mediolateral diameter

reporting a comparable %SEE statistic. Ruff et al. (1991) re-
ported SEEs for body mass estimation of 14.4% or greater
based on FHD, neck diameter and estimated subtrochanter

Table 4 Regression equations for estimating body, lean and fat mass
from measurements of the proximal femur in males

Equation r Adjusted R %SEE  p value
Body mass
0.876 + 0.844 x head 030 0.08 16.3 0.007
2219+ 0.512 x neck 029 0.07 16.3 0.01
0.505 + 1.117 x subtrochanter ~ 0.36  0.12 15.9 0.001
Lean mass
0.649 + 0.848 x head 036 0.12 13.2 0.001
1.876 +0.590 x neck 030 0.08 13.5 0.007
—0.080 + 1.237 x subtrochanter 0.48  0.22 124 <0.001
Fat mass
—0.105+0.615 x head 0.08 —0.006 44.5 0.5
—1.088 +1.001 x neck 0.16 0.01 44.1 0.2

0.397 + 0.568 x subtrochanter ~ 0.07 —0.008 44.6 0.5

Note that all variables are natural logged. Bone diameters are in
millimetres, and mass in kilogrammes

%SEE = SEE % 100 as natural log transformation of the data results in
SEEs which can be viewed as percentages when multiplied by 100
(Cole 2000; Cole and Altman 2017)

Head femoral head super-inferior diameter, Neck femoral neck minimum
superior-inferior diameter, Subtrochanter femur subtrochanter
mediolateral diameter
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cross-sectional area for a single-sex and -ancestry sample from
the USA (average age 53 years). Using distal femoral dimen-
sions in a sample of young US adults, Squyres and Ruff
(2015) reported SEEs of 11.5-12.2% for body mass, while
Ruff (2000) reported SEEs of 6—8% for estimating body mass
from bi-iliac breadth and stature, and Schaffer (2016) reported
similar errors of 5-8% for sex- and ancestry-specific equations
based on bi-iliac breadth and stature in the third US National
Health And Nutrition Examination Survey dataset.

Our young adult sample gave mostly smaller associated
errors than those reported by Ruff et al. (1991). With the
exception of sex- and ancestry-specific equations for white
females, which had %SEEs of 14.4% for body mass, SEEs
for body mass in that study ranged from 16.5-24.1%.
However, we note that there are differences between these
samples other than the age of participants which might explain
the difference in results. Our sample was of entirely South
Asian ancestry from a restricted region around Hyderabad
and from communities undergoing urbanisation and a transi-
tion from traditional to more westernised lifestyles. Thus
BMI, body mass and stature, and variation in these character-
istics, are likely to be relatively low in our sample compared
with Ruff et al.’s pooled-sex and -ancestry US sample. Only
mean body mass can be compared with Ruff et al. (1991), but
this was 80.8 and 72.4 kg for males and females, respectively,
in their sample, compared with 55.9 and 46.2 kg, respectively,
in our sample. Although our results are broadly consistent
with the proposal that using a young adult sample will give
more accurate body mass prediction equations, we cannot
demonstrate that this is the definitive explanation and the ef-
fects of more homogenous ancestry, lower BMI, lower body
fat and smaller stature might also be responsible. We also note
that the improvements represented by our equations were
modest compared with using distal femur measurements from
a young US adult sample (Squyres and Ruff 2015).

It is notable that equations for estimating lean mass had
lower SEEs than those for body mass, while SEEs were high
for equations to estimate fat mass. This is consistent with
results of previous studies which suggest that limb bone di-
mensions and cross-sectional properties are more closely re-
lated to lean mass than to fat mass (Baker et al. 2013;
Chevalier et al. 2018; Chumlea et al. 2002; Himes and
Bouchard 1985; LeBrasseur et al. 2012; Pomeroy et al.
2018; Reeves 2014; Semanick et al. 2005; Taes et al. 2009;
Wu et al. 2007).

The closer relationship between lean mass and bone prop-
erties may be because the greatest forces acting on bones come
from muscle action rather than general body mass effects due
to gravity (Baker et al. 2013; Beck et al. 2001; Burr 1997;
Capozza et al. 2004; Hsu et al. 2006; Petit et al. 2005;
Robling 2009; though see Ruff 2003), and/or due to shared
developmental factors affecting muscle and bone
(DiGirolamo et al. 2013; Karasik et al. 2009; Lang et al.
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Fig. 2 Scatterplots of body, lean -
and fat mass against femur R
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2009; Mikkola et al. 2009; Seeman et al. 1996). Our results,
with those and other studies, imply that poorer correspon-
dence between body mass and bone dimensions in older,
westernised populations (Elliott et al. 2016b; Ruff et al.
1991) may be at least in part due to greater adiposity at all
ages in such populations, rather than the disruption of a func-
tional link between body mass at the end of growth and joint
size by later weight gain. Although lean mass increases with
increased body fat, the former does not keep pace with the
latter in overweight or obese individuals (Forbes 1999; Wells
and Victora 2005), and this may therefore weaken the rela-
tionship between body mass and bone properties. Studies test-
ing existing equations (Young et al. 2018) or generating new
ones (Chevalier et al. 2018) have reported improved reliability
when analyses exclude individuals who are likely to have an
unusually high or low proportion of body fat (i.e., those with
BMI outside the normal range of 18.5 to 24.9 kg/m?). These
results may indicate that the extremes of percentage body fat
are not well reflected in femoral measurements due to a weak
link between adiposity and skeletal properties.

Femur subtrochanter medio-lateral diameter (mm)

For all measurement locations, subtrochanteric
mediolateral shaft diameter provided the best-performing
models. A note of caution is however necessary, as properties
of the proximal femoral shaft relate to body breadth (Davies
and Stock 2014; Weaver 2003), although this may be less of a
problem for body mass estimation since body breadth is itself
an important determinant of body mass (Ruff et al. 2005; Ruff
2000; Schaffer 2016). Potentially more problematic are age-
and activity-related influences on long bone shaft
morphology.

It is well accepted that shaft dimensions and cross-sectional
geometry are related to activity levels (e.g., Haapasalo et al.
2000; Pearson and Lieberman 2004; Ruff et al. 2006; Ruff and
Hayes 1983; Shaw and Stock 2009a, b; Stock and Pfeiffer
2001; Trinkaus et al. 1994) and extreme body mass
(Agostini and Ross 2011; Reeves 2014). This contrasts with
joint sizes which are thought to be fixed by the time the epiph-
ysis fuses in adolescence and to show little relation to activity
levels (Lieberman et al. 2001; Reeves 2014; Ruff 1988; Ruff
et al. 1991; though see Eckstein et al. 2002). However, the
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period of greatest responsiveness of the shaft cross-sectional
properties to mechanical loading (mass and activity) is also
widely considered to be late adolescence and early adulthood
(Bertram and Swartz 1991; Forwood and Burr 1993), and
approximately 80% of the variation in cross-sectional geom-
etry of human long bone shafts seems to be determined by
body mass (Davies 2012). Thus, while changes in body mass
and behaviour during adulthood may create some noise in the
data, they may not invalidate the use of shaft cross-sectional
properties to estimate body mass and its components.
However, body mass estimation equations based on shaft
cross-sectional properties may be problematic if applied to
populations whose activity level differs widely from that of
the reference population.

It is also known that long bone shafts undergo age-related
expansion of the periosteal margin which could influence ex-
ternal diameters (Feik et al. 2000; Garn et al. 1967; Lazenby
1990a, b; Ruff and Hayes 1983). The use of shaft dimensions
to estimate body or lean mass should therefore be cautious
until the extent of age- and activity-related influences on shaft
properties are more fully quantified and their relationship to
early adulthood and current body or lean mass (or at time of
death) are better understood.

Studies seeking to estimate body mass should consider the
choice of measurements and reference samples carefully, and
the purpose of estimating body or lean mass for a given study
needs to be taken into account when selecting an appropriate
estimation method (Pomeroy et al. 2018; Ruff et al. 2018). The
lack of plasticity in femoral head dimensions render them less
suitable for estimating body mass at the time of death, particu-
larly in older individuals who may have accumulated greater
excess body weight. However, there are circumstances where
estimating body or lean mass before the variable, age-related
accumulation of excess weight is actually of greater interest,
such as in the study of adaptive evolutionary trends in body
mass or composition, which may be more evident in young
adulthood (e.g. Hruschka et al. 2014; see Pomeroy et al. in
press for further discussion). The interpretation of what we
might consider early adult ‘peak phenotype’, when selective
pressures might be expected to be strongest and sexual dimor-
phism is greatest, is easier when less obscured by environment-
specific ‘noise’ created by later mass accumulation.

Conversely, bone shaft properties may be more appropriate
estimators where body mass at death is needed, such as in
forensic cases (though the poor correspondence with fat mass
here should still be noted). In such cases, the choice of refer-
ence sample is also likely to be more critical: equations may
give inaccurate body or lean mass estimates when applied to
study samples differing significantly in body composition
and/or activity from the reference sample. It is important that
sufficient detail concerning reference samples (including sum-
mary statistics on stature, body mass, BMI and body compo-
sition, where available) are provided when estimation
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methods are described so that the suitability of the reference
sample for a given application can be readily assessed.

In order to apply our equations and convert estimates back
to original units (i.e. mass in kg), the antilog of the calculated
value should be used. While others have argued for a correc-
tion to counteract ‘detransformation bias’ (Smith 1993), this is
unnecessary since it assumes that the OLS model based on the
raw data is the ‘best’ model and adjusts the results of the log-
log model to more closely reflect the results of the raw data
regression. However, the log-log regression models the error
in a different way to the raw data analysis that is not necessar-
ily inferior.

The study has a number of strengths, including the fact that
the sample was composed of young adults for whom body
mass was measured (and not obtained through recall, as in
Ruff et al. 1991) and composition was estimated using a con-
sistent method. The range of statures and body mass are rela-
tively wide, and the sample also derives from a population
where marked obesity even in young adulthood is uncommon,
though not completely absent as Table 2 shows. Given the
greater proportion of body fat observed in South Asians,
values around, for example, 28 kg/m” represent a similar level
of body fatness to a BMI of 30 kg/m” or even greater among
Europeans (Rush et al. 2009; Tillin et al. 2015; WHO Expert
Consultation 2004). Nonetheless, the relatively low rate of
obesity may make the equations more applicable to past pop-
ulations where obesity is thought to have been less prevalent.
This could, however, be a limitation to applying the methods
in forensic cases.

Several additional caveats are warranted in interpreting the
results and applying our equations. The sample was entirely of
South Asian ancestry, and it is currently unknown whether the
relationship between measurements of the proximal femur and
body, lean and fat mass is consistent across populations of
different genetic backgrounds. The results of Ruff et al.
(1991) suggest that there may be some variation in this rela-
tionship. Therefore, our equations should be applied cautious-
ly until it has been established whether any such interpopula-
tion variation in the underlying relationship exists. The need
for population-specific stature estimation equations is well
documented and widely recognised (e.g. Auerbach and Ruff
2010; Holliday and Ruff 1997; Nat 1931; Pan 1924; Pomeroy
and Stock 2012; Stevenson 1929).

The relatively short stature and low body mass of our sam-
ple compared with other populations worldwide should also
be noted, since it is widely accepted that OLS regression equa-
tions cannot be applied to individuals falling outside the range
of the original data (e.g. Smith 2009). According to the na-
tional level data from the NCD-RisC group, India’s 1996 birth
cohort ranked 192nd and 178th out of 200 countries for mean
female and male stature, respectively (NCD Risk Factor
Collaboration 2016), and 192nd and 190th for female and
male BMI, respectively, in 2016 (NCD Risk Factor
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Collaboration 2017). Even within South Asia, urban popula-
tions have higher average BMIs than rural populations (e.g.
Ebrahim et al. 2010), so careful consideration must be given
as to whether our reference sample is sufficiently similar when
applying our equations to other populations.

Our analysis demonstrates that using DXA scans is a fea-
sible method which could be used to investigate potential
variation in the relationship between bone dimensions and
body mass and its components among groups of different
geographical origin or ancestry (see also Wheatley 2005).
The considerable number of large-scale epidemiological stud-
ies of worldwide populations where DXA scans have been
performed offer great potential in terms of suitable datasets.

In conclusion, our results show that lean mass can be pre-
dicted with smaller associated error than body mass, while fat
mass cannot be reliably predicted, and that subtrochanteric
mediolateral shaft diameter is a better predictor of lean mass
in both sexes and body mass in males only than femoral head
or neck diameter. The implication is that FHD may not scale to
total load (body mass) as is often assumed, but that bone
properties and lean mass are linked through either forces gen-
erated by muscle or by shared genetic or developmental fac-
tors between lean mass and bone. Nonetheless, as lean mass is
the major component of body mass especially in younger
adulthood, measurements such as FHD do provide a useful
estimator of early adult or ‘ideal’ body mass. A better under-
standing of the link between lean mass and bone morphology
presents the possibility for a more nuanced investigation of
variation of body size in the past. Further testing of the way in
which femoral dimensions covary with activity, body mass,
age and ethnicity are needed to confirm the wider applicability
of equations for estimating lean and body mass generated in
this and other studies, and large-scale epidemiological studies
involving DXA scans offer datasets with wide global cover-
age. The emerging complexity of the relationships between
body mass or its components and bone properties suggests
there would be value in broadly reconsidering new approaches
to body mass estimation from the skeleton.
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