Structural Elucidation of Amorphous Photocatalytic Polymers from Dynamic Nuclear Polarization Enhanced Solid State NMR

Nick J. Brownbill,† Reiner Sebastian Sprick,‡ Baltasar Bonillo,† Shane Pawsey,§ Fabien Aussenc,‖ Alistair J. Fielding,†,† Andrew I. Cooper,†,‡ and Frédéric Blanc*,†,†

†Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
‡Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, United Kingdom
§Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
‖Bruker France, 34 rue de l’industrie, 67166 Wissembourg, France

ABSTRACT: Dynamic nuclear polarization (DNP) solid-state nuclear magnetic resonance (NMR) offers a recent approach to dramatically enhance NMR signals and has enabled detailed structural information to be obtained in a series of amorphous photocatalytic copolymers of alternating pyrene and benzene monomer units, the structures of which cannot be reliably established by other spectroscopic or analytical techniques. Large 13C cross-polarization (CP) magic angle spinning (MAS) signal enhancements were obtained at high magnetic fields (9.4–14.1 T) and low temperature (110–120 K), permitting the acquisition of a 13C INADEQUATE spectrum at natural abundance and facilitating complete spectral assignments, including when small amounts of specific monomers are present. The high 13C signal-to-noise ratios obtained are harnessed to record quantitative multiple contact CP NMR data, used to determine the polymers’ composition. This correlates well with the putative pyrene:benzene stoichiometry from the monomer feed ratio, enabling their structures to be understood.

1. INTRODUCTION

Organic polymeric photocatalysts that generate hydrogen from water under electromagnetic irradiation have become an area of great interest in materials chemistry in recent years due to their potential greater diversity than classic metal based photocatalysts.1-5 Organic photocatalysts such as graphitic carbon nitride1 and poly(p-phenylenes)1-7 are primarily active when irradiated with light in the UV region of the electromagnetic spectrum (just 3% of the solar light on the Earth’s surface).5 Recent developments in this field have targeted polymers active in the visible light region, the predominant wavelengths of radiation present in solar light, with tunable band gaps to optimize photocatalytic activity.5-17

One of these families of polymers (Figure 1), which belongs to the conjugated microporous polymers (CMPs),18 is specifically investigated in this work to both their remarkable hydrogen evolution rates under visible light (Figure 1) and their large accessible surface areas (Brunauer–Emmett–Teller surface areas (SA$_{BET}$) up to ~1200 m2 g$^{-1}$, Table S1, pore size distributions, Figure S1). These CMPs, known as copolymerized conjugated microporous polymers (CP-CMPs) are extended three-dimensional networks composed of copolymerized alternating pyrene and benzene monomer units in varying ratios to form multicomponent systems (Figure 1). They are both insoluble and amorphous, making their atomic level structure very challenging or impossible to obtain using standard analytical methods such as X-ray diffraction (Figure S2) or solution-state NMR. CP-CMPs’ insolubility also prevents their physical properties such as particle size from being determined by chromatography-based techniques such as size exclusion or gel permeation chromatography. It is possible to empirically optimize photocatalytic activity of these materials; however, a targeted synthetic approach relies on the obtained polymer structure which cannot be assumed to be identical to the monomers input. The development of a robust method of characterization of CP-CMPs is vital to determining their compositions, and understanding and improving upon their remarkable activities.

Solid-state NMR spectroscopy is a well-established technique for short-range structure determination and has played an important role in elucidating extended polymer networks.19,20 Nevertheless, the acquisition of quantitative directly excited 13C spectra for these systems can be time-consuming as they are often multicomponent, containing repeat units at a low relative
concentration7,21–23 which can lead to their signals being obscured by higher intensity peaks and/or difficult to differentiate from baseline noise, and the \(^{13}\)C spin–lattice relaxation times \(T_1\) could be long. Although, Hartmann–Hahn cross-polarization24 (CP) improves signal-to-noise ratio and time efficiency, this approach often requires substantial experimental times (hours)19,20 and unlike direct \(^{13}\)C excitation, CP spectra obtained with a single contact time only provide qualitative data, making the experiment redundant when quantification of \(^{13}\)C signals is needed.

High field dynamic nuclear polarization (DNP)25–28 is an emerging technology for enhancing solid-state NMR signals by multiple orders of magnitude, by transferring the large polarization of unpaired electrons to nuclei in close proximity to the electron source, with the hyperpolarization spreading between nuclei by spin diffusion before detection of the enhanced NMR signals. DNP has a long history of application to polymers such as polystyrene and polycarbonate derivatives29–33 to enhance signal sufficiently to observe interfaces between domains within blended polymers. When combined with magic angle spinning (MAS) and \(^{13}\)C CP,34 this indirect DNP approach has been demonstrated as an extremely versatile technique for the characterization of polymers,35–44 substantially reducing experimental times for microporous materials and delivering high throughput capability to solid-state NMR.42 Nevertheless, quantification of the \(^{13}\)C NMR resonances is still hampered by the nonquantitative nature of CP (\textit{vide supra}).

Note that direct DNP (electron–\(^{13}\)C polarization transfer without \(^{1}\)H polarization and CP step) is not quantitative due to the lack of spin diffusion to distribute the hyperpolarization in these systems.45 A quantitative approach to CP known as multiCP was first reported in 199046 and consists of multiple short CP contact pulses, separated by delays long enough for substantial \(^{1}\)H longitudinal relaxation but with minimal \(^{13}\)C relaxation leading to cumulative polarization with each short contact pulse (the pulse program is shown in Figure S3d). MultiCP has recently regained popularity47–52 to provide time efficient quantification of organic matter and materials such as pharmaceutical excipients and metal organic frameworks. This approach, when combined with DNP enhanced \(^{13}\)C MAS NMR, provides an appealing route to obtain quantitative NMR spectra quickly and is explored here to determine the compositions of photocatalytically active CP-CMPs (Figure 1).

Here we demonstrate that DNP represents a time efficient approach to obtain high signal-to-noise \(^{13}\)C NMR spectra of CP-CMPs. We show that the high signal obtained facilitates the acquisition of a two-dimensional \(^{13}\)C–\(^{13}\)C through-bond correlation spectrum at natural abundance of amorphous macromolecules; such a spectrum could not be obtained without DNP. Enhancement values of up to \(\varepsilon_{CP} > 200\) at 9.4 T are possible via the cross effect (CE) DNP mechanism,53 allowing the \(^{13}\)C NMR spectra of the series of polymers to be obtained quickly (hours) and which enables tracking minor changes in the polymeric structure. Combining these large
DNP enhancements with the quantitative multiCP experiment, we were able to determine the polymers’ compositions, estimate the average polymeric structure and compare with the monomer feed ratio, a result that cannot be obtained by any other spectroscopic or analytical method.

2. EXPERIMENTAL PROCEDURES

Materials Synthesis. All CP-CMPs were synthesized according to a previously published procedure. In brief, a library of polymers was synthesized by a Pd(0)-catalyzed Suzuki–Miyaura polycondensation reaction of varying ratios of four monomers; 1,4-benzene diboronic acid (M1), 1,2,4,5-tetrabromobenzene (M2), 1,3,6,8-tetraboronic pinacol ester of pyrene (M3) and 1,3,6,8-tetrabromopyrene (M4) to yield pyrene/benzene copolymers of different compositions (Table 1).

Table 1. Relative Molar Monomer Feed Ratios of Each Polymer, with Monomers Defined in the Materials Synthesis Section

<table>
<thead>
<tr>
<th>copolymer</th>
<th>relative monomer ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP-CMP1</td>
<td>2 1 0 0</td>
</tr>
<tr>
<td>CP-CMP9</td>
<td>2 0.2 0 0.8</td>
</tr>
<tr>
<td>CP-CMP10</td>
<td>2 0 0 1</td>
</tr>
<tr>
<td>CP-CMP11</td>
<td>1.9 0 0.05 1</td>
</tr>
<tr>
<td>CP-CMP15</td>
<td>0 0 1 1</td>
</tr>
</tbody>
</table>

NMR Procedures. For DNP, incipient wetness impregnation, slurry, and dried preparations were all used. For incipient wetness impregnation (used unless stated otherwise), a preweighed amount of CP-CMP powder (typically around 10 mg) was impregnated with 80 μL of 20 mM TEKPol biradical in 1,1,2,2-tetrachloroethane (TCE), until the powder appeared saturated with the solution, and was then mixed uniformly. Slurries were prepared with ~10 mg of polymer, which was mixed homogeneously with 120 μL of 20 mM TEKPol in TCE. In the dried preparation ~10 mg of polymer was homogeneously mixed with 50 μL of 20 mM TEKPol in TCE and was then left to dry for 48 h, allowing all of the solvent to evaporate. The CP-CMP/TEKPol/TCE mixtures were then packed directly into 3.2 mm sapphire rotors and sealed with zirconia caps. Where stated, the CP-CMP/TCE/TCE mixtures were then packed directly into 3.2 mm sapphire rotors and sealed with zirconia caps. Spin counting calculations were performed as per the Bruker Spin Counting Manual procedure. The chemical shifts of oxygen from the matrix (Figure S4).

DNP spectra at 600 MHz were recorded on a commercial 14.1 T Bruker Avance III DNP solid-state NMR spectrometer equipped with a 395.20 GHz gyrotron microwave system. DNP experiments were recorded with a 3.2 mm HXY triple-resonance MAS probe at νH(H) = 600.084 MHz corresponding to the maximum enhancement 1H position εH for binitrooxide radical TOTAPOL at νN(e−) = 395.20 GHz, with the X channel tuned to 13C at ν(13C) = 150.91 MHz. All experiments were performed under magic angle spinning (MAS) at νr = 12.5 kHz and T ~ 120 K, as determined by spin–lattice relaxation times (T1). Measurements of 7Br on a very small amount of KBr added to rotor. All 1H pulses and SPINAL-64 heteronuclear decoupling were performed at a radio frequency (rf) field amplitude of 100 kHz. All 13C CP MAS experiments were obtained with a 13C rf field of 72 kHz, while the 1H rf field amplitude was ramped to obtain maximum signal at a 1H rf field of approximately 100 kHz. CP contact times were optimized for maximum signal on each polymer.

All DNP NMR experiments at 600 MHz were performed on a commercial 9.4 T Bruker Avance III DNP solid-state NMR spectrometer equipped with a 9.4 T Bruker Avance III DNP solid-state NMR spectrometer equipped with a 395.20 GHz gyrotron microwave system. Experiments were recorded with a 3.2 mm HXY triple-resonance MAS probe at νH(H) = 400.13 MHz and the X channel was tuned to 13C at ν(13C) = 100.67 MHz. All experiments were performed under MAS at νr = 12.5 kHz and T = 298 K. All 1H pulses and SPINAL-64 heteronuclear decoupling were performed at an rf field amplitude of 83 kHz. All 13C CP MAS experiments were obtained with a 13C rf field of 45 kHz, while the 1H rf field amplitude was ramped to obtain maximum signal at a 1H rf field of approximately 60 kHz, and a contact time of 2 ms.

In all cases, T1 and T2DNP were obtained using saturation recovery experiments (Figure S3(a)). NMR data were obtained and analyzed using TopSpin 3.2, and all 1H and 13C spectra were referenced to H2O at 4.8 ppm and the tertiary 13C on adamantane at 29.45 ppm. The chemical shifts of all assigned peaks are quoted within a realistic accuracy of ±1 ppm due to the broad line widths.

EPR Experiments. The 9 GHz (X band) continuous-wave electron paramagnetic resonance (EPR) spectra were recorded on a Bruker Biospin EMX spectrometer fitted with an Oxford Instruments ESR900 cryostat. At room temperature the spectra were obtained with 1 mW microwave power and 0.5 G modulation under nonsaturating conditions. At 120 K the spectra were obtained with 0.02 mW microwave power and 0.5 G modulation. The samples used were those prepared in the NMR section above and packed into capillary tubes, or standard EPR tubes.

EPR spin-counting experiments were recorded on an X-band Bruker Biospin EMX Nano spectrometer operating at 9.6 GHz and at room temperature. Samples were packed into 3.2 mm sapphire NMR rotors and sealed with zirconia caps. Spin counting calculations were performed as per the Bruker Spin Counting Manual procedure. The error on the spin counting measurements was determined to be ±10% while the determination of the electron concentration had an estimated error of approximately ±60% (due to the rapid evaporation of TCE during the sample packing procedure).

Powder X-ray Diffraction Measurements. Powder X-ray diffraction (PXRD) data (Figure S2) were collected in high throughput transmission mode on a Panalytical Empyrean diffractometer producing Cu Kα (λ = 1.5418 Å) radiation, equipped with an X-ray focusing mirror and PIXcel 3D detector.

Pore Size and Surface Area Measurements. The materials were degassed at 120 °C for 900 min under dynamic vacuum (10−5 bar) before analysis. Nitrogen adsorption and desorption isotherms were collected at 77.3 K using an ASAP2420 volumetric adsorption analyzer (Micromeritics Instrument Corporation). Brunauer–Emmett–Teller surface areas (SₐBET) were calculated in the relative pressure (P/P₀) range of 0.05–0.25. Pillared clay method of nonlocal density functional theory (NL-DFT) was used to determine the pore size distribution assuming a cylindrical pore geometry.
3. RESULTS AND DISCUSSION

Optimizing Sample Preparation. Figure 1 depicts the putative structures of the CP-CMP polymers investigated in this work, postulating that the polymer compositions match the pyrene to benzene ratio of the monomer feed. CP-CMP9 displays reasonable photocatalytic water splitting under visible light, and increasing pyrene concentration in the monomer feed by 25% (CP-CMP10, Figure 1c) leads to a substantial increase in photocatalytic water splitting likely resulting from slight decrease of the optical bandgap. A further 5% increase in monomeric pyrene concentration to CP-CMP11 leads to a sharp decline of photocatalytic activity, and a substantial drop in bandgap. CP-CMP1 and CP-CMP15 show no photocatalytic activity and contain only one polymeric repeat unit (CP-CMP15) or one base benzene unit alternating between di- and tetra-substituted (CP-CMP1).

Figure 2 shows the DNP enhanced 13C CP MAS NMR spectrum of CP-CMP10 using a range of sample preparation approaches for which full details are given in the experimental section, with enhancement given as ε_{CCP} (defined in section S4 of the Supporting Information). Although, film casting has been demonstrated to show excellent DNP enhancement in linear polymers such as polystyrene after dissolution in the radical solution, this method is not practical on CP-CMPs due to their insolubility, and as such other approaches were used. The dried preparation showed a modest signal enhancement in our hands ($\varepsilon_{CCP} \sim 5$), while the slurry preparation gave a higher enhancement of $\varepsilon_{CCP} = 14$. For CP-CMP10, incipient wetness impregnation provides the largest ε_{CCP} value (28). This is likely due to a reduction in paramagnetic bleaching due to the lower concentration of radical in the sample and was therefore selected as the optimal sample preparation approach for all CP-CMPs studied here (as shown previously).

EPR of the dried sample (Figure 2a) shows anisotropic line broadening of immobile TEKPol radical likely caused by electron-electron dipolar and/or exchange interactions, whereas the EPR spectrum of the slurry (Figure 2b) is much narrower, indicative of mobile radical. The EPR of CP-CMP10 prepared by incipient wetness impregnation suggests that the radical/solvent solution fills the pores of the polymer lattice (Figure 2c), as revealed by the EPR line shape showing a combination of narrow lines, indicative of TEKPol in solution, with broadened shoulders, illustrating the presence of immobile TEKPol within the polymer. EPR at 120 K, reflective of the temperature at which the DNP experiments would be recorded, showed typical “powder” spectra (Figure 2). The same line shape trends are observed as at room temperature, with the incipient wetness impregnation sample showing a hybrid line shape, between that of the dried sample and the slurry, which represents the free radical in frozen solution. It is possible that the additional broadening observed in the dried sample (and to a lesser extent, incipient wetness impregnation) could be attributed to dipolar broadening and/or weak exchange coupling, however, there is an absence of strong exchange coupling in all preparations. The data therefore suggests that there is no further aggregation of radical occurring at low temperature. EPR spin counting experiment on this sample yielded $(9 \pm 1) \times 10^{17}$ electron spins in reasonable agreement with the $(6 \pm 4) \times 10^{17}$ spins anticipated from the DNP sample preparation procedure. This illustrates the absence of measurable degradation of TEKPol in contact to CP-CMP10.

Figure 2. DNP enhanced 13C CP MAS NMR spectra (left) of CP-CMP10 prepared (a) dried (b) as a slurry, and (c) by incipient wetness impregnation at 14.1 T with μw irradiation (green) at $n(e^-) = 395$ GHz, and without μw irradiation (red) recorded at 120 K. S/N represents signal-to-noise per unit time ratios of the 110 to 150 ppm region of the spectrum. TCE solvent peaks are labeled in all spectra. The corresponding X-band EPR spectra (blue) are given at room temperature (center) and 120 K (right).
Spectral Assignment. In order to unequivocally assign the 13C MAS spectrum of CP-CMP10, a 9.4 T DNP enhanced J-based 13C–13C correlation spectrum was obtained using the refocused INADEQUATE experiment and yields carbon–carbon connectivities (Figure 3). Despite the inherently very low sensitivity of this experiment at 13C natural abundance due to the very low probability of having a pair of 13C nuclei (0.01% abundant), the sensitivity enhancement of DNP enables such an experiment to be readily obtained as demonstrated previously.

The corresponding 2D spectrum of CP-CMP10 is given in Figure 3 and reveals a clear correlation between the C$_{\text{Pyrene}}$ at 136 ppm and the C$_{\text{Ph-Pyr}}$ at 138 ppm (shown in orange in Figure 1c and 3), confirming the formation of the pyrene-benzene bond and the successful polymerization. Three other correlations were identified (shown in black, Figure 3), allowing full spectral assignment of CP-CMP10 (Figures 3 and 4). The resonances of C$_{\text{Ph-Pyr}}$ and C$_{\text{H_Pyr}}$ overlap at 126 ppm, and thus in the second dimension their respective correlations with C$_{\text{Pyrene}}$ are also unresolved.

To confirm this assignment, the DNP enhanced 13C CP MAS NMR spectra of the homopolymers CP-CMP1 and CP-CMP15 are given in Figure 4, parts a and c, while the 13C NMR spectrum of the entirely di- or tetra-substituted benzene polymer CP-CMP1 shows two distinct resonances at 138 and 128 ppm (assigned by 13C–13C correlation experiment to the quaternary C$_{\text{Ph-Pyr}}$ and CH$_{\text{Ph}}$ respectively, details given in proceeding paragraphs), the spectrum of homocoupled pyrene, CP-CMP15, displays signals at 134, 128, and 124 ppm that are assigned to C$_{\text{Pyrene-Pyr}}$, C$_{\text{H_Pyr}}$, and CH$_{\text{Pyr}}$ using a combination of short contact time cross-polarization and previous literature. More importantly, both C$_{\text{Ph-Pyr}}$ and C$_{\text{Pyrene-Pyr}}$ quaternary carbons, which are the benzene and pyrene moieties, appear at slightly different shifts, enabling observation of both pyrene and benzene monomers in the CP-CMP9, CP-CMP10, and CP-CMP11 polymers (Figure 4b–d). For example, the 13C spectrum of CP-CMP9 displays both C$_{\text{Ph-Pyr}}$ and C$_{\text{Pyrene-Pyr}}$ resonances in addition to three others assigned to protonated carbons (vide infra). Note that although

Figure 3. DNP enhanced 13C refocused INADEQUATE MAS NMR spectrum of CP-CMP10 at $\nu_0^{(1)}(\text{H}) = 400.07$ MHz with μ on with all correlations assigned (black) and the pyrene-benzene correlation highlighted (orange). Top: DNP enhanced 13C CP MAS NMR spectrum of CP-CMP10 (green) with spectral simulations (black dashed) and peak deconvolutions (gray dashed), left: double quantum INADEQUATE projection.

Figure 4. DNP enhanced 13C CP (green) and multiCP (light green) MAS NMR spectra of (a–e) CP-CMP1-15 recorded at $\nu_0^{(1)}(\text{H}) = 400.07$ MHz, with μ on (green), simulated (dashed black), spectral deconvolution (dashed gray) and difference between experimental and simulated spectra (solid gray). Left is the 13C DNP enhancement and overall gain, and on the right is the pyrene to benzene unit ratio of the monomer feed.
Quantifying Enhancement Using Overall DNP Gain Factor Σ^I. In order to better reflect on the large enhancements observed, an overall DNP gain factor, Σ^I_{CP}, was also calculated (Table S2). Σ is a comparison of the 13C DNP enhanced spectrum vs a standard 400 MHz NMR spectrum obtained at room temperature, a full discussion of which is beyond the scope of this work and is provided elsewhere. 57,71,73,74 Σ compensates for weight, and accounts for time saving, signal bleaching due to introduction of paramagnetic radicals and temperature differences, and estimates the overall benefit of DNP (see section S4 of the Supporting Information to calculate these values). The Σ^I_{CP} values determined for CP-CMP9, CP-CMP10, and CP-CMP11 are all around 140, showing time efficient acquisition of high signal-to-noise 13C NMR spectra. The Σ^I_{CP} values for CP-CMP1 and CP-CMP15 were a little lower than for the copolymers, a similar trend to that observed for their ϵ^I_{CP}. Although, this disparity is not immediately attributable to any one physical property (such as SA_{BET}), the two homopolymers are significantly different systems from the copolymers, and the result is reproducible. Note that there is a large paramagnetic bleaching effect (θ values between 0.2 and 0.4, Table S1); the large surface area of these materials offers intimate distribution of radical leading to a greater bleaching, although the signal bleaching is constant within a monomeric unit of the polymer.

DNP MultiCP at 400 MHz. While the DNP-enhanced 13C CP MAS NMR spectra of selected CP-CMPs confirm that the final macromolecular structure is directly related to monomer feed ratio, quantitative data are needed to determine the polymer compositions and were obtained by recording 13C multiCP DNP NMR experiments. $^{46-49}$

This methodology provides a robust quantification approach 51 that is also time efficient (versus alternative methods such variable contact times CP experiments) and allows assignment of polymeric structure which can be cross checked with monomer feed ratio (Table 2). It has previously been reported that the enhancement of DNP can appear nonuniform in heterogeneous systems, due to microwave induced sample heating and temperature dependent relaxation times. 51 In the CP-CMP systems we investigated, the DNP enhancements observed are homogeneous throughout the 13C NMR spectra (Figure S6) due to the similar environments and relaxation times of all carbon resonances as well as the porosity of the materials leading to radical distribution throughout the system, facilitating 1H–1H spin diffusion for homogeneous polarization transfer. The polymers studied met all conditions for the multiCP spectra as given in previous work (see section S5 of the Supporting Information).

The DNP enhanced 13C multiCP MAS NMR spectra of CP-CMP1–15 are shown in Figure 4, parts a–e, alongside the spectral simulation and difference between experimental and simulated data, while Table 2 provides a comparison between the predicted carbons ratio based on the monomers feed with the 13C NMR data integration (examples of the full spectral fit can be found in Figure S8). The difference in integration between multiCP and CP spectra can be found in Table S3. Both homopolymers CP-CMP1 and CP-CMP15 were quantified using DNP multiCP (Figure 4, parts a and e) as an internal standard, both showing integrations closely matching their theoretical ratios from monomer feed (Table 2). As the covalent geometry of both benzene and pyrene are known, the relative integration ratios of resonances were fixed to one another for deconvolution purposes, in order to elucidate the relative stoichiometry of benzene to pyrene more accurately.

In CP-CMP10, the equal stoichiometry of pyrene and benzene monomers reported in Table 2 is readily visualized by the equal integration of 13CPh/CPh-Pyr (138 ppm) and 13C-Pyr-Pyr (136 ppm). The integration ratios of the pyrene compared to the benzene resonances obtained in CP-CMP9 matches the monomer feed (Table 2), notably showing the greater integration of the 13CPh-Pyr/CPh-Pyr signal (138 ppm) compared to the 13C-Pyr-Pyr peak (at 136 ppm) and representing a larger concentration of benzene than pyrene units in the polymer network.

The multiCP spectrum of CP-CMP11 also shows that the unique 13C-Pyr-Pyr carbon environment in this polymer (134 ppm) integrates consistently with a pyrene–pyrene component being present on average once in every 20 repeat units. From the full polymeric assignments made possible by the INADEQUATE spectrum, it was possible to relate the final structures with the monomer ratio and, within error, showing stoichiometric uptake of each monomer, giving a polymer network that reflects the feed ratio.

Table 2. Monomer Feed Ratios and DNP 13C MultiCP Integration of the Repeat Units within CP-CMP1, CP-CMP9, CP-CMP10, CP-CM11, and CP-CMP15.

<table>
<thead>
<tr>
<th>polymer</th>
<th>monomer feed</th>
<th>measured ratios* a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pyrene</td>
<td>benzene</td>
</tr>
<tr>
<td>CP-CMP1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CP-CMP9</td>
<td>0.8</td>
<td>2.2</td>
</tr>
<tr>
<td>CP-CMP10</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CP-CMP11</td>
<td>1.05</td>
<td>1.9</td>
</tr>
<tr>
<td>CP-CMP15</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

*“Ratios calculated from the sum integration of all resonances of each monomer (Table S3), divided by the number of carbon atoms per monomer unit.

3. CONCLUSION

We have demonstrated that DNP permits the fast acquisition of high signal-to-noise ratio 13C CP MAS NMR spectra of amorphous polymeric networks assembled from pyrene and benzene units and enables the observation of carbon environments that appear rarely in the repeating units (e.g., once in every 20). The gain of sensitivity allows natural abundance 13C–13C correlation spectra of these amorphous polymers to be obtained, facilitating the 13C NMR spectra assignments. DNP combined with the multiCP approach enabled quantitative 13C NMR spectra to be recorded and yield the polymers’ compositions which compare well with the monomer feed ratio. This work establishes the polymer composition and allows trends in band gap 8 to be directly related to the polymeric structure rather than inferring this from the monomer feed.

ASSOCIATED CONTENT

3. Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.macromol.7b02544.
mol.7b02544. The raw data of each figure shown in this work are provided as a supporting dataset, available from the University of Liverpool Data Catalogue portal http://data-
cat.liverpool.ac.uk/451/.

Details of porosity and surface area measurements, NMR experiments used, PXRD, overall sensitivity enhancement factor \(\Sigma \) calculations, multiCP parameters, and additional figures (PDF)

AUTHOR INFORMATION

Corresponding Author
A(F.B.) E-mail: frederic.blanc@liverpool.ac.uk.

ORCID
Alistair J. Fielding: 0000-0002-4437-9791
Andrew I. Cooper: 0000-0003-0201-1021
Frédéric Blanc: 0000-0001-9171-1454

Funding
Financial support from the EPSRC for Doctoral Training Studentships (to N.J.B.), Grants EP/N004884/1 (to R.S.S. and A.I.C.) and EP/M00869X/1 (to F.B.) are acknowledged. A.J.F. thanks Bruker for funding.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
We thank Dr. Werner E. Maas for allowing access to the Bruker DNP Demo Laboratories in Billerica and Wisssembourg. An allocation of time at the National EPR Facility and Service, Photon Sciences Institute, The University of Manchester, which is funded by the EPSRC is acknowledged, and Mr. Adam Brookfield is thanked for valuable technical assistance. Dr. Olivier Ouari and Prof. Paul Tordo are acknowledged for providing radicals, and we thank Dr. Ivan Sergeyev and Mr. Leo Tometich for valuable technical assistance.

REFERENCES

