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Abstract 1 

Many studies have demonstrated the importance of symbiotic microbial communities for the host 2 

with beneficial effects for nutrition, development, and the immune system. The majority of these 3 

studies have focused on bacteria residing in the gastrointestinal tract, while the fungal community 4 

has often been neglected. Gut anaerobic fungi of the class Neocallimastigomycetes are a vital part of 5 

the intestinal microbiome in many herbivorous animals and their exceptional abilities to degrade 6 

indigestible plant material means that they contribute significantly to fermentative processes in the 7 

enteric tract. Gorillas rely on a highly fibrous diet and depend on fermentative microorganisms to 8 

meet their daily energetic demands. To assess whether Neocallimastigomycetes occur in gorillas we 9 

analyzed 12 fecal samples from wild Western lowland gorillas (Gorilla gorilla gorilla) from Dzanga-10 

Sangha Protected Areas, Central African Republic, and subjected potential anaerobic fungi sequences 11 

to phylogenetic analysis. The clone library contained ITS1 fragments that we related to 45 different 12 

fungi clones. Of these, 12 gastrointestinal fungi in gorillas are related to anaerobic fungi and our 13 

phylogenetic analyses support their assignment to the class Neocallimastigomycetes. As anaerobic 14 

fungi play a pivotal role in plant fiber degradation in the herbivore gut, gorillas might benefit from 15 

harboring these particular fungi with regard to their nutritional status. Future studies should 16 

investigate whether Neocallimastigomycetes are also found in other non-human primates with high 17 

fiber intake, which would also benefit from having such highly efficient fermentative microbes. 18 

 19 

Keywords: gut microbiome, Neocallimastigales, gorillas, diet 20 

 21 

Introduction 22 

Symbiotic microbial communities residing in the intestinal tract, referred to as the gut microbiome, 23 

are assemblages of bacteria, fungi, protozoa, and archaea that provide crucial functions for host 24 

nutrition (e.g. Sekirov et al., 2010; Robert & Bernalier-Donandille, 2003), development (e.g. McFall-25 

Ngai, 2002), and immune systems (e.g. Hooper et al., 2012; Round & Mazmanian, 2009). Since many 26 
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microbes collected from environmental samples are uncultivable (Torsvik & Ovreas, 2002), advances 27 

in culture-independent methods, particularly metagenomic approaches based on high-throughput 28 

sequencing, allow the detection of a far more detailed microbial diversity than traditional culture 29 

based approaches (e.g. Caporaso et al., 2012). These methods have led to an increased 30 

understanding of the factors shaping the composition of microbial communities. There is common 31 

agreement that the two main factors influencing the microbial community structure are host 32 

phylogeny and diet (e.g. Sanders et al., 2014; Muegge et al., 2011). For example, a study investigating 33 

the gut microbiome of 60 different mammal species shows that conspecifics harbor bacterial 34 

communities more similar to each other than to those of a different host species and that these 35 

communities cluster according to host taxonomy. Principal coordinates analyses also provide 36 

evidence for the significant impact of diet on gut microbiome structure, because bacterial 37 

communities cluster in accordance with diet and gut type (Ley et al., 2008). 38 

 39 

Neocallimastigomycetes are obligate anaerobic fungi that were first isolated in ruminants (Orpin, 40 

1975). Their occurrence has also been confirmed in various non-ruminant herbivores like African 41 

elephants (Loxodonta africana), horses (Equus ferus caballus), black rhinoceroses (Diceros bicornis), 42 

red kangaroos (Macropus rufus) and in the herbivorous green iguana (Iguana iguana) (Nicholson et 43 

al., 2010; Liggenstoffer et al., 2010; Mackie et al., 2004). Intestinal anaerobic fungi are remarkable in 44 

their capacities to degrade plant material that is indigestible by the host. They harbor highly efficient 45 

hydrolases (cellulases, xylanases, mannoses, esterases, glucosidases, and glucanases) aggregated in 46 

extracellular enzyme-complexes, termed cellulosomes. These fungal enzymes are assumed to exceed 47 

the fermentative capacities of bacterial enzymes (Lee et al., 2000). Additionally, anaerobic fungi are 48 

among the first to colonize plant fragments (Edwards et al., 2008) and are able to mechanically 49 

penetrate plant cell walls (Doi & Kosugi, 2004; Fontes & Gilbert, 2010). Due to this initial colonization 50 

of plant particles and the mechanical breakdown of large plant particles as well as plant cell walls 51 
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anaerobic fungi facilitate the accessibility to fermentable substrates for residential bacteria that take 52 

part in the hydrolisation of plant fiber in the gastrointestinal tract (Bauchop, 1981).  53 

 54 

Currently, Neocallimastigomycetes include one order, Neocallimastigales, with one family 55 

(Neocallimastigaceae) that encompasses six long known genera (Neocallimastix, Caecomyces, 56 

Orpinomyces, Piromyces, Anaeromyces, and Cyllamyces) and three newly described genera 57 

(Buwchfawromyces: Callaghan et al., 2015; Oontomyces: Dagar et al., 2015 and  Pecoramyces: Hanafy 58 

et al., 2017). However, studies of various herbivorous animals propose a revised taxonomy with 59 

several new groups (Tuckwell et al., 2005; Fliegerová et al., 2010; Liggenstoffer et al., 2010; Nicholson 60 

et al., 2010; Herrera et al., 2011; Kittelmann et al., 2012). Studies suggest that the abundance and 61 

composition of different anaerobic fungi genera are dependent on host taxonomy, type of gut 62 

fermentation, and fiber content in the diet (Liggenstoffer et al., 2010; Kumar et al., 2013; Denman et 63 

al., 2008).  64 

 65 

Despite the growing number of studies investigating the gut microbiome in primates, the fungal 66 

community has received disproportionately little attention. Many early studies focused on specific 67 

mycotic infections (reviewed in Migaki et al., 1982), and a more recent study targeted a broader 68 

diversity of enteric fungi in Western lowland gorillas (Gorilla gorilla gorilla). This molecular survey of 69 

pathogenic eukaryotes detected 52 fungal species, all belonging to the taxa Ascomycota and 70 

Basidiomycota (Hamad et al., 2014). However, no study has yet investigated Neocallimastigomycetes 71 

in primates, even though there is good reason to hypothesize that some primates harbour these 72 

fungi. Most primates rely on a mainly plant based diet (Chapman & Chapman, 1990), yet, like all 73 

mammals, they lack the enzymes to degrade plant structural polysaccharides themselves and thus 74 

rely on endosymbiotic microorganisms for an adequate nutritional intake (Mackie, 2002).  75 

 76 
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Studies of gorilla feeding ecology reveal that they consume high fiber staple and filler fallback foods 77 

such as terrestrial herbaceous vegetation, figs, bark, and pith year-round (Western lowland gorillas: 78 

Remis, 2003; Doran-Sheehy at al., 2009). Although chimpanzees (Pan troglodytes) also consume high 79 

fiber plant material such as pith in times of fruit scarcity (Wrangham et al, 1991), there is strong 80 

support for the hypothesis that chimpanzees can maintain a higher quality diet with overall less fiber 81 

intake when compared to Western lowland gorillas (Tutin et al., 1991; Wrangham et al., 1998). In line 82 

with these observations, gorillas show morphological and physiological adaptations that suggest 83 

heavy reliance on high fiber foods. For example, their molar morphology indicates a high capacity for 84 

processing tough food (Ungar et al., 2007). Further, gorillas have an enlarged colon surface area and a 85 

longer mean gut retention time when compared to less folivorous chimpanzees (Chivers & Hladik, 86 

1980; Milton & Demment, 1988; captive Western lowland gorillas: Remis & Dierenfield, 2004) even 87 

when accounting for body mass (Harrison & Marshall, 2011). Moreover, daily energy consumed that 88 

potentially originates from microbial fermentation in the hindgut is an estimated 57.3 % for western 89 

lowland gorillas and 24.7 % for chimpanzees (Popovich et al., 1997; Conklin-Brittain et al., 2006). 90 

Gorillas further fulfill two major prerequisites for the potential of harboring anaerobic fungi: a 91 

dedicated enlarged digestive chamber for microbial fermentation (hindgut) and a relatively long 92 

retention time for plant material. 93 

 94 

We explore fungal communities in feces of wild Western lowland gorillas using culture-independent 95 

molecular methods. Specifically, we aim to amplify ITS1 rDNA fragments of Neocallimastigales from 96 

DNA isolated from fecal samples. Given their year-round exploitation of high-fibrous foods, we 97 

hypothesize that gorillas benefit from harboring highly efficient fermentative microorganisms such as 98 

anaerobic fungi in their intestinal tract. Based on their digestive morphology, we predict that it is very 99 

likely that Neocallimastigales are part of the gorilla gut microbiome. 100 

 101 

Methods 102 
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Study site, subjects and sample collection 103 

We collected fecal samples from two habituated groups of wild Western lowland gorillas at two field 104 

sites: Bai Hokou and Mongambe in Dzanga-Ndoki National Park, Dzanga-Sangha Protected Areas, 105 

Central African Republic, from September 2014 to January 2015. Both field sites comprise semi-106 

deciduous forests and are characterized by seasonal variations in rainfall with a dry season lasting 107 

from December to February (for detailed description see Masi, 2007). We collected samples from 108 

known individuals as soon as possible after defecation, i.e. as soon as it was safe to collect the sample 109 

without disturbing the animal, which was usually within minutes.  110 

 111 

We fixed fecal material in 96% ethanol in 8 ml tubes (approximate ratio 2/3 ethanol to 1/3 sample 112 

material) and stored the samples at ambient temperature at the field sites until we transported them 113 

to the University for Veterinary Medicine and Pharmaceutical Sciences, Brno, Czech Republic, where 114 

we kept them in ethanol at -20°C until analysis. We preserved fecal material in ethanol due to the 115 

lack of other storage possibilities at the field sites. DNA has been successfully isolated and amplified 116 

from such fixed samples (Frantzen et al., 1998; Hale et al., 2015) and preserving samples in highly 117 

concentrated ethanol at ambient temperatures appears to have little influence on the microbial 118 

community (Song et al., 2016). 119 

 120 

Our study is a preliminary investigation for which we processed 12 gorilla samples, representing 11 121 

individuals. We picked gorilla samples randomly from the samples we collected during the study. 122 

 123 

Sample Processing 124 

DNA Isolation. After evaporating ethanol at 40°C (heat block) overnight, we isolated DNA from the 125 

fecal material with the FastDNATM Spin Kit for Soil (MP Biomedicals, USA) according to the 126 

manufacturer’s protocol with the following changes: to break fungi chitin walls, we homogenized the 127 

sample by bead-beating it three times for 30 sec at 6 m/s with 30 sec on ice between homogenization 128 
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steps (Cheng et al., 2009). We eluted DNA with 70 µl instead of 100 µl of the elution solution 129 

provided with the kit and stored eluates at -20°C. 130 

 131 

PCR Amplification of Fungal Barcodes. We used the fungal universal forward primer ITS1F 132 

(CTTGGTCATTTAGAGGAAGTAA) in combination with a primer specific for anaerobic fungi NeoQ PCR R 133 

(GTGCAATATGCGTTCGAAGATT) to amplify ITS1 fragments (Fliegerová et al., 2010). We prepared PCR 134 

reactions with a final volume of 25 µl using the QIAGEN Multiplex PCR Kit (Qiagen, Germany) 135 

containing 12.5 µl Master Mix, 8.0 µl dH2O, 2.5 µl dye 0.01 µM of each primer and 1 µl DNA. We set 136 

cycling conditions of the touchdown PCR protocol as 95°C for 5 min; 20 cycles consisting of 95°C for 137 

30 sec, 60.5°C for 30 sec with -0.2°C per cycle, 72°C for 30 sec; followed by another 20 cycles 138 

consisting of 95°C for 30 sec, 57°C for 30 sec, 72°C for 30 sec and a final extension of 5 min at 68°C. 139 

We visualized PCR products on 1% agarose gels and subjected fragments of expected size to cloning 140 

procedure after purification with ExoSap (Affymetrix Inc., USA). 141 

 142 

Cloning Library Construction.  We constructed a clone library with the TOPO TA Cloning Kit for 143 

Sequencing (Life Technologies, USA) following the manufacturer’s protocol for vector preparation and 144 

the transformation of competent E. coli cells. We picked 289 clone colonies and transferred them into 145 

20 µl PCR H2O to screen them for the presence of the insert by PCR. We prepared PCR reaction 146 

mixtures of 25 µl containing 12.5 µl Master Mix (PCRBIO Taq Mix Red, PCR Biosystems, UK), 9.5 µl 147 

dH2O, 1 µl of clone colony solution and 0.01 µM of ITS1F and NeoQ PCR R primers. We set cycling 148 

conditions for ITS1 insert amplification as 95°C for 5 min, followed by 30 cycles of 95°C for 30 sec, 149 

55°C for 30 sec, 72°C for 30 sec and a final elongation for 5 min at 72°C. We checked PCR products 150 

using gel electrophoresis, purified products of the right length with ExoSap and subjected them to 151 

Sanger sequencing (Macrogen Europe, The Netherlands). 152 

 153 

Sequence Analysis 154 
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We first edited sequences with BioEdit software (version 7.2.3) and subsequently used GenBank’s 155 

Basic Local Alignment Search Tool (BLAST; default setting highly similar sequences (megablast)) to 156 

identify their nearest relatives. We only subjected sequences that we could relate to anaerobic fungi 157 

to further analysis. Given that sequence similarity among different anaerobic fungi strains can be very 158 

high (Goudarzi et al., 2015) we first aligned a selection of 12 clone sequences, as representatives for 159 

all related anaerobic fungi strains, to assess their resemblance (ClustalX, Bioedit; Hall, 1999; Table 1, 160 

Appendix S1). We subsequently chose a subset of the nine most divergent sequences for 161 

phylogenetic analysis to determine the taxonomic relationships of potential ape anaerobic fungi 162 

strains with known Neocallimastigales. By applying the MAFFT algorithm with default settings (online 163 

version 7, ©Katoh, 2013) we computed alignments that included ITS1 fragments generated in this 164 

study and reliable ITS1 sequences representing the improved taxonomic framework for 165 

Neocallimastigales fungi (Kittelmann et al., 2012; Dagar et al., 2015; Appendix S2). In addition to 166 

these reference sequences classified as Neocallimastigales we included the uncultured fungus clone 167 

AFI-1 sequence isolated from Bactrian camel (Camelus bactrianus) rumen (Acc. No: JX944983). High 168 

degrees of sequence dissimilarities and length polymorphisms between Neocallimastigales genera 169 

resulted in multiple large gaps in the original 452 bp alignment. Given that the applied Maximum 170 

Likelihood algorithm treats gaps like missing data we aimed to reduce ambiguity by manually deleting 171 

those gaps to different degrees, resulting in two further alignments, one of 241 bp and another of 172 

only 197 bp. 173 

 174 

We constructed phylogenetic trees in PhyML (Guindon et al., 2010) based on the original MAFFT 175 

alignment and two further alignments. Based on the results of Modeltest 3.7 (Posada & Crandall, 176 

1998), we used the GTR+G substitution model for tree calculation using maximum likelihood for the 177 

unedited alignment and computed phylogenies based on the two manually edited alignments under 178 

the HKY+G model. We also constructed a ML tree under the T92+G (Tamura, 1992) model in MEGA 6 179 
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(Tamura et al., 2013) to account for uneven GC content in our sequences.  We based bootstrap 180 

analyses for each tree on 1000 pseudo-replicates. 181 

 182 

Ethical Note 183 

We collected all gorilla samples non-invasively and with no harm to the study subjects. Permission to 184 

conduct research in the Dzanga-Sangha Protected Areas was granted by the Ministere de 185 

L’enseignement Supérieur et de la Recherche Scientifique and the Ministère des Eaux, Foréts, 186 

Chasses, Pêches, chargé de l’Environnement.  187 

 188 

Results 189 

Fungal diversity 190 

We analyzed 238 clones with inserts of appropriate length from the clone libraries of amplified ITS1 191 

fragments. The sequences we generated were associated with 45 different fungal rDNA sequences 192 

deposited in GenBank. Of the 238 clones we obtained, 78 were moderately similar to 12 different 193 

uncultured Neocallimastigales clones. These potential anaerobic fungi ITS1 fragments originated from 194 

8 of 12 processed samples, with sequences similar to the Uncultured Neocallimastigales clone Iguana 195 

01BMIEK (Acc. No. GQ843155) being the most abundant and the only one that occurs in all 8 196 

samples. Other prospective anaerobic fungi ITS1 fragments that we amplified fit with uncultured 197 

Neocallimastigales clones detected in hindgut-fermenting Equidae, ruminant Bovidae, and the 198 

pseudo-ruminant hippopotamus (Table 1; Appendix S1). 199 

 200 

The remaining fungal ITS1 fragments from gorillas that we cannot associate with anaerobic fungi 201 

clones are linked to sequences of the fungal classes Ascomycota and Basidiomycota (Appendix S1). 202 

These clones comprise 33 sequences that are related to 15 different strains of Ascomycota with 203 

moderate to high similarities (91 – 100%), covering five known orders and three strains of unclassified 204 

Ascomycota. Another four sequences that we obtained show high similarities (96 – 100%) with three 205 



9 
 

different Basidiomycota strains, belonging to three orders. According to BLAST analysis the majority 206 

of our ITS1 fragments are identified as unclassified fungal clones. In total, our sequences are related 207 

to 13 different such unclassified fungal clones that have been isolated from plant tissues, soil, reactor 208 

bio-filter, and woodpecker excavation with similarities ranging 96 – 100% (Appendix S1). An 209 

additional unclassified fungal clone (Uncultured fungus clone AFI-1; Acc. No. JX944983, unpublished 210 

sequence) to which 11 of our sequences are highly similar has been isolated from Bactrian camel 211 

(Camelus bactrianus) rumen. Finally, one sequence does not match with any of the rDNA sequences 212 

deposited in online data bases. 213 

 214 

Phylogenetic analysis of anaerobic fungi 215 

Our initial alignments revealed high degrees of resemblance among the potential anaerobic fungi 216 

sequences we obtained from gorilla feces, although they were associated with different uncultured 217 

Neocallimastigales clones (Table 1).  218 

 219 

Table 1:  Nearest relatives of ITS1 sequences retrieved from Western lowland gorilla feces collected at 220 

the sites Bai Hokou and Mongambe from September 2014 to January 2015.  221 

UNC – Uncultured Neocallimastigales clone 222 

* Not classified as Neocallimastigales fungus in NCBI (National Center for Biotechnology Information) 223 

sequence database. 224 

Sequence ID (date sample 

collection) 

Field site Size 

[bp] 

GenBank  

Accession 

Number 

Nearest relative [Accession Number] Sequence 

similarity  [%] 

      

Mak_2 (23.10.2014) Bai Hokou 213 KY697108 UNC NileLechwe03FKYBS [GQ592255] 90 

Mal_1 (29.11.2014) Bai Hokou 283 KY697116 UNC HorseTopper01A6QWL [GQ688452] 89 

Mob_11 (12.09.2014) Bai Hokou 264 KY697114 UNC HorseBug01B20BM [GQ829356] 88 

Mob_22 (12.09.2014) Bai Hokou 279 KY697115 UNC Iguana01BLGEC [GQ843065] 88 
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Won_5 (01.12.2014) Mongambe 260 KY697113 UNC Iguana01BMIEK [GQ843155] 90 

May_19 (20.09.2014) Mongambe 253 KY697112 UNC GrantsGazelle02CZ47B [GQ784902] 88 

Mob2_2 (27.09.2014) Bai Hokou 242 KY697109 UNC PigmyHippopotamus03GM37B 

[GQ607513] 

89 

Mop_14 (17.10.2014) Mongambe 243 KY697110 UNC Iguana01A3GEE [GQ842869] 89 

Map_14 (24.11.2014) Mongambe 244 KY697111 Uncultured fungus clone AFI-1 [JX944983]* 100 

      

 225 

In the Maximum Likelihood tree based on the original 452 bp alignment, our ITS1 fragments form a 226 

separate clade which clusters with the clade of the newly described uncultured anaerobic fungi group 227 

AL3 (group NG3 in Liggenstoffer et al., 2010) with significant support (Figure 1). This phylogenetic 228 

relationship is also supported in two other phylogenies that we constructed from 241 bp and 197 bp 229 

alignments. All other reference ITS1 sequences cluster in an unsupported monophyletic clade in 230 

which most of the phylogenetic relationships between the different groups and genera are rather 231 

weakly supported. 232 

 233 

The Maximum Likelihood tree constructed under T92 + G substitution model, which accounts for 234 

uneven CG content in sequences, revealed very similar results for the sequence clustering. Again, 235 

fungal clones obtained from gorilla feces grouped with AL3 references with adequate support 236 

(bootstrap value 82; data not shown). However, as in the other three phylogenies, relationships 237 

between the reference sequences of known Neocallimastigales lack significant support. 238 

 239 

Fig 1: Phylogenetic relationships of potential gorilla anaerobic fungi sequences in the order of 240 

Neocallimastigales fungi based on Maximum Likelihood. Bootstrap support above 50% is indicated at 241 

nodes for the 452, 241 and 197 bp alignments. Clones obtained in our study and reference sequences 242 

are listed in Table 1 and S2. Dates of sample collection and field site for sequences from gorilla 243 

samples are given in brackets. 244 
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 245 

Discussion 246 

Our results suggest that anaerobic gut fungi are part of the gorilla gut microbiome. The assignment of 247 

the ITS1 sequences we analyzed as a sister clade to the novel Neocallimastigales lineage AL3 is 248 

significantly supported. Despite the highly significant support for the hypothesis that some of our 249 

gorilla gut fungi belong to the class Neocallimastigomycetes, two factors warrant some caution. First, 250 

fungal ITS1 sequences that we obtained from gorilla feces were only moderately similar to known 251 

Neocallimastigales sequences deposited in the GenBank database. However, new lineages and 252 

species of Neocallimastigales are constantly discovered (Ariyawansa et al., 2015; Hanafy et al., 2017). 253 

Thus, our sequences might represent a new anaerobic fungi lineage. Second, our amplified ITS1 254 
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fragments were very short. This in combination with the known high variation in the 255 

Neocallimastigales ITS1 region (Edwards et al., 2017) limits the reliability of constructed alignments 256 

and phylogenies. 257 

 258 

Like in other rapidly evolving non-coding regions insertions – deletions (indels) accumulate over time 259 

in the ITS1 sequence. These indels are thought to be more conserved than base substitutions and 260 

thus can provide a reliable source of information for phylogenetic reconstructions (Matheny et al., 261 

2006; Abarenkov et al., 2010). Alignment gap deletion decreases tree resolution, particularly when 262 

sophisticated alignment algorithms such as MAFFT are applied (Nagy et al., 2012). Our phylogenetic 263 

analysis based on alignment without gap removal significantly supports the close relationship of 264 

gorilla gut fungi with the anaerobic fungi group AL3. Following the logic that alignment gaps can 265 

provide phylogenetic information, this result supports our assignment of gorilla gut fungi to the class 266 

of Neocallimastigales. The low bootstrap values in our phylogeny might be the result of difficulties 267 

aligning anaerobic fungi sequences given the significant sequence dissimilarities and length 268 

polymorphisms between genera (Nicholson et al., 2010). However, our goal was to determine 269 

whether anaerobic fungi occur in wild gorillas rather than resolving the Neocallimastigales phylogeny.  270 

Our sequences are very closely related to the anaerobic fungi group AL3. This group of 271 

Neocallimastigales was first detected in hindgut fermenting equids which have similar digestive 272 

physiology to gorillas. Since digestive physiology is a key factor determining anaerobic fungi 273 

community structure (Liggenstoffer et al., 2010) it is likely that even distantly related herbivorous 274 

animals harbor similar Neocallimastigales strains. This finding, therefore, provides additional support 275 

for our hypothesis that Neocallimastigales are part of the gorilla gut microbiome. 276 

 277 

While our analysis suggests that Neocallimastigales reside in the gastrointestinal tract of gorillas, we 278 

have no indication so far that other African great apes harbor anaerobic fungi (unpublished data: 279 

chimpanzee fecal samples, analyzed by D. Schulz). We predicted that anaerobic fungi are a part of the 280 
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gorilla gut microbiome based on gorilla diet and digestive physiology. Western lowland gorillas, 281 

although more frugivorous than mountain gorillas (Gorilla gorilla beringei), consume high fiber foods 282 

throughout the year (Rothman et al., 2008; Remis et al., 2001). The occurrence of anaerobic fungi in 283 

gorillas could therefore be interpreted as an adaptation to a high fiber diet. Along with other adaptive 284 

morphological and physiological digestive features (Harrison and Marshall, 2011) this might enable 285 

gorillas to survive on a low quality diet (Tutin et al., 1991). Other non-human primates that similarly 286 

rely on a highly or even strictly leafy diet could likewise benefit from harboring anaerobic fungi in 287 

their intestines. This remains to be investigated. 288 

 289 

Gorillas fall back on more low-quality foods in periods of low preferred fruit abundance and in 290 

general consume much more fiber than chimpanzees (Wrangham et al, 1998, Tutin et al., 1991). 291 

Further, chimpanzees have smaller fiber digestions coefficients and their fecal microbial communities 292 

have diminished fiber degradation capacities compared to gorillas (Popovich et al., 1997; Conklin-293 

Brittain et al., 2006; Kišidayová et al., 2009). Neocallimastigales play a pivotal role in digesting 294 

structural polysaccharides, particularly with regard to their ability to enhance access to fermentable 295 

substrate for hydrolyzing bacteria. Thus, the higher fiber degradation capacities of the gorilla gut 296 

microbiome might be the consequence of higher rates of bacterial fermentation facilitated by 297 

anaerobic fungi. However, given the limitations of sampling and methodology in our study, we draw 298 

this conclusion only cautiously.   299 

 300 

Similar to the findings of a previous study (Hamad et al., 2014), we detected several Ascomycota and 301 

Basidiomycota strains in our gorilla samples. There is no concordance on the species level between 302 

Ascomycota strains we obtained and clones isolated by Hamad et al. (2014). However, four 303 

(Eurotiales, Hypocreales, Saccharomycetales, and Capnodiales) of six genera found by Hamad and 304 

colleagues are also present in our samples. Our results for Basidiomycota differ greatly from 305 

previously isolated strains in gorillas. While we isolated only four strains, it seems that the diversity of 306 
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Basidiomycota in the colonic fungal community of gorillas is actually far greater (Hamad et al., 2014). 307 

While some of the Basidiomycota strains detected in gorillas are human pathogens, a few of the 308 

identified Ascomycota, namely members of the order Saccharomycetales that are usually associated 309 

with plants, possess fermentative capacities (Hamad et al., 2014). It is, however, unclear whether 310 

these aerobic fungi constitute transients passing through the enteric tract with food particles or if 311 

they are residents and part of the gut microbiome with benefits for the host. We find the latter 312 

explanation unlikely due to the low redox potential of the anaerobic conditions in the intestinal tract 313 

(Espey, 2013). 314 

 315 

In conclusion, our analyses provide evidence that Neocallimastigales is part of the gorilla gut 316 

microbiome. Our results emphasize the need to include enteric fungi when investigating the 317 

composition of the primate gut microbiome and we suggest that more research is needed to improve 318 

our understanding of the role of enteric fungi in the digestive tract. More extensive studies of fungal 319 

communities of several wild primate populations employing next generation sequencing techniques 320 

is warranted to enhance our knowledge of how differences in the fungal gut microbiome reflect 321 

differences in host diet and distribution. The results of such studies will contribute significantly to our 322 

understanding of the complexity of primate microbiomes and their adaptive values. 323 
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