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Abstract 

In earthquake prone areas, wind and earthquake loads are assumed to be statistically uncorrelated, therefore their 

interaction is ignored by existing design guidelines. However, the fact that strong earthquake events are commonly 

followed by aftershocks and that wind is constantly flowing at high speeds around wind farms increase the 

probability of their joint occurrence, thus making current design assumptions questionable. This investigation 

shows that multi-hazard scenarios magnify strength demands of wind turbine towers designed against isolated 

load conditions, hence modifying their performance level. It is also shown that, under certain conditions, the 

probabilities associated to the joint occurrence of earthquake and low to strong wind events match or exceed those 

related to the original design, thus rendering wind energy infrastructure susceptible to unforeseen damage. 
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Notation 

A Area exposed to wind Γ Characteristic structural density  

CD Drag coefficient β Modal exponential  

Cprob Probability factor ϒ Generalised quantity 

D Section diameter φ Modal shape 

F Force μ Ductility factor 

H Height of building ρ Air density 

Iu Turbulent intensity σ Standard deviation of wind velocity 

Ms Magnitude scale ω Natural frequency 

N Number of earthquake events ξ Structural damping 

PJ Probability associated to load J   

PGA Peak ground acceleration   

Rμ Strength reduction factor   

Ū Average wind velocity   

Vs30 Upper 30-m mean shear wave velocity   

    

a, b Site-dependent parameters   

d Structural displacement   

m Structural mass   

n0  Fundamental frequency of vibration   

p Load   

s Load gradient   

t Section thickness   

uy Yield displacement   

z Vertical coordinate   
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1. Introduction 

In the past decades, regions across the world have been identified where the energy production of Class 

I and Class II wind energy increases exponentially. This is largely due to the availability of natural 

resources, technological developments and qualified labour. The fast growth of energy generation 

however requires careful consideration of the type of infrastructure that can fulfil the demands in terms 

of strength, resilience and innovation. In earthquake-prone regions, tectonic and environmental 

conditions make infrastructure often susceptible to earthquakes and wind effects both during 

construction and once in operation. Notwithstanding that, current engineering practice disregards their 

simultaneous occurrence even though past earthquake records show that further ground accelerations 

can occur within days or even hours from main events. Examples of this include the earthquake that hit 

the Sichuan Province in China in 2008 (Ms = 7.9) which was followed by 12 weeks with 42 aftershocks 

ranging in magnitude between 5 < Ms < 6.4, killing over 87,000 and leaving over £56bn in losses 

(Daniell et al., 2012). The Great East Japan Earthquake felt in 2011 (Ms = 9.0), killing more than 15,000, 

was followed by 408 aftershocks (Ms > 5.0) within 96 hr, 68 of those of Ms > 6.0 and 5 of Ms > 7.0 

(Matsutani, 2011). More recently, the earthquakes that hit Ecuador in 2016 (Ms = 7.8) killing over 600, 

were followed by over 55 aftershocks in the first 24 hours (Shankar, 2016).  

Past research has contributed to better understand the mechanisms through which extreme load events 

affect infrastructure. Martinez-Vazquez (2017) showed that the combination of earthquakes and wind 

would decrease the value of strength reduction factors that are calculated by ignoring the impact of 

wind during an earthquake. Kiyomiya et al. (2002) suggested that wind turbines have adequate 

earthquake resistance provided these are designed against typhoons, which could be the case of offshore 

wind turbines but is not shared practice for onshore infrastructure design. Furthermore, Diaz and Suarez 

(2014) demonstrated that an operational earthquake combined with design wind load tend to over-stress 

the tower section hence increasing the strength demand established under isolated wind conditions. The 

present paper thus aims at enhancing our understanding of multi-hazard load conditions and their effect 

on wind energy infrastructure.  

The paper is organised as follows, Section 2 describes the assembling process of two databases, one 

containing historical earthquake records and the other containing simulated wind fields. Section 3 

focuses on the estimation of generalised forces acting on three wind turbine towers and the calculation 

of their dynamic response. The associated probabilities are discussed in Section 4 whilst the estimation 

of strength and ductility demands related to multi-hazard scenarios is presented in Section 5. Some final 

remarks are provided in Section 6. 

2. Earthquake and wind record database 

Earthquake records of magnitude 5.3 < Ms < 7.36 recorded on alluvium and with distances from 

geological faults of up to 57 km were downloaded from the PEER (2016) ground motion database. 

These records are assumed to be representative of alluvium and firm soils. It has been shown in Miranda 

(1993) that without much variation they would produce similar strength demands to structures located 

on either soil type. These records have a duration which oscillates between 30 and 80 s and were 

measured at a time interval of 0.1 s. The list of historic earthquake records is provided in Table 1 which 

also shows the associated epicentral distance, shear wave velocity (vs30), and peak ground acceleration 

(PGA). 

TABLE 1 



On the other hand, a wind record database was established based on the simulation procedure reported 

in Martinez-Vazquez and Rodriguez-Cuevas (2007) which follows the conditional simulation proposed 

by Vanmarcke et al. (1993). The simulation algorithm requires knowledge of recorded data in at least 

two points within the region of interest and enables inferring properly correlated wind data series at 

intermediate points. The two initial data series were calculated by using classical Monte Carlo 

techniques whereas intermediate points were calculated at 11 stations covering 250 m along a vertical 

axis. The mean velocity 𝑈̅ and turbulence intensity I - defined as the ratio between the standard deviation 

and the mean (σ/𝑈̅) - are shown for each simulation point in Table 2 for the case in which 𝑈̅ =20 ms-1. 

This table also shows how simulated (s) and theoretical (t) values compare.  

TABLE 2 

According to the data in Table 2, the average ratio 𝑈̅𝑡/𝑈̅𝑠 is 1.028 whereas the mean square error 

associated to the simulated turbulence intensity is 0.002. The theoretical wind velocity and turbulence 

intensity were determined based on a standard exponential law i.e. Uz = (z/zref)
α using α = 0.22 and Iu,10 

= 0.295 which corresponds to suburbs. Table 3 shows the target and calculated cross-correlation in the 

lower and upper triangular matrices respectively, where Point 1 corresponds to that located at z = 10 m. 

It can be seen in the table that the accuracy of the simulation increases with the proximity between 

points – see for example the values around the main diagonal. The overall mean square error across 

cross-correlation results is 0.0073 which was considered acceptable for this investigation. 

TABLE 3 

3. Generalised forces acting on wind turbines and related dynamic effects 

Three wind turbine towers of 150 m, 200 m and 250 m height were identified. These are assumed to be 

made of steel with specific weight of 7850 kgm-3, Young’s modulus of 200×109 Nm-2, damping level 

of 5%, and having variable section across their length whilst fixed at their base. The geometry and 

natural vibration frequency of each tower are shown in Table 4. 

TABLE 4 

Earthquake forces (FEQ) are proportional to the mass of the structure whilst wind forces (FW) were 

derived from Bernoulli’s principle: FW=1⁄2 ρ CD A 𝑈̅2 – where ρ is the density of the air, CD is a drag 

coefficient (taken as 1.4), and A is the projected area of the segment exposed to wind. Generalised 

forces, FEQ
* and FW

*, were calculated by using Eq. (1), where ϒ (z) represents force or structural mass 

per unit length, z is a vertical coordinate, λ equals 1 and 2 for F* and M* respectively, ϕ is the 

fundamental modal shape which was approximated by ϕ (z) = (z/H)β – with β = 1.5 whilst taking H as 

the height of the tower.  

Υ∗ = ∫ 𝜙(𝑧)𝜆Υ(𝑧)𝑑𝑧
𝐻

0
   (1) 

      

Generalised forces were combined to find the total amount acting on the wind turbines. This is shown 

in Table 5 for seven levels of wind, including the case in which 𝑈̅ equals zero. This table also shows 

the average estimated ratio FEQ
*/ FW

*. Earthquake loading dominates for low values of wind velocity, 

however this condition changes rapidly as the value of 𝑈̅  increases. For example when 𝑈̅ = 5 ms-1 

earthquake are about twice wind forces whilst when 𝑈̅ = 10 ms-1 earthquake are about half wind forces. 

At the point of the design wind speed, earthquake forces are about 12% of wind peak forces. 

TABLE 5 



Total generalised forces reported in Table 5 were used to determine the dynamic response of the wind 

turbines listed in Table 4, assuming linear-elastic performance. This was done through the numerical 

integration of Eq. (2) whose solution is given by Eq. (3). 

𝑚𝑑̈ + 𝑐𝑑̇ + 𝑘𝑑 = 𝑝(𝑡)   (2) 

𝑑(𝑡) = 𝑒−𝜉𝜔Δ𝑡 [(𝑑(0) −
𝑝𝑖

𝑘
+

2𝑠𝜉

𝜔𝑛𝑘
) cos(𝜔𝐷Δ𝑡) + (𝑑̇(0) + 𝑑(0)𝜉𝜔𝑛 −

𝑝𝑖𝜉𝜔𝑛

𝑘
+

2𝑠𝜉2

𝑘
−

𝑠

𝑘
)

𝑠𝑖𝑛(𝜔𝐷Δ𝑡)

𝜔𝐷
]

𝑝𝑖

𝑘
+

𝑠Δ𝑡

𝑘
−

2𝑠𝜉

𝜔𝑛𝑘
          

(3) 

 

In Eq. (2) and (3) m, c, and k represent the system’s mass, damping coefficient, and stiffness; d(t) and 

𝑑̇(𝑡) are displacement and velocity of response respectively; p(t) is the time-varying force; pi and s 

represent the i-th force and its gradient, in the context of the numerical integration; ωn and ωD are the 

undamped and damped frequency whilst ξ represents the fraction of critical damping. The results of the 

numerical integration are shown in Table 6. 

TABLE 6 

The results in Table 6 show a considerable increase of peak displacements for relatively low levels of 

wind acting on assumed earthquake-resisting structures. For example, when 𝑈̅ = 2.5 ms-1 the estimated 

increase is of 21%, 35%, and 38% on the towers of 150 m, 200 m, and 250 m tall, respectively, whereas 

when 𝑈̅ = 5 ms-1 those figures become 114%, 170%, and 219%. This suggests that the combined effect 

of earthquake and wind load can be significantly higher than those due to earthquakes only, even for 

relatively low levels of wind. However, infrastructure could also be designed to withstand wind load 

only in which case the earthquake load would have a different level of impact depending on the design 

wind load. Wind-resisting design is examined in more detail in the following sections. 

4. Probabilities associated to wind and earthquake events 

Eurocode 1 (European Standard, 2010) associates wind design loads to a 50-year return period whose 

probability of annual exceedance is P50 = 0.02. The norm also provides Eq. (4) to scale the 10-min 

design wind velocity, 𝑈̅50 for other probability levels. 

𝐶𝑝𝑟𝑜𝑏 = [
1 − 𝐾 ∙ 𝑙𝑛(−𝑙𝑛(1 − 𝑝))

1 − 𝐾 ∙ 𝑙𝑛(−𝑙𝑛(0.98))
]

𝑛

 (4) 

       

In Eq. (4) K is a shape parameter that depends on the coefficient of variation of the extreme-value 

distribution, n is a constant number, Cprob is the probability factor and p represents probability. Eurocode 

1 recommends K = 0.2 and n = 0.5.  

𝑙𝑜𝑔10𝑁 = 𝑎 − 𝑏𝑀   (5) 

       

On the other hand, the Gutenberg-Richter law quoted in Eq. (5), establishes a relationship between 

frequency of earthquake events and their magnitude.  In this equation, N represents the number of events 

happening within a year, having magnitude > M and a, b are site-dependent constants. It follows that 

Eq. (4) and (5) can be used to infer the magnitude of earthquake events associated to probability values 

(PEQ) which, paired with those related to wind (PW), match the standard probability of wind-resisting 

design i.e. PEQ ∙ PW = 0.02. This is shown in Table 7 for a set of randomly selected locations across the 

world, assuming 𝑈̅50 = 20 ms-1.  

 



TABLE 7 

In Table 7, rows 3 and 1 relate to local average wind speeds and their probability of occurrence as per 

Eq. (4). Row 4 provides the probability associated to seismic magnitude depending on location. There 

are five countries listed in Table 7 with their respective value of Ms which directly links to their 

probability of occurrence as per Eq. (5). The reason those specific probabilities - quoted in rows 1 and 

4 of the Table, have been selected is because their product matches the probability associated to the 

design wind speed, which according to Eurocode 1 (European Standard, 2010), corresponds to the 

design wind speed here assumed to be of 20 ms-1. Hence these are meaningful combinations derived 

from the simultaneous occurrence of earthquake and wind events. According to the data shown in Table 

7, 𝑈̅ = 10.33 ms-1 would always be exceeded in a year – see rows 1 and 3, whilst 𝑈 = 18.92 ms-1 and 

18.05 ms-1 considerably exceed the probability of the design wind speed as reported in row 1.  

 

The joint occurrence of earthquake and wind events listed on each column of Table 7 therefore match 

the single probability associated to the design wind load, and define a sub-set of multi-hazard scenarios 

that tend to magnify the strength and ductility demand of wind turbine towers, as discussed in the 

following section. 

 

5. Strength and ductility demands associated to earthquake and wind load 

The relationship between strength and ductility determine the performance level of structures. Although 

such parameterisation is more common in earthquake than wind applications, both earthquake and wind 

effects can be merged to quantify linear-elastic and plastic structural performance through strength 

reduction factors, as in Martinez-Vazquez (2017). In the present investigation the strength demands 

imposed by multi-hazard conditions was quantified in simple terms through the second moment of area 

that is required to ensure fully-operational conditions of wind energy infrastructure. On a second stage, 

a map was established between the estimated demands of strength and the corresponding ductility level. 

This enabled to assess the performance level of the wind turbine towers subject to earthquake and wind 

joint effects. 

 

5.1 Strength Demand 

The relationship FEQ
*/ FW

* provided in Table 5 was taken to find the required section of prismatic steel 

towers so that the ratio between the maximum displacement and the displacement that induces the yield 

stress on the base material, match. To that end, wind and earthquake forces were estimated with Eq. (6). 

𝐹𝑊
∗ =

𝐹𝐸𝑄
∗ + 𝐹𝑊

∗

𝐹𝐸𝑄
∗

𝐹𝑊
∗⁄ + 1

 
(6a) 

𝐹𝐸𝑄
∗ =

𝐹𝐸𝑄
∗ +𝐹𝑊

∗

𝐹𝑊
∗

𝐹𝐸𝑄
∗⁄ +1

  
(6b) 

Strength demands across the three wind turbine towers were defined in terms of the ratio 

𝐼𝐸𝑄+𝑊 𝐼𝐸𝑄 𝑜𝑟 𝑊⁄ , where 𝐼𝐽 is the second moment of area associated to material yielding, given the load 

j. The strength demand associated to design earthquake (𝐼𝐸𝑄) or wind load (𝐼𝑊) is thus magnified when 

this relationship exceeds 1. Results of this analysis are shown in Table 8 considering two load scenarios: 

average values associated all 40 earthquake records listed in Table 1 (EQ#1-40), and values 

characterising isolated events, namely, EQ#5, EQ#24, and EQ#38. All these combinations being 

consistent with the probability analysis reflected in Table 7. For example, EQ#5 which has a magnitude 

Ms = 5.3, would be exceeded every year in earthquake prone areas (Global Data) as it is lower than Ms 



= 6.36, therefore it can be combined with any wind event. EQ#24 with Ms = 6.53 can be combined with 

wind events having 𝑈̅ ≤ 18.92 ms-1 whereas EQ#38 with Ms = 7.01 can be combined with wind events 

having 𝑈̅ ≤ 18.05 ms-1. It is also worth noting that values in Table 8 which are higher than 1 indicate 

that the multi-hazard condition would exceed the design strength, 𝐼𝐸𝑄 𝑜𝑟 𝑊.  

TABLE 8 

From Table 8 it becomes apparent that wind turbine towers would primarily be designed to withstand 

wind load since all values of 𝐼𝐸𝑄+𝑊 𝐼𝐸𝑄⁄  are above 1 whilst most values of 𝐼𝐸𝑄+𝑊 𝐼𝑊⁄  are below 1. The 

sub-set 18.05 ms-1 < 𝑈̅ < 20 ms-1 however defines a region of magnified strength demands ranging 

between 1 < 𝐼𝐸𝑄+𝑊 𝐼𝑊⁄  < 1.206. Note that EQ#24 in Table 8 could not be combined with 𝑈̅ = 20 ms-1 

because its magnitude exceeds Ms = 6.36 therefore the combined probability of those events exceeds 

P50 = 0.02. With the same criteria two other combinations of EQ#38 were discarded. Keeping with wind 

resisting design, the combined action of 𝑈̅ = 18.92 ms-1 and the average of the set EQ#1-40 would 

match the strength demand imposed by the design wind load, whereas the demand of strength would be 

exceeded in 20.6% if the same wind speed did occur simultaneously with an earthquake of Ms = 6.53 

(e.g. EQ#24). The latter identifies the worst case scenario as derived from this investigation. 

5.2 Ductility Demand 

In Martinez-Vazquez (2017), a relationship between strength reduction factors (Rμ) associated to multi-

load scenarios and structural ductility (𝜇) is established. The definition of these parameters is given in 

Eq. (7) and (8) – where F is the restoring force required to keep inelastic displacements within the limit 

of the ductility factor μ and 𝑢𝑦 is the displacement that limits linear elastic structural performance. 

𝑅𝜇 =
𝐹(𝜇=1)

𝐹(𝜇=𝜇)
   (7) 

𝜇 =
𝑢𝑚𝑎𝑥

𝑢𝑦
⁄   (8) 

In that study 𝛤 =
𝑀∗

√𝐻2+𝑊2+𝐿2
  is defined to characterise the density of structures - where M* is the 

generalised mass and H-W-L are side dimensions of prismatic buildings. The relevant strength reduction 

factors (SRFs) presented in Martinez-Vazquez (2017) are reproduced here in Fig. 1 and Fig. 2, for cases 

where 𝑈̅ = 15 and 20 ms-1 and when 𝛤 takes values of 1.91, 60.43, and 17.78. 

FIGURE 1 

FIGURE 2 

For circular shapes, let 𝛤 =
𝑀∗

√𝐻2+𝐷2
 - where D represents the diameter of the steel towers. This results 

in 𝛤 = 2.33 Ton/m, 2.94 Ton/m, and 4.17 Ton/m, for wind turbine towers of 150 m, 200 m, and 250 m 

height, respectively.  It follows that the magnification of strength demands highlighted in Table 8 can 

be expressed in terms of ductility demand, as suggested by Eq. (7) and (8). By interpolation of the 

curves shown in Fig. 1 and 2, the average ductility demands estimated across the three wind turbine 

towers can be established. This is shown in Table 9. 

TABLE 9 

The results shown in Table 9 show that the combined action of wind and earthquakes can trigger 

inelastic performance of wind turbine towers i.e. 𝜇 > 1. It is also seen that both strength and ductility 



demands equal 1 when 𝑈̅ = 18.92 ms-1 and considering all earthquake records in the database - noting 

that this wind speed is lower than the assumed design wind speed 𝑈̅50 = 20 ms-1. Furthermore, when 

the expected earthquake event i.e. EQ#1-40 occurs simultaneous to 𝑈̅50 the strength and ductility 

demand both exceed a design limited by the yield condition in 12% and 37% respectively. If particular 

events such as EQ#5, EQ#24, and EQ#38 are considered, strength demand exceedances oscillate 

between 3.2% and 20.6% whilst the associated ductility demands would surpass the yield condition in 

amounts ranging from 9% to 62%. 

6. Final Remarks 

This research identifies a narrow yet existing probability that earthquake and wind effects modify the 

performance level of wind energy infrastructure. The estimated strength and ductility demand of wind 

turbine towers indicate that under certain conditions these can undergo unforeseen inelastic 

performance during extreme events. This is not addressed by current engineering practice which is 

based on the assumption that multi-hazard scenarios are extremely rare and that no relationship can be 

established between earthquake and wind events. The evidence however demonstrates that the 

frequency of occurrence of earthquakes of medium to high intensity is not rare. According to NOAA 

(2017) a total of 1142 earthquakes of 5.3 < Ms < 7.01 occurred across the world in the last 50 years 

(1966-2016) with as many as 173 recorded in the last 5 years (2011-2016) and 28 of those in 2016. The 

situation depicted in this investigation could be worse if we consider earthquake events of higher 

magnitude. NOAA (2017) reports a total of 418 ground motions of 7.01 < Ms < 9.9 in the last 50 years 

whilst 62 and 11 of those events were seen in the period 2011-2016 and during 2016, respectively. The 

recent events recorded in Mexico included two major earthquakes within a period of two weeks in 

September 2017 (CNN, 2017) with one of them nearly clashing with hurricane Katia on 8 September 

2017 (ABC News, 2017). This adds further arguments against current design assumptions which ignore 

multi-hazard scenarios. It seems therefore necessary to consider regional risk to extreme events in the 

formulation of a more robust design framework for practical use.  
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Table 1. Earthquake record database 

# Earthquake(s) Magnitude Epicentral 

Distance Km 

vs30 

ms-1 

PGA 

g 

1-2 Helena Montana-01, 10/31/1935, Carroll College, 180 / 270 6 2.86 / 2.92 593.35/551.82 0.16 

3-4 Northwest Calif-01, 9/12/1938, Ferndale City Hall, 45 / 224 5.5 / 5.8 53.88 / 53.77 219.31 0.15 / 0.11 

5-6 Izmir Turkey, 12/16/1977, Izmir, L / T 5.3 3.21 535.24 0.42 / 0.13 

7-8 Dursunbey Turkey, 7/18/1979, Dursunbey, L / T 5.34 9.15 585.04 0.18 / 0.24 

9-10 Imperial Valley-02, 5/19/1940, El Centro Array #9, 180 / 270 6.95 6.09 213.44 0.25 / 0.15 

11-12 Northern Calif-01, 10/3/1941, Ferndale City Hall, 225 / 315 6.4 44.68 219.31 0.10 / 0.12 

13-14 Northern Calif-03, 12/21/1954, Ferndale City Hall, 44 / 314 6.5 27.02 219.31 0.16 

15 Borrego Mtn, 4/9/1968, El Centro Array #9, 180 6.63 45.66 213.44 0.13 

16-17 San Fernando, 2/9/1971, Castaic - Old Ridge Route, 21 / 291 6.61 22.63 450.28 0.32 / 0.28 

18-19 San Fernando, 2/9/1971, LA - Hollywood Stor FF, 90 / 180 6.61 22.77 316.46 0.22 / 0.16 

20 San Fernando, 2/9/1971, Lake Hughes #1, 21  6.61 27.4 425.34 0.15 

21-22 San Fernando, 2/9/1971, Lake Hughes #12, 21 / 291 6.61 19.3 602.1 0.38 / 0.28 

23-24 Imperial Valley-06, 10/15/1979, Bonds Corner, 140 / 230 6.53 2.66 223.03 0.52 / 0.77 

25-26 Imperial Valley-06, 10/15/1979, El Centro Array #4, 140 6.53 7.05 208.91 0.48 / 0.27 

27-28 Imperial Valley-06, 10/15/1979, El Centro Array #5, 140 / 230 6.53 3.95 205.63 0.33 / 0.38 

29-30 Imperial Valley-06, 10/15/1979, El Centro Array #7, 140 / 230 6.53 0.56 210.51 0.34 / 0.47 

31-32 Kern County, 7/21/1952, Taft Lincoln School, 21 / 111 7.36 38.89 385.43 0.14 / 0.15 

33-34 Taiwan SMART1(45), 11/14/1986, SMART1 C00, EW / NS 7.3 56.01 309.41 0.12 / 0.15 

35-36 Taiwan SMART1(45), 11/14/1986, SMART1 O02, EW / NS 7.3 57.13 285.09 0.16 / 0.24 

37-38 Cape Mendocino, 4/25/1992, Petrolia, 0 / 90 7.01 8.18 422.17 0.58 / 0.66 

39-40 Landers, 6/28/1992, Lucerne, 260 / 345 7.28 2.19 1369 0.65 / 0.61 

 

Table 2. Theoretical and simulated mean velocity 𝑈̅ (ms-1) and turbulence intensities  

Stats \ z (m) 10 40 75 100 140 170 200 210 220 240 250 

𝑈̅t  20.00 30.21 36.21 39.79 42.95 45.39 47.77 48.52 49.15 50.18 50.87 

𝑈̅s  19.86 29.88 35.14 38.62 41.69 44.05 46.32 47.07 47.69 48.69 49.35 

Iu,t  0.295 0.206 0.244 0.221 0.195 0.172 0.146 0.137 0.130 0.116 0.107 

Iu,s 0.295 0.206 0.173 0.153 0.135 0.122 0.108 0.104 0.100 0.093 0.088 

 

 

  



Table 3. Cross correlation results amongst the points of interest 

 1 2 3 4 5 6 7 8 9 10 11 

1 1.0000 0.4737 0.4100 0.2255 0.2134 -0.0052 -0.0591 -0.1249 -0.1843 -0.1688 -0.0237 

2 0.4237 1.0000 0.6224 0.3814 0.2928 0.1594 0.0892 0.0231 -0.0493 -0.0151 0.0716 

3 0.2090 0.4767 1.0000 0.6510 0.5322 0.2694 0.2860 0.2238 0.1078 0.1387 0.2322 

4 0.1176 0.2605 0.5419 1.0000 0.7333 0.4118 0.4189 0.3157 0.2204 0.2723 0.2803 

5 0.0653 0.1408 0.2895 0.5322 1.0000 0.6122 0.5377 0.4465 0.3681 0.3842 0.3309 

6 0.0394 0.0831 0.1690 0.3092 0.5798 1.0000 0.5934 0.5431 0.5346 0.4584 0.3253 

7 0.0231 0.0479 0.0961 0.1748 0.3265 0.5625 1.0000 0.8046 0.7388 0.6270 0.5227 

8 0.0192 0.0394 0.0788 0.1429 0.2665 0.4588 0.8155 1.0000 0.8113 0.6355 0.5248 

9 0.0164 0.0336 0.0669 0.1210 0.2255 0.3879 0.6893 0.8453 1.0000 0.7276 0.5858 

10 0.0127 0.0257 0.0508 0.0917 0.1705 0.2929 0.5200 0.6376 0.7543 1.0000 0.7524 

11 0.0106 0.0213 0.0420 0.0756 0.1403 0.2408 0.4274 0.5240 0.6198 0.8217 1.0000 

 

Table 4. Geometry and natural frequency of wind turbines 

ID # 
Height 

(m) 
Dbase (m) Dtop (m) tbase (m) ttop (m) n0 (Hz) 

1 150 7.5 4.0 0.05 0.016 0.44 

2 200 10 7.5 0.075 0.018 0.34 

3 250 15 10 0.10 0.025 0.24 

 

Table 5. Total generalized forces (FEQ
* + FW

*) acting on wind turbine towers (kN) 

𝑈 H = 150 m H = 200 m H = 250 m Average FEQ
* / FW

* 
ms-1 mean rms peak mean rms peak mean rms peak mean rms peak 
zero 0.11 9.78 92.5 0.29 30.8 284 0.78 70.8 652 - - - 

0.5 0.39 9.79 92.6 0.95 26.3 249 1.82 60.2 572 10.8 167 193 

2.5 9.08 9.97 96.1 22.1 26.7 256 41.8 60.9 584 0.43 6.68 7.72 

5 36.3 12 118 88.3 30.9 304 167 66.9 667 0.11 1.67 1.93 

10 145 28 234 353 64.9 570 667 120 1137 0.03 0.42 0.48 

15 326 58 471 794 133 1139 1500 235 2150 0.01 0.19 0.21 

20 580 101 822 1411 232 1987 2666 405 3712 0.01 0.10 0.12 

 

Table 6. Dynamic response amplitudes (m) calculated for wind turbine towers subject to FEQ
* + FW

* 

𝑈 H = 150 m H = 200 m H = 250 m 
ms-1 mean rms peak mean rms peak mean rms peak 
zero 9.3x10-6 0.003 0.014 2.5 x10-5 0.005 0.017 2.6 x10-5 0.006 0.021 

0.5 1.4 x10-4 0.003 0.015 2.2 x10-4 0.005 0.022 3.6 x10-4 0.007 0.026 

2.5 0.003 0.004 0.017 0.005 0.006 0.023 0.009 0.009 0.029 

5 0.013 0.006 0.030 0.021 0.009 0.046 0.034 0.015 0.067 

10 0.051 0.016 0.090 0.083 0.030 0.155 0.137 0.046 0.229 

15 0.116 0.035 0.197 0.187 0.067 0.342 0.309 0.101 0.507 

20 0.205 0.061 0.349 0.333 0.119 0.605 0.549 0.179 0.898 

 

 

  



Table 7. Probabilities associated to earthquake and wind events, and earthquake magnitudes across countries 

 Probability of Exceedance, Seismic Magnitude per Country, or Wind Velocity a b 

PW 0.02 0.05 0.1 0.25 0.5 0.75 0.9 1 - - 

Cprob 1 0.95 0.90 0.84 0.78 0.75 0.68 0.52 - - 

𝑈̅ (ms-1) 20 18.92 18.05 16.75 15.53 14.49 13.68 10.33 - - 

PEQ 1 0.4 0.2 0.08 0.04 0.027 0.022 0.02 - - 

India1 3.19 3.67 4.04 4.52 4.88 5.09 5.19 5.24 4.35 0.83 

UK2 2.06 2.44 2.74 3.12 3.42 3.59 3.66 3.71 3.82 1.03 

Turkey3 1.96 2.48 2.87 3.39 3.78 4.01 4.11 4.17 3.21 0.77 

Greece4 4.86 5.13 5.33 5.59 5.79 5.91 5.96 6.00 8.99 1.5 

Switzerland
5 

3.54 3.96 4.27 4.68 5.00 5.18 5.26 5.31 5.1 0.96 

Global 

Data1 
6.36 6.73 7.02 7.39 7.68 7.84 7.92 7.96 

8.44 1.06 

1 Sharma et al. (1999); 2 NERC (2017); 3 Bayrak et al. (2008); 4 Papazachos et al. (1997); 5 Wiemer (2000) 

 

Table 8. Strength demands derived from the combined action of earthquake and wind 

Load Scenario 
Wind Speed 𝑈 in ms-1 

0.00 10.33 13.68 14.49 15.53 16.75 18.05 18.92 20.00 

𝐼𝐸𝑄+𝑊 𝐼𝐸𝑄⁄  EQ#1-40 1.0 9.36 16.13 18.07 20.73 24.11 27.98 30.76 34.43 

𝐼𝐸𝑄+𝑊 𝐼𝑊⁄  

EQ#1-40 - 0.305 0.525 0.588 0.674 0.784 0.910 1.00 1.12 

EQ#5 

Ms = 5.3 
- 0.314 0.541 0.606 0.696 0.809 0.939 1.032 1.157 

EQ#24 

Ms = 6.53 
- 0.367 0.632 0.708 0.813 0.945 1.097 1.206 - 

EQ#38 

Ms = 7.01 
- 0.346 0.596 0.668 0.766 0.890 1.033 - - 

 

 

Table 9. Strength and ductility demands derived from the combined action of earthquake and wind 

   Wind Speed 𝑈 in ms-1 

 18.05 18.92 20.00 
Earthquake Event EQ#24 EQ#38 EQ#1-40 EQ#5 EQ#24 EQ#1-40 EQ#5 

Strength Demand 
𝐼𝐸𝑄+𝑊 𝐼𝐸𝑄⁄  

1.097 1.033 1.00 1.032 1.206 1.12 1.157 

Ductility Demand 

𝜇 = 𝑢𝑚𝑎𝑥 𝑢𝑦⁄  
1.27 1.09 1.00 1.09 1.62 1.37 1.49 
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Figure 1. Strength reduction factors estimated for when 𝑈̅ = 15 𝑚𝑠−1 

(Adapted from Martinez-Vazquez, 2017) 

 

Figure 2. Strength reduction factors estimated for when 𝑈̅ = 20 𝑚𝑠−1 

(Adapted from Martinez-Vazquez, 2017) 

 

 

 

   
(a) Γ = 60.43, 𝑈 = 15 𝑚𝑠−1 (b) Γ = 17.78, 𝑈 = 15 𝑚𝑠−1 (c) Γ = 1.91, 𝑈 = 15 𝑚𝑠−1 

 

Fig. 1. Strength reduction factors estimated for when 𝑈 = 15 𝑚𝑠−1 

(Adapted from Martinez-Vazquez, 2017) 

 

 

   
(a) Γ = 60.43, 𝑈 = 20 𝑚𝑠−1 (b) Γ = 17.78, 𝑈 = 20 𝑚𝑠−1          (c) Γ = 1.91, 𝑈̅ = 20 𝑚𝑠−1 

 

Fig. 2. Strength reduction factors estimated for when 𝑈 = 20 𝑚𝑠−1 

(Adapted from Martinez-Vazquez, 2017) 
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