Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

Is the diurnal variation in muscle force output detected/detectable when multi-joint movements are analysed using the musclelab force-velocity encoder?

Robertson, CM, Pullinger, SA, Robinson, WR, Smith, ME, Burniston, JG, Waterhouse, JM and Edwards, BJ (2018) Is the diurnal variation in muscle force output detected/detectable when multi-joint movements are analysed using the musclelab force-velocity encoder? Chronobiology International. ISSN 0742-0528

[img]
Preview
Text
CI time of day and LE final 25 05 2018.pdf - Accepted Version

Download (855kB) | Preview

Abstract

We have investigated the magnitude of diurnal variation in back squat and bench press performance using the MuscleLab force velocity transducer. Thirty resistance-trained males (mean ± SD: age 21.7 ± 1.4 years; body mass 80.5 ± 4.5 kg; height 1.79 ± 0.06 m) underwent two sessions at different times of day: morning (M, 07:30 h) and evening (E, 17:30 h). Each session included a period when rectal temperature (Trec) was measured at rest, a 5-min standardized 150 W warm-up on a cycle ergometer, then defined programme of bench press (at 20, 40 and 60 kg) and back squat (at 30, 50 and 70 kg) exercises. A linear encoder was attached to an Olympic bar used for the exercises and average force (AF), peak velocity (PV) and time-to-peak velocity (tPV) were measured (MuscleLab software; MuscleLab Technology, Langesund, Norway) during the concentric phase of the movements. Values for Trec at rest were higher in the evening compared to morning values (0.48°C, P < 0.0005). Daily variations were apparent for both bench press and back squat performance for AF (1.9 and 2.5%), PV (8.3 and 12.7%) and tPV (-16.6 and -9.8%; where a negative number indicates a decrease in the variable from morning to evening). There was a main effect for load where AF and tPV increased and PV decreased from the lightest load to the heaviest for both bench press and back squat (47.1 and 80.2%; 31.7 and 57.7%; -42.1 and -73.9%; P < 0.0005 where a negative number indicates a decrease in the variable with increasing load). An interaction was found only for tPV, such that the tPV occurs earlier in the evening than the morning at the highest loads (60 and 70 kg) for both bench press and back squat, respectively (mean difference of 0.32 and 0.62 s). In summary, diurnal variation in back squat and bench press was shown; and the tPV in complex multi-joint movements occurs earlier during the concentric phase of exercise when back squat or bench press is performed in the evening compared to the morning. This difference can be detected using a low cost, portable and widely available commercial instrument and enables translation of past laboratory/tightly controlled experimental research in to main-stream coaching practice.

Item Type: Article
Additional Information: This is an Accepted Manuscript of an article published by Taylor & Francis in Chronobiology International on 26/06/18, available online: http://www.tandfonline.com/10.1080/07420528.2018.1485685
Uncontrolled Keywords: 06 Biological Sciences, 11 Medical And Health Sciences
Subjects: R Medicine > RC Internal medicine > RC1200 Sports Medicine
Divisions: Sport & Exercise Sciences
Publisher: Taylor & Francis
Related URLs:
Date Deposited: 24 Sep 2018 11:19
Last Modified: 04 Sep 2021 10:05
DOI or ID number: 10.1080/07420528.2018.1485685
URI: https://researchonline.ljmu.ac.uk/id/eprint/9311
View Item View Item