
Springate, DA, Parisi, R, Olier, I, Reeves, D and Kontopantelis, E

 rEHR: An R package for manipulating and analysing Electronic Health Record
data

http://researchonline.ljmu.ac.uk/id/eprint/9342/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Springate, DA, Parisi, R, Olier, I, Reeves, D and Kontopantelis, E (2017)
rEHR: An R package for manipulating and analysing Electronic Health
Record data. PLoS One, 12 (2). ISSN 1932-6203

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

RESEARCH ARTICLE

rEHR: An R package for manipulating and

analysing Electronic Health Record data

David A. Springate1,2, Rosa Parisi3, Ivan Olier4, David Reeves1,2,

Evangelos Kontopantelis1,5¤*

1 NIHR School for Primary Care Research, University of Manchester, Manchester, United Kingdom, 2 Centre

for Biostatistics, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United

Kingdom, 3 Centre for Pharmacoepidemiology & Drug Safety, Faculty of Biology, Medicine & Health,

University of Manchester, Manchester, United Kingdom, 4 Informatics Research Centre, School of Computing

Mathematics and Digital Technology, Manchester Metropolitan University, Manchester, United Kingdom,

5 The Farr Institute for Health Informatics Research, Faculty of Biology, Medicine & Health, University of

Manchester, Manchester, United Kingdom

¤ Current address: Vaughan House, Portsmouth Street, M13 9GB, Manchester, United Kingdom

* e.kontopantelis@manchester.ac.uk

Abstract

Research with structured Electronic Health Records (EHRs) is expanding as data becomes

more accessible; analytic methods advance; and the scientific validity of such studies is

increasingly accepted. However, data science methodology to enable the rapid searching/

extraction, cleaning and analysis of these large, often complex, datasets is less well devel-

oped. In addition, commonly used software is inadequate, resulting in bottlenecks in

research workflows and in obstacles to increased transparency and reproducibility of the

research. Preparing a research-ready dataset from EHRs is a complex and time consuming

task requiring substantial data science skills, even for simple designs. In addition, certain

aspects of the workflow are computationally intensive, for example extraction of longitudinal

data and matching controls to a large cohort, which may take days or even weeks to run

using standard software. The rEHR package simplifies and accelerates the process of

extracting ready-for-analysis datasets from EHR databases. It has a simple import function

to a database backend that greatly accelerates data access times. A set of generic query

functions allow users to extract data efficiently without needing detailed knowledge of SQL

queries. Longitudinal data extractions can also be made in a single command, making use

of parallel processing. The package also contains functions for cutting data by time-varying

covariates, matching controls to cases, unit conversion and construction of clinical code

lists. There are also functions to synthesise dummy EHR. The package has been tested

with one for the largest primary care EHRs, the Clinical Practice Research Datalink (CPRD),

but allows for a common interface to other EHRs. This simplified and accelerated work flow

for EHR data extraction results in simpler, cleaner scripts that are more easily debugged,

shared and reproduced.

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Springate DA, Parisi R, Olier I, Reeves D,

Kontopantelis E (2017) rEHR: An R package for

manipulating and analysing Electronic Health

Record data. PLoS ONE 12(2): e0171784.

doi:10.1371/journal.pone.0171784

Editor: Jaroslaw Harezlak, Indiana University,

UNITED STATES

Received: October 14, 2016

Accepted: January 25, 2017

Published: February 23, 2017

Copyright: © 2017 Springate et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data are available

from the Comprehensive R Archive Network

(CRAN) (https://cran.r-project.org/web/packages/

rEHR/index.html) and via Github (https://github.

com/rOpenHealth/rEHR).

Funding: This study was funded by the National

Institute for Health Research (NIHR) School for

Primary Care Research (SPCR), under the title ‘An

analytical framework for increasing the efficiency

and validity of research using primary care

databases’ (Project no. 211). This paper presents

independent research funded by the National

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0171784&domain=pdf&date_stamp=2017-02-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0171784&domain=pdf&date_stamp=2017-02-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0171784&domain=pdf&date_stamp=2017-02-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0171784&domain=pdf&date_stamp=2017-02-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0171784&domain=pdf&date_stamp=2017-02-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0171784&domain=pdf&date_stamp=2017-02-23
http://creativecommons.org/licenses/by/4.0/
https://cran.r-project.org/web/packages/rEHR/index.html
https://cran.r-project.org/web/packages/rEHR/index.html
https://github.com/rOpenHealth/rEHR
https://github.com/rOpenHealth/rEHR

1 Introduction

We present the R R [1] package rEHR for manipulating and analysing Electronic Health

Record (EHR) data and demonstrate its use with rEHR-generated synthetic data. rEHR is

available from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.

org/package=rEHR, and will work with R-3.3.2.

The package has been developed using structured primary care data from the UK, which

has enjoyed near-universal deployment of EHRs in general practice and clinical coding per-

formed by general practitioners for over twenty years. Comprehensive anonymised extracts of

these UK primary care records are made available for research—the main sources are: The

Clinical Practice Research Datalink (CPRD, previously known as the General Practice

Research Database, GPRD), The Health Improvement Network (THIN), QResearch, The Doc-

tors’ Independent Network (DIN-LINK) and more recently, Research One. These databases

hold near complete anonymised medical records for millions of patients and have very similar

structures, including data on demographics, symptoms, tests, diagnoses, therapies, health-

related behaviours and complete referrals to secondary care (since in the UK general practi-

tioners are the gatekeepers of the health care system and manage specialist referrals). Using the

CPRD as an example, in 2015 it reported coverage for over 1.3 million patients from 674 UK

practices, with 4.4 million active (alive, meeting CPRD quality criteria and registered with one

of the general practices at the end of 2015) patients thus covering approximately 6.9% of the

UK population [2]. Due to the fact that these databases tend to be tied to specific clinical sys-

tems which demonstrate regional variability [3], there are some UK regions that are under-

represented in each [4]. However, the size of all these databases ensures that included patients

are broadly representative of the UK general population in terms of age, sex and ethnicity. To

date, over 1600 papers have been published using these UK primary care databases (PCDs),

with well over 150 papers published per year since 2012. EHR research is set to grow still faster

due to advances in analysis methodology [5; 6], an increasing body of evidence supporting the

validity of such studies [7; 8], and efforts to improve transparency and reproducibility [9].

Despite the research interest in PCDs, data science methodology to enable the rapid search-

ing/extraction, cleaning and analysis of these increasingly large and complex datasets is less

well developed. In addition, commonly used software tools are often inadequate, resulting in

bottlenecks in the research workflow and in obstacles to increased transparency and reproduc-

ibility of research. PCDs such as CPRD store data in complex relational and nested structures,

and preparing an analysis-ready dataset requires substantial data science skills, even for simple

designs. This complexity is an inevitable consequence of the wide range of information con-

tained within these databases, which detail the primary care history for every patient, including

coded data for all diagnoses, prescriptions, referrals and test results for all consultations. To

manage this vast wealth of data requires a relational structure based on multiple tables, classifi-

cations and terminologies (e.g. Read codes for diagnoses and referrals, product codes for pre-

scriptions). To extract relevant data, research teams have to complete a sequence of non-trivial

technical tasks. The more complex the research design the more steps are required to obtain

the final dataset. For example, investigating drug outcomes typically involves constructing

complex definitions of codes for diagnosis, drug exposure (may be varying over time), mortal-

ity, and possible confounding factors (e.g. comorbidities, additional medications, gender, age,

referrals, date of diagnosis, etc.). In addition, certain aspects of the workflow are computation-

ally intensive (for example extraction of longitudinal data and matching controls to a large

cohort)—often taking days or even weeks to run using standard software. Although more pow-

erful computer facilities help (and are practically a prerequisite for working with these data),

an inefficient and slow program running on a fast server will still be inefficient and slow. Some

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 2 / 25

Institute for Health Research (NIHR). The views

expressed are those of the authors and not

necessarily those of the NHS, the National Institute

for Health Research or the Department of Health. In

addition, MRC Health eResearch Centre Grant MR/

K006665/1 supported the time and facilities of one

investigator (EK).

Competing interests: The authors have declared

that no competing interests exist.

https://CRAN.R-project.org/package=rEHR
https://CRAN.R-project.org/package=rEHR

‘how-to’ papers exist for good practice in observational data management but they address

only some of the issues or focus on specific applications [5; 10; 11; 12]. At the same time there

is a wealth of health informatics and computer science literature on how to make these

research processes more transparent, reducing the duplication of effort and improving the

consistency of data processing [13; 14]. Finally, several software packages exist for speeding up

data analysis, but these are generic, do not apply directly to EHR manipulation and may

require specialist knowledge to effectively use for fast manipulation of dataframes [15], for

database integration [16], and for parallel processing (parallel in base R).

rEHR simplifies and accelerates the process of extracting ready-for-analysis datasets from

EHR databases. In section 2 we provide instructions on loading the software and importing

flat text files of the kind supplied by EHR providers into a local SQL database. In section 3 we

describe the basic query operations provided by the package, the building of longitudinal data

and calculation of prevalence and incidence statistics. In section 4 we convert the longitudinal

data from the previous section to a cohort dataset suitable for survival analysis and illustrate

algorithms to match controls to cases and to cut cohort data by time-varying covariates. In sec-

tion 5 we briefly discuss some accessory functions provided in the package. In the final section

we discuss the .ehr environment used to define the EHR database being used and how this

can be set to work with different databases.

The package includes a number of simulated flat files to allow users to familiarise them-

selves with advanced aspects, which we use in this paper to provide examples.

2 Importing EHR data

rEHR is installed and loaded in the usual way:

if(! "rEHR" %in% rownames(installed:packages()))
install:packages("rEHR")
library(rEHR)

The development version of the package is available from Github and is accessible via the

devtools package [17]:

library(devtools)
install� github("rOpenHealth=rEHR")
library(rEHR)

EHR data are stored as relational databases but are most commonly made available to

researchers in the form of flat text files. This has the advantage of easier access for simple tasks

and, for example, viewing the files in a spreadsheet. However, most non-trivial operations

require researchers to iterate over a series of (potentially large) different groups of files. For

example here we present pseudocode for a simple workflow leading to the production of a

dataset of prevalent cases for a condition such as diabetes:

#Pseudocode prevalent cases algorithm
definea list of clinicalcodesfor the condition
for each practice:
load clinicaleventsfiles (clinical,referral,drugsetc.)
selectclinicaleventsmatchingthe clinicalcode list

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 3 / 25

http://www.github.com

load patientand practicefiles
for each year:
selectactivepatients
selecteventsin year
mergeactivepatientsand eventsin year on conditionalgorithm

combineall yearsin practice
combinepatientsin all practices

Each level of iteration (represented by the nested for loops) and each type of file (e.g.

clinical, referral, drugs etc.) in the above algorithm introduces the opportunity for bugs to

creep into extraction code, while the repeated opening and closing of multiple text files, com-

bined with the inherent inefficiency of for loops in R often result in slow, error prone code.

The rEHR package allows researchers to first automatically import these flat files into a SQLite

database and then use predefined functions to query this database efficiently and precisely. We

use SQLite databases for a variety of reasons:

• SQLite databases are stored as files in the directory system of the computer and require no

installation setup. SQLite3 is installed automatically as a result of installing the dependencies

for the package

• SQLite files are stored efficiently and are relatively small compared to text files

• The SQL language has been optimised for very rapid and efficient queries of SQLite files,

resulting in much faster queries than would be available to multiple flat files

• Working with SQLite databases allows users to use some very well developed tools that are

already available to the R community such as sqldf [16] and RSQLite [18] if they are

familiar with R SQL integration tools. These tools also allow for more specific tool functions

to be built to shield users from the complexities of SQL queries.

Use simulatedehr filessuppliedwith the packageto build database
ehr_path<- dirname(system:file("ehr� data", "ehr� Clinical:txt",

package¼ "rEHR"))
createa new databaseconnectionto a temporaryfile
db <- database(tempfile(fileext¼ ":sqlite"))
Importmultipledata filesinto the database
import� CPRD� data(db, data� dir = ehr_path,

filetypes¼ c("Clinical", "Consultation",
"Patient", "Practice",
"Referral"),

dateformat¼ "%Y � %m � %d",
yob� origin¼ 1800,
regex¼ "ehr",
recursive¼ TRUE)

Individualfilescan also be added:
add� to� database(db, files¼ system:file("ehr� data", "ehr� Therapy:txt",

package¼ "rEHR"),
table� name = "Therapy", dateformat¼ "%Y � %m � %d")

Use the overloaded`head`functionto view a list of
tablesor the head of individualtables:
head(db)

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 4 / 25

type name tbl_name
1 table Clinical Clinical
2 table Consultation Consultation
3 table Patient Patient
4 table Practice Practice
5 table Referral Referral
6 table Therapy Therapy

head(db, table¼ "Clinical")

patid eventdate constype consid medcode comorbidity practid
1 1001 2003-08-25 0 4 69753 hypertension 1
2 1001 2004-04-13 1 5 96277 atrial_fibrilation 1
3 1001 2004-04-13 1 5 2212 atrial_fibrilation 1
4 1001 2004-04-13 1 5 96076 atrial_fibrilation 1
5 1001 2005-02-08 1 6 23579 chd 1
6 1001 2005-02-18 1 7 16059 hypertension 1

The import_CPRD_dataand add_to_database functions are able to import tab-

delimited text files or zipped tab-delimited text-files. By default, all date strings are converted

to R dates with standard ISO format (“%Y-%m-%d”). A regex argument should be supplied

that is a regular expression to match a common prefix to the filenames, separated from the file

type by an underscore.

3 Querying the database

3.1 Selecting all events

Once EHR data has been imported to the database, the rEHR package has a number of flexible

built-in querying functions for extracting data. These functions are much faster to execute and

less error prone than having to loop through hundreds of text files.

The primary generic query function is select_events() and is able to select all the

events in a database table matching a provided where argument. This function is also called

by the other more specific query functions. An example set of lists of clinical codes for a

number of medical conditions is provided with the package (data(clinical_codes)).

select_events() returns a dataframe of extracted data. This collection of disease spe-

cific code lists stems from our previous work and are reposited in www.clinicalcodes.org

[9]. However, code lists are dynamic and context specific and researchers will very likely

need to consider strategies to develop their own code lists, if existing code lists are consid-

ered inadequate [19].

diabetes_codes<- clinical_codes[clinical_codes$list== "Diabetes",]
select� events(db,tab¼ "Clinical",columns¼ c("patid", "eventdate",

"medcode"),
where¼ "medcode %in% :ðdiabetes� codes$medcodeÞ &
eventdate < ' 2006 � 01 � 01' & eventdate >¼ ' 2005 � 01 � 01' ")

patid eventdate medcode
1 3012 2005-09-30 273
2 1037 2005-04-08 277
3 1038 2005-05-19 273

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 5 / 25

http://www.clinicalcodes.org

4 1091 2005-05-27 351
5 1091 2005-07-25 351
6 1097 2005-03-10 273

The tab argument is used to select the file type (Clinical, Consultation, Patient, Practice or

Referral in the previous code example), while the columns argument selects variables from

these files. The where argument is equivalent to the WHERE clause in SQL, in that it is used

to select subsets of the data table. The user must supply a string representation of valid R code,

which is then translated to SQL via the dplyr::translate_sql_ function. There are two

important caveats to this:

1. If an element of the clause represents an R object to be accessed (such as the elements of a

vector) it must be wrapped in a .() (See the example above). String elements wrapped

in .() are processed by the expand_string function before being passed to

dplyr::translate_sql_.

2. Dates should separately quoted and entered in ISO format (‘%Y-%m-%d’). This is because

dates are stored as ISO text in the database, not as r Date types.

If the argument sql_only== TRUE, the function only generates the SQL needed for the

query, rather than running the query itself. In this way, select_events can be used as the

base for more complex query functions. The results of this function can also then be passed to

temp_table() to create temporary tables where it is not desirable to keep large query

results in RAM. For example:

Asthma_codes<- clinical_codes[clinical_codes$list== "Asthma",]
q <- select� events(db,tab¼ "Clinical", columns¼ c("patid", "eventdate"

, "medcode"),
where¼ "medcode %in% :ðAsthma� codes$medcodeÞ",
sql� only¼ TRUE)

temp� table(db,tab� name¼ "Asthma", select� query¼ q)

Temporarytable'Asthma'created

head(db, temp¼ TRUE)

type name tbl_name
1 table Asthma Asthma

head(db, table¼ "Asthma")

patid eventdate medcode
1 1025 2014-04-11 1105
2 1035 2012-03-05 1116
3 2065 2006-03-20 1095

3.1.1 Using raw SQL queries. Since EHR data is stored as a standard SQLite database,

users can alternatively make SQL queries to the database using sqldf, which is imported into

the namespace on loading of the rEHR package:

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 6 / 25

sqldf("SELECT patid; practid; gender; yob; deathdate from Patient WHERE
deathdate IS NOT NULL LIMIT 6",

connection¼ db)

patid practid gender yob deathdate
1 1003 3 0 1983 2001-11-16
2 3015 15 1 1995 2000-05-09
3 2016 16 1 1959 2002-10-28
4 1018 18 0 1992 2009-12-29
5 2020 20 1 1956 2002-11-29
6 1023 23 0 1983 2013-03-24

There are two methods for including R objects in raw SQL strings. First, wrapping the

string in a call to expand_string() allows for the .() notation to be used as in where
arguments to select_events()based functions. Alternatively, a helper function,

wrap_sql_query() is provided that functions in a similar way to base::sprintfbut

formats objects according to SQL syntax. If the result of evaluating the argument is a vector of

length 1, it is inserted as is; if it is a vector of length > 1, it is wrapped in parentheses and

comma separated.

medcodes1<- 1 : 5
practice<- 255
expand� string("SELECT � FROM clinical WHERE practid ¼¼ :ðpracticeÞ")

[1] "SELECT � FROM clinicalWHEREpractid== 255"

wrap� sql� query(-
"SELECT � FROM clinical WHERE practid ¼¼ # 1 AND medcodes

in# 2", practice,medcodes1)

[1] "SELECT � FROM clinicalWHEREpractid== 255 AND medcodesin
(1, 2, 3, 4, 5)"

3.2 Selecting first or last events

Frequently, users need to find the first clinical event for a given patient (e.g. to identify dates of

diagnosis of chronic diseases) or the most recent clinical event (e.g. to identify if a drug therapy

has been prescribed within a certain time period). rEHR provides convenience functions for

these common situations. The functions run a select_events()query and then group by

patient id and selects only the earliest/latest event for each patient:

first_DM<- first� events(db,tab¼ "Clinical",
columns¼ c("patid", "eventdate", "medcode"),

where¼ "medcode %in% :ðdiabetes� codes$medcodeÞ")
last_DM<- last� events(db,tab¼ "Clinical",

columns¼ c("patid", "eventdate", "medcode"),
where¼ "medcode %in% :ðdiabetes� codes$medcodeÞ")

head(first_DM)

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 7 / 25

patid eventdate medcode
1 1004 2007-12-25 351
2 1005 2004-08-31 351
3 1008 2002-03-02 351
4 1010 2014-04-11 351
5 1012 2012-05-28 351
6 1015 2008-08-16 351

head(last_DM)

patid eventdate medcode
1 1004 2007-12-25 351
2 1005 2009-03-09 351
3 1008 2002-03-02 351
4 1010 2014-04-11 351
5 1012 2013-02-14 351
6 1015 2013-08-17 273

3.3 Querying longitudinal data with select_by_year()
Researchers will often want to extract data over a range of different time-points, for example

they may want to calculate the prevalence of a condition and how this changes through time.

When working with flat text files, this must be done with a complex nested loop that is both

slow and error-prone. The select_by_year() function provides a simple interface to

extract longitudinal data. On posix-compliant computers (Linux, BSD, Mac), this function can

make use of parallel processes to select data for different years concurrently, greatly accelerat-

ing the extraction process on multicore machines. The function runs a series of selects over a

year range and collects in a list of dataframes.

The function applies a database select over a range of years and outputs as a list or a data-

frame. Either a database object or a path to a database file can be supplied. If multiple cores are

being used (i.e. cores > 1), a path to a database file must be used because the same database

connection cannot be used across threads. In this case, a new database connection is made

with every fork. Note that when working with temporary tables, coresmust be set to 1 and

the open database connection must be set with db. This is because the use of parallel::
mclapplymeans that new database connections need to be started for each fork and tempo-

rary files are only available inside the same connection.

Queries can be made against multiple tables, assuming that the columns being extracted are

present in all tables. The columns argument is a character vector of column names to be

selected. The individual elements can be of arbitrary length. This means it is possible to insert

SQL clauses e.g. “DISTINCT patid”.

A numeric vector of years is passed to the year_range argument to specify the years to

select data for. Selection is done according to the function passed to the selector_fn argu-

ment. select_events is the default but first_events and last_events can also be

used, as well as custom selection functions. The where argument works in the same way as in

select_events except that year-start and year-end criteria can be added as ‘STARTDATE’

and ‘ENDDATE’. These are translated to the correct year- start and end dates. Different start

and end dates can be specified by supplying a function to the year_fn argument. This func-

tion must accept a single year argument and return a list with two elements—“startdate” and

“enddate”, each of which must be date characters in posix format (i.e. “%Y-%m-%d”). Three

functions are provided to define years (standard_years for 1st January to 31st December,

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 8 / 25

qof_years for UK financial years as used in the UK Quality and Outcomes Framework

[20], and qof_15_months for the period starting 1st January in the year in question and fin-

ishing on the 31st March the following year) and a convenience function, build_date_fn
() is provided to which users can supply lists of year offsets, months and days for year- start

and end to return a function that can be supplied as the year_fn argument. Finally the user

can set the as_list argument to determine whether data from each year is returned as a sep-

arate list element or as a single data frame.

3.3.1 Selecting prevalent and incident events. To show the utility of the package we dem-

onstrate how one might extract an incident and prevalent cohort of diabetes patients from the

simulated example data. Prevalent events for a chronic condition are selected by the earliest

diagnostic event prior to the end of the time period in question. The denominator for the cal-

culation of the prevalence is the total number of patients registered at that time point.

Select all patients with current registration date ðcrdÞ < the start
date for each year:
registered_patients<- select� by� year(db¼ db,

tables¼ "patient",
columns¼ c("patid", "practid", "gender",

"yob", "crd", "tod", "deathdate"),
where¼ "crd < STARTDATE",
year� range¼ c(2008 : 2012),
year� fn ¼ standard_years)

Usingopen databaseconnection

str(registered_patients)

Classes 'tbl_df', 'tbl'and 'data.frame':1005 obs. of 8 variables:
$ patid : int 1001 1002 2002 3002 4002 1003 2003 1004 2004 . . .

$ practid : int 1 2 2 2 2 3 3 4 4 4 . . .

$ gender : int 1 1 1 1 0 0 1 0 1 1 . . .

$ yob : num 1989 1942 1965 1959 1932 . . .

$ crd : chr "1998-03-22""2003-07-10""1997-10-15" . . .

$ tod : chr NA NA NA NA . . .

$ deathdate : chr NA NA NA NA . . .

$ year : int 2008 2008 2008 2008 2008 2008 2008 2008 2008 . . .

table(registered_patients$year)

##
2008 2009 2010 2011 2012
189 195 201 206 214

Notice that select_by_year returns a dataframe in long form, with a year column for

the longitudinal component. Next we collect the incident cases, which are those patients

with first diagnoses at any point before the end of the year in question, plus the dates for the

first diagnoses. In this case we include events matching our list of diabetes clinical codes in

either clinical or referral files. Because we only want the first diagnosis dates we set the

selector_fn argument to first_events:

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 9 / 25

incident_cases<- select� by� year(db¼ db,
tables¼ c("Clinical", "Referral"),
columns¼ c("patid", "eventdate",

"medcode"),
where¼ "medcode %in%

:ðdiabetes� codes$medcodeÞ
& eventdate <¼ ENDDATE",

year� range¼ c(2008 : 2012),
year� fn¼ standard_years,
selector� fn ¼ first_events)

Usingopen databaseconnection

str(incident_cases)

Classes 'tbl_df', 'tbl'and 'data.frame':262 obs. of 5 variables:
$ patid : int 1004 1005 1008 1015 1025 1035 1037 1038 1043 . . .

$ eventdate: chr "2007-12-25""2004-08-31""2002-03-02" . . .

$ medcode : int 351 351 351 351 351 293 277 273 351 257 . . .

$ table : chr "Clinical""Clinical""Clinical""Clinical" . . .

$ year : int 2008 2008 2008 2008 2008 2008 2008 2008 2008 . . .

Note that in this case extra columns have been added for both year and table, to identify the

table the event was found in. Because events were taken from more than one table (Clinical

and Referrals), the incident_cases dataframe should be sorted and duplicates removed to

ensure that only the first events are kept. The two datasets are then merged to give the dataset

from which the denominators and numerators can be calculated. The dplyr package is

imported to the namespace when the rEHR package is loaded. This simplifies and accelerates

merging operations, using left_join from the dplyr package in the example below, and

is an important part of the rEHRworkflow:

All patientsare kept (equivalentto merge(all.x= TRUE))
prevalence_dat<- left� join(registered_patients, incident_cases)
Removeduplicatesacrossclinicaland referraltables:
incident_cases%>%

group� by(patid,year)%>%
arrange(eventdate)%>%
distinct() %>%
ungroup-> incident_cases

Prevalence and incidence can be calculated by the built-in functions prev_terms() and

prev_totals().prev_terms() adds logical columns for membership of incidence and

prevalence denominators as well as a column for the contribution of the individual to that

year’s followup time. prev_totals() summarises this information to calculate the denom-

inators and numerators for prevalence and incidence, according to the users’ grouping factors.

The criteria for membership of the incidence and prevalence numerators and denominators as

well as for followup time are shown in Table 1, where event date is the date the event of interest

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 10 / 25

occurs, transfer out date is the date the patient (may have) exited the practice or the database,

and year start date is either 1st of Jan (calendar) or 1st of April (financial).

An example in the use of these functions is provided below:

prevalence_dat<- prev� terms(prevalence_dat)
totals<- prev� totals(prevalence_dat)
totals$prevalence$year_counts

Source:localdata frame [5 x 4]
##
year numerator denominator prevalence
1 2008 31 174.6721 17.74754
2 2009 35 179.3785 19.51181
3 2010 41 183.1403 22.38721
4 2011 50 185.4182 26.96607
5 2012 55 191.5838 28.70806

totals$incidence$year_counts

Source:localdata frame [5 x 4]
##
year numerator denominator incidence
1 2008 4 143.9014 2.779680
2 2009 3 144.4983 2.076149
3 2010 4 142.2806 2.811345
4 2011 7 135.5893 5.162648
5 2012 5 137.4675 3.637224

Here we see that, in our simulated dataset, we have a diabetes prevalence of 17.7% in 2008

raising to 28.7% in 2012 and an incidence of 2.8% in 2008 increasing to 3.6% in 2012.

4 Building cohorts, matching and time-varying covariates

In this section we demonstrate how to convert the longitudinal data from the previous section

to a cohort dataset suitable for survival analysis and also illustrate algorithms to match controls

to cases and to cut cohort data by time-varying covariates.

One of the most common uses of EHR data in research is to build cohorts for survival anal-

yses. The longitudinal data in the previous section is easily converted to survival cohort format

using the build_cohort() function. This returns a dataset with a single row for each

patient and includes only patients in the numerator or denominator for whichever cohort type

is chosen (either incident or prevalent cohorts). Columns are added for start and end dates

Table 1. Definitions of incidence and prevalence terms.

Term Definition

Incident Numerator event occurs within year AND transfer out date > event date

Incident Denominator No events in previous years AND transfer out date > year start date

Prevalent Numerator event occurs within year AND transfer out date > event date

Prevalent Denominator transfer out date > year start date

Follow-up minimum of (year end date, transfer out date, death date)—year start date

doi:10.1371/journal.pone.0171784.t001

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 11 / 25

and for start and end times as integer differences from the cohort start date. A binary column

is added to indicate membership of the case group. All patients with start dates greater than

their end dates are removed from the dataset. The diagnosis_start argument is used to include

the diagnosis date in the definition of the start dates for the patients. If it is not required for the

diagnosis date to be included in the start date definition, this argument can be set to NULL.

Here, we will first merge in practice data (i.e. dates for when practices are deemed to be up to

standard) and then construct the cohort:

practices<- select� events(db¼ db,tab¼ "Practice", convert� dates¼ TRUE)
prevalence_dat<- left� join(prevalence_dat,practices)

cohort<- build� cohort(prevalence_dat,cohort� type¼ "prev",
cohort� start¼ "2006 � 01 � 01", cohort� end¼ "2012 � 12 � 31"
, diagnosis� start¼ "eventdate")

The cohort is now ready for analysis, e.g. with a relatively simple proportional hazards

regression model that only includes gender and exposure as predictors:

Add a logicalcolumnfor death duringcohort
cohort$death<- with(cohort,

ifelse(!is:null(deathdate)&
(deathdate> as:Date("2006 � 01 � 01") &

deathdate< as:Date("2012 � 12 � 31")),
1, 0))

cohort$death[is:na(cohort$death)]<- 0

library(survival)
surv_obj<- with(cohort,Surv(start,end, death))
coxph(surv_obj* gender+ case,data¼ cohort)

Call:
coxph(formula= surv_obj* gender+ case,data = cohort)
##
##
coef exp(coef) se(coef) z p
gender 0.506 1.659 0.837 0.605 0.55
case -0.645 0.524 1.081 -0.597 0.55
##
Likelihoodratiotest = 0.81 on 2 df, p = 0.667 n = 199,
numberof events= 7

4.1 Matching

Matching cases to controls is an important pre-analysis step. The rEHR package provides

three methods for matching cases to controls:

1. Incidence density matching (IDM)

2. Exact matching

3. Matching on a dummy index date sourced from consultation files

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 12 / 25

4.1.1 Incidence density matching. This is performed using the get_matches() func-

tion. With IDM, controls are selected for a particular case at the time of diagnosis (or other

event such as death) from other members of the cohort who, at that time, do not have the diag-

nosis. The IDM sampling procedure allows the same patient to be selected as a control for

more than one case, thus providing a full set controls for each case while still producing unbi-

ased estimates of risk [7; 21]. This also means that the matching procedure can be parallelised

to increase computational efficiency.

cohort2<- build� cohort(prevalence_dat,cohort� type¼ "incid",
cohort� start¼ "2006 � 01 � 01",
cohort� end¼ "2012 � 12 � 31",
diagnosis� start¼ "eventdate")

IDM_controls<- get� matches(cases¼ filter(cohort2, case == 1),
control� pool¼ filter(cohort2,case == 0),
match� vars¼ c("gender", "region"),
n� controls¼ 4, cores¼ 1,
method¼ "incidence� density",
diagnosis� date¼ "eventdate")

In this example matching scenario, 92 controls were matched to 23 cases, which is 4 con-

trols matched to each case.

In all of the matching algorithms, matching is performed by default on categories selected

in the match_vars argument. However, more complex matching strategies can also be

employed via the extra_conditionsargument. You can wrap calls to expressions in dot-

ted brackets to automatically expand them. This is particularly useful when you want to find

the value for each individual case. Each case is denoted by CASE, e.g. "start_date<.
(CASE$start_date)"will ensure the start date for controls is prior to the start date for

the matched case. The following code also selects controls whose birth year (yob) is within 2

years either side of their matched case:

IDM_controls2<- get� matches(cases¼ filter(cohort2,case == 1),
control� pool¼ filter(cohort2, case == 0),
match� vars¼ c("gender", "region"),
extra� conditions¼ "yob >¼ ð:ðCASE$yobÞ � 2Þ
&yob <¼ ð:ðCASE$yobÞ þ 2Þ",
n� controls¼ 4, cores¼ 1,
method¼ "incidence� density",
diagnosis� date¼ "eventdate")

4.1.2 Exact matching. Exact matching only matches controls from the control pool,

unlike in IDM matching. Also, matched controls are removed from the control pool after

each case has been matched, so each control can be used a maximum of one time. Therefore

it is possible to have fewer matched controls for some cases than are requested via the

n_controls argument. Because the control pool is being altered for every case, exact

matching is not thread safe and so will only run on a single core. The cores and

diagnosis_date arguments are ignored when this method is selected.

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 13 / 25

exact_controls3<- get� matches(cases¼ filter(cohort2, case == 1),
control� pool¼ filter(cohort2, case == 0),
match� vars¼ c("gender", "region"),
n� controls¼ 4, cores= 1,
method¼ "exact",
diagnosis� date¼ "eventdate")

In a small cohort, this can rapidly reduce the control pool, leading to many cases without

matches. In this example, 19 out of 23 were matched with mean 3.6 controls matched to every

case.

4.1.3 Matching on a dummy index date. A common matching approach is to match on

an index date, for example the diagnosis date of the cases or the date followup starts. There are

several reasons to match on index date:

1. It ensures cases and controls are followed-up, on average, for the same amount of time. Not

including an index date for controls may result in them being, on average, in the cohort for

longer than the cases because their cohort start date is not constrained by the index date

2. There is a possible reduction of detection bias, for example if cases are expected to visit

their doctors more often because they have more co-morbidities

3. If controls are known to have attended their practice at around the same time as their

matched case, it is likely they will experience similar conditions in terms of practice policy

and active GPs

4. Patients who, though registered, have no records of contact with the medical system

(“Ghost patients”) are excluded

However, the controls will often not have the same index to match on (this is true by defini-

tion if the diagnosis date is used). In this situation, it is common to match on a dummy index

date which may be a clinical event or interaction in the control’s electronic health record that

occurs around the same time as the index date of the case [22; 23]. The match_on_index()
function allows for matching on an arbitrary number of categorical match_var variables and

on continuous variables via the extra_conditions argument in the same way as the

get_matches() function above. In addition, a supplied index date for each case is matched

to event dates in a series of consultation files (1 file for each practice), providing a dummy

index date for controls of a consultation date within index_diff_limit days of the

matched case’s index date.

Note that the consultation files must be in flat-file format, i.e. not as part of the database,

but as text (or other filetype, e.g stata dta) files. This is the data format provided by CPRD

(“Clinical Practice Research Datalink (CPRD) GOLD”). Although in most situations it is

more efficient to process EHR data in SQL databases, as in the earlier functions described

here, consultation tables are often very large and searching these for every case in a large

cohort would be very slow. By processing consultation files that have been split by practice,

it is possible to search for matches a practice at a time which is both efficient and allows for

parallel processing to speed the process up still further. For convenience, a function

flat_files() is provided that can export a database table to flat files split by practice in

a format of their choosing. The match_on_index() function has an import_fn argu-

ment to use different file formats (e.g. foreign::read.dtaor readstata13::
read.dta13 for Stata 12 or Stata 13 file).

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 14 / 25

consultation_dir<- " � =R=rEHR� testing"
flat� files(db,out� dir¼ consultation_dir,file� type¼ "csv")
index_controls<- match� on� index(cases¼ filter(cohort2,case == 1),

control� pool¼ filter(cohort2, case == 0),
index� var¼ "eventdate",
match� vars¼ c("gender", "region"),
index� diff� limit¼ 90,
consult� path¼ consultation_dir,
n� controls¼ 4,
import� fn¼ function(x)

convert� dates(read:csv(x)))
clean up constructed dirs after analysis
unlink(consultation_dir,recursive¼ TRUE)

This function performs matching that is still more conservative than the previous methods,

since it requires matching of patients within the same practice and with consultation dates

near the index date. In the test example above, no matched controls were found which is not

surprising with a control pool of only 143. In practice this method is only appropriate where

there is a control pool of hundreds of thousands or even millions of patients. If too few con-

trols are found, the constraint can be relaxed by setting a higher index_diff_limit. Set-

ting this to an arbitrarily high value effectively means that matching is not done on index date,

but just on practice and the other user-specified matching variables. Users may find that this is

a more efficient way to perform exact matching than using the get_matches() function.

We have used this method to accelerate matching runs with several million controls that previ-

ously took days or weeks to minutes or a few hours.

4.2 Time-varying covariates

Often, researchers want to cut a survival cohort by time-varying covariates. In this situation,

individual patients may run over more than one row in the cohort dataset. For example, a

drug exposure may occur after the entry into the cohort and one might be interested in how

this might affect the outcome. In this situation, it is useful to have a pre-exposure and post-

exposure time period in the dataset.

The cut_tv() function cuts up a dataset based on times supplied for the time-varying

covariate. If there is already a variable for the time-varying covariate, you can chose to flip

the existing values or increment them. This means the function can be called multiple times

to, e.g. deal with drugs starting and stopping and also to model the progression of treatment.

Other packages implement similar functions (e.g. the cutLexis function from the Epi
package [24]). The cut_tv() function is considerably faster than other cutting methods

(particularly on large datasetss), does not require conversion of the dataset to other formats

(such as Lexis), can be parallelised on posix compliant machines and is designed to be

chained with dplyrworkflows using the %>% operator. cut_tv() can deal with the fol-

lowing scenarios:

• Binary chronic covariates e.g. The time of diagnosis for a chronic (unresolvable) condition.

This requires a single column variable of times from entry in the dataset

• Binary covariates e.g. times of starting and stopping medication. This requires more than

one column variable in the dataset, one for each start or stop event. The state flips with each

new change.

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 15 / 25

• Incremental time-varying covariates e.g. different stages of a condition. This requires a sin-

gle column variable for each incremental stage

• Any combination of the above This is achieved by chaining multiple calls together

One must supply a dataframe, variable names for entry and exit times, the time-varying

covariate, the patient id and the constructed variable. Also one supplies the number of proces-

sor cores to run the function on and the behaviour of the function if the constructed variable

already exists (either to flip from 1-0 or to increment by one). Here we demonstrate the differ-

ent scenarios with a small sample dataset:

tv_test<- data:frame(id¼ 1 : 5, start¼ rep(0,5),
end¼ c(1000, 689, 1000, 874,777),
event¼ c(0, 1, 0, 1, 1),
drug� 1¼ c(NA,NA, NA, 340, 460),
drug� 2¼ c(NA,234, 554,123, NA),
drug� 3� start¼ c(110, 110,111, 109,110),
drug� 3� stop¼ c(400,400, 400,400, 400),
stage� 1¼ c(300,NA, NA, NA, NA),
stage� 2¼ c(450,NA, NA, NA, NA))

Multiplebinarychroniccovariates:
tv_out1<- cut� tv(tv_test,

entry¼ start,
exit = end,
cut� var¼ drug_1,
id� var¼ id,
tv� name¼ drug_1_state)

tv_out1<- cut� tv(tv_out1,start,end,drug_2,id� var¼ id,drug_2_state)
head(tv_out1)

Source:localdata frame[6 x 12]
##
id start end event drug_1 drug_2 drug_3_start drug_3_stop stage_1
1 1 0 1000 0 NA NA 110 400 300
2 2 0 233 1 NA 234 110 400 NA
3 2 234 689 1 NA 234 110 400 NA
4 3 0 553 0 NA 554 111 400 NA
5 3 554 1000 0 NA 554 111 400 NA
6 4 0 122 1 340 123 109 400 NA
Variablesnot shown:stage_2(dbl),drug_1_state(dbl),
drug_2_state(dbl)

Binarycovariates:
tv_out3<- cut� tv(tv_test,start,end, drug_3_start,id� var¼

id, drug_3_state)
tv_out3<- cut� tv(tv_out3,start,end, drug_3_stop,id� var¼

id, drug_3_state)
head(tv_out3)

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 16 / 25

Source:localdata frame[6 x 11]
##
id start end event drug_1 drug_2 drug_3_start drug_3_stop stage_1
1 1 0 109 0 NA NA 110 400 300
2 1 110 399 0 NA NA 110 400 300
3 1 400 1000 0 NA NA 110 400 300
4 2 0 109 1 NA 234 110 400 NA
5 2 110 399 1 NA 234 110 400 NA
6 2 400 689 1 NA 234 110 400 NA
Variablesnot shown:stage_2(dbl),drug_3_state(dbl)

incrementalcovariates:
inc_1<- cut� tv(tv_test,start,end, stage_1,id� var¼ id, disease_stage,

on� existing ¼ "inc")
inc_1 <- cut� tv(inc_1,start,end, stage_2,id� var¼ id, disease_stage,

on� existing ¼ "inc")
head(inc_1)

Source:localdata frame[6 x 11]
##
id start end event drug_1 drug_2 drug_3_start drug_3_stop stage_1
1 1 0 299 0 NA NA 110 400 300
2 1 300 449 0 NA NA 110 400 300
3 1 450 1000 0 NA NA 110 400 300
4 2 0 689 1 NA 234 110 400 NA
5 3 0 1000 0 NA 554 111 400 NA
6 4 0 874 1 340 123 109 400 NA
Variablesnot shown:stage_2(dbl),disease_stage(dbl)

Chainingcombinationsof the aboveusing%>%
library(dplyr)
tv_test%>%

cut� tv(start,end, drug_1,id� var¼ id, drug_1_state)%>%
cut� tv(start,end, drug_2,id� var¼ id, drug_2_state)%>%
cut� tv(start,end, drug_3_start,id� var¼ id, drug_3_state)%>%
cut� tv(start,end, drug_3_stop,id� var¼ id, drug_3_state)%>%
cut� tv(start,end, stage_1,id� var¼ id, disease_stage,

on� existing¼ "inc") %>%
cut� tv(start,end, stage_2,id� var¼ id, disease_stage,

on� existing¼ "inc") %>%
head

Source:local data frame [6 x 14]
##
id start end event drug_1 drug_2 drug_3_start drug_3_stop stage_1
1 1 0 109 0 NA NA 110 400 300
2 1 110 299 0 NA NA 110 400 300
3 1 300 399 0 NA NA 110 400 300
4 1 400 449 0 NA NA 110 400 300
5 1 450 1000 0 NA NA 110 400 300
6 2 0 109 1 NA 234 110 400 NA
Variablesnot shown:stage_2(dbl),drug_1_state(dbl),drug_2_state
(dbl),drug_3_state(dbl),disease_stage(dbl)

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 17 / 25

5 Accessory functions

In this section we briefly discuss some miscellaneous functions provided in the package.

5.1 Clinical code list construction

An important part of EHR analyses is the construction of lists of clinical codes to define condi-

tions, comorbidities and other clinical entities of interest to the study [9]. We have previously

described methodologies to construct draft lists of clinical codes from keyword and code

searches [19]. The R implementation of this methodology is now part of the rEHR package.

Building draft lists of clinical codes is a two-stage process: First, the search is defined by

instantiating an object of class MedicalDefinition, containing the terms to be searched

for in the lookup tables. MedicalDefinitionobjects can be instantiated from terms

defined within R or imported from a csv file. The constructor function can be provided with

lists of: terms(clinical search terms), codes (clinical codes), tests (test search terms),

drugs (drug search terms), drugcodes (drug product codes). Within the individual argu-

ment lists, vectors of length> 1 are searched for together (logical AND), in any order. Differ-

ent vectors in the same list are searched for separately (logical OR). Placing a “-” character at

the start of a character vector element excludes that terms from the search. Providing NULL to

any of the arguments means that this element will not be searched for. Underscores are treated

as spaces. When searching for codes, a range of clinical codes can be searched for by providing

two codes separated by a hyphen. e.g “E114-E117z”.

Exampleconstructionof a clinicalcode list
def <- MedicalDefinition(

terms¼ list(
"peripheral vascular disease", "peripheral gangrene",
" � wrong answer", "intermittent claudication",
"thromboangiitis obliterans", "thromboangiitis obliterans",
"diabetic peripheral angiopathy",
c("diabetes", "peripheral angiopathy"),# single AND expression
c("buerger", "disease presenile� gangrene"),

" � excepted", # exclusion
codes¼ list("G73"),
tests¼ NULL,
drugs¼ list("insulin", "diabet", "aspirin")))

Code lists can be defined in a csv file with format as shown in Table 2. These files can then

be imported to MedicalDefinitionobjects using the import_definitions
(input_file= "path/to/file.csv") function.

The MedicalDefinitionobjects are then used to run searches against lookup tables

provided with EHRs via the build_definition_lists() function:

Use fileEncoding= "latin1"to avoidissueswith non-asciicharacters
medical_table<- read:delim("Lookups=medical:txt", fileEncoding¼ "latin1",

stringsAsFactors¼ FALSE)
drug_table<- read:delim("Lookups=product:txt", fileEncoding¼ "latin1",

stringsAsFactors¼ FALSE)
draft_lists<- build� definition� lists(def,medical� table = medical_table,

drug� table¼ drug_table)

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 18 / 25

5.2 Unit conversion

HbA1C tests for glycated haemoglobin are one of the best recorded clinical tests in UK primary

care databases, to a large extent because of testing being incentivised under the UK Quality

and Outcomes Framework pay-for-performance scheme [20; 25]. However, HbA1C data is

not recorded in CPRD consistently. Measurements may have been made in mmol/mol,

mmol/L or mg/dL. Also the closely analogous fructosamine test can also be converted into the

same units for direct comparison. The CPRD-specific cprd_uniform_hba1c_values()
function accepts a single argument of a dataframe in the CPRD “Additional” table form con-

taining only entity types for HbA1C and Fructosamine and converts any HbA1C and fructosa-

mine values to a common mmol/mol scale. Once this conversion has taken place, the function

also removes obvious mis-coding errors that are far outside the possible range. A dataframe is

returned with an extra column hba1c_score.

5.3 Exporting data to stata format

Sometimes researchers may need to share data with others in the same group who may not

have R expertise. We have provided the to_stata function to export dataframes to stata dta

format. This function compresses a dataframe to reduce file size in the following ways:

1. Date variables (as specified by the date_fields argument) are converted to integer days

from 1960-01-01 to avoid compatibility issues between R and Stata. An alternative origin

can be set with the origin argument.

2. Fields specified in the integer_fields are converted from numeric to integer.

the stata13 boolean argument indicates whether files should be stored in Stata13 format

(Using readstata13::savedta13) or in Stata 12 compatible format (using foreign::
write.dta). The former includes a further compression step, similar to the compress
command in Stata.

5.4 Working with temporary database tables

The size of EHR databases may require keeping intermediate data extractions as database

tables, rather than as in-memory R dataframes. For example, extractions of clinical events for a

common condition such as diabetes or asthma will require the extraction of millions of rows

Table 2. Example code list definition in csv format.

definition status items

terms include peripheral vascular disease peripheral angiopathy terms

disease presenile_gengrene termsterms include peripheral gangrene

terms exclude wrong answer

terms include intermittent claudication

terms include thromboangiitis obliterans

terms include Diabetic peripheral angiopathy

terms include diabetes

terms include buerger

terms exclude excepted

codes include G73

drugs include insulin

drugs include aspirin

doi:10.1371/journal.pone.0171784.t002

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 19 / 25

of data. These may be easily stored as temporary database tables. This is also useful if you are

working with a protected database that you only have read-only access to. The rEHR package

has a suite of functions to deal with temporary database tables:

• temp_table() is used to construct temporary tables and is illustrated in section 3

• append_to_temp_table()appends rows to a temporary table based on a specified

select statement

• to_temp_table()exports a dataframe to a temporary database table

• drop_temp_table()checks if a temporary table exists and then deletes if it does

• drop_all_temp_tables()drops all temporary tables from the database

Note that temporary tables are only associated with the currently open database connection.

This means that functions capable of parallel processing (e.g. select_by_year()) can

only be used in the single core mode (i.e. set cores = 1) since multicore processes open up

multiple parallel connections.

6 Setting EHR type

In the final section we discuss the .ehr environment used to define the EHR database being

used and how this can be set to work with different databases.

In many of the functions in this package, specific tables and variables in the database need

to be accessed. A particular database system, such as CPRD, will have its own schema describ-

ing the organisation of the data within it. To simplify the functions in this package, we have

opted to include an interface to the database schema in the form of an environment, .ehr,

that is accessed by the various analysis functions in order to extract the correct data from the

correct place in the database. This is effectively a list of attributes relating to the EHR system

being used. For example there is an attribute specifying the patient id variable in the database.

By default, a schema environment for CPRD is loaded when the package is loaded via a call to

set_CPRD(). We have provided accessor functions to get and set attributes in the .ehr
environment. It is preferable to use these accessor functions rather than setting elements

directly. A list of all of the attributes is provided by the list_EHR_attributes() func-

tion. For example:

list� EHR� attributes()

[1] "birth_year" "cohort" "date_fields"
[4] "ehr_medcode" "EHR_name" "event_date"
[7] "lookup" "patient_id" "practice_id"
[10] "raw_date_format" "tables" "year_origin"

The values of individual attributes can be accessed with the get_EHR_attribute()
function:

get� EHR� attribute(patient_id) # gives the attribute for patient ids

[1] "patid"

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 20 / 25

get� EHR� attribute(date_fields)
fields in the database stored as dates

event entry last_coll up_to_std first_reg
"eventdate" "sysdate" "lcd" "uts" "frd"
current_reg transfer_out death
"crd" "tod" "deathdate"

get� EHR� attribute(cohort)# variables used in cohort construction

$start_criteria
[1] "crd" "uts"
##
$end_criteria
[1] "tod" "deathdate" "lcd"

Individual attribute values can be set using the set_EHR_Attribute() function:

set the patient id attribute
set� EHR� attribute(patient_id, value¼ "PATIENT")
get� EHR� attribute(patient_id)

[1] "PATIENT"

The default settings can be reverted to using the set_CPRD() function:

set� CPRD()

UsingCPRD settings

get� EHR� attribute(patient_id)

[1] "patid"

The .ehr environments will allow for the simple definition of interfaces to other EHR sys-

tems, via the construction of new setting functions.

7 Conclusion

Working with structured EHR data requires a combination of computational and statistical

expertise. The rEHR package greatly simplifies and accelerates the extraction and processing

of coded data from EHR databases, enabling researchers to spend more time on their analyses,

time that would otherwise be consumed with laborious preparation of research-ready data.

The workflow is straightforward, amounting to a flat series of function calls rather than a com-

plex set of nested loops, therefore errors are much more easily spotted and fixed. The available

functions are summarised in Table 3. The combination of SQL native databases, optimised

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 21 / 25

Table 3. Available functions in rEHR.

code file function description

codelists extract_keywords Function to extract rows from a lookup table based on keywords

MedicalDefinition Constructor function for MedicalDefinition class

import_definitions Imports definitions to be searched from a csv file into a MedicalDefinition object

export_definition_search Exports definition searches to an excel file

definition_search This function is used to build new definition lists based on medical definitions

print.MedicalDefinition Basic print method for medical definition classes

cohort build_cohort Converts a longitudinal data set from e.g. ncode{prev_terms} to a cohort dataset

cut_tv Cuts a survival dataset on a time varying variable

cprd_import read_zip Reads a zipped data file to a dataframe

database Wrapper for dbConnect

add_to_database Adds a series of files to a database

import_CPRD_data Imports all selected CPRD data into an sqlite database

cprd_medcodes patients_per_medcode Produce a dataset of CPRD medcodes with frequencies of patients in the clinical table

medcodes_to_read Translate CPRD medcodes to Read/OXMIS

read_to_medcodes Translate Read/Oxmis codes to CPRD medcodes

cprd_patients patients_in_window Select patients alive and registered between certain dates

data clinical_codes Clinical codes for 17 QOF conditions, smoking and HbA1c

entity A sample of 6 clinical tests and meaures used in UK primary care

product A sample of 500 medicines used in UK primary care

repsample_example An example dataset to demonstrate the repsample function. 2474 theoretical UK general practices

ehr_def An example EHR_definition object for defining parameters for simulating EHR data

db_view head.SQLiteConnection head for SQLiteConnection object

EHR_definition define_EHR Construct an EHR_definition object

print.EHR_definition Tools for describing EMR_description objects

ehr_simulation random_dates Generates random dates between a start and end day

surv_sims Function to simulate survival data

simulate_ehr_patients Generate a dataframe of simulated patients with exit dates based on presented comorbidities

simulate_ehr_practices Generate a simulated dataframe of primary care practices in the same format as is used in the CPRD

simulate_ehr_consultations Generates simulated GP consultation tables

simulate_ehr_events Generate simulated events tables

ehr_system set_CPRD Sets EHR metadata to CPRD format

get_EHR_attribute Return the value of an attribute in the .ehr environment

set_EHR_attribute Sets the value of an attribute in the .ehr environment

list_EHR_attribute Lists all of the EHR attribute names in .ehr

matching match_case Selected controls matching a list of variables from a case

get_matches Find matched controls for a set of cases

match_on_index Function for performing matching of controls to cases using the consultation files to generate a dummy

index date for controls

prevalence prev_terms Adds columns enabling one to calculate numerators and denominators for prevalence and incidence

prev_totals Calculates the prevalence totals for the output of a data frame of events/patients etc

select_by_year select_by_year Runs a series of selects over a year range and collects in a list of dataframes

build_date_fn Function to build start/enddate helper fuctions

qof_years_fn Helper function providing startdate and enddate for QOF years

qof_15_month_fn Helper function providing startdate and enddate for QOF 15 month periods

standard_years_fn Helper function providing startdate and enddate for calendar years

select_events select_events Extracts from the database

first_events Selects the earliest event grouped by patient

last_events Selects the latest event grouped by patient

(Continued)

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 22 / 25

data manipulation packages and multicore functionality results in a package that runs many

times faster than equivalent code.

7.1 Limitations and future work

Although rEHR is currently only tested with CPRD data, the .ehr environment system will

allow it to be easily linked to other EHR databases. For future versions of the rEHR software

we will consider:

• Implementation of the repsample algorithm for representative sampling of practices [26].

• Iterative proportional fitting for matching on population characteristics between different

EHR databases [8].

• A robust algorithm for determining smoking status.

• Interfaces to other EHR systems, in particular UK primary care databases such as THIN,

QResearch and Research One.

• Uniform units functions for other clinical measurements such as blood pressure, cholesterol

and serum creatinine.

• Probabilistic or other matching for patient record linkage.

Ethics and consent statement

This study is based on data from the Clinical Practice Research Datalink (CPRD) obtained

under licence from the UK Medicines and Healthcare products Regulatory Agency. However,

the interpretation and conclusions contained in this paper are those of the authors alone. The

study was approved by the independent scientific advisory committee (ISAC) for CPRD

research (reference number: 16_115R). No further ethics approval was required for the analy-

sis of the data.

Table 3. (Continued)

code file function description

temp_tables temp_table Creates a temporary table in the database

append_to_temp_table Appends rows to a temporary table

to_temp_table Send a dataframe to a temporary table in the database

drop_temp_table Checks if a temporary table exists and then deletes if it does

drop_all_temp_tables Checks if any temporary tables exist and then deletes all

temp_location Sets location of the db temporary store for temporary tables

uniform_units cprd_uniform_hba1c_values Standardises HbA1C values to mmol/mol

utils compress Compresses a dataframe to make more efficient use of resources

to_stata Compresses a dataframe and saves in stata format. Options to save as Stata 12 or 13

wrap_sql_query Combines strings and vectors in a sensible way for select queries

expand_string Reads strings and expands sections wrapped in dotted parentheses

convert_dates Converts date fields from ISO character string format to R Date format

export_fn Exports to a variety of formats based on the file type argument

flat_files Exports flat files from the database. One file per practice

doi:10.1371/journal.pone.0171784.t003

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 23 / 25

Acknowledgments

This study was funded by the National Institute for Health Research (NIHR) School for Pri-

mary Care Research (SPCR), under the title ‘An analytical framework for increasing the effi-

ciency and validity of research using primary care databases’ (Project no. 211). This paper

presents independent research funded by the National Institute for Health Research (NIHR).

The views expressed are those of the authors and not necessarily those of the NHS, the

National Institute for Health Research or the Department of Health. In addition, MRC Health

eResearch Centre Grant MR/K006665/1 supported the time and facilities of one investigator

(EK).

Author Contributions

Conceptualization: DAS EK.

Funding acquisition: EK DR.

Methodology: DAS EK.

Software: DAS RP.

Supervision: EK.

Validation: RP IO.

Visualization: DAS EK.

Writing – original draft: DAS.

Writing – review & editing: RP IO DR EK.

References
1. R Core Team. R: A Language and Environment for Statistical Computing; 2014. Available from: http://

www.R-project.org/.

2. Herrett E, Gallagher AM, Bhaskaran K, Forbes H, Mathur R, van Staa T, et al. Data resource profile:

clinical practice research datalink (CPRD). International journal of epidemiology. 2015; 44(3):827–836.

doi: 10.1093/ije/dyv098 PMID: 26050254

3. Kontopantelis E, Buchan I, Reeves D, Checkland K, Doran T. Relationship between quality of care and

choice of clinical computing system: retrospective analysis of family practice performance under the

UK’s quality and outcomes framework. BMJ open. 2013; 3(8):e003190. doi: 10.1136/bmjopen-2013-

003190 PMID: 23913774

4. Kontopantelis E, Springate D, Reeves D, Ashcroft DM, Valderas JM, Doran T. Withdrawing perfor-

mance indicators: retrospective analysis of general practice performance under UK Quality and Out-

comes Framework. Bmj. 2014; 348:g330. doi: 10.1136/bmj.g330 PMID: 24468469

5. Danaei G, RodrÃguez LAG, Cantero OF, Logan R, HernÃ¡n MA. Observational data for comparative

effectiveness research: An emulation of randomised trials of statins and primary prevention of coronary

heart disease. Statistical Methods in Medical Research. 2013; 22(1):70–96. doi: 10.1177/

0962280211403603 PMID: 22016461

6. Zorych I, Madigan D, Ryan P, Bate A. Disproportionality methods for pharmacovigilance in longitudinal

observational databases. Statistical Methods in Medical Research. 2013; 22(1):39–56. doi: 10.1177/

0962280211403602 PMID: 21878461

7. Reeves D, Springate DA, Ashcroft DM, Ryan R, Doran T, Morris R, et al. Can analyses of electronic

patient records be independently and externally validated? The effect of statins on the mortality of

patients with ischaemic heart disease: a cohort study with nested caseâ€“control analysis. BMJ Open.

2014; 4(4). doi: 10.1136/bmjopen-2014-004952 PMID: 24760353

8. Springate DA, Ashcroft DM, Kontopantelis E, Doran T, Ryan R, Reeves D. Can analyses of electronic

patient records be independently and externally validated? Study 2â€”the effect of B-adrenoceptor

blocker therapy on cancer survival: a retrospective cohort study. BMJ Open. 2015; 5(4). doi: 10.1136/

bmjopen-2014-007299 PMID: 25869690

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 24 / 25

http://www.R-project.org/
http://www.R-project.org/
http://dx.doi.org/10.1093/ije/dyv098
http://www.ncbi.nlm.nih.gov/pubmed/26050254
http://dx.doi.org/10.1136/bmjopen-2013-003190
http://dx.doi.org/10.1136/bmjopen-2013-003190
http://www.ncbi.nlm.nih.gov/pubmed/23913774
http://dx.doi.org/10.1136/bmj.g330
http://www.ncbi.nlm.nih.gov/pubmed/24468469
http://dx.doi.org/10.1177/0962280211403603
http://dx.doi.org/10.1177/0962280211403603
http://www.ncbi.nlm.nih.gov/pubmed/22016461
http://dx.doi.org/10.1177/0962280211403602
http://dx.doi.org/10.1177/0962280211403602
http://www.ncbi.nlm.nih.gov/pubmed/21878461
http://dx.doi.org/10.1136/bmjopen-2014-004952
http://www.ncbi.nlm.nih.gov/pubmed/24760353
http://dx.doi.org/10.1136/bmjopen-2014-007299
http://dx.doi.org/10.1136/bmjopen-2014-007299
http://www.ncbi.nlm.nih.gov/pubmed/25869690

9. Springate DA, Kontopantelis E, Ashcroft DM, Olier I, Parisi R, Chamapiwa E, et al. ClinicalCodes: An

Online Clinical Codes Repository to Improve the Validity and Reproducibility of Research Using Elec-

tronic Medical Records. PLoS ONE. 2014; 9(6):e99825. doi: 10.1371/journal.pone.0099825 PMID:

24941260

10. Davé S, Petersen I. Creating medical and drug code lists to identify cases in primary care databases.

Pharmacoepidemiology and Drug Safety. 2009; 18(8):704–707. doi: 10.1002/pds.1770 PMID:

19455565

11. Overhage JM, Overhage LM. Sensible use of observational clinical data. Statistical Methods in Medical

Research. 2013; 22(1):7–13. doi: 10.1177/0962280211403598 PMID: 21828172

12. Perlis RH, Iosifescu DV, Castro VM, Murphy SN, Gainer VS, Minnier J, et al. Using electronic medical

records to enable large-scale studies in psychiatry: treatment resistant depression as a model. Psycho-

logical Medicine. 2012; 42:41–50. doi: 10.1017/S0033291711000997 PMID: 21682950

13. Ainsworth J, Cunningham J, Buchan I. eLab: Bringing Together People, Data and Methods to Enhance

Knowledge Discovery in Healthcare Settings. Studies in health technology and informatics. 2012;

175:39–48. PMID: 22941986

14. Bechhofer S, Buchan I, De Roure D, Missier P, Ainsworth J, Bhagat J, et al. Why linked data is not

enough for scientists. Future Generation Computer Systems. 2013; 29(2):599–611. doi: 10.1016/j.

future.2011.08.004

15. Wickham H, Francois R. dplyr: A Grammar of Data Manipulation; 2015. Available from: http://CRAN.R-

project.org/package=dplyr.

16. Grothendieck G. sqldf: Perform SQL Selects on R Data Frames; 2014. Available from: http://CRAN.R-

project.org/package=sqldf.

17. Wickham H, Chang W. devtools: Tools to make developing R code easier; 2014. Available from: http://

CRAN.R-project.org/package=devtools.

18. James DA, Falcon S, the authors of SQLite. RSQLite: SQLite interface for R; 2013. Available from:

http://CRAN.R-project.org/package=RSQLite.

19. Olier I, Springate DA, Reeves D, Ashcroft DM, Doran T, Reilly S, et al. Modelling Conditions and Health

Care Processes in Electronic Health Records: An Application to Severe Mental Illness with the Clinical

Practice Research Datalink. PLoS ONE. 2016;. doi: 10.1371/journal.pone.0146715 PMID: 26918439

20. Doran T, Fullwood C, Gravelle H, Reeves D, Kontopantelis E, Hiroeh U, et al. Pay-for-performance pro-

grams in family practices in the United Kingdom. N Engl J Med. 2006; 355(4):375–384. doi: 10.1056/

NEJMsa055505 PMID: 16870916

21. Richardson DB. An incidence density sampling program for nested case-control analyses. Occupational

and Environmental Medicine. 2004; 61(12):e59. doi: 10.1136/oem.2004.014472 PMID: 15550597

22. Parisi R, Rutter MK, Lunt M, Young HS, Symmons DP, Griffiths CE, et al. Psoriasis and the Risk of

Major Cardiovascular Events: Cohort Study Using the Clinical Practice Research Datalink. Journal of

Investigative Dermatology. 2015;. doi: 10.1038/jid.2015.87 PMID: 25742120

23. Gelfand JM, Neimann AL, Shin DB, Wang X, Margolis DJ, Troxel AB. Risk of myocardial infarction in

patients with psoriasis. JAMA. 2006; 296(14):1735–1741. doi: 10.1001/jama.296.14.1735 PMID:

17032986

24. Bendix Carstensen EL Martyn Plummer, Hills M. Epi: A Package for Statistical Analysis in Epidemiol-

ogy; 2014. Available from: http://CRAN.R-project.org/package=Epi.

25. Kontopantelis E, Springate DA, Reeves D, Ashcroft DM, Rutter M, Buchan I, et al. Glucose, blood pres-

sure and cholesterol levels and their relationships to clinical outcomes in type 2 diabetes: a retrospec-

tive cohort study. Diabetologia. 2014; p. 1–14.

26. Kontopantelis E. A Greedy Algorithm for Representative Sampling: repsample in Stata. Journal of Sta-

tistical Software. 2013; 55(1).

rEHR: An R package for manipulating and analysing Electronic Health Record data

PLOS ONE | DOI:10.1371/journal.pone.0171784 February 23, 2017 25 / 25

http://dx.doi.org/10.1371/journal.pone.0099825
http://www.ncbi.nlm.nih.gov/pubmed/24941260
http://dx.doi.org/10.1002/pds.1770
http://www.ncbi.nlm.nih.gov/pubmed/19455565
http://dx.doi.org/10.1177/0962280211403598
http://www.ncbi.nlm.nih.gov/pubmed/21828172
http://dx.doi.org/10.1017/S0033291711000997
http://www.ncbi.nlm.nih.gov/pubmed/21682950
http://www.ncbi.nlm.nih.gov/pubmed/22941986
http://dx.doi.org/10.1016/j.future.2011.08.004
http://dx.doi.org/10.1016/j.future.2011.08.004
http://CRAN.R-project.org/package=dplyr
http://CRAN.R-project.org/package=dplyr
http://CRAN.R-project.org/package=sqldf
http://CRAN.R-project.org/package=sqldf
http://CRAN.R-project.org/package=devtools
http://CRAN.R-project.org/package=devtools
http://CRAN.R-project.org/package=RSQLite
http://dx.doi.org/10.1371/journal.pone.0146715
http://www.ncbi.nlm.nih.gov/pubmed/26918439
http://dx.doi.org/10.1056/NEJMsa055505
http://dx.doi.org/10.1056/NEJMsa055505
http://www.ncbi.nlm.nih.gov/pubmed/16870916
http://dx.doi.org/10.1136/oem.2004.014472
http://www.ncbi.nlm.nih.gov/pubmed/15550597
http://dx.doi.org/10.1038/jid.2015.87
http://www.ncbi.nlm.nih.gov/pubmed/25742120
http://dx.doi.org/10.1001/jama.296.14.1735
http://www.ncbi.nlm.nih.gov/pubmed/17032986
http://CRAN.R-project.org/package=Epi

