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Abstract 

This thesis aims to develop a new way for port authorities to predict, analyse and make 

decisions in Port State Control (PSC) inspections. Under the New Inspection Regime (NIR), it 

is necessary to not only figure out the influence of new regime to the PSC system, but also 

provide some technical tools capable of predicting the inspection results and supporting the 

decision-making of port authorities when regulating the inspection policy.  

The study consists of analysis from multiple perspectives, both qualitative and quantitative. 

The risk factors influencing the inspection results and the decision-making of port authorities 

under NIR are identified through the practical inspection records and related literature. The 

Paris Memorandum of Understanding (MoU) offers the historical inspection records within the 

region of Europe and the North Atlantic basin, reflecting different conditions in different 

periods. Given the different inspection system since 2011, port authorities require a brand new 

perception of the new inspection regime to estimate the inspection results, and further make 

decisions when making their own inspection policy. 

To achieve the objective, an incorporation of two types of models that have proved popular 

and superior is applied in this study. One is the risk assessment model of Bayesian network 

(BN), the other is the decision-making model of game theory.  

The BN models in this research utilize a data-driven approach called Tree Augmented Naïve 

(TAN) learning to derive the structure of the models. Based on the inspection reports collected 

from Paris MoU, two BNs that represent the situations of Paris MoU inspection system in 

different periods are constructed. Company performance, the new indicator, is viewed as one 

of the important factors influencing the inspection results for the first time and considered in 

the models. The BN model after the implementation of NIR can serve as the prediction tool for 

estimating inspection results under dynamic situations. Additionally, a comparative analysis 

between two models is conducted to clarify the influence on PSC inspection system brought 

by NIR. 

When constructing the non-cooperative strategic game model between port authorities and 

ship owners under NIR, the BN model outcomes play a crucial role in this process, highlighting 

the novelty of this model. Through the analysis and calculation on the payoff matrix, a Nash 

equilibrium solution representing the theoretical optimal inspection rate for port authorities is 

obtained. 
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To validate the feasibility and practical significance of the game model, an empirical study 

is conducted. The statistics are quantitative and collected from different sources, i.e. Basic 

vessel information from the World Shipping Encyclopaedia (WSE), casualty information from 

IMO and Lloyd's Register of Shipping, PSC Inspection records from Paris MoU online 

inspection database, and the estimated value of different cost types from Drewry Shipping 

Consultants Ltd. The empirical study illustrates the insights of the optimal inspection policy 

for port authorities (i.e. with the increase of punishment severity, the optimal inspection rates 

experience a decreasing trend whatever the vessel condition), as well as providing suggestions 

for them when formulating the optimal inspection policy under various situations.  

Based on the BN model and the strategic game model after the implementation of NIR, the 

thesis eventually proposes a decision-making framework for port authorities to prioritise and 

select the strategies under different situations. The six-step framework incorporates a risk 

assessment approach and decision-making approach to provide a novel way to rank the 

candidate options of port authorities in terms of their resources, which enables decision-makers 

to find optimal strategies to improve the performance of the PSC inspection system under 

dynamic business environments. 

In general, this thesis provides important insights for port authorities to ensure that optimal 

inspection actions are taken to improve safety at sea in a cost effective manner. The two 

technical tools (i.e. the dynamic prediction tool for inspection results & the optimal inspection 

strategy), and the decision-making framework proposed in this project are helpful for port 

authorities within the Paris MoU region when regulating their inspection policy under NIR. 

Meanwhile, the comparative analysis in this study further clarifies the influence of NIR on new 

inspection system from different angles for the first time, demonstrating the introduction and 

implementation of NIR is a wise and positive decision.  

 

 

 

 

 

 

 

 



iii 

 

Acknowledgements 

This thesis is the result of a three-year PhD research project. It has been a long journey and 

would certainly have not been possible without the help and support of many people. I would 

like to take this opportunity to express my special debt of gratitude to them. 

First and foremost, I would like to thank with heartfelt gratefulness my principle supervisor, 

Professor Zaili Yang. During my PhD work, he cared a lot about my research and he was 

always there whenever I needed him. His patience, guidance, encouragement and advice to 

deal with encountering research problems have been priceless and helpful. More importantly, 

his passion towards the academic research has inspired me to keep moving and not be afraid 

of any difficulties. Additionally, he offered me plenty of opportunities to communicate with 

the researchers in the same field at various conferences, for example, the conference of the 

International Association of Maritime Economists (IAME), and the IEEE International 

Conference on Logistics, Informatics and Service Sciences (LISS). It is really a great honour 

for me to be one of his students in my life. I would also like to thank my co-supervisor in 

Liverpool John Moores University (LJMU), Dr Rob Darlington, for his kind assistance and 

fruitful advice to help me complete the thesis.  

I owe special thanks to Dr Jingbo Yin at Shanghai Jiao Tong University (SJTU), who is also 

my co-supervisor. Without his help, I could have not started my PhD at LJMU. As my 

supervisor at Bachelor degree, he suggested me to continue my research and contacted 

Professor Zaili Yang to give me an opportunity to start my PhD programme at Liverpool 

Logistics, Offshore and Marine (LOOM) research institute. He also helped me a lot throughout 

the duration of my PhD research and I deeply appreciate what he has done for me. 

I would like to thank my friends and colleagues at LJMU for their support and suggestions, 

especially Dr Chaoyu Li, Dr Min Ho Ha, Dr Xiao Yang, Mr Lei Wang, Mr Chengpeng Wan, 

Mr Aymen, and Miss Shiqi Fan. Many thanks to them for enriching my study and life in 

Liverpool, making it filled with laughter. 

I am grateful to my friends in China, who always supported me and gave me a hand when I 

met difficulties, in particular, Mr Chenzhe Zhu, Mr Xiaoteng Zhang, Mr Xi Chen, Miss Yang 

Gao and Miss Tianyue Li, to name just a few.  

Last but not least, I am very grateful to my parents for their financial and spiritual support 

during my time of study in the UK. Over twenty years, they have been sacrificed so much and 



iv 

 

always been my lifelong mentors. The mental strength from them helped me to overcome the 

challenges and difficulties I have faced in my life. To them, I can only return with the gratitude 

for their love and faith.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my family 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

Table of Contents 

Abstract ……………………………………………………………………….i 

Acknowledgements ............................................................................................. iii 

Table of Contents ................................................................................................. vi 

List of Figures .....................................................................................................xii 

List of Tables ................................................................................................... xiiii 

Abbreviations ...................................................................................................... xv 

 

CHAPTER 1    INTRODUCTION ....................................................................... 1 

1.1 RESEARCH BACKGROUND ........................................................................................... 1 

1.1.1 Port state control................................................................................................. 3 

1.1.2 Memorandum of Understanding (MoU) on PSC ............................................... 4 

1.1.3 New Inspection Regime (NIR) .......................................................................... 6 

1.1.4 Summary ............................................................................................................ 7 

1.2 RESEARCH OBJECTIVES ......................................................................................... 8 

1.3 RESEARCH QUESTIONS .......................................................................................... 9 

1.4 RESEARCH STRUCTURE ......................................................................................... 9 

1.5 RESEARCH CONTRIBUTION ................................................................................. 11 

 

CHAPTER 2    LITERATURE REVIEW .......................................................... 14 

2.1 RISK STUDIES ON MARITIME SAFETY .............................................................. 14 

2.2 RISK STUDIES ON PSC INSPECTION ................................................................... 16 

2.3 BN IN MARITIME SAFETY AND PSC INSPECTION .......................................... 19 

2.3.1 The occurrence of ship-ship collisions ............................................................. 20 

2.3.2 Navigational risk analysis ................................................................................ 20 

2.3.3 Maritime accidents analysis and prevention .................................................... 21 

2.3.4 Offshore safety management ........................................................................... 21 

2.3.5 Risk based vessel design .................................................................................. 22 

2.3.6 Oil spill in maritime accidents & oil spill recovery ......................................... 22 

2.4 CPT CALCULATION APPROACHES IN BN ......................................................... 24 



vii 

 

2.5 DATA-DRIVEN APPRAOCHES TO CONSTRUCT BN ........................................ 26 

2.6 GAME THEORY APPLICATIONS IN TRANSPORTATION ................................ 30 

2.6.1 Development of research topics ....................................................................... 31 

2.6.2 Development of different transportation modes .............................................. 37 

2.7 SUMMARY ................................................................................................................ 38 

 

CHAPTER 3    REALISING ADVANCED RISK-BASED PORT STATE 

CONTROL INSPECTION USING DATA-DRIVEN BAYESIAN 

NETWORK……………………………………………………………………40 

3.1 INTRODUCTION ...................................................................................................... 40 

3.2 METHODOLOGY-THE CONSTRUCTION OF DATA-DRIVEN BN ................... 41 

3.2.1 Data acquisition ............................................................................................... 41 

3.2.2 Variable identification ..................................................................................... 44 

3.2.3 Structure learning through data-driven approach ............................................ 45 

3.2.4 CPT distribution of the risk-based PSC BN .................................................... 48 

3.2.5 Generation of posterior probabilities and risk prediction ................................ 50 

3.2.6 Sensitivity analysis........................................................................................... 51 

3.2.7 Model validation .............................................................................................. 53 

3.3 BN MODEL FOR PSC INSPECTION BEFORE THE IMPLEMENTATION OF 

NIR IN 2008 – ‘PRE-NIR BN MODEL’ ......................................................................... 54 

3.3.1 Data .................................................................................................................. 54 

3.3.2 Risk variables ................................................................................................... 54 

3.3.3 A new risk analysis BN model for PSC ........................................................... 57 

3.3.4 CPT and prior probabilities for each node ....................................................... 65 

3.3.5 Model result ..................................................................................................... 68 

3.3.6 Sensitivity analysis........................................................................................... 70 

3.3.7 Model validation .............................................................................................. 73 

3.4 BN MODEL FOR PSC INSPECTION AFTER THE IMPLEMENTATION OF NIR 

– ‘POST-NIR BN MODEL’ ............................................................................................. 75 

3.4.1 Data acquisition ................................................................................................ 75 

3.4.2 Variable identification ..................................................................................... 75 

3.4.3 BN construction ............................................................................................... 78 



viii 

 

3.4.4 CPT distribution and risk prediction ................................................................ 80 

3.4.5 Model result ..................................................................................................... 80 

3.4.6 Sensitivity analysis and model validation ........................................................ 82 

3.4.7 Model validation .............................................................................................. 85 

3.5 RESEARCH IMPLICATIONS - ANALYSIS ON THE PERFORMANCE OF ISM 

COMPANIES ................................................................................................................... 87 

3.6 RESEARCH IMPLICATIONS - MODEL APPLICATIONS IN REAL CASES ..... 91 

3.6.1 Case I ............................................................................................................... 91 

3.6.2 Case II .............................................................................................................. 92 

 

CHAPTER 4    THE IMPACT OF THE IMPLEMENTATION OF NIR ON PSC 

INSPECTION SYSTEM .................................................................................... 96 

4.1 INTRODUCTION ...................................................................................................... 96 

4.2 MACRO-LEVEL ANALYSIS - THE INFLUENCE OF NIR ON PSC 

INSPECTION…………………………………………………………………………...97 

4.2.1 General analysis ............................................................................................... 98 

4.2.2 Influence of NIR on different vessel types .................................................... 109 

4.2.3 Summary ........................................................................................................ 113 

4.3 MICRO-LEVEL ANALYSIS - THE INFLUENCE OF NIR ON PSC 

INSPECTION………………………………………………………………………….114 

4.3.1 Sensitivity to detention -The influence degree of risk factors under different 

periods ..................................................................................................................... 115 

4.3.2 Company performance impact ....................................................................... 117 

4.3.3 Prior probability change ................................................................................. 118 

4.3.4 The role of ‘vessel group’ and ‘inspection group’ ......................................... 120 

4.3.5 Summary ........................................................................................................ 121 

 

CHAPTER 5    A RISK-BASED GAME MODEL FOR RATIONAL 

INSPECTIONS IN PORT STATE CONTROL ............................................... 124 

5.1 INTRODUCTION .................................................................................................... 124 

5.2 BASIC CONCEPTS IN GAME THEORY .............................................................. 127 

5.2.1 Strategic games .............................................................................................. 127 



ix 

 

5.2.2 Payoff matrix ................................................................................................. 129 

5.2.3 Nash equilibrium ............................................................................................ 130 

5.2.4 Mixed strategy Nash equilibrium................................................................... 131 

5.3 THEORETICAL GAME MODEL BETWEEN PORT AUTHORITIES AND SHIP 

OWNERS ....................................................................................................................... 132 

5.3.1 Assumptions ................................................................................................... 133 

5.3.2 Parameter identification ................................................................................. 134 

5.3.3 The payoff matrix .......................................................................................... 138 

5.3.4 Nash equilibrium solution .............................................................................. 143 

5.3.5 Further improvement of the game model....................................................... 147 

 

CHAPTER 6    AN EMPIRICAL STUDY TO DEMONSTRATE THE 

SIGNIFICANCE OF THEORETICAL GAME MODEL ................................ 149 

6.1 INTRODUCTION .................................................................................................... 149 

6.2 DETERMINATION OF THE PARAMETER VALUES ........................................ 150 

6.2.1 Detention rate through BN ............................................................................. 150 

6.2.2 Maintenance cost and accident loss ............................................................... 152 

6.2.3 Accident rate .................................................................................................. 153 

6.2.4 Detention cost ................................................................................................ 159 

6.3 OPTIMAL INSPECTION RATE ............................................................................. 160 

6.4 RECOMMENDATIONS FOR PORT AUTHORITIES .......................................... 167 

6.4.1 Suggestions when formulating inspection policy .......................................... 167 

6.4.2 The decision-making framework for the port authority ................................. 168 

6.5 CONCLUSIONS....................................................................................................... 172 

 

CHAPTER 7    SUMMARY AND DISCUSSIONS ......................................... 174 

7.1 RESEARCH IMPLICATION ................................................................................... 174 

7.1.1 Discussions of the advanced risk assessment model for PSC inspections under 

NIR using data-driven BN approach ....................................................................... 174 

7.1.2 Discussions of the influence of the implementation of NIR on PSC inspection 

system ...................................................................................................................... 177 



x 

 

7.1.3 Discussions of the optimal inspection policy of port authorities after the 

implementation of NIR using risk-based game model ............................................ 179 

7.2 RESEARCH CONTRIBUTION ............................................................................... 182 

7.3 FURTHER IMPROVEMENTS ................................................................................ 183 

REFERENCES .................................................................................................. 185 

APPENDICES .................................................................................................. 205 

Appendix One Conditional Probability table of ‘Pre-NIR’ BN model ........................... 205 

Appendix Two Conditional Probability table of ‘Post-NIR’ BN model ......................... 222 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

List of Figures 

Figure 1.1 The grounding of Exxon Valdez .............................................................................. 2 

Figure 1.2 The capsizing of the Herald of Free Enterprise ........................................................ 2 

Figure 1.3 The MS Estonia Ship disaster................................................................................... 3 

Figure 1.4 Research Structure .................................................................................................. 11 

Figure 2.1 Trends of main topics ............................................................................................. 35 

Figure 2.2 Developments in international seaborne trade, selected years (Millions of tons 

loaded).............................................................................................................................. 38 

Figure 3.1 Paris MoU inspection search interface ................................................................... 43 

Figure 3.2 An example of PSC inspection online report ......................................................... 44 

Figure 3.3 An example of naïve BN ........................................................................................ 46 

Figure 3.4 Bulk carrier categories ............................................................................................ 55 

Figure 3.5 Age distribution of bulk carriers 2016.................................................................... 55 

Figure 3.6 Original BN ............................................................................................................ 59 

Figure 3.7 TAN structure of vessel group ............................................................................... 62 

Figure 3.8 TAN structure of inspection group ......................................................................... 63 

Figure 3.9 Improved BN .......................................................................................................... 63 

Figure 3.10 Proposed BN for PSC inspection ......................................................................... 64 

Figure 3.11 Results of BN model ............................................................................................ 69 

Figure 3.12 The structure of BN .............................................................................................. 79 

Figure 3.13 ‘Post-NIR’ BN ...................................................................................................... 81 

Figure 3.14 Low vessel-related risk level vessels .................................................................... 88 

Figure 3.15 High vessel-related risk level of vessels ............................................................... 89 

Figure 3.16 Vessels at 0-5 years .............................................................................................. 90 

Figure 3.17 Vessels over 20 years ........................................................................................... 90 

Figure 3.14 Inspection result prediction of Case I ................................................................... 92 

Figure 3.15 Perspective of Gibraltar Port authority ................................................................. 94 

Figure 3.16 Perspective of the ship owner ............................................................................... 95 

Figure 4.1 Number of inspections and individual vessels in 2005-2016 ............................... 101 

Figure 4.2 Deficiency rate and detainable deficiency rate in 2005-2016 .............................. 103 

Figure 4.3 Trend of detention rate in 2005-2016 ................................................................... 105 

Figure 4.4 The trends of average number of inspections/vessel ............................................ 107 

Figure 4.5 The trends of refusal rate of vessel access ............................................................ 108 



xii 

 

Figure 4.6 Number of inspections of different vessel types in 2005-2016 ............................ 110 

Figure 4.7 Percentage of inspections with deficiencies of different vessel types in 2005-2016

........................................................................................................................................ 111 

Figure 4.8 Detention rate of different vessel types in 2005-2016 .......................................... 112 

Figure 6.1 The detention rate of standard vessels .................................................................. 151 

Figure 6.2 Detention rate of sub-standard vessels ................................................................. 152 

Figure 6.3 Trend of optimal inspection rate........................................................................... 162 

Figure 6.4 Decision-making framework for the port authority .............................................. 169 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 

 

List of Tables 

Table 2.1 The number of possible BN structures .................................................................... 26 

Table 2.2 Trend of transportation mode .................................................................................. 37 

Table 3.1 The prior probability of each root node ................................................................... 65 

Table 3.2 CPT of RO ............................................................................................................... 66 

Table 3.3 CPT of ‘type of inspection’ ..................................................................................... 66 

Table 3.4 CPT of ‘number of deficiencies’ ............................................................................. 66 

Table 3.5 CPT of ‘Vessel group’ ............................................................................................. 67 

Table 3.6 CPT of ‘Inspection group’ ....................................................................................... 67 

Table 3.7 CPT of ‘Detention’ .................................................................................................. 68 

Table 3.8 Sensitivity of other nodes to ‘Detention’ ................................................................. 70 

Table 3.9 TRI of risk variables ................................................................................................ 72 

Table 3.10 Detention rate of minor change in variables .......................................................... 74 

Table 3.11 Company performance classification standard ...................................................... 76 

Table 3.12 Identified variables in PSC inspections from 2015-2017 ...................................... 77 

Table 3.13 Mutual information between other nodes and ‘Detention’ .................................... 82 

Table 3.14 TRI of risk variables .............................................................................................. 84 

Table 3.15 Detention rate of minor change in variables .......................................................... 86 

Table 3.16 Mutual information between ‘Company performance’ and other variables .......... 87 

Table 4.1 The facts of PSC inspection from 2015 to 2016 ...................................................... 99 

Table 4.2 The results of inspection-related rates in 2005-2016 ............................................. 100 

Table 4.3 Results of sensitivity analysis (Pre-NIR) ............................................................... 115 

Table 4.4 Results of sensitivity analysis (Post-NIR) ............................................................. 116 

Table 4.5 Effect of company performance ............................................................................ 117 

Table 4.6 Comparison of prior probability before and after NIR .......................................... 119 

Table 4.7 The change on ‘vessel group’ and ‘inspection group’ ........................................... 121 

Table 5.1 An example of a payoff matrix .............................................................................. 130 

Table 5.2 An example of obtaining Nash equilibrium ........................................................... 131 

Table 5.3 Payoff matrix of PSC inspection game .................................................................. 142 

Table 5.4 An example of how to calculate Nash equilibrium ................................................ 145 

Table 5.5 The simplified payoff matrix ................................................................................. 145 

Table 6.1 Database and sources ............................................................................................. 149 



xiv 

 

Table 6.2 Estimated approximate repair and maintenances under different conditions (US$)

........................................................................................................................................ 153 

Table 6.3 Estimated accident loss under different conditions (US$M) ................................. 153 

Table 6.4 Coefficients of the model ....................................................................................... 156 

Table 6.5 The accident rate of bulk carriers under different situations ................................. 158 

Table 6.6 Accident rates of bulk carriers ............................................................................... 159 

Table 6.7 Optimal inspection rate with different punishment severity levels ....................... 161 

Table 6.8 The standard deviation of small bulk carriers ........................................................ 164 

Table 6.9 Effect of vessel age and vessel size ....................................................................... 166 

Table 6.10 Improvements on PSC practice ............................................................................ 172 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 

 

Abbreviations 
ABN Augmented Naïve Bayesian Network 

ACO Ant Colony Optimisation 

ADR Average Detention Rate  

AIS Artificial Immune System 

BBN Bayesian Belief Network 

BN Bayesian Network 

CB Conditional independence and Bayesian learning 

CI Conditional Independence 

CIC Concentrated Inspection Campaign 

CONAR Construct and Repair 

CPD Conditional Probability Distribution 

CPT Conditional Probability Table 

DWT Dead Weight Tonnage 

EDA Estimation of Distribution Algorithms 

EMSA European Maritime Safety Agency 

EU European Union 

FBN Fuzzy Bayesian Network 

FSA Formal Safety Assessment 

FTA Fault Tree Analysis 

GA Genetic Algorithms 

HRI High Risk Inference 

HRS High Risk Ship 

IAME International Association of Maritime Economists 

IEEE Institute of Electrical and Electronics Engineers 

ILO International Labour organization 

IMO International Maritime Organization 

ISM International Shipping Management 

ITS Intelligent Transportation System 

KPI Key Performance Indicator 

LISS Logistics, Informatics and Service Sciences 

LRI Low Risk Inference 



xvi 

 

LRS Low Risk Ship 

MARPOL International Convention for the Prevention of Pollution from Ships 

MLC Maritime Labour Convention 

MLE Maximum Likelihood Estimator 

MoU Memorandum of Understanding 

MRRA Model based on Relative Risk Assessment 

NO.N Naïve Bayesian Network 

NIR New Inspection Regime 

PID Percentage of Inspections with Deficiencies 

PMI Percentage of Mutual Information 

PSC Port State Control 

PSCO PSC Officer 

PSO Particle Swarm Optimization 

REST Restricted Structure 

RO Recognized organization 

SOLAS International Convention for the Safety of Life at Sea 

SRP Ship Risk Profile 

SRS Standard Risk Ship 

STCW 
International Convention on Standards of Training, Certification and 

Watchkeeping for Seafarers 

SVM Support Vector Machine 

TAN Tree Augmented Naïve 

TRI True Risk Influence 

UNCTAD United Nations Conference on Trade and Development 

VLCC Very Large Crude Carrier 

WGB White, Grey and Black 

WSE World Shipping Encyclopaedia 

IACS International Association of Classification Societies  

  

 



1 

 

CHAPTER 1 INTRODUCTION 

This chapter describes the background of the research and explains the principal objectives that 

are developed through investigating and browsing related literature. The applied methods 

constitute the final models, as well as highlighting the research question in this thesis. Further, 

the contribution of the research is illustrated, demonstrating the role of the proposed models in 

real practice.  

 

1.1 RESEARCH BACKGROUND 

Over the last decades, Maritime transport has played an increasingly important role in the 

world’s economy as over 90% of international trade is carried by sea and it is, by far, the most 

cost-effective way to move mass goods and raw materials around the world (Ducruet, et al., 

2016). Take the maritime transport conditions in Europe for example; the coastline of the 

European Union is many thousands of kilometres in length and contains well over 1,000 

individual ports. Every year, these ports handle 3.5 billion tons of goods and transport over 350 

million passengers on thousands of ship journeys, accounting for around 90% of EU external 

trade and around 40% of trade between EU countries.  

However, back to about 20 years ago, Perrow (1999) pointed out that ‘Tankers carrying 

LNG have the potential to blow up a whole city’, demonstrating the severity of maritime 

accidents from an academic perspective. The unprecedented growing rate of maritime 

transportation in recent years on the one hand contributes to industrial prosperity and individual 

benefits, but on the other hand renders threats and risks to the maritime industry, indicating it 

is a high-risk transportation mode having high potential to cause catastrophes (Hetherington, 

et al., 2006). A small mistake of the ship owner or a deficiency of the vessel quality may result 

in different types of severe maritime accidents, including but not limited to ship collisions, 

stranding, fire, and oil spill that could cause large property losses, environmental pollution and 

casualties. For instance, the grounding of the Exxon Valdez (Figure 1.1), the capsizing of the 

Herald of Free Enterprise (Figure 1.2) and the Estonia passenger ferry (Figure 1.3) are well-

known major accidents in maritime transportation. These maritime accidents attracted the 

attention of the world on maritime safety (Li, et al., 2014; Yang, et al., 2013; Yang, et al., 2014). 
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Figure 1.1 The grounding of Exxon Valdez 
(Source: The Atlantic) 

 

 

Figure 1.2 The capsizing of the Herald of Free Enterprise 
(Source: BBC NEWS) 
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Figure 1.3 The MS Estonia Ship disaster 
(Source: Marine Insight) 

Hence, it is of vital importance that maritime transport should be operated in a safe, secure 

and environmentally friendly way. Traditional flag state control has its limits in terms of 

ensuring the implementation of maritime safety regulations by ship owners, particularly those 

choosing open registration. In the past, the responsibility for ensuring vessels comply with the 

provisions of national and international rules rests upon the owners, masters and the flag states. 

Some flag states failed to fulfil their commitments contained in agreed international legal 

instruments, and subsequently, some vessels sailed in an unsafe condition, threatening the lives 

of the crew as well as the marine environment. Therefore, Port State Control (PSC), which was 

originally intended to be a backup to flag state implementation in 1982, is gradually becoming 

a system of harmonized inspection procedures designed to target sub-standard vessels with the 

main objective being their eventual elimination. 

 

1.1.1 Port state control 

Specifically, PSC is an internationally agreed regime for the inspection of foreign vessels in 

other national ports to verify that the condition of a vessel and its equipment complies with the 

requirements of international regulations. The relevant regulations include International 

Convention for the Safety of Life at Sea (SOLAS), International Convention for the Prevention 
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of Pollution from Ships (MARPOL), International Convention on Standards of Training, 

Certification and Watch keeping for Seafarers (STCW), and Maritime Labour Convention 

(MLC). PSC renders port authorities the ability to inspect the vessels in their own ports to avoid 

illegal actions of ship owners and maritime accidents. The inspections involve checking 

whether the vessel is manned and operated in compliance with applicable international laws 

and regulations, and verifying the competency of the ship's master and officers (IMO). It is 

noteworthy that PSC inspections are restricted to merchant vessels and do not include fishing 

vessels and military craft. Meanwhile, every nation has the right to enact its own laws to impose 

requirements on foreign vessels trading in its waters based on its national conditions. 

In order to provide a better environment for PSC inspection, the European Union (EU) has 

put in place specific maritime legislation: the port state control Directive 2009/16/EC as 

amended and its three implementing regulations (Commission Regulation No 428/2010, 

Commission Regulation No 801/2010 and Commission Regulation No 802/2010). This 

legislation aims at ensuring that there is effective control of compliance with international 

standards by vessels in EU ports and, thereby, ensuring that vessels sailing in EU waters have 

been appropriately constructed and are adequately maintained. Acting as the last safety line of 

defence against sub-standard vessels, PSC effectively restricts the appearance of the vessels 

not fully following the relevant safety regulations with the help of this legislation.  

 

1.1.2 Memorandum of Understanding (MoU) on PSC 

MoU on PSC is the administrative agreement between maritime authorities, which aims at 

increasing maritime safety, protecting the marine environment, and improving living and 

working conditions on board ships. It formulates the rules and regulations to ensure the 

effectiveness of PSC.  

Back to 1978, an agreement called the 'Hague Memorandum’ signed by a number of 

maritime authorities in Western Europe was developed. It dealt mainly with enforcement of 

shipboard living and working conditions as required by International Labour Organization 

(ILO) Convention No. 147. However, when the memorandum was about to come into effect in 

March 1978, a massive oil spill occurred off the coast of Brittany (France) because of the 

grounding of the VLCC ‘Amoco Cadiz’. This maritime disaster caused a strong political and 

public outcry in Europe for more stringent regulations with regard to the safety of marine 
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shipping. The pressure from public opinion resulted in a more comprehensive memorandum 

that covered: 

1) Safety of life at sea 

2) Prevention of pollution by ships 

3) Living and working conditions on board ships 

Subsequently a new ‘Memorandum of Understanding on Port State Control in Implementing 

Agreements on Maritime Safety and Protection of the marine Environment’ (MoU 1982) was 

approved in January on 1982 by fourteen European countries at a Ministerial Conference held 

in Paris. It then entered into operation on July 1st, 1982. The introduction of MoU 1982 marked 

the implementation of PSC.  

Since that date, the Memorandum has been amended several times to accommodate new 

safety and marine environment requirements stemming from the International Maritime 

Organization (IMO) and requirements related to working and living conditions of seafarers. 

Several regional PSC organisations have been established over the decades, containing various 

regions including Europe and the north Atlantic (Paris MoU), Asia and the Pacific (Tokyo 

MoU), Latin America (Acuerdo de Viña del Mar), Caribbean (Caribbean MoU), West and 

Central Africa (Abuja MoU), the Black Sea region (Black Sea MoU), the Mediterranean 

(Mediterranean MoU), the Indian Ocean (Indian Ocean MoU) and the Riyadh MoU. The 

United States Coast Guard maintain the tenth PSC regime. 

Among these regional organisations, the Paris MoU is the oldest and has the widest range 

of jurisdiction. It is set in order to eliminate the operation of sub-standard vessels through a 

harmonized system of PSC covering the waters of the European coastal States and the North 

Atlantic basin from North America to Europe. The current member states of the Paris MoU 

includes Belgium, Bulgaria, Canada, Croatia, Cyprus, Denmark, Estonia, Finland, France, 

Germany, Greece, Iceland, Ireland, Italy, Latvia, Lithuania, Malta, the Netherlands, Norway, 

Poland, Portugal, Romania, the Russian Federation, Slovenia, Spain, Sweden and the United 

Kingdom. 

Annually more than 18,000 inspections take place on board foreign vessels in the Paris MoU 

ports, ensuring that these vessels meet international safety, security and environmental 

standards, and that crewmembers have adequate living and working conditions. There is no 
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doubt that the number of inspections executed within the Paris MoU region is the highest of 

any region.  

In this study, the inspection records used for analysis are derived from the Paris MoU online 

inspection database (https://www.parismou.org/inspection-search). 

 

1.1.3 New Inspection Regime (NIR) 

The New Inspection Regime (NIR) was developed by a task force led by the EC and adopted 

by the Paris MoU at its committee meeting held in Reykjavik, Iceland (May 2009). It was also 

the core content of the Port State Control Directive 2009/16/EC, which had been published in 

the Official Journal on 28/05/2009. 

With the introduction of the NIR, the 25% quota for inspections to be performed by each 

individual member state is abandoned. As an alternative, a 'fair share' scheme is developed. 

The fair share scheme takes account of individual ship calls in a member state versus the 

individual ship calls of all member states. The port call information must be provided by the 

member states through SafeSeaNet, and will then be transferred to the information system of 

PSC. 

The targeting of vessels is based on a ‘Ship Risk Profile’ (SRP). The SRP Calculator can be 

used to evaluate if a ship is viewed as High Risk Ship (HRS), Standard Risk Ship (SRS) or 

Low Risk Ship (LRS). The company performance criteria for the calculation of the Ship Risk 

Profile is a new parameter in the Paris MoU. The Paris MoU has established a formula called 

‘Company Performance’ that takes into account the historical events such as deficiencies, 

detentions and good inspections in the last 36 months of the International Shipping 

Management (ISM) Company’s fleet, and compares it to the average level of all vessels 

inspected within the Pars MoU regions to determine the performance level of this ISM 

company.  ISM Companies are ranked as having a very low, low, medium or high performance. 

The new database for PSC, named THETIS, replaces the former system ‘SIReNaC’ and is 

managed, hosted and operated by European Maritime Safety Agency (EMSA). The THETIS 

serves as a platform to guide the inspectors based on the complicated targeting procedures, and 

as a central archive for storing inspection results and presenting a comprehensive overview of 

all inspected vessels. Considering the latest inspection information, it automatically 

recalculates the SRP on a daily basis.  

https://www.parismou.org/inspection-search/inspection-search
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In general, the introduction of NIR improved the PSC system from the following aspects:  

1) Risk-based targeting 

2) Less flexibility for port authority in selecting vessels for inspection 

3) Adjust national commitment to regional commitment 

4) Further refusal of access provisions 

5) Benchmarking of vessel flag, recognized organization (RO) and International shipping 

management (ISM) company 

6) Widened scope from ports to ports and anchorages 

7) The introduction of ‘Company Performance’ index  

Since being implemented in 2011, NIR has transformed and modernized the PSC inspection 

system in the Paris MoU region. The main objective during the development of NIR has been 

to reward quality shipping and to intensify control and sanctions on vessels with poor 

performance. It introduces several radical changes compared with the old system, which was 

based on the agreement 30 years ago. These changes are necessary to bring the Paris MoU in 

line again with the global maritime developments, the introduction of new IMO instruments 

and a better-balanced method of targeting and inspection of vessels.  

 

1.1.4 Summary 

In the past decades, PSC, the last safety line of defence against sub-standard vessels, has 

contributed a lot in preventing the illegal actions of ship owners and ensuring maritime safety. 

It is however well noted that although risk analysis approaches, qualitative or quantitative, have 

been widely used to enhance maritime safety in recent years, they have been insufficiently 

utilized in the PSC inspection area in the literature. 

Meanwhile, the PSC system has experienced several changes in ways both large and small 

since it came into effect. However, none of them equalled the one in 2011. The change of 

inspection regime delivered a message to the world that sub-standard vessels are no longer 

tolerable in the regions and with the new refusal of access measures in place, repeated offenders 

will be banned from the ports. Hence, it is necessary for us to analyse whether the introduction 

of NIR has had such a remarkable influence on PSC inspections as expected.  
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In this thesis, a comprehensive analysis on PSC inspection is conducted. First, based on the 

Paris MoU inspection records, the factors influencing the inspection results and the regulations 

of port authorities are identified. Second, several approaches are applied to accomplish our 

work, including Bayesian Network, TAN learning, gradient descent, game theory and mixed 

strategy Nash equilibrium solution. Third, the influence brought by NIR on PSC inspection 

system is clarified through a comparative analysis in this project. Fourth, the framework of this 

research aims at developing a real-time risk prediction tool and a decision-making tool for port 

authorities under dynamic situations. Finally, the proposed models are validated by an 

empirical study to demonstrate their practical significance  

 

1.2 RESEARCH OBJECTIVES 

The aim of this research project is to develop a novel methodology incorporating BN and 

game theory to propose a dynamic prediction tool to determine the detention rate for port 

authorities and ship owners, analyse the impact of the implementation of NIR on PSC 

inspection, as well as help port authorities in decision-making when regulating the inspection 

policy. The results of the research will provide important insights for port authorities to ensure 

that optimal inspection actions are taken to improve safety at sea in a cost effective manner. 

To achieve the aim, the integrated objectives are defined as follows: 

1) Review the risk assessment and decision-making techniques that have been widely 

applied in maritime safety and PSC inspection, particularly those capable of dealing with 

unavailability and incompleteness of risk data.  

2) Distinguish the different data-driven approaches to construct BN structure. 

3) Develop a risk assessment model using BNs to reveal the degree of importance of 

different risk factors influencing PSC inspection results in different periods, as well as predict 

the detention rate of individual vessels under dynamic situations.  

 4) Clarify the influence of the implementation of NIR on PSC inspection results through a 

two-part comparative analysis. One is the macro-level analysis based on the historical 

inspection records obtained from the Paris MoU, the other is the micro-level analysis between 

‘Pre-NIR’ BN model and ‘Post-NIR’ BN model proposed in this research.  
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5) Develop a risk-based game model based on the outcomes from BN models to determine 

the optimal inspection strategy of port authorities under different circumstances after the 

implementation of NIR.  

6) Propose a decision-making framework for port authorities to help them make optimal and 

rational inspection decisions based on the dynamic prediction tool from BNs and the optimal 

Nash solutions from the game model.  

 

1.3 RESEARCH QUESTIONS 

The designed analytical logic follows the related questions of ‘what to model’, ‘how to 

model’ and ‘how to analyse and improve’ PSC inspections. In this regard, the research 

questions are showed as follows: 

 Q1.What are the factors influencing the result of a PSC inspection? 

 Q2.How to quantify the relationships between different risk factors and the inspection 

results, as well as the influencing degree of these risk factors before and after NIR? 

 Q3.How to evaluate the influence of the implementation of NIR on PSC inspection 

system? 

 Q4.How to model the inherent relationships between port authorities and ship owners 

when executing a PSC inspection efficiently and accurately? 

 Q5.How can the risks and uncertainties hidden behind the relationships between port 

authorities and ship owners in a PSC inspection be quantified? 

 Q6.What are the suggestions and strategies provided to help port authorities when 

making decisions during a PSC inspection? 

 

1.4 RESEARCH STRUCTURE 

Chapter 1 introduces the basic information of the research, including the background, 

objective, framework, novelty and contribution. This brief introduction outlines the whole 

research project, and demonstrates the necessity of conducting this research.   
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Chapter 2 reviews the related works in this field. Among the risk assessment approaches 

that have been applied in maritime safety, BN shows its superiority over other approaches from 

literature and is thus selected as the method to analyse the risks in PSC inspection. In order to 

construct the BN objectively, different data-driven network construction approaches are 

summarized from the past studies. Additionally, the application of game theory in 

transportation is also revealed.  

Chapter 3 develops two data-driven BN models of PSC inspection system based on the Paris 

MoU online inspection database, one is ‘Pre-NIR’ BN from 2005 to 2008, the other is ‘Post-

NIR’ BN from 2015-2017. The sensitivity analysis of the models reveals the degree of 

importance of different risk factors influencing PSC inspection results in different times. 

Further, it is applicable that the BNs can serve as the risk prediction tools for port authorities 

to make decisions in a cost effective manner under dynamic situations.  

Chapter 4 clarifies the influence of NIR on PSC inspection results. Through the comparative 

analysis on two BN models and the statistics derived from the Paris MoU annual reports, the 

influence of NIR is proved significant and positive. The changes brought by NIR has 

transformed the PSC inspection system a lot, making NIR act as a big step in the Paris MoU 

history. 

Chapter 5 develops a risk-based model to determine the optimal inspection strategy of port 

authorities after the implementation of NIR. The components and parameters required to build 

the game model are identified from previous related works and the ‘Post-NIR’ BN model. The 

Nash solution of the game model eventually reveals the theoretical optimal inspection policy 

for port authorities under different circumstances. 

Chapter 6 illustrates the optimal inspection policy of port authorities by an empirical study. 

Through analysing the optimal inspection rates of bulk carriers under different situations, 

several research implications are derived. In addition, it comes up with some suggestions for 

port authorities to help them make optimal decisions during PSC inspections, as well as a 

decision-making framework to help port authorities make rational and optimal decisions under 

NIR.  
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Figure 1.4 Research Structure 
(Source: Author) 

 

1.5 RESEARCH CONTRIBUTION 

This research provides important insights and contributions for port authorities and ship 

owners, both academic and industrial.  

Academic contributions 

1) In this research project, the risk assessment model of PSC inspections is constructed 

completely from objective data, which is different from former risk assessment research in this 

area that is based on subjective data (Expert judgment) or a combination of subjective and 
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objective data. The application of objective data-driven network construction approach 

provides a new way to build risk assessment model for researchers in PSC inspection area.  

2) The incorporation of BN and game theory exploits a rational and novel way to quantify 

the relationship between port authorities and ship owners. Meanwhile, the application of BN 

to represent the uncertainties and risks existing in the game model highlights another 

contribution to the academic field.  

3) To the authors’ best knowledge, since NIR went into effect in 2011, company 

performance is, for the first time, viewed as an important factor influencing the decisions of 

port authorities in PSC inspection practice and scientific research. 

4) Unlike the risk assessment research on PSC inspections before, the methodology applied 

in this research project is advanced and comprehensive. Compared to the most used methods 

in this area, i.e. risk matrix, the risk-based game model method can explore and analyse the 

PSC inspections more thoroughly, developing a new idea to conduct research on PSC 

inspections. 

Industrial contributions 

1) The proposed BN model can served as a dynamic risk analysis and prediction tool in PSC 

inspection. For port authorities it is used to ensure that optimal inspection actions are taken to 

improve safety at sea in a cost effective manner; and for ship owners it works as an early-

warning system to identify and address the potential deficiencies of the vessel in advance. 

2) The proposed optimal inspection policy from the game model is able to provide real-time 

PSC decisions for port authorities in dynamic situations accordingly, where the risks constantly 

change. 

3)  The influence brought by NIR is clarified through a comparative analysis between ‘Pre-

NIR’ period and ‘Post-NIR’ period from two different perspectives. The results indicate the 

introduction and implementation of NIR is proved reasonable and significant to PSC inspection 

system. This positive revolution has transformed the whole system a lot. 

4) Suggestions are proposed to help port authorities of different economic constrains to 

make rational decisions. For instance, when a port authority has limited economic constrains, 

it should choose the optimal inspection rate as suggested by the game model; otherwise it can 
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increase the punishment to an appropriate level as suggested by the model, to tackle the sub-

standard effort and illegal actions of ship owners.  

Further, the decision-making framework could play an important role in helping port 

authorities to make rational decisions under different environments and constraints. 
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CHAPTER 2 LITERATURE REVIEW 

This chapter reviews corresponding works related to the research topics. Among the risk 

assessment approaches that have been widely applied in maritime safety, Bayesian network 

has proved the most appropriate one for PSC inspection research from literature. Additionally, 

the existing data-driven approaches for BN construction are summarized and described as well. 

Another major methodology applied in this project, game theory, also shows its diversity and 

significance when applied in the transportation field.  

 

2.1 RISK STUDIES ON MARITIME SAFETY 

Maritime safety analysis is essentially a process of utilizing formalized approaches for the 

quantification of risks in probabilistic terms. Actually, in the past decades, the way of 

quantifying risks in the maritime industry has undergone great transformation. Among the early 

work on risk assessment in maritime safety, qualitative analysis was largely used (Lee & 

Sanquist, 2000; Sii et al., 2001; Vieites et al., 2004). For instance, in a score method, the 

selected evaluation factors are scored according to subjective experience. It provides the basis 

of the target factor method employed by the Paris MOU and the Tokyo MOU. Meanwhile, 

most research in this academic field was based on the accident statistics (Fowler & Sørgård, 

2000; Soares & Teixeira, 2001), showing great influence on the maritime safety management 

and providing significant practice for the industry.  

However, over the years researchers realized that it is hard to achieve the best risk 

assessment results by qualitative or quantitative analysis separately. The former way to assess 

maritime safety was inadequate to cope with the uncertainty in data, resulting in partial and 

impractical consequences. Fuzzy comprehensive evaluation (Akhtar & Utne, 2014; Pillay & 

Wang, 2002), grey system theory evaluation (Deng, 1989), neutral network evaluation (Li, et 

al., 2000), evidential reasoning (Liu, et al., 2004; Wang, et al., 2006), data environment analysis 

model (Wu, et al., 2015), Monte Carlo simulation (Goerlandt, et al., 2012; Montewka, et al., 

2010), Markov chains (Kolowrocki & Soszynska, 2011), genetic algorithm (Montewka, et al., 

2010; Nwaoha, et al., 2011; Nwaoha, et al., 2013)  and some other risk assessment approaches 

are gradually used to complement qualitative analysis in maritime safety studies. Meanwhile, 

risk analysis is moving away from accident investigation to the analysis of risk factors, 

resulting in the creation of advanced methods on risk diagnosis and prediction, such as BN 

(Eleye-Datubo, et al., 2006; Eleye-Datubo, et al., 2008; Ren, et al., 2009). 
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It is noteworthy that the fast development of maritime safety analysis since the 1990s is 

attributed, at least in part, to the adoption and approval of Formal Safety Assessment (FSA) by 

the IMO. FSA can be described as a systematic method of enhancing maritime safety that is 

done through a careful process of risk assessment and evaluation. The IMO defines FSA as a 

‘rational and systematic process for assessing the risks associated with shipping activity and 

for evaluating the costs and benefits of reducing the risks’. It is of great importance to the 

marine industry because 1) It helps make a transparent decision-making process; 2) It helps 

justify the candidate measures selected through this process 3) It ensures the decision is the 

best choice under a particular situation after a thorough understanding and comparison of all 

other available options. Given this, a large number of publications and  a large amount of 

literature relating to FSA application on maritime safety have been published in recent years, 

including risk estimation of maritime transportation (Yang, et al., 2008), decision-making of 

maritime administration (Yang, et al., 2009), maritime security (Yang, et al., 2012; Yeo, et al., 

2013),  and the threat of terrorism and piracy (Pristrom, et al., 2013).   

Besides the risk assessment approaches applied in maritime safety, the topics in maritime 

safety also changed greatly. In the 1990s, the research orientation focused on the safety of 

individual vessels (Stiehl, 1977), and their structure and designs (Guedes Soares, 1997; Guedes 

Soares, 1998). Pate-Cornell (1990) conducted a probabilistic risk analysis research considering 

organisation aspects to describe the relationship between the component failures and the 

offshore system safety.  However, after entering the 21st century, the topics in maritime safety 

area have presented its diversification.  

Ship navigation safety showed an upward trend among these topics (Chen & Fang, 2005; 

Fang & Hu, 2006; Chen & Fang, 2009). Through the model based on the relative risk 

assessment (MRRA) approach, Hu et al. (2007) put forward a novel model considering the 

detailed information about accident characteristics to assess the pilotage safety in Shanghai, 

China. Consequently, it was proved that the model is useful to solve the problems in the risk 

assessment of ship navigation safety in practice.  

Being supported by a large number of different risk assessment approaches, vessel collision 

is another hot topic in this field. In order to acquire a thorough description of the influences on 

collision causation probability of different risk factors, Hanninen & Kujala (2012) proposed a 

Bayesian belief network (BBN) model on the Gulf of Finland. The results indicated that 

changing course played the dominating role in a vessel encounter situation. Similarly, Merrick 
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& van Dorp (2006), Hu et al. (2008) also applied BNs to analyse the influence of safety 

variables on vessel collision probabilities in San Francisco Bay and Shanghai Harbour, 

respectively. In 2012, Montewka et al. (2012) defined a new, proactive BBN model for 

estimating the consequences of vessel collisions. Additionally, Monte Carlo Simulation 

(Montewka, et al., 2010; Goerlandt, et al., 2012), Fuzzy method (Celik & Akyuz, 2018) and 

FSA (Endrina, et al., 2018) showed their ability when analysing the vessel collisions.   

Evidence showed that 80–85% of the recorded maritime accidents are directly caused by 

human error or attributed to a degree to human error (Harati-Mokhari, et al., 2007), indicating 

most risks and hazards in maritime transportation are closely related to human and 

organisational factors, i.e. misjudgement of pilot, lack of communication and inattention of 

pilot. It is widely recognised that human elements play the major role in most accidents 

involving modern ships, for example, oil tanker grounding (Ung, 2018), maritime grounding 

(Akhtar & Utne, 2014), maritime environmental pollution (Celik & Akyuz, 2018) and maritime 

operation problem (Lin & Tsai, 2014). Despite this fact, studies on human factors started 

relatively late and remained at a level of qualitative analysis with much focus on the training 

of seafarers and enforcement of the associated regulations of a prescriptive nature. Efforts in 

the pioneering work in this field started in 2008. Trucco et al. (2008) presented an innovative 

approach combining the BBN model and fault tree analysis (FTA) to integrate human and 

organisational factors into maritime risk analysis. The approach has been applied to a case 

study in the maritime industry, and eventually utilised in many other sectors. Other works, like 

Martin & Maturana (2010), El-Ladan and Turan (2012), Chauvin et al. (2013) and Yang et al. 

(2013), were also considered significant in guiding this new research direction in the maritime 

safety field.  

It is interesting to see that a much broader range of topics have been studied in the recent 

decades, e.g. policy evaluation & recommendation, spill & pollution (Goerlandt & Montewka, 

2014), vessel structure (Montewka, et al., 2017), and safety culture, indicating that researchers 

are trying to protect maritime safety from many different perspectives.   

 

2.2 RISK STUDIES ON PSC INSPECTION 

Since PSC inspections play an increasingly important role in maritime safety, more and 

more researchers have conducted related studies from both qualitative to quantitative 
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perspectives. Various risk assessment approaches have been developed and applied in the past 

decades, demonstrating the diversity of this research field. 

Kasoulides (1993) stressed how flag state enforcement has diminished in the face of the 

proliferation of open registries and why coastal states have reacted by asserting their rights 

through the resultant regime of PSC at the regional level. Similarly, Bell (1993) did a study 

analysing the nature of flag and port state control in the UK, a comparison between two 

inspection forms indicated that the effectiveness of PSC required to be improved not only in 

the UK, but also in Europe, and even throughout the world. Based on the view from practice, 

Kiehne (1996) focused on the sanctions available to PSC authorities in respect of the foreign 

ships being inspected, ranging from instructions to rectify deficiencies (i.e., with immediate 

effect before departure, within two weeks, or at the next port of call) to outright detention. The 

sanctions that port authorities have should help them eliminate the operation of substandard 

vessels in the ports of Europe. In 2001, Özçayır (2001) reviewed the practice of PSC in different 

jurisdictions and pointed out the issues existing in the practice of European PSC, such as the 

pivotal role of the ISM Code and the function of classification societies. Chiu et al. (2008) 

investigated the implementation of the PSC system in Taiwan and further discussed some in-

depth issues about the system including the difficulties of the implementation and the 

inadequacies of the system. Chang (2001), Chiu & Chiou (2005), Chiou (2006) did similar 

research. 

Payoyo (1994) assessed the PSC regime by analysing inspection statistics generated by the 

Paris MoU from 1982 to 1992. Although substandard vessels still posed a threat to maritime 

safety, the inspection regime achieved several significant accomplishments such as the 

collection of baseline data on substandard ships in the region, increased effectiveness in the 

enforcement of international standards, and closer regional cooperation resulting in the more 

efficient employment of maritime safety enforcement resources. This conclusion was sound in 

line with the work conducted by Mejia (2005). As one of the first contributions on the 

effectiveness of PSC, Owen (1996) described the practice of PSC in the Paris MoU in detail 

and discussed the limitations inherent in the PSC regime connected with the fact that the port 

state has no direct influence over the design and construction of vessels that are being inspected. 

One year later, Hare (1997) showed how the proliferation of regional MoUs has significantly 

diminished the potential for substandard ships to participate in international commerce. In 2000, 

McDorman (2000) examined the contribution of regional PSC agreements and harmonized 
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inspection procedures, and then pointed out that the playing field among different ports has 

been improved.   

When entering the 21st century, the studies related to PSC were restricted to not only 

qualitative analysis, but also quantitative analysis. However, use of quantitative risk 

approaches in PSC was limited to risk diagnosis, waiting for new solutions on real time risk 

prediction to be explored.   

Shen & Chen (2003) and Yang (2004) both proposed risk assessment PSC systems, which 

had been proved to have better performance than traditional PSC inspection mechanisms. 

Knowing that intense maritime traffic may cause significant navigational challenges in the 

Istanbul Strait, Kara (2016) applied a weighted point method to assess the risk level of each 

vessel experiencing the PSC inspection under Black Sea MoU. However, the weighting and 

scoring methods adopted in these studies are in large part based on subjective expert 

judgements, which may cause arguments on the results.  

Avoiding subjectivity in weighting has been extensively studied. Xu et al. (2007) presented 

a risk assessment system based on support vector machine to estimate the risk of candidate 

vessels according to historical data before conducting on-board inspections. Evaluations 

showed that the proposed system could improve the accuracy of risk assessment. Furthermore, 

Gao et al. (2008) combined support vector machine and K-nearest neighbour approaches to 

develop a new risk assessment model capable of coping with noisy data. Consequently, this 

method significantly improved the accuracy of the results. Although showing attractiveness, 

such methods still reveal problems in their practical applications in tackling dynamic risk 

prediction (e.g. ship detention probability) in different environments. This problem hinders the 

practical contribution of risk assessment approaches in PSC inspections. To solve this issue, 

Yang et al. (2018) utilized the BN to develop a detention rate prediction tool for port authorities. 

The advantages of BN over other risk assessment approaches in dynamic prediction provides 

important insights for us to seek the optimal inspection policies under different environments 

in NIR. However, Yang et al. (2018) only addressed risk analysis and did not conduct further 

studies on how the dynamic risk results can realise the optimization of inspection policy 

making of port authorities in PSC.  

Collected from the Swedish maritime administration database, Cariou et al (2008) used 

4,080 observations in 1996 – 2001 to build Poisson models to test the effectiveness of PSC. 

The estimation showed that some vessels’ characteristics (e.g. vessel age, vessel type, vessel 
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flag) have significant influence on the number of deficiencies detected during PSC and length 

of time between two successive PSC inspections. Subsequently, the analysis also pointed out 

that following a PSC inspection, the reported deficiencies during the next inspection are 

reduced by 63%, demonstrating the effectiveness of PSC in controlling vessel safety.  

Based on 183,819 PSC inspection records, Knapp & Franses (2007) applied binary logistic 

regression to measure the effect of inspections on the probability of casualties, especially for 

the very serious cases. Meanwhile, the model determined the magnitude of improvable areas 

for substandard vessels. Later in the same year, they did a further econometric analysis about 

the influence on the detention probability of different risk factors, and the results indicated only 

vessel types and PSC regimes were influential elements. Knapp & Franses (2007) incorporated 

quantitative risk analysis to ship inspection to improve its effectiveness. The studies revealed 

that the age of the vessel, ship type, and flag of registry appear to be significant predictors. 

In 2014, Li et al. (2014) built a bi-matrix game between the port authorities and ship 

operators in PSC inspection to decide on the optimal inspection policy with an aim to save 

costs on inspection whilst keeping deterrence pressure on potential wrongdoers. Through a 

numerical case study, it is shown that the optimal inspection rate obtained from the model can 

yield a significant saving, as well as prevent potential violations by ship operators.  

In general, the research on PSC inspections has developed towards a diverse and popular 

academic research field. More approaches, whether qualitative or quantitative, have been 

applied to a broader range of topics, showing that PSC inspection is attracting more and more 

attention. 

 

2.3 BN IN MARITIME SAFETY AND PSC INSPECTION 

Taking advance of causal inference, BN can be used to analyse the degree of importance of 

risk factors and the relationships between them. Compared to pure Bayesian theory, BN is more 

visualized; while compared to other graphic models, it has a foundation of mathematical 

knowledge. Because of its advantages, BN has been increasingly applied in maritime safety in 

the past decade. When summarizing the topics of the publications in this area, it is not 

surprising to find various aspects are covered.  
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2.3.1 The occurrence of ship-ship collisions 

As mentioned above, collision is one of the major types of maritime accidents around the 

world. It has two forms: one is the collision between one vessel and a floating or still object 

such as an iceberg, the other is the collision between two or more vessels. In local sea areas 

with high traffic intensities, such as the Gulf of Finland and the Singapore Strait, ship–ship 

collision is one of the most frequently occurring accident types (Kujala, et al., 2009; Weng, et 

al., 2012; Klanac, et al., 2010).  

Goerlandt & Montewka (2015) proposed a framework for risk analysis of maritime 

transportation systems. In order to quantify the probabilistic risk, BN was used to form the 

model serving as an evidence assessment tool. Through applying to a case study of an oil tanker 

ship-ship collision in the Gulf of Finland, the model was proved plausible. From a different 

angle, Hänninen & Kujala (2012) utilized BN to estimate the role of human factors on ship 

collision probability in the Gulf of Finland for discovering the variables with the largest 

influences and for examining the validity of the network. Changing course in an encounter 

situation is the most influential variable in the model, followed by variables such as the 

situation assessment, danger detection, personal condition, maintenance routines and the 

officer's fatigue. Later in 2014, they further presented an expert knowledge-based preliminary 

assessment of how the deployment of Enhanced Navigation Support Information navigation 

service would affect the ship collisions and groundings in the Gulf of Finland. The result was 

positive, as the implementation of the system effectively decreased the number of accidents. 

The proposed model can be updated and improved when more evidence is available and the 

service is widely used (Hänninen, et al., 2014). 

 

2.3.2 Navigational risk analysis 

With increased vessel traffic, it is imperative that any potential obstacles to navigation 

should be assessed in advance. Hazards to the crew, the environment and social assets should 

be avoided at all times. 

In order to improve the navigational safety in the Yangtze River, Zhang et al. (2013) used 

the FSA concept and a BN technique to estimate the navigational risk of the Yangtze River. A 

scenario analysis was conducted to demonstrate the application of the model and the way it can 

improve the navigational safety in the Yangtze River. Similarly, Banda et al. (2016) adapted 
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the FSA into a BN model to manage the risk of winter navigation in the Gulf of Finland. The 

results indicated that ship independent navigation and convoys are the operations with higher 

probability of oil spills.  

 

2.3.3 Maritime accidents analysis and prevention 

As a quantitative modelling tool, one of the advantages of BN is its function to predict and 

prevent the maritime accidents. Sometimes this function can even be utilised to help users make 

decisions under different conditions.  

Based on the maritime accident database of the Portuguese Maritime Authority, Antao et al. 

(2009) selected 857 validated accidents to develop a BBN for maritime accident analysis. The 

results showed that it is possible to develop a model derived from real data to analyse the 

influence of major risk factors on maritime accidents, even to support decision-making for 

maritime authorities.  

Hanninen (2014) discussed the contribution of BN to maritime accident prevention and 

safety modelling, as well as some challenges in real practice. Compared to other dynamic 

modelling tools, BN is a rather well suited tool for maritime safety management and decision-

making. Li et al. (2014) also worked on this topic and reached similar conclusions.  

 

2.3.4 Offshore safety management  

The operation of an offshore installation is associated with a high level of uncertainty 

because it usually operates in a dynamic environment in which technical and human and 

organizational malfunctions may cause possible accidents. New regulations, such as the EU 

directive, mirror society’s zero tolerance for offshore accidents. The offshore oil and gas 

industry has achieved an outstanding improvement in occupational safety over the past three 

decades. Although it has learned much from major accidents in the past, such accidents are still 

occurring.  

Associated with a high level of uncertainty, offshore safety is another concern that can be 

solved by BN. Eleye-Datubo et al. (2008) proposed a framework based on fuzzy BN (FBN) to 

analyse maritime and offshore safety. It acted as a bridge in the probabilistic setting of the 

domain. Its implementation has been demonstrated in a maritime human performance case 
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study that utilizes performance-shaping factors as the input variables of this groundbreaking 

FBN risk model. Further, Ren et al. (2009) employed the FBN approach to model causal 

relationships among risk factors that may lead to possible accidents in offshore operations. The 

FBN model explicitly represented cause-and-effect assumptions between offshore engineering 

system variables and made the risk and safety analysis of offshore engineering systems more 

functional and easier in many assessment contexts. A case study of the collision risk between 

a floating production, storage and offloading unit and the authorized vessels due to human 

errors during operation was used to illustrate the application of the proposed model. 

 

2.3.5 Risk based vessel design 

Considering the drainage and leakage of fluids during the process of vessel design, Lee & 

Somemerfeld (1994) developed some equations related to the drainage times for a variety of 

geometrical vessel shapes, which can be used as the guidelines for shipyards in the design of 

vessels to reduce the risks and hazards when sailing on the sea. 

Yuan & Wang (2010) applied both the Monte-Carlo method and the stochastic method to 

study the structural reliability of the pressure vessels. The combination of two methods was 

efficient and practical, leading to an accurate numerical simulation that can help make the 

vessel design more reasonable. 

In order to analyse the effect of global design factors (e.g. ship motion, body vibration) on 

the human performance, Montewka et al. (2017) introduced a BBN to link the effect of these 

factors with the human performance suitable for the process of vessel design. Validated by the 

promising results, the model was useful for facilitating risk-based ship design for naval 

architects and vessel designers.  

 

2.3.6 Oil spill in maritime accidents & oil spill recovery 

Oil spill accidents have been one of the major concerns of maritime industry for a long time. 

They are commercial and environmental catastrophes that may cause huge losses to the society, 

e.g. the Gulf of Mexico oil spill. Because the accidents involve vessels or oilrigs, the ocean 

water becomes contaminated by liquid petroleum hydrocarbon, causing damages to the 

environment taking decades to recover. In addition to killing fish, marine mammals and birds, 

oil spill accidents will destroy beaches and wildlife habitats as well. When an oil slick reaches 
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the beach, it also affects human settlement on the beaches and mangrove forests. Moreover, it 

takes months-long oil cleaning operations to bring back the areas around the accident back to 

normality.  

Due to limited data, Goerlandt & Montewka (2014) proposed a BN model for reasoning 

under uncertainty for the assessment of accidental cargo oil spill in ship-ship collisions from 

product tankers. It provided a platform to assess the uncertainty about the possible oil outflows 

in maritime traffic scenarios, as well as enabling an insight into the probabilistic nature of 

possible oil outflows conditional on the impact conditions.  

From another perspective, Lehikoinen et al. (2013) developed a BN to examine the recovery 

efficiency and optimal disposition of the oil spill accidents in the Gulf of Finland, and the 

process seemed to be strongly controlled by certain random factors independent of human 

actions, e.g. wave height.  

Besides the above-mentioned topics, there are still other research orientations that should 

be paid more attention. For example, the wastewater treatment (Bagley David & Sahely Brian, 

2001), sea wave overtopping issue (Tolo, et al., 2015), etc. The variety of topics indicates the 

popularity of BN in the maritime safety area and the expansion of the range of topics will 

continue.  

However, few researchers investigated its effectiveness and potential in analysing the risks 

relating to PSC inspections. Hänninen & Kujala (2014) explored the dependencies of PSC 

inspection findings and vessels’ involvement in accidents and incidents by using two learning 

algorithms to train BNs based on inspection, accident and incident data. The results showed 

that vessel type, inspection type and the number of structural conditions related deficiencies 

are among the most important factors influencing accident involvement. Later in the same year, 

Hanninen et al. (2014) presented another BN model to analyse the maritime safety management. 

According to the model, some sub-areas of maritime safety management, for example, the Port 

state control, still have room for improvement. Further, a good IT system would be beneficial 

for PSC inspection. 

Focusing on the increasing threats from smuggling by sea, Wen et al. (2016) applied 

classification trees and Bayes algorithms to improve the recognition rate of smuggling vessels. 

The paper presented a selection method for vessels that could not only be applicable in 

smuggling activity, but also in other maritime instances, for example, PSC inspection.  
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In addition, Yang et al. (2018) proposed a data-driven BN model involving multiple risk 

factors, to analyse their individual and combined effect on PSC inspections, and to develop a 

real-time prediction tool for port authorities to rationalize their inspections under dynamic 

situations. The results of the study provide important insights for both stakeholders to ensure 

that optimal inspection actions are taken to improve safety at sea in a cost effective manner and 

check whether their actions are beneficial.  

However, such studies focused on the PSC inspection system before the implementation of 

NIR, meaning the influence of company performance on inspection results is overlooked. As 

an important factor in new PSC inspection system, company performance is introduced when 

building BN for PSC inspections in this study. Furthermore, none of them had ever undertaken 

further studies to look at how the dynamic risk analysis result can assist port authorities in the 

development of rational inspection policies in their PSC practice. 

 

2.4 CPT CALCULATION APPROACHES IN BN  

Despite such applications, a common criticism of BN is that it requires too much data in the 

form of prior probabilities, and such data is hard to collect, even inaccessible sometimes (Yang, 

et al., 2008). Meanwhile, the size of the conditional probability table (CPT) grows quickly in 

size as more parent nodes are added, leading to complexity and difficulty in computation. 

Normally the traditional way to obtain the CPT is to calculate the frequency directly from the 

data. Nevertheless, the scarcity of empirical data makes the work impossible to achieve 

sometimes. In addition, Gaarder et al. (1997) pointed out that statistics describe only the past, 

which may not be of much use in predicting the occurrence probability of an event happening 

in the future. Due to these reasons, CPTs are often generated based on experts’ judgements in 

many publications. Mkrtchyan et al. (2015) analysed the BBN uses for human reliability 

analysis applications. During the process for building the model, expert judgment is utilized in 

the assessment of the CPTs of the model. 

However, there also exist some problems in terms of using the subjective probability 

provided by experts. Experts may fail to take into consideration every condition with respect 

to human errors (Slovic, et al., 1979), as well as being restricted by their professional mode of 

thinking and corresponding experience (Skjong & Wentworth, 2001). Meanwhile, for large-

scale BN models, the use of expert judgment is time-consuming, impractical and inconsistent 

(Mkrtchyan, et al., 2015).   
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To address such concerns, Wettig et al. (2005) and Rijmen (2008) both introduced the 

logistic regression techniques to calculate the conditional probabilities of BN for discrete 

variables. Li et al. (2014) further improved the approach through combining the logit model 

and binary logistic regression to generate a relative risk score covering most of the world 

vessels. This safety index was provided as an important input for constructing a BN model for 

maritime risk analysis (Li, et al., 2014). However, it is available only when a large dataset is 

obtained.  

Another approach is called Noisy-OR. Through the Noisy-OR approach, the elicitation of 

full CPTs is simplified to the assessment of individual parent-child Conditional Probability 

Distributions (CPD) while the missing relationships are derived by combining the estimated 

CPDs disjunctively (Pearl, 1988). It was originally proposed by Pearl in 1988 and experienced 

several extensions (Diez, 1993; Onisko, et al., 2001). Yang & Ning (2007) proposed non-

impeding noisy-AND tree and improved it later in 2012, which enhanced BN’s capability of 

dealing with multi-state and dependent nodes. Yet, its limitations on how to derive the tree 

topology and the fact that not all causal interactions can be expressed by the method affects its 

popularity (Xiang, 2012; Xiang, et al., 2011; Xiang, et al., 2009). 

Through applying ranked nodes to BNs, Norman et al. (2007) presented a novel but effective 

approach. The approach is based on the doubly truncated Normal distribution with a central 

tendency that is invariably a weighted function of parent nodes. The results of case studies 

proved that the elicitation burden is much reduced by using ranked nodes. It is naturally an 

evolutionary approach of expert judgments.  

By incorporating Monte Carlo simulation with expert judgment, a novel way to learn BN 

has been proposed in recent years to avoid the elicitation of prior distributions. Involving 

Markov chain Monte Carlo simulation, Tebaldi & West (1998) applied the method when 

analysing the network traffic flow. The explored model was able to cope with the uncertainty 

in route selection and provide specified route choice probabilities. Cano et al. (2011) explained 

this method in detail and validated the model through alarm networks. Gui et al. (2011) applied 

this method to investigate the impacts of time and weather on animal-related outages in 

overhead distribution systems. From the literature, it is not surprising to find the application of 

Monte Carlo simulation in learning BN is widely applied in many disciplines, e.g. electrical 

industry (Torres & Santos, 2006). 
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Other approaches, like interpolation of anchor inputs (Cain, et al., 1999; Wisse, et al., 2008), 

function based methods (Vinnem, et al., 2012), and expectation maximization (EM) (Attias, 

2000; Sun, et al., 2006; Nessler, et al., 2013) also provide different ways to cope with the 

drawbacks of BN in terms of high demand on prior probabilities.  

 

2.5 DATA-DRIVEN APPRAOCHES TO CONSTRUCT BN  

Normally, the structure of a BN is constructed using human expert knowledge or common 

sense. However, this type of approach is time consuming, and heavy emphasis is placed on 

experts to provide both the local probability parameters and dependency among the parameters. 

An alternative approach for BN construction is to induce the network structure from data, 

namely the data-driven approach, which can greatly reduce the dependence on human experts 

and in some cases increase the accuracy of the model. However, the primary drawback of the 

data-driven approach is that the number of possible structures for a given problem grows super-

exponentially with the number of employed variables in the problem domain. For a problem 

consisting of n variables, Robinson (1973) calculated the complexity of the search space and 

provided a formula to compute the number of possible BN structures for various values of n. 

The table below lists the possible number of structures for each value. 

Table 2.1 The number of possible BN structures 

n Number of BN structure 

1 1.0*100 

2 3.0*100 

3 2.5*101 

4 5.4*102 

5 2.9*104 

10 4.2*1018 

20 2.3*1072 

50 7.2*10424 

100 1.1*101631 

(Source: New Directions in Graph Theory, 1973) 

To reduce such complexity, a large number of algorithms and efforts have been proposed, 

however the problem remains complex and hard (Chickering, et al., 1994). Given that the 

number of possible structures for a given problem domain grows super-exponentially, exact 

and exhaustive approaches for BN learning become unfeasible. Many algorithms can be found 
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in the literature, which can be classified into two broad categories: 1) dependency analysis 

approach and 2) search and score approach. 

Dependency analysis, which is based on performing conditional independence (CI) test on 

tuples of variables, was developed by Spirtes et al. (1991) and improved by Cheng et al. (1997; 

1997) and Thomas (2005). Through statistical tests or information theoretic measures (e.g. 

mutual information), the approach can determine whether the relationships between variables 

in the network are independent or not. Based on an iterative process, the final relationships 

between each pair of variables are confirmed, thus the optimal BN structure is generated. 

However, Singh & Valtorta (1995) reported three drawbacks of this method: 1) extensive 

testing of independence relations to derive the final network structure; 2) CI test relies on an 

enormous volume of data when condition sets are large; 3) it is unrealistic when the given 

domain grows exponentially as the number of variables grows. Although there exist several 

drawbacks, it is still recognised as a good attempt to deal with computational complexity 

problems in network construction. In order to improve the efficiency of the approach with 

sparse networks and limited data, Spirtes and Glymour (1991) developed a new CI based 

dependency analysis algorithm. 

Unlike the dependency analysis approach, the search and score approach is more popular 

and presents a better result. It seeks to explore a search space of candidate BN structures for 

the one that best represents the causality and dependency relationships. In other words, the 

approach aims to discover the probabilistic dependency network that most likely generated the 

data set (Cooper & Herskovits, 1992). It is more like an optimization problem in nature. It 

consists of three components: search engine, search space and scoring function. In contrast to 

the dependency analysis, the search and score approach employs a search heuristic to search 

the space of the candidate structure solutions for one that maximises the score by making 

perturbations to the solution. The search continues until an optimal solution is found or some 

predefined stopping criterion is met.  

Many search engines have been proposed to do the search work, and can be divided into 

two categories: sequential algorithms (those that iteratively build upon a single network 

structure) and population based algorithms (those that develop a series of possible network 

structures in parallel).  

Sequential algorithms 
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Cooper and Herskovits (1992) derived K2 scoring metric based on Bayes theorem, starting 

with an empty network and iterating through each node to get the best structure. An assumption 

for this algorithm is that it requires an order among the variables. If one node A comes before 

another node B in the ordering, then B can have A as its parent but not conversely. For each 

node, K2 search heuristic first assumes that a node has no parents, and then adds incrementally 

the parent nodes that can maximise the probability of the resulting structure. When there is no 

single parent that can increase the probability, the algorithm stops adding new parents to this 

node. By parity of reasoning, the parents of all nodes can be obtained, resulting in the final BN 

structure. The main drawback with this algorithm is the order required. Different order will 

lead to different network structure. In some cases if the domain knowledge is not sufficient, 

the quality of the network structure is hard to guarantee (Singh & Valtorta, 1995). 

In contrast to Cooper and Herskovits, Buntine’s (1991)‘B’ algorithm does not require a 

variable order. It also starts with an empty structure. A link will be added at the end of each 

iteration if it can maximize the score and does not lead to a cycle, until the score no longer 

increases or all nodes in the order have been visited. However, once local optima occurs, the 

algorithm could not give reasonable results.  

By cherry picking the best properties of the algorithm described above, Singh & Valtorta 

(1993; 1995) combined them and proposed a conditional independence and Bayesian learning 

(CB) algorithm. It executes in two phases: first, all nodes in the set are linked to form an 

undirected graph, CI test are conducted to remove the links between adjacent nodes that are 

unconditionally independent. The remaining links in the graph are oriented to form an order. 

Secondly, the order derived is fed into K2 to construct the network. The process is iterated until 

the termination criteria are met.  

Population based algorithms 

The population-based algorithms, which referred to as ‘nature inspired’ search heuristics, 

are loosely relied on systems found in nature. Given the dimensionality and complexity of the 

BN search space, these nature inspired algorithms operating on groups of candidate structures 

in parallel are helpful in BN learning. Many of these algorithms have been utilised as search 

algorithms in the BN structure learning.  

Originally developed by John Holland (1992), genetic algorithm (GA) is derived from the 

principles of Darwinian evolution, and later widely used as a common approach to tackle the 

optimization problem. From a BN perspective, the strength of GA lies in its ability to evolve 
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near optimal or optimal solutions to complex problems, as well as achieving multiple goals 

with minimal information and without searching the entire search space (Deb, 2001). However, 

as the GA is stochastic, therefore sometimes it may result in a network that consists of cycles. 

To solve this problem, Novobilski (2003) improved the genetic operators that guarantee 

acyclicity. 

Normally, when exploring the entire space of structures, the scoring function associated 

with the GA is K2 scoring metric (Larra˜naga, et al., 1996). Clearly, the combination of K2 

and GA is computationally expensive, thus not appropriate for the current research. Hence, 

instead of using the K2 algorithm to evaluate the quality of the order, Chain genetic algorithm 

is applied to making use of chain structure to reduce the computational expense. The reduction 

mainly reflects at the point that only the chain structure is evaluated rather than the whole order 

because ‘a chain order is a sufficiently good model to local node orderings from which good 

BN structures can be build’ (Kabli, et al., 2007). Kabli et al. (2007) demonstrated that this 

approach is superior and computationally more efficient to the original GA when learning the 

structure of BN. In addition, he validated this point of view through conducting several 

experiments. There are also other similar research on this approach (Larra˜naga, et al., 1996; 

Larra˜naga, et al., 1996; Larra˜naga, et al., 1997; Novibilski & Kamangar, 2003). 

In recent years, a novel application for BN construction from data, named Particle Swarm 

Optimization (PSO), is seeking to address some of the issues found in data-driven BN 

construction work. First proposed by James Kennedy & Russel Eberhart (1995), PSO is a 

nature-inspired and population-based stochastic search and optimisation heuristic. Operated in 

a continuous and real number space, it requires primitive mathematical operators and minimal 

use of computational resources such as memory and processing power. Sometimes in order to 

reduce the calculation work, it can be executed through the codes from computer programmes 

(Eberhart & Kennedy, 1995). For some certain problems, previous literature has demonstrated 

that PSO is superior to GA. Petrovski et al. (2004) compared two approaches when applied in 

medical systems. The results indicated that PSO was a faster way to find the proper solutions 

than GA and had a higher chance to find the optimal solution to the problem. The same also 

applied to the design of aircraft (Mouser & Dunn, 2005). Kennedy & Spears (1998) conducted 

several experiments on different randomly generated problems. The result of experiments 

proved that PSO was able to find the global optimum no matter what the situations were, 

however, GA was not that effective. Hassan et al. (2005) focused on another aspect and claimed 

that PSO was a more computational efficient approach than GA. Throughout the literature, 
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PSO has shown its advantages in many areas recent years, therefore, it is not surprising to find 

PSO has already been an important approach to learn BN structure.  

There are two major PSO-based approaches currently. Based on binary PSO, construct and 

repair (CONAR) serves to demonstrate that binary PSO can be used as a search heuristic for 

BN construction and there is no need to specify an order among the nodes. However, it requires 

expensive validation and repair operators to ensure the integrity of candidate solutions. To 

alleviate this problem, Restricted Structure (REST) algorithm was proposed. It is an advanced 

approach of CONAR, which is improved to guarantee generation of only legal solutions, 

therefore eliminating the need for validation and repair steps compared to CONAR.  

Other data-driven approaches, like estimation of distribution algorithms (EDA) (Romero, et 

al., 2004), Artificial immune system (AIS) algorithm (Castro & von Zuben, 2005), and Ant 

Colony Optimisation (ACO) (de Campos, et al., 2002; Daly, et al., 2006), also show their 

ability in coping with some BN data-driven structure learning problems.  

In general, data-driven approaches provide important insights in BN construction, as well 

as more objective and precise results. Although based on large volumes of data, they are still 

important alternatives to subjective network learning from professional knowledge and 

experience.  

 

2.6 GAME THEORY APPLICATIONS IN TRANSPORTATION  

Game theory, a mathematical tool to study the conflicts and cooperation between rational 

decision-makers, has become a popular and powerful methodology over the decades. The basic 

assumptions that underlie the theory are that decision-makers pursue well-defined exogenous 

objectives and take into account their knowledge or expectations of other decision-makers’ 

behaviour. One reason for the popularity of game theory is that its associated quantitative 

models and hypothetical examples can help researchers understand real competitive situations 

better even if the defined situations are unrealistically simplified (Myerson, 1991). 

Therefore, it is not difficult to find that many transportation related issues, involving 

multiple stakeholders, are essentially of conflict and cooperation characteristics, which can be 

well modelled by the game theory. The applications of game theory in transportation attract 

the attention of many scholars, forming a connected pool of research with abundant topics, 

multi-disciplinary knowledge, various transportation modes and novel methodologies. Sorting 
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how such research was developed in this academic field can help scholars better understand 

the current development of game theory in transportation. 

To help the review work, 112 papers are systematically reviewed from 60 academic journals 

and 13 conference proceedings from 1983 to 2017, covering multiple transportation modes. 

 

2.6.1 Development of research topics 

Game theory has been widely applied to stimulate policy making in transportation. Among 

different transportation modes, road transportation shows a dominating position in terms of use 

of game theory (Alberto & Alberto, 1995; Hideyuki, 1999; Chidambaram, et al., 2014) and sea 

transport has taken a back-seat role in this aspect.  

Most of the researchers in road transportation focus on transportation network issues. Cost 

and benefit is always the focus of attention for governments and individuals in road 

transportation. Bell (2000) proposed a two-player non-cooperative game between the users (e.g. 

road user and government) in transportation networks. One the one hand, the road user seeks a 

path to minimise the expected trip cost, on the other hand, however, the government would 

choose linking performance scenarios to maximise the cost road users have to pay. The Nash 

mixed strategy equilibrium developed would help to achieve a balance between two entities, 

as well as measure the performance reliability of the transportation network. Levinson (2005) 

developed the congestion theory and congestion pricing theory from micro-foundations. 

Through game theory, it is found that the road congestion depends on the road users’ relative 

valuations of early arrival, late arrival, and journey delay. Further, the congestion pricing would 

be determined via a cooperation mechanism to minimize the total costs (Levinson, 2015). In 

order to find out the optimal choice of a fare collection system, Sasaki (2014) considered game-

theoretic interactions between the transit agency and passengers for the barrier-free system. 

The Nash equilibrium revealed the optimal choice of fare collection system, and a comparative 

static analysis examined how each parameter can affect the choice.  

The network design problem is of vital importance to maximize the profit of carriers, 

especially the hub network design. It consists of two parts: the strategic decision on hub 

locations, and the operational decision on demand paths. In recent years, many researchers 

adopted game theory to analyse this strategic problem (Laporte, et al., 2010). Lin & Lee (2010) 

developed an integral-constrained game theoretic model for time-definite less-than-truckload 
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freight services in an oligopolistic market. The stable Cournot-Nash equilibrium solution of 

the model indicated that all carriers possess similar dense hub networks, which are robust even 

with uneven changes happening in the cost structure of carriers.  

Normally the roads in a transportation system are viewed as public goods. However, in some 

countries part of the road system is privately owned. Because of the nature of privately owned 

roads, the owners have to pay the maintenance cost and make decisions. Hence, how to split 

the costs of roads among the users is a strategic and tough problem. Sofia (2012) presented a 

cooperative game model analysing the practical problem of how a privately owned road 

association can divide the costs for the road network among the members in an efficient and 

fair way. Making use of the Shapley value, this cost allocation issue therefore has an appealing 

solution.  

Intuitively, the traffic-responsive signal control is the most efficient control policy in public 

review. However, Evers & Proost (2015) pointed out it is not always consistent. Through a 

Stackelberg game model, the study proved anticipatory control outperforms traffic-responsive 

signal control for an intersection of two routes connecting one origin-destination pair because 

of first mover advantage and externalities. Further analysis on the game model indicated the 

superiority of anticipatory signal control over other control systems. 

Other topics of publications related to transportation networks like the cost allocation 

(Rosenthal, 2017), Hazardous goods transportation (Chen, 2012), and green transportation 

(Bae, et al., 2011), also demonstrate the diversity and popularity of game theory application in 

road transportation.  

In the maritime transportation field, inspection games are mainly presented from a 

quantitative orientation. Avenhaus et al. (1996) pointed out an inspection game is a 

mathematical model of a situation in which an inspector verifies the adherence of an inspectee 

to some legal obligation, such as an arms control treaty, where the inspectee may have an 

interest in violating that obligation. When applied in maritime transportation, Von Stengel 

(1991) defined it as ‘The port authorities try to minimize the impact of such violations by means 

of inspections that uncover them. A detected violation is costlier to the ship owner than legal 

behaviour. The resources of the port authorities are usually limited and complete surveillance 

is not possible. Then, inspections have to be randomized and the inspection game typically has 

a mixed equilibrium.’  Canty et al (2001) and Rothenstein & Zamir (2002) conducted similar 

research on maritime inspection game.  
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In order to analyse the policies of PSC inspections, Li and Tapiero (2010) outlined a random 

payoff game-theoretical framework for vessel inspections at ports considering two kinds of 

error prone decisions (e.g. detaining a standard vessel or releasing a sub-standard vessel). The 

authors presented some particular Stackelberg solutions given different scenarios to highlight 

the effects and the implication of inspection costs and their derivatives. They paid enough 

attention on the inspections of potentially non-complying ship operators to regulations and sub-

standard performance. Based on this research, Li et al. (2015) further developed a game model 

to decide on the optimal inspection level and the target of the inspection. A bi-matrix game 

between port authorities and ship owners was built based on the same two types of error prone 

decisions discussed in 2010. Different from the previous studies, this time the authors generated 

a Nash equilibrium solution representing the optimal inspection rate for port authorities. A 

numerical study was conducted to illustrate the optimal inspection strategy, which yielded 

significant savings for port authorities, as well as prevented potential violations of ship owners. 

Although showing significant insights for port authorities, there are still several deficiencies 

existing in both studies , i.e. 1) both studies were conducted before the implementation of NIR, 

not taking into account company performance as an important factor influencing the decision-

making of port authorities in today’s PSC practice; 2) when carrying out the numerical studies 

in the two works, the authors assumed that the work of the authorities was perfect and had no 

inspection risk exists, which was obviously idealized and thus had limited practical 

contributions. Hence, when establishing the new game model in this thesis, both the 

contribution of company performance and the influence of inspection risk on the decisions of 

port authorities are investigated and considered, highlighting the main differences with and 

improvements from the two most related papers in the existing literature. 

Environmental control problem is another form of the inspection game in transport studies. 

Bird and Kortanek (1974) explored various theoretical cooperative n-person games in order to 

aid the formulation of regulations concerning sources of pollutants in the atmosphere subject 

to the given least cost solutions. Russell (1990) introduced a specific type of stochastic model 

by allowing for errors of inference on the part of the agency due to imperfect monitoring 

instruments. Gueth & Pethig (1990) analysed a signalling game between a polluting firm that 

could save costs by illegal waste emission and a monitoring agency whose responsibility was 

to prevent such pollution. 

As one of the hot topics in the maritime safety area, the terrorist threat draws the attention 

of many studies. Baston & Bostock (1991) improved the two-person zero-sum game model 
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derived from Thomas & Nisgav (1976) to address the problem of a patrol trying to stop 

smugglers who are attempting to ship a cargo of perishable contraband across a strait in one of 

m time units. Meanwhile, a comparison between the two models and the results was discussed. 

Reilly et al. (2012) used the game theory to model the interactions between a government 

agency, a carrier and a terrorist. A heuristic solution procedure is constructed to identify 

effective prohibitions and validated by a realistic case study in the continental US. The model 

was also suitable for rail network. Sandler & Arce (2003), Sandler & Enders (2003) utilized 

game theory to model terrorism as well.  

Based on the dynamic game theory and agent theory, Yuan (2008) studied the relations 

among different stakeholders (e.g. the authority, the ship owner and the transportation company) 

in the safety supervision of dangerous chemicals’ transportation. In 2014, Chen & Hu (2014) 

built a game model between maritime regulators and ship owners to analyse a ship overload 

problem. Through an equilibrium analysis, the factors that influenced the decision-making of 

the administrators and the optimal numerical intervals of ship overloads were revealed to help 

disclose the governance of this issue. 

In the other maritime transport related areas, among the game studies are port competition 

(Ishii, et al., 2013; Song, et al., 2016) and hazardous material transport.  
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Figure 2.1 Trends of main topics 

(Source: Author) 
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Figure 2.1 shows how the research topics evolved from 1983 to 2017. The number behind 

each topic is the frequency of occurrence. Before 2000, because of the small number of 

publications, the topics proposed were limited and paid equal attention, such as traffic 

equilibrium model and dynamic traffic flows (Wie, 1995). Later profit optimization (Adler, 

2001) gradually became the focus during 2000-2005. At this time, the range of topics expanded, 

indicating more newcomers in this research field.  

In the past decade, route selection (Bell, 2006) emerged as the most popular topic, along 

with some other new-born valued topics such as congested transportation network (Zhang, et 

al., 2008), passenger transport (Chiou, et al., 2013),  collaborative transportation network 

(Millera, 2011) and transportation mode choice (Saeed, 2013). Some topics, like pricing model 

(Cardinal, et al., 2009) and hazardous material transportation/shipment (Rahman, et al., 2012), 

which was among the hot topics in ‘2006-2011’ period, experienced a descending trend during 

2012-2017. However, for topics like Intelligent Transportation System (Malandrino, et al., 

2012), public transportation (Lodi, et al., 2015) and security game (Baykal-Gürsoy, et al., 2014), 

things were just the opposite. Besides these major topics, more than 80 other topics have been 

discussed during this period. The alternation of major topics, as well as the emergence of 

multiple topics indicates a broader and diverse research field, corresponding to the multi-

disciplinary property. 

Among these topics, Intelligent Transportation System (ITS) gained increasing popularity. 

Consisting of advanced technologies, ITS has already been applied to many areas, such as 

analysis of driver behaviour (Malandrino, et al., 2012), transportation infrastructure 

construction (Malandrino, et al., 2014) and traffic flow guidance system (Wang & Hu, 2014). 

As more and more countries have noted the importance of ITS and applied ITS into 

transportation networks, it will surely become a potential research direction. Meanwhile, the 

expansion of the range of topics will continue. It is predictable that more and more 

comprehensive topics are going to appear, i.e. the application of new technologies in 

transportation systems, risk/safety assessment, novel transportation network modelling 

approach, and policy evaluation and regulation. Researchers from different research 

backgrounds are encouraged to cooperate when working on these topics. 

The focus of game theory application in transportation varies in different periods, and more 

and more research topics have been explored and analysed, reflecting the diversity and 

popularity of the application of game theory in transportation field. 
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2.6.2 Development of different transportation modes 

Table 2.2 lists the evolution of the number of publications of different transportation modes 

from 1983 to 2017. Transportation mode is categorized into five types: road transportation, air 

transportation, maritime transportation, rail transportation and general transportation. The first 

four types are easy to define, but for the last one, it refers to research papers that do not set a 

specific transportation mode as their targets. For example, the studies focus on transportation 

network analysis (Schmoecker, et al., 2009; Cardinal, et al., 2009), cooperation and 

competition between transportation stakeholders of different transportation modes (Audy, et 

al., 2012; Saeed, 2013), and routing & optimization problem (Crippa, et al., 2009; Krichene, et 

al., 2014). 

Table 2.2 Trend of transportation mode 

Transportation 

mode 
Before 2000 2000-2005 2006-2011 2012-2017 Total 

General 

transportation 
2 6 12 15 35 

Road 

transportation 
2 4 16 31 53 

Air transportation  2 3 4 9 

Maritime 

transportation 
 1 6 4 11 

Rail transportation   2 2 4 

(Source: Author) 

From Table 2.2, road transportation was the most discussed transportation mode, reaching 

nearly half of the total number of papers.  General transportation analysis was also preferred 

among researchers, accounting for 31.25% of the database. On the contrary, rail transportation, 

air transportation and maritime transportation only had a small portion. It was mainly due to 

the high utilization rate of road transportation and its resulting transportation issues.  

Although compared to road transportation, the number of publications focusing on maritime 

transportation was relatively small, and even experienced a slight decrease from ‘2006-2011’ 

period to ‘2012-2017’ period, maritime transportation has the potential to attract more attention 

in the future.  
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Figure 2.2 Developments in international seaborne trade, selected years (Millions of tons 

loaded) 

(Sources: UNCTAD 2016 REVIEW OF MARITIME TRANSPORT) 

According to Figure 2.2, the world maritime transportation volumes maintained a high 

growth rate over the past decades, and even exceeded 10 billion tons in 2015. However, the 

unprecedented growing rate of maritime transportation on one hand contributes to industrial 

prosperity, but on the other hand renders many problems, like optimal ship route selection, 

cost/profit optimization, maritime safety/security and risk assessment. As game theory is 

effective against these problems, more researchers in this field will begin to apply game theory 

into maritime transportation in the future. 

 

2.7 SUMMARY 

From the reviewed literature, several conclusions can be made: 

1) When applied in risk-based PSC inspection study, according to the reviewed literature, 

BN shows its superiority (e.g. bi-directional analysis) over risk assessment approaches, 

presenting a novel way to analyse PSC inspections for ship owners and port authorities. In 

other words, whenever the information about a specific ship concerning the defined nodes is 

obtained, its ship owner/operator or the authority of the port that the ship visits can use the BN 

based PSC model to analyse the detention probability of the ship in a forward risk prediction. 

If the ship is detained, the owner/operator can use it again to analyse the most probable causes 

leading to the detention in a backward risk diagnosis. Furthermore, it combines the visualized 

graph with mathematical knowledge, enabling it to analyse the inner relationship between 
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different variables influencing PSC inspection results. However, because of the research 

challenges on CPTs and network construction, BN’s advantages in risk-based PSC have not 

yet been appropriately explored, revealing the major research gap to be fulfilled. 

2) The nature of PSC inspection is a strategic problem between different stakeholders (e.g. 

port authority and ship owner), and the inspection policies demand to be settled properly and 

optimally. Game theory, as a mathematical tool to study the conflicts and cooperation between 

decision-makers, is validated by historical research on transportation, whether road or marine 

transport. Meanwhile, because of the scarcity of related papers on this academic field, game 

theory is a proper method to analyse the relationship between different stakeholders in PSC 

inspection.  

In addition, the implementation of NIR in 2011brought PSC inspection to a new level, as 

stated by the chair and many senior executives of the Paris MoU. On this occasion, the optimal 

inspection policies and the decision-making framework for port authorities need to be clarified. 

However, none of the publications focuses on this topic.  

3) Due to the implementation of NIR, company performance becomes a key influencing 

variable and indeed needs to be considered as a major risk factor in the decision-making process 

of PSC inspections, revealing a new research gap to be filled. 

4) When searching the literature from various sources (e.g. Web of Science, Google Scholar), 

there is no research related to the implementation of NIR in PSC inspection or the analysis of 

the impact of the implementation of NIR on PSC inspection. Since the Paris MoU propagated 

that the introduction of NIR is the most important change in PSC history, it is necessary to 

figure out whether the implementation of NIR brings positive and significant changes to the 

PSC inspection system. 
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CHAPTER 3 REALISING ADVANCED RISK-BASED PORT 

STATE CONTROL INSPECTION USING DATA-DRIVEN 

BAYESIAN NETWORK 

In this chapter, a data-driven Bayesian Network (BN) based approach is proposed to analyse 

risk factors influencing PSC inspections, and predict the probability of vessel detention. To do 

so, inspection data of bulk carriers in several major European countries in the Paris MoU is 

collected to identify the relevant risk factors, and categorised into two groups: ‘2005-2008’ 

(corresponding to the period before NIR implementation) and ‘2015-2017’ (corresponding to 

the period after NIR implementation). Meanwhile, the network structure is constructed via Tree 

Augmented Naive (TAN) learning and subsequently validated by sensitivity analysis. The 

model exploits a novel way to predict the detention probabilities under different situations, 

which effectively help port authorities to rationalise their inspection regulations as well as 

allocation of their resources.  

 

3.1 INTRODUCTION 

The past decades witnessed an unprecedented growing rate of maritime transportation 

demand, which on one hand contributes to industrial prosperity, but on the other hand renders 

threats and risks to the maritime industry, including but not limited to, ship collisions, stranding, 

fire, and oil spill causing large property losses, environmental pollution and casualties. For 

instance, the grounding of the Exxon Valdez, the capsizing of the Herald of Free Enterprise 

and the Estonia passenger ferry are well-known accidents in maritime transportation. These 

accidents attracted the attention of the world on maritime safety (Yang, et al., 2013; Yang, et 

al., 2014; Li, et al., 2014) and Port State Control (PSC) inspections have been implemented as 

an administrative measure to reduce the occurrence of maritime accidents and ensure maritime 

safety (Viladrich-Grau, 2003; Li & Zheng, 2008). 

PSC inspections, which render port authorities the ability to inspect vessels in their own 

ports, are set up in order to prevent illegal actions of ship owners and maritime accidents. The 

PSC officers select high-risk vessels for inspection according to the risk estimation mechanism 

suggested by the regional PSC organizations (Xu, et al., 2007). If a vessel fails to pass the 

inspection, it will face a certain level of detention based on its safety status. Actually, PSC 

inspections are regarded as the last line of defence in coping with substandard vessels that may 
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cause maritime accidents. It is however well noted that although risk analysis approaches, 

qualitative or quantitative, have been widely used to enhance maritime safety in recent years, 

they have been insufficiently utilized in the PSC inspection area in the literature. 

This chapter aims to develop the risk assessment models using Bayesian Networks (BNs) 

to reveal the degree of importance of different risk factors influencing PSC inspection results, 

as well as predict the detention rate of individual vessels under different situations. Because of 

the implementation of NIR in 2011, the PSC inspection conditions before and after the NIR are 

different, indicating two BN models are needed, one for each period, respectively. In order to 

build the models, the bulk carrier data of some major European countries from 2005 to 2008 

and 2015 to 2017 has been collected from the Paris MoU online inspection database 

(www.parismou.org/inspection-search). Meanwhile, the causal factors related to PSC 

inspections are also identified from this database. Due to the implementation of NIR and 

database system update, the factors identified from two periods are slightly different, which is 

illustrated in detail in a later section. The dependency among these factors and the causal 

relationships between them are simulated using a qualitative diagram in BN while the 

quantitative configuration of such dependency (i.e. conditional probabilities) is obtained using 

a gradient descent approach based on the collected dataset (Jensen, 1999). In fact, the BNs 

induced from the data-driven approach can reduce the disturbance of experts’ judgements on 

the accuracy of the model results. 

 

3.2 METHODOLOGY-THE CONSTRUCTION OF DATA-DRIVEN BN 

Normally, the process of developing a data based BN model consists of four phases: data 

acquisition, BN structure learning, BN monitoring and analysis, and model validation (Zhang, 

et al., 2013). When applying it in the context of risk-based PSC inspections, a new conceptual 

methodology to analyse PSC inspections is developed including the following six steps in this 

study.  

3.2.1 Data acquisition 

To determine if a vessel is more likely to be detained, a list of historical PSC inspection 

records is necessary. The data used in this study is derived from the Paris MoU online 

inspection database (www.parismou.org/inspection-search, 2005-2008 and 2015-2017), which 

http://www.parismou.org/inspection-search/inspection-search
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presents the details of inspections and provides a comprehensive and support dataset for this 

study.  

There are two reasons for collecting the inspection records of these two periods: First, during 

the process of collecting data before the implementation of NIR, the Paris MoU online 

inspection database updated to a new system. In the new system, some information and risk 

factors existing in the old system were missing, i.e. dead weight tonnage and recognised 

organisation. Hence, in order to maintain consistency, only the data in 2005-2008 were 

collected. Second, the initial plan for the research project was to collect all the data after the 

implementation of NIR. However, because of the heavy workload on data collection work, 

only part of the data could be collected currently. Although compared to ‘2011-2014’, ‘2015-

2017’ was a worse period according to the statistics provided by Paris MoU, it could provide 

us with more valuable information about the risks and uncertainties of PSC inspections under 

NIR, as worst cases are always given high priority in risk assessment. 

Figure 3.1 and Figure 3.2 illustrate the interface of the Paris MoU inspection database and 

an example of one Paris MoU online inspection report.
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Figure 3.1 Paris MoU inspection search interface 

(Source: Paris MoU) 
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Figure 3.2 An example of PSC inspection online report 

(Source: Paris MoU) 

 

3.2.2 Variable identification 

Based on the inspection records from the Paris MoU database, the variables of different 

periods are identified. Because of the heavy workload to collect inspection records manually 

from the Paris MoU inspection database1, it is impossible for us identify all the factors and 

information presented in inspection records (Figure 4.2). Hence, only the factors shown at the 

interface and some important factors in inspection reports are counted, including: 

                                                           
1 The Paris MoU inspection related data can only be viewed online, but not downloaded since it has been restricted by the 

Paris MoU Committee. Hence, the data in this study is collected manually or with the help of web crawler software. 
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1) 2005-2008: vessel flag, Recognized Organization (RO), dead weight tonnage (DWT), 

vessel age, type of inspection, port of inspection and number of deficiencies. 

2) 2015-2017: vessel flag, vessel age, company performance, type of inspection, port of 

inspection, date of inspection, number of deficiencies 

It is noteworthy that the factors concerned are those influencing detention, rather than 

inspections. In this study, the risk variables are set as the ‘root variables’, or ‘first level risk 

variables’ influencing detention rates of vessels. The inspection result ‘Detention’ is the 

target node. However, the size of the relevant CPT table would have been enormous if all 

root variables are defined as the parent nodes of inspection results in terms of ‘detention’.  

To solve this issue, two intermediate level risk variables are introduced based on the 

principle of divorcing approach (Jensen, 2001), one is ‘vessel group’, and the other is 

‘inspection group’. Vessel-related root variables (i.e. vessel age, flag, RO, DWT) and 

inspection-related root variables (i.e. type of inspection, port of inspection, and number of 

deficiencies) are connected as the parent node of the two intermediate level variables, 

respectively. Then the two intermediate level risk variables will act as the parents of the node 

‘detention’.  In fact, they are two dummy variables to help reduce CPT calculation work. 

‘Vessel group’ is the child node of vessel-related variables, while ‘Inspection group’ is the 

child node of inspection-related variables. They are at the same level in the network and 

jointly act as the parent nodes of ‘Detention’. The hierarchical BN structure can significantly 

reduce the CPT calculation work (Huang, et al., 2006). 

The detailed information and idea evolution of solving this issue will be presented in 

section 4.3.  

 

3.2.3 Structure learning through data-driven approach 

After identifying risk variables in the second step, a qualitative BN representing their 

interactive dependencies can be constructed through a data-driven approach, called Tree 

Augmented Naive (TAN) learning (Friedman, et al., 1997; Carvalho, et al., 2007). 

3.2.3.1 Naïve BN (NBN) 

In data analysis and pattern recognition, a classifier is a function that assigns a class label 

to evidence described by a set of attributes. As one of the most effective classifiers, naïve 
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Bayesian classifier is popular among the classifiers because of its predictive performance. 

The classifier learns from training data to compute the conditional probability of each 

attribute variable 𝐴i given the class label C. Based on the assumption that all the attributes are 

conditionally independent given the value of C, the probability of C given the particular 

evidence can be calculated through Bayes rules. According to the value, the evidence is 

classified into a certain state of the class label.  

When presented as a Bayesian network, the naïve BN is described as follows in Figure 

3.3. 

 

Figure 3.3 An example of naïve BN 

(Source: Bayesian Network Classifiers, 1997) 

The naïve BN was named by Titterington et al. (1981). It is a network where each target 

node is independent from other nodes and the target node is connected with all other nodes. 

The target node has no parents in this type of model. Although the assumption of NBN is 

unrealistic because the correlations among the factors exists in most problems, it is a still 

basic network of many other derived approaches and their networks, i.e. augmented naive BN 

and tree augmented naïve BN. Sun & Shenoy (2007) applied NBN to predict the bankruptcy, 

as well as help related stakeholders to make business decisions.   

 

3.2.3.2 TAN learning 

In order to improve the performance of NBN to comply with the reality, the NBN 

structure is augmented with links among the attributes or factors. This kind of structure that 
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does not require independence among attributes is called augmented naïve BN (ABN). 

Further, if the class variable has no parents and each attribute has the class variable and at 

most one other attribute as parents, the ABN under this condition is called tree-augmented 

naïve (TAN) BN. The process of learning and constructing TAN model is named TAN 

learning. 

The essence of TAN learning is actually an optimization problem. Let 𝐴1… 𝐴𝑛 be the 

attribute variables (e.g. the first level root variables) and C be the class variable (e.g. ‘Vessel 

group’) in PSC inspection. 𝛱𝐶 represents the parent variables of C.  B is defined as a TAN 

model if 𝛱𝐶 =  Ø and there is a function 𝜋 that defines a tree over 𝐴1, … , 𝐴𝑛 such that 𝛱𝐴𝑖 =

{𝐶, 𝐴𝜋(𝑖)} if 𝜋(𝑖) > 0, and 𝛱𝐴𝑖 = {𝐶} if 𝜋(𝑖) = 0. The optimization problem consists on 

finding a tree defining function 𝜋 over 𝐴1… 𝐴𝑛 such that the log likelihood is maximized, 

and the TAN model under this function is the structure of the target BN model. One 

difference between BN model and TAN model lies in class variables. Class variables in a 

normal BN model always have at least one parent node, meaning it is an intermediate-level 

variable, but in the TAN model it is the ‘terminal’ of the structure. Additionally, the TAN 

model is a diverging model, which is different from normal recognition of converging BN.  

The procedure called Construct-TAN can solve this optimization problem. This procedure 

follows the general outline proposed by Chow and Liu (1968), except that instead of using 

the mutual information between two attributes, it uses conditional mutual information 

between attributes given the class variable. This function is defined as 

 𝐼𝑃(𝑨𝒊; 𝑨𝒋|𝑪) =  ∑ 𝑃(𝒂𝒊𝒊, 𝒂𝒋𝒊, 𝒄𝒊)𝑙𝑜𝑔
𝑃(𝒂𝒊𝒊, 𝒂𝒋𝒊|𝒄𝒊)

𝑃(𝒂𝒊𝒊|𝒄𝒊)𝑃(𝒂𝒋𝒊|𝒄𝒊)
𝒂𝒊𝒊,𝒂𝒋𝒊,𝒄𝒊

 (3-1) 

where 𝐼𝑃 represents the conditional mutual information, 𝒂𝒊𝒊 is the ith state of attribute 

variable 𝑨𝒊, 𝒂𝒋𝒊 is the ith state of attribute variable 𝑨𝒋, 𝒄𝒊 is the ith state of class variable 𝑪𝒊. 

This function measures the information that 𝑨𝒊, 𝑨𝒋 both have when the value of C is 

known.  

The Construct-TAN procedure of PSC inspection consists of five main steps: 

a) Compute 𝐼𝑃(𝐴𝑖, 𝐴𝑗| 𝐶) between each pair of attribute variables in PSC inspection, i ≠ 

j. 
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Attribute variables in PSC inspection: vessel flag, Recognized Organization (RO), dead 

weight tonnage (DWT), vessel age, type of inspection, port of inspection and number of 

deficiencies. 

Class variables in PSC inspection: vessel group, inspection group 

b) Build a complete undirected graph in which the vertices are the attributes 𝐴1,…, 𝐴𝑛. 

Annotate the weight of an edge connecting 𝐴𝑖 to 𝐴𝑗 by 𝐼𝑃(𝐴𝑖, 𝐴𝑗| 𝐶).  

c) Build a maximum weighted spanning tree. 

Spanning tree: A spanning tree is a connected subgraph containing no cycles. 

Maximum weighted spanning tree: The maximum weighted spanning tree is a spanning 

tree that has a larger sum of weights on its edges than any other spanning tree. 

Therefore, the maximum weighted spanning tree in our study is the tree that has a 

maximum sum of  𝐼𝑃(𝐴𝑖, 𝐴𝑗| 𝐶). 

d) Transform the resulting undirected tree to a directed one by choosing a root variable 

from the attribute variables and setting the direction of all edges to be outward from it. 

e) Construct a TAN model by adding a vertex labelled by class variable C and adding an 

arc from C to each 𝐴𝑖. 

Compared to other data-driven network construction approaches, like naive BN (Langley, 

et al., 1992) and C4.5 (Quinlan, 1995), TAN is proved to be more competitive and accurate 

(Murphy & Aha, 1995).   

 

3.2.4 CPT distribution of the risk-based PSC BN 

When the structure of the PSC BN is confirmed, the conditional probabilities of the nodes 

are required to model the uncertainties of risk variables. In this thesis, the CPTs are 

formulated by using a gradient descent approach (Jensen, 1999; Bottou, 2010).   

In the developed PSC BN, there exists evidence e, for example, the inspection database 

from 2005-2008. For a particular variable V, take ‘Vessel age’ as an example, we have 𝒙 =

𝑃(𝑉 | 𝑒) = (𝑥1, … , 𝑥𝑛), which reflects the conditional probabilities of different states of 

‘Vessel age’. Meanwhile, we have a prior request 𝒚 = (𝑦1, … , 𝑦𝑛) for 𝑃(𝑉 | 𝑒). If the 
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structure of BN is determined, the conditional probabilities associated with ‘vessel age’ are 

described by a set 𝒕 = (𝑡1, … , 𝑡𝑚), for example, 

𝑃(𝑣𝑒𝑠𝑠𝑒𝑙 𝑔𝑟𝑜𝑢𝑝 =′ ℎ𝑖𝑔ℎ 𝑑𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑟𝑖𝑠𝑘′|𝑉 = ′𝑚𝑜𝑟𝑒𝑡ℎ𝑎𝑛20′). Set 𝒕 has an initial 

value 𝒕0, which is based on the estimation or related experience. According to Bayes’ rules, 

the conditional probability of ‘vessel age’ can be calculated as a function of set 𝒕, denoted 

as 𝒙 = 𝑃(𝑉 | 𝑒) = 𝐹(𝒕). The objective of gradient descent approach is to adjust the 

conditional probability set 𝒕 so that 𝑃(𝑉 | 𝑒) is sufficiently close to y. Once this objective is 

satisfied, the value of set t at this time is the corresponding conditional probabilities in the 

BN model of PSC.  

A distance measure approach is introduced, called Euclidean distance (𝑑𝑖𝑠𝑡𝐸):  

  𝑑𝑖𝑠𝑡𝐸(𝒙, 𝒚) =∑(𝑥𝑖 − 𝑦𝑖)
2

𝑖

 (3-2) 

It is a metric, having the following characteristics: 

1.  𝑑𝑖𝑠𝑡𝐸(𝒙, 𝒚) = 0 if and only if x = y 

2.  𝑑𝑖𝑠𝑡𝐸(𝒙, 𝒚)  ≤   𝑑𝑖𝑠𝑡𝐸(𝒙, 𝒛) +  𝑑𝑖𝑠𝑡𝐸(𝒛, 𝒚) 

3.  𝑑𝑖𝑠𝑡𝐸(𝒙, 𝒚) =  𝑑𝑖𝑠𝑡𝐸(𝒚, 𝒙) 

The task is to set the conditional probability set 𝒕 such that the distance is as small as 

possible. If it is possible to determine  𝑑𝑖𝑠𝑡𝐸(𝒙, 𝒚) as a function of t, then the problem can be 

solved directly. However, usually the problem cannot be solved directly even when the 

function is known, and a gradient descent method can be used: 

a) Calculate grad 𝑑𝑖𝑠𝑡𝐸(𝒙, 𝒚) with respect to set t. 

b) Give 𝒕0 a displacement ∆𝒕 in the direction opposite to the direction of the grad 

 𝑑𝑖𝑠𝑡𝐸(𝒙, 𝒚)(𝒕0), which is denoted as:  

∆𝒕 =  −𝛼 𝐠𝐫𝐚𝐝 𝑑𝑖𝑠𝑡𝐸(𝒙, 𝒚)(𝒕0) 

Where the step size 𝛼 > 0. 

c) Iterate this procedure until the gradient is close to 0. 

From the definition above, the following is obtained: 
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 𝐠𝐫𝐚𝐝 𝑑𝑖𝑠𝑡𝐸(𝒙, 𝒚)(𝒕) =∑2(𝑥𝑖 − 𝑦𝑖)𝐠𝐫𝐚𝐝𝒙𝒊(𝒕)

𝑖

 (3-3) 

Once the adjustment process stops, the latest values of set t are defined as the conditional 

probabilities in BN model of PSC.  

 

3.2.5 Generation of posterior probabilities and risk prediction 

Once the BN structure and CPTs are properly constructed, the unobservable situations 

associated with PSC inspection can be predicted through the generated posterior probabilities 

when observable evidence is provided. Bayes’ rule is applied to obtain the posterior 

probabilities in this study illustrated as follows: 

Imagine there are only two variables ‘vessel age’ and ‘vessel group’, and ‘vessel age’ is 

the parent node of ‘vessel group’. Set ‘vessel age’ as M, ‘vessel group’ as N, ‘𝑀 = 𝑀𝑖’ means 

the vessel is at its ith ‘vessel age’ state and the same goes to ‘𝑁 = 𝑁𝑗’. 

According to Bayes’ rule, the joint probability  

𝑃(𝑀 = 𝑀𝑖 , 𝑁 = 𝑁𝑗) =  𝑃(𝑀 = 𝑀𝑖) × 𝑃(𝑁 = 𝑁𝑗|𝑀 = 𝑀𝑖) 

Where: 𝑃(𝑀 = 𝑀𝑖, 𝑁 = 𝑁𝑗) represents the joint probability that events ‘𝑀 = 𝑀𝑖’ and 

‘𝑁 = 𝑁𝑗’ both occur, 𝑃(𝑀 = 𝑀𝑖) denotes the prior probability of the ith ‘vessel age’ state, 

𝑃(𝑁 = 𝑁𝑗|𝑀 = 𝑀𝑖) denotes the conditional probability of the occurrence of ith ‘vessel age’ 

state given that jth ‘vessel group’ state occurs. 

If the state of ‘vessel group’ is locked and the state of ‘vessel age’ is changed to different 

states, the sum of joint probabilities is known as the probability of ith ‘vessel group’ state 

described as follows: 

 𝑃(𝑁 = 𝑁𝑗) =∑𝑃(𝑀 = 𝑀𝑖) × 𝑃(𝑁 = 𝑁𝑗|𝑀 = 𝑀𝑖)

𝑖

 (3-4) 

Further, when the variable N has more than one parent node, the probability of ith ‘vessel 

group’ state can also be calculated through Equation (3-4) as it is a special case of binary 

variables. 
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Imagine 𝑀0, 𝑀1, 𝑀2, … ,𝑀𝑛 are parent nodes of N, and the ith state of kth parent nodes are 

represented as ‘𝑀𝑘 = 𝑀𝑖(𝑘)
𝑘 ′ . Through applying Equation (3-4), the probability of jth ‘vessel 

group’ state described as follows: 

𝑃(𝑁 = 𝑁𝑗) =∑𝑃(𝑀1 = 𝑀𝑖(1)
1 ,𝑀2 = 𝑀𝑖(2)

2 , … ,𝑀𝑘 = 𝑀𝑖(𝑘)
𝑘 )

𝑖(𝑘)

× 𝑃(𝑁 = 𝑁𝑗|𝑀
1 = 𝑀𝑖(1)

1 ,𝑀2 = 𝑀𝑖(2)
2 , … ,𝑀𝑘 = 𝑀𝑖(𝑘)

𝑘 ) 

Where i (k), k= 1, 2… n, are independent numbers. 

 

3.2.6 Sensitivity analysis 

Sensitivity analysis is known as a way to determine how the uncertainty in the output of a 

model can be influenced by the different sources of uncertainty in its input. In this particular 

study, a two-step sensitivity analysis has been developed to not only determine the influence 

degree of risk variables, but also validate the proposed model.   

3.2.6.1 Mutual information calculation 

Entropy is described as a value that, when increased, can be interpreted as increase in 

uncertainty of a dataset which would then require more information in order to describe that 

data. Consider a discrete random variable 𝜶 with possible values {𝛼1, 𝛼2, … , 𝛼𝑖} and 

probability mass function 𝑃(𝜶), then the entropy can be explicitly written as: 

𝐻(𝜶) = −∑𝑃(𝛼𝑖)𝑙𝑜𝑔𝑏𝑃(𝛼𝑖)

𝑖

 

Where b is the base of the logarithm used. Normally, the value of b is 2. 

Based on entropy theory, mutual information (entropy reduction) is introduced in this 

research to measure the mutual dependence of different variables, or in other words, it is the 

information that two variables share. It is the value used to calculate the strengths of the 

relationships between the target node (i.e. detention) and influencing nodes (i.e. vessel age, 

vessel flag). One of the advantages of mutual information is that it can be computed between 

variables at different layers. When a new observation of an influencing variable is obtained, 

the mutual information can help measure the uncertainty of the observation on target node.  
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Since our objective is to find the relationship between risk variables and ‘detention’, 

‘detention’ is chosen as a fixed variable in mutual information calculation. Therefore, the 

mutual information between ‘detention’ and other risk variables can be defined as: 

 𝐼(𝐷, 𝛽) = −∑𝑃(𝑑, 𝛽𝑖)𝑙𝑜𝑔𝑏
𝑃(𝑑, 𝛽𝑖)

𝑃(𝑑)𝑃(𝛽𝑖)
𝑑,𝑖

 (3-5) 

Where D represents ‘detention’, 𝛽 represents risk variable, 𝛽𝑖 represents the ith state of 𝛽,   

𝐼(𝐷, 𝛽) represents the mutual information between ‘detention’ and risk variables. The value 

of 𝐼(𝐷, 𝛽) is only related to the two variables D and 𝛽, and it is independent to other mutual 

information in the model. The larger the value of mutual information, the stronger 

relationship which exists between variable ‘𝛽’ and ‘detention’.  

It is noteworthy that the amount of mutual information represents the degree of influence, 

not the exact influence of variables. The application of mutual information in this thesis is to 

clarify the strength of the relationships between influencing factors and ‘detention’. The 

factors having stronger relationships with ‘detention’ are viewed as significant variables and 

will be selected to test their influence through scenario simulation in section 3.2.6.2. 

 

3.2.6.2 Scenario simulation - the effects of different variables 

Once the variables are selected from mutual information calculation, scenario simulation, 

another form of sensitivity analysis, is needed to determine the influence of these variables. 

The classical way to set a scenario is to lock all the other nodes and change the target node 

gradually, for example, 10% as a step for up and down, and the changes rate can be used to 

analyse the effect of this variable. However, this approach has an obvious drawback that it is 

only suitable for variables having two states. For those who have more than two states, the 

classical way is not workable. Take the variable ‘vessel age’ in this study as an example, it 

has five states ‘0 to 5 years’, ‘5 to10 years’, ’10 to15 years’, ’15 to 20 years’ and ‘over 20 

years’ (the reason for the classification is in section 4). If we increase the state ‘over 20 years’ 

from 0% to 10%, the overall value of other states will decrease from 100% to 90% 

accordingly. Actually, the combinations in this case are innumerable, and it is impossible to 

decide which one should be applied. Therefore, the traditional scenario simulation (sensitivity 

analysis) is inappropriate to our study. 
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To overcome the difficulties, a new method (Alyami, et al., 2016) is applied in this study. 

The method has been applied to the container port risk analysis to test the impact of 

hazardous events on container port system. The results of empirical study and experiments 

carried out by Alyami proved the method to be reasonable and reliable. Hence, it is selected 

in this research project.  First, increase the probability of the state that can generate the 

highest detention rate to 100% to obtain the High Risk Inference (HRI). Secondly, increase 

the probability of the state that can generate the lowest detention rate to 100% to obtain the 

Low Risk Inference (LRI). Finally, the average value of HRI and LRI will show the True 

Risk Influence (TRI) of each risk variable in the entire PSC inspection system, and it is 

described as follows: 

 𝑇𝑅𝐼 =
HRI + LRI

2
   (3-6) 

 

The sensitivity analysis results, or in other words, the influence degree on ‘detention’ of 

different risk variables, can therefore be ranked according to the value of TRI.  

Through this approach, the downside of classical scenario simulation (sensitivity analysis) 

can be overcome.   

In general, the sensitivity analysis in this thesis is consist of two parts: the mutual 

information analysis to test the strength of relationships and select the significant variables, 

the scenario simulation part to present the exact influence of these variables. 

 

3.2.7 Model validation 

If the methodology and method in our study is reasonable and logical, then the sensitivity 

analysis must at least satisfy the following two axioms (Yang, et al., 2009; Jones, et al., 2010; 

Li, et al., 2014): 

Axiom 1. A slight increase/decrease in the prior probabilities of each parent node should 

certainly result in the effect of a relative increase/decrease of the posterior probabilities of the 

child node. 

Axiom 2. The total influence magnitudes of the combination of the probability variations 

from x attributes (evidence) on the values should be always greater than the one from the set 
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of x-y attributes (sub-evidence), where y is a subset of x, x-y refers to the attributes from x and 

not belong to y 

 

3.3 BN MODEL FOR PSC INSPECTION BEFORE THE IMPLEMENTATION OF 

NIR IN 2008 – ‘PRE-NIR BN MODEL’ 

3.3.1 Data  

A database containing 72,785 inspection records of different vessel types (e.g. bulk 

carrier, oil tanker, passenger vessel) before the implementation of NIR from 2005 to 2008 is 

established and named as ‘Pre-NIR’ database. To simplify the model, the model will focus on 

one specific vessel type.  

As one of the most used vessel types currently, bulk carriers make up 15% - 17% of the 

world's merchant fleets and range in size from single-hold mini-bulk carriers to mammoth ore 

ships able to carry 400,000 metric tons of deadweight (DWT). Such phenomena and trends 

can also be found in PSC inspection records. 11,366 inspections related to bulk carriers are 

recorded in the Paris MoU system, making up 15.62% of the total number of PSC 

inspections. Hence, as one of the important maritime carriers, the bulk carrier is selected as 

the research target in this study. 

 

3.3.2 Risk variables 

The risk variables identified from inspection records are explained with a particular 

reference to their state definitions as follows: 

(1) Vessel flag 

Each year a new White, Grey and Black list is published in the Paris MoU Annual Report 

(ParisMoU, 2005-2017). The “White, Grey and Black (WGB) list” presents the full spectrum, 

from quality flags to flags with a poor performance that are considered to have a high or very 

high risk. It is based on the total number of inspections and detentions over a 3-year rolling 

period for flags with at least 30 inspections.  

This variable has four states: ‘White’, ‘Grey’, ‘Black’ and ‘Black (high risk)’, where the 

performance of each state decreases successively.  
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(2) Recognized Organization (RO) 

The performance of recognized organizations is also summarized into a performance list 

by the Paris MoU. According to Recognised Organisation Performance table published by the 

Paris MoU every year, only those ROs that had 60 or more inspections in a 3-year period are 

taken into account. 

Meanwhile, the RO table provides an official performance level classification: ‘high’, 

‘medium’, ‘low’ and ‘very low’. 

(3) Dead Weight Tonnage (DWT) 

DWT is a measure of a vessel's weight carrying capacity, and does not include the weight 

of the ship itself. The ‘Review of maritime transport’ of United Nations Conference on Trade 

and Development (UNCTAD) (UNCTAD, 2016) classified bulk carriers into five categories 

according to DWT: ‘Small’, ‘Handysize’, ‘Handymax’, ‘Panamax’ and ‘Capesize’. 

 

Figure 3.4 Bulk carrier categories 

(Source: UNCTAD Review of Maritime Transport, 2016) 

(4) Vessel age 

Vessel age is another important factor influencing inspection results. Old vessels are more 

likely to suffer detention. In UNCTAD reports, vessel age is categorized in Figure 3.5. 

 

Figure 3.5 Age distribution of bulk carriers 2016 

(Source: UNCTAD Review of Maritime Transport 2016) 
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Refer to this table, vessel age has 5 states of ‘0 to 5 years’, ‘5 to10 years’, ’10 to15 

years’, ’15 to 20 years’ and ‘over 20 years’, where ‘0 to 5 years’ means 0 ≤  𝑥 < 5, and so as 

others. 

(5) Type of inspection 

A PSC officer visiting a ship will conduct a general inspection of several areas to verify 

that the overall condition of the ship complies with the requirements of PSC. 

If the ship is in full compliance, the PSC Officer will issue a ‘clean’ inspection report 

(Form A) to the master of the ship. In the case that any deficiency is identified, the inspection 

report will include a deficiency-found report (Form B) indicating any follow-up actions to be 

taken to rectify the deficiencies indicated. Furthermore, control on compliance with on-board 

operational requirements may be included in the control procedures, particularly if an officer 

has a reason to believe that the crew demonstrates insufficient proficiency in that area.  

This variable therefore has the three states of ‘Initial inspection’, ‘More detailed 

inspection’ and ‘Expanded inspection’. 

(6) Port of Inspection 

The Paris MoU consists of 27 participating maritime administrations and covers the waters 

of the European Coastal States and the North Atlantic basin from North America to Europe. 

Seven major countries investigated in the research are Belgium, France, Germany, Italy, 

Netherlands, Spain and UK, which occupy 6,913 cases in 11,000 inspection records.  

(7) Number of deficiencies (No. of deficiencies) 

During an inspection, a vessel may face detention if it is detected with deficiencies. There 

are different types of deficiencies, such as alarms, cargo operations, fire safety, navigation 

safety, ISPS. These deficiency types can be divided into two groups: major deficiencies and 

minor deficiencies. Major deficiencies can lead to direct detention regardless of its 

combination with other deficiencies.  

From the inspection records, the detention rate increases dramatically between the 

following states: ‘0’, ‘1 to 3’, ‘4 to 9’ and ‘more than 10’ (the number of inspected 

deficiencies are integer, e.g. ‘0’ means 0 deficiency in inspection, ‘1 to 3’ means the number 
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of deficiencies are 1, 2 or 3). Hence, these four states are applied to node ‘number of 

deficiencies’. 

(8) Detention 

In taking a decision concerning the rectification of a deficiency or detention of a ship, the 

PSC Officer (PSCO) will take into consideration the results of the more detailed or expanded 

inspection carried out in accordance with the Memorandum and the procedures mentioned in 

the Paris MoU committee instruction. The PSC officers will exercise professional judgment 

in determining whether to detain the ship until the deficiencies are rectified or to allow it to 

sail with certain deficiencies without unreasonable danger to the safety, health, or the 

environment, having regard to the particular circumstances of the intended voyage. As 

regards minimum manning standards and the provisions of the relevant ILO Conventions, 

special procedures will be observed. 

If the deficiencies on a ship are sufficiently serious to merit a PSC officer returning to the 

ship to be satisfied that they have been rectified before the ship sails, then the vessel will be 

detained. In other words, if the deficiencies of the vessel are found to be the grounds for the 

detention, for example, 1) failure of proper operation of propulsion and other essential 

machinery; 2) absence, insufficient capacity or serious deterioration of personal lifesaving 

appliances, survival craft and launching arrangements, the vessel is viewed as a high risk 

vessel and has large probability to be detained. 

The detention rates are expressed as a percentage of the number of inspections, rather than 

the number of individual ships inspected to take account of the fact that some ships are 

detained more than once a year.  

This variable has two states, i.e. ‘Yes’ and ‘No’. 

 

3.3.3 A new risk analysis BN model for PSC 

The model for analysing PSC inspections is developed by considering the risk variables at 

different levels and their relationships mentioned in section 3.2. According to the TAN 

learning mentioned in section 3.2.3.2, ‘detention’ is selected as the target node (or class label) 

and the parent node of other root variables. However, the conditional mutual information 

calculation between each pair of child nodes, the determination of maximum weighted 
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spanning tree, and the construction of directed network graph need to be achieved through 

other ways due to the complexity and impossibility to figure out these works manually. 

Therefore, a BN software called Netica is applied in this research to help complete these 

works. Netica is a powerful, easy-to-use, complete program for working with belief networks 

and influence diagrams. It can help us to draw the network, and the relationship between risk 

variables. Further, it has several advanced techniques based on the fastest and most modern 

algorithms, for example, find the appropriate values or probabilities for some unknown 

variables, make use of influence diagrams to obtain the optimal decisions maximizing the 

expected values of the users’ objectives, etc. Associated with this research, the function 

called ‘Learn TAN Structure’ can replace the manual calculation work of Equation (3-1) for 

BN structure construction. It provides a convenient way to avoid the heavy calculation work 

of learning TAN structure when the scale of structure is enormous. 

In fact, during the process of constructing the BN in this research, several improvements 

were made on the original network until the optimal BN for PSC was found.  

 

3.3.3.1 Original BN 

Based on the inspection dataset of bulk carrier derived from the Paris MoU online 

database in 2005-2008, Figure 3.6 presents the original BN structure via TAN learning 

through Netica. 
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Figure 3.6 Original BN 

(Source: Author) 

In this structure, links between child nodes and ‘detention’ are ‘leaving type’, which 

makes the structure a diverging network. It is quite strange and different from normal BN 

because that the links usually start from the influencing nodes to the target node. The reason 

for Netica choosing ‘diverging network’ is that it attempts to avoid too many links entering 

each node which may cause the CPT tables to be too large to have enough sampling 

information to calculate.  

There is no problem in having a great many links leaving a node, and since we will do 

Bayesian inference on the results, it is accepted for links to go in either direction. When 

classifying, predicting or diagnosing a particular variable with the best accuracy, it is required 

to have as many relationships with other variables as possible, resulting in many links leaving 

the variable. In other words, from a mathematical perspective, the diverging network is 

reasonable and it is a more appropriated structure type than ‘converging type’. 



60 

 

In the original BN presented in Figure 3.6, apart from the target node ‘detention’, ‘vessel 

flag’, ‘vessel age’, ‘DWT’, ‘Type of inspection’ are the second-level variables that are not 

only the child nodes of ‘detention’, but also the parent nodes of other nodes. The rest of the 

nodes, ‘RO’, ‘Port of inspection’ and ‘Number of deficiencies’, are the nodes at the third-

level that have no links pointing to other nodes. However, the relationships between risk 

factors revealed in this network still need to be verified and modified. 

Deficiencies 

1) Although the ‘diverging network’ is reasonable and proper from a mathematical 

perspective, it may be confusing for maritime practitioners that do not have the foundation of 

mathematics to see the links point from target factor to influencing factors. To make the 

model understandable and acceptable for all maritime practitioners, the network should 

conform to the basic logic that if factor A is influenced by factor B, then the link should point 

from B to A. By this logic, the links in the network should point from influencing factors (i.e. 

vessel age, inspection type) to the target factor ‘Detention’. Therefore, the network should be 

converted to ‘converging’ type, and the CPT calculation problems need to be solved under 

this situation.   

2) Some links in the network are meaningless or even incorrect. For example, in the 

network, the ‘vessel age’ has an influence on ‘DWT’; however, it is a common sense that the 

two factors have no connection. There are still other similar cases or links in the mode. 

Therefore, the BN needs to be manually modified once it is created by Netica, aiming to 

eliminate unnecessary and false links. 

 

3.3.3.2 Improved BN  

In order to improve the network and overcome the deficiencies mentioned above, several 

changes are made to the original BN. The biggest challenge lies in the size of CPT and the 

calculation work on conditional probabilities when the network of the TAN model is changed 

to converging type.  

The basic idea to handle this kind of problem is the principle of divorcing approach 

(Jensen, 2001). The essence of this approach is to split the parent nodes of target node into 

several sets. In this research, the set of parent nodes ‘vessel age’, ‘vessel flag’, ‘DWT’, ‘RO’ 

for ‘detention’ is divorced from the parent nodes ‘inspection type’, ‘port of inspection’, 
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‘number of deficiencies’ by introducing two mediating variables ‘vessel group’ and 

‘inspection group’, making ‘vessel group’ the child of vessel-related variables and ‘inspection 

group’ the child of inspection-related variables. Both of them are parent nodes of ‘detention’. 

 Vessel group 

The variable ‘vessel group’, which presents the overall risk level of a vessel, is added to 

the network having connections with ‘detention’ and inspection-related variables. It has four 

parent variables, ‘vessel flag’, ‘DWT’, ‘vessel age’ and ‘RO’. Meanwhile, it is the parent 

node of ‘inspection type’ because port authorities will choose inspection types according to 

the type (i.e. high or low risk) of the inspected vessel.  

Four parent nodes of ‘vessel group’ have a number of different combinations, and cases 

correlated with them can all be found in the PSC inspection database. If we select several 

cases with different combinations of vessel-related nodes and the same combination of 

inspection-related nodes, when inputting them into BN, the result reveals that most cases 

resulting in detention have a detention rate more than 10%, and other cases are lower than 

10%. 

(The selected combination of inspection-related nodes are under general conditions) 

Therefore, in this study, this variable has two states of ‘High detention risk vessel’ and 

‘Low detention risk vessel’.  

 Inspection group  

The ‘inspection group’ is set as the risk level of the inspection considering all inspection-

related risk factors. Similar to ‘vessel group’, it also connects the inspection-related variables 

with ‘detention’. It has three parent variables, ‘type of inspection’, ‘port of inspection’ and 

‘number of deficiencies’.  

This variable has two states of ‘High detention risk’ and ‘Low detention risk’, and the 

distinguish criteria is also 10% detention rate as ‘Vessel group’. 

Hence, the updated process of BN construction is illustrated as follows:  

a) Divide the risk variables into two groups, ‘vessel group’ and ‘inspection group’ 

      Vessel group 

      The first level variables are ‘vessel age’, ‘vessel flag’, ‘RO’, and ‘DWT’  
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      The mediating level variable is ‘vessel group’. 

      Inspection group 

      The first level variables are ‘port of inspection’, ‘type of inspection’, and ‘number of 

deficiencies’. 

      The mediating level variable is inspection group. 

b) The structure of each group is established via the TAN learning approach. ‘Vessel 

group’ and ‘Inspection group’ are set as the target node of each group respectively. Figure 

3.7 and Figure 3.8 are the resulting structures of each group, respectively. 

 

Figure 3.7 TAN structure of vessel group 

(Source: Author) 
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Figure 3.8 TAN structure of inspection group 

(Source: Author) 

 

c) Combine two group structures and ‘detention’ together to obtain the integrated BN 

structure, where ‘inspection group’ and ‘vessel group’ are parent nodes of ‘Detention’. 

The network is showed in Figure 3.9. 

 

Figure 3.9 Improved BN 

(Source: Author) 
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d) Amend the edges (or links) in the structure.  

 As defined above, ‘Vessel group’ represents the risk level of the vessel. Before 

executing the PSC inspection, the PSCO will determine the inspection type according to 

the historical inspection records of this vessel and its risk level. Therefore, a link from 

‘vessel group’ to ‘type of inspection’ is necessary. 

 Some links should be eliminated because they are illogical and meaningless, including 

‘vessel age-vessel flag’, ‘vessel age-dwt’, and ‘port of inspection-type of inspection’. 

These relationships do not conform to the real case. 

e) The final structure of BN model for analysing PSC inspections is developed and 

presented in Figure 3.10. 

 

Figure 3.10 Proposed BN for PSC inspection 

(Source: Author) 
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3.3.4 CPT and prior probabilities for each node 

Once the model is developed, the next step is to establish the CPT table of each node. 

When executing the BN model, the conditional probabilities of each node will be calculated 

based on Equation (3-2) and Equation (3-3) mentioned in the gradient descent section.  

Specifically, it is a three-step calculation process: 

(1) With regard to the root nodes, the proportion of each defined state is used as the prior 

probabilities.  

For instance, over the 6,913 inspection records, 926 vessels are 0-5 years old, 962 vessels 

are 5-10 years old, 1,050 vessels are 10-15 years old, 520 vessels are 15-20 years old, 3,455 

vessels are over 20 years old. Therefore, the calculation provides the prior probabilities of 

vessel age as 

0 - 5 years: 926/6913= 0.1340         5 - 10 years: 962/6913= 0.1392 

                 10 - 15 years: 1050/6913= 0.1519     15 - 20 years: 520/6913= 0.0752 

               Over 20 years: 3455/6913= 0.4998 

In a similar way, the prior probabilities of other root variables are presented in Table 3.1 

Table 3.1 The prior probability of each root node 

DWT 

Capesize Handymax Handysize Panamax Small   

0.0073 0.1284 0.5949 0.0094 0.2600   

Flag 

Black (High) Black Grey White    

0.0103 0.2218 0.0671 0.7008    

Vessel age 

0to5Years 5to10Years 10to15Years 15to20Years Over20Years   

0.1340 0.1392 0.1519 0.0752 0.4998   

Port of inspection 

Belgium France Germany Italy Netherlands Spain UK 

0.1297 0.1360 0.0866 0.1564 0.1243 0.2356 0.1315 

(Source: Author) 
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(2) Once prior probabilities of root variables are determined, they are served as the prior 

request for the subsequent gradient descent calculation for other first level and intermediate-

level risk variables.  

(3) Similar to step two, the conditional probabilities obtained in step 2 are set as the prior 

request for further calculation of third-level risk variable ‘detention’.   

Tables 3.2 – 3.7 list the CPTs of ‘RO’, ‘type of inspection’, ‘number of deficiencies’, 

‘detention’, and part of the ‘vessel group’ and ‘inspection group’. The full CPTs of ‘vessel 

group’ and ‘inspection group’ are too large to present here. Hence, they are placed in 

Appendix 1.  

Table 3.2 CPT of RO 

 RO 

Vessel flag 
High Low Medium Very Low 

Black (High) 0.5819 0.2467 0.0565 0.1149 

Black 0.9740 0.0044 0.0154 0.0063 

Grey 0.8113 0.0316 0.0604 0.0967 

White 0.9890 0.0036 0.0037 0.0036 

(Source: Author) 

Table 3.3 CPT of ‘type of inspection’ 

 Type of inspection 

 

Vessel group 

Expanded 

Inspection 

Initial 

Inspection 

More detailed 

Inspection 

Low Detention 

Risk 
0.2769 0.3305 0.3926 

High Detention 

Risk 
0.5701 0.1021 0.3278 

(Source: Author) 

 

Table 3.4 CPT of ‘number of deficiencies’ 

  No. of deficiencies 

Type of inspection 
4 to 10 More than 10 0 to 1 1 to 4 

Expanded Inspection 0.3136 0.2079 0.2273 0.2512 

Initial Inspection 0.1052 0.0093 0.6035 0.2820 

More detailed Inspection 0.2807 0.0973 0.3322 0.2898 

(Source: Author) 
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Table 3.5 CPT of ‘Vessel group’ 

Vessel age Flag RO DWT Low Detention Risk High Detention Risk 

Over20Years Black (High) High Capesize 0.5062 0.4938 

Over20Years Black (High) High Handymax 0.4364 0.5636 

Over20Years Black (High) High Handysize 0.0012 0.9988 

Over20Years Black (High) High Panamax 0.5109 0.4891 

Over20Years Black (High) High Small 0.0014 0.9986 

… … … … … … 

… … … … … … 

… … … … … … 

5to10years White Very Low Capesize 0.5508 0.4492 

5to10years White Very Low Handymax 0.4492 0.5508 

5to10years White Very Low Handysize 0.4691 0.5309 

5to10years White Very Low Panamax 0.4704 0.5296 

5to10years White Very Low Small 0.5111 0.4889 

(Source: Author) 

Table 3.6 CPT of ‘Inspection group’ 

 Inspection group 

Port of inspection Type of inspection No. of deficiencies Low High 

Belgium Expanded 4 to 10 0.9987 0.0013 

Belgium Expanded More than 10 0.0015 0.9985 

Belgium Expanded 0 to 1 0.9986 0.0014 

Belgium Expanded 1 to 4 0.9987 0.0013 

Belgium Initial 4 to 10 0.9989 0.0011 

… … … … … 

UK Initial 1 to 4 0.9987 0.0013 

UK More Detailed 4 to 10 0.9986 0.0014 

UK More Detailed More than 10 0.0013 0.9987 

UK More Detailed 0 to 1 0.9990 0.0010 

UK More Detailed 1 to 4 0.9985 0.0015 

(Source: Author) 
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Table 3.7 CPT of ‘Detention’ 

 Detention 

Vessel group Inspection group No Yes 

Low Detention Risk Low 0.9909 0.0091 

Low Detention Risk High 0.6471 0.3529 

High Detention Risk Low 0.9674 0.0326 

High Detention Risk High 0.5976 0.4024 

(Source: Author) 

 

3.3.5 Model result 

Based on the CPT of each node, the marginal probability of each child node can be 

obtained using Equation (3-4). Figure 3.11 shows the result of the BN model using Netica. It 

indicates that the detention rate of a bulk carrier under inspection is estimated to be 4.52% 

given the input data covering the period of 2005-2008. If we calculate the detention rate from 

the database directly, it is 4.57%, which shows a harmony with the result delivered by the 

model. The model is verified in terms of prediction of detention rate of bulk carriers.
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Figure 3.11 Results of BN model 

(Source: Author)
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3.3.6 Sensitivity analysis 

A sensitivity analysis is conducted to analyse influencing degree of risk variables and 

validate the model to prove its capability of realizing dynamic risk prediction in dynamic 

environments. 

3.3.6.1 Mutual information calculation 

According to Equation (3-5) shown in section 3.2.6, mutual information between 

‘detention’ and other risk variables is obtained, which is shown in Table 3.8. The entropy of 

‘detention’ is 0.26555 and the percent column in the table represents the extent of shared 

information between the other nodes and ‘detention’. The values in this column are 

independent and unrelated to others. 

Table 3.8 Sensitivity of other nodes to ‘Detention’ 

Sensitivity analysis 

Node 
Mutual  

Info 
Percent Variance of Beliefs 

Inspection group 0.09654 36.4 0.0108729 

Number of deficiencies 0.09386 35.3 0.0105047 

Type of inspection 0.01464 5.51 0.0008056 

Vessel group 0.00140 0.527 0.0001046 

RO 0.00025 0.0933 0.0000171 

Vessel flag 0.00025 0.0929 0.0000161 

DWT 0.00009 0.0331 0.0000053 

Vessel age 0.00003 0.0131 0.0000021 

Port of inspection 0 0.0007 0.0000001 

(Source: Author) 

From Table 3.8, it is concluded that:  

Firstly, inspection-related risk factors have a stronger relationship with ‘detention’ than 

vessel-related variables in general, except ‘port of inspection’. Port of inspection has almost 

no influence on final inspection results.    

Secondly, the most significant node is therefore the variable ‘Inspection group’. The main 

reason for this impact is that the parent nodes of ‘Inspection group’, ‘Number of deficiencies’ 



71 

 

and ‘Type of inspection’, can change the detention probability more significantly than other 

first level nodes. 

Meanwhile, from Table 4.8, ‘Inspection group’, ‘Number of deficiencies’, ‘Type of 

inspection’, ‘Vessel group’, ‘RO’ and ‘Vessel flag’ are selected to do further analysis. 

 

3.3.6.2 Scenario simulation - the effects of different variables 

Table 3.9 shows the HRI, LRI and TRI value of selected nodes under different scenarios 

through Equation (3-6). 

Take ‘Number of deficiencies’ as an example to illustrate the calculation process. 

1) Set the state ‘0’ to 100%, hence, other states are all at state ‘0’, the detention rate under 

this scene is obtained through the proposed BN model, which is 1.05 %.  

2) Repeat the first step and adjust other states to 100% in turn. The detention rates under 

each situation are 1.07% (100% ‘1-3’), 1.10% (100% ‘4 to 9’), and 35% (100% ‘more than 

10’). 

3) Select the lowest detention rate among these situations to calculate LRI. In this case, the 

scene that state ‘0’ is 100% has the lowest value 1.05%. Therefore, LRI is calculated as 

follows: 

LRI = 4.52% - 1.05% = 3.47% 

4) Similarly, HRI is represented as the maximum increment among these scenarios, which 

is presented as follows: 

HRI = 35% - 4.52% = 30.48% 

5) Finally, TRI is the average value of LRI and HRI. 

TRI = (3.47% + 30.48%) / 2 = 16.98% 

As a result, the TRI of ‘Number of deficiencies’ is 16.98%. The same calculation process 

goes to other nodes. 

In Table 3.9, the first row of each variable represents the normal scenario, and the 

following rows represent the different scenarios when each state of the variable reaches 100% 
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occurrence probability respectively. The comparison between TRI of different variables 

indicates the results of sensitivity analysis – the influence degree of different risk variables. 

Table 3.9 TRI of risk variables 
Inspection group 

High Low Detention rate HRI LRI TRI 

- - 4.52%  

31.18% 

 

3.49% 

 

17.34% 100% 0 35.7% 

0 100% 1.03% 

Number of deficiencies 

0 1 to 3 4 to 9 More than 

10 

Detention rate HRI LRI TRI 

- - - - 4.52%  

 

30.48% 

 

 

3.47% 

 

 

16.98% 

100% 0 0 0 1.05% 

0 100% 0 0 1.07% 

0 0 100% 0 1.10% 

0 0 0 100% 35% 

Type of inspection 

Initial Expande

d 

More detailed Detention rate HRI LRI TRI 

- - - 4.52%  

3.86% 

 

3.41% 

 

7.27% 100% 0 0 1.11% 

0 100% 0 8.38% 

0 0 100% 4.41% 

Vessel group 

High Low Detention rate HRI LRI TRI 

- - 4.52%  

4.35% 

 

0.24% 

 

4.59% 100% 0 8.87% 

0 100% 4.28% 

RO 

High Medium Low Very low Detention rate HRI LRI TRI 

- - - - 4.52%  

 

2.79% 

 

 

0.07% 

 

 

2.86% 

100% 0 0 0 4.45% 

0 100% 0 0 5.95% 

0 0 100% 0 7.11% 

0 0 0 100% 7.31% 

Vessel age 

0 to 5 5 to 10 10to15 15to20 Over20 Detention rate HRI LRI TRI 

- - - - - 4.52%  

 

0.14% 

 

 

0.16% 

 

 

0.3% 

100% 0 0 0 0 4.36% 

0 100% 0 0 0 4.37% 

0 0 100% 0 0 4.36% 

0 0 0 100% 0 4.43% 

0 0 0 0 100% 4.66% 

(Source: Author) 
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Accordingly, based on the results obtained in Table 3.9, the most important variables can 

be listed as follows: 

Inspection group > Number of deficiencies > Type of inspection > Vessel group > RO > 

Vessel age 

As ‘inspection group’ and ‘vessel group’ are class variables which do not exist in PSC 

inspection records, ‘Number of deficiencies’ is in fact the most important risk factor, 

followed by ‘type of inspection’, ‘RO’ and ‘Vessel age’. This result indicates sub-standard 

performance of inspection-related items (Number of deficiencies, type of inspection, etc.) is 

more likely to lead to detention than unqualified intrinsic attributes of vessels (vessel age, 

dwt, RO, etc.).  

Meanwhile, the BN model in this study can be used to calculate detention rate of bulk 

carriers under different situations, serving as a dynamic prediction tool. Such a tool not only 

helps port authorities to test their policies, but also urges ship owners to improve their vessels 

accordingly.  

In addition, the floating range of different variables on detention rate can also be obtained 

from this table.  

 

3.3.7 Model validation 

To validate the model, another sensitivity analysis is carried out by investigating the 

detention rate of the minor change given different risk variables. By selecting ‘Inspection 

group’ as the first node, the state generating the highest detention rate is increased by 10%, 

while the state generating lowest detention rate is decreased by 10%. This change is denoted 

as ‘~10%’ in this study. Once the updated detention rate is obtained, the same change is 

applied to next node and the combined detention rate is calculated. The sensitivity analysis 

continues in the same manner until all nodes are included. The following Table 3.10 presents 

the results of this sensitivity analysis.  
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Table 3.10 Detention rate of minor change in variables 

Inspection 

group 

Number of 

deficiencies 

Type of 

inspection 

Vessel 

group 
RO Vessel age 

Detention 

rate 

- - - - - - 4.52% 

~10% - - - - - 7.98% 

~10% ~10% - - - - 7.99% 

~10% ~10% ~10% - - - 8.55% 

~10% ~10% ~10% ~10% - - 9.14% 

~10% ~10% ~10% ~10% ~10% - 9.59% 

~10% ~10% ~10% ~10% ~10% ~10% 9.71% 

 (Source: Author) 

The first row shows the original detention rate and the rest of the table presents the 

updated detention rates by changing risk variables continuously. Through comparing the 

updated results with the initial detention rates, it is claimed that the model is proved to be in 

line with Axiom 1. 

As to Axiom 2, it can be examined by comparing the initial detention rate with reassigned 

detention rates, which can be regarded as the evidence and sub-evidence. From Table 3.9, the 

detention rate is gradually increasing along with the continuous variation of risk variables, 

which proves the model is sound in line with Axiom 2.   

In general, the model developed is proved reasonable and reliable. It can be used to predict 

the detention rate of PSC inspection of the Paris MoU when any new evidence is entered. 

Meanwhile, the results of the model, as well as the variation law of detention rate, can be 

used by port authorities to improve their policies and ship owners to increase their passing 

rate.  

Although based on the inspection records before the implementation of NIR, it still has 

great referential significance. Additionally, it is also important to illustrate the model to help 

us better understand the significance and influence of NIR. 
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3.4 BN MODEL FOR PSC INSPECTION AFTER THE IMPLEMENTATION OF 

NIR – ‘POST-NIR BN MODEL’ 

After the implementation of NIR, the PSC inspection system experienced huge 

transformation. SRP, Company performance calculator, ‘fair share’ scheme and the new 

THETIS data system are some of the great efforts made to ensure the efficient operation of 

the PSC inspection system. Reflecting the risk assessment model, the BN of this period is 

different from the former one. 

3.4.1 Data acquisition 

Collected from the Paris MoU online inspection database, this time 49, 328 inspection 

records from 2015-2017 are extracted to form the foundation of the research. To maintain 

consistency, bulk carriers are still selected as the research target, which is helpful for the 

comparative analysis conducted in Chapter 4. 

According to the statistics, 7,252 inspection records are related to bulk carriers, occupying 

14.7% of the total amounts. Compared to 15.62% occupancy in the former model, the status 

of bulk carriers in PSC inspections largely remains the same. 

 

3.4.2 Variable identification 

The variables in ‘Post-NIR’ BN are also identified from the Paris MoU online inspection 

database. However, the identified risk factors are slightly different from the ones in ‘Pre-

NIR’ BN, including vessel flag, vessel age, company performance, type of inspection, port of 

inspection, date of inspection, number of deficiencies, and detention. Among these variables, 

‘Company performance’ and ‘Inspection date’ are two new-added risk factors. In addition, 

‘Company performance’ is the factor that can best represent the specialty of the NIR, which 

also highlights the novelty of the ‘Post-NIR’ BN model.  

Here is an explanation of them with a particular reference to their state definitions. 

(1) Company performance 

Since the implementation of NIR, most ISM companies have raised their adoption policies 

to maintain their reputation in spite of facing possible toll losses. As a result, company 

performance, one of the parameters to determine the SRP, is currently one of the most 

relevant indexes reflecting vessel safety conditions and inspection results. 
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Company performance takes account of the detention and deficiency history of all ships in 

a company’s fleet while that company was the ISM Company for the ship. Companies are 

ranked as having a very low, low, medium or high performance. The calculation is made 

daily based on a running 36-month period. There is no lower limit for the number of 

inspections needed to qualify except a company with no inspections in the last 36 months will 

be given a “medium performance”. 

Table 3.11 presents the standard of classification of company performance from the Paris 

MoU official website. 

Table 3.11 Company performance classification standard 

Detention Index Deficiency Index Company Performance 

Above Average Above Average Very Low 

Above Average Average 

Low 
Above Average Below Average 

Average Above Average 

Below Average Above Average 

Average Average 

Medium Average Below Average 

Below Average Average 

Below Average Below Average High 

(Source: Paris MoU) 

In a word, this variable has four states: ‘High’, ‘Medium’, ‘Low’ and ‘Very low’.  

Because the inspection records online only have the number of the ISM company of each 

vessel, hence we calculate the company performance of each inspection manually through the 

‘company performance calculator’ online.  

(2) Inspection date 

This variable is set up in order to test the influence of time. Due to the different situations 

and environments port authorities may face each year, the policy and regulations of PSC will 

change accordingly, affecting the passing rates of vessels being inspected at ports. 

It has three states apparently, ‘2015’, ‘2016’ and ‘2017’. 
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In addition, two vessel-related variables, RO and DWT, are not taken into account this 

time. This is because the new Paris MoU online inspection database after NIR does not 

display the two variables on the ‘search’ page any more. Hence, the web crawler software we 

used is unable to acquire their information and thus they are excluded from the BN model.  

Other variables remain the same with the ‘Pre-NIR’ BN model and the state definitions of 

these variables also do not change. Table 3.12 shows the state classification of each variable 

in ‘Post-NIR’ model. 

Table 3.12 Identified variables in PSC inspections from 2015-2017 

VARIABLE STATE 

Vessel flag White, Grey, Black, Black (high risk) 

Vessel age 
0 to 5 years, 5 to10 years, 10 to15 years, 15 to 20 years, over 20 

years 

Company performance High, Medium, Low, Very low 

Type of inspection Initial inspection, More detailed inspection, Expanded inspection 

Port of inspection 
Belgium, Canada, France, Germany, Greece, Italy, Netherlands, 

Spain, UK 

Date of inspection 2015, 2016, 2017 

Number of deficiencies 0, 1 to 3, 4 to 9, more than 10 

Inspection group High detention Risk, Low detention Risk 

Vessel group High detention Risk, Low detention Risk 

Detention Yes, No 

(Source: Author) 

* The justification of the selection of the variables and their grades refers to the former section.  

Similarly, two mediating level risk variables, ‘vessel group’ and ‘inspection group’, are 

introduced based on the principle of divorcing approach (Jensen, 2001; Yang, et al., 2018) to 

avoid that the size of CPTs are too large to effectively control. The classification criterion of 

the two nodes remains the same with ‘Pre-NIR’ BN. 
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3.4.3 BN construction 

Through the Netica software, the resulting BN structure from TAN learning is presented in 

Figure 3.12. The optimizing process of network construction is omitted here, because it is 

identical to the process illustrated in section 3.3.3.
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Figure 3.12 The structure of BN 

(Source: Author)
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Compared to the ‘Pre-NIR’ BN model, the biggest difference between the two models lies 

in the removal of the links pointed from ‘vessel group’ to ‘Inspection type’, which is the 

connection between vessel-related variables and inspection-related variables. Instead, a link 

from ‘vessel group’ to ‘number of deficiencies’ now acts as the bond connecting the two 

parts. The reason for this change is that the inspection type of a particular vessel under NIR is 

currently influenced by the last PSC inspection results this vessel experienced. Hence, the 

‘vessel group’ node, which represents the vessel status of this time, is no longer the parent 

node of ‘inspection type’ in our model. In order to maintain the connection between vessel-

related variables and inspection-related variables, the link between ‘vessel group’ and 

‘number of deficiencies’ is set as the new bond, because the overall condition of the vessel 

has crucial influence on the number of deficiencies detected during a PSC inspection.   

 

3.4.4 CPT distribution and risk prediction 

After confirming the structure of the BN, the conditional probabilities of the nodes are 

required to model the uncertainties of risk variables. Through gradient descent approach 

mentioned above, the CPTs can be obtained and shown in Appendix 2.  

 

3.4.5 Model result 

Figure 3.13 shows the result of detention analysis based on the BN model. It indicates that 

the detention rate of a bulk carrier is estimated to be 3.25% given the input data covering the 

period of 2015-2017. If we calculate the detention rate from the database directly, it is 3.23%, 

which shows a harmony with the result delivered by the model. The model is verified in 

terms of prediction of detention rate of bulk carriers.
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Figure 3.13 ‘Post-NIR’ BN 

(Source: Author)
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3.4.6 Sensitivity analysis and model validation 

The sensitivity analysis of ‘Post-NIR’ BN also consists of two parts, analysis on mutual 

information and scenario simulation.  

3.4.6.1 Analysis of Mutual information 

Table 3.13 presents the value of mutual information between different nodes and target 

node ‘detention’. Due to the variation of network structure, the results of sensitivity analysis 

on ‘Post-NIR’ BN through the comparison of mutual information change accordingly are 

different from those in ‘Pre-NIR’ model, which are displayed in section 4.3.6 

Table 3.13 Mutual information between other nodes and ‘Detention’ 

Sensitivity analysis 

Node Mutual  Info Percent Variance of Beliefs 

Detention 0.20672 100 0.0314319 

Inspection group 0.06135 29.7 0.0061904 

Number of deficiencies 0.04891 23.7 0.0050644 

Vessel group 0.03622 17.5 0.0024699 

Company Performance 0.02659 12.9 0.0016154 

Vessel age 0.00638 3.09 0.0003219 

Type of inspection 0.00579 2.8 0.0002493 

Port of inspection 0.00110 0.531 0.0000505 

Vessel flag 0.00036 0.174 0.0000208 

Inspection date 0.00008 0.0369 0.0000033 

(Source: Author) 

Compared to Table 3.8, the mutual information related to ‘inspection group’, ‘number of 

deficiencies’, ‘type of inspection’ decrease, indicating the relationships between these 

variables and ‘detention’ become weaker, while the mutual information related to ‘vessel 

group’, ‘vessel age’, ‘port of inspection’ increase, representing stronger relationships of these 

variables with ‘detention’. In general, more risk factors are closely connected with ‘detention’ 

than ever.   

At the same time, the conclusions acquired from Table 3.8 are also reasonable for Table 

3.13.  
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1) Inspection-related risk factors still overwhelm vessel-related factors in terms of 

relationship with ‘detention’.  

2) ‘Inspection group’ continues to be the most significant variable, followed by ‘Number 

of deficiencies’. 

3) ‘Port of inspection’, along with ‘vessel flag’ and new added factor ‘inspection date’, 

become the lowest priority parts. Although compared to the ‘Pre-NIR’ period, ‘port of 

inspection’ and ‘vessel flag’ increased dramatically, for example, ‘port of inspection’ has 

risen from 0.0007% to 0.531% (more than 700 times increase), the relationships between 

them and ‘detention’ are still too weak when comparing with other nodes. Therefore, they are 

not selected to do further analysis. In a word, the selection of nodes is a result of both 

horizontally and vertically comparison.   

The detailed information of the comparison between the results of sensitivity analysis of 

two models is presented in Chapter 4, which is used to demonstrate the change and 

significance brought about by the implementation of NIR. 

 

3.4.6.2 Scenario simulation - the effects of different variables 

Table 3.14 shows the TRI value of selected nodes under different scenarios. Because of 

little influence on the ‘detention’ compared to other nodes, ‘Port of inspection’, ‘Vessel flag’ 

and ‘Inspection date’ are therefore not taken into our consideration.  

 

 

 

 

 

 

 

 



84 

 

Table 3.14 TRI of risk variables 
Inspection group 

High Low Detention rate HRI LRI TRI 

- - 3.25%  

29.65% 

 

2.09% 

 

15.87% 100% 0 32.9% 

0 100% 1.16% 

Number of deficiencies 

None 1 to 3 4 to 9 More than 

10 

Detention rate HRI LRI TRI 

- - - - 3.25%  

 

32.75% 

 

 

2.21% 

 

 

17.48% 

100% 0 0 0 1.04% 

0 100% 0 0 1.41% 

0 0 100% 0 4.52% 

0 0 0 100% 36% 

Vessel group 

High Low Detention rate HRI LRI TRI 

- - 3.25%  

12.35% 

 

1.99% 

 

7.17% 100% 0 15.6% 

0 100% 1.26% 

Company Performance 

High Medium Low Very low Detention rate HRI LRI TRI 

- - - - 3.25%  

 

11.65% 

 

 

1.93% 

 

 

6% 

100% 0 0 0 1.49% 

0 100% 0 0 1.32% 

0 0 100% 0 9.17% 

0 0 0 100% 14.9% 

Vessel age 

0to5Y 5to10Y 10to15Y 15to20Y over20Y Detention rate HRI LRI TRI 

- - - - - 3.25%  

 

4.74% 

 

 

1.65% 

 

 

3.20% 

100% 0 0 0 0 1.60% 

0 100% 0 0 0 3.15% 

0 0 100% 0 0 2.50% 

0 0 0 100% 0 6.56% 

0 0 0 0 100% 7.99% 

Type of inspection 

Initial Expanded More detailed Detention rate HRI LRI TRI 

- - - 3.25%  

2.49% 

 

1.79% 

 

2.24% 100% 0 0 1.46% 

0 100% 0 5.74% 

0 0 100% 3.40% 

(Source: Author) 
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Through comparing TRI values, the variables are listed in the sequence of the degree of 

the influence on ‘detention’, which is shown as follows: 

Number of deficiencies > Inspection group > Vessel group > Company performance > 

Vessel age > Type of inspection 

The conclusions obtained from scenario simulation of the ‘Pre-NIR’ model still take 

effect, for example, inspection-related risk factors should be paid more attention than vessel-

related factors because the influence value of the former group is much greater than the latter 

one; ‘Number of deficiencies’ remains its dominating position in this list. 

However, at the same time, it is obvious to find that the sequence is different from the 

previous one, i.e. Number of deficiencies is the most influencing variable under NIR; the 

influence of ‘Company performance’ is only less than ‘Number of deficiencies’ among the 

whole risk factors group (except two dummy variables). All these changes indicate that the 

implementation of NIR has indeed affected the PSC inspection system. 

Chapter 4 will present a comparative analysis between Table 4.8 and Table 4.12 from 

different angles to illustrate the influence of the new inspection regime.  

 

3.4.7 Model validation 

The principle of conducting model validation is the same as Section 3.3.7. By selecting 

‘Number of deficiencies’ as the first node, the state generating highest detention rate is 

increased by 10%, while the state generating lowest detention rate is decreased by 10%. This 

change is denoted as ‘~10%’ in this study. Once the updated detention rate is obtained, the 

same change is applied to the next node and the combined detention rate is calculated. In this 

model, the sequence is ‘Number of deficiencies – Inspection group – Vessel group – 

Company performance – Vessel age – Type of inspection’.  

Table 3.15 presents the results of the minor changes given different variables.  
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Table 3.15 Detention rate of minor change in variables 

Number of 

deficiencies 

Inspection 

group 

Vessel 

group 

Company 

performance 

Vessel 

age 

Type of 

inspection 

Detention 

rate 

- - - - - - 3.25% 

~10% - - - - - 6.74% 

~10% ~10% - - - - 10.20% 

~10% ~10% ~10% - - - 13.40% 

~10% ~10% ~10% ~10% - - 16.5% 

~10% ~10% ~10% ~10% ~10% - 18.7% 

~10% ~10% ~10% ~10% ~10% ~10% 21% 

 (Source: Author) 

The first row shows the original detention rate and the rest of the table presents the 

updated detention rates by changing risk variables continuously. Through comparing the 

updated results with the initial detention rates, it is claimed that the model is proved to be in 

line with Axiom 1. 

As to Axiom 2, it can be examined by comparing the initial detention rate with reassigned 

detention rates, which can be regarded as the evidence and sub-evidence. From Table 3.14, 

the detention rate is gradually increasing along with the continuous variation of risk variables, 

which proves the model is sound in line with Axiom 2. 

In general, the ‘Post-NIR’ BN model is reasonable and reliable. Since the implementation 

of NIR, this is the first time that a risk assessment model is developed to help analyse the new 

inspection system and the change brought by the new regime. Additionally, it can also serve 

as a dynamic prediction tool for port authorities and ship owners to estimate the detention 

rate of PSC inspection of the Paris MoU when any new evidence is entered. It can work as a 

screening tool for port authorities to check whether the inspected vessel is legal or not. Those 

having higher estimated detention rates should be inspected in detail to determine the exact 

detention time, and other vessels can be paid less attention and less resource. For ship 

owners, they can estimate the inspection rate of their vessels according to the vessel status 

and the expected inspection details to see whether their vessels need to be maintained and 

improved in advanced. 

Section 3.5 will illustrate how the proposed model works in real life to help different 

stakeholders in PSC inspections. 
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3.5 RESEARCH IMPLICATIONS – ANALYSIS ON THE PERFORMANCE OF 

ISM COMPANIES  

As the newly added risk variables, the performance of ISM companies presents its great 

influence on inspection results based on the above analysis, demonstrating the important role 

of ISM companies in the current PSC practice. 

For ISM companies, when deciding whether to adopt a vessel, they need to do many 

preparation works on this vessel. A sub-standard vessel may reduce its performance level 

recorded at Paris MoU, and then further influence its reputation in this area and do harm to its 

potential revenue. Hence, ISM companies should pay attention to those variables that are 

closely related to their performance level indicator at Paris MoU. 

In this section, a brief analysis is conducted to tell ISM companies which variables they 

should focus on when selecting vessels based on the proposed BN model. 

Table 3.16 presents the mutual information between ‘Company performance’ and other 

variables in ‘Post-NIR’ BN model. Because mutual information describes the strength of 

relationship between variables, which can be seen as the degree of impact, it is helpful to 

provide suggestions for ISM companies. Additionally, the relationships here are undirected, 

which means company performance is not always the affected variable. 

Table 3.16 Mutual information between ‘Company performance’ and other variables 

Node Mutual information 

Company performance 1.25605 (Entropy) 

Vessel group 0.38650 

Vessel age 0.06074 

Detention 0.02659 

Number of deficiencies 0.02417 

Inspection group 0.01282 

Vessel flag 0.01048 

Inspection date 0.00000 

Port of inspection 0.00000 

Inspection type 0.00000 

(Source: Author) 
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According to Table 3.16, several suggestions can be made to ISM companies. 

1) ‘Vessel group’ has the strongest relationship with company performance. The influence 

brought by ‘Vessel group’ is much larger than other risk variables. ISM companies should 

give the highest priority to the risk level of vessels when making adoption decisions. A low 

risk vessel basically means the company performance indicator at PSC inspection is high or 

medium, as indicated in Figure 3.14. On the contrary, a high-risk vessel largely leads to a 

low/very low performance level record in the PSC inspection database, as shown in Figure 

3.15. 

 

 

Figure 3.14 Low vessel-related risk level vessels 

(Source: Author) 

 



89 

 

 

Figure 3.15 High vessel-related risk level of vessels 

(Source: Author) 

In practice, the risk level of vessels is reflected by the inspection records, or the SRP 

indicator, which should be taken into consideration by ISM companies. 

2) For ISM companies, vessel-related variables, i.e. vessel age, vessel flag, and other 

variables not listed in BN, have closer relationship with ‘company performance’ than 

inspection-related variables. These variables represents every aspect of the risk level of 

vessels. 

3) Among the vessel-related variables, vessel age is the most influential variables. Figure 

3.16 and 3.17 illustrate the company performance level when the vessel age is at ‘0-5’ and 

‘more than 20’ states, and it is not surprising to find older vessels will reduce the company 

performance indicator largely, thus need to be treated seriously. 
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Figure 3.16 Vessels at 0-5 years 

(Source: Author) 

 

 

Figure 3.17 Vessels over 20 years 

(Source: Author) 
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4) Inspection-related variables have almost no influence on the company performance. 

This phenomenon is reasonable because the selection of ISM companies happens before the 

occurrence of PSC inspections, hence the ISM companies are unable to evaluate its 

performance level based on these factors.  

One interesting thing is that ‘Inspection group’ has weak relationship with company 

performance, this can be viewed as the influence brought by company performance on the 

risk level of inspection. Although the influence is weak, it still proves that the performance 

level of ISM companies can affect the inspection risk of vessels. 

5) The mutual information calculation in Table 3.16 once again demonstrate the influence 

brought by company performance on detention, urging ISM companies to improve their 

adoption criteria and select more high-quality vessels. The detailed information of this 

influence can be found in Section 4.3.2. 

 

3.6 RESEARCH IMPLICATIONS - MODEL APPLICATIONS IN REAL CASES 

In this section, some real cases are simulated to illustrate how the proposed model can 

help both port authorities and ship owners in PSC inspections. The information in the cases is 

set based on the real inspection records in the Paris MoU online database.  

In order to demonstrate the practical significance of the model, as well as make the 

illustration more convincing, the ‘Post-NIR’ model is selected to do the case studies. The 

reason is that the ‘Pre-NIR’ model is constructed based on the past inspection records, thus is 

no longer suitable in today’s environment.  

 

3.6.1 Case I 

A bulk carrier was inspected at the Port of Liverpool on 01/12/2017, and the information 

of this inspection is shown as follows: 

1) Vessel age: 3 years 

2) Vessel flag: Marshall Islands (White list) 

3) Company performance: Medium (Atlantska Plovidba dd, IMO number 0096086) 

4) Inspection date: 2017 
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5) Inspection: initial inspection 

6) Port: Liverpool (UK) 

7) Number of deficiencies identified: 1  

To determine whether this vessel meets the requirement of PSC regulations, the port 

authority of Liverpool should input the information of this inspection into the proposed ‘Post-

NIR’ BN model, which is shown in Figure 3.14. The result indicated the detention rate was 

0.54%, demonstrating this vessel was standard and should not be detained.  

 

  
Figure 3.18 Inspection result prediction of Case I 

(Source: Author) 

In fact, the inspection record of case I in the Paris MoU online database showed this vessel 

passed the inspection, which coincides with the model result, illustrating the effectiveness of 

the model in PSC inspections.  

 

3.6.2 Case II  

The relevant information gathered from a bulk carrier that was to be inspected at the Port 

of Gibraltar on 06/10/2017 was: 

1) Vessel age: 12 years 
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2) Vessel flag: Panama (White list) 

3) Company performance: Very low (Irika Shipping SA, IMO number 5022255) 

4) Inspection date: 2017 

5) Inspection: Expanded inspection 

6) Port: Gibraltar 

7) Number of deficiencies identified: 16  

 

3.6.2.1 Perspective from the port authority of Gibraltar 

Port authorities aim to regulate the behaviour of ship owners to avoid potential accidents 

and ensure ship safety through their PSC inspections. The vessels at high risk need to be 

identified and detained. In this case, the port authority of Gibraltar could input the relevant 

information related to this inspection into the proposed BN model, the result indicated the 

detention rate was 58.5% under this condition in Figure 3.15. Compared to the normal 

detention rate 3.52%, the detention rate of this vessel was almost 17 times higher. 

Meanwhile, it was 108 times higher than the detention rate of the standard vessel in Case I 

(0.54%). Therefore, this vessel was sub-standard and port authority of Gibraltar needed to 

detain this vessel to avoid potential accidents at sea.  

In fact, if we check the result of this inspection from the Paris MoU database, this vessel is 

indeed detained, proving the effectiveness and accuracy of the model when making decisions 

for port authorities.   
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Figure 3.19 Perspective of Gibraltar Port authority  

(Source: Author) 

 

3.6.2.2 Perspective of the ship owner 

Once this ship owner was informed that their vessel was detained, they needed to address 

all the identified deficiencies. If the vessel were detained twice in succession, it would have a 

very high probability to be banned by the Paris MoU. Different from port authorities, ship 

owners care more for profits and thus evaluate whether the investment on repair/maintenance 

could help them avoid detention next time. In this regard, the BN model is helpful to 

rationalize their decisions. 

When the ship owner fixed the deficiencies according to the detention report and retains 

the vessel at a high quality status by reducing the number of deficiencies at a low level, e.g. 

‘1 to 3’, it can be accepted and managed by an ISM company that performs much better. 

When it was inspected in the Port of Gibraltar in this case, even under the worst situation 

with the combination of low company performance and expanded inspection type, the 

likelihood for its detention was only 0.54% shown in Figure 3.16. Therefore, it would 

strongly motivate the owner to rectify the deficiencies given it was proved to be beneficial.  
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Figure 3.20 Perspective of the ship owner 

(Source: Author) 
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CHAPTER 4 THE IMPACT OF THE IMPLEMENTATION OF 

NIR ON PSC INSPECTION SYSTEM 

Since being introduced in 2011, the Paris MoU continuously amended the related regulations 

and policies to improve the efficiency of the NIR. In this chapter, a comprehensive analysis is 

conducted to test the influence of the implementation of NIR on the PSC inspection results. 

From several different perspectives, a comparative analysis between the ‘Pre-NIR’ period and 

‘Post-NIR’ period is conducted, and the significance of the NIR is revealed to demonstrate its 

ability to transform and modernise the PSC inspection system in the Europe region.  

 

4.1 INTRODUCTION 

PSC programs, which render port authorities the ability to inspect the foreign vessels in 

their own ports, have turned to port inspections to prevent shipping accidents and other risks 

from occurring in their legal waters. In recent years, it is regarded as the last line of defence 

in dealing with substandard vessels.  

In 2011, the much-anticipated NIR was finally launched on January 1st after many years 

of preparation. It was viewed as the most significant change that transforms and modernises 

the PSC system in recent years. Compared to the old system that was based on the agreement 

from 30 years ago, NIR introduced a radical change. The change was necessary to bring the 

Paris MoU in line again with global maritime developments, introduction of new IMO 

instruments and a better-balanced method of targeting and inspection of ships. The main 

objective during the development has been to reward quality shipping and to intensify control 

and sanctions on ships with poor performance. 

The new regime introduces a major departure from the “25% inspection commitment” and 

6-month inspection intervals, which overburdened the shipping industry and PSC authorities 

with inspections. When the criteria are met, quality ships will be rewarded with a “low risk 

ship” status and the inspection interval may be up to 36 months. Even “standard risk ships” 

benefit from the new system extending inspection intervals to up to 12 months. New to the 

system is that companies are now also monitored for performance, based on the inspection 

history of their ships. 

To balance the system, more resources will be directed to those ships with poor safety 

records, the “high risk ships”. These ships are subject to mandatory expanded inspections 
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every 6 months when they call at a Paris MoU port. A complex system of risk calculations, 

targeting and recording of inspections is supported by the new database “THETIS”, hosted 

and managed by EMSA in Lisbon. Results of inspections, currently detained ships and 

banned ships are now displayed directly from THETIS on the Paris MoU web site. 

It should be understood that substandard ships would no longer be tolerated in the region 

and with the new refusal of access measures in place, repeated offenders will be “banned” 

from our ports. This has happened to a substantial number of vessels already, some of which 

have been recycled in the meantime. Others choose to find new areas to operate, endangering 

the lives of the seafarers on board and constituting a risk for the environment. 

As a risk-based targeting mechanism, NIR rewards quality shipping with a reduced 

inspection burden and concentrates efforts on high-risk vessels. Making use of not only the 

performance of the flag state and the RO, but also the performance of the ISM Company for 

calculating the ship risk profile, it is expected to be a comprehensive regime ensuring the 

maritime safety and preventing illegal actions of ship owners.  

In order to figure out whether the implementation of NIR truly transforms the PSC system 

and brings significant influence on the inspection results, a comparative analysis between the 

‘Pre-NIR’ period and ‘Post-NIR’ period is conducted in this chapter. The key performance 

indicators (KPI) provided by the annual reports of the Paris MoU from 2005 to 2016 are 

utilized to analyse the influence of NIR from a macro-level perspective. In addition, with the 

help of two BN models, the micro-level changes that NIR brings to the PSC inspection 

system are revealed from different angles, e.g. influence of company performance, the 

sensitivity to detention, and the priority change of risk factors (vessel-related or inspection-

related).  

 

4.2 MACRO-LEVEL ANALYSIS - THE INFLUENCE OF NIR ON PSC 

INSPECTION 

In this section, a macro-level analysis is conducted to describe the impact of the 

implementation of NIR. The Paris MoU displays the detailed information and KPIs related to 

PSC inspection results on its website, which provides the data source for the analysis. 

Through the data collection process, the facts & figures of PSC inspections in 2005-2016 are 

summarized and listed from annual reports of the Paris MoU, including number of 
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inspections, number of inspected vessels, number of deficiencies, number of detainable 

deficiencies, number of detentions, and refusal access of vessels. The statistics are specific to 

different vessel types. Each category corresponds to an important aspect to judge the 

efficiency of the NIR and represents a criterion to estimate the overall quality and safe 

condition of inspected vessels. Understanding the changes of PSC inspections in these 

aspects is essential for us to clarify the macro-level influence brought by NIR on the PSC 

inspection system. Unlike the BN models developed in Chapter 3, the statistics collected 

from the Paris MoU focus on all vessel types, not the bulk carriers only. 

 

4.2.1 General analysis 

4.2.1.1 Facts & Figures 

To start our research, the facts and statistics about PSC inspections are collected in 

chronological order from 2005 to 2016, containing various aspects of the previous and 

current conditions of the PSC inspections in recent decades. The number of inspections, the 

individual vessels inspected, the number of deficiencies, the detainable deficiencies, the 

number of detentions, and the number of access refusals each year are all recorded in the 

database and considered in this study. The changes in these aspects are important signals 

representing the influence brought by NIR, because these are all important KPIs in the PSC 

inspection system, as stated in Paris MoU official statements. Table 4.1 lists these KPIs value 

derived from Paris MoU annual reports in 2005-2016. Because of the lack of statistics, the 

detainable deficiencies in 2005 and 2006 are vacant. 
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Table 4.1 The facts of PSC inspection from 2015 to 2016 

Year Inspections 
Individual 

vessels 
Deficiencies 

Detainable 

deficiencies 
Detentions 

Refusal of 

access to ships 

2016 17840 15234 41857 3769 683 20 

2015 17877 15225 41777 3513 610 11 

2014 18477 15386 46224 3155 623 21 

2013 17687 14108 49074 3231 668 29 

2012 18308 14646 49261 2882 669 14 

2011 19058 15268 50738 3080 688 20 

2010 24058 14762 64698 3866 790 6 

2009 24186 14753 71911 5451 1059 13 

2008 24647 15237 83751 6280 1220 19 

2007 22877 14182 74713 6434 1250 14 

2006 21566 13417 66142 - 1174 14 

2005 21302 13024 62434 - 994 28 

(Source: Paris MoU) 

It is worth noting that some of the statistics in Table 4.1 may not suitable to use for 

analysis directly. For example, the number of deficiencies per year experienced a huge 

decline (e.g. 64698 in 2010 and 50738 in 2011) when NIR was implemented in 2011, 

however, at the same time, the inspections per year also reduced largely from 24058 to 

19058. If simply drawing the conclusion that the PSC inspection system improved a lot 

because of the decline in the number of deficiencies, the analysis would be one-sided as the 

decline in the number of inspections is a signal of a negative effect on the PSC inspection 

system. The mutual contradiction of the facts hinders our analysis. Hence, in order to make 

the conclusions reasonable, some KPIs in Table 4.1 need to be adjusted to help the research.  

To support the analysis, deficiency rate, average inspected time per vessel, detainable 

deficiency rate, detention rate and refusal rate are calculated to replace some KPIs in table 

4.1, like the number of deficiencies, the number of detainable deficiencies, the number of 

detentions, and the number of access refusals. Table 4.2 presents the calculated results. 
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Table 4.2 The results of inspection-related rates in 2005-2016 

Year 
Deficiency 

rate 

Average inspected 

time per vessel 

Detainable 

deficiency rate 

Detention 

rate 
Refusal rate 

2016 2.346 1.171 0.211 3.83% 0.11% 

2015 2.337 1.174 0.197 3.41% 0.06% 

2014 2.502 1.201 0.171 3.37% 0.11% 

2013 2.775 1.254 0.183 3.78% 0.16% 

2012 2.691 1.250 0.157 3.65% 0.08% 

2011 2.662 1.248 0.162 3.61% 0.10% 

2010 2.689 1.630 0.161 3.28% 0.02% 

2009 2.973 1.639 0.225 4.38% 0.05% 

2008 3.398 1.618 0.255 4.95% 0.08% 

2007 3.266 1.613 0.281 5.46% 0.06% 

2006 3.067 1.607 / 5.44% 0.06% 

2005 2.931 1.636 / 4.67% 0.13% 

(Source: Author) 

Based on the statistics in Table 4.1 and 4.2, the macro-level analysis is carried out 

focusing on these aspects, which is presented in the following sections.  

 

4.2.1.2 Change in the number of inspections & individual vessels 

According to the Table 4.1, the number of inspections & inspected vessels per year are 

picked up and used to form the column chart showed in Figure 4.1.  
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Figure 4.1 Number of inspections and individual vessels in 2005-2016 

(Source: Author) 

From Figure 4.1, several changes related to the two KPIs because of the implementation of 

NIR are revealed. 

1) It is obvious to find that there was a decrease in the number of inspections, but an 

increase in the number of individual inspected vessels in 2011 when NIR was implemented.  

The phenomenon is one of the influences that NIR brings to us. In the previous inspection 

system, each member state of the Paris MoU would inspect 25% of the individual vessels 

calling at their ports, which is called national commitment. However, under new regime, each 

member only inspects the vessels visiting the ports and anchorages in the Paris MoU region. 

The transformation from national commitment to regional commitment results in the change 

of targeting of inspected vessels. Since 2011, the annual inspection target for each member 

state is based on ship movement data rather than individual ship calls and dedicated quality 

shipping is rewarded with longer inspection intervals. Consequently, the number of 

inspections executed per year dropped.  
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2) From 2011, the number of inspections and individual inspected vessels continued to 

drop, except 2014, when both indicators increased slightly. 

Under the new inspection system, the recorded ships will be categorized into three risk 

types: low risk ship, standard risk ship, and high-risk ship. For different types of vessels, the 

inspection intervals are different. HRS has a 5 to 6 months interval, SRS has a 10 to 12 

months interval, while LRS has a 24 to 36 month interval. In other words, the inspection on 

HRS is semi-annual, while it is annually for SRS and 2-3 years for LRS. Hence, when it 

comes to 2014, the third year since the NIR was implemented, a large number of LRS needed 

to be inspected, indicating an increase in both the number of inspections and individual 

inspected vessels.  

Meanwhile, because SRP is re-calculated on a daily basis, when an SRS or HRS is 

inspected next time, it may be upgraded to a safer level, thus leading to a decreasing trend in 

both indicators.  

3) Since NIR was implemented, both the number of inspections and the inspected vessels 

per year remain stable compared to the former inspection system.  

After the implementation of NIR, the number of inspections per year was around 18,000, 

except the first year of implementation that had about 19,000. Meanwhile, the number of 

inspected vessels per year has bounced around in a tight range near 15,000. All these signs 

indicated that the implementation of NIR made the PSC inspection system more stable than 

ever. Additionally, the fewer inspections carried out per year reduced the workload and the 

consumed resources of port authorities 

 

4.2.1.3 Change in deficiency rate and detainable deficiency rate 

Figure 4.2 presents a column chart for the change of deficiency rate and detainable 

deficiency rate from 2005 to 2016. Here deficiency rate refers to the average number of 

deficiencies per inspection; detainable deficiency rate goes the same. The trend in the figure 

reveals several changes that NIR brings to the inspection system. 
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Figure 4.2 Deficiency rate and detainable deficiency rate in 2005-2016 

(Source: Author) 

1) The introduction of NIR significantly reduced the deficiency rate and detainable 

deficiency rate of vessels inspected under the Paris MoU inspection system. (Year 2010 is a 

special case that will not be considered)  

Although the number of inspections and deficiencies decreased simultaneously since the 

NIR was implemented, the descending trends of deficiency rate and detainable deficiency 

rate in Figure 4.2 reveals the decline in the number of deficiencies and detainable deficiencies 

(positive effect of NIR) was greater than the number of inspections (negative effect), which 

demonstrate the effectiveness and applicability of the NIR.  

For the year 2010, the Paris MoU conducted a Concentrated Inspection Campaign (CIC) 

on tanker damage stability that came into effect from 1st September to 30th November. This 

activity prompted every tanker (e.g. oil, gas, chemical) operator to improve their vessels’ 

quality and the relevant documentation to comply with applicable regulations. Hence, 2010 

was a special year that had the lowest deficiency rate before 2011, in spite of the NIR has not 

been implemented.  
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2) Since NIR was implemented, the deficiency rate maintained a downward trend, from 

2.662 in 2011 to 2.346 in 2016, especially in 2014, where there was a huge decline. On the 

contrary, the detainable deficiency rate experienced a slightly increase.  

The contradictory trends of deficiency rate and detainable deficiency rate form an 

interesting situation. On the one hand, the continuous improvements of NIR urged the ship 

owners to pay more attention to the quality of their vessels, thus resulting in a descending 

trend of deficiency rate. For example, in 2014, 55% of the performed inspections had one or 

more deficiencies, and in 2013, this figure was 58%. The decline of deficiency rate reflected 

the improvement of the vessel quality. 

However, on the other hand, the passion and motivation of ship owners weakened after the 

‘honeymoon’ of the NIR. It will cost them a lot to maintain and repair the vessels, especially 

in those places that may cause detainable deficiencies. Hence, the pathology of gambling 

makes them unwilling to maintain the quality of vessels and hope to pass the inspection by 

luck. The changes in psychology may be an important reason for the increase in the 

detainable deficiency rate, and such mentality will be explained in detail in the next chapter.  

 

4.2.1.4 Change on detention rate  

As the most intuitive KPI, detention rate reflects the overall inspection situation over a 

period. Figure 4.3 illustrates the variation of the detention rate in the last decade, from 2005 

to 2016.  
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Figure 4.3 Trend of detention rate in 2005-2016 

(Source: Author) 

1) Overall, the detention rate after 2011 is lower and more stable compared to the period 

before NIR.  

Although in 2010, the detention rate declined sharply and reached the lowest point in the 

past decade, the overall detention rate before and after the implementation NIR is widely 

different, which is demonstrated as follows: 

Detention rate from 2011-2016: 6487/138636=4.68% 

Detention rate from 2011-2016: 3941/109247=3.61% 

The improvement on detention rate: (4.68%-3.61%)/4.68%= 22.86% 

The calculation above shows that the detention rate dropped 22.86% since NIR was 

implemented. It is obvious that the introduction of NIR indeed improved the operation of the 

PSC inspection system and stimulated the ship owners to spend more on the maintenance of 

the quality of their vessels.  

Meanwhile, the range of fluctuation of detention rate after 2011 is less than 0.5%, far 

lower than the 2.18% range in 2005-2010, demonstrating the PSC inspection system is 

currently running healthily and stable.   
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2) Before the implementation of NIR, the detention rate dropped to 3.28%, the lowest point 

until now.  

This interesting phenomenon can be explained by the following reasons. 

First, as mentioned before, the Paris MoU conducted a Concentrated Inspection Campaign 

(CIC) on tanker damage stability that came into effect from 1st September to 30th November 

in 2010. This activity prompted every tanker (e.g. oil, gas, chemical) operator to improve 

their vessels’ quality and the relevant documentation to comply with applicable regulations. 

Hence, the overall quality of vessel types was much better. 

Second, although NIR was implemented in 2011, it was announced by the Paris MoU in 

2009 that a new and more rigid inspection regime would come into force in 2011. In order to 

better adapt to the new system when it came out, most ship owners chose to improve the 

quality of their vessels as much as possible to avoid severe punishment if NIR was 

implemented later. Hence, the overall quality of the vessels in maritime transportation 

improved, resulting in a lower detention rate reflected by the PSC inspection system. 

3) Year 2014 witnessed a relatively huge decrease in the detention rate. However, the 

detention rate increased a lot in 2016, for the first time since 2013. 

There are two interesting points after the implementation of NIR. One is 2014, when there 

was an increase in the number of inspections. The majority of the growing segment was LRS, 

leading to a decreasing tendency of detention rate.  

The other is 2016, when the detention rate reached the peak value since the introduction of 

the NIR in 2011, along with the highest value of detainable deficiency rate. Under the rising 

economic pressures, some ship owners decided to choose to cut corners in areas where it is 

possible to reduce the operating costs of their vessels. Cooperating with some shipping 

companies, they made the deliberate choices to operate sub-standard vessels, mainly because 

the costs of running a ‘bona fide operation’ outweigh the risk of being detained and rectifying 

deficiencies. As the ship operators are getting more and more familiar with the NIR, it is 

predictable that the detention rate may remain at a relatively high level compared with the 

first two or three years. It is noteworthy that the Paris MoU increases the penalties to ensure 

the sub-standard shipping will not flourish, for example, the number of banned vessels in 

recent years.  
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4.2.1.5 Other KPIs 

Besides the KPIs mentioned above, the average number of inspections per ship and the 

refusal rate per ship are also indicators may reflecting the influence of NIR.  

Figure 4.4 and Figure 4.5 use the line charts to describe the trend of average number of 

inspections per ship and the refusal rate. Through the investigation on the charts, the 

influence of NIR on these two aspects is revealed below: 

 

 

Figure 4.4 The trends of average number of inspections/vessel 

(Source: Author) 
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Figure 4.5 The trends of refusal rate of vessel access 

(Source: Author) 

1) The implementation of NIR significantly reduced the burden on the ship owners (from 

1.6 inspections/year to 1.2 inspections/year). 

The number of inspections per vessel per year can represent the inspection burden on the 

ship owners. A higher value of this indicator means that the vessel needs to be subjected to 

more inspections per year, increasing the burden on its ship owner.  

Since NIR was implemented, this indicator dropped from 1.6 to approximate 1.2. The 

huge decrease on this indicator is a signal that the cost to ship owners of preparing for PSC 

inspections reduced a lot, representing a positive effect brought by NIR to ship owners. 

2) NIR has no influence on the refusal rate of vessel access.  

According to the statistics, the access refusal rate of vessels was the only indicator that 

NIR had no influence on in the past decade. One possible reason for this is that the refusal of 

a vessel is a rare event in PSC inspections that may only occur 10 to 20 times per year. This 

kind of rare event is hard to control for port authorities, because the sampling size is too 

small.  
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4.2.2 Influence of NIR on different vessel types 

In section 4.2.1, the statistics reveals that every year over 10,000 individual vessels are 

inspected at the ports within the region of the Paris MoU, including bulk carrier, chemical 

tanker, combination carrier, etc. Different vessel types have different inspection performance, 

reflecting the overall quality of the vessels. Since the implementation of NIR, different vessel 

types adopted different measures to cope with the new inspection system and regulations, 

resulting in different changes in the performance during the inspections. In this section, to 

figure out the influence of NIR on vessel types, an analysis on the variation of some 

important KPIs is carried out. The results revealed clarify the impact degree of different 

vessel types. 

Due to the fact that more than 20 types of vessels are inspected at ports, it is difficult and 

impossible to analyse all of them. Hence, only the types having more than 1,000 inspections 

every year are selected, including the following five vessel types: general cargo vessel, 

container, bulk carrier, chemical tanker and oil tanker. 

 

4.2.2.1 Number of inspections 

As the most direct indicator, the changes in the number of inspections brings the most 

remarkable perception on the influence of NIR. Figure 4.6 illustrates the trend of number of 

inspections of different vessel types from 2005-2016.  
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Figure 4.6 Number of inspections of different vessel types in 2005-2016 

(Source: Author) 

1) The inspections on general cargo vessels were far more than other vessel types, 

however, the gap narrowed since the implementation of NIR. In addition, the gap has become 

smaller and smaller over the last decade. (e.g. in 2008, the inspections on general cargo 

vessels were 9,851, the second was bulk carrier with 3,684; in 2016, the inspections on 

general cargo vessels and bulk carriers were 5,048 and 3,619, respectively.) 

2) When NIR was implemented in 2011, most of the vessel types experienced a huge drop 

in the number of inspections, except bulk carriers, which remained at almost the same 

number of inspections. 

3) After 2011, the inspections on general cargo vessels maintain a momentum of decline, 

while other vessel types (bulk carrier, container, chemical tanker and oil tanker) remained 

stable until 2016.  

Overall, the implementation of NIR reduced the number of inspections of most vessel 

types, and kept this number at a steady level.  
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4.2.2.2 The percentage of inspections with deficiencies 

Among the inspections performed, some inspections recorded one or more deficiencies, 

others refer to the vessels without faults. Although having deficiencies does not mean the 

inspected vessels are sub-standard, the percentage of inspections with deficiencies is still an 

important indicator to measure the overall quality of the inspected vessels. Figure 4.7 

presents this KPI of different vessel types. To simplify the work, this KPI is referred as 

‘PID’. 

  

Figure 4.7 Percentage of inspections with deficiencies of different vessel types in 2005-2016 

(Source: Author) 

1) When NIR was implemented in 2011, the PID of most vessel types experienced a more 

or less growing tendency, except bulk carrier, indicating bulk carrier owners adapted to the 

new regulations better.  

2) In 2013, the PID of all vessel types reached the peak value at the same time. 

Subsequently, the values began to drop, revealing more efforts are made by the ship owners 

to maintain the vessel quality from 2014.  
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3) In 2016, the PID of the general cargo vessels and the chemical tankers increased, 

especially the general cargo vessel, mainly because the ship owners of these vessels took 

risks to pass the inspection at the lowest cost due to the economic pressures. (The detailed 

explanation can be found in 5.3.1.4) 

Figure 5.7 tells us that the deficiency rate of most vessel types did not change much, 

except bulk carriers, which had a lower deficiency rate compared to the ‘Pre-NIR’ period.   

 

4.2.2.3 The detention rate 

The trends of detention rates of different vessel types, as well as the average detention 

rate, are depicted in the Figure 4.8. Through the comparison between the different curves in 

the following figure, several conclusions can be made (the average detention rate is referred 

as ‘ADR’, presented in a black line). 

 

Figure 4.8 Detention rate of different vessel types in 2005-2016 

(Source: Author) 

1) In general, the detention rate of these vessel types all dropped, indicating the positive 

influence on detention rate of NIR suited for the major vessel types in the PSC inspection 

system.  
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2) The detention rate of bulk carrier is mostly the same with the ADR, indicating the bulk 

carrier can be used to represent the inspection system. (This is part of the reason that bulk 

carriers are selected as the target vessel type.) 

3) The detention rate of general cargo vessel is much higher than ADR, revealing general 

cargo vessels as the most dangerous and risky vessel type under NIR.  

4) Container vessels, chemical tankers and oil tankers have better performance and lower 

detention rates.  

5) After 2011, the detention rates of different vessel types remained stable in general, 

except 2016, when the situation became worse and the detention rates increased.  

 

4.2.3 Summary 

In this part, the influence brought by NIR is clarified from the perspective of macro-level 

analysis. As a summary, the influence is classified into three types: positive influence, 

negative influence, and no influence. Only the influence related to trends is considered, 

meaning those special cases in a particular year are not taken into account in this part. 

Positive influence 

1) From 2011, the number of inspections and individual inspected vessels continued to 

drop, except 2014, when both indicators increased slightly. 

2) Since NIR was implemented, both the number of inspections and the inspected vessels 

per year remained stable compared to the former inspection system.  

3) The introduction of NIR significantly reduced the deficiency rate and detainable 

deficiency rate in the Paris MoU inspection system.  

4) Since NIR was implemented, the deficiency rate maintained a downward trend, from 

2.662 in 2011 to 2.346 in 2016, especially in 2014, when there was a huge decline.  

5) The detention rate after 2011 was lower and more stable compared to the period before 

NIR.  

 6) The implementation of NIR significantly reduced the burden on the ship owners (from 

1.6 inspections/year to 1.2 inspections/year). 
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7) The implementation of NIR reduced the number of inspections of most vessel types, 

and kept this number at a steady level.  

8) The detention rate of all vessel types dropped, indicating the positive influence on 

detention rate of NIR suited for the major vessel types in the PSC inspection system.  

Negative influence 

1) The detainable deficiency rate experienced a slightly increased trend after the 

implementation of NIR. 

No influence 

1) NIR has no influence on the access refusal rate of vessels.  

2) The deficiency rate of major vessel types did not change much, except bulk carriers, 

which had a lower deficiency rate compared to the ‘Pre-NIR’ period.   

In summary, the implementation of NIR is a positive action from the macro-level 

perspective. Most of the influence brought by NIR is beneficial for the management of port 

authorities and maritime safety. 

 

4.3 MICRO-LEVEL ANALYSIS - THE INFLUENCE OF NIR ON PSC 

INSPECTION 

To fulfil the study, a micro-level analysis of the NIR influence on PSC inspection is 

reviewed in this section. The two proposed BN models, ‘Pre-NIR’ and ‘Post-NIR’, provide 

the opportunity for us to carry out this part of research. As mentioned in Chapter 3, the PSC 

BN model can estimate the detention rate, reveal the inner relationships between different 

risk factors, and identify the degree of importance of individual variables. Due to the different 

periods that two BNs focus on, the results obtained from two BNs are different, reflecting the 

micro-level changes brought about by the implementation of NIR. 

 The analysis is conducted from the following perspectives, including 1) the comparison of 

influence degree of risk factors; 2) Company performance impact; 3) Prior probability 

change; 4) the role of different factor groups. Each aspect is one of the results and 

implications that can be obtained from BN, and represents the possible changes brought by 

the implementation of NIR. Through the comparison of the information of these aspects in 

two BNs, the micro-level influence of NIR on the PSC inspection system will be clear. 
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Figuring out the evolution of NIR in micro-level aspects is essential to understand the essence 

of NIR, as well as its intrinsic effects.  

 

4.3.1 Sensitivity to detention -The influence degree of risk factors under different periods 

According to previous analysis on mutual information, only the nodes having strong 

relationships with ‘detention’ are selected to conduct the scenario simulations and TRI 

calculation. In section 3.3.6 and section 3.4.6, the selected nodes of two models are 

presented. Each model picks six nodes to do the comparison. 

Pre-NIR: Inspection group, Vessel group, Number of inspections, Type of inspections, 

Vessel flag, RO 

Post-NIR: Inspection group, Vessel group, Number of inspections, Type of inspection, 

Vessel age, Company performance 

For different periods, the selected nodes and the results of sensitivity analysis (TRI) are 

different, revealing the influence degree of risk factors on inspection results changes over 

time. Due to the fact that the value of TRI represents the degree of importance of the nodes, it 

is necessary to compare the results of two BNs to clarify the changes caused by NIR in this 

aspect.   

Table 4.3 and Table 4.4 presents the results of sensitivity analysis from both ‘Pre-NIR’ 

BN and ‘Post-NIR’ BN as proposed in Chapter 3.  

Table 4.3 Results of sensitivity analysis (Pre-NIR) 

Sensitivity to ‘detention’ （Pre-NIR） 

Node Mutual  Info Percent (%) TRI (%) 

Inspection group 0.09654 36.4 17.34 

Number of deficiencies 0.09386 35.3 16.98 

Type of inspection 0.01464 5.51 7.27 

Vessel group 0.00140 0.527 4.59 

RO 0.00025 0.0933 2.86 

Vessel flag 0.00025 0.0929 0.3 

(Source: Author) 
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Table 4.4 Results of sensitivity analysis (Post-NIR) 

Sensitivity to ‘detention’ (Post-NIR) 

Node Mutual  Info Percent (%) TRI (%) 

Inspection group 0.06135 29.7 15.87 

Number of deficiencies 0.04891 23.7 17.48 

Vessel group 0.03622 17.5 7.17 

Company Performance 0.02659 12.9 6 

Vessel age 0.00638 3.09 3.2 

Type of inspection 0.00579 2.8 2.24 

(Source: Author) 

Through the comparison between the results of two periods, several findings are 

concluded with respect to the influence of NIR.  

1) In general, the stronger relationship with ‘detention’, the greater influence on the 

inspection results it will be.  

2) Since NIR was implemented, the relationships between risk factors and ‘detention’ have 

become closer and stronger. This change is reflected in the percentage of mutual information 

(PMI). In ‘Pre-NIR’ model, the gap of the PMI value between the first two factors and other 

factors is huge (35.3% for ‘number of deficiencies’, 5.51% for ‘type of inspection’, and other 

factors lower than 1%), which is abnormal for the inspection system. As a comparison, the 

gap between different risk factors is narrowed since the implementation of NIR (29.7%, 

23.7%, 17.5%, 12.9% respectively), indicating the influence of different risk factors on 

inspection results are becoming closer under the new situations.  

In a word, the implementation of NIR provides a healthier and more reasonable inspection 

system for port authorities. Within the system, every risk factor is endowed with scientific 

influence on the inspection results.  

3) After the implementation of NIR, the number of deficiencies becomes the most 

influential factor in PSC inspection. 

4) Vessel group, as well as the vessel age, are paid more attention since the 

implementation of NIR.  
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5) The newly added factor, company performance, indeed influences the inspection results 

to some extent. Although not as influential as ‘number of deficiencies’, it is still one of the 

factors that should be of concern to port authorities.  

6) Before the implementation of NIR, inspection type was one of the most influential 

factors. However, after 2011, the TRI value of inspection type drops from 7.27% to 2.24%, 

indicating it is no longer as important as it used be.  

7) Compared to other factors, the relationships with ‘detention’ of RO and vessel flag are 

relatively weak, hence not listed in the table after the implementation of NIR.  

 

4.3.2 Company performance impact 

As a newly added factor in the PSC inspection system, company performance plays an 

important role when calculating the SRP of the vessels. It is viewed as one of the significant 

improvements and changes on the inspection system stated by many PSCOs and members of 

the Paris MoU. The analysis of degree of importance above has already proved that company 

performance indeed has an important effect on the occurrence probability of detention, and 

even within the range of the most influential factors.   

In this section, the effect of company performance is further clarified. The sensitivity 

analysis with respect to the given states of company performance is shown is Table 4.5, 

including the detention rates and changes rate to the normal condition.  

Table 4.5 Effect of company performance 

High Medium Low Very low Detention rate Changes rate 

- - - - 3.25%  

100% 0 0 0 1.49% -54.15% 

0 100% 0 0 1.32% -59.38% 

0 0 100% 0 9.17% +182.15% 

0 0 0 100% 14.9% +358.46% 

(Source: Author) 

In this table, ‘-‘means the reduction of detention rate, ‘+’ means the increment of detention 

rate. 
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 1) If the performance of the management company is poor, the changes in the detention 

rate will be huge, up to 182.15% (low), and even 358.46% (very low).   

2) On the contrary, a high or medium performance ISM company will reduce the detention 

rate to some extent, and there is no big difference between high company performance and 

medium company performance.  

3) The attitudes of port authorities towards vessels under the management of low and very 

low shipping companies are rigorous, much more than the benefits gained from selecting a 

high/medium management company.    

4) The huge change in the inspection results of different performance levels reflects 

company performance is viewed as a high risk factor from the perspective of port authorities, 

demonstrating the fact that an ISM company is no longer beyond the control of the PSC 

inspection system. 

 

4.3.3 Prior probability change 

Another change lies in the prior probabilities of risk factors before and after the 

implementation of NIR. The investigation on this aspect can help reveal the change on 

actions taken by port authorities and ship owners under NIR, respectively. The involved 

factors are vessel age, vessel flag, inspection type, and port of inspection. Table 4.6 lists the 

related information. Canada and Greece in the Post-NIR model are not considered, because 

they are not within the range of the states of ‘port of inspection’ in the Pre-NIR model. 

Hence, a normalization on the other seven countries after the implementation of NIR is 

conducted and presented in the table. 
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Table 4.6 Comparison of prior probability before and after NIR 

Vessel flag 

 Black (High) Black Grey White    

Pre-NIR 0.0103 0.2218 0.0671 0.7008    

Post-NIR 0.0077 0.0109 0.0150 0.9664    

Vessel age 

 0to5Years 5to10Years 10to15Years 15to20Years Over20Years   

Pre-NIR 0.1340 0.1392 0.1519 0.0752 0.4998   

Post-NIR 0.2633 0.3884 0.1876 0.1051 0.0556   

Port of inspection 

 Belgium France Germany Italy Netherlands Spain UK 

Pre-NIR 0.1297 0.1360 0.0866 0.1564 0.1243 0.2356 0.1315 

Post-NIR 0.0806 0.1057 0.1027 0.1593 0.1975 0.2072 0.1470 

Inspection type 

 Initial More detailed Expanded     

Pre-NIR 0.2814 0.3668 0.3518     

Post-NIR 0.3447 0.4319 0.2234     

(Source: Author) 

It is obvious to find there are huge changes on the prior probabilities of these aspects, 

indicating various trends on the inspections. 

1) The flag performance of inspected vessels improves a lot and almost all the inspected 

vessels have a white list flag.  

After 2011, more and more ship owners select flag states that are listed on the white list of 

the Paris MoU (from 0.7008 to 0.9664). On the contrary, the percentage of selecting black list 

flag states declined sharply from 0.2218 to 0.0109, and the other two states of ‘vessel flag’ 

experience a slightly drop as well. 

2) Young vessels replace the position of old vessels and become the majority part of 

inspected vessels.  

Currently, the majority of inspected vessels are young vessels under 10 years old, 

occupying over 60% of the total number. This figure was only around 27% before the 
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implementation of NIR. Meanwhile, the percentage of vessels over 20 years old drops 

significantly from 49.98% to 5.56%. 

3) There is not much change in the port of inspection before and after the introduction of 

NIR. 

As an unimportant risk factor, the places of inspections seem not to have been influenced 

by the implementation of NIR. The percentage of inspections taking place in seven major 

costal countries in Europe remains almost the same, except Netherlands, which had a small 

increase (from 12.43% to 19.75%) in this area.  

4) More-detailed inspections is the preferred inspection type of port authorities.  

Before NIR was implemented, port authorities executed almost the same number of more 

detailed inspections and expanded inspections. However, since the overall quality of vessels 

has improved nowadays, more and more initial and more-detailed inspections are carried out, 

and the percentage of expanded inspections has decreased from 35.18% to 22.34%.  

 

4.3.4 The role of ‘vessel group’ and ‘inspection group’ 

Although ‘vessel group’ and ‘inspection group’ are two dummy variables introduced to 

reduce the calculation work of CPTs, they actually represent the overall level of vessel-

related risks and inspection-related risks. Understanding the changes of the impact degree of 

two factors is essential to figure out which part is more risky and which part is paid more 

attention compared to the former inspection system.  

Table 4.7 illustrates the changes rate of two variables under different scenarios. ‘-‘means 

the reduction of detention rate, ‘+’ means the increment of detention rate. 
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Table 4.7 The change on ‘vessel group’ and ‘inspection group’ 

Inspection Pre-NIR Post-NIR Vessel Pre-NIR Post-NIR 

Prior 

probability 
4.52% 3.25% 

Prior 

probability 
4.52% 3.25% 

Posterior 

probability 

(High) 

35.70% 32.90% 

Posterior 

probability 

(High) 

8.87% 15.60% 

Changes rate +689.80% +912.30% Changes rate +96.20% +380% 

Posterior 

probability 

(Low) 

1.03% 1.16% 

Posterior 

probability 

(Low) 

4.28% 1.26% 

Changes rate -77.20% -64.30% Changes rate -5.30% -61.20% 

 (Source: Author) 

The changes on this aspect are obvious, which is presented as follows. 

1) Compared to the previous system, both the high inspection risk and high vessel risk 

vessels will have much higher chances to be detained by port authorities under the new 

inspection system.  

2) Nowadays, vessels having low vessel-related risks will have a huge reduction in the 

detention rate when accepting inspections, stimulating the ship owners to be more concerned 

about the vessel quality.  

3) No matter whether it was before or after the implementation of NIR, inspection-related 

risks are always the top priority of port authorities. However, vessel-related risks are no 

longer an indifferent part compared to inspection-related risks and have gradually become 

crucial to the inspection results. 

4) The changes on the inspection and vessel risks demonstrate that port authorities are 

vigilant to all potential risks and will no longer tolerate any types of risk.  

 

4.3.5 Summary 

Based on the proposed BNs in Chapter 3, the influence of NIR from the micro-level angle 

is clearly understood. Similar to the findings in the macro-level analysis, some changes are 

positive, while other changes may not act as expected. As a summary, the intrinsic changes 

and influence on the PSC inspection system are categorized into three types: positive 
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changes, negative changes, and neutral changes (Those changes do not affect the system). 

The summary can tell us whether the implementation of NIR is beneficial for port authorities 

and ship owners, even for the maritime transportation system.  

Positive changes 

1) Since NIR was implemented, the relationships between risk factors and the inspection 

results have become closer and stronger. 

2) Vessel-related risk factors are paid more attention since the implementation of NIR.  

3) The newly added factor, company performance, is viewed as an important risk factor 

that greatly affects the final inspection results. The vessels under high and medium company 

management are highly unlikely to be detained; on the other hand, low and very low ISM 

companies are on the ‘black list’ of all ports within the range of the Paris MoU and have 

greatly increased chances of detention. 

4) The attitudes of port authorities towards vessels under the management of low and very 

low shipping companies are rigorous, much more than the benefits gained from selecting a 

high/medium management company for inspection. 

5) The flag performance of inspected vessels improves a lot and almost all the inspected 

vessels have a white list flag.  

6) The age of inspected vessels from 2011 is becoming younger, indicating the 

implementation of NIR eliminated those low quality old vessels.  

7) Compared to the previous system, both the high inspection risk and high vessel risk 

vessels will have much higher chances to be detained by port authorities under the new 

inspection system.  

8) Vessels having low vessel-related risks will have a huge reduction in the detention rate 

when accepting inspections, stimulating the ship owners to be more concerned about the 

vessel quality.  

9) Vessel-related risks are no longer an indifferent part compared to inspection-related 

risks and have gradually become crucial to the inspection results. 

10) Port authorities are vigilant to all potential risks and will no longer tolerate any types 

of risk 



123 

 

Neutral changes 

1) After the implementation of NIR, the number of deficiencies becomes the most 

influential factor in PSC inspections. 

2) There is not much change in the port of inspection before and after the introduction of 

NIR. 

3) More-detailed inspections is the preferred inspection type for port authorities.  

Negative changes 

1) Inspection type was no longer as important as it used be.  

2) The influence of RO and vessel flag greatly reduced compared to the former system. 

In a word, the implementation of NIR provides a healthier and more reasonable inspection 

system for port authorities. Under the operation of the new regime, the vessel quality is 

guaranteed and the maritime safety is ensured. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



124 

 

CHAPTER 5 A RISK-BASED GAME MODEL FOR RATIONAL 

INSPECTIONS IN PORT STATE CONTROL 

This chapter develops a risk-based game model via payoff matrix based on Bayesian network 

(BN) for guiding the ship owner and the port authority to make optimal decision strategies in 

PSC inspections. The results obtained from the BN model are used to help determine the 

crucial factors influencing the ship owner and port authority’s decision on PSC inspections 

and their values in the game model. During this process, the risk-based PSC decision model 

through the innovative incorporation of game theory and BN, for the first time, takes into 

account the new role of International Shipping Management (ISM) (i.e. the third party) 

companies introduced by NIR in the game decision and exploits a rational and feasible way 

to analyse PSC inspection practice since NIR was implemented. 

 

5.1 INTRODUCTION 

During an inspection, PSC officers will select high-risk vessels for inspection according to 

the risk estimation mechanism suggested by the regional PSC organizations (Xu, et al., 

2007). Since established in 1982, PSC is gradually viewed as the last safety line of defence 

against sub-standard vessels because it effectively restricted the appearance of the vessels not 

fully following the relevant safety regulations. Nevertheless, it is not perfect, leaving the 

holes to be addressed and new solutions to be explored. According to the PSC inspection 

records, every year a large number of vessels do not comply with the regulations reckoned by 

port authorities and fail to pass the inspections.  

Generally, the ship owners need to prepare many works to make their vessels meet the 

requirements of PSC inspections, for example, selecting a high performance ISM company, 

investing capital to improve quality of vessels, and employing some experienced staff. 

However, because of the large amount of funds invested, especially the high maintenance 

cost, some ship owners do not tackle the safety loopholes of their vessels in time, leading to 

high risks of the vessels being detained.  

Although facing huge punishment when the vessel is detained, the ship owners still 

gamble on the inspection, as they understand the PSC regulations well, and that it is 

impossible for port authorities to inspect all the vessels arriving at the port due to limited 

resources. Hence, on this matter, different ship owners make different decisions according to 
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the characteristics, the circumstances, the resources owned, and the judgments on the 

regulations of destination ports.  

From the perspective of the port authority, it costs them a lot to inspect a vessel. The 

limited resources, which include both the funding and the human resources (the PSC 

officers), restrict the amount of inspection that can be carried out. In general, the funds for the 

MoU are provided by each member, and the inspection costs are thus borne by them. The 

ports have the right to decide the resources they put into each inspection, and MoU cannot 

and could not charge any of them. Although having the convenience, port authorities still 

need to spend a lot on inspections to ensure the quality and effectiveness of them. Every day, 

many vessels will visit the port, and the costs are increased with higher inspection rates. Port 

authorities need to get further funds from some other finance channels, as well as recruit and 

train more related personnel to take charge of on-board inspections.  

On the other hand, excessive PSC inspections may harm the competitiveness of the port 

and increase the burden on ship owners, leading some ship owners to turn to other 

destinations that may have a more relaxed inspection policy (Li, et al., 2015). Further, 

excessive controls, increasing delays, tied up capacities, inventory costs etc., may also be 

translated into costs ultimately paid by the customers (Goss, 1989). 

Therefore, striking a PSC inspection balance between port authorities and ship owners 

requires a scientific decision for rational policymaking. While the port authorities aim at 

motivating ship owners to maintain their vessels at a high safety level to mitigate maritime 

accidents, ship owners care more about minimization of the associated costs. Such conflicts 

of interest therefore forms an antagonistic relationship between the two stakeholders, which 

is called the inspection game.  

An inspection game is a mathematical model of a non-cooperative situation where an 

inspector verifies that another party, called inspectee, adheres to legal rules. The inspector 

wishes to deter illegal activity on the part of the inspectee and, should illegal activity 

nevertheless take place, detect it with the highest possible probability and as soon as possible. 

The inspectee may have some incentive to violate his commitments and violation, if 

observed, will incur punishment. Therefore, if he chooses illegal behaviour, the inspectee will 

wish to avoid detection with the highest possible probability. In PSC inspection, port 

authorities are inspectors and ship owners are inspectees.  
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To improve the PSC inspection system, the much-anticipated New Inspection Regime 

(NIR) was launched in 2011. According to Paris MoU Annual Report (2011), it is viewed as 

the most significant change that transforms and modernizes the PSC system in recent years. 

Under the new inspection system, the vessel visiting a port will be attributed a ship risk 

profile through an associated information system, which determines the priority of ship 

inspections, the intervals between the inspections of a ship and the scope of the inspections. 

Based on the feedback, the port authority will decide the details of the inspections, 

(inspection types, detention results, and detention periods). The Paris MoU hoped that the 

implementation of NIR could efficiently improve the performance of PSC inspection system. 

It is noteworthy that an important element that helps to categorize the ship risk profiles in 

NIR is the performance of International Shipping Management (ISM) companies. Before the 

implementation of NIR, ISM companies are just third-party managers who, for a negotiated 

fee and with no shareholding ties with their clients, undertake the responsibility of managing 

vessels in which they have no financial stake (Mitroussi, 2003). They accepted ships from 

and managed them on behalf of ship owners without much concern on their technical 

soundness given that they had no responsibility on vessels’ failures of passing PSC 

inspections. However, this practice has been changed since the NIR was introduced in 2009 

and implemented in 2011 on the Paris MoU. The Paris MoU establishes a shipping company 

(including ISM) performance formula that takes into account detention and deficiency 

records of the vessels under the company’s management over a period of 36 months. Based 

on the deficiency and detention rates, the performance of ISM companies is classified into 

groups of four grades: high, medium, low and very low. A list of ‘ISM managers’ of poor 

performance has been developed, consisting of the ISM companies who have shown an 

unwillingness or inability to comply with the international conventions on maritime safety 

and/or on the protection of marine environment. Once a vessel is detained, the reputation of 

its associated ISM will be affected, leading to an increase frequency of inspections in future.  

To ensure their profits and maintain their reputation, ISM companies are putting much 

effort to make them adaptive to the NIR and improving their management level. Considering 

the vessel quality, ISM companies raise their vessel acceptance criteria to ensure the 

successful inspection results that the ships under their management can receive. The 

involvement of ISM companies obviously influences the game between port authorities and 

ship owners in today’s PSC practice.   
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For port authorities, when regulating their policies under NIR, it is of vital importance to 

take the company performance indicator into account. However, in this research, as we only 

focus on the period in which the vessel is already at the port, ISM companies are considered 

as a factor influencing the decision-making of port authorities, because the selection and 

determination of ISM companies happen before the occurrence of the inspections. Therefore, 

quantifying the influence of company performance on inspection results becomes the major 

issue when analysing the PSC inspection game under NIR in this research. Further research 

may consider ISM companies as a player in the inspection game if the time range of the game 

is widened.   

This chapter aims at developing a risk-based game model based on Bayesian network 

(BN) to determine the optimal inspection strategy of a port authority under different 

circumstances after the implementation of NIR. Based on 49,328 primary historical 

inspection reports obtained from the Paris MoU database in 2015-2017, those related to bulk 

carriers (i.e. 10000 records) are selected to build a BN risk model. The BN risk model 

provides a novel way to obtain the detention rates relating to different company performance 

levels and vessel quality. They can be used as important input in the subsequent game model 

construction. Through calculating every payoff during an inspection, a payoff matrix is 

utilized to present the new BN risk-based PSC game model. 

The Nash equilibrium of the newly proposed game model will eventually reveal the 

optimal inspection policy for port authorities and motivate ship owners to improve their 

vessel quality and safety performance to mitigate maritime accidents. Supported by the 

empirical case study in Chapter 6, the managerial insights about the optimal inspection policy 

and the decision-making framework for port authorities can be obtained. 

 

5.2 BASIC CONCEPTS IN GAME THEORY 

5.2.1 Strategic games 

A strategic game is a model of interactive decision-making in which each decision-maker 

chooses his plan of action once and for all, and these choices are made simultaneously. The 

model consists of a finite set of players, set of actions for each player, and a preference 

relation on the set of action profiles. Different from decision problem, which is the study of 

how to maximize expected utility in situations where there are no other participants making 
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choices, strategic game is more complicated and practical. In a strategic game, each player 

may care not only about his own action but also about the actions taken by the other players, 

a feature that distinguishes the strategic games from decision problems. If the set of actions of 

every player is finite, then the game is finite.  

The high level of abstraction of this game model allows it to be applied to a wide range of 

situations. A player may be an individual human being or any other decision-making entity 

like a government, a board of directors, an administration authority, and the leadership of a 

revolutionary movement, or even a flower or an animal. The model places no restrictions on 

the set of actions available to a player, which may, for example, contain just a few elements 

or be a huge set containing a complicated plan that covers a variety of contingencies. 

However, the range of application of the model is limited by the requirement that each player 

is associated with a preference relation. A player’s preference relation may simply reflect the 

player’s feelings about the possible outcomes or, in the case of an organism that does not act 

consciously, the chances of its reproductive success.  

The fact that the model is so abstract is a merit to the extent that it allows applications in a 

wide range of situations, but is a drawback to the extent that the implications of the model 

cannot depend on any specific features of a situation. Indeed, very few conclusions can be 

reached about the outcome of a game at this level of abstraction; one needs to be much more 

specific to derive interesting results.  

In some situations, the players’ preferences are most naturally defined not over action 

profiles but over their consequences. When modelling the PSC inspection in this study, for 

example, port authorities and ship owners may set as the players, and the set of actions of 

each player are the choices like inspection or maintenance. Actually, it is the profit that 

matters, not the choices that generates the profit. To do so, a set of consequence (profit) is 

introduced, and a function from actions to consequence is generated. Hence, this kind of 

strategic game reflects a situation that the preference relation of each player is set over 

consequence.  

Interpretation of the model 

Normally, there are two kinds of interpretations. 

One common interpretation is that strategic game is a model of an event that occurs only 

once. Each player knows the details of the game and the fact that all the players are rational, 
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and the players choose their actions simultaneously and independently under this 

interpretation. Each player is unaware, when choosing his action, of the choices being made 

by the other players; there is no information (except the primitives of the model) on which a 

player can base his expectation of the other players’ behaviour.  

Another interpretation is that a player can form his expectation of the other players’ 

behaviour based on information about the way that the game or a similar game was played in 

the past. Under this situation, an individual who plays the game many times must be 

concerned only with his instantaneous payoff and ignore the effects of his current action on 

the other players’ future behaviour, which is slightly different from the former interpretation. 

One thing to note that is for a situation to be modelled as a strategic game, it is important 

only that the players make decisions independently, no player being informed of the choice of 

any other player prior to making his own decision. 

 

5.2.2 Payoff matrix 

Under a wide range of circumstances, the preference relation of player in a strategic game 

can be represented by a payoff function (also called a utility function). The value of such a 

function is called payoff. If the payoff of one action A is higher than another action B, then 

action A has a higher priority and probability to be chosen as the strategy of this player.  

In reality, payoffs are numbers that represent the motivations of the players. Depending on 

different games, payoffs may represent profit, quantity, continuous measures (cardinal 

payoffs), and/or the rank of desirable outcomes (ordinal payoffs). 

In order to determine the optimal strategy for each player, a payoff matrix is usually 

applied to address the problem. It is an m×n matrix that gives the possible payoff of a two-

person game when player 1 has m strategies and player 2 has n strategies. This visual 

representation approach can describe the payoff of each player under different strategy 

profiles in Table 5.1.  
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Table 5.1 An example of a payoff matrix 

                           C D 

A w1, w2 y1, y2 

B x1, x2 z1, z2 

(Source: Author) 

Player 1’s strategies are identified with the rows and player 2’s with the columns. The two 

numbers in each cell are the players’ payoffs when player 1 chooses the row strategy and player 

2 chooses the column strategy. For example, the two numbers w1 and w2 in first cell means 

when player 1 chooses strategy A and player 2 chooses strategy C, the payoff of player 1 is w1 

and the payoff of player 2 is w2. 

Payoff matrix presents a visualized way to analyse the strategic game, and it is currently a 

widely used approach to figure out the optimal strategies of participating players. 

 

5.2.3 Nash equilibrium 

Nash equilibrium is the most commonly used solution concept in the game theory. It 

captures a steady state of the play of a strategic game in which each player holds the correct 

expectation about the other players’ behaviour and acts rationally (Nash, 1950). Meanwhile, 

it does not attempt to examine the process by which a steady state is reached. 

When it comes to a Nash equilibrium, no player has another action yielding an outcome 

that he prefers to that generated when he chooses a corresponding action, given that every 

other player chooses his or her Nash equilibrium action. Briefly, no player can profitably 

deviate, given the actions of the other players. 

The following case named and interpreted by Tucker presents a simple example of Nash 

equilibrium (Tucker, 1983). Two criminals are caught in a crime and put into separate cells. 

The police will interrogate both of them, respectively. If they both confess, each will be 

sentenced to three years in jail. If only one of them confesses, he will be freed and used as a 

witness against the other, who will receive a sentence of four years. If neither confesses, they 

will both be convicted of a minor offence and spend one year in prison. The payoff matrix of 

this game is shown in Table 5.2.  
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Table 5.2 An example of obtaining Nash equilibrium 

                           Confess Not confess 

Confess 3, 3 0, 4 

Not confess 4, 0 1, 1 

(Source: Tucker, 1983) 

If the two criminals decide to cooperate, the best strategy for them is that neither confesses 

and both of them only have to be sentenced to jail one year. However, in a strategic game, 

each player is rational and has an incentive to be a self-centred person, which means the 

players care more about their own benefits and therefore will not choose cooperation. In this 

case, no matter what one criminal choose, the other prefers ‘confess’ to ‘not confess’ as the 

former choice always generates a higher payoff than the latter one for every person. Hence, 

the Nash equilibrium of this example is ‘Confess, Confess’. This problem is called ‘Prisoner’s 

dilemma’, which is one of the famous cases in game theory.  

 

5.2.4 Mixed strategy Nash equilibrium 

Mixed strategy Nash equilibrium is designed to model a steady state of a game in which 

the participants’ choices are not deterministic but are regulated by probabilistic rules. For a 

strategic game, a member of action set of players is called a pure strategy. On the contrary, a 

member of the set of probability distribution of action set of players is called a mixed 

strategy. Based on this conception, a mixed strategy Nash equilibrium of a strategic game is a 

Nash equilibrium of its mixed extension.  

There are a number of interpretations of mixed strategy Nash equilibrium, and some of 

them are shown as follows: 

1) Mixed strategy Nash equilibrium entails a deliberate decision by a player to introduce 

randomness into his behaviour, representing the objectives of his choice.  

2) Similar to Nash equilibrium, mixed strategy Nash equilibrium is explained as a 

stochastic steady state of an environment in which players act repeatedly and ignore any 

strategic link that may exist between plays.  

3) A mixed strategy Nash equilibrium is a description of a steady state of the system that 

reflects elements missing from the original description of the game. 
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4) A mixed strategy Nash equilibrium is a profile of belief, each element in the 

equilibrium is a common belief of all the other players about this player’s actions. Under this 

interpretation, each player chooses a single action rather than a mixed strategy. An 

equilibrium is a steady state of the players’ beliefs, not their actions. 

These interpretations explain the mixed strategy Nash equilibrium from many different 

aspects. Each of them has its limitation, leading to several criticisms of it. However, the 

discussions on the mixed strategy Nash equilibrium indicate its popularity and importance in 

the field of game theory.  

 

5.3 THEORETICAL GAME MODEL BETWEEN PORT AUTHORITIES AND 

SHIP OWNERS 

A game between a port authority and a ship owner is more like a ‘supervise-being 

supervised’ activity. In this game, the main object of the port authority is to optimize the 

social welfare (Florens & Foucher, 1999). Therefore, it takes measures to ensure maritime 

safety, such as the policies on maritime safety, the conventions on maritime security and the 

punishment of the illegal ship owners. Although these measures cannot completely eradicate 

potential maritime safety hazards, they can certainly stimulate ship owners to improve the 

quality of their vessels. Simultaneously, the ship owner aims at maximizing their benefits, 

resulting in the search for a balance between the cost and detention. The conflict of objectives 

forms the game relationship between the port authority and the ship owner. 

The process of developing a game model consists of three essential steps: 1) confirming 

the participated players, 2) figuring out the strategy of each player, and 3) determining the 

payoff of each strategy. When making decisions, both port authorities and ship owners will 

make their choices based on the payoffs of the strategies under different situations. As one of 

the important factors in game model, the inspection risk plays a key role in determining the 

payoffs. Hence, in order to quantify the inspection risk, BN is combined with the game model 

for the first time to reflect the actual conditions in PSC after the implementation of NIR 

precisely. Meanwhile, the BN model proposed in this thesis takes into account company 

performance as an important risk factor influencing the inspection results, and the final model 

is able to reveal the detention rates under various conditions involving different company 

performance levels. In the subsequent game model construction, the detention rate can be 

used as an indicator of the company performance, presenting a game model between port 
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authorities and ship owners considering the effect of company performance for the first time 

since PSC inspection regime changed.  

As the objective of this section is to analyse the optimal inspection policy of port 

authorities after the implementation of NIR, ‘Post-NIR’ BN model is selected to help the 

work of game model construction. The process of building the game model is illustrated as 

follows.  

 

5.3.1 Assumptions 

Before constructing the game model, several assumptions are proposed to conform to the 

definition of the strategic game. Based on the definition and interpretations from Osborne & 

Rubinstein (1994), the following assumptions are made in this study: 

1) The vessel type selected for constructing the game model is bulk carrier for two 

reasons: one is bulk carrier accounts for 20% of inspection records; second is the detention 

rate of bulk carrier is mostly the same as the average detention rate (for all vessel types), 

indicating that the bulk carrier can be used to represent the inspection system. (Explained in 

Chapter 4 in detail).  

2) The two stakeholders in the PSC inspection game, the port authorities and the ship 

owners, are rational players. The purposes of the two stakeholders are presented as follows:  

Ship owners: for maximizing personal interest 

Port authorities: for minimizing social welfare losses 

The conflicts between the objectives of two major stakeholders in the inspection game 

manifest that the PSC inspection game is a non-cooperative game2. 

3) The game is a strategic game, and each player holds the correct expectation about the 

other player’s behaviour and acts rationally based on the information about the way that the 

game was played in the past.  

                                                           
2 A non-cooperative game is a game with competition between individual players and in which only self-

enforcing (e.g. through credible threats) alliances (or competition between groups of players, called "coalitions") 

are possible due to the absence of external means to enforce cooperative behaviour (Osborn & Rubinstein, 1994; 

Friedman, 1991). 



134 

 

4) The players make decisions independently and simultaneously, and each player is 

unaware of the choices being made by the other players. 

5)  ‘Bulk carriers’ is classified into two types according to the maintenance effort of ship 

owners: standard vessels with effort M and sub-standard vessels with effort m. The reason for 

the classification is to conform to the PSC inspection system that marks the vessel passing the 

inspection as ‘standard vessel’ and the vessel failing to pass the inspection as ‘sub-standard’ 

vessel. 

6) To simplify the calculation work, the accident losses caused by standard or sub-

standard vessels are the same in this research3.  

 

5.3.2 Parameter identification 

From the definition of the strategic game, it consists of three elements: 1) a finite set of 

players, 2) a nonempty set of strategies for each player and 3) a preference relation on the set 

of strategies, which can be represented by payoff.  

Therefore, when building the inspection game in this study, the parameters need to be 

identified from these three aspects.  

5.3.2.1 Players 

It is obvious that the inspection game involves two players: port authorities and ship 

owners. 

 

5.3.2.2 Strategies 

Strategy of the port authorities 

There are two strategies for the port authorities to treat the vessels arriving at their ports  

 Inspect the vessel (with probability X) 

 Not inspect the vessel (with the probability 1 – X) 

                                                           
3 In fact, the accident losses of the two vessel types would be slightly different, because standard vessels may 

have more precautionary measures to deal with the maritime accidents than sub-standard vessels, thus leading to 

less loss when encountering unexpected cases. 
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Strategy of the ship owners 

When confronted with the inspections, the ship owners can make either a high intensity 

effort to ensure the vessel standard or a low effort to leave the vessel sub-standard. The 

strategies are expressed as follow. 

 High intensity effort: Standard vessels (with probability Y) 

 Low effort: Sub-standard vessels (with probability 1-Y) 

 

5.3.2.3 Payoffs 

In section 5.2.2, ‘payoffs’ is defined as the numbers that represent the motivations of the 

players. It has a wide variety of forms, e.g. profit, rank, or quantity. According to the 

objectives of the players in PSC inspections, the ‘payoffs’ in the inspection games is defined 

as profit.  

Based on the literature (Li, et al., 2015) and the inspection record reports, the payoff of the 

ship owner consists of the following components: expected detention cost, expected accident 

loss, inspection cost, maintenance cost and the port charges. Accordingly, the payoff of the 

port authority includes social welfare increase due to detention, the social welfare loss due to 

accidents, inspection cost, and the port charges.  

These parameters influencing payoffs are explained with a particular reference to their 

state definitions as follows: 

1) Expected detention cost 

Related to the choice of the port authority, the expected detention cost is the risk that the 

ship owner faces when accepting inspections. Only when the port authority decides to inspect 

the vessel, is it incurred. Meanwhile, because the inspection results can be subject to errors, 

there exists detention rate (likelihood) for both standard vessels and sub-standard vessels. 

Hence, the expected detention cost is the product of detention rate and detention-related cost. 

(i.e. expected detention cost = detention rate (D) * detention related cost (CD1)) 

Detention rate: D 

Detention rate is the probability that a vessel fails to pass the inspection. Meanwhile, it acts 

like a bond linking the ship owner, port authority and ISM Company. Its value can be obtained 
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through the BN model in Chapter 3.  

Detention-related cost of the ship owner: CD1 

In general, a ship is not released from detention before all necessary repairs are made, and 

it even needs to sail to another shipyard for repair if it is not possible to repair these deficiencies 

at the place of inspection. Such detention-related cost during the detention period is 

summarized as the consequence of detention.  

According to the definition of risk (i.e. Risk = Likelihood * Consequence), the expected 

detention cost is the product of detention rate and detention-related cost.  

Expected detention cost = detention rate (D) * detention related cost (CD1) 

2) Expected social welfare increase due to detention 

Other than the expected detention cost to the ship owner, detention also brings social welfare 

increase to the port authority. The punishment to ship owners makes the vessel safer and better, 

as well as generating additional earnings for the port. This part is set as CD2. 

However, the detention-related cost to the ship owner does not equal to the increase in social 

welfare because some cost types of the former are not included in the latter, e.g. operating cost, 

fuel cost (if a ship needs to sail to another place for repair).  

Similar to expected detention cost, the expected social welfare increase is the product of 

detention rate and the punishment.  

Expected social welfare increase = detention rate (D) * punishment (CD2) 

3) Expected accident loss 

Expected accident loss is the risk of the vessel being caught in maritime accidents. It is 

composed of accident rate and accident loss.  

Accident rate: P 

Maritime transportation is risky and hazardous. When sailing at sea, every vessel will face 

the dangers of maritime accidents. On this occasion, ship owners’ effort really matters. A 

standard and compliant vessel is less likely than a sub-standard one to be caught in an accident.  

 PM: accident probability of standard vessel 

 Pm: accident probability of sub-standard vessel  

Accident loss: CA 
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Accident loss is the consequential cost related to the ship owner when an accident happens, 

e.g. vessel value, cargo value, casualties. Different effort of the ship owner can influence the 

severity of loss, and standard vessel is more likely to better deal with emergencies and cause 

less loss. Because of limited data availability, only the value of the vessel is chosen to represent 

the accident loss in this thesis.  

 CA1: accident loss of standard vessel 

 CA2: accident loss of sub-standard vessel 

As a result, the expected accident loss is calculated via the following equation, 

Expected Accident loss = accident rate (P) * accident loss (CA) 

4) Social welfare loss of accidents: CSW 

When an accident happens, it will lead to the loss of social welfare. This type of loss includes 

environmental pollution damage, salvage cost, recovery cost and so on. Port authorities should 

consider these losses when calculating social welfare loss. Similar to accident loss to the ship 

owner, different vessel safety levels will cost differently.  

 CSW1: social welfare loss of standard vessel  

 CSW2: social welfare loss of sub-standard vessel 

5) Inspection cost CI 

When making the decision to inspect a vessel, the port authority needs to spend money and 

human resources on it. At the same time, it will incur a cost to the ship owner as well.  

 CI1: inspection cost of port authority 

 CI2: inspection cost of ship owner 

6) Maintenance cost of the ship owner: C (Pi, i) 

In order to pass the inspection and avoid maritime accidents, the ship owner will spend a 

certain amount of money and resources, including technological, operational and preventive 

costs. The more they invest the higher probability to pass the inspection and avoid the 

occurrence of accidents. This type of cost is presented as C (Pi, i), i = m, or M 

 C (PM, M): cost to maintain a standard vessel 

 C (Pm, m): cost to maintain a sub-standard vessel 

 7) Port charges: CPC 

When the vessel arrives at the port, it will face some different types of charges from the port, 
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e.g. tonnage dues, harbour dues, pilotage dues, berth hire charges and anchorage fee. Unlike 

detention cost and inspection cost, costs in this aspect are unavoidable for all vessels, no matter 

whether the vessel is standard or sub-standard, detained or not detained.  

 

5.3.3 The payoff matrix 

When formulating the payoff matrix, the primary work is to figure out the payoffs under 

different strategy combinations. Based on the identified parameters and the information 

provided above, the payoff functions of port authorities and ship owners under different 

situations are provided in Equation (5-1) and Equation (5-2).  For port authorities, their payoffs 

are associated with social welfare increment of vessel detention, social welfare loss of maritime 

accidents, costs paid for PSC inspections and port charges from arriving vessels; for ship 

owners, the possible detention cost, the possible maritime accident loss, the inspection costs, 

and the charges at port are the units constituting the payoffs. For the different pairs of strategy 

combinations, the payoff of each stakeholder can be obtained via inserting the values of 

parameters reflecting the investigated situation into corresponding functions. 

The equation to calculate the payoffs of the port authority and the ship owner under different 

situations are presented in Equation (5-1) and Equation (5-2) as follows: 

Payoff of the port authority = (Expected social welfare increase due to detention – Expected 

social welfare loss of accident - inspection cost + port charges)                                          (5-1) 

Payoff of the ship owner = - (expected detention cost + expected accident loss + inspection 

cost + maintenance cost + port charges)                                                                               (5-2) 

 

5.3.3.1 Scenario 1: Inspection (port authority) and standard vessel (ship owner)  

1) Payoff of the port authority 

There are two possible results: detention or no detention. From Equation (5-1), there are 

four components to form the payoff.  

Expected social welfare increase exists only when detention occurs, hence it is CD2 when 

the vessel is detained, and otherwise it is 0. 

Expected social welfare loss of an accident always exists whatever the inspection result is. 
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In this scenario, the accident rate is PM; and the social welfare loss when an accident happens 

is CSW1. Therefore, the expected social welfare loss is PM × CSW1. Other components, the 

inspection cost and port charges, can be easily obtained as CI1 and CPC, respectively.  

In summary, the payoff of the port authority is: 

 If the vessel is detained (DM) 

𝐶𝐷2 − 𝑃𝑀 × 𝐶𝑆𝑊1 − 𝐶𝐼1 + 𝐶𝑃𝐶  

 If the vessel is not detained (1- DM) 

0 − 𝑃𝑀 × 𝐶𝑆𝑊1 − 𝐶𝐼1 + 𝐶𝑃𝐶 

Overall payoff: 

𝐷𝑀 × (𝐶𝐷2 − 𝑃𝑀 × 𝐶𝑆𝑊1 − 𝐶𝐼1 + 𝐶𝑃𝐶) + (1 − 𝐷𝑀) × (0 − 𝑃𝑀 × 𝐶𝑆𝑊1 − 𝐶𝐼1 + 𝐶𝑃𝐶) 

= 𝐷𝑀 × 𝐶𝐷2 − 𝑃𝑀 × 𝐶𝑆𝑊1 − 𝐶𝐼1 + 𝐶𝑃𝐶 

 

2) Payoff of the ship owner 

According to Equation (5-2), the payoff of the ship owner consists of five parts. 

Similar to expected social welfare increase, the expected detention cost is also influenced 

by the inspection results. If the vessel is detained, the detention-related cost is CD1. If not, the 

ship owner does not need to pay anything.  

Since the vessel is at standard safety level, the probability it encounters an accident is PM, 

while the consequence of the maritime accident for the ship owner is CA1. Hence, the expected 

accident loss is PM ×CA1. 

In addition, to ensure the vessel’s compliance with regulation standards, it will cost the ship 

owner C (PM, M) to maintain the vessel. Furthermore, the inspection cost CI1 and the port 

charges CPC are important expenditure for the ship owner. In summary, the payoff of the ship 

owner is: 

 If the vessel is detained (DM) 

−(𝐶𝐷1 + 𝑃𝑀 × 𝐶𝐴1 + 𝐶𝐼2 + 𝐶(𝑃𝑀, 𝑀) + 𝐶𝑃𝐶)  

 If the vessel is not detained (1- DM) 

−(0 + 𝑃𝑀 × 𝐶𝐴1 + 𝐶𝐼2 + 𝐶(𝑃𝑀, 𝑀) + 𝐶𝑃𝐶)  

Overall payoff: 
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𝐷𝑀 × [−(𝐶𝐷1 + 𝑃𝑀 × 𝐶𝐴1 + 𝐶𝐼2 + 𝐶(𝑃𝑀, 𝑀) + 𝐶𝑃𝐶)] + (1 − 𝐷𝑀) × [−(0 + 𝑃𝑀 ×

𝐶𝐴1 + 𝐶𝐼2 + 𝐶(𝑃𝑀, 𝑀) + 𝐶𝑃𝐶)]  

= −(𝐷𝑀 × 𝐶𝐷1 + 𝑃𝑀 × 𝐶𝐴1 + 𝐶𝐼2 + 𝐶(𝑃𝑀, 𝑀) + 𝐶𝑃𝐶) 

 

5.3.3.2 Scenario 2: Inspection (port authority) and sub-standard vessel (ship owner) 

In this scenario, the way to calculate the payoffs for each player is similar to scenario 1. The 

components of payoff need to change to the corresponding values of sub-standard vessels based 

on the information provided in parameter identification section, e.g. DM to Dm, PM to Pm, C (PM, 

M) to C (Pm, m), CA1 to CA2 and CSW1 to CSW2. 

However, when a sub-standard vessel is detained, it is asked to repair these deficiencies until 

the vessel complies with the regulations of the port. This process will improve the safety level 

of the vessel and reduce the accident probability. In this study, in order to simplify the model, 

the accident rate is set as PM for the sub-standard vessel after its detention. At the same time, 

the expected accident loss and expected social welfare loss also change as follows. 

Expected accident loss = {
𝑃𝑀 × 𝐶𝐴1, detention
𝑃𝑚 × 𝐶𝐴2, no detention

 

Expected social welfare loss = {
𝑃𝑀 × 𝐶𝑆𝑊1, detention
𝑃𝑚 × 𝐶𝑆𝑊2, no detention

 

1) Payoff of the port authority 

 If the vessel is detained (Dm) 

𝐶𝐷2 − 𝑃𝑀 × 𝐶𝑆𝑊1 − 𝐶𝐼1 + 𝐶𝑃𝐶 

 If the vessel is not detained (1- Dm) 

0 − 𝑃𝑚 × 𝐶𝑆𝑊2 − 𝐶𝐼1 + 𝐶𝑃𝐶  

Overall payoff: 

𝐷𝑚 × (𝐶𝐷2 − 𝑃𝑀 × 𝐶𝑆𝑊1 − 𝐶𝐼1 + 𝐶𝑃𝐶) + (1 − 𝐷𝑚) × (0 − 𝑃𝑚 × 𝐶𝑆𝑊2 − 𝐶𝐼1 + 𝐶𝑃𝐶) 

= 𝐷𝑚 × 𝐶𝐷2 − 𝑃𝑚 × 𝐶𝑆𝑊2 − 𝐶𝐼1 + 𝐶𝑃𝐶 − 𝐷𝑚 × (𝑃𝑀 × 𝐶𝑆𝑊1 − 𝑃𝑚 × 𝐶𝑆𝑊2) 

 

2) Payoff of ship owner 

 If the vessel is detained (Dm) 

−(𝐶𝐷1 + 𝑃𝑀 × 𝐶𝐴1 + 𝐶𝐼2 + 𝐶(𝑃𝑚, 𝑚) + 𝐶𝑃𝐶)  
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 If the vessel is not detained (1- Dm) 

−(0 + 𝑃𝑚 × 𝐶𝐴2 + 𝐶𝐼2 + 𝐶(𝑃𝑚, 𝑚) + 𝐶𝑃𝐶)  

Overall payoff: 

𝐷𝑚 × [−(𝐶𝐷1 + 𝑃𝑀 × 𝐶𝐴1 + 𝐶𝐼2 + 𝐶(𝑃𝑚, 𝑚) + 𝐶𝑃𝐶)] + (1 − 𝐷𝑚) × [−(0 + 𝑃𝑚 ×

𝐶𝐴2 + 𝐶𝐼2 + 𝐶(𝑃𝑚, 𝑚) + 𝐶𝑃𝐶)]  

= −(𝐷𝑚 × 𝐶𝐷1 + 𝐶𝐼2 + 𝑃𝑚 × 𝐶𝐴2 + 𝐶(𝑃𝑚, 𝑚) + 𝐶𝑃𝐶 + 𝐷𝑚 × (𝑃𝑀 × 𝐶𝐴1 − 𝑃𝑚 × 𝐶𝐴2)) 

 

If the port authority does not inspect the vessel, the detention will not occur and the values 

of the inspection-related parameters will be 0, including the expected detention cost, the 

expected social welfare loss and the inspection cost.  Meanwhile, the risk of being detained is 

free. As a result, the payoff equation is simplified as: 

Payoff of the port authority = (– Expected social welfare loss of accident + port charges) 

(5-3) 

Payoff of the ship owner = - (Expected accident loss + maintenance cost + port charges) 

(5-4)  

5.3.3.3 Scenario 3: No inspection (port authority) and standard vessel (ship owner)  

In this scenario, the payoffs of the port authority and ship owners are obtained according to 

the Equation (5-3) and Equation (5-4), respectively. Because the port authorities choose not to 

inspect the vessel, the calculation of payoff does not need to be divided into two parts. The 

following expressions present the payoffs of each stakeholder. 

1) Payoff of port authority 

−𝑃𝑀 × 𝐶𝑆𝑊1 + 𝐶𝑃𝐶  

2) Payoff of ship owner 

−(𝑃𝑀 × 𝐶𝐴1 + 𝐶(𝑃𝑀, 𝑀) + 𝐶𝑃𝐶) 

 

5.3.3.4 Scenario 4: No inspection (port authority) and sub-standard vessel (ship owner) 

Similar to scenario 3, the payoffs of the port authority and ship owners are obtained 

according to the Equation (5-3) and Equation (5-4), respectively. The following expressions 
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present the payoffs of each stakeholder under this case. 

1) Payoff of port authority 

−𝑃𝑚 × 𝐶𝑆𝑊2 + 𝐶𝑃𝐶 

2) Payoff of ship owner 

−(𝑃𝑚 × 𝐶𝐴2 + 𝐶(𝑃𝑚, 𝑚) + 𝐶𝑃𝐶) 

 

5.3.3.5 The payoff matrix of PSC inspection game under NIR  

In the above scenario simulation, each scenario represents a strategy profile in the PSC 

inspection game. The final payoff matrix of the PSC inspection game under NIR can be 

obtained through summarizing the payoffs in every situation.  

Table 5.3 depicts the payoff matrix. The actions identified with rows are the strategies of 

port authorities, while the actions in column are the ship owners’ choices. The two expressions 

in the boxes represent the payoff of stakeholders when port authorities choose row action and 

ship owners choose column action. The above expressions in the boxes are the payoffs of port 

authorities under this scenario, while the nether expressions describe the payoffs of ship owners 

correspondingly.  

Table 5.3 Payoff matrix of PSC inspection game 

 Standard vessel Sub-standard vessel 

Inspection 

𝐷𝑀 × 𝐶𝐷2 − 𝑃𝑀 × 𝐶𝑆𝑊1 − 𝐶𝐼1 + 𝐶𝑃𝐶 

 

−(𝐷𝑀 × 𝐶𝐷1 + 𝑃𝑀 × 𝐶𝐴1 + 𝐶𝐼2 +

𝐶(𝑃𝑀 ,𝑀) + 𝐶𝑃𝐶)  

𝐷𝑀 × 𝐶𝐷2 − 𝑃𝑚 × 𝐶𝑆𝑊2 − 𝐶𝐼1 + 𝐶𝑃𝐶 −

 𝐷𝑚 × (𝑃𝑀 × 𝐶𝑆𝑊1 − 𝑃𝑚 × 𝐶𝑆𝑊2)  

 

−(𝐷𝑚 × 𝐶𝐷1 + 𝐶𝐼2 + 𝑃𝑚 × 𝐶𝐴2 + 𝐶𝑃𝐶 +

𝐶(𝑃𝑚,𝑚) + 𝐷𝑚 × (𝑃𝑀 × 𝐶𝐴1 − 𝑃𝑚 × 𝐶𝐴2))  

No 

inspection 

−𝑃𝑀 × 𝐶𝑆𝑊1 + 𝐶𝑃𝐶 

−(𝑃𝑀 × 𝐶𝐴1 + 𝐶(𝑃𝑀 , 𝑀) + 𝐶𝑃𝐶) 

−𝑃𝑚 × 𝐶𝑆𝑊2 + 𝐶𝑃𝐶 

−(𝑃𝑚 × 𝐶𝐴2 + 𝐶(𝑃𝑚,𝑚) + 𝐶𝑃𝐶) 

(Source: Author) 
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5.3.4 Nash equilibrium solution 

For the inspection game in this study, the choices of players are not deterministic but are 

regulated by probabilistic rules. The Nash equilibrium under this condition is called mix 

strategy Nash equilibrium, and the aim of this section is to find out the mix strategy Nash 

equilibrium for the PSC inspection game.  

 

5.3.4.1 The existence of Nash equilibrium 

To find out the mixed strategy Nash equilibrium for the proposed game model, the first thing 

is to ensure that there exists an equilibrium point forming the steady state of the game model. 

If the interests of port authorities and ship owners were diametrically opposed, then the 

inspection game would have no Nash equilibrium point.   

According to a theorem presented by Osborne and Rubinstein (1994) in their book named 

‘A course in Game theory’,  

Theorem 1: Every finite strategic game has a mixed strategy Nash equilibrium. 

(The proof for the theorem is not illustrated here, as it requires complicated mathematical 

knowledge.) 

In the PSC inspection game, there are two players (the port authority and the ship owner), 

and each player has two actions and their preference. The settings of our game conform to the 

definition of finite strategic game. Hence, according to theorem 1, the PSC inspection game 

proposed in this research has a mixed strategy Nash equilibrium.  

 

5.3.4.2 Mixed strategy Nash equilibrium - Osborne & Rubinstein approach 

There are various ways to obtain the Nash equilibrium solutions to the game models. In this 

research, an approach proposed by Osborne and Rubinstein (1994) is applied, which is a proper 

and convenient way to deal with the cases like PSC inspection game. 

According to Osborne and Rubinstein (1994), there is an important property of mixed 

strategy Nash equilibrium that is useful when calculating the equilibria. 

Theorem 2: For a finite strategic game G, 𝛂∗ is a mixed strategy Nash equilibrium of G 

if and only if for every player i in the game, every pure strategy in the support of 𝛂𝒊
∗ is the 
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best response to 𝛂−𝒊
∗

. 

(αi means the mixed strategy of player i in the mixed Nash equilibrium, while α-i means the 

mixed strategies of players without player i.) 

Proof: (Proof by contradiction) 

First, let us suppose that there exists an action of player i called ai in the support of the mixed 

strategy Nash equilibrium α∗ that is not a best response to α−𝑖
∗ . Then player i can increase his 

payoff by replacing this action to another action that is a best response to α−𝑖
∗ . Hence, this new 

mixed strategy combination is superior to α∗, making α∗ not the equilibria of the game model, 

which is contradictory to the settings.  

Second, suppose that there exists another mixed strategy α𝑖
′  that gives player i a higher 

payoff than  α𝑖
∗ in response to α−𝑖

∗ . Hence, there must be at least one action in the support of α𝑖
′ 

output a higher payoff than some actions in the support of α𝑖
∗. Under this occasion, not all the 

actions in the support of αi
∗  are the best response to α−i

∗
 , which is also contradictory to the 

settings in the theorem.  

Q.E.D. 

To simplify the description of Theorem 2 and transform it into words that are easy to 

understand, the following simplified theorem is presented. 

Theorem 3: Every action in the support of any player’s equilibrium mixed strategy yields 

that player the same payoff.  

One thing worth noting is that the requirement that the players’ preferences can be 

represented by expected payoff functions plays a key role in these characterizations of mixed 

strategy equilibrium, which is also suitable and feasible for the PSC inspection game. Hence, 

this approach is suitable and preferable for the Nash equilibrium calculation in our research. 

However, the results do not necessarily hold for other theories of decision-making under 

uncertainty.  

The following example further clarifies this approach and illustrates how the mixed strategy 

Nash equilibrium can be found according to Theorem 3.  

 



145 

 

Table 5.4 An example of how to calculate Nash equilibrium 

 Bach – a2(B) Stravinsky – a2(S) 

Bach – a1(B) 2, 1 0, 0 

Stravinsky – a1(S) 0, 0 1, 2 

(Source: A course in Game theory, 1994) 

Consider two people are planning to go to a concert, they have two choices: Bach or 

Stravinsky. The payoffs of each player are presented in Table 5.4, where these values represent 

their preferences. A large number means the player prefers it much. Now we show how to 

calculate the mixed strategy Nash equilibrium in this example based on Theorem 3.  

Suppose (a1, a2) is the mixed strategy Nash equilibrium for this example, where a1 is the 

choice of player 1, a2 represents player 2’ action. According to Theorem 3, given a2, player 1’s 

action Bach and Stravinsky yield much the same payoff for him, so that we have  

{
2 𝑎2(𝐵) + 0 𝑎2(𝑆)  =  0 𝑎2(𝐵)  +  1 𝑎2(𝑆)

𝑎2(𝐵) + 𝑎2(𝑆) = 1
 

Thus, we have 𝑎2(𝐵) =
1

3
, 𝑎2(𝑆) =

2

3
 

Similarly, given a1, player 2’s two actions yield much the same payoff for his too, the result 

shows  𝑎1(𝐵) =
2

3
, 𝑎1(𝑆) =

1

3
 . Therefore, the only non-degenerate mixed strategy Nash 

equilibrium of the game is ((
2

3
,
1

3
) , (

1

3
,
2

3
)).  

Based on Theorem 3 and the provided example, the mixed strategy Nash equilibrium 

solution for PSC inspection game can be obtained. 

Table 5.5 The simplified payoff matrix 

 Standard vessel(Y) 
Sub-standard 

vessel(1-Y) 

Inspection(X) PA11, SO11 PA12, SO12 

No inspection(1-X) PA21, SO21 PA22, SO22 

(Source: Author) 

Table 5.5 presents the simplified payoff matrix for the convenience of calculation. The first 

number in each cell represents the payoff of the port authority, while the second represents that 

of the ship owner.  
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In terms of the payoffs in this table, the equation set according to Theorem 3 is shown as 

follows 

{
𝑌 × 𝑃𝐴11 + (1 − 𝑌) × 𝑃𝐴12 = 𝑌 × 𝑃𝐴21 + (1 − 𝑌) × 𝑃𝐴22
𝑋 × 𝑆𝑂11 + (1 − 𝑋) × 𝑆𝑂21 = 𝑋 × 𝑆𝑂12 + (1 − 𝑋) × 𝑆𝑂22

 

 

Where PA means the port authority, SO means the ship owner. The first equation means 

‘Inspection’ and ‘No inspection’ of the port authority generate the same payoff for PA given 

the ship owner’s optimal choice, while the second equation indicates the ‘Standard 

maintenance effort’ and ‘Sub-standard maintenance effort’ yield the same payoff for SO given 

the PA’s optimal choice.  

The solution to this equation set presents the probability of each action in support of mixed 

strategy Nash equilibrium.  

 

{
 

 𝑋 =
𝑆𝑂22 − 𝑆𝑂21

𝑆𝑂11 + 𝑆𝑂22 − 𝑆𝑂12 − 𝑆𝑂21

𝑌 =
𝑃𝐴22 − 𝑃𝐴12

𝑃𝐴11 + 𝑃𝐴22 − 𝑃𝐴12 − 𝑃𝐴21

 

 

(5-5) 

 

In addition, the final mixed strategy Nash equilibrium is ((X, 1-X), (Y, 1-Y)). 

After plugging the payoffs into the corresponding places in Equation (5-5), the mixed 

strategy Nash equilibrium of the strategic game between the port authority and the ship owner 

is presented. Additionally, considering the fact that the players in the game may not always act 

as the mixed strategy Nash equilibrium tells them, the final Nash solution to the PSC inspection 

game is presented in Equation (5-6) and Equation (5-7), respectively: 

 

 𝑋∗ = {

0, 𝑌∗ > 𝑌0
𝑋0, 𝑌∗ = 𝑌0
1, 𝑌∗ < 𝑌0

 

 

(5-6) 

 

 

 

𝑌∗ = {

1, 𝑋∗ > 𝑋0
𝑌0, 𝑋∗ = 𝑋0
0, 𝑋∗ < 𝑋0

 

 

(5-7) 

where𝑋0 =
𝑃𝑀×𝐶𝐴1−𝑃𝑚×𝐶𝐴2+𝐶(𝑃𝑀,𝑀)−𝐶(𝑃𝑚,𝑚)

𝐶𝐷1×(𝐷𝑀−𝐷𝑚)+𝐷𝑚×(𝑃𝑀×𝐶𝐴1−𝑃𝑚×𝐶𝐴2)
, 𝑌0 =

𝐷𝑚×(𝑃𝑀×𝐶𝑆𝑊1−𝑃𝑚×𝐶𝑆𝑊2)−𝐷𝑚×𝐶𝐷2+𝐶𝐼1

𝐶𝐷2×(𝐷𝑀−𝐷𝑚)+𝐷𝑚×(𝑃𝑀×𝐶𝑆𝑊1−𝑃𝑚×𝐶𝑆𝑊2)
 

This means that if 𝑌∗ > 𝑌0, the port authority will not inspect the vessel; if 𝑌∗ < 𝑌0, the port 

authority will inspect the vessel. Only when 𝑌∗ = 𝑌0 will the port authority choose the mixed 
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strategy 𝑋∗ = 𝑋0. The same goes to the ship owner.  

According to assumption (6) in Section 5.3.1, the accident loss under standard and sub-

standard conditions are set the same (CA1= CA2 = CA
0, where CA

0 is a constant no matter whether 

the vessel is standard or not). Therefore, the final solution is defined as follows. 

 

 𝑋∗ = {

0, 𝑌∗ > 𝑌0
𝑋0, 𝑌∗ = 𝑌0
1, 𝑌∗ < 𝑌0

 

 

(5-8) 

 

 

 

𝑌∗ = {

1, 𝑋∗ > 𝑋0
𝑌0, 𝑋∗ = 𝑋0
0, 𝑋∗ < 𝑋0

 

 

(5-9) 

where𝑋0 =
(𝑃𝑀−𝑃𝑚)×𝐶𝐴

0+𝐶(𝑃𝑀,𝑀)−𝐶(𝑃𝑚,𝑚)

𝐶𝐷1×(𝐷𝑀−𝐷𝑚)+𝐷𝑚×𝐶𝐴
0×(𝑃𝑀−𝑃𝑚)

, 𝑌0 =
𝐷𝑚×(𝑃𝑀×𝐶𝑆𝑊1−𝑃𝑚×𝐶𝑆𝑊2)−𝐷𝑚×𝐶𝐷2+𝐶𝐼1

𝐶𝐷2×(𝐷𝑀−𝐷𝑚)+𝐷𝑚×(𝑃𝑀×𝐶𝑆𝑊1−𝑃𝑚×𝐶𝑆𝑊2)
 

 

5.3.5 Further improvement of the game model 

The theoretical game model between the PA and SO in PSC inspection is presented. 

However, it is not perfect. Some settings of the game model are simplified and idealized 

because of the scarcity of related information and research. In this part, the further 

improvements to the game model are presented, guiding the direction of future research on this 

topic. 

1) As stated in the assumption part, the players make decisions independently and 

simultaneously, and each player is unaware of the choices being made by the other players. 

However, in real cases, the port authorities have advantages over ship owners in PSC 

inspections, i.e. they formulate the PSC inspection policies, and they have the right to punish 

the ship owners for illegal actions. The advantages port authorities have against ship owners 

may enable them to make decisions first, in spite of the truth that the ship owners will observe 

their actions. On this occasion, the Nash solution is not suitable for the stakeholders in the game 

anymore. Instead, the Stackelberg equilibrium solution is preferred to tackle the scenarios like 

that.  

Further research should consider this case to improve the game model, making it a more 

realistic mathematical model. 

2) When a sub-standard vessel is detained, it is asked to repair these deficiencies until the 

vessel complies with the regulations of the port. This process will improve the safety level of 
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the vessel and reduce the accident probability. In this study, the accident rate of the sub-

standard vessel after the repair is set as the same as the standard vessel in order to simplify the 

model.  

In fact, the relationship between the vessel quality and the accident probability might be 

expressed by a particular function. If only classifying the accident probability into two types 

(standard and sub-standard), the setting would be too general to affect the final solutions to the 

model. Future work should pay more attention to the investigation into the relationship between 

the two aspects. 

3) The accident loss under standard and sub-standard conditions are set the same when 

constructing the game model. The assumption is mainly for the later empirical case study part. 

The mixed strategy Nash solution is complicated and consists of many parts, if the accident 

loss was classified into several conditions, the calculation work would be enormous and could 

hardly be done manually. Nevertheless, the accuracy of the game model is influenced because 

of the assumption. 

As many maritime consultancies have conducted related research and published the reports 

containing the information of the relationship between vessel quality and accident loss, for 

example, the Drewry Shipping Consultants Ltd, the game model would be improved a lot if 

the related statistics were collected and considered in the game model. 
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CHAPTER 6 AN EMPIRICAL STUDY TO DEMONSTRATE 

THE SIGNIFICANCE OF THEORETICAL GAME MODEL 

In this chapter, a case study based on the inspection records from 2015-2017 is applied to 

facilitate the theoretical optimal inspection rate obtained from the game model in Chapter 5. 

The results reveal several trends of the optimal inspection rates, which enable port authorities 

to rationalize their inspection policies and ship owners to improve their vessel performance, 

and consequently maritime safety as a whole. Meanwhile, several suggestions are proposed to 

help port authorities manage the PSC inspection process more effectively. 

 

6.1 INTRODUCTION 

To characterize the optimal inspection policy for bulk carriers with respect to the Paris MoU, 

Nash equilibrium solutions need to be analysed through a numerical case. Through 

transforming the symbols in the theoretical Nash solutions into real values, the optimal 

inspection rates under real cases or situations are obtained. The analysis on the resulting values 

will provide important insights for port authorities when making inspection regulations.  

Because the theoretical optimal inspection rates are obtained via the game model 

constructed after the implementation of NIR, the empirical study conducted in this chapter is 

based on the inspection records from 2015-2017.  

However, it is very difficult, if not impossible, to acquire the data information of all 

parameters. Previous scholars chose to simulate the parameter values or discuss them by 

empirical data (Florens & Foucher, 1999). Nevertheless, there exists too much noisy vessel 

data, which requires a screening process before using them in the thesis.  

In this chapter, data comes from three different databases, as shown in Table 6.1. 

Table 6.1 Database and sources 

Database Sources 

Basic vessel information database World Shipping Encyclopedia 

Casualty database IMO, Lloyd’s Register of Shipping 

PSC inspection database Paris MoU online inspection database 
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The objective focuses on finding out the optimal inspection policy for the port authority 

based on the proposed Nash solutions in Chapter 5. 

The basic vessel information database is mainly compiled from the World Shipping 

Encyclopedia (WSE). It describes each vessel, with over 200 variables such as identity (IMO) 

number, nationality, date of building, tonnage, etc. However, most of the variables are not 

related to the research and not useful for the empirical study. In fact, only several major 

variables representing the important aspects of the vessels are selected to help us conduct the 

case study. The approximate capacity of the database is 130,000 vessels, and 7% of them is 

lost vessels. 

The casualty dataset contains over 10,000 maritime accident records derived from IMO 

database and Lloyd’s Register from 1979 until now. The casualty dataset includes accident 

records of collisions, contacts, fires and explosions, foundering, hull/machinery damage, and 

miscellaneous wrecks/stranding/groundings. However, in this research, accident types are not 

within our consideration. The casualty dataset is constructed and applied to figure out where 

the accident happened. The combination of casualty dataset and basic information dataset plays 

an important role in calculating the important parameters in the game model. 

The PSC inspection dataset is the same as applied to construct the BN models of PSC 

inspection in Chapter 3. It consists of two parts: one is the inspection records from 2005 to 

2008; the other is the inspection records from 2015 to 2017. All the inspection records collected 

are the inspections of bulk carriers that happened within the operation of the Paris MoU. It is 

used to calculate the detention rate of different vessel types when substituting into the proposed 

BNs. 

Additionally, the BN model utilized to conduct the empirical study is the ‘Post-NIR’ model, 

because the game model developed in Chapter 5 focuses on the game relationship between the 

port authority and the ship owner after the implementation of NIR. Therefore, the ‘Post-NIR’ 

BN is the correct and proper model for the empirical study aiming at demonstrating the 

significance of the theoretical game model. 

 

6.2 DETERMINATION OF THE PARAMETER VALUES 

6.2.1 Detention rate through BN 

In Chapter 3, the ‘Post-NIR’ BN model is proved reliable and able to predict the detention 
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rate of PSC inspection when any new evidence is observed and collected. Hence, based on the 

function, the detention rates of different safety levels of any investigated vessel can be obtained.  

 

6.2.1.1 Standard vessels 

If the ship owner makes a high intensity effort in maintaining the vessel, the vessel will be 

maintained at a standard safety level and reach the criteria of inspection regulations. During an 

inspection, the detention risk of the vessel is relatively low, which means the two 

comprehensive factors ‘inspection group’ and ‘vessel group’ that represents two aspects of 

detention risk are both at the low level.  

Hence, the scenario in which both ‘vessel group’ and ‘inspection group’ are at ‘low 

detention risk’ state in BN represents the standard bulk carriers, From the BN reasoning, the 

detention rate is calculated as 0.46% (decrease from the average 3.25%). 

 

Figure 6.1 The detention rate of standard vessels 

(Source: Author) 

 

6.2.1.2 Sub-standard vessels 

Accordingly, a sub-standard vessel is more likely to be caught in detention, indicating the 

two major risk factors that reflect the detention risk, ‘vessel group’ and ‘inspection group’, are 
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at the ‘high detention risk’ state. The result of the BN reasoning reveals that the detention rate 

of a sub-standard vessel is 58.8% (increased from the average 3.25%). 

 

Figure 6.2 Detention rate of sub-standard vessels 

(Source: Author) 

 

6.2.2 Maintenance cost and accident loss 

The maintenance cost is crucial to the ship owner and it is affected by a large number of 

factors, e.g. vessel age, material price, regional differences and damage degree. In addition, the 

effort of the ship owner also needs to be considered as an important factor.  

Table 6.2 shows the maintenance cost under different conditions. It contains the 

maintenance cost of bulk carriers with different sizes and ages in a certain period. For example, 

the repair and maintenances cost for a young bulk ship with standard effort is US $200,175, 

while it is only US $120,105 with sub-standard effort (Drewy Shipping Concultants, 2012).  

According to UNCTAD Review of Maritime Transport 2016, there are five types of bulk 

carriers: small, handysize, handymax, panamax and capesize. The size of the five types of 

vessels is incremental. Based on this, vessel size in this thesis is separated into two states: small, 

handysize and handymax bulk carriers as ‘Small’; panama and capesize bulk carriers as ‘Large’.  

Vessel age is classified into three groups ‘Young 0-5 years’, ‘Medium 6-10 years’ and ‘Old 
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over 10 years’.  

Table 6.2 Estimated approximate repair and maintenances under different conditions (US$) 

Vessel size Small 

Vessel age Young Medium Old 

SO’s effort Stan Sub Stan Sub Stan Sub 

Bulk carrier 200175 120105 440385 190166 447057 266900 

Vessel size Large 

Vessel age Young Medium Old 

SO’s effort Stan Sub Stan Sub Stan Sub 

Bulk carrier 319650 191790 703230 303667 713885 426200 

Source: Drewy Shipping Consultants Ltd. 

Meanwhile, as mentioned in parameter identification, the value of vessels is viewed as the 

accident loss to ship owners due to the data acquisition issue. Therefore, the price of second-

hand vessels is used as the accident loss in this project, as it is a good indicator of the market 

value of the vessels. 

Table 6.3 Estimated accident loss under different conditions (US$M) 

Vessel size Small Large 

Vessel age Young Medium Old Young Medium Old 

Bulk carrier -31 -28 -11 -67 -53 -20 

Source: Drewy Shipping Consultants Ltd 

 

6.2.3 Accident rate 

The accident rate is calculated by using a logistic regression approach (Wang, et al., 2017), 

which is an exponential function of various influencing factors. Normally, there are two types 

of logistic regression: binary logistic regression and multinomial regression. 

In a multinomial regression, the dependent variable y is multinomial, and is modelled with 

different range of values for different status. Usually, the discrete-dependent variable is 

specified in the form of unobserved but continuous variable 𝑦∗, where 𝑦∗ ∈ (−∞,+∞). 

Consider an independent variable set 𝑿 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) leading to the dependent variable 

y, where each independent variable has several status (j). Defining the unobserved variable 𝑦∗ 
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as a function of 𝑿, 

                              






n

i

m

j ijijxy
1

1

1
                                                (6-1) 

Where 𝛽𝑖𝑗  represents the contribution of ix  in status j , 𝜀  is an unobserved stochastic 

component, and the value of ijx  is defined as 1ijx  when status j of ix occurs, otherwise

0ijx . 

Therefore, we can get the conditional probability of y under a configuration of independent 

variable set 𝑿𝟎 through multinomial regression: 

                                  𝑃(y = 𝑦𝑖) =
𝑒𝜷𝒊𝑿

𝟎+𝜀

1+∑ 𝑒𝜷𝒊𝑿
𝟎+𝜀𝑚−1

𝑖=1

                                                        (6-1) 

Where iy represents the j -th status of y , and m the number of status of y. 

Specific to the maritime accidents, Equation (6-1) can be transformed into the following 

Equation (6-3) 

𝑦 = 𝛽0 + 𝛽1𝑉𝐴 + 𝛽2𝑉𝑆 + ∑ 𝛽𝑖+2𝑉𝑇𝑖
5
𝑖=1 + 𝛽8𝐶𝑆 + +𝛽9𝐹𝑆 + ∑ 𝛽𝑗+9

30
𝑗=1 𝑍𝑗 + 𝜀                (6-3) 

where: 

y: The probability of the maritime accidents, y=1 if the accident happens, y=0 if the accident 

not happens. 

VA: vessel age.  

VS: vessel size.   

VT: vessel type. VTi=1 if it is a dry cargo ship, otherwise VTi=0, i = 1, 2, …, 4 indicating 

the five different vessel types, namely dry cargo, bulk carrier, tanker and container. 

CS: classification society. If the vessel is a member of International Association of 

Classification Societies (IACS), CS=1; otherwise CS=0 

FS: flag state. If the vessel’s flag is a close registry, FS=1; otherwise FS=0 

Zj: dummy variables representing different geographical zones. In this thesis, we divide the 

world into 31 zones according to the World Casualty Statistics. Each zone has its own effect 

on the accident probability. 
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𝜀: Stochastic component that follows the logistic distribution, including objective causes 

(e.g. safety equipment, vessel structure) and subjective causes (e.g. ship owners’ effort, crew 

ability and experience). In this study, it is used to refer to the maintenance quality of the vessel 

(e.g. substandard or standard). If the value is positive, the vessel is a substandard vessel; if the 

value if negative, the vessel is viewed as a standard vessel (Li, et al., 2014). 

Among these variables, VA and VS are continuous variables, and need to be transformed 

into discrete variables. The classification has been clarified in section 7.2.2. VT, CS, FS, and 

Zi are all dummy and discrete variables. 

Although the maritime accident case is a binary logistic regression (there are only two states 

for dependent variable y), the results obtained from multinomial regression can also fit this case 

because binary logistic regression is a special case of multinomial regression. 

Through applying the Maximum Likelihood Estimator (MLE) method, the estimation of βi 

is achieved through SPSS software, which is shown in Table 6.4.  
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Table 6.4 Coefficients of the model 

Variable Variable label Coefficient p-value 

𝛽0 Constant -2.42 0.000 

VA Vessel age -0.03 0.000 

VS Vessel size 0.09 0.000 

VT1 Dry cargo 1.25 0.000 

VT2 Bulker 0.50 0.000 

VT3 Container 0.21 0.000 

VT4 Tanker 0.00 0.000 

VT5 Passenger 0.29 0.000 

CS Classification societies -0.95 0.000 

FS Flag state 0.18 0.000 

Z1 Zone1 0.49 0.000 

Z2 Zone2 -0.21 0.003 

Z3 Zone3 16.39 0.885 

Z4 Zone4 -0.48 0.000 

Z5 Zone5 -0.71 0.000 

Z6 Zone6 2.61 0.000 

Z7 Zone7 -0.71 0.000 

Z8 Zone8 0.97 0.000 

Z9 Zone9 0.78 0.000 

Z10 Zone10 1.49 0.000 

Z11 Zone11 -0.51 0.000 

Z12 Zone12 -1.11 0.000 

Z13 Zone13 -0.43 0.000 

Z14 Zone14 16.75 0.912 

Z15 Zone15 -0.17 0.185 

Z16 Zone16 0.87 0.000 

Z17 Zone17 16.49 0.950 

Z18 Zone18 0.92 0.000 

Z19 Zone19 0.46 0.000 

Z20 Zone20 -0.60 0.000 

Z21 Zone21 -1.62 0.000 

Z22 Zone22 -1.71 0.000 

Z23 Zone23 0.13 0.094 

Z24 Zone24 1.37 0.000 

Z25 Zone25 1.19 0.000 

Z26 Zone26 16.93 0.893 

Z27 Zone27 0.68 0.000 

Z28 Zone28 2.71 0.000 

Z29 Zone29 -0.75 0.000 

Z30 Zone30 -1.89 0.000 

(Source: Author) 

Table 6.4 presents the information related to the estimation of the probability of the vessel 

being involved in a maritime accident, including the coefficient value and the partial effects of 
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the coefficients. The results indicate that the model fits the data well. Almost all the variables 

are highly significant with the occurrence of maritime accidents, because the p-values are less 

than 0.01 (except several zones).  

Eventually, by inserting the values of these coefficients into Equation (6-2), the accident 

rates of bulk carriers under different situations is obtained and presented in Table 6.5. 
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Table 6.5 The accident rate of bulk carriers under different situations 

Ship safety condition Standard 

VS Smaller 

VA Young Average Old 

FS Closed Open Closed Open Closed Open 

CS Non-IACS IACS Non-IACS IACS Non-IACS IACS Non-IACS IACS Non-IACS IACS Non-IACS IACS 

Accident 0.12 0.07 0.13 0.09 0.1 0.05 0.14 0.07 0.08 0.04 0.09 0.04 

Non-Accident 0.88 0.93 0.87 0.91 0.9 0.95 0.86 0.93 0.92 0.96 0.91 0.96 

Ship safety condition Standard 

VS Larger 

VA Young Average Old 

FS Closed Open Closed Open Closed Open 

CS Non-IACS IACS Non-IACS IACS Non-IACS IACS Non-IACS IACS Non-IACS IACS Non-IACS IACS 

Accident 0.19 0.08 0.24 0.11 0.12 0.06 0.16 0.08 0.1 0.01 0.12 0.02 

Non-Accident 0.81 0.92 0.76 0.89 0.88 0.94 0.84 0.92 0.9 0.99 0.88 0.98 

Ship safety condition Sub-Standard 

VS Smaller 

VA Young Average Old 

FS Closed Open Closed Open Closed Open 

CS Non-IACS IACS Non-IACS IACS Non-IACS IACS Non-IACS IACS Non-IACS IACS Non-IACS IACS 

Accident 0.26 0.28 0.32 0.24 0.19 0.22 0.28 0.3 0.24 0.39 0.21 0.15 

Non-Accident 0.74 0.72 0.68 0.76 0.81 0.78 0.72 0.7 0.76 0.61 0.79 0.85 

Ship safety condition Sub-Standard 

VS Larger 

VA Young Average Old 

FS Closed Open Closed Open Closed Open 

CS Non-IACS IACS Non-IACS IACS Non-IACS IACS Non-IACS IACS Non-IACS IACS Non-IACS IACS 

Accident 0.35 0.2 0.41 0.2 0.29 0.16 0.28 0.19 0.2 0.39 0.27 0.18 

Non-Accident 0.65 0.8 0.59 0.8 0.71 0.84 0.72 0.81 0.8 0.61 0.73 0.72 
(Source: Author)
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However, the classification of the situations in Table 6.5 is too detailed to put into the Nash 

solution to the game model, the accident rates in Table 6.5 need normalization4. Table 6.6 

presents the result of normalization, which is useful for later calculation.  

Table 6.6 Accident rates of bulk carriers 

Vessel size Small 

Vessel age Young Medium Old 

SO’s effort Stan Sub Stan Sub Stan Sub 

Accident rate 0.106 0.278 0.0959 0.26 0.0643 0.227 

Vessel size Large 

Vessel age Young Medium Old 

SO’s effort Stan Sub Stan Sub Stan Sub 

Accident rate 0.164 0.299 0.111 0.234 0.0669 0.249 

(Source: Author) 

 

6.2.4 Detention cost  

Because of the detention punishment from the port authority, avoiding detention with 

minimum effort is the primary goal of the ship owner. At the same time, detention punishment 

also plays an important role in regularizing the behaviours of the ship owner from the port 

authority perspective. Hence, the detention cost (or the detention punishment) CD is a focus for 

both sides. 

If CD is not large enough, the ship owner may maintain their vessels at a sub-standard safety 

level. In order to reduce the social welfare loss, the port authority have to increase the 

inspection rate or extend the detention time; if CD is large enough, the ship owner will turn to 

improve the quality of vessels, resulting in lower inspection costs and a lower accident rate. 

However, the data of detention cost is unavailable because it is an abstract parameter 

changing with different situations (i.e. different ports, different vessel type, and different 

regional policy) and there is no source providing related data. In order to illustrate how the 

model works, an assumption is made according to related academic research. Specifically, CD 

is assumed in a linear relationship with the expected accident loss of sub-standard vessels, as 

                                                           
4 Normalization means adjusting values measured on different scales to a notionally common scale, often prior 

to averaging. 
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the punishment policy aims at dealing with illegal actions and sub-standard safety levels of the 

inspected vessels  (Li, et al., 2015).   

𝐶𝐷 = 𝜔𝐶𝐴𝑃𝑚 

Where 𝜔 represents the punishment intensity. It is a product of multiple influencing factors, 

especially detention time. A longer detention time means a severe punishment intensity to the 

vessel.  

The setting of detention cost in this thesis is just for the calculation and analysis of Nash 

equilibrium solution, as well as illustrate how the proposed game model works. In practice, 

port authorities can set this parameter as a function of detention time according to historical 

statistics. 

 

6.3 OPTIMAL INSPECTION RATE   

As discussed in sections 6.1 and 6.2, all the parameters in Equation (5-8) are constant values, 

except the detention cost. The detention cost is a dynamic parameter that varies with the 

punishment intensity ω. That is to say, the optimal inspection rate is actually a function of the 

punishment severity ω, denoted as X (ω). 

Because ω is a positive variable related to the port inspection regulations, it is impractical 

to fix it at a certain value to satisfy all the cases. Hence, in this study, the punishment severity 

is changed to see the optimal inspection rates in various circumstances.  

The following Table 6.7 shows the optimal inspection rates when 𝜔 changes from 0 to 20 

(𝜔  is integer). The purpose is to see the variation of optimal inspection rate with different 

punishment intensity and analyse its trends. 
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Table 6.7 Optimal inspection rate with different punishment severity levels 

 Small Large 

 Young Medium Old Young Medium Old 

ω=1 65.025% 63.184% 64.793% 53.061% 55.913% 67.126% 

ω=2 40.343% 39.316% 41.103% 31.518% 33.892% 42.716% 

ω=3 29.243% 28.536% 30.098% 22.417% 24.315% 31.325% 

ω=4 22.933% 22.396% 23.741% 17.394% 18.958% 24.730% 

ω=5 18.863% 18.430% 19.602% 14.210% 15.536% 20.429% 

ω=6 16.020% 15.657% 16.691% 12.011% 13.160% 17.403% 

ω=7 13.921% 13.610% 14.533% 10.402% 11.414% 15.157% 

ω=8 12.309% 12.036% 12.870% 9.173% 10.078% 13.425% 

ω=9 11.031% 10.788% 11.548% 8.203% 9.021% 12.048% 

ω=10 9.994% 9.775% 10.472% 7.419% 8.165% 10.927% 

ω=11 9.135% 8.936% 9.580% 6.772% 7.457% 9.997% 

ω=12 8.412% 8.229% 8.827% 6.229% 6.863% 9.213% 

ω=13 7.795% 7.626% 8.185% 5.766% 6.356% 8.543% 

ω=14 7.262% 7.106% 7.629% 5.367% 5.919% 7.964% 

ω=15 6.798% 6.652% 7.144% 5.020% 5.538% 7.458% 

ω=16 6.389% 6.252% 6.717% 4.715% 5.203% 7.013% 

ω=17 6.027% 5.898% 6.339% 4.445% 4.906% 6.618% 

ω=18 5.703% 5.581% 6.000% 4.205% 4.642% 6.265% 

ω=19 5.413% 5.297% 5.696% 3.989% 4.404% 5.948% 

ω=20 5.151% 5.041% 5.422% 3.794% 4.190% 5.661% 

(Source: Author) 

Based on the information in Table 6.7, Figure 6.3 provides a visualized diagram to describe 

the trend of optimal inspection rates when the punishment severity changes.  
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Figure 6.3 Trend of optimal inspection rate 

(Source: Author) 

From Table 6.7 and Figure 6.3, several conclusions are made and research implications are 

derived. 

(1) With the increase of punishment severity, the optimal inspection rates see a decreasing 

trend regardless of the vessel conditions.  

For example, the optimal inspection rate of small and young bulk carriers at ω=1 is 65.025% 

and falls to 18.863% when ω increases to 5.  

Actually, when calculating an optimal inspection rate, the only variable in Equation (5-8) 

is the severity degree ω. Other parameters, like the accident rate, accident loss, they are all 

constant. Hence, the function of optimal inspection rate can be written as  

𝑋(𝜔) =
𝑎3

𝑎1𝜔 + 𝑎2
  

Where a1, a2, a3 are positive constant.  
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Because of the positive value of ω, therefore, the first derivative test of the optimal 

inspection rate is 

𝑋′(𝜔) = −
𝑎1𝑎3

(𝑎1𝜔 + 𝑎2)2
 

 

𝑋′(𝜔) < 0 means the optimal inspection rate is a decreasing function and does not have an 

extremum. The limiting case lies that when ω is infinitely great, the optimal inspection rate of 

bulk carriers is infinitely close to zero regardless of the safety condition and characteristics of 

the vessel.  

(2) The declining speed of the optimal inspection rates slows down with the increase of the 

punishment severity.  

It can be explained from a mathematical perspective. 

The second derivative test of the optimal inspection rate is: 

𝑋′′(𝜔) =
2𝑎1

2𝑎3
(𝑎1𝜔 + 𝑎2)3

 

Because ω is a positive variable, 

𝑋′′(𝜔) > 0 

If the second derivative test of a function is always positive no matter how the variable 

changes, the first derivative test is an increasing function. When combining it with the result 

that 𝑋′(𝜔) < 0, we disclose that 𝑋′(𝜔) is a negative increasing function, and |𝑋′(𝜔)| is a 

positive decreasing function.  

When represented in the graph, 𝑋′(𝜔) reflects the slope of the line 𝑋 (𝜔), and |𝑋′(𝜔)| 

measures the steepness or grade of the line.  

Therefore, a positive decreasing nature of |𝑋′(𝜔)| indicates the line of optimal inspection 

rate is steeper at first and tends to be smooth with the increase of the punishment severity.  

In fact, the variation trend reveals that with the increase of the punishment intensity, the 

standard ship owners’ motivation  of implementing better safety maintenance policy among 

the sub-standard ship owners becomes lower and lower.  

(3) Vessel age has little influence on the optimal inspection rates of small bulk carriers. 
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Table 6.8 illustrates the standard deviation of small bulk carriers. The standard deviation 

here represents the variation of the optimal inspection rates of small bulk carriers. It is obvious 

to find that the standard deviation of small bulk carriers is always low no matter how the 

punishment intensity changes. It means that the dispersion of the data is kept at a low level 

under all circumstances. In addition, the value of standard deviation is always below 1%, and 

keeps dropping when the punishment intensity increases. Hence, for small bulk carriers, vessel 

age has no influence on the optimal inspection rates. 

Table 6.8 The standard deviation of small bulk carriers 

Small 

 Young Medium Old Standard deviation 

ω=1 65.03% 63.18% 64.79% 0.82% 

ω=2 40.34% 39.32% 41.10% 0.73% 

ω=3 29.24% 28.54% 30.10% 0.64% 

ω=4 22.93% 22.40% 23.74% 0.55% 

ω=5 18.86% 18.43% 19.60% 0.48% 

ω=6 16.02% 15.66% 16.69% 0.43% 

ω=7 13.92% 13.61% 14.53% 0.38% 

ω=8 12.31% 12.04% 12.87% 0.35% 

ω=9 11.03% 10.79% 11.55% 0.32% 

ω=10 9.99% 9.78% 10.47% 0.29% 

ω=11 9.14% 8.94% 9.58% 0.27% 

ω=12 8.41% 8.23% 8.83% 0.25% 

ω=13 7.80% 7.63% 8.19% 0.23% 

ω=14 7.26% 7.11% 7.63% 0.22% 

ω=15 6.80% 6.65% 7.14% 0.21% 

ω=16 6.39% 6.25% 6.72% 0.20% 

ω=17 6.03% 5.90% 6.34% 0.19% 

ω=18 5.70% 5.58% 6.00% 0.18% 

ω=19 5.41% 5.30% 5.70% 0.17% 

ω=20 5.15% 5.04% 5.42% 0.16% 

(Source: Author) 
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(4) Large and old bulk carriers have the highest optimal inspection rates. In addition, old 

vessels are always the most risky vessels. 

In Figure 6.3, the curve representing the optimal inspection rate of ‘Large-old bulk carriers’ 

is always on top of other vessel types no matter how the punishment intensity changes, 

followed closely by the curve ‘Small-Old bulk carriers’. As a summary, old vessels have higher 

optimal inspection rates than young and average vessels when other variables remain identical. 

The finding derived from the empirical study conforms to the common sense that old vessels 

are more risky. The components of most old vessels are more fragile and may not able to tackle 

emergencies and accidents when sailing. Meanwhile, the maintenance cost spent on old vessels 

is a huge number compared to other vessels as indicated in Table 6.2, restraining the motivation 

of many ship owners.  

Hence, a higher optimal inspection rate for old bulk carriers reflects the hazards and risks 

that old vessels possess, prompting the port authority to pay more attention to them and prevent 

illegal actions from ship owners. 

(5) For young and medium bulk carriers, vessel size is a factor of more influential power 

than vessel age in PSC.  

To compare the effect of vessel size and vessel age on the optimal inspection rate, sensitivity 

analysis is conducted. When locking one factor and changing the states of another factor (target 

factor), the change of optimal inspection rate is measured as the effect of the target factor under 

this scenario.  

For example, when ω=1, if the vessel is a small vessel, it can be observed that the optimal 

rate of a young small vessel is 65.03%. On the other hand, the medium small vessel is 63.184%. 

Therefore, the different value 1.84% is the effect of vessel age on the optimal inspection rate 

when locking vessel size at ‘small’ and ω=1. Table 6.9 shows the individual effect of vessel 

size and vessel age under different scenarios.  
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Table 6.9 Effect of vessel age and vessel size 

Target factor Vessel age Vessel size 

Locked state Small Large Young Old 

ω=1 1.84% 2.85% 11.96% 7.27% 

ω=2 1.03% 2.37% 8.83% 5.42% 

ω=3 0.71% 1.90% 6.83% 4.22% 

ω=4 0.54% 1.56% 5.54% 3.44% 

ω=5 0.43% 1.33% 4.65% 2.89% 

ω=6 0.36% 1.15% 4.01% 2.50% 

ω=7 0.31% 1.01% 3.52% 2.20% 

ω=8 0.27% 0.90% 3.14% 1.96% 

ω=9 0.24% 0.82% 2.83% 1.77% 

ω=10 0.22% 0.75% 2.58% 1.61% 

ω=11 0.20% 0.68% 2.36% 1.48% 

ω=12 0.18% 0.63% 2.18% 1.37% 

ω=13 0.17% 0.59% 2.03% 1.27% 

ω=14 0.16% 0.55% 1.90% 1.19% 

ω=15 0.15% 0.52% 1.78% 1.11% 

ω=16 0.14% 0.49% 1.67% 1.05% 

ω=17 0.13% 0.46% 1.58% 0.99% 

ω=18 0.12% 0.44% 1.50% 0.94% 

ω=19 0.12% 0.42% 1.42% 0.89% 

ω=20 0.11% 0.40% 1.36% 0.85% 

(Source: Author) 

It is obvious that vessel size has more influence on the inspection rate than vessel age under 

various situations. However, the tendency of the impact magnitude gradually decreases when 

the punishment intensity of the port authority is higher and higher.  
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6.4 RECOMMENDATIONS FOR PORT AUTHORITIES   

6.4.1 Suggestions when formulating inspection policy 

This section illustrates how the proposed model and theoretical optimal inspection rates can 

help port authorities to make their optimal decisions in PSC inspections. It is noteworthy that 

the prerequisite of the suggestion is that port authorities and ship owners make their decisions 

independently, and both of them are not aware of the choice of the other.  

When applying the optimal inspection policy in practice, the social welfare increase 

(detention cost) assumption in the game model should be improved first. Based on the historical 

inspection data of the port, the social welfare loss (detention cost) can be set as a function of 

detention time, which is denoted as: 

 𝐶𝐷 = 𝐷𝑇𝑖 ∗ 𝐶𝑖
0 

(6-4) 

Where DTi is detention time (day) and represents the punishment intensity, while 𝐶𝑖
0 is the 

detention cost of vessel type i per day. Here vessel types are classified according to the 

inspection performance, and the vessels of same type will have the same detention time.  

Next, the port authority should figure out the average detention time of different vessel types 

under different scenarios, and then calculate the possible social welfare increase (detention cost) 

per inspection based on Equation (6-4)  

Based on the proposed optimal inspection rate equation, the optimal inspection rates of 

vessels under different conditions can be obtained when inserting corresponding values, 

denoted as Xi (i represents vessel types). Meanwhile, the historical data can tell the numbers of 

bulk carriers arriving at port per day, denoted as Ni. Therefore, the optimal number of PSC 

inspections at the port per vessel type per day is Xi Ni, which is useful for the port authority 

when formulating its inspection regulations.  

However, sometimes the resources that the port authority has in reality do not support them 

to do the exactly number of inspections that the Nash solution suggests. On this occasion, the 

port authority has two strategies: 

1) Increase the resources for PSC inspection, e.g. PSC inspectors (human resources), 

funding and operational expenditure. 

2) If it is not possible to increase the resources, the port authority can use the Equation (5-

8) and (6-4) to improve its inspection policy.  
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 Based on the limited resources the port authority has for different vessel types, the 

maximum number of inspections on different vessel types per day is obtained. Hence, 

the required optimal inspection rates are calculated, which is denoted as Xi
’ 

 Input Xi
’ into optimal inspection rate Equation (5-8) and use the backward calculation 

to get the detention cost CDi
’ for different vessel types. 

 Once the required detention cost CDi
’ is obtained, the punishment intensity and the 

detention time of different vessel types DT’
i can be calculated through Equation (6-4).  

Because Xi
’ < Xi, then CDi

’ > CDi, DT’
i
 > DTi. The port authority can prolong the 

detention time and increase the punishment intensity to the corresponding level based 

on the optimal inspection equation to ensure the operation of PSC inspection system.  

In general, when a port authority has sufficient resources, it should choose the optimal 

inspection rate; otherwise it can increase the punishment intensity level to tackle the sub-

standard effort and illegal actions of the ship owner.  

 

6.4.2 The decision-making framework for the port authority 

Since NIR was implemented, the Paris MoU continued with its work of improving the 

performance of the PSC inspection system and inspecting vessels in accordance with the 

relevant instruments of the Memorandum. Over the years within the Paris MoU, the 

developments and works carried out by the authority were apparent, for example, the 

Concentrated Inspection Campaign (CIC), the updated ‘white, grey, black’ list every year, the 

development of the Technical Evaluation Group, the training and development of PSCOs, the 

detention review panel, and vessel quality management. These actions enable port authorities 

to execute high quality and detailed PSC inspections, and improve the efficiency and accuracy 

of the inspection results. 

In this regard, this section aims to propose a decision-making framework for port authorities 

when formulating the inspection policy and examining the inspected vessels to fit the 

increasingly perfect inspection system. Due to the money, human resources, and other types of 

cost that are consumed, it is of vital importance to provide an optimal decision-making 

framework for port authorities when inspecting vessels. It can be achieved by incorporating the 

BN model of Post-NIR PSC inspection system and the non-cooperative strategic game 

proposed in this research. The results yielded by the framework present a novel way to select 

the best actions under different situations, which enables decision makers to find optimal 



169 

 

solutions to improve performance of the PSC inspection system. 

The following Figure 6.4 describes the process of the proposed decision-making framework 

by this thesis. The improvements to the current practice have been highlighted in the figure and 

the detailed information is highlighted in the description of the framework as well. 

 

Figure 6.4 Decision-making framework for the port authority 

(Source: Author) 

 1) Preparatory work 

The first step is preparatory work. The port authority should collect and summarize the 

related information and statistics required for the modelling, for example, the average 

detention time of detained bulk carriers under different scenarios, the possible social welfare 

increase (detention loss to the ship owner) per inspection, the numbers of bulk carriers arriving 

at port per day, the human resources (mainly PSCOs) it has, the limit of expenditure per day, 

etc. The statistic derived from historical records corresponds to the important elements in risk 

assessment BN model and strategic game model. Clarifying the statistics in these aspects is 

essential for the later optimal inspection policy selection and decision-making process. 

2) Strategy determination 

Based on the proposed optimal inspection rate derived from the game model, the port 

authority can choose the proper inspection strategy (the total number of inspections for 

different types of vessels) according to the resources it has. As discussed in section 7.4.1, if the 

port authority has enough resources, it should set the number of inspections per day according 

to the optimal inspection rate; if the port authority does not have enough resources, it should 

Step 1: Preparatory work 

Step 2: Strategy determination 

Step 4: Risk estimation 

Step 3: PSC Inspection Execution 

Step 5: The decision of inspection results 

Step 6: Result delivery 



170 

 

either acquire more resources to satisfy the optimal inspection rate or increase the punishment 

intensity to the corresponding level based on the existing resources. The strategy choice relies 

on the environment around the port and the overall situation of the PSC inspection system at 

this port. Once the strategy of number of inspections is determined, the port authority can pick 

the vessels based on the result of the last inspection, SRP of the vessel, selection regime of the 

port, and other factors. 

3) PSC inspection execution 

The next step is to carry out inspections on selected vessels. The ship owner has to report 

24 hours before his/her vessel arrives at the port or anchorage of the Paris MoU region or before 

leaving the previous port or anchorage if the voyage is expected to take less than 24 hours. The 

report mission is obligated for all vessels that plan to berth at the port. In the report, some 

information is acquired to provide to the port authority, including ship identification, port of 

destination, estimated time of arrival, estimated time of departure, planned duration of the call, 

date of last expanded inspection in the Paris MoU region, etc. The port authority can decide 

whether to inspect the vessel based on the provided information, the historical inspection 

records, and the inspection strategy determined via optimal inspection rate. 

The inspection will normally start with, as a minimum and to the extent applicable, 

examination of the documents in accordance with Annex 10 of the Paris MOU. In addition, the 

PSCO will conduct a general inspection of several areas on board to verify that the overall 

condition of the ship complies with that required by the various certificates. 

If the ship is found to comply, the PSCO will issue a ‘clean’ inspection report (Form A) to 

the master of the ship. In case deficiencies have been identified, the inspection report will 

include a deficiencies found report (Form B) indicating any follow-up actions to be taken to 

rectify the deficiencies indicated. Next, the data of the respective ship and the inspection result 

will be recorded on the central computer database, located in Lisbon, Portugal. 

Furthermore, control on compliance with on-board operational requirements may be 

included in the control procedures, particularly if the PSCO has reason to believe that the crew 

demonstrates insufficient proficiency in that area. 

4) Decision of inspection results 

When the inspection on board is completed, the port authority should decide whether to 

detain the vessel. In the current practice, the detention of a vessel is based on the professional 
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judgment of PSCOs. Normally, the ship will be detained if the deficiencies on a ship are 

sufficiently serious to merit a PSCO returning to the ship to be satisfied that they have been 

rectified before the ship sails. However, this process is highly relied on the ability and 

experience of the PSCOs, and port authorities have to invest a lot to train professional PSCOs, 

otherwise the results may not reliable. 

Under the new decision-making framework in this thesis, this process can be done through 

the proposed BN model. The port authority can apply the ‘Post-NIR’ BN model to estimate the 

detention rate of this vessel. Through comparing the detention rate of this vessel with the 

average detention rate of this particular vessel type, those vessels having an abnormally high 

detention rate should be detained. On the contrary, the vessels that have low detention rate are 

standard and high quality vessels, being assumed to pass the inspection with no doubt. 

 Therefore, the application of BN model not only eases the burden of port authorities on 

training professional PSCOs, but also reduce the pressure of PSCOs on providing reliable 

inspection results.  

In addition, when the port authority decides to detain the vessel, it needs to set the period of 

detention for the vessel. There are a large number of factors influencing the detention time, for 

instance, the number of detainable deficiencies, the severity level of the deficiencies, the 

complexity of the repair, the place for repair at the port, etc. The port authority has its own 

system and principles to determine the detention period for the sub-standard vessels.  

Additionally, if the vessel is detained for multiple detentions, the vessel will be banned. The 

vessel is not allowed to access any port in the region of the Paris MoU for a minimum period. 

Normally, the number of detentions is three in three years. The duration for first ban is up to 3 

months, the second is 12 months, and the third ban would be 24 months or even a permanent 

ban. 

6) Result delivery 

Once the result of the inspection is determined, the PSCO will issue a notice of detention to 

the ship owner. Meanwhile, the PSCO will inform the ship owner that they have the right of 

appeal. The ship owner can choose to appeal to the coastal country, the flag state, or the RO. 

The flag state or RO may then ask the port authority to reconsider its decision to detain the 

vessel. If the outcome of the investigation and appeal is not satisfied, the flag state or the RO 

can send a request for review to the Paris MoU secretariat.  
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The following Table 6.10 summarize the improvements on the current PSC inspection 

practice of this thesis. 

Table 6.10 Improvements on PSC practice 

Stage Improvements 

Step 1: Preparatory 

work 

 Collect and clarify the related information and statistics to 

provide a better foundation for inspection policy decisions 

Step 2: Strategy 

determination 

 The port authority can choose the optimal inspection strategy, i.e. 

the number of inspections for each type of vessels under various 

situations, based on the resources it has through the calculation of 

optimal inspection rate calculation. 

Step 4: Decision of 

inspection results 

 The proposed BN model can help port authority to estimate the 

detention rate and decide the inspection results from a more 

convenient and easier way than the current mechanism.  

 No heavy burden on PSCOs under the new framework.  

 The cost on PSC training are reduced. 

 

6.5 CONCLUSIONS   

This chapter has conducted an empirical study to analyse the theoretical optimal inspection 

rates obtained in Chapter 5. The result reveals the optimal inspection rates of bulk carriers 

under different conditions from a port authority viewpoint. New managerial insights are 

established and verified through an empirical study investigating the inspections happened in 

2015-2017. For example, 1) with the increase of punishment severity, the optimal inspection 

rates present a decreasing trend regardless the vessel conditions. 2) The declining speed of the 

optimal inspection rates slows down with the increase of the punishment severity level. 3) 

Vessel age has little influence on the optimal inspection rates of small bulk carriers. 4) Large 

and old bulk carriers have the highest inspection rates. 5) For young and medium bulk carriers, 

vessel size is a factor of more influential power than vessel age in PSC. The above managerial 

insights can be served as useful information for i) the port authorities when formulating their 

inspection policy regarding the bulk carrier part and ii) the ship owners when minimizing their 

ships detention rate given economic constrains. 

Based on the findings, there are two suggestions for port authorities when formulating their 

inspection policies respectively: 
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 If having sufficient resources for inspection, the port authority can use the calculated 

optimal inspection rate to determine the number of inspected bulk carriers per day.  

 If there are limited inspection resources, port authorities can use the backward 

calculation function to increase the vessel detention time based on the maximum 

number of inspections it can afford per day.  

Meanwhile, a decision-making framework consisting of six steps is proposed to help port 

authorities make decisions during an inspection. The framework incorporates the risk 

assessment BN model and the strategic game model developed in this research, thus making 

the framework more reliable and convincing.  

Further effort will focus on the improvement of the game model, taking into account the 

effect of repair at port due to detention, the severity classification of accidents and 

corresponding accident loss. Data acquisition (i.e. the statistics of total accident loss) presents 

another issue to investigate in the future research agenda.  
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CHAPTER 7 SUMMARY AND DISCUSSIONS 

In this chapter, the proposed models and techniques described in Chapter 3, 4, 5, and 6 are 

briefly summarised and discussed to make a comprehensive demonstration on the influence of 

the new inspection regime of PSC and the optimal decisions of port authorities under current 

conditions. Additionally, the research contributions of this study are revealed, as well as the 

suggestions on the further improvements of the research topic.  

 

7.1 RESEARCH IMPLICATION 

The much-anticipated New Inspection Regime implemented by Paris MoU transformed and 

modernised the PSC inspection system a lot, making it more and more important in preventing 

illegal actions of ship owners and ensuring maritime safety, and even become the last line of 

defence against sub-standard vessels. Despite the fact that new PSC inspection system came 

into force for many years, the emergence of sub-standard increased gradually. In fact, a 

decision-making framework is required to help port authorities to make optimal decisions when 

executing PSC inspections to deal with the potential risks of sub-standard vessels. However, 

findings from the literature have revealed that there are few works focusing this topic. Thus, 

this thesis incorporates the risk assessment tool and the analytical tool to propose a decision-

making framework for port authorities under various situations in new PSC inspection system. 

The research objectives are achieved through three technical parts (because Chapter 6 

utilises a case study to illustrate the game model in Chapter 5, hence these two chapters are 

viewed as a whole part), which is discussed in detail as follows. Meanwhile, the research 

questions put forward in Chapter 1 are also solved. 

 

7.1.1 Discussions of the advanced risk assessment model for PSC inspections under NIR 

using data-driven BN approach 

In Chapter 3, a prediction tool to help port authorities estimate the detention rate under 

different situations since the implementation of NIR is developed. During the process of 

developing risk prediction tool, Q1 and Q2 proposed in Research question part are solved. 

In addition, this chapter also reveals the degree of importance of different risk factors 

influencing PSC inspection results in different periods, i.e. vessel flag, vessel age, DWT for 



175 

 

‘Pre-NIR’ period, company performance, and inspection date for ‘Post-NIR’ period. The work 

was assessed and completed by data-driven Bayesian network approach. The data-driven 

Bayesian network approach is a combination of data-driven approach (in this study, TAN 

learning) and the original BN model to induce the risk assessment model through data, not 

expert judgment. This approach is an advanced version of the original BN approach that aims 

to reduce the dependence on human experts and improve the model accuracy. Among the 

various data-driven approaches, TAN learning shows its superiority to deal with the 

construction and learning problem in BN because of its accuracy and competitiveness. 

In this part, two BN models are developed through TAN learning, one is a ‘Pre-NIR’ BN 

model (before the implementation of NIR), the other is a ‘Post-NIR’ model (after the 

implementation of NIR). The purpose of setting two BN models is to display the conditions of 

different periods, which is of vital importance for the later analysis of the influence of NIR on 

the PSC inspection system.  

Different from the traditional BN construction process, a new conceptual methodology to 

construct the PSC inspection model is developed including the following steps in this study.  

1) Data acquisition.  

A dataset containing 72,785 inspection records from 2005-2008 and 49,328 inspection 

records from 2015-2017 extracted from the Paris MoU online inspection system is established. 

As one of the popular vessel types, bulk carriers account for 15% of the total number of PSC 

inspections, and are thus selected as the research target in this study.  

2) Variables identification – Answer to Q1 

The risk variables identified from inspection records are explained with particular reference 

to their state definitions in Chapter 3. For Pre-NIR period, vessel flag, vessel age, DWT, RO, 

inspection type, inspection port and number of deficiencies are the factors that may influence 

detention; for post-NIR period, vessel flag, vessel age, company performance, inspection type, 

inspection port, inspection date and number of deficiencies are the identified ones.  

3) Data-driven network construction – Answer to Q2 

According to the TAN learning, the original data-driven networks for PSC inspections are 

constructed. However, the CPT table would be too large to have enough sampling information 

in the inspection database for the calculation of conditional probabilities. To solve this issue, 
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divorcing approach is utilized and two mediating dummy variables, ‘vessel group’ and 

‘inspection group’, are introduced. Meanwhile, some meaningless and incorrect links in the 

network are modified. Figure 3.6 to Figure 3.10 describe the process of improving the structure 

of the BN.  

4) CPT calculation  

Equation (3-2) and Equation (3-3) provide a way to calculate the conditional probabilities, 

which is known as the gradient descent approach. This three-step calculation process is a 

quantitative approach and the results are shown in Table 3.1 to Table 3.7. Meanwhile, the whole 

information of CPT can be found in Appendix 1 and Appendix 2.  

5) Model result 

Figure 3.10 and Figure 3.13 present the final model of ‘Pre-NIR’ period and ‘Post-NIR’ 

period, respectively. The detention rate in general situations estimated by theoretical models is 

in line with the direct calculation from the inspection database.  

The final model proposed in this chapter, Figure 3.13, can be served as the prediction tool 

for port authorities under different conditions since NIR is implemented. Through several real 

inspection cases, this prediction tool is proved to have practical significance for port authorities. 

When a bulk carrier arrives at a port, the port authority can use the proposed prediction tool 

first to conduct a primary screening. If the result is positive, the port can devote less effort and 

resources to it; if the result is negative, the vessel is a high-risk vessel and shall be examined 

carefully under the new inspection system. 

Through the TRI sensitivity analysis, the degree of importance of risk variables are listed 

(Answer to Q2) 

Inspection group > Number of deficiencies > Type of inspection > Vessel group > RO > 

Vessel age (Pre-NIR) 

Number of deficiencies > Inspection group > Vessel group > Company performance > 

Vessel age > Type of inspection (Post-NIR) 

As ‘inspection group’ and ‘vessel group’ are class variables which do not exist in PSC 

inspection records, ‘Number of deficiencies’ is in fact the most important risk factor, no matter 

before or after the implementation of NIR. This result indicates sub-standard performance of 

inspection-related items (Number of deficiencies, type of inspection, etc.) is more likely to lead 
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to detention than unqualified intrinsic attributes of vessels (vessel age, dwt, RO, etc.).  

The novelty of this chapter lies in two aspects, 1) construct a data-driven BN for risk analysis 

and prediction on PSC system for the first time; 2) take company performance into account 

when constructing the risk assessment model for ‘Post-NIR’ period. Further, when analysing 

the optimal inspection policy for port authorities after the implementation of NIR in Chapter 5, 

the results of BN play a crucial role in the game model construction.  

 

7.1.2 Discussions of the influence of the implementation of NIR on PSC inspection system 

Since NIR was implemented in 2011, its influence on the PSC inspection system and 

inspection results is still not clarified in academia. Chapter 4 conducts an analysis to figure out 

the influence of the implementation of NIR on PSC inspection system from both the micro-

level and macro-level perspectives (Answer to Q3). The statistics and information used in this 

chapter come from two sources: one is the results from two proposed BN models in Chapter 3; 

the other is the facts & figures collected from the Paris MoU annual reports in 2005-2017.  

Based on the statistics derived from official annual reports, the changes of PSC inspection 

system from the macro-level perspective are clarified from different aspects. Some important 

and positive findings are presented as follows. 

1) From 2011, the number of inspections and individual inspected vessels continued to 

drop, except 2014, when both indicators increased slightly. 

2) Since NIR was implemented, both the number of inspections and the inspected vessels 

per year remained stable compared to the former inspection system.  

3) The introduction of NIR significantly reduced the deficiency rate and detainable 

deficiency rate in the Paris MoU inspection system.  

4) Since NIR was implemented, the deficiency rate maintained a downward trend, from 

2.662 in 2011 to 2.346 in 2016, especially in 2014, where there was a huge decline.  

5) The detention rate after 2011 was lower and more stable compared to the period before 

NIR.  

 6) The implementation of NIR significantly reduced the burden on the ship owners (from 

1.6 inspections/year to 1.2 inspections/year). 
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7) The implementation of NIR reduced the number of inspections of most vessel types, 

and kept this number at a steady level.  

8) The detention rate of all vessel types dropped, indicating the positive influence on 

detention rate of NIR suited for the major vessel types in the PSC inspection system.  

It is obvious to find that the changes brought by NIR are almost positive, indicating the 

introduction of NIR indeed transforms the PSC inspection system to a large extent and is no 

doubt the biggest change in PSC history.  

Another perspective lies in the micro-level analysis. Based on the proposed models in 

Chapter 3 and the corresponding results, the influence of NIR is explained in four aspects:  the 

change of influence degree of risk factors in different periods, the impact of the new risk factor 

‘company performance’, the prior probability change, and the role change of two factor groups. 

The changes in these aspects are described in detail in section 4.4. Most of the changes are also 

positive like the macro-level analysis.  

1) Since NIR was implemented, the relationships between risk factors and the inspection 

results have become closer and stronger. 

2) Vessel-related risk factors have been paid more attention since the implementation of 

NIR.  

3) The newly added factor, company performance, is viewed as an important risk factor 

that greatly affects the final inspection results. The vessels under high and medium company 

management are highly unlikely to be detained; on the other hand, low and very low ISM 

companies are on the ‘black list’ of all ports within the range of the Paris MoU and have 

greatly increased chances of detention. 

4) The attitudes of port authorities towards vessels under the management of low and very 

low shipping companies are rigorous, much more than the benefits gained from selecting a 

high/medium management company for inspection. 

5) The flag performance of inspected vessels improves a lot and almost all the inspected 

vessels have a white list flag.  

6) The age of inspected vessels from 2011 is becoming younger, indicating the 

implementation of NIR eliminated those low quality old vessels.  
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7) Compared to the previous system, both the high inspection risk and high vessel risk 

vessels will have much higher chances to be detained by port authorities under the new 

inspection system.  

8) Vessels having low vessel-related risks will have a huge reduction in the detention rate 

when accepting inspections, stimulating the ship owners to be more concerned about the 

vessel quality.  

9) Vessel-related risks are no longer an indifferent part compared to inspection-related 

risks and gradually become crucial to the inspection results. 

10) Port authorities are vigilant to all potential risks and will no longer tolerate any types 

of risk 

Generally speaking, the findings and changes brought by NIR provide important insights 

for port authorities and ship owners to understand the improvements of the inspection system, 

e.g. the change of preferred inspection types; the more rigid policy against sub-standard vessels. 

All the signs indicate that NIR has taken port state control to the next level. 

Overall, this chapter displays the influences and changes that the New Inspection Regime 

gave to the whole PSC inspection system for the first time. Since NIR was introduced, the Paris 

MoU has invested many resources to maintain and improve this regime, as well as 

propagandize and generalize this system to the whole world. Through the analysis of the related 

statistics since 2011 and the risk assessment models of the Paris MoU inspection system, it is 

simple to find the NIR was highly praised because it indeed brought many positive changes 

and improved the inspection system a lot. Based on this regime, the potential maritime risks 

related to vessel safety are very likely to be detected when the vessel is undergoing inspection 

at ports.  

 

7.1.3 Discussions of the optimal inspection policy of port authorities after the implementation 

of NIR using risk-based game model 

Under the new PSC inspection regime, one big issue for port authorities is to determine their 

inspection policies. Because of the resources and conditions, an optimal inspection policy is of 

vital importance for port authorities to ensure vessel quality and motivate ship owners. 

Meanwhile, due to the introduction of the company performance index, the ISM Company also 

need to regulate the quality of the vessels under their management now, hence it has become 
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an important factor that may influence the inspection decisions of port authorities and ship 

owners in the current inspection regime. In Chapter 5 and Chapter 6, game theory is applied to 

figure out this issue. Combined with the results from the BN, a PSC inspection game model 

under NIR is constructed to clarify the optimal inspection policies for port authorities, aiming 

to provide important insights for coastal countries to deal with illegal ship owners and ISM 

companies. Research questions Q4, Q5 and Q6 are clarified. 

When constructing the game model, several assumptions are made at first, for example, the 

players in the game (port authorities and ship owners) are rational, the vessels are classified 

into standard vessel and sub-standard vessel, the accident losses of the vessel with different 

maintenance effort are the same, and some basic assumptions of the strategic game. According 

to the definition of the strategic game, the parameters in the game model are identified from 

three aspects: players, strategies, and payoffs. It is obvious that there are two players, port 

authorities and ship owners, in the game. The former stakeholder can decide whether to inspect 

the vessel or not, while the latter can choose high or low maintenance effort on their vessels. 

As the most important component to form a game, the payoffs of different players in an 

inspection game are different. For ship owners, the payoffs consist of expected detention cost, 

expected accident loss, inspection cost, and other related costs, while for port authorities, the 

social welfare increase and loss, port charges, and other related costs are important parts. In 

this two-player non-cooperative strategic inspection game, the payoffs under each scenario (or 

strategic profile) is presented in the payoff matrix in Table 5.3, which describes the 

relationships between port authorities and ship owners under NIR (Answer to Q4). Mixed 

strategy Nash equilibrium solution for the game model is presented as shown in Equation (5-

8) and Equation (5-9), which is known as the optimal inspection rate for the port authorities 

provided by the game model.  

With the help of the results from the BN, the risks and uncertainties hidden behind the 

inspection games are quantified, which is denoted as the ‘detention rate’ in the game model 

and Nash solution (Answer to Q5). Table 6.7 and Figure 6.3 presents the optimal inspection 

rate under different conditions. The analysis of the results reveals several research implications: 

1) With the increase of punishment severity, the optimal inspection rates experience a 

decreasing trend whatever the vessel condition.  

2) The declining speed of the optimal inspection rates slows down with the increase of the 

punishment severity.  
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3) Vessel age has little influence on the optimal inspection rates of small bulk carriers. 

4) Large and old bulk carriers have the highest optimal inspection rates. 

5) For young and medium bulk carriers, vessel size is a factor of more influential power 

than vessel age in PSC. 

In fact, when formulating the inspection policy, port authorities can use the proposed game 

model and optimal inspection rate formulation for reference. If they have enough resources for 

inspection, the port authority can use the optimal inspection rate to determine the number of 

inspected bulk carriers per day. If there are limited inspection resources, the port authority can 

use the backward calculation function of the proposed solution to improve its policy (increase 

the detention time for the vessel) based on the maximum number of inspections it can afford 

per day. 

In addition, based on the ‘Post-NIR’ BN model and strategic game model proposed in this 

research project, a novel framework is developed for port authorities when making decisions 

during PSC inspections. The decision-making framework can act as an instruction for port 

authorities to improve the performance of PSC inspection system, and then ensure the vessel 

quality and maritime safety under NIR. (Answer to Q6) 

Overall, this chapter provides some useful suggestions for port authorities to make decisions 

under the new PSC inspection system. The optimal inspection rate provided by the game model 

can provide important insights for port authorities to regulate illegal ship owners and sub-

standard vessels. With an eye to the performance of ISM companies, the game model proposed 

in this chapter combines the results of BN, which highlights the novelty of this chapter. 

The following table describes how the research questions of this thesis is solved. 
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Table 7.1 Solve of Research questions 

Q1 Variable identification through PSC inspection records (Section 3.2.2) 

Q2 The relationships between risk variables and inspection results are presented as the 

structure of BN models. (Section 3.3.3 & Section 3.4.3); 

The influencing degree of risk variables on inspection results is obtained via 

sensitivity analysis of the BN models. (Section 3.3.6 & Section 3.4.6) 

Q3 The influence of NIR on PSC inspection system is clarified through a comparison 

analysis between ‘Pre-NIR’ period and ‘Post-NIR’ period. (Chapter 4) 

Q4 The relationship between port authorities and ship owners is demonstrated in 

section 5.1 and illustrated in detail in section 5.3.3. 

Q5 The risks and uncertainties hidden behind the inspection game is quantified through 

the prediction function of BN, presented as the detention rate under different 

situations. (Section 6.2.1) 

Q6 Through incorporating the risk prediction tool (BN) and the optimal inspection 

policy (game model), a new conceptual decision-making framework is proposed to 

improve the current PSC inspection practice and overcome its deficiencies. It is 

useful for port authorities to make optimal decisions currently. (Section 6.4) 

 

7.2 RESEARCH CONTRIBUTION 

This study develops a novel methodology incorporating BN and game theory to provide a 

dynamic prediction tool for port authorities and ship owners, analyse the impact of the 

implementation of NIR on PSC inspection, as well as help port authorities to make decisions 

when regulating inspection policy. Through six chapters’ work, the objectives are achieved and 

several contributions are made not only to academia, but also to the maritime industry.  

1) The factors influencing the inspection results in PSC inspections in two periods (Pre-NIR 

period and Post-NIR period) are identified. Meanwhile, the degree of importance of major risk 

factors are listed based on the analysis on the proposed BN models. 

2) Two BN models reflecting the inspection conditions are proposed based on the data 

collected from the Paris MoU online inspection system. The Post-NIR BN model can serve as 

a prediction tool for port authorities to estimate the detention rate of individual vessels under 

different situations within new inspection system.  
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3) The influence of NIR on the Paris MoU PSC system is clarified from two perspectives: 

micro-level and macro-level. Both perspectives prove that the implementation of NIR have 

positive influence on the whole PSC system, and NIR has definitely transformed the PSC 

inspection system and brought it to the next level.  

4) Combined with the BN, a novel game model is proposed to illustrate the game 

relationship between ship owners and port authorities under NIR. Taking company 

performance into consideration, the mixed strategy Nash equilibrium solution proposes a 

theoretical optimal inspection rate for port authorities, aiming to provide important insights for 

port authorities when regulating inspection policy in the current situation.  

5) Several suggestions are made to port authorities after analysing the optimal inspection 

rate generated from an empirical study. It is proved that the proposed optimal inspection rate 

has important practical significance. 

6) A decision-making framework is proposed to help port authorities when making decisions 

in PSC inspections. 

 

7.3 FURTHER IMPROVEMENTS 

To improve the study, further work should focus on the following aspects: 

1) When constructing the risk assessment model for PSC inspections, the severity of the 

punishment should be considered as an important node, which is represented by ‘detention time’ 

in inspection records. The introduction of this new node can enrich the model and help the 

industry to understand the current condition of the punishment on sub-standard vessels.  

2) The improvement of the game model. Several factors and parameters should be taken 

into account when building the game model, for example, the effect of repair at port due to 

detention, on the accident rate, the severity classification of accidents and corresponding 

accident losses.  

3) Data acquisition work. More statistics related to PSC inspections and maritime accidents 

need to be collected to fulfil the validation and the case study of the model, i.e. the total accident 

loss, and the updated maintenance cost.  

4) The research targets can extend and not be restricted to bulk carrier. A comparison 

between the results of different vessel types can reveal their risk grades. 
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5) Nash equilibrium solution is a basic solution to the game model. More solution types are 

encouraged to provide more accurate and practical optimal inspection rates for port authorities, 

i.e. Stackelberg equilibrium solution. 
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APPENDICES 

Appendix One Conditional Probability Table of ‘Pre-NIR’ BN model 

Table Appendix 1.1. CPT of ‘Vessel group’ 

Vessel age Vessel flag RO DWT Low Detention Risk High Detention Risk 

Over20Y Black High High Capesize 0.506161 0.493839 

Over20Y Black High High Handymax 0.436418 0.563582 

Over20Y Black High High Handysize 0.001225 0.998775 

Over20Y Black High High Panamax 0.510926 0.489074 

Over20Y Black High High Small 0.001377 0.998622 

Over20Y Black High Low Capesize 0.544272 0.455728 

Over20Y Black High Low Handymax 0.474572 0.525428 

Over20Y Black High Low Handysize 0.559007 0.440993 

Over20Y Black High Low Panamax 0.481589 0.518411 

Over20Y Black High Low Small 0.001343 0.998657 

Over20Y Black High Medium Capesize 0.477040 0.522960 

Over20Y Black High Medium Handymax 0.539265 0.460735 

Over20Y Black High Medium Handysize 0.001003 0.998997 

Over20Y Black High Medium Panamax 0.545160 0.454840 

Over20Y Black High Medium Small 0.001150 0.998850 

Over20Y Black High Very Low Capesize 0.574570 0.425430 

Over20Y Black High Very Low Handymax 0.544393 0.455607 

Over20Y Black High Very Low Handysize 0.001322 0.998678 

Over20Y Black High Very Low Panamax 0.544796 0.455204 

Over20Y Black High Very Low Small 0.001096 0.998904 

Over20Y Black High Capesize 0.998802 0.001199 

Over20Y Black High Handymax 0.998958 0.001042 

Over20Y Black High Handysize 0.998632 0.001368 

Over20Y Black High Panamax 0.998739 0.001261 

Over20Y Black High Small 0.001264 0.998736 
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Over20Y Black Low Capesize 0.541464 0.458536 

Over20Y Black Low Handymax 0.579570 0.420430 

Over20Y Black Low Handysize 0.001183 0.998817 

Over20Y Black Low Panamax 0.467310 0.532690 

Over20Y Black Low Small 0.001331 0.998669 

Over20Y Black Medium Capesize 0.519371 0.480629 

Over20Y Black Medium Handymax 0.519094 0.480906 

Over20Y Black Medium Handysize 0.001228 0.998772 

Over20Y Black Medium Panamax 0.532309 0.467691 

Over20Y Black Medium Small 0.001462 0.998538 

Over20Y Black Very Low Capesize 0.511952 0.488048 

Over20Y Black Very Low Handymax 0.500780 0.499220 

Over20Y Black Very Low Handysize 0.001644 0.998356 

Over20Y Black Very Low Panamax 0.457193 0.542807 

Over20Y Black Very Low Small 0.001554 0.998447 

Over20Y Grey High Capesize 0.449270 0.550730 

Over20Y Grey High Handymax 0.998573 0.001428 

Over20Y Grey High Handysize 0.998713 0.001287 

Over20Y Grey High Panamax 0.554821 0.445179 

Over20Y Grey High Small 0.998825 0.001175 

Over20Y Grey Low Capesize 0.482980 0.517020 

Over20Y Grey Low Handymax 0.523341 0.476660 

Over20Y Grey Low Handysize 0.000981 0.999019 

Over20Y Grey Low Panamax 0.552643 0.447357 

Over20Y Grey Low Small 0.001159 0.998841 

Over20Y Grey Medium Capesize 0.548354 0.451646 

Over20Y Grey Medium Handymax 0.474055 0.525945 

Over20Y Grey Medium Handysize 0.999057 0.000943 

Over20Y Grey Medium Panamax 0.508330 0.491670 

Over20Y Grey Medium Small 0.998793 0.001208 
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Over20Y Grey Very Low Capesize 0.536479 0.463521 

Over20Y Grey Very Low Handymax 0.517227 0.482773 

Over20Y Grey Very Low Handysize 0.001359 0.998641 

Over20Y Grey Very Low Panamax 0.494512 0.505488 

Over20Y Grey Very Low Small 0.001677 0.998323 

Over20Y White High Capesize 0.998626 0.001374 

Over20Y White High Handymax 0.998769 0.001231 

Over20Y White High Handysize 0.998476 0.001524 

Over20Y White High Panamax 0.998447 0.001553 

Over20Y White High Small 0.998442 0.001558 

Over20Y White Low Capesize 0.495746 0.504254 

Over20Y White Low Handymax 0.464595 0.535405 

Over20Y White Low Handysize 0.496204 0.503796 

Over20Y White Low Panamax 0.486205 0.513795 

Over20Y White Low Small 0.001225 0.998775 

Over20Y White Medium Capesize 0.551792 0.448208 

Over20Y White Medium Handymax 0.539596 0.460404 

Over20Y White Medium Handysize 0.998808 0.001192 

Over20Y White Medium Panamax 0.528448 0.471552 

Over20Y White Medium Small 0.998402 0.001598 

Over20Y White Very Low Capesize 0.500091 0.499909 

Over20Y White Very Low Handymax 0.473962 0.526038 

Over20Y White Very Low Handysize 0.520756 0.479244 

Over20Y White Very Low Panamax 0.421148 0.578852 

Over20Y White Very Low Small 0.001258 0.998742 

0to5Y Black High High Capesize 0.566632 0.433368 

0to5Y Black High High Handymax 0.471802 0.528198 

0to5Y Black High High Handysize 0.495600 0.504400 

0to5Y Black High High Panamax 0.568231 0.431769 

0to5Y Black High High Small 0.439828 0.560172 
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0to5Y Black High Low Capesize 0.539685 0.460315 

0to5Y Black High Low Handymax 0.521961 0.478039 

0to5Y Black High Low Handysize 0.520709 0.479291 

0to5Y Black High Low Panamax 0.449641 0.550359 

0to5Y Black High Low Small 0.522040 0.477960 

0to5Y Black High Medium Capesize 0.479162 0.520838 

0to5Y Black High Medium Handymax 0.483724 0.516276 

0to5Y Black High Medium Handysize 0.500785 0.499215 

0to5Y Black High Medium Panamax 0.491046 0.508955 

0to5Y Black High Medium Small 0.441957 0.558043 

0to5Y Black High Very Low Capesize 0.526667 0.473333 

0to5Y Black High Very Low Handymax 0.530375 0.469625 

0to5Y Black High Very Low Handysize 0.474196 0.525804 

0to5Y Black High Very Low Panamax 0.467143 0.532857 

0to5Y Black High Very Low Small 0.462267 0.537732 

0to5Y Black High Capesize 0.497098 0.502902 

0to5Y Black High Handymax 0.998795 0.001205 

0to5Y Black High Handysize 0.998749 0.001251 

0to5Y Black High Panamax 0.998657 0.001343 

0to5Y Black High Small 0.998996 0.001004 

0to5Y Black Low Capesize 0.493746 0.506254 

0to5Y Black Low Handymax 0.508484 0.491516 

0to5Y Black Low Handysize 0.555844 0.444156 

0to5Y Black Low Panamax 0.448002 0.551998 

0to5Y Black Low Small 0.560544 0.439456 

0to5Y Black Medium Capesize 0.509964 0.490036 

0to5Y Black Medium Handymax 0.493966 0.506033 

0to5Y Black Medium Handysize 0.484747 0.515253 

0to5Y Black Medium Panamax 0.555745 0.444255 

0to5Y Black Medium Small 0.503757 0.496243 
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0to5Y Black Very Low Capesize 0.470815 0.529185 

0to5Y Black Very Low Handymax 0.423796 0.576204 

0to5Y Black Very Low Handysize 0.427791 0.572209 

0to5Y Black Very Low Panamax 0.511001 0.488999 

0to5Y Black Very Low Small 0.503970 0.496030 

0to5Y Grey High Capesize 0.508868 0.491132 

0to5Y Grey High Handymax 0.998761 0.001239 

0to5Y Grey High Handysize 0.998764 0.001236 

0to5Y Grey High Panamax 0.490966 0.509034 

0to5Y Grey High Small 0.998673 0.001327 

0to5Y Grey Low Capesize 0.541796 0.458204 

0to5Y Grey Low Handymax 0.488519 0.511482 

0to5Y Grey Low Handysize 0.453426 0.546574 

0to5Y Grey Low Panamax 0.516532 0.483468 

0to5Y Grey Low Small 0.512979 0.487021 

0to5Y Grey Medium Capesize 0.464614 0.535386 

0to5Y Grey Medium Handymax 0.482553 0.517447 

0to5Y Grey Medium Handysize 0.998691 0.001309 

0to5Y Grey Medium Panamax 0.493251 0.506749 

0to5Y Grey Medium Small 0.486461 0.513539 

0to5Y Grey Very Low Capesize 0.483776 0.516224 

0to5Y Grey Very Low Handymax 0.528588 0.471412 

0to5Y Grey Very Low Handysize 0.474382 0.525618 

0to5Y Grey Very Low Panamax 0.481727 0.518273 

0to5Y Grey Very Low Small 0.998562 0.001438 

0to5Y White High Capesize 0.998605 0.001395 

0to5Y White High Handymax 0.998705 0.001295 

0to5Y White High Handysize 0.999039 0.000961 

0to5Y White High Panamax 0.998843 0.001157 

0to5Y White High Small 0.998463 0.001537 
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0to5Y White Low Capesize 0.452226 0.547773 

0to5Y White Low Handymax 0.498157 0.501843 

0to5Y White Low Handysize 0.428092 0.571908 

0to5Y White Low Panamax 0.512083 0.487917 

0to5Y White Low Small 0.472032 0.527968 

0to5Y White Medium Capesize 0.505572 0.494428 

0to5Y White Medium Handymax 0.515100 0.484900 

0to5Y White Medium Handysize 0.568382 0.431618 

0to5Y White Medium Panamax 0.504945 0.495055 

0to5Y White Medium Small 0.532736 0.467265 

0to5Y White Very Low Capesize 0.456676 0.543324 

0to5Y White Very Low Handymax 0.551240 0.448760 

0to5Y White Very Low Handysize 0.467653 0.532347 

0to5Y White Very Low Panamax 0.461626 0.538374 

0to5Y White Very Low Small 0.488329 0.511670 

10to15Y Black High High Capesize 0.498547 0.501453 

10to15Y Black High High Handymax 0.999041 0.000959 

10to15Y Black High High Handysize 0.531082 0.468918 

10to15Y Black High High Panamax 0.466351 0.533649 

10to15Y Black High High Small 0.486974 0.513026 

10to15Y Black High Low Capesize 0.538057 0.461943 

10to15Y Black High Low Handymax 0.513534 0.486466 

10to15Y Black High Low Handysize 0.521195 0.478805 

10to15Y Black High Low Panamax 0.472977 0.527023 

10to15Y Black High Low Small 0.512607 0.487393 

10to15Y Black High Medium Capesize 0.546693 0.453307 

10to15Y Black High Medium Handymax 0.472477 0.527523 

10to15Y Black High Medium Handysize 0.501000 0.499000 

10to15Y Black High Medium Panamax 0.531949 0.468051 

10to15Y Black High Medium Small 0.428476 0.571524 
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10to15Y Black High Very Low Capesize 0.501797 0.498203 

10to15Y Black High Very Low Handymax 0.510860 0.489140 

10to15Y Black High Very Low Handysize 0.506152 0.493848 

10to15Y Black High Very Low Panamax 0.485230 0.514770 

10to15Y Black High Very Low Small 0.506461 0.493539 

10to15Y Black High Capesize 0.998576 0.001424 

10to15Y Black High Handymax 0.999114 0.000886 

10to15Y Black High Handysize 0.998704 0.001296 

10to15Y Black High Panamax 0.998943 0.001057 

10to15Y Black High Small 0.999005 0.000995 

10to15Y Black Low Capesize 0.525703 0.474297 

10to15Y Black Low Handymax 0.542037 0.457963 

10to15Y Black Low Handysize 0.544487 0.455512 

10to15Y Black Low Panamax 0.554161 0.445839 

10to15Y Black Low Small 0.510337 0.489663 

10to15Y Black Medium Capesize 0.483290 0.516710 

10to15Y Black Medium Handymax 0.560303 0.439697 

10to15Y Black Medium Handysize 0.497507 0.502493 

10to15Y Black Medium Panamax 0.520582 0.479418 

10to15Y Black Medium Small 0.545295 0.454705 

10to15Y Black Very Low Capesize 0.532768 0.467232 

10to15Y Black Very Low Handymax 0.544874 0.455126 

10to15Y Black Very Low Handysize 0.505890 0.494110 

10to15Y Black Very Low Panamax 0.569973 0.430027 

10to15Y Black Very Low Small 0.491321 0.508679 

10to15Y Grey High Capesize 0.543605 0.456395 

10to15Y Grey High Handymax 0.998876 0.001124 

10to15Y Grey High Handysize 0.998497 0.001503 

10to15Y Grey High Panamax 0.998897 0.001103 

10to15Y Grey High Small 0.998828 0.001171 
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10to15Y Grey Low Capesize 0.438238 0.561762 

10to15Y Grey Low Handymax 0.515554 0.484446 

10to15Y Grey Low Handysize 0.506032 0.493968 

10to15Y Grey Low Panamax 0.467327 0.532673 

10to15Y Grey Low Small 0.452261 0.547739 

10to15Y Grey Medium Capesize 0.533832 0.466168 

10to15Y Grey Medium Handymax 0.998630 0.001370 

10to15Y Grey Medium Handysize 0.998891 0.001109 

10to15Y Grey Medium Panamax 0.483286 0.516714 

10to15Y Grey Medium Small 0.516806 0.483194 

10to15Y Grey Very Low Capesize 0.511030 0.488970 

10to15Y Grey Very Low Handymax 0.491322 0.508678 

10to15Y Grey Very Low Handysize 0.509913 0.490087 

10to15Y Grey Very Low Panamax 0.546176 0.453824 

10to15Y Grey Very Low Small 0.499749 0.500251 

10to15Y White High Capesize 0.998764 0.001236 

10to15Y White High Handymax 0.998480 0.001520 

10to15Y White High Handysize 0.998856 0.001144 

10to15Y White High Panamax 0.998962 0.001038 

10to15Y White High Small 0.998622 0.001378 

10to15Y White Low Capesize 0.546209 0.453791 

10to15Y White Low Handymax 0.560882 0.439118 

10to15Y White Low Handysize 0.001247 0.998753 

10to15Y White Low Panamax 0.530591 0.469409 

10to15Y White Low Small 0.529009 0.470991 

10to15Y White Medium Capesize 0.581359 0.418641 

10to15Y White Medium Handymax 0.568720 0.431280 

10to15Y White Medium Handysize 0.998775 0.001225 

10to15Y White Medium Panamax 0.497082 0.502918 

10to15Y White Medium Small 0.517365 0.482635 
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10to15Y White Very Low Capesize 0.497770 0.502230 

10to15Y White Very Low Handymax 0.472753 0.527247 

10to15Y White Very Low Handysize 0.565863 0.434137 

10to15Y White Very Low Panamax 0.439963 0.560037 

10to15Y White Very Low Small 0.522295 0.477705 

15to20Y Black High High Capesize 0.514493 0.485507 

15to20Y Black High High Handymax 0.462981 0.537019 

15to20Y Black High High Handysize 0.566093 0.433907 

15to20Y Black High High Panamax 0.528398 0.471602 

15to20Y Black High High Small 0.503993 0.496007 

15to20Y Black High Low Capesize 0.575465 0.424535 

15to20Y Black High Low Handymax 0.488846 0.511154 

15to20Y Black High Low Handysize 0.482407 0.517593 

15to20Y Black High Low Panamax 0.497981 0.502019 

15to20Y Black High Low Small 0.521280 0.478720 

15to20Y Black High Medium Capesize 0.454674 0.545326 

15to20Y Black High Medium Handymax 0.582944 0.417056 

15to20Y Black High Medium Handysize 0.454308 0.545692 

15to20Y Black High Medium Panamax 0.475279 0.524721 

15to20Y Black High Medium Small 0.494224 0.505776 

15to20Y Black High Very Low Capesize 0.492945 0.507056 

15to20Y Black High Very Low Handymax 0.576767 0.423233 

15to20Y Black High Very Low Handysize 0.522366 0.477634 

15to20Y Black High Very Low Panamax 0.511211 0.488789 

15to20Y Black High Very Low Small 0.569226 0.430774 

15to20Y Black High Capesize 0.517820 0.482180 

15to20Y Black High Handymax 0.998639 0.001361 

15to20Y Black High Handysize 0.998867 0.001133 

15to20Y Black High Panamax 0.998660 0.001340 

15to20Y Black High Small 0.999086 0.000914 
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15to20Y Black Low Capesize 0.504463 0.495537 

15to20Y Black Low Handymax 0.505465 0.494535 

15to20Y Black Low Handysize 0.477150 0.522850 

15to20Y Black Low Panamax 0.491531 0.508469 

15to20Y Black Low Small 0.514412 0.485588 

15to20Y Black Medium Capesize 0.455049 0.544951 

15to20Y Black Medium Handymax 0.440783 0.559217 

15to20Y Black Medium Handysize 0.998895 0.001105 

15to20Y Black Medium Panamax 0.467009 0.532991 

15to20Y Black Medium Small 0.001323 0.998677 

15to20Y Black Very Low Capesize 0.439175 0.560825 

15to20Y Black Very Low Handymax 0.443549 0.556452 

15to20Y Black Very Low Handysize 0.523307 0.476693 

15to20Y Black Very Low Panamax 0.472542 0.527458 

15to20Y Black Very Low Small 0.503639 0.496361 

15to20Y Grey High Capesize 0.475912 0.524088 

15to20Y Grey High Handymax 0.998778 0.001222 

15to20Y Grey High Handysize 0.998991 0.001009 

15to20Y Grey High Panamax 0.998612 0.001388 

15to20Y Grey High Small 0.001276 0.998724 

15to20Y Grey Low Capesize 0.472986 0.527014 

15to20Y Grey Low Handymax 0.525542 0.474458 

15to20Y Grey Low Handysize 0.535102 0.464898 

15to20Y Grey Low Panamax 0.559704 0.440296 

15to20Y Grey Low Small 0.525466 0.474534 

15to20Y Grey Medium Capesize 0.469900 0.530100 

15to20Y Grey Medium Handymax 0.998980 0.001020 

15to20Y Grey Medium Handysize 0.504219 0.495780 

15to20Y Grey Medium Panamax 0.484983 0.515017 

15to20Y Grey Medium Small 0.494845 0.505155 
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15to20Y Grey Very Low Capesize 0.535978 0.464022 

15to20Y Grey Very Low Handymax 0.449547 0.550453 

15to20Y Grey Very Low Handysize 0.498878 0.501122 

15to20Y Grey Very Low Panamax 0.552445 0.447555 

15to20Y Grey Very Low Small 0.487671 0.512330 

15to20Y White High Capesize 0.998669 0.001331 

15to20Y White High Handymax 0.998944 0.001056 

15to20Y White High Handysize 0.998735 0.001265 

15to20Y White High Panamax 0.998757 0.001243 

15to20Y White High Small 0.999013 0.000987 

15to20Y White Low Capesize 0.482941 0.517059 

15to20Y White Low Handymax 0.511710 0.488290 

15to20Y White Low Handysize 0.462059 0.537941 

15to20Y White Low Panamax 0.560295 0.439705 

15to20Y White Low Small 0.547264 0.452736 

15to20Y White Medium Capesize 0.505111 0.494889 

15to20Y White Medium Handymax 0.556827 0.443173 

15to20Y White Medium Handysize 0.511153 0.488847 

15to20Y White Medium Panamax 0.483683 0.516317 

15to20Y White Medium Small 0.460821 0.539179 

15to20Y White Very Low Capesize 0.485914 0.514086 

15to20Y White Very Low Handymax 0.456901 0.543099 

15to20Y White Very Low Handysize 0.430519 0.569480 

15to20Y White Very Low Panamax 0.490706 0.509294 

15to20Y White Very Low Small 0.454168 0.545832 

5to10Y Black High High Capesize 0.563230 0.436770 

5to10Y Black High High Handymax 0.505653 0.494347 

5to10Y Black High High Handysize 0.440018 0.559982 

5to10Y Black High High Panamax 0.503455 0.496545 

5to10Y Black High High Small 0.492448 0.507552 
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5to10Y Black High Low Capesize 0.494184 0.505816 

5to10Y Black High Low Handymax 0.472352 0.527648 

5to10Y Black High Low Handysize 0.527356 0.472644 

5to10Y Black High Low Panamax 0.458931 0.541069 

5to10Y Black High Low Small 0.451886 0.548114 

5to10Y Black High Medium Capesize 0.520759 0.479241 

5to10Y Black High Medium Handymax 0.436984 0.563016 

5to10Y Black High Medium Handysize 0.448729 0.551271 

5to10Y Black High Medium Panamax 0.474434 0.525566 

5to10Y Black High Medium Small 0.516272 0.483728 

5to10Y Black High Very Low Capesize 0.486962 0.513038 

5to10Y Black High Very Low Handymax 0.580543 0.419457 

5to10Y Black High Very Low Handysize 0.528309 0.471691 

5to10Y Black High Very Low Panamax 0.478332 0.521668 

5to10Y Black High Very Low Small 0.541163 0.458837 

5to10Y Black High Capesize 0.998546 0.001454 

5to10Y Black High Handymax 0.999013 0.000987 

5to10Y Black High Handysize 0.998856 0.001144 

5to10Y Black High Panamax 0.525954 0.474046 

5to10Y Black High Small 0.998838 0.001162 

5to10Y Black Low Capesize 0.470390 0.529610 

5to10Y Black Low Handymax 0.496039 0.503961 

5to10Y Black Low Handysize 0.546972 0.453028 

5to10Y Black Low Panamax 0.473791 0.526209 

5to10Y Black Low Small 0.511218 0.488782 

5to10Y Black Medium Capesize 0.568984 0.431016 

5to10Y Black Medium Handymax 0.427974 0.572026 

5to10Y Black Medium Handysize 0.461970 0.538030 

5to10Y Black Medium Panamax 0.497268 0.502732 

5to10Y Black Medium Small 0.501734 0.498266 
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5to10Y Black Very Low Capesize 0.528275 0.471725 

5to10Y Black Very Low Handymax 0.502837 0.497163 

5to10Y Black Very Low Handysize 0.544233 0.455767 

5to10Y Black Very Low Panamax 0.455283 0.544717 

5to10Y Black Very Low Small 0.480791 0.519209 

5to10Y Grey High Capesize 0.492491 0.507510 

5to10Y Grey High Handymax 0.999020 0.000980 

5to10Y Grey High Handysize 0.998717 0.001283 

5to10Y Grey High Panamax 0.460686 0.539314 

5to10Y Grey High Small 0.998769 0.001232 

5to10Y Grey Low Capesize 0.476762 0.523238 

5to10Y Grey Low Handymax 0.561636 0.438363 

5to10Y Grey Low Handysize 0.505199 0.494801 

5to10Y Grey Low Panamax 0.440672 0.559328 

5to10Y Grey Low Small 0.485221 0.514779 

5to10Y Grey Medium Capesize 0.484090 0.515910 

5to10Y Grey Medium Handymax 0.998644 0.001355 

5to10Y Grey Medium Handysize 0.999093 0.000907 

5to10Y Grey Medium Panamax 0.558847 0.441153 

5to10Y Grey Medium Small 0.998731 0.001269 

5to10Y Grey Very Low Capesize 0.545163 0.454837 

5to10Y Grey Very Low Handymax 0.518013 0.481987 

5to10Y Grey Very Low Handysize 0.497028 0.502972 

5to10Y Grey Very Low Panamax 0.557708 0.442292 

5to10Y Grey Very Low Small 0.998792 0.001208 

5to10Y White High Capesize 0.998652 0.001348 

5to10Y White High Handymax 0.998643 0.001357 

5to10Y White High Handysize 0.998739 0.001261 

5to10Y White High Panamax 0.431190 0.568810 

5to10Y White High Small 0.998809 0.001191 



218 

 

5to10Y White Low Capesize 0.484700 0.515300 

5to10Y White Low Handymax 0.536964 0.463036 

5to10Y White Low Handysize 0.998792 0.001208 

5to10Y White Low Panamax 0.499555 0.500445 

5to10Y White Low Small 0.453327 0.546673 

5to10Y White Medium Capesize 0.571370 0.428630 

5to10Y White Medium Handymax 0.478630 0.521370 

5to10Y White Medium Handysize 0.420012 0.579988 

5to10Y White Medium Panamax 0.523754 0.476246 

5to10Y White Medium Small 0.998459 0.001541 

5to10Y White Very Low Capesize 0.550783 0.449217 

5to10Y White Very Low Handymax 0.449154 0.550846 

5to10Y White Very Low Handysize 0.469060 0.530940 

5to10Y White Very Low Panamax 0.470361 0.529639 

5to10Y White Very Low Small 0.511081 0.488919 

 

Table Appendix 1.2. CPT of ‘Inspection group’ 

Port of inspection Type of inspection Number of deficiencies Low Detention Risk High Detention Risk 

Belgium Expanded Inspection 4to9 0.998672 0.001328 

Belgium Expanded Inspection More than 10 0.001474 0.998526 

Belgium Expanded Inspection 0 0.998588 0.001412 

Belgium Expanded Inspection 1to3 0.998693 0.001307 

Belgium Initial Inspection 4to9 0.998886 0.001114 

Belgium Initial Inspection More than 10 0.508011 0.491989 

Belgium Initial Inspection 0 0.998982 0.001018 

Belgium Initial Inspection 1to3 0.998892 0.001108 

Belgium More detailed Inspection 4to9 0.998702 0.001298 

Belgium More detailed Inspection More than 10 0.001630 0.998370 

Belgium More detailed Inspection 0 0.998878 0.001122 

Belgium More detailed Inspection 1to3 0.998792 0.001208 
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France Expanded Inspection 4to9 0.999023 0.000977 

France Expanded Inspection More than 10 0.001228 0.998772 

France Expanded Inspection 0 0.999027 0.000973 

France Expanded Inspection 1to3 0.999051 0.000949 

France Initial Inspection 4to9 0.998572 0.001428 

France Initial Inspection More than 10 0.998878 0.001122 

France Initial Inspection 0 0.998584 0.001416 

France Initial Inspection 1to3 0.999035 0.000965 

France More detailed Inspection 4to9 0.998629 0.001371 

France More detailed Inspection More than 10 0.001292 0.998708 

France More detailed Inspection 0 0.998896 0.001104 

France More detailed Inspection 1to3 0.998563 0.001437 

Germany Expanded Inspection 4to9 0.998665 0.001335 

Germany Expanded Inspection More than 10 0.001290 0.998710 

Germany Expanded Inspection 0 0.998803 0.001197 

Germany Expanded Inspection 1to3 0.998840 0.001160 

Germany Initial Inspection 4to9 0.998675 0.001325 

Germany Initial Inspection More than 10 0.565841 0.434159 

Germany Initial Inspection 0 0.998481 0.001519 

Germany Initial Inspection 1to3 0.998880 0.001120 

Germany More detailed Inspection 4to9 0.998734 0.001266 

Germany More detailed Inspection More than 10 0.001332 0.998668 

Germany More detailed Inspection 0 0.998962 0.001038 

Germany More detailed Inspection 1to3 0.998836 0.001164 

Italy Expanded Inspection 4to9 0.998855 0.001145 

Italy Expanded Inspection More than 10 0.001201 0.998799 

Italy Expanded Inspection 0 0.998706 0.001294 

Italy Expanded Inspection 1to3 0.998868 0.001132 

Italy Initial Inspection 4to9 0.998760 0.001240 

Italy Initial Inspection More than 10 0.514740 0.485260 
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Italy Initial Inspection 0 0.998763 0.001237 

Italy Initial Inspection 1to3 0.998552 0.001448 

Italy More detailed Inspection 4to9 0.998876 0.001124 

Italy More detailed Inspection More than 10 0.000955 0.999045 

Italy More detailed Inspection 0 0.998663 0.001337 

Italy More detailed Inspection 1to3 0.999127 0.000873 

Netherlands Expanded Inspection 4to9 0.998806 0.001194 

Netherlands Expanded Inspection More than 10 0.001520 0.998480 

Netherlands Expanded Inspection 0 0.998828 0.001172 

Netherlands Expanded Inspection 1to3 0.998811 0.001189 

Netherlands Initial Inspection 4to9 0.998627 0.001373 

Netherlands Initial Inspection More than 10 0.511498 0.488502 

Netherlands Initial Inspection 0 0.998754 0.001246 

Netherlands Initial Inspection 1to3 0.998768 0.001232 

Netherlands More detailed Inspection 4to9 0.998799 0.001201 

Netherlands More detailed Inspection More than 10 0.001244 0.998756 

Netherlands More detailed Inspection 0 0.998664 0.001336 

Netherlands More detailed Inspection 1to3 0.998896 0.001104 

Spain Expanded Inspection 4to9 0.998686 0.001314 

Spain Expanded Inspection More than 10 0.001059 0.998941 

Spain Expanded Inspection 0 0.998519 0.001481 

Spain Expanded Inspection 1to3 0.998380 0.001620 

Spain Initial Inspection 4to9 0.998973 0.001027 

Spain Initial Inspection More than 10 0.998712 0.001288 

Spain Initial Inspection 0 0.998492 0.001508 

Spain Initial Inspection 1to3 0.999004 0.000996 

Spain More detailed Inspection 4to9 0.998865 0.001135 

Spain More detailed Inspection More than 10 0.001362 0.998638 

Spain More detailed Inspection 0 0.998654 0.001346 

Spain More detailed Inspection 1to3 0.998589 0.001411 



221 

 

UK Expanded Inspection 4to9 0.998635 0.001365 

UK Expanded Inspection More than 10 0.001125 0.998875 

UK Expanded Inspection 0 0.998738 0.001262 

UK Expanded Inspection 1to3 0.998528 0.001472 

UK Initial Inspection 4to9 0.998838 0.001162 

UK Initial Inspection More than 10 0.001164 0.998836 

UK Initial Inspection 0 0.998960 0.001040 

UK Initial Inspection 1to3 0.998645 0.001355 

UK More detailed Inspection 4to9 0.998618 0.001382 

UK More detailed Inspection More than 10 0.001296 0.998704 

UK More detailed Inspection 0 0.998956 0.001044 

UK More detailed Inspection 1to3 0.998536 0.001464 
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Appendix Two Conditional Probability table of ‘Post-NIR’ BN model 

 

Table Appendix 2.1. CPT of ‘Vessel flag’ 

White Grey Black Black High 

0.966385  0.015013  0.010865  0.007737  

 

 

Table Appendix 2.2. CPT of ‘Vessel age’ 

0to5Y 5to10Y 10to15Y 15to20Y Over20Y 

0.263269 0.388449 0.187637 0.105098 0.055547 

 

 

Table Appendix 2.3. CPT of ‘Inspection date’ 

Y2015 Y2016 Y2017 

0.298343 0.408941 0.292717 

 

 

Table Appendix 2.4. CPT of ‘Port of inspection’ 

Belgium Canada France Germany Greece Italy Netherlands Spain UK 

0.060129 0.165029 0.078810 0.076657 0.088918 0.118866 0.147362 0.154592 0.109636 

 

 

Table Appendix 2.5. CPT of ‘Inspection type’ 

Initial Inspection Expanded Inspection More detailed Inspection 

0.344691 0.223446 0.431863 
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Table Appendix 2.6. CPT of ‘Company performance’ 

Vessel flag Vessel age High Medium Low Very low 

White 0to5Y 0.103702 0.784361 0.094985 0.016952 

White 5to10Y 0.066715 0.803925 0.093230 0.036130 

White 10to15Y 0.068996 0.664588 0.186930 0.079486 

White 15to20Y 0.067643 0.558777 0.260890 0.112690 

White Over20Y 0.032213 0.502782 0.213373 0.251632 

Grey 0to5Y 0.023868 0.958627 0.008714 0.008791 

Grey 5to10Y 0.030190 0.884997 0.030198 0.054615 

Grey 10to15Y 0.158135 0.481331 0.158143 0.202390 

Grey 15to20Y 0.009966 0.638256 0.192568 0.159209 

Grey Over20Y 0.009629 0.665282 0.051950 0.273140 

Black 0to5Y 0.008606 0.973096 0.009149 0.009149 

Black 5to10Y 0.010770 0.967459 0.010963 0.010808 

Black 10to15Y 0.012665 0.216921 0.106974 0.663440 

Black 15to20Y 0.012667 0.296666 0.096159 0.594508 

Black Over20Y 0.070320 0.373660 0.212134 0.343886 

Black (High) 0to5Y 0.222641 0.291587 0.243652 0.242120 

Black (High) 5to10Y 0.236069 0.238210 0.254883 0.270839 

Black (High) 10to15Y 0.245896 0.247057 0.268285 0.238762 

Black (High) 15to20Y 0.010848 0.010934 0.489779 0.488439 

Black (High) Over20Y 0.010541 0.010705 0.656032 0.322722 
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Table Appendix 2.7. CPT of ‘Number of deficiencies’ 

Inspection type Vessel group None 1to3 4to9 Morethan10 

Initial Inspection High Detention Risk 0.515492 0.386232 0.083816 0.014460 

Initial Inspection Low Detention Risk 0.667770 0.282785 0.039361 0.010084 

Expanded Inspection High Detention Risk 0.100674 0.287451 0.328104 0.283771 

Expanded Inspection Low Detention Risk 0.292678 0.401085 0.255760 0.050477 

More detailed Inspection High Detention Risk 0.186452 0.349807 0.263075 0.200666 

More detailed Inspection Low Detention Risk 0.485976 0.300957 0.186952 0.026114 

 

Table Appendix 2.8. CPT of ‘Vessel group’ 

Vessel flag Vessel age Company performance High Detention Risk Low Detention Risk 

White 0to5Y High 0.004537 0.995463 

White 0to5Y Medium 0.003798 0.996202 

White 0to5Y Low 0.003864 0.996136 

White 0to5Y Very low 0.995783 0.004217 

White 5to10Y High 0.003800 0.996200 

White 5to10Y Medium 0.003854 0.996146 

White 5to10Y Low 0.995554 0.004446 

White 5to10Y Very low 0.997017 0.002983 

White 10to15Y High 0.004118 0.995882 

White 10to15Y Medium 0.003207 0.996793 

White 10to15Y Low 0.002873 0.997127 

White 10to15Y Very low 0.995912 0.004088 

White 15to20Y High 0.003671 0.996329 

White 15to20Y Medium 0.003101 0.996899 

White 15to20Y Low 0.997281 0.002719 

White 15to20Y Very low 0.996162 0.003838 

White Over20Y High 0.003510 0.996490 

White Over20Y Medium 0.003958 0.996042 

White Over20Y Low 0.995615 0.004385 
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White Over20Y Very low 0.995895 0.004105 

Grey 0to5Y High 0.002980 0.997020 

Grey 0to5Y Medium 0.003945 0.996055 

Grey 0to5Y Low 0.512477 0.487523 

Grey 0to5Y Very low 0.500577 0.499423 

Grey 5to10Y High 0.002929 0.997071 

Grey 5to10Y Medium 0.003520 0.996480 

Grey 5to10Y Low 0.004595 0.995405 

Grey 5to10Y Very low 0.003786 0.996214 

Grey 10to15Y High 0.003465 0.996535 

Grey 10to15Y Medium 0.002854 0.997146 

Grey 10to15Y Low 0.003975 0.996025 

Grey 10to15Y Very low 0.995828 0.004172 

Grey 15to20Y High 0.523022 0.476978 

Grey 15to20Y Medium 0.004802 0.995198 

Grey 15to20Y Low 0.003686 0.996315 

Grey 15to20Y Very low 0.003316 0.996684 

Grey Over20Y High 0.568076 0.431924 

Grey Over20Y Medium 0.003902 0.996098 

Grey Over20Y Low 0.996155 0.003845 

Grey Over20Y Very low 0.996345 0.003655 

Black 0to5Y High 0.530280 0.469720 

Black 0to5Y Medium 0.004126 0.995874 

Black 0to5Y Low 0.466315 0.533685 

Black 0to5Y Very low 0.477942 0.522058 

Black 5to10Y High 0.536626 0.463374 

Black 5to10Y Medium 0.003894 0.996106 

Black 5to10Y Low 0.543236 0.456764 

Black 5to10Y Very low 0.536676 0.463324 

Black 10to15Y High 0.476661 0.523339 
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Black 10to15Y Medium 0.004508 0.995492 

Black 10to15Y Low 0.004687 0.995313 

Black 10to15Y Very low 0.004645 0.995355 

Black 15to20Y High 0.452878 0.547122 

Black 15to20Y Medium 0.003347 0.996653 

Black 15to20Y Low 0.004677 0.995323 

Black 15to20Y Very low 0.996187 0.003813 

Black Over20Y High 0.003228 0.996772 

Black Over20Y Medium 0.004600 0.995400 

Black Over20Y Low 0.995975 0.004025 

Black Over20Y Very low 0.996992 0.003008 

Black (High) 0to5Y High 0.537779 0.462221 

Black (High) 0to5Y Medium 0.467681 0.532319 

Black (High) 0to5Y Low 0.492068 0.507932 

Black (High) 0to5Y Very low 0.535406 0.464595 

Black (High) 5to10Y High 0.562635 0.437364 

Black (High) 5to10Y Medium 0.543569 0.456431 

Black (High) 5to10Y Low 0.495379 0.504621 

Black (High) 5to10Y Very low 0.439403 0.560597 

Black (High) 10to15Y High 0.526571 0.473429 

Black (High) 10to15Y Medium 0.470854 0.529146 

Black (High) 10to15Y Low 0.504326 0.495674 

Black (High) 10to15Y Very low 0.521695 0.478305 

Black (High) 15to20Y High 0.478636 0.521364 

Black (High) 15to20Y Medium 0.447775 0.552225 

Black (High) 15to20Y Low 0.004422 0.995578 

Black (High) 15to20Y Very low 0.004809 0.995191 

Black (High) Over20Y High 0.568038 0.431962 

Black (High) Over20Y Medium 0.430261 0.569739 

Black (High) Over20Y Low 0.996922 0.003078 
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Black (High) Over20Y Very low 0.997018 0.002983 

 

Table Appendix 2.9. CPT of ‘Inspection group’ 

Inspection port Date No. of deficiencies Inspection type High Risk Low Risk 

Belgium Y2015 None Initial inspection 0.003112  0.996889  

Belgium Y2015 None Expanded inspection 0.003529  0.996471  

Belgium Y2015 None More detailed inspection 0.003545  0.996455  

Belgium Y2015 1to3 Initial inspection 0.004226  0.995774  

Belgium Y2015 1to3 Expanded inspection 0.003712  0.996288  

Belgium Y2015 1to3 More detailed inspection 0.003831  0.996169  

Belgium Y2015 4to9 Initial inspection 0.004555  0.995445  

Belgium Y2015 4to9 Expanded inspection 0.004455  0.995545  

Belgium Y2015 4to9 More detailed inspection 0.003935  0.996065  

Belgium Y2015 Morethan10 Initial inspection 0.003987  0.996013  

Belgium Y2015 Morethan10 Expanded inspection 0.996410  0.003590  

Belgium Y2015 Morethan10 More detailed inspection 0.995239  0.004761  

Belgium Y2016 None Initial inspection 0.003619  0.996381  

Belgium Y2016 None Expanded inspection 0.537436  0.462564  

Belgium Y2016 None More detailed inspection 0.003569  0.996431  

Belgium Y2016 1to3 Initial inspection 0.003277  0.996723  

Belgium Y2016 1to3 Expanded inspection 0.002981  0.997019  

Belgium Y2016 1to3 More detailed inspection 0.004125  0.995875  

Belgium Y2016 4to9 Initial inspection 0.004153  0.995847  

Belgium Y2016 4to9 Expanded inspection 0.003210  0.996790  

Belgium Y2016 4to9 More detailed inspection 0.003872  0.996128  

Belgium Y2016 Morethan10 Initial inspection 0.445086  0.554914  

Belgium Y2016 Morethan10 Expanded inspection 0.996818  0.003183  

Belgium Y2016 Morethan10 More detailed inspection 0.995947  0.004054  

Belgium Y2017 None Initial inspection 0.004233  0.995767  

Belgium Y2017 None Expanded inspection 0.003668  0.996332  
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Belgium Y2017 None More detailed inspection 0.003986  0.996014  

Belgium Y2017 1to3 Initial inspection 0.004758  0.995242  

Belgium Y2017 1to3 Expanded inspection 0.004749  0.995251  

Belgium Y2017 1to3 More detailed inspection 0.004473  0.995527  

Belgium Y2017 4to9 Initial inspection 0.002894  0.997106  

Belgium Y2017 4to9 Expanded inspection 0.003572  0.996428  

Belgium Y2017 4to9 More detailed inspection 0.004771  0.995229  

Belgium Y2017 Morethan10 Initial inspection 0.440615  0.559385  

Belgium Y2017 Morethan10 Expanded inspection 0.996363  0.003637  

Belgium Y2017 Morethan10 More detailed inspection 0.995390  0.004610  

Canada Y2015 None Initial inspection 0.003824  0.996176  

Canada Y2015 None Expanded inspection 0.004661  0.995339  

Canada Y2015 None More detailed inspection 0.003514  0.996486  

Canada Y2015 1to3 Initial inspection 0.004399  0.995601  

Canada Y2015 1to3 Expanded inspection 0.003777  0.996223  

Canada Y2015 1to3 More detailed inspection 0.004762  0.995238  

Canada Y2015 4to9 Initial inspection 0.003139  0.996861  

Canada Y2015 4to9 Expanded inspection 0.003854  0.996145  

Canada Y2015 4to9 More detailed inspection 0.003110  0.996890  

Canada Y2015 Morethan10 Initial inspection 0.507885  0.492115  

Canada Y2015 Morethan10 Expanded inspection 0.995626  0.004374  

Canada Y2015 Morethan10 More detailed inspection 0.996840  0.003161  

Canada Y2016 None Initial inspection 0.003803  0.996197  

Canada Y2016 None Expanded inspection 0.003431  0.996569  

Canada Y2016 None More detailed inspection 0.004342  0.995658  

Canada Y2016 1to3 Initial inspection 0.003657  0.996343  

Canada Y2016 1to3 Expanded inspection 0.003227  0.996773  

Canada Y2016 1to3 More detailed inspection 0.003711  0.996289  

Canada Y2016 4to9 Initial inspection 0.003180  0.996820  

Canada Y2016 4to9 Expanded inspection 0.003163  0.996836  
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Canada Y2016 4to9 More detailed inspection 0.004109  0.995892  

Canada Y2016 Morethan10 Initial inspection 0.513746  0.486254  

Canada Y2016 Morethan10 Expanded inspection 0.996225  0.003775  

Canada Y2016 Morethan10 More detailed inspection 0.996366  0.003634  

Canada Y2017 None Initial inspection 0.004455  0.995545  

Canada Y2017 None Expanded inspection 0.005165  0.994835  

Canada Y2017 None More detailed inspection 0.004651  0.995349  

Canada Y2017 1to3 Initial inspection 0.004850  0.995150  

Canada Y2017 1to3 Expanded inspection 0.003360  0.996640  

Canada Y2017 1to3 More detailed inspection 0.003589  0.996411  

Canada Y2017 4to9 Initial inspection 0.004132  0.995868  

Canada Y2017 4to9 Expanded inspection 0.003907  0.996093  

Canada Y2017 4to9 More detailed inspection 0.003274  0.996727  

Canada Y2017 Morethan10 Initial inspection 0.445746  0.554254  

Canada Y2017 Morethan10 Expanded inspection 0.996828  0.003172  

Canada Y2017 Morethan10 More detailed inspection 0.995762  0.004238  

France Y2015 None Initial inspection 0.004048  0.995952  

France Y2015 None Expanded inspection 0.003568  0.996432  

France Y2015 None More detailed inspection 0.004357  0.995643  

France Y2015 1to3 Initial inspection 0.003242  0.996758  

France Y2015 1to3 Expanded inspection 0.004127  0.995873  

France Y2015 1to3 More detailed inspection 0.003087  0.996913  

France Y2015 4to9 Initial inspection 0.004376  0.995624  

France Y2015 4to9 Expanded inspection 0.003241  0.996759  

France Y2015 4to9 More detailed inspection 0.002795  0.997205  

France Y2015 Morethan10 Initial inspection 0.558207  0.441793  

France Y2015 Morethan10 Expanded inspection 0.996800  0.003200  

France Y2015 Morethan10 More detailed inspection 0.995654  0.004346  

France Y2016 None Initial inspection 0.002913  0.997087  

France Y2016 None Expanded inspection 0.003117  0.996883  
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France Y2016 None More detailed inspection 0.004079  0.995921  

France Y2016 1to3 Initial inspection 0.002993  0.997007  

France Y2016 1to3 Expanded inspection 0.002895  0.997105  

France Y2016 1to3 More detailed inspection 0.003730  0.996270  

France Y2016 4to9 Initial inspection 0.003998  0.996002  

France Y2016 4to9 Expanded inspection 0.004945  0.995055  

France Y2016 4to9 More detailed inspection 0.003875  0.996125  

France Y2016 Morethan10 Initial inspection 0.460867  0.539133  

France Y2016 Morethan10 Expanded inspection 0.996052  0.003948  

France Y2016 Morethan10 More detailed inspection 0.995445  0.004555  

France Y2017 None Initial inspection 0.004500  0.995500  

France Y2017 None Expanded inspection 0.003801  0.996199  

France Y2017 None More detailed inspection 0.005311  0.994689  

France Y2017 1to3 Initial inspection 0.004438  0.995562  

France Y2017 1to3 Expanded inspection 0.003922  0.996078  

France Y2017 1to3 More detailed inspection 0.004918  0.995082  

France Y2017 4to9 Initial inspection 0.444324  0.555676  

France Y2017 4to9 Expanded inspection 0.004218  0.995782  

France Y2017 4to9 More detailed inspection 0.004560  0.995440  

France Y2017 Morethan10 Initial inspection 0.495239  0.504762  

France Y2017 Morethan10 Expanded inspection 0.996885  0.003114  

France Y2017 Morethan10 More detailed inspection 0.996153  0.003847  

Germany Y2015 None Initial inspection 0.004030  0.995970  

Germany Y2015 None Expanded inspection 0.003720  0.996280  

Germany Y2015 None More detailed inspection 0.003878  0.996122  

Germany Y2015 1to3 Initial inspection 0.004235  0.995765  

Germany Y2015 1to3 Expanded inspection 0.003217  0.996783  

Germany Y2015 1to3 More detailed inspection 0.003421  0.996579  

Germany Y2015 4to9 Initial inspection 0.003402  0.996598  

Germany Y2015 4to9 Expanded inspection 0.995625  0.004375  
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Germany Y2015 4to9 More detailed inspection 0.003404  0.996596  

Germany Y2015 Morethan10 Initial inspection 0.453446  0.546554  

Germany Y2015 Morethan10 Expanded inspection 0.995929  0.004071  

Germany Y2015 Morethan10 More detailed inspection 0.995503  0.004496  

Germany Y2016 None Initial inspection 0.004115  0.995885  

Germany Y2016 None Expanded inspection 0.003026  0.996974  

Germany Y2016 None More detailed inspection 0.003939  0.996061  

Germany Y2016 1to3 Initial inspection 0.004582  0.995418  

Germany Y2016 1to3 Expanded inspection 0.005360  0.994640  

Germany Y2016 1to3 More detailed inspection 0.004060  0.995940  

Germany Y2016 4to9 Initial inspection 0.004008  0.995992  

Germany Y2016 4to9 Expanded inspection 0.996644  0.003356  

Germany Y2016 4to9 More detailed inspection 0.003861  0.996139  

Germany Y2016 Morethan10 Initial inspection 0.493506  0.506493  

Germany Y2016 Morethan10 Expanded inspection 0.996097  0.003903  

Germany Y2016 Morethan10 More detailed inspection 0.995420  0.004580  

Germany Y2017 None Initial inspection 0.003226  0.996774  

Germany Y2017 None Expanded inspection 0.004467  0.995533  

Germany Y2017 None More detailed inspection 0.004489  0.995511  

Germany Y2017 1to3 Initial inspection 0.003593  0.996407  

Germany Y2017 1to3 Expanded inspection 0.004088  0.995912  

Germany Y2017 1to3 More detailed inspection 0.003261  0.996739  

Germany Y2017 4to9 Initial inspection 0.003920  0.996081  

Germany Y2017 4to9 Expanded inspection 0.996516  0.003484  

Germany Y2017 4to9 More detailed inspection 0.996230  0.003770  

Germany Y2017 Morethan10 Initial inspection 0.484598  0.515402  

Germany Y2017 Morethan10 Expanded inspection 0.996492  0.003508  

Germany Y2017 Morethan10 More detailed inspection 0.997077  0.002923  

Greece Y2015 None Initial inspection 0.003171  0.996828  

Greece Y2015 None Expanded inspection 0.003988  0.996012  
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Greece Y2015 None More detailed inspection 0.004304  0.995696  

Greece Y2015 1to3 Initial inspection 0.003937  0.996063  

Greece Y2015 1to3 Expanded inspection 0.004157  0.995843  

Greece Y2015 1to3 More detailed inspection 0.004558  0.995442  

Greece Y2015 4to9 Initial inspection 0.003324  0.996676  

Greece Y2015 4to9 Expanded inspection 0.003916  0.996084  

Greece Y2015 4to9 More detailed inspection 0.004311  0.995689  

Greece Y2015 Morethan10 Initial inspection 0.561434  0.438566  

Greece Y2015 Morethan10 Expanded inspection 0.995858  0.004142  

Greece Y2015 Morethan10 More detailed inspection 0.995822  0.004178  

Greece Y2016 None Initial inspection 0.003714  0.996286  

Greece Y2016 None Expanded inspection 0.004652  0.995348  

Greece Y2016 None More detailed inspection 0.004262  0.995738  

Greece Y2016 1to3 Initial inspection 0.005111  0.994889  

Greece Y2016 1to3 Expanded inspection 0.003968  0.996032  

Greece Y2016 1to3 More detailed inspection 0.004324  0.995676  

Greece Y2016 4to9 Initial inspection 0.003597  0.996403  

Greece Y2016 4to9 Expanded inspection 0.002867  0.997133  

Greece Y2016 4to9 More detailed inspection 0.004206  0.995794  

Greece Y2016 Morethan10 Initial inspection 0.511858  0.488142  

Greece Y2016 Morethan10 Expanded inspection 0.997151  0.002849  

Greece Y2016 Morethan10 More detailed inspection 0.467093  0.532907  

Greece Y2017 None Initial inspection 0.003454  0.996546  

Greece Y2017 None Expanded inspection 0.004543  0.995457  

Greece Y2017 None More detailed inspection 0.003311  0.996688  

Greece Y2017 1to3 Initial inspection 0.003857  0.996143  

Greece Y2017 1to3 Expanded inspection 0.003981  0.996019  

Greece Y2017 1to3 More detailed inspection 0.004211  0.995789  

Greece Y2017 4to9 Initial inspection 0.004324  0.995676  

Greece Y2017 4to9 Expanded inspection 0.003366  0.996634  
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Greece Y2017 4to9 More detailed inspection 0.003025  0.996975  

Greece Y2017 Morethan10 Initial inspection 0.461432  0.538568  

Greece Y2017 Morethan10 Expanded inspection 0.996726  0.003274  

Greece Y2017 Morethan10 More detailed inspection 0.995970  0.004029  

Italy Y2015 None Initial inspection 0.004109  0.995891  

Italy Y2015 None Expanded inspection 0.004759  0.995241  

Italy Y2015 None More detailed inspection 0.003341  0.996659  

Italy Y2015 1to3 Initial inspection 0.003757  0.996243  

Italy Y2015 1to3 Expanded inspection 0.002981  0.997019  

Italy Y2015 1to3 More detailed inspection 0.003659  0.996341  

Italy Y2015 4to9 Initial inspection 0.003786  0.996214  

Italy Y2015 4to9 Expanded inspection 0.996957  0.003043  

Italy Y2015 4to9 More detailed inspection 0.995685  0.004315  

Italy Y2015 Morethan10 Initial inspection 0.476410  0.523590  

Italy Y2015 Morethan10 Expanded inspection 0.996170  0.003830  

Italy Y2015 Morethan10 More detailed inspection 0.995739  0.004261  

Italy Y2016 None Initial inspection 0.003553  0.996447  

Italy Y2016 None Expanded inspection 0.004660  0.995340  

Italy Y2016 None More detailed inspection 0.003241  0.996759  

Italy Y2016 1to3 Initial inspection 0.003751  0.996249  

Italy Y2016 1to3 Expanded inspection 0.003296  0.996704  

Italy Y2016 1to3 More detailed inspection 0.004040  0.995960  

Italy Y2016 4to9 Initial inspection 0.004738  0.995262  

Italy Y2016 4to9 Expanded inspection 0.003959  0.996041  

Italy Y2016 4to9 More detailed inspection 0.004701  0.995299  

Italy Y2016 Morethan10 Initial inspection 0.506178  0.493822  

Italy Y2016 Morethan10 Expanded inspection 0.996145  0.003855  

Italy Y2016 Morethan10 More detailed inspection 0.995801  0.004199  

Italy Y2017 None Initial inspection 0.003664  0.996336  

Italy Y2017 None Expanded inspection 0.003189  0.996811  
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Italy Y2017 None More detailed inspection 0.003587  0.996413  

Italy Y2017 1to3 Initial inspection 0.003376  0.996624  

Italy Y2017 1to3 Expanded inspection 0.003278  0.996722  

Italy Y2017 1to3 More detailed inspection 0.003255  0.996745  

Italy Y2017 4to9 Initial inspection 0.003444  0.996556  

Italy Y2017 4to9 Expanded inspection 0.996004  0.003996  

Italy Y2017 4to9 More detailed inspection 0.004040  0.995960  

Italy Y2017 Morethan10 Initial inspection 0.484736  0.515264  

Italy Y2017 Morethan10 Expanded inspection 0.996580  0.003421  

Italy Y2017 Morethan10 More detailed inspection 0.995777  0.004223  

Netherlands Y2015 None Initial inspection 0.003774  0.996226  

Netherlands Y2015 None Expanded inspection 0.004955  0.995045  

Netherlands Y2015 None More detailed inspection 0.003583  0.996417  

Netherlands Y2015 1to3 Initial inspection 0.005318  0.994682  

Netherlands Y2015 1to3 Expanded inspection 0.004007  0.995993  

Netherlands Y2015 1to3 More detailed inspection 0.003715  0.996285  

Netherlands Y2015 4to9 Initial inspection 0.003709  0.996291  

Netherlands Y2015 4to9 Expanded inspection 0.003163  0.996837  

Netherlands Y2015 4to9 More detailed inspection 0.004276  0.995724  

Netherlands Y2015 Morethan10 Initial inspection 0.554601  0.445399  

Netherlands Y2015 Morethan10 Expanded inspection 0.995449  0.004551  

Netherlands Y2015 Morethan10 More detailed inspection 0.995835  0.004165  

Netherlands Y2016 None Initial inspection 0.003253  0.996746  

Netherlands Y2016 None Expanded inspection 0.003566  0.996435  

Netherlands Y2016 None More detailed inspection 0.004713  0.995287  

Netherlands Y2016 1to3 Initial inspection 0.003597  0.996403  

Netherlands Y2016 1to3 Expanded inspection 0.005138  0.994862  

Netherlands Y2016 1to3 More detailed inspection 0.004411  0.995589  

Netherlands Y2016 4to9 Initial inspection 0.004709  0.995291  

Netherlands Y2016 4to9 Expanded inspection 0.003701  0.996299  
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Netherlands Y2016 4to9 More detailed inspection 0.004005  0.995995  

Netherlands Y2016 Morethan10 Initial inspection 0.003219  0.996781  

Netherlands Y2016 Morethan10 Expanded inspection 0.996249  0.003751  

Netherlands Y2016 Morethan10 More detailed inspection 0.995352  0.004648  

Netherlands Y2017 None Initial inspection 0.003621  0.996379  

Netherlands Y2017 None Expanded inspection 0.004879  0.995121  

Netherlands Y2017 None More detailed inspection 0.004316  0.995684  

Netherlands Y2017 1to3 Initial inspection 0.003735  0.996265  

Netherlands Y2017 1to3 Expanded inspection 0.004371  0.995628  

Netherlands Y2017 1to3 More detailed inspection 0.002932  0.997069  

Netherlands Y2017 4to9 Initial inspection 0.004090  0.995910  

Netherlands Y2017 4to9 Expanded inspection 0.003900  0.996100  

Netherlands Y2017 4to9 More detailed inspection 0.004105  0.995895  

Netherlands Y2017 Morethan10 Initial inspection 0.003591  0.996409  

Netherlands Y2017 Morethan10 Expanded inspection 0.996908  0.003092  

Netherlands Y2017 Morethan10 More detailed inspection 0.996321  0.003679  

Spain Y2015 None Initial inspection 0.003381  0.996619  

Spain Y2015 None Expanded inspection 0.003012  0.996988  

Spain Y2015 None More detailed inspection 0.003356  0.996644  

Spain Y2015 1to3 Initial inspection 0.004245  0.995755  

Spain Y2015 1to3 Expanded inspection 0.004013  0.995987  

Spain Y2015 1to3 More detailed inspection 0.004999  0.995001  

Spain Y2015 4to9 Initial inspection 0.003946  0.996054  

Spain Y2015 4to9 Expanded inspection 0.003243  0.996757  

Spain Y2015 4to9 More detailed inspection 0.003220  0.996780  

Spain Y2015 Morethan10 Initial inspection 0.558074  0.441926  

Spain Y2015 Morethan10 Expanded inspection 0.995809  0.004191  

Spain Y2015 Morethan10 More detailed inspection 0.996274  0.003726  

Spain Y2016 None Initial inspection 0.003787  0.996213  

Spain Y2016 None Expanded inspection 0.004016  0.995984  
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Spain Y2016 None More detailed inspection 0.004230  0.995770  

Spain Y2016 1to3 Initial inspection 0.003490  0.996510  

Spain Y2016 1to3 Expanded inspection 0.004097  0.995903  

Spain Y2016 1to3 More detailed inspection 0.003407  0.996593  

Spain Y2016 4to9 Initial inspection 0.003384  0.996616  

Spain Y2016 4to9 Expanded inspection 0.003463  0.996537  

Spain Y2016 4to9 More detailed inspection 0.003359  0.996641  

Spain Y2016 Morethan10 Initial inspection 0.511028  0.488972  

Spain Y2016 Morethan10 Expanded inspection 0.995572  0.004428  

Spain Y2016 Morethan10 More detailed inspection 0.996374  0.003626  

Spain Y2017 None Initial inspection 0.002904  0.997096  

Spain Y2017 None Expanded inspection 0.003140  0.996860  

Spain Y2017 None More detailed inspection 0.004077  0.995923  

Spain Y2017 1to3 Initial inspection 0.003251  0.996749  

Spain Y2017 1to3 Expanded inspection 0.003153  0.996847  

Spain Y2017 1to3 More detailed inspection 0.004403  0.995597  

Spain Y2017 4to9 Initial inspection 0.003718  0.996282  

Spain Y2017 4to9 Expanded inspection 0.003452  0.996548  

Spain Y2017 4to9 More detailed inspection 0.002967  0.997033  

Spain Y2017 Morethan10 Initial inspection 0.529706  0.470294  

Spain Y2017 Morethan10 Expanded inspection 0.995537  0.004463  

Spain Y2017 Morethan10 More detailed inspection 0.995494  0.004506  

UK Y2015 None Initial inspection 0.003929  0.996071  

UK Y2015 None Expanded inspection 0.004734  0.995266  

UK Y2015 None More detailed inspection 0.003081  0.996920  

UK Y2015 1to3 Initial inspection 0.003331  0.996669  

UK Y2015 1to3 Expanded inspection 0.004501  0.995499  

UK Y2015 1to3 More detailed inspection 0.003963  0.996037  

UK Y2015 4to9 Initial inspection 0.003667  0.996333  

UK Y2015 4to9 Expanded inspection 0.996620  0.003380  
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UK Y2015 4to9 More detailed inspection 0.003359  0.996641  

UK Y2015 Morethan10 Initial inspection 0.528948  0.471052  

UK Y2015 Morethan10 Expanded inspection 0.996939  0.003061  

UK Y2015 Morethan10 More detailed inspection 0.996657  0.003343  

UK Y2016 None Initial inspection 0.003120  0.996880  

UK Y2016 None Expanded inspection 0.003366  0.996634  

UK Y2016 None More detailed inspection 0.004119  0.995881  

UK Y2016 1to3 Initial inspection 0.004365  0.995635  

UK Y2016 1to3 Expanded inspection 0.003230  0.996770  

UK Y2016 1to3 More detailed inspection 0.003753  0.996247  

UK Y2016 4to9 Initial inspection 0.003699  0.996301  

UK Y2016 4to9 Expanded inspection 0.995960  0.004040  

UK Y2016 4to9 More detailed inspection 0.003015  0.996985  

UK Y2016 Morethan10 Initial inspection 0.452298  0.547702  

UK Y2016 Morethan10 Expanded inspection 0.995633  0.004367  

UK Y2016 Morethan10 More detailed inspection 0.996003  0.003997  

UK Y2017 None Initial inspection 0.003586  0.996414  

UK Y2017 None Expanded inspection 0.005043  0.994957  

UK Y2017 None More detailed inspection 0.004027  0.995973  

UK Y2017 1to3 Initial inspection 0.003075  0.996925  

UK Y2017 1to3 Expanded inspection 0.004313  0.995687  

UK Y2017 1to3 More detailed inspection 0.003981  0.996019  

UK Y2017 4to9 Initial inspection 0.003638  0.996362  

UK Y2017 4to9 Expanded inspection 0.995778  0.004222  

UK Y2017 4to9 More detailed inspection 0.004144  0.995856  

UK Y2017 Morethan10 Initial inspection 0.004030  0.995970  

UK Y2017 Morethan10 Expanded inspection 0.996008  0.003992  

UK Y2017 Morethan10 More detailed inspection 0.996477  0.003523  
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Table Appendix 2.10. CPT of ‘Detention’ 

Vessel group Inspection group Yes No 

High Detention Risk High Detention Risk 0.587624  0.412375  

High Detention Risk Low Detention Risk 0.062388  0.937612  

Low Detention Risk High Detention Risk 0.172431  0.827569  

Low Detention Risk Low Detention Risk 0.004550  0.995450  

 

 


