
BERTH SCHEDULING AT

SEAPORTS: META-HEURISTICS

AND SIMULATION

RAN WANG

A thesis submitted in partial fulfilment of the requirements of Liverpool John

Moores University for the degree of Doctor of Philosophy

October 2018

Abstract

This research aims to develop realistic solutions to enhance the efficiency of port opera-

tions. By conducting a comprehensive literature review on logistic problems at seaports,

some important gaps have been identified for the first time. The following contributions

are made in order to close some of the existing gaps.

Firstly, this thesis identifies important realistic features which have not been well-studied

in current academic research of berth planning. This thesis then aims to solve a discrete

dynamic Berth allocation problem (BAP) while taking tidal constraints into account. As

an important feature when dealing with realistic scheduling, changing tides have not been

well-considered in BAPs. To the best of our knowledge, there is no existing work using

meta-heuristics to tackle the BAP with multiple tides that can provide feasible solutions

for all the test cases. We propose one single-point meta-heuristic and one population-

based meta-heuristic. With our algorithms, we meet the following goals: (i) to minimise

the cost of all vessels while staying in the port, and (ii) to schedule available berths for

the arriving vessels taking into account a multi-tidal planning horizon. Comprehensive

experiments are conducted in order to analyse the strengths and weaknesses of the

algorithms and compare with both exact and approximate methods.

Furthermore, lacking tools for examining existing algorithms for different optimisation

problems and simulating real-world scenarios is identified as another gap in this study.

This thesis develops a discrete-event simulation framework. The framework is able to

generate test cases for different problems and provide visualisations. With this frame-

work, contributions include assessing the performance of different algorithms for opti-

misation problems and benchmarking optimisation problems.

ii

Acknowledgements

I would like to express my deepest and sincerest gratitude to my supervisor Dr. Trung

Thanh Nguyen. Without his guidance, this PhD thesis would not have been possible. In

the past three years, he has provided me with invaluable advice, constant encouragement

and generous financial support. I feel extremely fortunate to work with him. He has

always been open for discussion and has helped me with his knowledge and expertise as

much as he could. I was given various great opportunities to deepen my research and

experience in this field. I learned a lot from him, and I cannot thank him enough.

I also owe special thanks to my second supervisor Dr. Shayan Kavakeb for giving me so

much helpful advice and generously sharing his experience. I gratefully appreciate his

effort. My sincere thanks also go to Prof. Zaili Yang, Charly, Yannis, Daniel, Igor and

Ahmed for their support and insightful suggestions.

I gratefully acknowledge the funding sources that supported my PhD study. I was funded

by the Dean’s Scholarship from the Faculty of Engineering and Technology, Liverpool

John Moores University and the European EC-China Research Network on Integrated

Container Supply Chains (ENRICH) project.

I also would like to thank my friends in Liverpool and in China for their support and

company. Special thanks go to Dr. Rui Zhu for all her encouragement. I feel very lucky

to have shared pleasant time with such a wonderful friend.

Lastly, no word can express my gratitude to my family, especially to my mum, who has

given me everything. I would like to thank her for always supporting me and encouraging

me to pursue what I want in my life. Without their unconditional love, I could not have

completed this long journey.

This thesis is dedicated to my family.

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables viii

Abbreviations ix

1 Introduction 1

1.1 Port operations and optimisation problems 1

1.2 A case study of optimisation problems in port operations 2

1.3 Scope of the thesis . 4

1.4 General research questions . 5

1.5 Outline of the thesis . 6

1.6 Articles resulting from this thesis . 7

2 Literature review 9

2.1 BAPs . 9

2.1.1 Categories and attributes . 9

2.1.2 Optimisation approaches for BAPs 10

2.1.2.1 Exact methods . 10

2.1.2.2 Heuristics . 12

2.1.2.3 Meta-heuristics . 12

2.1.3 Discussions on optimisation approaches of BAPs 22

2.2 Simulation at ports . 24

2.2.1 Introduction of simulation . 24

2.2.2 Applications of simulation in port operations 25

2.2.3 Discussion on simulation integrated with optimisation 27

2.3 Summary . 27

3 Solving berth allocation problems with multi-tidal windows using Levy
flight 29

3.1 Introduction . 29

3.2 Problem description . 33

3.2.1 Assumptions . 33

3.2.2 Notations . 34

iv

Contents v

3.2.3 Mathematical model . 34

3.2.4 The sensitivity of tidal constraints to BAPs 37

3.2.5 Potential extensions for practical uses 37

3.2.5.1 Time window . 38

3.2.5.2 Stochastic processing time 38

3.3 Levy flight for BAPs with multi-tidal windows 39

3.3.1 First phase . 41

3.3.1.1 Encoding . 41

3.3.1.2 Adapting Levy flight walks to the BAP 41

3.3.1.3 Decoding . 44

3.3.2 Second phase . 44

3.3.3 Computational experiments . 45

3.3.3.1 Comparing with an exact method and a heuristic 48

3.3.3.2 Sensitivity analysis of LF-BAP 50

3.3.3.3 Computational results . 54

3.4 Conclusion . 61

4 Solving berth allocation problems with multi-tidal windows using Ge-
netic algorithm 62

4.1 Introduction . 62

4.2 Genetic algorithm for BAPs . 63

4.2.1 Chromosome representation . 63

4.2.2 Description of the GA procedure 66

4.2.2.1 Initialisation . 66

4.2.2.2 Elitism strategy . 67

4.2.2.3 Mutation . 67

4.2.2.4 Crossover and Tournament selection 67

4.2.2.5 Decoding and intensification 68

4.2.3 Computational experiments . 71

4.2.3.1 An analysis of GA with multiple operators 71

4.2.3.2 Comparison with existing work 71

4.3 Study of meta-heuristics on BAPs . 79

4.4 Conclusion . 84

5 A framework of discrete event simulation 85

5.1 Introduction . 85

5.2 The framework description . 87

5.2.1 Simulator in the framework . 87

5.2.2 Instructions of the framework . 88

5.3 A case study of Bin packing problems . 90

5.3.1 Simulation process . 93

5.3.2 Generating test problems . 93

5.3.3 Algorithms integration . 95

5.3.3.1 Developing a new online algorithm for 3D BPPs 97

5.3.4 Experiment . 99

5.4 A case study of Berth allocation problems 101

5.4.1 Developing a simulation model of BAP 101

Contents vi

5.4.2 Experiment . 104

5.5 Conclusion . 106

6 Conclusion and future work 107

6.1 Summary of contributions . 107

6.2 Future work . 108

Bibliography 110

List of Figures

1.1 An example of different terminals and locks in Port of Liverpool [Peel
Ports Group, 2016]. 4

3.1 Tides are influenced by the sun and the moon [timeanddate.com, 2018]. . 30

3.2 An example of the tidal range. 30

3.3 An example of the layout of a discrete BAP and a hybrid BAP. 32

3.4 A feasible solution of the example instance given in Table 3.3 49

3.5 The impact of different parameter settings on computational time with
fixed l0 and β, respectively. 52

3.6 Comparison of three algorithms in terms of average running time and objective

values. 59

3.7 The coefficient of variation represents the robustness of LF-BAP 60

4.1 Mutation for berths . 68

4.2 Mutation for vessels . 68

4.3 The distribution of the total number of generations taken by GA with
different operators. 72

4.4 The distribution of the objective value achieved by GA with different operators. 73

5.1 Framework structure. 88

5.2 Flow chart of the framework . 89

5.3 Examples of some objects in the real-world case study Bin packing problems. 91

5.4 Example of item, bin, and layer in 3D . 97

5.5 Example of packing in a layer in 2D using Algorithm 11. 98

5.6 A 3D view of the online bin packing process, as displayed by our framework.101

5.7 A UML diagram of the existing JaamSim structure with the newly defined
objects . 102

5.8 A flowchart of the BAP simulation using the framework. 103

5.9 Relevent information of vessels in simulation. 103

5.10 A screenshot of the statistics and the simulation. 105

vii

List of Tables

3.1 Example of available berths to vessels . 37

3.2 Example of encoding a solution given priorities of vessels 41

3.3 An example instance using notations from Section 3.2.2 49

3.4 Parameter settings . 50

3.5 Summary of the comparison between LF-BAP and CPLEX-BAP 53

3.6 A comparison of average objective values and average computational time
between H-BAP, CPLEX-BAP and LF-BAP on instances Set I and II. . . 55

3.7 Computational results on large scale data Set III. 56

3.8 Computational results on large scale data Set IV. 57

4.1 An example of the chromosome in GA . 65

4.2 GA with different operations . 71

4.3 List of instances tested for GA with different operators and their combi-
nations . 71

4.4 Summary of the comparison between GA and CPLEX-BAP 75

4.5 A comparison of average objective values and average computational time
between H-BAP, CPLEX-BAP and GA on Set I and II 76

4.6 A comparison of average objective values and average computational time
between H-BAP, CPLEX-BAP and GA on Set III and IV 77

4.7 A comparison of average objective values and average computational time
between H-BAP, CPLEX-BAP and GA on Set IV 78

4.8 A comparison between LF-BAP, GA and PSO on Set I and II 81

4.9 A comparison between LF-BAP, GA and PSO on Set III 82

4.10 A comparison between LF-BAP, GA and PSO on Set IV 83

5.1 The format of input for bin number minimisation 94

5.2 Example of the problem instances generated by the framework 96

5.3 Bin packing results. 100

5.4 Berth allocation results. 105

viii

Abbreviations

AGWO Adaptive Grey Wolf Optimiser

ALNS Adaptive Large Neighbourhood Structure

BAP Berth Allocation Problem

BPP Bin Packing Problem

CV Coefficient of Variation

DBAP Dynamic Berth Allocation Problem

FCFS First-Come-First-Serve

GA Genetic Algorithm

GNS Guided Neighbourhood Search

GRASP Greedy Randomized Adaptive Search Procedure

MA Memetic Algorithm

POPMUSIC Partial Optimisation Meta-heuristics Under Special Intensification Conditions

PSO Particle Swarm Optimisation

QC Quay Crane

SA Simulated Annealing

SBAP Static Berth Allocation Problem

SWO Squeaky Wheel Optimisation

TS Tabu Search

VND Variable Neighbourhood Descent

VNS Variable Neighbourhood Search

WSPT Weighted Shortest Processing Time

2D Two-Dimensional

3D Three-Dimensional

ix

Chapter 1

Introduction

The economic globalisation has been greatly boosting the amount of international trade.

Container trade is one of the areas experiencing fast growth. The scale of import and

export keeps expanding, hence, optimising the efficiency of port operations is vital for the

mobility of goods. Applying optimisation techniques to container seaports has become

an active research topic during the last few decades. Due to the wide variety of problems

in port operations, current academic research may not have covered all the specific

requirements of the industry. The main purpose of this thesis is to investigate some

operational problems at ports, especially the berth planning problem, and to propose

solutions to close some of the gaps.

1.1 Port operations and optimisation problems

Port operations are mainly categorised into areas such as berth, quay, transport area,

storage yard, and terminal gate. Berth and quay are considered seaside, while storage

yard and terminal gate are considered landside [Vis and De Koster, 2003]. In general,

a transportation process at terminals starts from assigning vessels to berths. To do the

unloading, a vessel has to moor at a berth and then quay cranes are used to unload

containers from the vessel onto vehicles. Transport vehicles move containers from the

quay to the storage yard which is an area to store containers temporarily. Containers

at the storage yard will be transported to another vessel or imported to land according

to the schedule. If containers are transported to another vessel, they will be moved by

1

2

vehicles back to the seaside. If containers are going to be imported to land, they will be

transported through the terminal gate.

According to UNCTAD 2015, the volume of container trade has shown a significant

annual increase in recent decades. Due to the growing global maritime trade, the de-

velopment of the supply chain network and the logistical operations has become even

more challenging nowadays. The demand of loading and unloading cargos is significantly

high. In reality, most of the time ports are not operating at 100% capacity and quays are

under-utilised. For example, manual processes are still highly involved in berth schedul-

ing. In order to continually adapt to the global supply chain, efficient port operations

with up-to-date technologies are essential.

To link seaside and landside efficiently, a number of logistics optimisation problems in

port operations have been studied relating to vehicles, vessels and loading and unloading.

Recent trends and development in maritime transport and port operations with regards

to optimisation problems have been summarised in Bierwirth and Meisel [2015]. Logistics

optimisation problems have been widely studied in many fields such as transportation,

scheduling, resource allocation etc. The level of complexity of this kind of problem

is normally high when considering many constraints to simulate real-world scenarios.

Optimisation methods frequently used to solve hard and complex problems include linear

programming, branch and bound, evolutionary algorithms etc.

1.2 A case study of optimisation problems in port opera-

tions

A real-world optimisation problem is explained in this section for demonstration: a

berth allocation problem (BAP). The aim of BAPs is to schedule a set of vessels that

are arriving at a terminal of a port. Before arrival, there are a number of factors to

consider for berthing a vessel. The vessel information needed normally includes the

measurements (the length and the draft), the expected arrival time, the handling time

and necessary resources for loading and unloading.

In the Port of Liverpool, there are multiple docks for handling different vessels. A dock

is an area of water that can be closed off and that is made for transferring cargoes. For

3

the purpose of sending vessels to an area of water, the lock system is built. In a port,

there are usually a number of locks for different destinations and specific purposes. If a

vessel is entering a dock and the water level outside is different from that of the dock,

the lock system is able to raise or lower the vessel in order to match the water level

of the destination. Sometimes a vessel travelling outward through the lock can cause a

decrease of the water level inside the dock. Some locking operations can only be done

within certain water levels.

The tide is an influential factor of changing the water level. The height of the tide is

cyclical. In the Port of Liverpool, the water level varies frequently due to the nature of

fast changing tides. There are four tidal windows including two high tides and two low

tides per day. When berthing at a dock and getting in and out of a lock, the water level

at current tide has to be higher than the draft of the vessel. The complexity of this kind

of berth planning is usually high if considering the changing of water levels. For such a

busy port, failing to schedule the operations efficiently can generate a huge cost.

Furthermore, inside each lock there are multiple berths, each is suitable only to certain

types of vessels due to their length, water depth, and availability of resources. For

example, the Royal Seaforth terminal includes different berths suitable for different

types of vessels carrying containers, oil, timber, fruit and vegetables, grain, animal food,

and ferries go through the Gladstone lock (Fig. 1.1). The shipment of scrap metal and

biomass power plants is sent to the Alexandra dock through the Langton lock. In order

to manage the shipping in the Port of Liverpool, incoming vessels have to confirm the

expected time of arrival with the terminal operator not later than ten days prior. The

tides and details of shipment have to be agreed in advance as well.

In summary, multiple conditions need to be satisfied in order to arrange berths and

resources for incoming vessels in real-world scenarios such as: 1) different types of vessels

have to go to different berths; 2) the dimensions of vessels are also restricted since the

draft available is subject to the height of tide, length of berths, available resources among

other things; 3) the decision has to be made in advance according to the current schedule;

4) the schedule can be changed due to the uncertainty such as a delay of arrival. In the

event of failure to optimise the schedule, the port and the shipowner may face a heavy

penalty due to the time lost or work delayed.

4

Figure 1.1: An example of different terminals and locks in Port of Liverpool [Peel
Ports Group, 2016].

1.3 Scope of the thesis

Because the range of optimisation problems at ports are wide and diverse, it is impossible

to cover all the topics in this thesis. We will focus on BAPs and port simulations. In

port operation planning, the BAP is considered a significant part of the planning. On

the port side, an efficient schedule determines how many vessels a terminal is able to

serve in a day and how much cost or benefit it will produce. On the fleet side, the

schedule determines the time the vessel should arrive at the berth, which berth to arrive

at and the associated cost. There are many factors influencing the whole scheduling

procedure, such as the arrangement of resources, the availability of berths and the

required departure time of vessels. The berth allocation can be the most expensive one

out of all port operations, because if a vessel has to stay for longer (e.g. due to low tides

or congestions), the shipping line may face a delay and an entire goods supply chain

can be affected internationally. If a vessel cannot be admitted in certain time windows,

the resources may be occupied over time and the port may have to pay heavy penalty

depending on the contractual agreements.

5

Since real-world problems in port operations are always complex with stochastic ele-

ments, a simulation is often the solution to evaluate the feasibility and performance

of an algorithmic solution. One of the major advantages of simulation at ports, is to

investigate potential influences such as incremental cost and port congestion, of a de-

velopment before actually applying it to a port. The proposed improvement can be

monitored and estimated from a global perspective with simulations. Thus, it is also

meaningful to investigate the port simulations in the thesis.

1.4 General research questions

The study in this thesis begins with some general questions. Through investigating these

general research questions in the field of BAPs and port simulations, some definitions

get clear and gaps are identified. With a clearer view of the field and the gap, specific

research questions will be raised. The following parts will look for the answers of more

specific questions. My general questions include:

What are the gaps between academic BAPs and real-world scenarios? What is the cur-

rent situation of port simulations in academic research? Is there any practical feature

important but has not been studied well in academic research?

In order to answer these questions, a comprehensive literature review is carried out. In

Chapter 2, how BAPs and simulations have been addressed is investigated. Aspects

in the literature that we look at include problem definitions, optimisation approaches,

performance measures, benchmark problems and simulation applications. Therefore, we

will have wide knowledge of this field and insights of the gaps. Once we have identified

the gaps, more specific questions like below will be asked.

If we have found some weaknesses in the problems, what are the most important ones

that we should study and why?

The solution to answer the question above can be converted to even more specific ques-

tions in terms of how to fill the gap. Further questions are raised as follows.

How do we improve current situations? More importantly, how can we effectively solve

these problems?

6

In the rest of the thesis, our research will focus on finding the questions above and

solving the problem to fill the gap.

1.5 Outline of the thesis

This thesis is an exploration following the research questions above. It is organised as

follows: Chapter 2 reviews the related literature on BAPs and simulations at seaports.

It studies: 1) what constraints and features are included in BAPs; 2) how these features

have been addressed in optimisation approaches; 3) what optimisation techniques are

used to solve them; 4) how the performance has been evaluated and what are the current

benchmarks; 5) how simulations have been applied to ports and container terminals;

6)what optimisation problems have been integrated to port simulations. The purpose

of this literature review is to identify the difference and gaps between academic models

and real-world problems.

One of the gaps is identified in Chapter 2: the lack of consideration given to changing

tides in berth planning problems in academic research. Tidal constraints are important

for real-world problems but they have been barely investigated. In Chapters 3 and

4, we try to close the gaps by using optimisation techniques. We focus on improving

the performance of the identified problem while considering important features in a

real-world scenario. The reason for the lack of methods on this problem may be that

the tidal constraints greatly increase the complexity of the model. One single-point

meta-heuristic and one population-based meta-heuristic are proposed to solve the BAP

with multiple tidal windows. We conduct several experiments in order to study both

algorithms and the performance compared to other approaches.

In Chapter 5, we deal with other weaknesses that also are pointed out in Chapter 2

including: 1) the lack of a general framework/platform, 2) the difficulty of comparing

different optimisation algorithms, and 3) the lack of visualised results. A framework is

developed as a handy tool to tackle these difficulties. The structure of the framework is

explained in detail. Moreover, BAPs and bin packing problems are shown as examples of

integrating optimisation algorithms for different problems by using this framework. The

implementation of how the framework accommodates a variety of bin packing problems

with different uncertainties and how the test instances are generated is explained by

7

providing flow charts and pseudo code. It also identifies performance measures in order

to conduct efficient and fair comparison of multiple algorithms.

Chapter 6 concludes the work in the thesis and summarises the contributions. Future

potential research directions are also suggested.

1.6 Articles resulting from this thesis

Refereed or submitted journal papers

1. Wang, R., Nguyen, T.T., Li, C, Jenkinson I, Kavakeb, S. and Yang, Z., 2017. Op-

timising discrete dynamic berth allocation in seaports using a Levy flight based meta-

heuristic. Revision submitted to Swarm and Evolutionary Computation.

In-preparation journal paper

2. Wang, R., et al., Z., A Genetic algorithm to solve the berth allocation problem with

tidal windows. To be submitted in July, 2018.

Refereed conference papers

3. Wang, R., Nguyen, T.T., Kavakeb, S., Yang, Z. and Li, C., 2016, March. Benchmark-

ing dynamic three-dimensional bin packing problems using discrete-event simulation. In

European Conference on the Applications of Evolutionary Computation (pp. 266-279).

Springer, Cham.

4. Wang, R., Nguyen, T.T., Kavakeb, S., Yang, Z. and Li, C., 2016, September. A

simulation framework for benchmarking 3D bin packing problems under uncertainties.

In LRN Proceedings 2016.

5. Ha, C.T., Nguyen, T.T., Bui, L.T. and Wang, R., 2017, April. An Online Pack-

ing Heuristic for the Three-Dimensional Container Loading Problem in Dynamic En-

vironments and the Physical Internet. In European Conference on the Applications of

Evolutionary Computation (pp. 140-155). Springer, Cham.

The following lists materials (or part) of the publications presented in the thesis:

• Chapter 2: publication [1-5]

8

• Chapter 3: publication [1]

• Chapter 4: publication [1, 2]

• Chapter 5: publication [3, 4, 5]

Chapter 2

Literature review

In the literature, optimisation problems at container seaports are mainly classified into:

berth allocation, quay crane (QC) scheduling, stowage planning, stacking and transport

optimisation. Detailed overviews of optimisation problems in this field are provided by

Meersmans and Dekker [2001], Vis and De Koster [2003], Steenken et al. [2004], Vacca

et al. [2007], Stahlbock and Voß [2008]. In order to answer the research questions raised

in Chapter 1, the literature review will focus on the relevant work of dynamic BAPs and

the variants followed by a review of optimisation-based simulation at ports and container

terminals. After reviewing related work, we summarise the identified features and the

direction for further improvement.

2.1 BAPs

2.1.1 Categories and attributes

In Imai et al. [2005], how a vessel is moored at the quay and the relationship between

berth and quay were explained. Depending on how the quay can be occupied at each

terminal, this paper also categorised BAPs into discrete, continuous and hybrid spatial

attributes. Discrete BAPs separate a quay into a number of berths with certain lengths,

so that vessels are able to moor at one of the berths. A vessel is not able to occupy more

than one berth and a berth can only serve one vessel at the same time. In continuous

BAPs, the quay is treated as a whole with a certain length. Based on the length of each

9

10

vessel, vessels can berth at arbitrary positions. Hybrid BAPs are similar to discrete

BAPs in that the quay is separated into berths. In hybrid BAPs, two adjacent berths

are allowed to combine to serve a vessel if the vessel is too long to stay at a single berth.

The draft of vessels was added as another spatial attribute [Bierwirth and Meisel, 2010].

Vessels with a draft exceeding a minimum water depth cannot be berthed arbitrarily.

In terms of the arrival time of vessels, a BAP is also referred to as static or dynamic

[Imai et al., 2001]. Static BAPs generally assume that all the vessels have arrived at

the port from the beginning of the time horizon. On the other hand, vessels come with

certain arrival times in dynamic BAPs. It means that a vessel cannot berth before its

arrival time. Other temporal attributes mentioned in Bierwirth and Meisel [2015] are

cyclic and stochastic. With cyclic arrival time, vessels visit a terminal at a certain time

repeatedly. For example, a set of vessels visit a terminal at a fixed time every week. A

weekly schedule can be made for repeated use. Regarding stochastic attributes, arrival

times are defined by continuous or discrete distributions. Instead of the arrival time,

some problems are restricted by departure times. It means that each vessel has to either

leave before a certain time or wait to be served no longer than a certain time period.

2.1.2 Optimisation approaches for BAPs

A review of existing optimisation algorithms is important for dealing with real-world

problems. In other words, to work on more realistic optimisation problems, an under-

standing of relevant works on optimisation problems of other researchers is necessary.

The discrete, continuous and hybrid BAPs have been proved to be NP-hard [Hansen

and Oguz, 2003, Lim, 1998]. Most optimisation methods used to solve dynamic BAPs

in existing work can be grouped into three types: exact methods, heuristics, meta-

heuristics. Existing detailed surveys can be found in Bierwirth and Meisel [2015, 2010],

Kovač [2017].

2.1.2.1 Exact methods

Exact methods provide optimal solutions but are computationally expensive. Main so-

lution strategies used to solve BAPs are Lagrangian relaxation, branch-and-cut, branch-

and-bound. As an early work, the static BAP (SBAP) was formulated in Imai et al.

11

[1997] and it was extended as a dynamic BAP (DBAP) firstly in Imai et al. [2001].

An improvement of Imai et al. [2001] was made in Imai et al. [2003] with ship priority

considerations. Imai et al. [2014] improved the previous sub-gradient procedure with

Lagrangian relaxation and applied the procedure to a berth template problem which

finds a set of berth windows within a fixed time horizon. In Buhrkal et al. [2011], several

existing mathematical models of discrete dynamic BAPs were reviewed and compared

including Imai et al. [2001], Monaco and Sammarra [2007], Christensen and Holst [2008].

Buhrkal et al. [2011] also provided a generalised set partitioning model with the aim of

minimising the total service time. In the model from Buhrkal et al. [2011], each column

describes a feasible assignment of each vessel occupying a certain berth at a certain

time. Then the model looks for a combination of columns that all the assignments are

feasible and with a minimum cost. This approach was also applied in Lalla-Ruiz et al.

[2016] in order to solve the problem with multiple tides using the commercial solver

CPLEX. Qin et al. [2016] discussed the changing water depths over tides and proposed

an Integer Programming and a Constraint Programming for both static and dynamic

BAPs. Unlike the tidal constraints considered in Lalla-Ruiz et al. [2016] that low tides

and high tides change alternately, in Qin et al. [2016] the water depth changes at every

specific time.

Sheikholeslami et al. [2014] proposed a mathematical model for a continuous BAP with

tidal constraints. The model ensures that the water-level is high enough for the entry and

departure of vessels. Authors suggested a statistics-based sample average approximation

method to solve the problem with uncertain arrival time in Sheikholeslami and Ilati

[2017]. The disruptive effects of tides were taken into consideration as well. Numerical

experiments were conducted based on data from a real-world case. In Dadashi et al.

[2017], the tidal windows were formulated to restrict vessels with deep drafts to departure

only when the water-depth is sufficient.

Umang et al. [2011] aimed to solve hybrid BAPs in bulk ports. Depending on vessel

requirements and cargo properties, the handling time is different. The quay is discretised

into a number of sections where each vessel can occupy more than one section if needed.

12

2.1.2.2 Heuristics

In general, heuristics apply rules and criteria to achieve good quality solutions with a

modest computing time. Not many heuristics were used for BAPs in the literature.

Xu et al. [2012a] proposed a heuristic approach solving BAPs with two tidal windows.

The heuristic is deterministic with pre-set rules which always ensures feasible solutions.

Vessels are assigned in a predefined order (processing time of the vessel / unit cost of

the vessel). For each vessel, the heuristic chooses an available berth with the minimum

increment of the objective value. Because it only accommodates two tides and the

second tide goes to infinity, it sometimes obtains a solution with a large number of

vessels assigned to the second tide when the number of vessels increases.

Two papers proposed heuristics for continuous BAPs. Guan and Cheung [2004] applied

a tree search procedure to explore the search space and developed a lower bound to speed

up the search. In the experiment, the tree search approach was proved to solve instances

with up to 15 vessels. In Wang and Lim [2007], a stochastic beam search algorithm was

developed to minimise the cost of vessels. The approach consists of multiple levels and

one vessel is allocated in each level. In each level, estimation, selection and expansion

processes are applied for the purpose of seeking effective allocations and increasing the

diversity. Furthermore, the approach was proved to solve problems with up to 400 vessels

in a small amount of time.

2.1.2.3 Meta-heuristics

Tabu search Tabu search (TS) is a meta-heuristic for controlling a heuristic not to

be trapped in a local optimum. It explores the neighbours of a solution in order to

potentially improve it. An essential feature is a tabu list which uses the memory to

record information in the exploration process. The types of memory structures in a

tabu list include short-time, intermediate-term and long-term. The algorithm uses a

tabu list is to guide the exploration by avoiding some less good solutions.

In Cordeau et al. [2005], a discrete BAP with dynamic arrival times and due dates was

addressed. It presented a TS method and was tested on a data set from a terminal in the

Port of Gioia Tauro, Italy. The algorithm has two procedures for initial solutions. At

the beginning, Random Greedy initialises a random queue of vessels and each vessel is

13

inserted to the schedule with the minimum cost evaluation. TS explores neighbourhood

solutions and stores the best solution. The algorithm then restarts with the First-come-

First-serve (FCFS) initialisation procedure that sorts vessels in the queue according to

their arrival time. The TS was improved in Lalla-Ruiz et al. [2012] by adding a swap

move to the local search and an elite set of solutions. The elite set is used by the

path relinking algorithm to generate new initial solutions. The objective of the path

relinking algorithm is to iteratively bring the starting point closer to the elite solutions.

Giallombardo et al. [2010] aimed to maximise the total value of chosen QC profiles and

minimise the housekeeping cost generated by transshipment flows between vessels. A

TS was proposed to firstly choose QC profiles for vessels and then optimise the berth

allocation schedule with a given QC assignment. In order to reduce the cost in each

iteration, the profiles are updated relying on mathematical programming.

Zeng et al. [2011] aimed to solve the continuous BAP and QC assignment problem while

taking disruption recovery into consideration. A TS combined with a local rescheduling

strategy was designed for the problem. In berth reallocation, a time window and a space

window are defined for TS looking for a new solution.

A hybrid BAP was tackled in Lee et al. [2012] with the goal of minimising the cost gener-

ated by transshipment flows. A Tabu list recorded the positions of pair-wise interchanges

following the first-in-first-out rule.

Variable Neighbourhood Search Variable Neighbourhood Search (VNS) was de-

signed for the first time in Mladenović and Hansen [1997] for the purpose of solving

combinational optimisation and global optimisation problems. The concept of VNS is

changing the neighbourhood during the search based on three principles: 1) a local

minimum for one neighbourhood structure may not be the local minimum for another

structure, 2) a global minimum is always a local optimum, 3) in many cases, local op-

tima are relatively close to each other with respect to several neighbourhood structures.

The VNS expands the neighbourhoods of a given optima until a global improvement is

found.

A VNS heuristic was proposed by Hansen et al. [2008] aiming to solve a discrete dy-

namic BAP. It minimised the cost of waiting time and handling time with the constraint

that berths start to be available from different times. The local search called Variable

14

Neighbourhood descent (VND) consists of three neighbourhoods: local insertion, inter-

change and insertion. VND is applied as the first phase and then in the perturbation

phase, two sets of nested neighbourhoods are used in order to improve the performance

of the local optimum. The first one is to change the berths and orders of being served of

two randomly selected vessels. In the second one, a random vessel is moved to another

random berth at the best position. According to the experiments, VNS outperformed

other meta-heuristics and it dealt with large-scale test cases of up to 20 berth and 200

vessels.

Genetic Algorithm A genetic algorithm (GA) is a nature inspired algorithm. It was

invented based on the idea of using the power of evolution to solve optimisation problems.

A GA works by evolving a set of individuals towards better solutions.

A GA was applied to a dynamic discrete BAP in Theofanis et al. [2007] in order to

minimise the total weighted service time of vessels. Considering that crossover and

mutation operators are highly affected by the problem domain, the author conducted

experiments with and without crossover. It was proved that the crossover produces a

large number of produced infeasible solutions. A branch-and-bound algorithm then is

applied to reallocate vessels as an optimisation component. According to the experi-

ments, the optimisation component effectively improved the quality of solutions but it

was time consuming.

Golias et al. [2009a] tackled a multi-objective BAP while considering the berth avail-

ability and the priority of vessel services. A multi-population multi-selection GA was

proposed with the aim of finding a good-quality solution for each objective function. It

also maintains the diversity of different solutions in the Pareto Front. In each iteration,

the Pareto Front is updated and the parents and elites are selected based on the Pareto

Front optimal set.

Another GA was used to solve a multi-objective BAP [Golias and Haralambides, 2011].

It minimises the tardiness and waiting time of vessels and maximises the premium from

vessels early departure. The GA was introduced in Golias et al. [2009b] with a two-layer

chromosome representation. The first layer states the arrival time of each vessel, and the

second layer represents the service order of this vessel. The authors proposed four types

of mutations insert, invert, swap and scramble that are applied to all the population

in each iteration. In the progress of evolution, the weight of doing invert and scramble

15

shifts to insert and swap. It ensures that at the beginning stage the algorithm performs

more long jumps, and when it comes to small regions, the GA focuses on intensive

improvement.

In Golias et al. [2010], a lamda-optimal heuristic was proposed. The optimal solution can

be achieved by exchanging lamda instances of the relation between berths and vessels.

In order to avoid expensive computational time while the number of lamda increases,

the authors proposed a GA which efficiently reduced the runtime of medium to large

scale instances. Golias [2011] aimed to solve BAPs with uncertain vessel handling times.

A GA was proposed with two objectives: minimising the schedule risk and total service

time. The risk measure is the expected total handling time based on the probability of

a berth taking a certain handling time to serve a vessel.

Golias et al. [2014] proposed a GA to solve BAPs with uncertain arrival time and han-

dling time of vessels. Two objectives were minimising the average and the range of the

total service times for vessels. The GA initialises the chromosome based on FCFS with

early start and FCFS with early finish. Then the maximum and minimum values of each

solution are calculated for fitness evaluation. In each generation, Pareto front selects

non-dominated solutions which meet both objectives the best. In Han et al. [2010],

uncertain vessel arrival time and handling time were taken into consideration as well in

berth and QC scheduling. A GA framework was applied with the Monte Carlo sampling

for the purpose of performance evaluation. Zhou and Kang [2008] tackled the same

problem with a GA. Two sub-strings were used to encode each individual. The first

sub-string reflects the berth allocated to each vessel and the second sub-string indicates

the service order of each vessel in the berth. Before encoding, vessels are sorted by their

arrival time. The search space is then reduced by limiting the vessel number for each

berth.

Saharidis et al. [2010] proposed a bi-level hierarchical framework in order to solve BAPs

with conflicting objectives: maximising the total throughput of the port and maximising

the preferential customer satisfaction. A GA based on the k-th best algorithm was

designed for the upper level and the solutions are sent to the lower level in the order of

solution quality.

In Hu [2015], the daytime preference was considered as a purpose of optimising BAPs. It

was formulated as a multi-objective problem, minimising the total delayed workload and

16

the total night workload. The chromosome consists of two parts: a vector to represent the

priority (reflecting the daytime preference) of serving vessels, and a vector to represent

the relative berthing time. The algorithm considers the vessel with the highest priority in

a priority assessment window of a certain length. Then a berth is selected with the goal

of maintaining the minimum increment of cost. The crossover and mutation operations

are applied separately to priority vectors and time vectors. Due to the lack of existing

research on daytime preference, there was no comparison with other work. However,

detailed experiments were conducted to assess the performance of each operator. Lee

and Wang [2010] integrated the BAP and the QC assignment problem. A typical GA

was applied to find the best sequence of proceeding vessels. When choosing a berth

for each vessel, an approximate handling time of serving this vessel in each berth is

estimated based on the number of ship bays of the vessel and the number of QCs of the

berth.

Lalla-Ruiz et al. [2014] applied a GA to a tactical BAP aiming to determine berth

positions, berth time and allocations of QCs for incoming vessels. The tactical BAP

aims to allocate vessels to their favourite berth positions as vessels are expected to

arrive periodically. In Lalla-Ruiz et al. [2014] the chromosomes are represented as vectors

where the berthing order is defined by the first part and the QC assignment is held by

the second part. The biased random key generates numbers in [0, 1). By doing vector

computations on real values, the berthing order is decided. The crossover selects one

parent from the elites and another parent from the rest of the population. A greater

probability is given to the elite parent so it is more likely the child inherits keys from

its elite parent.

In terms of existing work for continuous BAPs, Chang et al. [2010] combined a parallel

GA and a heuristic to minimise the deviation between berth locations, the total penalty

of delay and the total energy consumption of QCs. The heuristic was used to initialise the

population as feasible solutions. The sub-optimal solutions of BAP and QC assignment

were obtained by the GA. Rodriguez-Molins et al. [2014] aimed to minimise the service

time for BAP and QC assignment. The service time and robustness were defined as two

objectives and a GA was proposed to find non-dominated solutions.

Zeng et al. [2017] proposed a GA to minimise the operational cost of resources and the

delay cost of vessels of continuous BAPs. The algorithm consists of two levels. Feasible

17

berthing positions are obtained in level 1 and the storage plan is optimized in level 2

based on the berth allocations. The chromosome representation is the distance between

the berthing location of each vessel and the beginning of the quay. Infeasible solutions

are fixed in level 1 and the offspring after doing genetic operators in level 2 are sent back

to level 1 for the next generation.

Ji et al. [2017] modified the traditional NSGA-II to solve a continuous BAP with tidal

constraints. A biased search towards the feasible region is suggested in the approach

which utilises the superiority of feasible solutions. The algorithm also combines the

evolution population and the solutions in archive in order to not miss promising genes

in infeasible solutions. In Yu et al. [2018], authors applied a GA to obtain the optimum

berthing schedule with QCs. Vessels are assumed to be moored at their desired positions.

In each iteration, the conflicts between vessels are identified and adjusted following

several rules.

A hybrid BAP with the purpose of minimising the total service time was solved by a GA

[Imai et al., 2013],. The chromosome is represented as a string. The crossover exchanges

the sub-strings of two individuals and then examines the feasibility of the children. In

the decoding procedure, the vessels are assigned following the service order. Two small

vessels might be served at a berth simultaneously if their arrival time and handling time

meet one of the four proposed conditions.

Nishimura et al. [2001] incorporated the water depths of berths and vessel drafts to

a hybrid BAP. Based on the arrival time, the sequence of vessels is divided into a

number of sub-problems. The first sub-problem is solved by a GA and the solution

is then sent to the following sub-problem, until the final sub-problem is solved. Two

types of chromosomes were proposed and the performance was investigated in numerical

experiments. Imai et al. [2007] aimed to solve a hybrid BAP with mega-ships only being

served at indented berths. A GA was applied to find an optimal order of scheduling

vessels and numerical rules were proposed to assign each vessel.

Particle Swarm Optimisation Having a number of particles in the search space, Par-

ticle Swarm Optimisation (PSO) searches the best solution by moving particles around.

The movement of each particle is based on a velocity and the positions of itself and some

other particles. The velocity controls the direction and the length of a jump. The idea

of PSO is moving particles towards the best known positions.

18

Ting et al. [2014] developed a PSO dealing with dynamic discrete BAPs. It was tested on

the data set [Cordeau et al., 2005] with an objective of minimising the total service time.

In the PSO, the problem is treated as a vehicle routing problem that a vehicle route

represents a berthing sequence. Each particle is represented as a real number where the

integer part describes the berth that the vessel is assigned to and the fractional part

describes the service order of the vessel. Boundary situations are handled after every

generation to prevent infeasible solution space. After the search of the solution space

by PSO, a local search procedure was applied to the best found particle.

Simulated Annealing Simulated Annealing (SA) algorithm is inspired by a physical

technique of annealing of solids. It explores the space of neighbourhood solutions based

on three parameters: initial temperature, cooling rate and temperature length. The

temperature is a function of which iteration it is on. In each iteration, the solution has

a probability of whether moving to another state. SA allows backward moves to avoid

getting stuck at a local optimum.

In Barros et al. [2011], an SA was proposed to deal with a discrete dynamic BAP con-

sidering the priority of cargo stock level and tidal windows. The problem was commonly

observed in the maritime industrial port complex located in So Lus. Solutions are formed

as a sequence of ships which describes the service order. The basic idea of this approach

is to try to exchange a high-cost vessel with a low-cost vessel in the permutation. Ac-

cording to the experiments, it showed good-quality solutions in most of the instances

compared to the CPLEX solver. However, the scale of the test instances is at most 3

berths and 30 vessels.

An SA was combined with a clustering search in de Oliveira et al. [2012]. They generated

solutions with SA, then used a clustering process to group solutions at each temperature

and applied a local search. The structure in SA consists of reorder ships, reallocate

ships and change ships. Randomness is taken into account in movements of SA to

retain diversity. The concept of clustering is to identify clusters with promising regions.

Solutions are defined as in the same group by measuring their distance. Lin and Ting

[2014] represented the chromosome as a service order in each berth connecting by a zero.

An SA was applied after the FCFS based initialisation. It also allows a restart strategy

if the current best solution is not improved in a number of consecutive temperature

decreases.

19

Regarding continuous BAPs, Kim and Moon [2003] minimised the total cost of departure

delay and the cost resulting from the non-optimal berth of each vessel. Authors applied

an SA to deal with the continuous problem. In the encoding and decoding procedure,

the stability of the solution is checked to ensure the local optimum. Each iteration

explores the neighbourhood solutions where vessels are exchanged in pairs.

In Xu et al. [2012b], authors proposed an SA to solve robust continuous BAPs while the

vessel arrival delay and handling time were considered. In order to reduce the search

space in the first place, a set of lowest-left tight solutions are constructed based on a

fixed buffer time and the given vessel sequence. In the SA, the constructed solutions are

divided into subsets and the optimal solution of each subset is found by applying the

branch-and-bound method.

Yuping et al. [2017] proposed an SA to minimise the vessel penalty cost, total waiting

time and QC assignment. The SA was designed based on the fairness maximisation of

this multi-objective problem. A neighbourhood searching algorithm was used to generate

new solutions in each iteration. The algorithm searches for local optima while changing

the searching structure systematically in order to explore the new searching range.

In terms of hybrid BAPs, Moorthy and Teo [2007] investigated the robust tactical

berthing plan by modelling it as a rectangle packing problem. The chromosomes were

encoded as sequence pairs. Each pair contains two permutations of a template. A stan-

dard SA was then applied to explore the search space of all sequence pairs. Lin and

Ting [2014] developed an SA for the hybrid BAP where the quay was segmented into

berths and they can be combined to serve one vessel. The chromosome is represented as

a sequence of service order of vessels. When assigning each vessel, the algorithm firstly

obtains the earliest time the vessel can be moored. The position is then decided as close

to the beginning of the quay as possible.

Other meta-heuristics There are some other meta-heuristics applied to BAPs not

classified in above sections. Relevant work including less popular meta-heuristics in

this field, meta-heuristics with exact techniques embedded and other methods related

to meta-heuristics are reviewed in this section.

Under the same assumption as Buhrkal et al. [2011], an Adaptive Large Neighbourhood

Search (ALNS) meta-heuristic was proposed in Mauri et al. [2016] which is capable of

20

solving both discrete and continuous BAPs. ALNS is an extension of large neighbour-

hood search and it consists of destroy and repair operators. At each iteration, a destroy

operator and a repair operator are selected and applied to the current solution based on

a given probability. Destroy operators are chosen from First shaw removal, Second shaw

removal, Worst removal and Random removal. Repair operators includes Regret-k in-

sertion and Deep greedy insertion. The probability of selecting each operator is updated

at every iteration according to the performance. In Lee and Jin [2013], the authors

proposed a Memetic algorithm (MA) to solve a BAP for cyclically visiting feeders and

allocating the storage yard space to the transshipment flows between mother vessels and

feeders. MAs are extensions of traditional evolutionary algorithms. An MA generally

includes a population-based approach with separate individual learning methods. A GA

and TS were combined in Lee and Jin [2013] as an MA. The GA searches the solution

space genetically and TS is applied to each offspring for further optimisation.

Lalla-Ruiz et al. [2015] presented a POPMUSIC (partial optimisation meta-heuristics

under special intensification conditions) framework. The author pointed out the limita-

tion in Xu et al. [2012a] and limited the second tidal window to the same length in their

problem. The POPMUSIC framework was firstly proposed by Taillard and Voß [2002]

and it starts from a random permutation, which is to be improved by solving a mathe-

matical formulation. In Lalla-Ruiz et al. [2015], all the associated vessels in a berthing

time interval formulate a sub-problem and it is solved by the CPLEX solver. Lalla-

Ruiz and Voß [2016] extended the work by adding two common ways of initialisation,

Random-greedy and FCFS, which were both proposed by Cordeau et al. [2005].

More recently, a dynamic programming-based meta-heuristic was proposed by Nishi

et al. [2017] with a goal of reducing the computational time in Lalla-Ruiz and Voß

[2016]. It derives lower bounds and upper bounds by a Lagrangian relaxation and a

dynasearch algorithm respectively. A machine learning-based system was also applied

in a bulk BAP in De León et al. [2017]. The system is trained by running a set of

available heuristics and meta-heuristics and then it provides its best solution for each

problem.

The Greedy randomized adaptive search procedure(GRASP) has been used in many

continuous BAPs. GRASP is a multi-start meta-heuristic which consists of two phases.

In each iteration, the construction phase makes complete solutions and then the local

21

search looks for the local optimum of each solution. Two GRASPs were proposed in Lee

et al. [2010] in order to minimise the total weighted turnaround time of vessels. The

first GRASP initialises solutions based on the first-come-first-pack rule which is not the

priority in the second GRASP. Swapping vessels and an A-start like tree search were

applied as local search in both versions of GRASP. The first GRASP only swaps two

adjacent vessels because it aims to follow the first-come-first-pack idea while the other

GRASP can swap any two vessels. A continuous BAP with QCs was also solved in

Salido et al. [2011] with GRASP. The initialisation strictly restricts that a vessel with

an earlier arrival time has to be moored before later vessels. Following the order of

vessel arrival times, a branch-and-bound method explores the complete search space for

vessel insertions. This approach was integrated in a decision support system in Salido

et al. [2012]. To avoid expensive computational time, the local search was not included

in their algorithm.

Yang et al. [2012] applied an evolutionary algorithm with nested loop for BAPs with

QC assignment. The authors focused on the interactions between two sub-problems and

the feedback of them. With presumed vessel handling time, GAs were used as two inner

loops for two sub-problems respectively. The output handling time is calculated by an

outer loop and the value is returned to the inner loop as the input in the next iteration.

Ma et al. [2017] proposed a Guided Neighbourhood Search (GNS) to tackle a hybrid BAP.

In this paper, GNS decides critical elements by objective values which are updated in

each iteration. Given a priority sequence of vessels as the chromosome, vessel movements

to promote or lighten the priority are used as operators. The algorithm applies different

movements to critical elements based on multiple suggested criteria. Xiang et al. [2017]

introduced an Adaptive Grey Wolf Optimiser (AGWO) to solve a bi-objective robust

problem. Grey wolf optimiser mimics the leadership hierarchy and hunting mechanism

of grey wolves in nature. The population is divided into four groups for operations

including hunting, searching for prey, encircling prey and attacking prey. In this paper,

the chromosome includes information of the berthing position and the time to berth

of a vessel. A preliminary experiment was conducted to determine the size of different

groups of wolves.

Cheong et al. [2010] applied an evolutionary algorithm to deal with a hybrid BAP with

multiple objectives. It aimed to minimise the makespan, the total waiting time of vessels

22

and the total number of crossings between vessels. Two different decoding schemes were

proposed and investigated. One is assigning a vessel to the time no earlier than the last

one. The other scheme allows a vessel to be served at the earliest time if there is enough

space. Extensive experiments were conducted to examine the quality of each operator

for different objectives. Umang et al. [2013] proposed a Squeaky Wheel Optimisation

(SWO) to tackle hybrid BAPs. SWO constructs solutions in a greedy way and then

specifically pays attention to the trouble spots. New solutions are generated based on

elements with priorities that are most likely to be improved. In Umang et al. [2013],

the solutions are initialised in the FCFS base. At the end of each iteration, the priority

order of vessels is generated according to the individual contribution to the overall service

time. Therefore, the new rank of vessels in the next iteration is the order of the current

performance of each vessel. The aim is to move individuals in priority order to positions

with minimised total waiting time and handling time.

2.1.3 Discussions on optimisation approaches of BAPs

The literature review above shows that meta-heuristics are the most preferred methods

to solve the BAP in a majority of existing research. This agrees with the finding from

Bierwirth and Meisel [2015] that 40% of reviewed work used GA or evolutionary algo-

rithms and another 36% used other meta-heuristics. The reason for the dominant use

of meta-heuristics is their ability to deal with large scale problems within a relatively

short amount of time.

According to the review, the performance measures of BAP models mostly focus on the

total stay time of vessels at the port. The stay time depends on constraints such as

berth availability, loading and unloading cargoes and the availability of other resources

like QCs. The stay time is reflected to different objective functions in literature:

Minimising the total waiting time

The time each vessel spends between arrival and being served.

Minimising the total completion time

The time each vessel spends between arrival and departure. It is

usually the summation of the waiting time and the handling time.

The handling time of each vessel sometimes can vary.

23

Minimising the total cost of waiting

In general, the cost can be 1) a penalty for exceeding free stay time,

2) a time-unit cost of staying at the port.

BAPs have received a lot of attention and a large number of valuable publications have

appeared over the past decade. We can see a significant improvement in academic

research in solving BAPs. Still, there are some characteristics that have not been well-

studied yet. Some weaknesses in dealing with real-world problems we have identified are

as follows.

Multi-tidal constraints At seaports, changing tides happen every day. They affect

the availability of berths because the water level of a berth is changed when the tide

changes. Over the attributes and problem constraints we have reviewed, the importance

and necessity of tidal constraints are highlighted in a recent survey paper [Bierwirth

and Meisel, 2015] but there are very few publications actually dealing with it. Two tidal

windows were considered in Lalla-Ruiz et al. [2015] and Xu et al. [2012a]. Multi-tidal

constraints were dealt with by the CPLEX model in Lalla-Ruiz et al. [2016] and Qin

et al. [2016] modelled the problem while considering vessel drafts to match time-varying

water depth. To the best of our knowledge, there is no existing meta-heuristic used in

dealing with multi-tidal constraints. We observe that existing exact methods can be

restricted when conducting large-scale experiments. The computational time is usually

large due to the limitation of commercial solvers. Sometimes a quick response to a new

schedule is essential in practice. There is no existing work that guarantees a feasible

solution and a quick turnaround time.

Benchmarks As far as we know, the data set from Cordeau et al. [2005] is one of the

most popular test instances used in existing experiments. In Cordeau et al. [2005], the

author conducted a statistical analysis on the industrial data from Gioia Tauro in order

to generate test instances to simulate real-world scenarios. Benefitting from the approach

of generating test instances provided in this paper, for some other dynamic BAPs with

more variables required, authors were able to generate their own data based on the

concept in Cordeau et al. [2005]. However, there is no benchmark that covers different

types of BAPs. The lack of such benchmarks brings up the difficulty in comparing

different problem solutions.

24

Large scale dataset As the globalisation of maritime transport develops, ports have

become busier than ever before. As mentioned above, the scale of Cordeau et al. [2005]

is limited and the largest scale instance we have reviewed in existing work is 200 vessels

in Hansen et al. [2008]. In reality, there are many ports receiving more than 200 vessels

per planning period. It indicates a need of large scale test datasets.

Performance measures As summarised above, most BAPs focus on evaluating stay

time of vessels at the port and related costs. A few BAP models aim to reduce the utili-

sation of resources like cranes and berths. Moreover, operational performance indicators

like fraction of time berthed vessels worked, berth throughput have been suggested in

UNCTAD, 1976 and de Langen et al. [2007]. There is no existing work comparing the

performance of their algorithms if two BAPs have different objective functions.

2.2 Simulation at ports

2.2.1 Introduction of simulation

Modelling is a way of experimenting solutions in order to solve real-world problems.

Sometimes conducting experiments on real systems is expensive or impossible. Simula-

tion provides us a way to mimic the reality and how a model will change the system over

time. Simulation has been applied to a wide range of problems such as supply chain,

transportation, computer hardware and automotive control system etc. [Borshchev and

Filippov, 2004].

In Angeloudis and Bell [2011], simulation models were categorised based on three criteria.

Static or dynamic

Static simulations focus on time-independent problems. In contrast,

dynamic simulations consider how a system changes over time.

Microscopic or macroscopic

This term describes the fidelity of the simulation model. Microscopic

models focus on details of a system. The environment and inputs are

set specifically. Macroscopic models aim at the strategic level of a

system with high abstraction.

25

Continuous or discrete

Continuous models are able to describe any specific time of the sys-

tem. They are commonly used in physical sciences and finance. With

dynamic models, the states of a system are split and changed from

one to another. This type of simulation is usually used in logistics and

manufacturing. Moreover, the discrete simulation can be identified as

two types: discrete time and discrete event. The discrete time simu-

lation consists of a number of time steps. The more time steps in the

model, the higher the accuracy of the simulation. Because after each

time step the model needs to update the states of all the objects, the

possible high complexity is the drawback of this type of simulation.

On the other hand, the discrete event simulation is controlled by an

event manager with a list of possible events. The simulation reacts

only if an event happens.

2.2.2 Applications of simulation in port operations

The simulation modelling of port operations has been progressed gradually with the

growth of information technology and the increasing demand of port operations over

the past 20 years. According to Dragović et al. [2017], there is a constant increase of

relevant publications from 1995 to 2015, especially after 2011, a remarkable number of

simulation models of port operations have been published.

The survey paper [Dragović et al., 2017] summarised the related work and reviewed it in

detail. Among various simulation software/libraries used in existing work, Arena is the

most-used software. In addition, discrete event simulation is one of the most popular

simulation techniques in modelling port operations. In this section, we will focus on

reviewing existing work related to optimisation integrated to simulation.

Arango et al. [2011] simulated a BAP in Seville inland port with Arena software and

optimised the problem by proposing a GA. The algorithm aims to minimise the total

service time of vessels. A number of simulations were executed and the statistical re-

sults were compared with the original system. Legato et al. [2014] integrated a heuristic

to the simulation model in order to solve tactical BAPs. A discrete event simulation

model was developed by a Monte Carlo simulator while taking into account uncertainties

26

in unloading cargoes. The authors used the simulation to evaluate the tactical berth

template at the operational level. Then they compared the solution with existing meth-

ods. He et al. [2015b] tackled a yard crane scheduling problem aiming to optimise the

energy consumption and service efficiency. An approximate approach was designed by

combining GA,PSO and the simulation model. Feasibility of solutions was checked and

infeasible genes were repaired by running simulation. However, the simulator name is

not mentioned in the paper. A following work based on He et al. [2015b] integrated QC

scheduling and internal truck in He et al. [2015c].

Legato et al. [2010] proposed a discrete event simulation model in order to deal with

QC scheduling problems. An SA was introduced to search for the optimal solution. The

performance was tested by simulating the real-world scenario in Gioia Tauro, Italy. QC

scheduling and storage planning were also simulated in Zeng et al. [2015]. A GA was

integrated to the simulation model. Once an optimal solution is obtained by the GA, the

performance is evaluated by the simulation while taking into account the uncertainty of

loading and unloading time. Ilati et al. [2014] aimed to simulate the resource allocation

including berth allocation, QC assignment and tugboat assignment. An evolutionary

path-relinking algorithm was introduced to optimise the assignments. The simulation

model was developed using commercial software Enterprise Dynamics and tested on

Rajaee port in Iran.

Cordeau et al. [2015] focused on simulating the container transshipment while reducing

congestions and speeding up the loading and unloading process. The simulation also

embedded a local search procedure in order to improve the solution of vehicle schedul-

ing. Li and Wang [2009] simulated the whole operation system of container terminals

and optimised the truck distribution. A parallel computing technique was applied to the

simulation which effectively saved the computational time. Clausen and Kaffka [2016]

aimed to optimise the crane control problem by defining a priority number for each con-

tainer. The container with the highest priority is sent to the next crane. The efficiency

of the overall operational system was tested by the simulation software ContSim with

existing data and newly generated data.

In Zehendner et al. [2015], straddle carrier allocation was optimised and simulated with

the goal of optimising the overall delay. The author introduced a mixed integer program-

ming model to represent the network flow strategy. The simulation model was developed

27

in Arena and experiments were conducted on the data from the Grand Port Maritime

de Marseille. The simulation was applied to validate the solution and then test with

stochastic settings. With the goal of optimising the problem of sharing internal trucks

among multiple container terminals, in He et al. [2013] the simulation was used to check

whether the solution is feasible while the proposed GA is responsible for exploring the

search space. Another GA combining with PSO as a local search was developed by He

et al. [2015a] to optimise the supply chain network. Similar to He et al. [2013], the

simulation model was proposed to evaluate the model and repair infeasible solutions.

2.2.3 Discussion on simulation integrated with optimisation

The review above discusses various simulation models developed with different software,

mostly commercial software. Researchers aimed to solve different problems at ports and

container terminals with different objectives. Numeric work was tested with the data

from Gioia Tauro, Italy. As far as we know, the existing work of optimisation integrated

to simulation only focused on their own approach. None of them had a fair comparison

of optimisation algorithms by either integrating other algorithms in the same simulation

model or providing a tool for potential integration and comparison. It leads to an

important gap: the lack of a general work/platform that allows compassion of different

algorithms on the simulated environment. We will try to close the gap by proposing a

simulation framework for ports in Chapter 5. This framework will be able to integrate

with optimisation algorithms. It also generates test cases for comparison of different

algorithms. The framework will also be user-friendly, so that even researchers without

programming experience should be able to develop simulation models and evaluate their

optimisation algorithms.

2.3 Summary

In this chapter, we firstly reviewed the optimisation algorithms of BAPs. Shortcom-

ings of existing approaches have been discussed in Section 2.1.3. Then the simulation

integrated optimisation was reviewed and summarised in Section 2.2. In the next two

28

chapters, we will focus on solving BAPs with tidal constraints by proposing new meta-

heuristics. This is followed by developing a new framework in Chapter 5 in order to

fulfil the need of simulation and optimisation in expanding ports.

Chapter 3

Solving berth allocation problems

with multi-tidal windows using

Levy flight

3.1 Introduction

In the previous chapter, we found that BAPs have been defined and modelled in academic

research with a goal of fitting real-world scenarios. Shortcomings which have not been

well-studied in the literature have been summarised. One of the important issues is

dealing with multiple tides. Tides are the alternates and falls of the water level of oceans,

seas and bays, etc. They are caused by the attraction of the moon and the sun (Fig.

3.1). The gravity of the moon and the sun pulls water away from the earth. Different

regions of the earth experience different tidal regimes. Tides occur in a predictable

pattern. Around the UK, there are mostly two high tides and two low tides each day.

Some other parts may have one high tide and one low tide per day. The different in

height between high tide and low tide is called the tidal range (Fig. 3.2).

In reality, the water depth sometimes affects the availability of a berth because each

vessel has a different draught and hence it can only stay in a berth with a deep enough

water level. The water level at a berth can vary because of changing tides. In other

words, the tides determine the availability of berths for each vessel. For example, Port of

Liverpool and Port of Xiamen usually experience large tidal ranges. In Port of Liverpool,

29

30

Figure 3.1: Tides are influenced by the sun and the moon [timeanddate.com, 2018].

Figure 3.2: An example of the tidal range.

31

there are four (two high and two low) tides per day. The difference in height can go up

to 10 metres. The low tide can be less than 1 metre and the height sometimes increases

to 10 metres at high tide. It happens similarly in Port of Xiamen in China with a tidal

range of more than 5 metres. This kind of ports with a large tidal difference every day,

can cause a potential problem of serving big cargo ships due to the insufficient water

level. Therefore, considering tidal constraints is essential to allocating incoming vessels

to feasible berthing positions.

Different types of BAPs have been reviewed in the last chapter. According to the case

study of our industrial partner in Section 1.2, the berths are isolated with their own

quays. The traditional continuous BAP would not be realistic since the berth positions

are defined as arbitrary and there is only one quay. In discrete BAPs, the length of

vessels is not considered and the quay is pre-split to a number of berths. Hybrid BAPs

allow a quay to accommodate a long vessel or more than one vessel if the space is enough.

To illustrate the difference between discrete BAPs and hybrid BAPs, an example is

displayed in Fig. 3.3. If the problem is discrete, there is Berth 1, Berth 2a and Berth 2b

while considering it as hybrid, it consists of Berth 1 and Berth 2. It is noticeable that

a hybrid BAP can be also treated as a discrete problem by considering Berth 2 as an

additional berth for the discrete BAP. Therefore, the simplified hybrid BAP becomes

a discrete BAP including Berth 1, Berth 2a, Berth 2b and Berth 2, with a constraint

to restrict the occupancy of Berth 2a, Berth 2b and Berth 2. For example, occupying

Berth 2a makes Berth 2 unavailable. In this way, a discrete BAP becomes more suitable

for modelling realistic problems. The complexity of the problem can also be reduced by

not taking into account the length of each vessel. In this thesis, the BAP will be treated

as a discrete problem.

In this chapter, we focus on answering the third research question in Section 1.4 in

terms of effectively solving the problem with tidal constraints. The aims of tackling

the tidal constraints in discrete dynamic BAPs are: (i) minimising the total weighted

service duration of vessels, where the weight is considered as the priority of vessels;

(ii) scheduling available berths for the arriving vessels taking into account a multi-tidal

planning horizon.

Among existing approaches, the latest approximate algorithm [Xu et al., 2012a] has

shown decent results on BAPs with two-tide constraints. Because it only accommodates

32

Figure 3.3: An example of the layout of a discrete BAP and a hybrid BAP.

two tides, it sometimes obtains infeasible solutions when the number of vessels increases.

The approach introduced in Xu et al. [2012a] is a greedy heuristic which allocates vessels

in a predefined order (processing time of the vessel / unit cost of the vessel). For each

vessel, the heuristic chooses an available berth with the minimum increment of the ob-

jective value. The final schedule is totally determined by the fixed order of adding vessels

without any stochastic element. Unlike meta-heuristics, there is no other operation used

in Xu et al. [2012a] to improve the only solution. In this chapter the new algorithms will

deal with multiple tidal windows whereas Xu et al. [2012a] only deals with two tides.

Meta-heuristics benefit from the randomness to diversify the solution while Xu et al.

[2012a] is deterministic. Another state-of-the-art exact method [Lalla-Ruiz et al., 2016]

used a commercial solver to ensure feasible solutions but the capability of dealing with

large-scale problems is limited and the computation time is too long to obtain good

solutions.

A Levy flight based meta-heuristic is proposed in this chapter. We study how this meta-

heuristic performs on BAPs with tidal constraints and compare it with the state-of-the-

art exact technique using a commercial solver and other approximate methods. The

main contributions of the algorithm are summarised as follows. Firstly, the algorithm

provides competitive berth allocation schedules compared to the state-of-the-art exact

and approximate methods. Secondly, it is the best algorithm so far that can always

achieve feasible solutions for both small-scale and large-scale problems in a short running

time. Furthermore, it is also the only algorithm that is able to provide good quality

33

solutions for the large-scale cases.

The structure of this chapter is explained here. We describe the problem in mathematical

formulations with all necessary constraints in Section 3.2. Then a single-point meta-

heuristic Levy flight based algorithm is proposed in Section 3.3 followed by a study

of the sensitivity of the proposed algorithm and comparing with the state-of-the-art

exact method and heuristic. Highlights of the performance of the algorithm is briefed

in Section 3.4.

3.2 Problem description

In this section, the BAP with multiple tides is modelled as a discrete problem. The

problem is described by introducing assumptions, notations and the mathematical for-

mulation of the objective function as follows.

3.2.1 Assumptions

1. One berth can only serve one vessel at a time.

2. The processing time of a vessel is the same no matter which berth it goes to.

3. Once a vessel has started the serving process, it cannot be interrupted.

4. Berths will become available right after a vessel has been served.

5. All berths are available from the initial time 0.

6. The time horizon is from 0 to infinity until all vessels are scheduled.

7. There is at least one berth available for each vessel at low tides

When scheduling vessels, many factors need to be considered in practical situations. As

mentioned in Section 1.2, tidal effects can be significant for some terminals. The water

depth at high tides may be required for some vessels going through certain sections. For

simplicity, some practical factors are not considered in this problem but aimed to be

tackled in future work. For example, the processing time of loading/unloading a vessel

may vary which depends on the resources allocated to the vessel. In other situations, a

34

breakdown of machines can cause delay of the serving process while a vessel normally

has to finish the job in a pre-agreed time window. These practical factors are further

discussed in Section 3.2.5.

3.2.2 Notations

m: The total number of berths

n: The total number of vessels

t arrj: The arrival time of vessel j

t waitj: The waiting time of vessel j which equals to t startj-t arrj

t procj: The processing time of vessel j

wj: The priority of vessel j. A time-scaled cost is generated after vessel j arrives at the

terminal.

TF : The tide changing frequency

Lj: The indicator of the availability of vessel j at all berths at low tide

Hj: The indicator of the availability of vessel j at all berths at high tide

The decision variables are shown as below:

t startj: Start time to serve vessel j

xij: Equals to 1 if vessel j is assigned to berth i and 0 otherwise

Iijj′ : Equals to 1 if vessel j and j
′

are both assigned to berth i and vessel j is processed

before vessel j
′
, and 0 otherwise

3.2.3 Mathematical model

Due to the strong impact of changing tides in practice, it is considered as a restriction

to vessels in this problem. In our problem setting, high tides and low tides happen

alternately. According to Section 3.2.2, TF denotes tide changing frequency. In this

35

way, the time horizon will be divided into [0, TF), [TF, 2 ∗ TF) ... until all vessels have

been scheduled. For example, if TF = 12, the water level alternates between low and

high in every 12 hours. Because of the variety of draughts of vessels, not all the berths

are available for a vessel at all times. It means that at low tide and high tide, there

are certain berths that can be available to only a specific type of vessel. Suppose a set

of m berths have been sorted in ascending order of the water depth and denoted as 1,

2, 3, 4 ... m (m is integer). There are a set of n vessels. Let Lj be the indicator of

the availability of vessel j at all berths at low tide (1 ≤ j ≤ n, j is integer), then the

set of berths that vessel j can visit at low tide is defined as SLj = {Lj , Lj + 1, ...,m}.

For high tide Hj is defined as the indicator of vessel j so that the set of berths can be

summarised as SHj = {Hj , Hj + 1, ...,m}. For example, as shown in Table 3.1, when

vessel ID j = 5, L5 = 4 indicates that at low tide only berth 4 is available for this vessel,

while at high tide H5 = 2 indicates that berth 2, 3, 4 are available. Note that we assume

that the water level of a berth at high tide is always higher than that at low tide. It

means that for a vessel the number of berths available at high tide must be no less than

that at low tide.

In multi-user terminals, incoming vessels are not always assigned to a specific berth

position. The incoming vessels are normally held at the port horizon and waiting for

further instructions from the operator. In practice, the operator needs to send tug

boats to direct vessels which are going to be berthed. The decisions are based on the

schedule and their priorities. The priority policies varies in different ports [Kontovas and

Psaraftis, 2011]. In general, large shipping companies may have agreements regarding

the priority. In Japan, they give priorities to large vessels because they cause more

congestions [Imai et al., 2003]. On the other hand, small vessels may be given service

priority when the port is busy, such as at Dalian container terminal.

In literature, Guan et al. [2002] treated the vessel size as a part of the weight with an

objective of minimising the total weighted completion time. A large size results a small

weight. Guan and Cheung [2004] defined the weight to represent the importance of each

vessel and minimised the total flow time. Saharidis et al. [2010] employed weights to

distinguish the preference of vessels while considering the customer satisfaction over the

ports total throughput. Hansen et al. [2008] minimised the total cost including earliness

and lateness costs, and the weighted handling time.

36

In our model, the service priority of vessels is represented in a form of cost rate wj .

Since ships do not have equal importance, a weighted sum of the vessel service times

may better reflect the management practice. A vessel with a high priority, means that

if it costs more than a vessel with lower priority while waiting. To minimise the cost

without the weight priority, set wj of all vessels to 1.

The objective function (3.1) minimises the total weighted cost of the service time of each

vessel from the time it arrives until the time it finishes all the loading and unloading.

The service time includes the waiting time and processing time.

min

n∑
j=1

wj(t waitj + t procj) (3.1)

s.t.

m∑
i

xij = 1 ∀j ∈ n (3.2)

t startj ≥ t arrj ∀j ∈ n (3.3)

t startj′ ≥ t startj + t procj −m(1− Iijj′)

∀j, j′ ∈ n, j 6= j′,∀i ∈ m (3.4)

Iijj′ + Iij′j ≤
1

2
(xij + xij′)

∀j, j′ ∈ n, j < j′,∀i ∈ m (3.5)

Iijj′ + Iij′j ≥ xij + xij′ − 1

∀j, j′ ∈ n, j < j′,∀i ∈ m (3.6)

xij = 0 ∀j ∈ n, i = 1, 2, ...,max(Lj , Hj)− 1 (3.7)

xij ∈ {0, 1} ∀j ∈ n, ∀i ∈ m (3.8)

Iijj′ ∈ {0, 1} ∀j, j′ ∈ n, s.t.j 6= j′, ∀i ∈ m (3.9)

Constraint (3.2) ensures each vessel is assigned to only one berth. Constraint (3.3)

requires that the vessel can only be served after it arrives. Constraint (3.4) guarantees

that if vessel j and j
′

are assigned to the same berth and vessel j is served before j
′
,

then the starting time of serving vessel j
′

cannot be no earlier than t startj + t procj .

37

Constraints (3.5) and (3.6) ensure that one of Iijj′ and Iij′j equals to 1 if vessel j and j′

are both assigned to berth i. They also ensure that Iijj′ = Iij′j = 0 if vessel j or vessel

j
′

is not assigned to berth i. Constraint (3.7) restricts vessel j to be only assigned to

a berth always available to it. Constraints (3.8) and (3.9) enforce xij and Iijj′ to be

binary.

Table 3.1: Example of available berths to vessels

Vessel ID j 1 2 3 4 5

Berth indicator at low tide Lj 1 4 2 4 4

Berth indicator at high tide Hj 1 1 1 3 2

3.2.4 The sensitivity of tidal constraints to BAPs

Due to the changing tides, the feasible intervals and forbidden intervals for each variable

are intertwined. It makes finding good solutions in the search space very difficult.

Especially when the number of vessels increases, the computational complexity is usually

high. With the goal to minimise the cost (3.1), the objective value depends on the total

weighted start time of all vessels
∑n

j=1wj ∗ t¯startj since t
¯
waitj = t startj-t arrj , and

the arrival time t arrj and process time t procj are constants. The tidal constraints not

only make some berths unavailable for some vessels, but also cause changes on the start

time of multiple vessels. Assume a vessel is not able to stay at a berth at low tide, it

has to wait till high tide and other vessels scheduled after this vessel have to wait too.

It obviously increases the total cost. In other words, the total cost is highly sensitive to

the changes of start time of vessels.

3.2.5 Potential extensions for practical uses

In order to determine a berth schedule, there are more factors in reality that we need

to consider than the above problem assumption. For simplicity, some practical factors

are not considered in this problem. However, with the proposed algorithms in following

sections, these features can be either added as constraints or further integrated into our

algorithms.

38

3.2.5.1 Time window

In practical scenarios, vessels may have service deadline (the start or finish time of ser-

vice) in the form of time windows. Due to the agreements between shipping companies

and the port, the time windows determine that each vessel has to depart over a period

of time after arrival. In some cases, time windows are soft which can be relaxed with

a penalty cost. Furthermore, berth windows are also considered depending on the ter-

minal planning. A berth window guarantees a service which meets certain performance

standard. Numerous ports are closed at night and over weekends [Christiansen et al.,

2007]. This feature becomes important especially when planning for more than a week.

Golias et al. [2007] formulated BAPs considering the departure of vessels within time

windows, early and late departures. The BAP was modelled in both Cordeau et al.

[2005], Ting et al. [2014] as a vehicle routing problem where each vessel is treated as a

customer and has to be served within a period of time. Berths as depots, are restricted

by a time window of availability. The due time for departure of each vessel in Park and

Kim [2005], Legato et al. [2008] is pre-set and a penalty cost is incurred if the departure

is later than the committed time window. In Hendriks et al. [2008], the arrival time

window was considered based on an agreement between the operator and shipping lines.

Only if the vessel arrives within a certain time window, the port guarantees a maximal

time to serve the vessel. Otherwise, the port will not be penalised by any delay of service.

Lalla-Ruiz et al. [2016] considered both the available period of time of berths and the

maximum departure time of vessels. Authors also pointed that the computational time

of the model in is reduced by defining them as hard constraints.

3.2.5.2 Stochastic processing time

Bierwirth and Meisel [2010] summarised different definitions of processing time in liter-

ature were:

1. They are known as fixed

2. They depend on the vessels berthing positions

3. They depend on the QC assignments

39

4. They depend on the QC scheduling

5. They depend on combinations of above.

The real-world processing time of loading/unloading a vessel may vary which depends

on the resources allocated to the vessel. In the processing of loading/unloading, QCs

are one of the main resources. When several vessels berth simultaneously, the plan of

QC assignment restricts the speed of handling each vessel. At least a certain number of

QCs are required to serve each vessel. Sometimes the QC capacity and the operation

cost rate of QCs are considered as well. In other words, the realistic processing time of

each vessel, is influenced by the total number of QCs and the QC assignments.

Chang et al. [2010], Yang et al. [2012] combined BAPs and QC assignments and the pro-

cessing time was estimated by the required workload and the number of QCs assigned. It

was estimated in the same way in Zhou and Kang [2008] based on stochastic probability.

Instead of workload, the number of required movements was given in Rodriguez-Molins

et al. [2014] for the estimation of processing time. The processing time for BAPs can

also be obtained from a QC schedule. The QC scheduling and the BAP were dealt

simultaneously [Han et al., 2010, Lee and Wang, 2010, Zeng et al., 2011]. The necessary

time of handling each vessel is decided by the number and schedule of QCs. Zeng et al.

[2011] also took the disruption of operations into consideration. During operations, se-

vere weather conditions, breakdown of equipment or other unforeseen events could cause

disruptions in reality. In Zeng et al. [2011], the disruption was imposed to certain vessels

with a time of delay.

3.3 Levy flight for BAPs with multi-tidal windows

A single-solution based meta-heuristic optimisation termed LF-BAP is introduced which

is based on a random walk named Levy flight. This random walk is based on a long

tail distribution which can be used to help an algorithm to escape from getting stuck

at a local optimum [Tran et al., 2004]. The frequency and the length of long jumps are

controlled by adjusting the parameters of the distribution. The Levy flight optimisation

process describes a move strategy in which a particle flies from one point to another

following the Levy flight distribution. In BAPs, even a small move of an individual,

40

which is equal to a small change to the start time of a vessel, may cause a major

change to the berth allocation plan. This can make population-based methods slow to

converge. Due to the above reason, many existing population-based methods on BAPs

are time-consuming. In the process of LF-BAP only one individual is used. Being a

single-solution search, LF-BAP has the potential to avoid the aforementioned problem

of slow-convergence on this particular problem.

The pseudocode of the proposed LF-BAP is summarised in Algorithm 1. The process

of LF-BAP is terminated when certain criteria are met. Here the algorithm will stop

running if one of the following criteria is met: 1) the limit of iteration number is reached;

2) our approach has found the global optimum (provided by the exact technique from

the commercial solver, if it is able to solve the problem); 3) the best solution has not

been improved for a quarter of the maximum number of iterations.

Each generation of LF-BAP consists of two phases. Due to the large search space caused

by the tidal constraints, the first phase aims to efficiently explore good regions in the

search space and maintain the diversity of scheduling vessels. It starts from encoding

an initial solution (Section 3.3.1.1) and then updates the current solution by adapting

a Levy flight random walk (Section 3.3.1.2). Our decode procedure (Section 3.3.1.3)

always ensures a feasible solution. To intensify the current solution, three local search

procedures are applied in the second phase of our algorithm. A deep exploration in the

local search space further improves the schedule.

Algorithm 1 The process of LF-BAP

current solution := Initialisation(); //encoding (Section 3.3.1.1)
Let best solution be the best solution so far
Let best cost be the objective value of best solution
While (stopping criteria not met) do:

new solution = LF random walk(current solution); //Algorithm 2
dec solution = Decoding(new solution); //Algorithm 3
Local search(dec solution); //Algorithm 4
Evaluate the objective value of dec solution and denote it by new cost
If (new cost < best cost) do:

//update best known solution
best cost = new cost;
best solution = new solution;

End
current solution = new solution;

End

41

Algorithm 2 The pseudocode of LF random walk()

N := step length //calculated using (Eq. 3.11)
For (int i = 0; i < N, i++) do:

randomly pick two positions in current solution
switch the contents of them

End

3.3.1 First phase

3.3.1.1 Encoding

To be able to solve the BAP using a meta-heuristic like LF-BAP, it is necessary to find

a method to encode all information of a solution into a data structure. In this section,

the following encoding structure is proposed: information is stored in an array X. The

indices of X indicate the IDs of the vessels, while the value of X[j] indicates the priority

of vessel j. The priorities determine the order in which the vessels should be allocated

to berths. The smaller the value is, the higher the priority is given to the vessel. An

example of this encoding is shown in Table 3.2. In the example, the order of allocating

vessels should be vessel 3, 1, 4, 2 and 5 based on their priority. In the initial solution,

the priority of vessels is ordered by their arrival time. The vessel with the earliest arrival

time has the highest priority in the order.

Table 3.2: Example of encoding a solution given priorities of vessels

Vessel j 1 2 3 4 5

Priority 2 4 1 3 5

↓↓
Vessel allocation order 3 1 4 2 5

3.3.1.2 Adapting Levy flight walks to the BAP

To update the encoded solution, LF-BAP will undertake a random walk of Levy flight by

calling the function LF random walk(). The pseudocode is shown in Algorithm 2. Levy

flight is one of the keys in our algorithm to maintain the randomness and the diversity

of the berth allocation optimisation.

Levy flight is a concept of a random walk under a certain probability distribution.

It is especially useful for natural phenomena and artificial facts such as earthquake

42

analysis, financial mathematics, signal analysis, fluid dynamics, etc. Levy flight search

strategy contributes a lot to food pathing in nature-inspired algorithms like Artificial

bee colony algorithm [Meng et al., 2016] and Cuckoo search algorithm [Yang and Deb,

2009]. Moreover, Levy flight makes an improvement in the field of computer science. For

example, Levy flight was applied in examining the variability of internet traffic [Terdik

and Gyires, 2009]. Levy flight was combined with artificial potential field method in

order to perform an efficient searching algorithm for multi-robot applications [Sutantyo

et al., 2010]. As mentioned above, lately Levy flight has been effectively applied to

optimisation problems with a large search space as it significantly increases the diversity

of the chromosome and avoids to be trapped in local optima [Ali, 2015, Viswanathan

et al., 2008]. However, to the best of our knowledge there are not many studies using

Levy flight in global optimisation as single-solution based meta-heuristics except for the

research set out in Tran et al. [2004]. The distribution below (3.10) from Tran et al.

[2004] is a normalisation of the random walking length distributed in Gutowski [2001]:

P (l) =
β

l0(1 + l
l0

)1+β
(3.10)

where l is noted as the step length.

Moreover, Tran et al. [2004] also provided a formulation (3.11) to generate l where U is

a standard uniform distribution. l0 is introduced as a scale factor. The range of step

length is [0, +∞). The probability of achieving a long step decreases when β increases.

l = l0(
1

U1/β
− 1) (3.11)

In general, Levy flight technique is designed for continuous optimisation problems. To

apply LF-BAP to the combinatorial domain of the BAP, a randomly generated step

length is rounded to an integer number. This number represents the number of swaps of

two random positions in vessel allocation order (Table 3.2). This ensures that all step

lengths are discrete values. The larger the step length, the greater the number of swaps.

The more swaps to be made to a solution, the more different the new solution will likely

be in comparison to the original solution.

43

Algorithm 3 The pseudocode of the decoding procedure

Let V be the solution to be decoded V := {1, 2, ..., n}, where n is the number of vessels.
Let B be a set of m berths B := {1, 2, ..., m}.
Let L be a set of available berths for n vessels at low tide L := {L1, L2, ..., Ln}. //As
explained in Section 3.2, Lj represents the set of available berths for vessel j is {Lj ,
Lj+1, ..., m} at low tide.
Let H be a set of available berths for n vessels at high tide H := {H1, H2, ..., Hn}.
//Hj represents the set of available berths for vessel j is {Hj , Hj+1, ..., m} at high tide.
Let the list Xb:= {x1, x2, ..., xk} denote the sequence of vessels assigned to berth b,
where k is length of sequence. Initially Xb is empty.
Let tj denote the start time to serve vessel j.
Denote procj the process time of vessel j, arrj the arrival time of vessel j and wj the
weight of vessel j.
While Not all vessels have been scheduled do

T = 0; //at low tide
For j := 1 to n do:

For b:= Lj to m do:

Calculate the total cost at berth b Costb =
∑k

n=1(txn − arrxn + procxn) ∗wxn .
For each position p (1≤ p ≤ k+1), calculate the increment of the objective
value if vessel Vj is inserted to Xb. For example, if p = 1, the new sequence of
vessels will be {Vj , x1,..., xk}.
Update the start time of each vessel, such as tVj = max{0, arrVj}, tx1 =
max{tVj + procVj , arrx1} and etc.

Calculate the new cost newCostb = (tVj − arrVj + procVj) ∗wVj +
∑k

n=1(txn −
arrxn + procxn) ∗ wxn .
Calculate the increment of the objective value ip if current vessel is inserted to
position p ip = newCostb − Costb.
Let Ib,Vj := minp=1,2,...,k+1{ip} and pb := argminp=1,2,...,k+1{ip}.

End
Let b

′
:= argminb=Lj ,Lj+1,...,m{Ib,Vj}. Insert Vj to position pb′of berth b

′
.

End
Remove the vessel from current schedule if its start time is later than
the time of the current tide ends. For example, if vessel j has been sent
to berth b, remove j from the list Xb.

T = T + TF; //at high tide
For j := 1 to n do:

For b:= Hj to m do:
Same as at low tide.

End
Same as at low tide.

End
Remove the vessel from current schedule if its start time is later than the time of the

current tide ends.
Remove vessels which will finish in the next tide and the allocated berth is not available

for this vessel in the next tide.
T = T + TF;

End

44

3.3.1.3 Decoding

To decode the information from the data structure to a berth allocation solution, the

representation in Xu et al. [2012a] is modified. The idea of allocating a vessel to an

available berth with the minimum increment of the objective value in Xu et al. [2012a]

is used in our decoding process. However, there are only two tides considered in Xu et al.

[2012a]. All the vessels not allocated in the first tide will be scheduled in the second

tide. This way of allocation has a major drawback: solutions can be infeasible under

certain circumstances as explained in Lalla-Ruiz et al. [2016]. There are only two tides

in Xu et al. [2012a] in which the second tide goes to infinity. If there is a large number of

vessels arriving, and the first tide can only accommodate a small proportion of them, the

second tide has to be much longer than usual. It is not suitable for real-world problems.

As there are more than two tides in reality, to avoid infeasible solutions, additional checks

need to be done every time the tide changes. Every tide is restricted to the same length

based on the tide changing frequency. When the tide changes from high to low, it has to

be checked whether the finish time of vessels exceeds the current tide because the same

berth may become unavailable for the vessel. Furthermore, for both situations (low tide

changing to high tide and vice versa) it checks whether there is any vessel with a start

time exceeding the current tide. They will be removed from the current schedule and

be allocated in the next iteration. The pseudocode of our proposed decoding procedure

is described in Algorithm 3.

3.3.2 Second phase

To further improve the schedule, the second phase is applied to the decoded solution. It

seeks to make most of the time horizon and find the local optima. When changing from

one tide to another, vessels exceeding the current tide will be removed because the same

berth at the upcoming tide may not be available. Xu et al. [2012a] proposed in the last

step of their algorithm to remove idle time without violating any constraints by shifting

vessels to an earlier time. However, for consecutive vessels it is unlikely that the start

time of all of the following vessels is allowed to move up due to the tidal constraints.

For instance, there is a vessel that fits in an earlier idle time period but there are other

45

vessels in between, if the vessels in between are not able to move, the solution cannot

be improved following the steps in Xu et al. [2012a].

A new local search is proposed which consists of three parts: swap in berth, swap

between two berths and move vessels from one berth to another (Algorithm 4). The

first two parts were proposed in Ting et al. [2014] and the third part is newly proposed

in this thesis. A swap in berth allows a sequence of vessels assigned to the same berth

to swap every two positions. Among all feasible solutions, the pair of vessels with the

best improvement in terms of the objective value is swapped. It does the same for each

berth in the schedule. Regarding swapping between berths, for every combination of two

berths, two vessels are selected randomly and swapped. The swap is kept only if there

is an improvement. This procedure is repeated 20 times in the following experiment.

The third part of the local search is to move vessels from one berth to another. A

vessel is randomly chosen from a certain berth and inserted into a random position in

the schedule of another berth if it provides a feasible and better result. The strategy of

selecting a berth to be inserted is to pick a berth with a lower water level which is usually

less busy. For each group of an original berth and a lower-water-level berth to be inserted

to, one random vessel is selected from the original berth and one random position from

the lower-water-level berth. For example, assume that there are two berths b1 and b2

with a lower water level than berth b3. Select a random vessel currently allocated to b3

and insert it to a random position in b2. Similarly for b1, a random vessel is chosen from

b3 to be inserted to b1. If a move like this leads to an improved berth schedule with a

smaller cost, the newly created berth schedule will be kept.

3.3.3 Computational experiments

In this section, the performance of the proposed LF-BAP is assessed by carrying out

a number of different experiments. All the algorithms are coded in Java and all the

experiments are conducted on a PC with an Intel i7 (3.60 GHz) processor and 16GB

RAM under Windows 7. In addition, the exact method is implemented by using the

state-of-the-art commercial solver CPLEX 12.7 with a maximum execution time of 1

hour for each instance. 16GB maximum java heap size is set for each run by CPLEX.

46

Algorithm 4 The pseudocode of Local search()

Let S be the current schedule.
Let B be a set of m berths B := {1, 2, ..., m}.
//swap in berth
For i:= 1 to m do:

Let A := SBi denote the list of vessels sent to Bi.
For q:= 1 to SizeOf(A)-1 do:

For w:= q + 1 to SizeOf(A) do:
Swap Aq and Aw and denote the new list A

′
q,w.

Denote Iq,w as the new objective value of A
′
q,w.

End
End
Find the smallest cost Iq′ ,w′ from I.

If Iq′ ,w′ is smaller than the original cost, swap vessel q
′
and w

′
. SBi= A

′

q′ ,w′ .

End

//swap between berths
Let N be the number of times doing swapping between berths
For i:= 1 to m-1 do:

Let VBi,q denote a randomly chosen vessel with the position q in SBi .
For j:= i+ 1 to m do:

Let VBj ,w denote a randomly chosen vessel with the position w in SBj .
Swap VBi,q and VBj ,w. Then check if Bi is available for VBj ,w and if Bj is
available for VBi,q.
If the new cost after the swap is lower, update S.

End
End

//move vessels from one berth to another
For i:= m to 1 do:

For j:= i− 1 to 1 do:
Let VBi,q denote a randomly chosen vessel with the position q in SBi . Let A
:= SBj denote the list of vessels sent to Bj , and w denote a randomly picked
position in A.
Check if Bj is available for VBi,q and calculate the new cost.
If the new cost is lower than before, insert VBi,q to Aw.

End
End

47

In this work, four sets of problem instances are tested. Set I corresponds to instances used

in Xu et al. [2012a], Lalla-Ruiz et al. [2016] with a maximum of 8 berths and 24 vessels.

In the work of Lalla-Ruiz et al. [2016], the authors extended the problem instances up to

8 berths and 50 vessels (Set II). However, in reality a terminal can be even busier than

the situation in Set I and II. It is more common now to see big ports handling more

than 100 or 200 vessels per day. According to NWEUROPE [2008], Europes two biggest

ports in Antwerp and Rotterdam already carried over 400 ships per day in 2008. It was

also mentioned in ForConstructionPros [2016] (2016) that Port of Rotterdam handles

on average 383 vessels per day. Asian ports can be even busier Wikipedia [2017]. The

Port of Singapore used to be one of the world’s busiest ports, receiving an average

of 140,000 vessels on an annual basis (approximately 380 vessels per day) as of 2013

[Akanksha Gupta, 2013]. However, according to recent ranking tables, many Chinese

ports are deemed larger nowadays [Wikipedia, 2017, World Shipping Council, 2015].

Live vessel trackers [Vesseltracker, 2018] also indicate that many Chinese ports, such as

Shanghai, Zhoushan, Qingdao, Ningbo, Tianjin, have up to dozens of hundreds of vessels

at ports, and a few hundred expected vessels at any moment in time. This indicates

a likely turnaround of hundreds of vessels per day in those ports. Elsewhere in other

continents, there are also other ports with more than 100 vessels per day, e.g. Houston

[MarineLink, 2015], Tubaran [Ta Kung Pao, 2011], Cartagena [Andrew Mwaniki, 2018],

etc. In addition, the problem considered in this chapter deals with multiple tidal windows

(there is no limit on the number of tidal windows to be considered). This makes it highly

possible for ports to consider a berth schedule for multiple days, increasing the number of

vessels per instance. It means ports with only a few dozen vessels per day (very common

in the real world) can still have large scale instances with more than 100 vessels. This

shows the practicability of LF-BAP. Therefore, we believe conducting experiments on

large-scale scenarios is meaningful for studying berth planning problems in the real

world.

In order to simulate challenging real-world problems, we generate large-scale data sets III

and IV following the instruction in Xu et al. [2012a]. Regarding the busy ports mentioned

above, not all of them show a large tidal difference. The instances are generated in

different tidal effects (small and big impacts) in order to simulate scenarios of different

ports. The arrival time t arrj and the processing time t procj of each vessel j are

generated according to a discrete uniform distribution within {0, 1, ..., TF} and within

48

{3, 4, ..., 12} respectively. The weight wj of each vessel is randomly generated according

to a discrete uniform distribution within {1, 2, ... , 10}.

The low-water berth index and high-water berth index of vessel j has a probability of

0.5 generating as follows. Lj is randomly generated according to a discrete uniform

distribution within {1, 2, ... , m}, and Hj is set equal to max{Lj 1, 1} (resp. max{Lj

2, 1}) for the case where the tidal impact is small (resp. big). Otherwise, Hj is randomly

generated according to a discrete uniform distribution within {1, 2, ... , m}, and Lj is

set equal to min{Hj + 1, m} (resp. min{Hj + 2, 1}) for the case where the tidal impact

is small (resp. big).

Set III extends Set II to 50 berths and 500 vessels and Set IV represents extremely busy

terminals in small - medium size with maximum 10 berths and 300 vessels. TF = 12

hours in every instance and they all start from low tide. An example instance is listed in

Table 3.3 and a corresponding feasible solution is displayed (Fig. 3.4). We run LF-BAP

50 times for each instance and one execution for CPLEX-BAP and H-BAP because the

solution always stays the same.

3.3.3.1 Comparing with an exact method and a heuristic

state-of-the-art exact method In optimisation problems, exact algorithms are de-

signed in a way that they guarantee finding an optimal solution in a finite amount of

time. This finite amount of time usually grows with the problem size. Since BAPs

are NP-hard [Hansen and Oguz, 2003, Lim, 1998], exact methods may need exponential

effort for even medium-sized problems. For example, for each vessel j, it may need a

binary variable Sj,b denoting whether vessel j is sent to berth b. Assume there are a

set of vessels V scheduled to berth b, it is also needed to denote another binary variable

Pi,j to indicate if vessel i will be berthed before vessel j, where i, j belong to V . This

leads to a large number of combinations of integer values for the variables that must be

tested. If the problem size increases, the complexity of the problem is highly affected

and so the number of such combinations will rise dramatically.

In the experiments, we compare the performance of the proposed LF-BAP with a state-

of-the-art exact method called Generalised Set-Partitioning BAP [Lalla-Ruiz et al., 2016]

49

Figure 3.4: A feasible solution of the example instance given in Table 3.3

with a multi-period planning time horizon (CPLEX-BAP). Based on the reported liter-

ature, CPLEX-BAP is one of the few publications considering tidal constraints. As an

exact method it has shown the capability of solving small and medium scale problems

with a reasonable running time. By conducting the experiments in this section, we will

have some insights of how our algorithm performs comparing to the exact method in

terms of the running time and objective values while the complexity of the problem

increases.

Table 3.3: An example instance using notations from Section 3.2.2

Vessel j t arrj t procj wj Lj Hj

1 12 5 1 1 1

2 0 10 2 3 1

3 5 3 8 2 1

4 10 6 5 3 3

5 2 12 4 3 2

A modified heuristic In general, heuristics can provide solutions quickly like the

greedy heuristic [Xu et al., 2012a]. It prioritises vessels based on the available berths.

Vessels with the same number of available berths are grouped together. Vessels in each

50

Table 3.4: Parameter settings

Algorithms Population size Other parameters

LF-BAP 1 Maximum iterations =
10000; l0 = 10; β = 3.

CPLEX-BAP Not applicable Time limitation: 1
hour. 16GB heap size.
Other parameters set
as default.

group are sorted by the weighted processing time t procj/wj . And then vessels are sent

to the schedule one by one following certain rules. A solution is obtained quickly because

heuristic algorithms like Xu et al. [2012a] follow preset and heuristic rules that can be

computed rapidly without any stochastic exploration. The downside of this heuristic

could be that it is deterministic and hence is prone to always converging at a local

optimum.

A comparison between LF-BAP and a modified heuristic (H-BAP) from Xu et al. [2012a]

would be able to show whether stochastic elements in LF-BAP significantly improve the

results. H-BAP repeats the algorithm in Xu et al. [2012a] so that it fits multiple tidal

windows. In the original algorithm in Xu et al. [2012a], the second tidal period goes to

infinity which is not feasible for real-world problems. With the modification explained

in 3.3.1.3, it guarantees feasible solutions to have a fair comparison with our work.

3.3.3.2 Sensitivity analysis of LF-BAP

With the goal of studying the impact of parameter settings in LF-BAP, a statistical anal-

ysis is conducted in this subsection. In the Levy flight distribution, when the parameter

β increases the frequency of having long jumps decreases. Because the distribution is

heavy tailed, the increase of β would not make much difference if the value gets too big.

l0 controls the overall scale of jumps so it is preferred to be not too big because too

many swaps in one iteration slows down the whole process. Ensuring l0 greater than 1

significantly decreases the probability of having a jump distance less than 1. Therefore,

parameter values are chosen from l0 = 1, 3, 5, 8, 10 and β = 0.5, 1.5, 3, 5.

We compare the runtime of different settings by allowing the algorithm to run until

it converges to the same objective value. 9 random instances are chosen in different

sizes among Set I, II, III and IV. A significant difference appears after conducting the

51

Friedman statistic test for all the combinations of l0 and β. We notice a much larger

runtime when β = 0.5 (Fig. 3.5). Excluding the combinations with β = 0.5, another

Friedman test is conducted for all the other groups. The p-value ¿ 0.1 is achieved, so

the null hypothesis of equality of treatments is accepted at 95% and 99% confidence.

It means there are no significant differences between results from each group. Thus,

the performance of LF-BAP is not noticeably sensitive to all the groups except for β =

0.5. The parameter setting of LF-BAP in the following experiments after the sensitivity

analysis is shown in Table 3.4. All the settings of other algorithms are shown in the

table as well.

52

(a)

(b)

Figure 3.5: The impact of different parameter settings on computational time with
fixed l0 and β, respectively.

53

Table 3.5: Summary of the comparison between LF-BAP and CPLEX-BAP

Data set
No. of

test cases
Solvable cases Faster algorithm Percentage of cases with an error (%) e between

LF-BAP and CPLEX-BAP
CPLEX-BAP LF-BAP CPLEX-BAP LF-BAP e ≤

0.5% or
LF-BAP
is better

0.5% < e ≤
1%

1% < e ≤
2%

2% < e ≤
5%

e >
5%

I 120 120 120 47 73 66.67% 11.67% 10.83% 5.83% 5.00%

II 30 30 30 0 30 30.00% 16.67% 13.33% 30.00% 10.00%

III 100 40 100 0 100 60.00% 0.00% 10.00% 27.00% 3.00%

IV 60 20 60 0 60 66.67% 0.00% 0.00% 10.00% 23.33%

Total 310 210 310 47 263 60.97% 6.13% 8.7% 15.81% 8.39%

54

3.3.3.3 Computational results

The experiments evaluate the performance of our algorithm in terms of accuracy, effi-

ciency and capability. Firstly, the accuracy of our work is discussed based on the objec-

tive values, the number of instances that LF-BAP is able to find the global optima, and

the relative error. A relative error of LF-BAP (3.12) is defined as the gap between the

mathematically proven global optima (found by the exact technique in CPLEX BAP)

and LF-BAP. The gap between LF-BAP and H-BAP is also measured in the follow-

ing tables. The number can be negative which means LF-BAP outperforms the peer

algorithms. Secondly, the running time represents how quickly and efficiently an algo-

rithm reaches its optimal solution. Finally, we evaluate the capability of accommodating

algorithms in large-scale problems.

e =
Avg.ObjLF −Avg.ObjCPLEX

Avg.ObjCPLEX
∗ 100% (3.12)

Accuracy In Table 3.5, if CPLEX-BAP cannot solve the problem due to the out-of-

memory error while LF-BAP can solve it, LF-BAP is considered the faster algorithm

and more accurate than CPLEX-BAP. According to Table 3.5, there are 91.61% of the

test cases where LF-BAP found the global optima with an error e ≤ 5%, of which 60.97%

cases has an error e ≤ 0.5%. For problems in Set I, most of the average relative errors

are less than 1%. LF-BAP provides similar quality results (about 1% error) for solving

most test cases in Set II, except for two instances with errors of 4.44% and 6.85%. In the

results of large-scale problems (Tables 3.7 and 3.8), the relative errors between LF-BAP

and CPLEX-BAP become a bit larger for the instances CPLEX-BAP can solve. The

overall percentage with an error less than or equal to 5% is still above 60% for Set III and

IV although it should be noted that in these sets there are only a few instances where

errors can be determined thanks to CPLEX-BAP being able to solve them to optimality.

In comparison with H-BAP, LF-BAP significantly outperforms H-BAP in all test cases

in terms of objective values and relative errors by conducting a t-test (Tables 3.6, 3.7 and

3.8). All the negative percentages in these three tables indicate that LF-BAP obtains

much better solutions than H-BAP.

55

Table 3.6: A comparison of average objective values and average computational time between H-BAP, CPLEX-BAP and LF-BAP on instances
Set I and II.

Avg states the average value of all the test cases in each problem size. In Set I, each problem size (each row) contains 10 cases and 5 cases in
Set II. UB indicates the initial upper bound found by CPLEX-BAP.

Set Problem size
Tidal
effect

H-BAP CPLEX-BAP LF-BAP Error
between
LF-BAP

and
CPLEX-

BAP
(%)

Error
between
LF-BAP

and
H-BAP

(%)

Avg.
Obj.

Avg.
Time (s)

Avg.
Obj.

Avg.
Time (s)

Avg.UB
Obj.

Avg.UB
Time (s)

Avg.
Obj.

Avg.
Time (s)

I

m=3, n=9 small 535.5 0.0043 467 0.0872 1025 0.0022 469.8 0.0487 0.59% -12.28%
m=3, n=9 big 666.7 0.003 573.7 0.0427 1257 0.0001 587 0.0690 2.32% -11.95%
m=4, n=12 small 791.3 0.0036 717.4 0.101 2013.3 0.006 722.2 0.0510 0.67% -8.73%
m=4, n=12 big 811.7 0.003 712.5 0.0926 2158.1 0.006 718.8 0.0964 0.88% -11.45%
m=5, n=15 small 958.5 0.003 863.3 0.2814 2935.2 0.1324 869.5 0.2680 0.72% -9.28%
m=5, n=15 big 1066 0.0035 947.3 0.2419 2824.4 0.1109 954.1 0.3906 0.71% -10.50%
m=6, n=18 small 1081 0.0036 970.1 0.5698 3380.8 0.3738 973.3 0.4030 0.33% -9.97%
m=6, n=18 big 1215.2 0.003 1057.1 0.5939 3660.4 0.3749 1072.5 0.5715 1.46% -11.74%
m=7, n=21 small 1416.4 0.0031 1279.8 1.2425 4179.7 0.9485 1286.3 0.7554 0.51% -9.19%
m=7, n=21 big 1384.9 0.003 1195.6 1.2698 4355.9 0.0001 1201.8 1.2521 0.52% -13.22%
m=8, n=24 small 1577.2 0.003 1420 2.4369 5347.6 1.9069 1426.3 1.5097 0.44% -9.57%
m=8, n=24 big 1623.1 0.003 1394 2.1944 4561.8 1.7904 1411.4 1.8055 1.25% -13.04%

II

m=6, n=30 small 1470.8 0.0038 1210.8 4.5912 7876.6 3.9872 1221.7 0.8000 0.90% -16.94%
m=6, n=30 big 1606.6 0.0106 1277.4 6.1932 7679 5.5132 1294 1.2092 1.30% -19.45%
m=7, n=40 small 3474 0.0046 2808.4 24.6882 14017.4 22.8302 2841.4 2.7945 1.18% -18.21%
m=7, n=40 big 2965 0.0062 2155.8 20.3352 12863.2 18.9092 2251.5 3.1968 4.44% -24.06%
m=8, n=50 small 2713.2 0.0064 2276.8 51.958 18654.8 47.954 2300.6 4.2861 1.05% -15.21%
m=8, n=50 big 4162.6 0.0046 3039 41.2578 15104 37.9658 3247.1 4.7728 6.85% -21.99%

56

Table 3.7: Computational results on large scale data Set III.

In Set III, each problem size (each row) contains 5 cases.

Set Problem size
Tidal
effect

H-BAP CPLEX-BAP LF-BAP Error
between
LF-BAP

and
CPLEX-

BAP
(%)

Error
between
LF-BAP

and
H-BAP

(%)

Avg.
Obj.

Avg.
Time (s)

Avg.
Obj.

Avg.
Time (s)

Avg.UB
Obj.

Avg.UB
Time (s)

Avg.
Obj.

Avg.
Time (s)

III

m=9, n=60 small 6924.6 0.014 5746.2 57.1016 19994.6 49.4976 5847.4 5.0637 1.76% -15.56%
m=9, n=60 big 6676.2 0.0052 5603.6 52.7044 20582.2 44.1524 5798.8 6.0131 3.48% -13.14%
m=10, n=70 small 8383.6 0.0086 7257.2 112.3554 24984.2 93.2554 7473.8 7.0482 2.98% -10.85%
m=10, n=70 big 8233.2 0.0058 6704.6 107.0084 27255.8 78.7364 6957.4 7.9936 3.77% -15.50%
m=12, n=80 small 8965.4 0.004 7724.8 673.6474 27838 665.5674 7911.6 11.0984 2.42% -11.75%
m=12, n=80 big 8986 0.0042 7589.4 2761.022 30329.2 2736.898 7901.9 11.7207 4.12% -12.06%
m=13, n=100 small 12262.6 0.0062 10325.6 3577.88 38603.8 3493.904 10599 14.1122 2.65% -13.57%
m=13, n=100 big 11673 0.0054 9977 2713.847 40098.4 2640.987 10316.7 16.2133 3.40% -11.62%
m=14, n=120 small 15581.2 0.0092 N/S N/S N/S N/S 13835.1 25.1970 N/S -11.21%
m=14, n=120 big 16724 0.0094 N/S N/S N/S N/S 14421 28.0820 N/S -13.77%
m=15, n=150 small 23094.8 0.0076 N/S N/S N/S N/S 19904.8 35.6046 N/S -13.81%
m=15, n=150 big 23457.8 0.0166 N/S N/S N/S N/S 20215.8 38.9161 N/S -13.82%
m=20, n=200 small 30812.4 0.018 N/S N/S N/S N/S 27116.1 69.4433 N/S -12.00%
m=20, n=200 big 30874.2 0.0102 N/S N/S N/S N/S 26182.2 75.6344 N/S -15.20%
m=30, n=300 small 45951.6 0.0166 N/S N/S N/S N/S 39529.1 214.9714 N/S -13.98%
m=30, n=300 big 47400.6 0.0152 N/S N/S N/S N/S 40281.8 215.5681 N/S -15.02%
m=40, n=400 small 61800.8 0.022 N/S N/S N/S N/S 52936.2 468.3557 N/S -14.34%
m=40, n=400 big 60219.6 0.0216 N/S N/S N/S N/S 51751.4 438.4603 N/S -14.06%
m=50, n=500 small 77196.8 0.0316 N/S N/S N/S N/S 66371.4 652.9757 N/S -14.02%
m=50, n=500 big 77988.8 0.0322 N/S N/S N/S N/S 65460.2 955.2202 N/S -16.06%

N/S: Not solvable by CPLEX-BAP.

57

Table 3.8: Computational results on large scale data Set IV.

In Set IV, each problem size (each row) contains 5 cases.

Set Problem size
Tidal
effect

H-BAP CPLEX-BAP LF-BAP Error
between
LF-BAP

and
CPLEX-

BAP
(%)

Error
between
LF-BAP

and
H-BAP

(%)

Avg.
Obj.

Avg.
Time (s)

Avg.
Obj.

Avg.
Time (s)

Avg.UB
Obj.

Avg.UB
Time (s)

Avg.
Obj.

Avg.
Time (s)

IV

m=5, n=80 small 20560.8 0.0208 17533.6 71.4994 54128.2 30.6754 18295.3 6.6913 4.34% -11.02%
m=5, n=80 big 22354.2 0.007 18048.2 58.1214 55926.2 32.5494 19465.6 9.2297 7.85% -12.92%
m=6, n=100 small 25114.4 0.0072 21001.4 169.952 66660.2 103.3 22131.7 11.9623 5.38% -11.88%
m=6, n=100 big 27525.6 0.0064 22512 519.1268 78162.6 443.9588 24464.4 15.5042 8.67% -11.12%
m=7, n=150 small 47946 0.0116 N/S N/S N/S N/S 41710.2 31.9941 N/S -13.01%
m=7, n=150 big 50884.6 0.012 N/S N/S N/S N/S 44626.2 40.8227 N/S -12.30%
m=8, n=200 small 77732.4 0.0234 N/S N/S N/S N/S 68726.4 67.1615 N/S -11.59%
m=8, n=200 big 78247.4 0.021 N/S N/S N/S N/S 69696.7 77.2071 N/S -10.93%
m=9, n=250 small 113770.8 0.0294 N/S N/S N/S N/S 98179.3 123.0593 N/S -13.70%
m=9, n=250 big 108725.4 0.0322 N/S N/S N/S N/S 95080.4 141.5667 N/S -12.55%
m=10, n=300 small 139798 0.0466 N/S N/S N/S N/S 122812.5 199.9363 N/S -12.15%
m=10, n=300 big 141726.8 0.0488 N/S N/S N/S N/S 124669 229.4605 N/S -12.04%

N/S: Not solvable by CPLEX-BAP.

58

Efficiency All three algorithms start with a very small computational time (less than

1 second) according to Table 3.6. The meta-heuristic shows a much slower increase of

computational time than the exact method when the problem size increases. (Fig. 3.6).

To solve the largest problem size (m=8, n=50) in Set I and II, CPLEX-BAP takes 10

times the running time of LF-BAP. This becomes more obvious in the large-scale test

cases in Table 3.7, 3.8 and Fig. 3.6. The running time of CPLEX-BAP rises to about

3,600 seconds on the largest instance it could solve while LF-BAP only needed about

14 seconds for that same instance. When the problem size grows up, the difference of

running time between CPLEX-BAP and the meta-heuristic gradually gets noticeable

(Fig. 3.6). The initial upper bounds and the time CPLEX took to find them is also

reported in Tables 3.6, 3.7 and 3.8. There are some large-scale test cases where CPLEX-

BAP could not find an upper bound. In these cases, CPLEX fails to complete the

initialisation stage due to the out-of-memory error. For the rest, it takes CPLEX-BAP

a significant amount of time to find he upper bounds. The time to find the initial upper

bound is almost the same as the total time it takes to find the global optima. The quality

of the initial upper bounds is significantly worse than the results by LF-BAP based on

the t-test. This suggests that for this particular class of problem, CPLEX-BAP is slow

to find an upper bound but it can then quickly converge to the optimal solutions.

Capability The largest problem CPLEX-BAP is able to solve in Set III and IV is

13*100 and 6*100, respectively. Table 3.5 displays that in over 310 instances in total,

CPLEX-BAP is able to find a solution for 210 instances while LF-BAP can find global

optima for some instances and good sub-optimal solutions for all the rest. The coefficient

of variation plot of LF-BAP shown in Fig. 3.7 represents the statistical robustness of

our algorithm. As an approximate method, it is possible that the results of LF-BAP

vary for the same test instance in 50 runs. The coefficient of variation (CV) is defined

as the ratio of the standard deviation to the mean. A smaller CV value indicates the

performance of the algorithm is more stable statistically. As shown in Fig. 3.7, the CV

values are mostly less than 1%.

A majority of them are close to 0% indicating a very small difference between 50 runs.

With a normal distribution assumed on the data of CV, [0.163%, 0.203%] is achieved

as 95% confidence interval [Neyman, 1937] for the mean of CV. Therefore, a stable per-

formance of our algorithm can be concluded due to the small interval of the mean of CV.

59

(a) (b)

(c)

(d)

Figure 3.6: Comparison of three algorithms in terms of average running time and
objective values.

(a) Objective value comparison on small-scale data sets. (b) Runtime comparison on
small-scale data sets. (c) Objective value comparison on large-scale data sets. CPLEX-
BAP is given the maximum value on the cases it could not solve. (d) Runtime comparison
on large-scale data sets. CPLEX-BAP is given the maximum value on the cases it could
not solve.

60

Figure 3.7: The coefficient of variation represents the robustness of LF-BAP

In summary, LF-BAP is better than the state-of-the-art heuristic H-BAP in terms of

solution quality on all test cases. H-BAP achieves errors from 10%-37% while LF-BAP

achieves errors from 0.44%-8.67%. In terms of computational cost, H-BAP has a very

quick turnaround time for all the instances (less than 1 second). It can be seen from

Fig. 3.6 (b and d) that comparing to H-BAP and CPLEX-BAP, the increase of runtime

of LF-BAP is very slight when the problem complexity gets high. It increases from 0.05

to 4.77 seconds in Set I and II. For the cases CPLEX-BAP is able to solve, the runtime

of LF-BAP increases to about 16.2 seconds while it takes CPLEX-BAP almost 3600

seconds. For the largest cases which CPLEX-BAP could not solve, it takes LF-BAP

about 955 seconds. Compared to the state-of-the-art exact method CPLEX-BAP, LF-

BAP is also better in terms of computational time and feasible solutions in 85% of all 310

test cases (100% of large-scale cases). It is worth mentioning that CPLEX-BAP [Lalla-

Ruiz et al., 2016] is the only method that can guarantee the global optimal solutions in

the cases that it can solve. The exact model in CPLEX-BAP is remarkably effective and

should be the default first choice for instances with about 80 vessels or less, unless the

port operators want fast solutions within a few seconds or minutes in these similar scale

cases. However, the gap between the proposed LF-BAP and CPLEX-BAP (less than

5% in 92% of the cases) is acceptable in practical scenarios. The faster computational

time and the ability to find a good solution in the cases where CPLEX-BAP fails are

the advantages of LF-BAP, making it a better option for large scale scenarios or any

61

scenarios requiring a fast solution.

3.4 Conclusion

This chapter has made contributions as follows:

1. A new meta-heuristic based on Levy flight (LF-BAP) has been proposed to solve

the Berth Allocation Problem taking tidal effect into consideration. As far as we

know, this is the first time meta-heuristics have been used in solving BAPs with

multi-tidal windows.

2. Large scale datasets were generated based on the instruction from Xu et al. [2012a].

The results of LF-BAP were compared with the state-of-the-art exact method using

commercial solver CPLEX and a deterministic heuristic modified to fit multiple

tides.

• LF-BAP was faster than CPLEX model in 263 out of 310 cases. 60.97% of

the cases LF-BAP either achieved a solution with similar quality (less than

0.5% error) of the global optimum or solved the problem while CPLEX could

not.

• LF-BAP was capable of finding feasible solutions for all test cases while

CPLEX model was able to solve about 68% of them.

• LF-BAP outperformed H-BAP in all test cases.

3. The sensitivity of parameters in LF-BAP is analysed.

Chapter 4

Solving berth allocation problems

with multi-tidal windows using

Genetic algorithm

4.1 Introduction

In the last chapter, LF-BAP has proved competitive results in dealing with BAPs while

taking multiple tides into account. However, in terms of the quality of solutions, there are

some cases in which the remarkable CPLEX model outperforms LF-BAP. In this chapter,

we will propose a population-based meta-heuristic in order to further investigate the

problem. By introducing another algorithm, we will also try to reduce the gap between

the exact technique and the approximate method.

In the following section, the proposed GA is introduced in detail and experiments com-

paring the GA with the state-of-the-art algorithms are conducted. Moreover, an inves-

tigation of how meta-heuristics perform on this problem is carried out by conducting

experiments among LF-BAP, PSO and GA in Section 4.3, followed by a conclusion of

this chapter in Section 4.4.

62

63

4.2 Genetic algorithm for BAPs

With the goal of investigating the performance of meta-heuristics on BAPs, we also

propose a population-based meta-heuristic in this chapter. Unlike single-point search

methods which improve one solution by exploring neighbourhood while maintaining a

diversity, population-based meta-heuristics explore the search space by the cooperation

between population elements and exploit the collected information to reach potential

solutions by a competition between the population elements.

In this section, a GA is proposed to study the best way of scheduling vessels in a port.

GAs have been widely studied in Michalewicz and Schoenauer [1996]. The GA is a nature

inspired algorithm that belongs to the class of evolutionary algorithms. It was invented

with the idea of using the power of evolution to solve optimisation problems. GAs work

by evolving a set of individuals towards better solutions. A set of individuals are known

as a population. Each individual has a chromosome carrying its own information. The

concept of GAs is improving the chromosomes of the population by doing permutations

along a number of iterations (called generations). GAs have been proved to have a

robust performance under a reasonable level of noise. They do not break easily even if

the inputs are changed slightly. Reflecting real-world scenarios, even if the actual arrival

time of a vessel changes slightly from the estimated arrival time, the overall cost of the

schedule is unlikely to significantly increase.

4.2.1 Chromosome representation

According to existing GAs in solving BAPs, there are two common ways to represent

the chromosome. The first one is representing the chromosome as a berthing schedule

directly [Theofanis et al., 2007, Golias et al., 2009a, Golias and Haralambides, 2011].

Once a small change is made to the schedule, it can cause extra delay for some of the

vessels. Assume a vessel is moved to an earlier time, one of the following vessels now

has to wait until a high tide and all the vessels after will have to wait extra time. This

also makes the berth idle for a low tide period, wasting valuable time that could be used

to accommodate other vessels.

To overcome the inefficient way of doing permutations, the priority of allocating vessels

is suggested in Hu [2015], Lalla-Ruiz et al. [2014]. Lalla-Ruiz et al. [2014] represented

64

the chromosomes as vectors where the berthing order is defined by the first part and

the quay crane assignment is held by the second part. The biased random key generates

numbers in [0, 1). By doing vector computations on real values, the berthing order is

decided. Hu [2015] used integers to represent the priority of processing vessels. The

algorithm firstly considers the vessel with highest priority based on the chromosome.

The vessel is sent to a berth with the goal of maintaining the minimum increment of

cost.

We agree that solving BAPs with multiple tidal windows can benefit from representing

the chromosome as an order of processing vessels. Unlike the way mentioned above, the

newly proposed chromosome is a combination of vessel orders and berth orders. The

priority of processing vessels is determined by multiple sequences. Once the order of

processing vessels is decided, we follow the pre-set rules in the deterministic heuristic

from Xu et al. [2012a] in order to have the berthing schedule.

The greedy heuristic introduced in Xu et al. [2012a] allocates vessels in the order of

Weighted Shortest Processing Time (WSPT). For each vessel, the heuristic chooses a

berth with the minimum increment of the objective value while taking into account the

availability of berths at current tide. The final schedule is totally determined by the

fixed order of adding vessels without any stochastic element. Unlike meta-heuristics,

there is no other operation used in Xu et al. [2012a] to improve the only solution. In

our case, following the rules in Xu et al. [2012a], the final schedule is generated based

on the order of vessels in the chromosome instead of WSPT.

An example of the chromosome is shown in Table 4.1. The first line is the order of berths

where the priority of processing each group of vessels is decided. Regarding the groups

of vessels, vessels with the same berth indicator (see Table 3.1) grouped together. In

the example (Table 4.1), vessels with berth ID = 4 will be assigned first, followed by the

group with berth ID = 1. Reflecting to vessels, vessel IDs = 2, 4, 5 are processed first

followed by vessel IDs = 1. Neither the vessel IDs nor the berth IDs can be swapped

between lines because it is likely that a berth is not available for a randomly swapped

vessel.

It is unlikely that all vessels fit in one low tide and one high tide, especially when the

port is busy. If we use the same orders repeatedly, a swap in the chromosome affects the

processing order at more than one low tide or high tide. A major change can be made

65

Table 4.1: An example of the chromosome in GA

The order of berth IDs 4, 1, 2, 3

Vessel IDs for berth 1 1

Vessel IDs for berth 2 3

Vessel IDs for berth 3 null

Vessel IDs for berth 4 2, 4, 5

An example of the chromosome for one tide

An example of the chromosome for multiple tides

to the schedule by a small move. To avoid causing too frequent long jumps, we replicate

an independent order like Table 4.1 for each tidal period, instead of using the same one

repeatedly for all the tides. In other words, our chromosome is a combination of the

orders for each tide. For example in Table 4.1, at low tides LW1 and LW2 , the orders

of berths and vessels are independent but the group to which each vessel belongs stays

the same. A large number of combinations is necessary to ensure that all the vessels are

scheduled along the time horizon while the tide changes.

The main reasons for proposing this new chromosome representation are: 1) having both

berth IDs and vessel IDs in the chromosome and different orders in each tide maintains

the diversity of the search space; 2) when some berths are not available to some vessels

while the tide is changing, Xu et al. [2012a] always guarantees feasible solutions; 3) by

66

attempting feasible solutions in the search space, Xu et al. [2012a] is able to find the

best solution when inserting a new vessel to the current schedule.

4.2.2 Description of the GA procedure

With the chromosome representation we have proposed in the previous section, the

procedure of our GA is summarised in Algorithm 5. The population Pop in the algorithm

contains N individuals. In each generation Pop is evolved by selecting the best N from

three groups of individuals: current Pop, the mutation of Pop, and the offspring of

Elites and Pop.

GAs are well-known as a time-consuming approach. The following stopping criteria

are applied to our GA to accelerate the process: 1) a predefined maximum number

of generations is reached; 2) a predefined maximum number of consecutive generations

without improvement; 3) the known global optimum is reached (a global optimum can

be found by the exact technique from the commercial solver, if it is able to solve the

problem).

Algorithm 5 The pseudocode of GA

Let Pop be the population and N be the size of the population.
Let M be the size of the elitism.
Pop := Initialisation().
While (stopping criteria not met) do:

Denote Elites the best M of Pop.
Pop1 := Mutation (Pop).

Denote the offspring of crossover Pop2.
For i := 1 to N do:
Parent1:= Randomly pick from Elites.
Pop2[i]:= Crossover (Parent1,TournamentSelection(Pop)).

End
Decode the chromosomes (Algorithm 9) and apply an intensification to each so-
lution (Algorithm 10).
Evaluate and select the best N from Pop, Pop1 and Pop2, and denote Pop

′
.

Pop := Pop
′
.

End

4.2.2.1 Initialisation

In Algorithm 6, we initialise one individual in the population following rules in Step

1. When initialising the rest of the individuals, the group to which each vessel belongs

67

stays the same. We randomise the order of processing vessels within a group instead of

using the ascending order of weighted processing time (Step 2 in Algorithm 6).

Algorithm 6 Initialisation steps

Step 1 Initialise one individual in the population:
The sequence of berths is in ascending order of water-depths.
For each line of vessels, sort by the weighted processing time t procj/wj .
The combination is replicated for each tidal period.

Step 2 Initialise the rest of the population:
Randomise the order of berth.
Randomise the order of each group of vessels.

4.2.2.2 Elitism strategy

The elites are formed from a number of solutions with the best fitness values. They are

updated in every generation. In Crossover and Tournament selections, we combine the

elites with other individuals from the population to produce offspring.

4.2.2.3 Mutation

We apply two different rules to mutations of the order of berths and vessels respectively.

For each berth order, if the mutation rate is satisfied we randomly swap two berths (Fig.

4.1). In the mutation of vessel orders, we regenerate the order randomly (Fig. 4.2).

4.2.2.4 Crossover and Tournament selection

In crossover, two parents are needed. One is randomly selected from the elites as a

parent, and another one is chosen by applying a tournament selection (Algorithm 8). A

number of tournaments are randomly picked from the current population. And then we

choose the best performing one from tournaments as another parent. Once the parents

are decided, we combine different lines from the parents in crossover (Algorithm 7).

In order to form a new chromosome, we take a line from one parent with a certain

possibility p otherwise we take it from another parent.

68

Algorithm 7 The pseudocode of Crossover

Let L be the total number of lines of the chromosome.
Let Child be the output of the crossover.
Let Parent1, Parent2 denote the two parents of the offspring Child.
Let CrossoverRate denote the ratio of inheriting from Parent1 and Parent2
For i := 1 to L do:

DenoteParent1[i] and Parent2[i] the current line of each parent.
Randomise a possibility p.
If (p ≤ CrossoverRate) do:
Childi := Parent1[i];

Else
Childi := Parent2[i];

End
End

Algorithm 8 The pseudocode of TournamentSelection

For i := 1 to TournamentSize do:
Denote Tournamenti a randomly selected individual from the population.
Let Obji be the fitness value of Tournamenti.

End
Choose the individual TournamentB with the best fitness value ObjB.

Figure 4.1: Mutation for berths

The order of berth IDs 4 1 2 3 =⇒ The order of berth IDs 2 1 4 3

Figure 4.2: Mutation for vessels

Vessel IDs for berth i 2 4 8 7 1 =⇒ Vessel IDs for berth i 1 7 4 2 8

4.2.2.5 Decoding and intensification

Before evaluating the performance of the population, firstly we decode the chromosome.

Algorithm 9 describes the rules of transforming the chromosome to a schedule. The

scheduling process assigns vessels to one tidal period and then to another by following

Xu et al. [2012a] until all the vessels have been assigned. The outcome schedule includes

the time and berth to serve each vessel.

With the achieved schedule, we apply an intensification based on the current schedule in

order to find the local optimum. This step aims to improve solutions by proposing a new

neighbourhood structure. Each individual explores its neighbouring solutions by firstly

applying internal operations and then external operations. Three neighbouring solutions

are found by applying internal operations and the one with the best improvement of

fitness value will be kept. External operations explore neighbouring solutions by moving

vessels between berths. The detail is explained in Algorithm 10.

69

Algorithm 9 The pseudocode of the decoding procedure

Let OrgSol be the solution to be decoded.
Let B be a set of m berths B := {1, 2, ..., m}.
Let L be a set of available berths for n vessels at low tide L := {L1, L2, ..., Ln}. //As
explained in Section 3.2, Lj represents the set of available berths for vessel j is {Lj ,
Lj+1, ..., m} at low tide.
Let H be a set of available berths for n vessels at high tide H := {H1, H2, ..., Hn}.
//Hj represents the set of available berths for vessel j is {Hj , Hj+1, ..., m} at high tide.
Let the list Xb:= {x1, x2, ..., xk} denote the sequence of vessels assigned to berth b,
where k is length of sequence. Initially Xb is empty.
Let tj denote the start time to serve vessel j.
Denote procj the process time of vessel j, arrj the arrival time of vessel j and wj the
weight of vessel j.
While Not all vessels have been scheduled do

T = 0; //at low tide
Denote BSeq the berth sequence of OrgSol at this tide.
Let V be the vessel sequence at this tide. V := {OrgSolBSeq1 , OrgSolBSeq2 ,...,
OrgSolBSeqm}. OrgSolBSeq1 indicates a sequence of vessels the 1st berth in BSeq cor-
responds to.
For j := 1 to n do:

For b:= Lj to m do:

Calculate the total cost at berth b Costb =
∑k

n=1(txn − arrxn + procxn) ∗ wxn .
For each position p (1≤ p ≤ k+1), calculate the increment of the objective value if vessel
Vj is inserted to Xb. For example, if p = 1, the new sequence of vessels will be {Vj ,
x1,..., xk}.
Update the start time of each vessel, such as tVj = max{0, arrVj}, tx1 = max{tVj +
procVj , arrx1} and etc.
Calculate the new cost.
Calculate the increment of the objective value ip if current vessel is inserted to position
p ip = newCostb − Costb.
Let Ib,Vj := minp=1,2,...,k+1{ip} and pb := argminp=1,2,...,k+1{ip}.

End
Let b

′
:= argminb=Lj ,Lj+1,...,m{Ib,Vj}. Insert Vj to position pb′of berth b

′
.

End
Remove the vessel from current schedule if its start time is later than the time of the
current tide ends. For example, if vessel j has been sent to berth b, remove j from the
list Xb.

T = T + TF; //at high tide
For j := 1 to n do:

For b:= Hj to m do:
Same as at low tide.

End
Same as at low tide.

End
Remove the vessel from current schedule if its start time is later than the time of the
current tide ends.
Remove vessels which will finish in the next tide and the allocated berth is not available
for this vessel in the next tide.
T = T + TF;

End

70

Algorithm 10 The pseudocode of NeighbourhoodStructure

Let S be the current schedule.
Let B be a set of m berths B := {1, 2, ..., m}.
//internal operations
For i:= 1 to m do:

Let A := SBi denote the list of vessels sent to Bi.
Find the vessel Aj with the largest cost wAj ∗ t waitAj and denote its arrival
time TAj .
//N1
If time TAj is idle do: Let p1 denote the position.
Else do:

Find the position after the vessel occupying time TAj and denote p1.
End
Insert Aj to p1 and denote the solution as N1.
//N2
From p1 in A find the first vessel with a waiting time ¿ 0 and let the position
be p2.
Swap Aj and Ap2 and then let N2 denote the new solution.

//N3
Swap Aj and Aj−1 and let N3 denote the new solution.
Evaluate N1, N2 and N3 and update SBiwith the one with the best improve-
ment.

End
//external operations. N4 swap between berths
For i:= 1 to m-1 do:

Let VBi,q denote a randomly chosen vessel with the position q in SBi .
For j:= i+ 1 to m do:

Let VBj ,w denote a randomly chosen vessel with the position w in SBj .
Switch VBi,q and VBj ,w. Then check if Bi is available for VBj ,w and if Bj is
available for VBi,q.
If the new cost after the swap is lower, update S.

End
End
//N5 move vessels from one berth to another
For i:= m to 1 do:

Let VBi,q denote a randomly chosen vessel with the position q in SBi .
For j:= i− 1 to 1 do:

Let A := SBj denote the list of vessels sent to Bj , and w denote a randomly
picked position in A.
Check if Bj is available for VBi,q and calculate the new cost.
If the new cost is lower than before, insert VBi,q to Aw.

End
End

71

Table 4.2: GA with different operations

Name Operators

OP1 Mutation
OP2 Crossover with tournament selection
OP3 Mutation and crossover with tournament selection
OP4 Mutation, crossover with tournament selection and neighbourhood

structure

Table 4.3: List of instances tested for GA with different operators and their combi-
nations

Instance Name Berth No. Vessel No. Tidal Effect

Instance A 6 18 big
Instance B 8 50 big
Instance C 10 70 small
Instance D 5 80 small

4.2.3 Computational experiments

4.2.3.1 An analysis of GA with multiple operators

In this section, we analyse the effects of GA with different operators and their combi-

nations. Mutation, crossover with tournament selection and neighbourhood search are

investigated (OP1 OP4 in Table 4.2). Four representative instances are tested (Table

4.3). The experimental results in terms of generation numbers and objective values are

displayed in Figs. 4.3 and 4.4. It is noticeable that: 1) OP4 obtains significantly better

objective value than the other three in all instances we have tested; 2) OP4 also con-

verges fairly quickly; 3) OP2 takes the least number of generations to converge but it

does not reach good-quality solutions; 4) OP1 and OP3 perform similarly and sometimes

OP1 obtains better solutions. It means that the crossover may not have direct impact

on finding good-quality solutions but it helps the algorithm to quickly converge.

4.2.3.2 Comparison with existing work

We compare the performance of the proposed GA with the following algorithms: a state-

of-the-art exact method called Generalised Set-Partitioning BAP [Lalla-Ruiz et al., 2016]

(CPLEX-BAP) and a greedy heuristic [Xu et al., 2012a] (H-BAP).

72

Figure 4.3: The distribution of the total number of generations taken by GA with
different operators.

20 runs are conducted for each instance with following parameters: mutation rate =
0.3, crossover rate = 0.5, tournament size = 5, population size = 20, elitism size = 10.
The algorithm stops if one-hour time limit is reached or the solution is not improved in

continuous 100 generations.

H-BAP is also modified to accomodate multiple tides since it only takes into account

two tidal windows in Xu et al. [2012a]. The original algorithm from Xu et al. [2012a] is

deterministic. The available berth with the least cost is allocated to each vessel. The

order of scheduling vessels is based on the weighted processing time. We limit the second

tidal period to the same length as the first one and then repeat the process until all the

vessels are scheduled. By comparing with H-BAP, we are able to identify how much the

stochastic elements enhance the performance.

The same relative error e (3.12) is used in order to compare an algorithm with the

global optima (found by the exact technique in CPLEX BAP). e quantifies the difference

between two algorithms regarding objective values.

An overview in Table 4.4 shows that 73.8% runs of our algorithm are able to find a

73

Figure 4.4: The distribution of the objective value achieved by GA with different
operators.

solution either with e ≤ 0.5% or that CPLEX-BAP cannot solve among all 310 test

instances. For small-scale data sets, 96.5% in Set I and 42.3% in Set II are solved by

GA with e ≤ 0.5% (Table 4.5). In terms of runtime, GA achieves the optima more

quickly than CPLEX-BAP in all test cases of Set I and II. GA keeps the runtime less

than 1 second in Set I and at most 8.9 seconds in Set II. CPLEX-BAP has a short

turnaround time (less than 2 seconds) in Set I and it increases in Set II up to 50 seconds

approximately.

The relative error of GA slightly increases when solving large-scale problems (Table 3.7)

but the relative error of the majority is still within 5% for cases CPLEX-BAP is able

to solve. As the level of the problem complexity gets higher, all the algorithms take

longer to converge. The running time of CPLEX-BAP increases exponentially due to

the limitation of exact techniques while GA takes from 10 seconds and up to about

1,700 seconds for all the test cases. For the most complex case CPLEX-BAP could

solve, it takes CPLEX-BAP and GA about 3,600 seconds and 68 seconds respectively.

Because our algorithm is terminated when it reaches the pre-set maximum number of

74

non-improving consecutive generations, GA is showing a quicker convergence in compli-

cated problems. This is demonstrated by a decrease in running time when the problem

scale gets to 30 berths and 300 vessels.

75

Table 4.4: Summary of the comparison between GA and CPLEX-BAP

Data set
No. of

test cases
Solvable cases Faster algorithm Percentage of cases with an error (%) e between GA

and CPLEX-BAP
CPLEX-BAP GA CPLEX-BAP GA e ≤

0.5%
0.5% < e ≤

1%
1% < e ≤

2%
2% < e ≤

5%
e >
5%

I 120 120 120 0 120 96.5% 2.6% 0.9% 0 0

II 30 30 30 0 30 42.3% 17.7% 18.5% 20.8% 0.7%

III 100 40 100 0 100 60.1% 1.6% 27.9% 10.4% 0

IV 60 20 60 0 60 66.7% 0 4.4% 16.8% 12.1%

Total 310 210 310 0 310 73.8% 3.2% 12% 8.6% 2.4%

Time limitation of CPLEX-BAP and GA is 1 hour.
We run GA 20 times on each instance.
Maximum number of function evaluations = 10000; maximum number of non-improving consecutive generations = 1000.
The chromosome size = 20; crossover rate = 0.5; mutation rate = 0.3; elitism size = 10; tournament size = 5.

76

Table 4.5: A comparison of average objective values and average computational time between H-BAP, CPLEX-BAP and GA on Set I and II

Set Problem size
Tidal
effect

H-BAP CPLEX-BAP GA Error
between
GA and

Avg. Obj. Avg.
Time (s)

Avg. Obj. Avg. Time (s) Avg. Obj. Avg. Time (s) CPLEX-
BAP
(%)

I

m=3, n=9 small 535.5 0.0043 467 0.0872 467.1 0.0095 0.01%
m=3, n=9 big 666.7 0.003 573.7 0.0427 573.9 0.0146 0.05%
m=4, n=12 small 791.3 0.0036 717.4 0.101 719.3 0.0472 0.21%
m=4, n=12 big 811.7 0.003 712.5 0.0926 714 0.0583 0.23%
m=5, n=15 small 958.5 0.003 863.3 0.2814 864.1 0.0186 0.10%
m=5, n=15 big 1066 0.0035 947.3 0.2419 948.4 0.0384 0.12%
m=6, n=18 small 1081 0.0036 970.1 0.5698 972.3 0.2209 0.22%
m=6, n=18 big 1215.2 0.003 1057.1 0.5939 1061.1 0.2516 0.35%
m=7, n=21 small 1416.4 0.0031 1279.8 1.2425 1284.5 0.2446 0.37%
m=7, n=21 big 1384.9 0.003 1195.6 1.2698 1200 0.5325 0.37%
m=8, n=24 small 1577.2 0.003 1420 2.4369 1425.5 0.5343 0.39%
m=8, n=24 big 1623.1 0.003 1394 2.1944 1402 1.1626 0.58%

II

m=6, n=30 small 1470.8 0.0038 1210.8 4.5912 1218.6 1.1645 0.48%
m=6, n=30 big 1606.6 0.0106 1277.4 6.1932 1286.2 1.0782 0.65%
m=7, n=40 small 3474 0.0046 2808.4 24.6882 2823.7 3.0369 0.60%
m=7, n=40 big 2965 0.0062 2155.8 20.3352 2199.2 3.9543 1.91%
m=8, n=50 small 2713.2 0.0064 2276.8 51.958 2294.2 4.9517 0.71%
m=8, n=50 big 4162.6 0.0046 3039 41.2578 3124.4 8.9558 2.76%

77

Table 4.6: A comparison of average objective values and average computational time between H-BAP, CPLEX-BAP and GA on Set III and IV

Set Problem size
Tidal
effect

H-BAP CPLEX-BAP GA

Error
between
GA and

Avg. Obj. Avg.
Time (s)

Avg. Obj. Avg. Time (s) Avg. Obj. Avg. Time (s)

CPLEX-
BAP
(%)

III

m=9, n=60 small 6924.6 0.014 5746.2 57.1 5840.5 10.3 1.65%
m=9, n=60 big 6676.2 0.0052 5603.6 52.7 5733.5 12.8 2.32%
m=10, n=70 small 8383.6 0.0086 7257.2 112.4 7403.2 16.7 2.01%
m=10, n=70 big 8233.2 0.0058 6704.6 107 6952.5 19.6 3.53%
m=12, n=80 small 8965.4 0.004 7724.8 673.6 7881.2 33.2 1.99%
m=12, n=80 big 8986 0.0042 7589.4 2761 7866.5 31.4 3.57%
m=13, n=100 small 12262.6 0.0062 10325.6 3677.9 10588.6 68.6 2.54%
m=13, n=100 big 11673 0.0054 9977 2713.8 10283.1 59.6 3.05%
m=14, n=120 small 15581.2 0.0092 N/S N/S 13794.7 109 N/S
m=14, n=120 big 16724 0.0094 N/S N/S 14355.9 107.1 N/S
m=15, n=150 small 23094.8 0.0076 N/S N/S 19908.8 223.3 N/S
m=15, n=150 big 23457.8 0.0166 N/S N/S 20156.9 239.1 N/S
m=20, n=200 small 30812.4 0.018 N/S N/S 27182 1405.4 N/S
m=20, n=200 big 30874.2 0.0102 N/S N/S 26213 1400.2 N/S
m=30, n=300 small 45951.6 0.0166 N/S N/S 40009.5 759.1 N/S
m=30, n=300 big 47400.6 0.0152 N/S N/S 40509.2 758 N/S
m=40, n=400 small 61800.8 0.022 N/S N/S 53665.2 790.5 N/S
m=40, n=400 big 60219.6 0.0216 N/S N/S 52320.9 803.2 N/S
m=50, n=500 small 77196.8 0.0316 N/S N/S 67736.8 1026 N/S
m=50, n=500 big 77988.8 0.0322 N/S N/S 66504.7 947 N/S

N/S: Not solved

78

Table 4.7: A comparison of average objective values and average computational time between H-BAP, CPLEX-BAP and GA on Set IV

Set Problem size
Tidal
effect

H-BAP CPLEX-BAP GA

Error
between
GA and

Avg. Obj. Avg.
Time (s)

Avg. Obj. Avg. Time (s) Avg. Obj. Avg. Time (s)

CPLEX-
BAP
(%)

IV

m=5, n=80 small 20560.8 0.0208 17533.6 71.5 18082.9 16.6 3.08%
m=5, n=80 big 22354.2 0.007 18048.2 58.1 19012.1 19.6 5.27%
m=6, n=100 small 25114.4 0.0072 21001.4 169 21869.2 31.2 4.11%
m=6, n=100 big 27525.6 0.0064 22512 519.1 23929.2 33.2 6.34%
m=7, n=150 small 47946 0.0116 N/S N/S 41596.7 128.2 N/S
m=7, n=150 big 50884.6 0.012 N/S N/S 44122.4 121 N/S
m=8, n=200 small 77732.4 0.0234 N/S N/S 68210.9 343.8 N/S
m=8, n=200 big 78247.4 0.021 N/S N/S 68420.9 321.7 N/S
m=9, n=250 small 113770.8 0.0294 N/S N/S 97847.2 725.4 N/S
m=9, n=250 big 108725.4 0.0322 N/S N/S 94008.2 1563.3 N/S
m=10, n=300 small 139798 0.0466 N/S N/S 122557.6 1682.9 N/S
m=10, n=300 big 141726.8 0.0488 N/S N/S 123241.5 1595 N/S

N/S: Not solved

79

In summary, the proposed GA has shown competitive performance in solving BAPs with

tidal constraints. When compared with the remarkable exact method, GA produces good

solutions with reasonable gaps. Even in many small-scale cases, GA is able to achieve

the global optima with a shorter computational time. For large-scale data sets, GA

obtains better results than all the other algorithms we compare, while CPLEX-BAP is

not able to obtain a solution due to the memory error for most of the instances. It leads

GA to be a good option to solve this problem especially in practical busy terminals,

where a quick responding solution is desired.

In this section, a new GA is proposed to solve BAPs while considering multiple tides. A

new neighbourhood structure is also proposed to enhance the performance. According

to the experiments, this approach also produces competitive outcomes compared to the

state-of-the-art techniques. We believe the results have been promising to significantly

improve the efficiency of port operations in practical situations. In the next section, we

will further compare the performance of two proposed algorithms and another existing

meta-heuristic.

4.3 Study of meta-heuristics on BAPs

GA and LF-BAP are compared in this section to study their performance on BAPs

with multi-tidal windows. A PSO from Ting et al. [2014] is also replicated for the

assessment. As far as we know, there is no existing meta-heuristic dealing with discrete

dynamic BAPs with multi-tidal windows. Approximate methods that we have reviewed

consider different problem settings and none of them is able to be modified to solve BAPs

with tidal constraints. The PSO is replicated and the evaluation function is modified

so that it fits multiple-tidal windows. In the evaluation function of PSO we also check

whether the berth allocated is available for every vessel. If there is no berth available for

a particular vessel at any tide according to the given information, the solution (called

particle in PSO) will be re-initialised. If a berth is only available at high tide, the vessel

will wait to be scheduled until a high tide occurs.

The algorithms are run until they converge. We run each of them 20 times. If they are not

improved in 1000 number of function evaluations, they are identified as converged and

80

terminated. Tables 4.8, 4.9 and 4.10 record the average number of function evaluations

taken to convergence by each algorithm and its solution quality.

GA and LF-BAP both outperform PSO in all test cases. Comparing two proposed

meta-heuristics, it is noticeable that GA performs better for all test cases in Set I, II

and IV. The difference is big for some cases eg. m=8, n=200 with big tidal effect. For

instances of Set III, LF-BAP gets better than GA when the number of berths m ≥ 15.

In terms of the speed of convergence, GA converges significantly faster than LF-BAP in

all instances which is proved by a t-test.

In summary, for small scale cases, GA effectively achieves better-quality solutions com-

pared to LF-BAP. It happens to most of the large-scale cases as well, such as Set IV. For

some cases in Set III (m ≥ 30), it can be seen that GA converges in a few hundreds of

function evaluations but sacrificing a little in the quality of solutions, in which LF-BAP

takes more than 3,000 function evaluations.

81

Table 4.8: A comparison between LF-BAP, GA and PSO on Set I and II

Set Problem size
Tidal
effect

LF-BAP GA PSO

Avg. Obj. Avg. # of
function

evaluations

Avg. Obj. Avg. # of
function

evaluations

Avg. Obj. Avg. # of
function

evaluations

I

m=3, n=9 small 469.8 1164.1 467.1 90.9 493 4980.4
m=3, n=9 big 587 1675.9 573.9 206.5 615.6 5698.8
m=4, n=12 small 722.2 729.7 719.3 408.5 778.5 8299.7
m=4, n=12 big 718.8 1141 714 443 828.5 8251.2
m=5, n=15 small 869.5 1940.5 864.1 84 973.1 9136.2
m=5, n=15 big 954.1 2580.3 948.4 168.4 1113 9233.2
m=6, n=18 small 973.3 1939.1 972.3 660.4 1135.2 9751.4
m=6, n=18 big 1072.5 2571.9 1061.1 692.9 1311.3 9817.8
m=7, n=21 small 1286.3 2341.6 1284.5 520.2 1551.9 10000
m=7, n=21 big 1201.8 3760 1200 971 1544.5 10000
m=8, n=24 small 1426.3 3413.7 1425.5 821.9 1819.7 10000
m=8, n=24 big 1411.4 3626.3 1402 1618.3 1872.7 10000

II

m=6, n=30 small 1221.7 2174.8 1218.6 1571.3 2452 10000
m=6, n=30 big 1294 2718 1286.2 1378.6 2544.7 10000
m=7, n=40 small 2841.4 4365.8 2823.7 2068.5 5772.6 10000
m=7, n=40 big 2251.5 4421.5 2199.2 2764.2 4937 10000
m=8, n=50 small 2300.6 4452.2 2294.2 2261.6 6744 10000
m=8, n=50 big 3247.1 4491 3124.4 3678.3 7960.5 10000

Parameters of PSO are set as: chromosome size = 20; maximum iterations = 500; C1 = 2; C2 = 2; W = 0.5.

82

Table 4.9: A comparison between LF-BAP, GA and PSO on Set III

Set Problem size
Tidal
effect

LF-BAP GA PSO

Avg. Obj. Avg. # of
function

evaluations

Avg. Obj. Avg. # of
function

evaluations

Avg. Obj. Avg. # of
function

evaluations

III

m=9, n=60 small 5847.4 4502.5 5840.5 3034.1 9816.1 10000
m=9, n=60 big 5798.8 4406.3 5733.5 3749.2 9779.7 10000
m=10, n=70 small 7473.8 4201.2 7403.2 3565 13502.3 10000
m=10, n=70 big 6957.4 4318.9 6952.5 3483.2 12555.5 10000
m=12, n=80 small 7911.6 4273.5 7881.2 3624.2 13620.9 10000
m=12, n=80 big 7901.9 4733.9 7866.5 3371.7 14025.8 10000
m=13, n=100 small 10599 4500.7 10588.6 4042.8 20189.5 10000
m=13, n=100 big 10316.7 4192.5 10283.1 3554.6 19568.9 10000
m=14, n=120 small 13835.1 4123.8 13794.7 3474.1 27267 10000
m=14, n=120 big 14421 4332.1 14355.9 3662.1 27681.9 10000
m=15, n=150 small 19904.8 4238.3 19908.8 3780.3 41023.3 10000
m=15, n=150 big 20215.8 4579.3 20156.9 4242.8 40603.5 10000
m=20, n=200 small 27116.1 4063.3 27182 4038.6 58855.1 10000
m=20, n=200 big 26182.2 4388.1 26213 3835 54993.8 10000
m=30, n=300 small 39529.1 4117.9 40009.5 612.5 89470 10000
m=30, n=300 big 40281.8 3701.9 40509.2 626.5 90332.2 10000
m=40, n=400 small 52936.2 3817.9 53665.2 280.2 127400.7 10000
m=40, n=400 big 51751.4 3748.4 52320.9 283.5 122748.2 10000
m=50, n=500 small 66371.4 3049.6 67736.8 125.1 158797.7 10000
m=50, n=500 big 65460.2 3375.5 66504.7 169.4 157554.99 10000

83

Table 4.10: A comparison between LF-BAP, GA and PSO on Set IV

Set Problem size
Tidal
effect

LF-BAP GA PSO

Avg. Obj. Avg. # of
function

evaluations

Avg. Obj. Avg. # of
function

evaluations

Avg. Obj. Avg. # of
function

evaluations

IV

m=5, n=80 small 18295.3 4427.3 18082.9 3086.3 30819.46 10000
m=5, n=80 big 19465.6 4590.3 19012.1 3736.4 31039.91 10000
m=6, n=100 small 22131.7 4453.4 21869.2 3344.4 40558.98 10000
m=6, n=100 big 24464.4 4642.2 23929.2 3328.6 41507.12 10000
m=7, n=150 small 41710.2 4235.9 41596.7 3761.4 80416.00 10000
m=7, n=150 big 44626.2 4328.2 44122.4 2991.4 81033.95 10000
m=8, n=200 small 68726.4 4659.1 68210.9 3151.6 140833.37 10000
m=8, n=200 big 69696.7 4363.2 68420.9 2804.7 133343.53 10000
m=9, n=250 small 98179.3 4295 97847.2 3176.6 206834.05 10000
m=9, n=250 big 95080.4 4462.2 94008.2 2948.3 187646.04 10000
m=10, n=300 small 122812.5 4449.8 122557.6 1530.2 270415.29 10000
m=10, n=300 big 124669 4315.8 123241.5 2540.1 251057.32 10000

84

4.4 Conclusion

This chapter has made contributions as follows:

1. A new GA has been proposed to solve BAPs while considering multiple tides with

a new neighbourhood structure to enhance the performance.

2. The efficiency of operators in GA was studied.

3. The results of GA were compared with CPLEX-BAP and H-BAP.

• GA was faster than CPLEX in all instances. It also performed well in 73.8%

of them in terms of solution quality and feasibility.

• GA was capable of finding feasible solutions for all test cases while CPLEX

model was able to solve about 68% of them.

• GA outperformed H-BAP in all test cases.

4. The performance of meta-heuristics on BAPs was assessed by conducting experi-

ments of LF-BAP, GA and a PSO. PSO was modified to fit BAPs with multi-tidal

windows.

• LF-BAP and GA both outperformed PSO and H-BAP in all test cases.

• GA was able to converge more quickly and obtain better-quality solutions in

most of the cases compared to LF-BAP.

Chapter 5

A framework of discrete event

simulation

5.1 Introduction

Real-world optimisation problems are normally complex which are subject to uncertainty

and unknown changes. As changes occur in an optimisation problem, the algorithm

needs to react to the changes to produce a new optimal solution in regards to the

changes. Due to the variety of uncertainty in real-world problems, it is important to

effectively test an algorithm and evaluate the performance under different scenarios.

As mentioned in the literature review in Chapter 2, logistics problems at ports and

container terminals face a lack of comparisons of optimisation algorithms in real-world

scenarios. The performance measure varies a lot due to the number of problem variants

such as BAPs with different problem settings. With different performance measures,

it is difficult to compare existing methods and assess their performance. It also makes

applying existing algorithms to new problems impossible. Similar problems sometimes

might be solved with the same approach with small changes. Due to the diverse per-

formance measures, without a deep analysis and experiment, researchers hardly know

which approach improves a certain problem the most. For researchers lacking computer

science background, it is too challenging to see the flow in complex or dynamic optimisa-

tion problems. With visualisation, complex information can be simplified to 2D graphs

85

86

or 3D animations. It is a critical component to understand the behaviour of simulation

models and help researchers to improve the model.

Therefore, it is necessary and important to fill the gap. In order to fill the gap there are

several goals we need to achieve: 1) being able to generate test cases for different prob-

lems; 2) easy integrating with optimisation algorithms; 3) applying for benchmarking;

4) identifying common performance measures; 5) the ability to visualise.

In this chapter, a new framework of discrete event simulation is proposed as a tool to

compare and visualise logistic optimisation problems at ports. Meanwhile, it is also

used to generate and test instances of optimisation problems in different scenarios. This

framework is developed based on an open-source simulation software named JaamSim.

To the best of our knowledge, this is the first time a discrete-event simulation is used

as a flexible framework for different logistic problems. The framework is proposed as

a complex of optimisation and simulation. As mentioned in Section 2.2, discrete event

simulation is one of the most popular models in simulating port operations. First, the

event-based nature of discrete-event simulation makes it possible to generate different

problem instances very easily by just creating different events and adjusting how the sys-

tem changes its state upon an event. Second, generating dynamics is the nature of sim-

ulation - all simulation software is intrinsically equipped with some random/uncertainty

generator. This makes simulations naturally suitable for generating problem instances

with uncertainty. Third, the visualisation feature of simulation can help researchers

visually observe the behaviour of algorithms much more easily. Fourth, many simula-

tion software packages have drag-and-drop features, which would make the process of

creating logistics problems more user-friendly. Fifth, discrete-event simulation is natu-

rally suitable for complex systems. This makes it suitable for creating more challenging

optimisation problems. Finally, the flexibility of open source makes it possible to easily

integrate different algorithms and extend the framework to other type of problems.

In the following section, we start from a description of the proposed framework including

the structure and the software for development. Then examples of using the simulation

framework are shown in Sections 5.3 and 5.4. Bin packing problems (BPPs) and BAPs

are modelled as demonstrations. The contributions are summarised in Section 5.5.

87

5.2 The framework description

This section explains the framework by firstly introducing the software used as a devel-

oping tool and then explaining the structure of the framework. It then introduces the

features of this framework and how to integrate it with optimisation algorithms.

5.2.1 Simulator in the framework

There are a variety of simulation software and libraries in the market including com-

mercial software and open source software. According to the survey about simulation

software used at ports [Dragović et al., 2017], commercial simulation software such as

Arena and FlexSim, provide powerful 3D visualisations and a large number of individual

items for users to build a model. The most used software in this field according to the

literature is Arena. However, many of them have only been used once in the literature.

In general, the development in commercial software is restricted to functions pre-built.

It means users are only allowed to make changes to specific features.

Thanks to access to the source code in open source simulation software like SimPy

and JaamSim, users are provided more flexibilities to address different features in their

problem. Some works of open source simulation software are reviewed in Dagkakis and

Heavey [2015]. Among them, JaamSim written in Java shows promising development

and active forum [King and Harrison, 2013]. Key functions of JaamSim include drag-

and-drop interface, basic objects for process flow models, impressive 3D visualisation,

controls for launching and manipulating simulation runs and model editors. It also

provides probability distributions for random sampling and dynamic graphs for analysis.

More importantly, as an open source software, most of the functions and objects can be

modified based on developers needs. For example, developers are able to create their

own high-level objects. They can also customise any event or simulation process by

accessing the source code. The whole system is faster than much commercial software

in terms of event processing and execution time of entities [King, 2014].

Therefore, we believe JaamSim is a perfect fit in operating this framework. JaamSim is

an important part in executing the simulation process and the optimisation algorithm.

All the operations will be done in JaamSim through its interface and all the results and

performance will be displayed. It asks users to choose a problem including objective

88

Figure 5.1: Framework structure.

Optimisation problems will be simulated using the open source simulation engine;
parameters are imported as input in step 1 so that test cases are generated. In step 2,
while running the simulation, an algorithm is called from the open-source simulation
engine and the packing result for each item is returned to the engine. Then the result

is displayed in step 3 as output.

and all the other necessary parameters such as a distribution for an uncertainty. It will

also ask users to choose the directory to output the test case and the location of the

algorithm if testing the performance of an algorithm. The framework is built by using

drag-and-drop as well as working on the source code. The architecture of the framework

is given in Fig. 5.1.

5.2.2 Instructions of the framework

We propose this framework with following uses. Firstly, the framework supports simu-

lations of numerous optimisation problems. JaamSim provides basic objects which have

broad applications, such as queues and servers. In order to build a complex model,

it also allows users to create new pallets of high-level objects. Therefore, with this

simulator the framework is able to adapt models like manufacturing, traffic control and

scheduling etc. Moreover, a solution of comparing optimisation algorithms and exploring

improvements is offered by proposing this framework. The framework helps researchers

evaluating their algorithms in different environments and it also benefits the industry

by assessing the performance of different optimisation methods. In the meantime, there

is a function of generating customised test instances aiming to evaluate the performance

under different scenarios. By providing necessary inputs, the difficulty of the scenario

and further stochastic elements are defined.

89

Figure 5.2: Flow chart of the framework

As explain in Section 5.1, the simulation framework should support different optimisation

problems. To test the performance of an optimisation algorithm with this framework,

there are several steps to follow. The process is displayed as a flow chart in Fig. 5.2.

User input In Phase 1, with the user interface in JaamSim, the simulation model is

built. In order to decide the specific constraints and the objective function for the prob-

lem, a number of problem variants are pre-defined. Then users need to input parameters

if generating new data instance. By choosing certain parameter for each criteria such

as a distribution, users customise the scenario and the test instances are generated. If

using existing data, it can be imported by providing the directory. For now the input of

90

parameters can only be defined through the source code. In the future, a user interface

should be developed in order to allow a number of selections.

Optimisation Once the optimisation algorithm is integrated in the simulation engine,

the model executes it as an external function. It reads the existing data or the test

instance generated in Phase 1, along with all the other necessary information in the

simulation model. After running the algorithm, the solution is achieved with local

output and the optimisation plan is sent back to the simulation model.

Solution display The simulation model will automatically collect the new information

and update the operations. Meanwhile, the visualisation of the whole process also shows

how the problem is optimised and how the algorithm performs under this scenario. For

the purpose of comparing different algorithms and test them under numerous scenarios,

the simulator also shows the customised statistics.

5.3 A case study of Bin packing problems

In this section, a three-dimensional (3D) bin packing problem (BPP) is simulated as

an example of using the proposed framework. Firstly, objectives and constraints are

explained for this problem. Then the choices of algorithms are introduced. With the

stated format of input, the simulation process is summarised and the experiment is

conducted.

3D BPPs have drawn a lot of attention from the industry because of the difficulty in

solving them in real-world scenarios. BPPs are applied as a demonstration of using this

framework in this section. 3D BPPs are NP-hard optimisation problems in which a num-

ber of boxes are packed into one or multiple 3D bins. Depending on the characteristics

of the problem, different objectives can be defined for BPPs such as input minimisation

or output maximisation. Input minimisation aims to find the minimum total cost or

minimum number of bins. The size of bins can be either identical [Crainic et al., 2009,

Feng, 2013, Martello, 2007] or varied [de Almeida, 2010, Alvarez-Valdés et al., 2013, Che,

2011, Eley, 2003, Tian et al., 2015]. The aim of output maximisation is maximising the

volume or number of packed boxes given the limited number of bins [Lim, 2013, Liu,

2011, Junqueira, 2012, Costa and Captivo, 2016]. Some BPPs have multiple objectives:

91

minimising the cost while packing items with preferences [Tian et al., 2015]; minimis-

ing the cost and also packing items with the same destinations together [Ceschia and

Schaerf, 2013]. In terms of size, items may be identical, weakly heterogeneous (i.e. many

items but a few item types), or strongly heterogeneous (i.e. a few items but many item

types). Regarding constraints on BPPs, Bortfeldt [Bortfeldt, 2012] introduced various

constraints on potential containers, items, loading and allocation.

Figure 5.3: Examples of some objects in the real-world case study Bin packing prob-
lems.

(a) An anchor. No other item can be placed on top of this anchor. (b) A cable
organiser and some rectangular boxes placed in an open-top container. (c) and (d)
How non-rectangular items are stacked on each other and how tubes are bundled.

In the literature the BPPs are normally considered in an ideal situation with no un-

certainty. In reality, however, uncertainty is a frequent feature of real-world BPPs. A

92

case from our industrial partner is explained here as an example: a multiple bin-size Bin

packing problem. Based on the data provided by an industrial partner, there is a set of

items with different sizes to be packed into containers whose sizes (20, 40, 45 feet) and

structures (closed, open or flat rack) depend on the sizes of the items. Items include

boxes, anchors, tubes, and some other odd shape items fixed on a palette (Fig. 5.3).

The cost of hiring containers varies depending on their sizes and structures. Assum-

ing the number of containers is unlimited, the objective is to minimise the total hiring

cost of containers in order to pack all items needed. In summary, the constraints for

this problem are as follows: 1) items can be rotated but not up-side-down; 2) all items

must be placed parallel to the containers sides; 3) the total weight of items packed in

each container must not exceed the weight that the container could bear and or the

weight limit of the carrying vehicle; 4) items may not intersect each other and some

items cannot be stacked on top of another. This problem, similar to other real-world

optimisation problems, is subject to uncertainty. For example, some items can be tied

together into a bundle. How many items, and how they can be tied together into one

bundle, is uncertain. The size of each bundle is also uncertain, depending on how items

are tied together.

Hence, we need to take uncertainty into account in academic research. To address

uncertainty to a variety of BPPs, it is necessary to have a data set for each problem

based on different constraints and features of the problem. In following sections, We

explain the features of this framework in solving BPPs and the implementations.

Objectives and uncertainty

The framework provides three objectives for BPPs that optimisation algorithms can

choose to optimise: 1) minimise the number of bins; 2) minimise the cost of bins; 3)

maximise the profit of packed items.

Given the objectives above, the framework can generate uncertainty in: size of items,

weight of items, profit of items, and cost of bins. The uncertain values can be generated

under any distribution (e.g. uniform distribution, normal distribution). Both two-

dimensional (2D) and 3D (cuboid items) BPP can be visualised. The framework can

generate problems with single bin, multiple identical bins, or multiple bins of different

type.

93

5.3.1 Simulation process

The simulation process for BPPs is outlined as follows.

1. Setting up inputs to generate test cases. The format of input for minimising the

number of identical bins is shown in Table 5.1. The details of generating test cases

and examples are explained in Section 5.3.2.

2. Once a test instance is generated, the algorithm is called while passing the infor-

mation of this item as parameters (width, height, length). The test cases are saved

as a text file as well in the format below.

n bx, by, bz

a1,x a1,y a1,z

a2,x a2,y a2,z

...

...

...

an,x an,y an,z where n is the total number of items, x, y, z are the width, height

and length.

3. Then the packing location is returned by the algorithm so that the framework

could visualise.

4. In the meanwhile, the packing result is exported to a file with a format as follows:

bin type, bin no., item width, item height, item length, packing position coordinate

x, y, z.

5.3.2 Generating test problems

This subsection proposes test cases that we suggest to use as default. However, our

framework is not limited to them. Users can customise test cases based on their own

needs. Here we considered three levels of test cases: easy, medium, and hard which

represent the level of difficulty of packing items. The time that an algorithm takes

normally depends on the difficulty of the problem. Due to the lack of a proper 3D

benchmark, the following instances are extended from Lodi et al. [Lodi et al., 1999]

94

Table 5.1: The format of input for bin number minimisation

Parameters Explanation

String file name The output file name of test cases. It
should be the same name read in
algorithm.

int bin x, int bin y, int bin z The size of bins.
int item num The total number of items to be packed.
int x dis, int y dis, int z dis The distribution of each dimension

(width, height, length). 1 is normal
distribution, the default is uniform
distribution.

int x min, int y min, int z min It is the mean for normal distribution or
the lower bound of the range for uniform
distribution.

int x max, int y max, int z max It is the standard deviation for normal
distribution or the upper bound of the
range for uniform distribution.

which provides instances in 2D. Another dimension is added for bins and items. They

are displayed in Table 5.2 based on the following types of cuboids that are defined in

terms of the width W, height H and length L of the bins.

Type 1: wj uniformly random in [23W, W]; hj uniformly random in [1, 1
2H]; lj uniformly

random in [1, 1
3L];

Type 2: wj uniformly random in [1, 1
2W]; hj uniformly random in [23H, H]; lj uniformly

random in [12L, L];

Type 3: wj uniformly random in [12W, W]; hj uniformly random in [12H, H]; lj uniformly

random in [1, 1
2L];

Type 4: wj uniformly random in [1, 1
2W]; hj uniformly random in [1, 1

2H]; lj uniformly

random in [23L, L].

The input used for generating the data set is listed below. The fifth parameter, n is

the number of instances which must be an integer. In Java, the specific function with

the same name will be called depending on the number of input parameters. We have

two combinations of parameters below. The first one generates instances by choosing a

specific distribution (data set I, II, III), and the instances generated by the second one

are based on the size of bins (data set IV). The n below represents the number of items

to be generated.

95

Parameters String file name, int bin x, int bin y, int bin z, int item num, int x dis, int

x min, int x max, int y dis, int y min, int y max, int z dis, int z min, int z max

OR

String file name, int bin x, int bin y, int bin z, int item num

I: “test cases1.txt”, 30, 30, 30, n, 0, 1, 10, 0, 1, 10, 0, 1, 10

II: “test cases2.txt”, 100, 100, 100, n, 0, 1, 35, 0, 1, 35, 0, 1, 35

III: “test cases3.txt”, 100, 100, 100, n, 0, 1, 100, 0, 1, 100, 0, 1, 100

IV: “test cases4.txt”, 100, 100, 100, n

5.3.3 Algorithms integration

The framework supports solving the BPP in both static (offline) and dynamic (online)

ways. In the static case, all items are available beforehand, and the optimisation algo-

rithm can freely choose any item to load into a bin. In the dynamic case, the bins need

to be packed when time goes by, and items arrive at different times. Whenever one or

some item(s) arrive, the algorithm needs to find the best way to pack the items into a

bin, then waits for the next set of items to come, and so on.

To illustrate how the framework can be used to test algorithms that solve the static

BPP, we use a static bin packing algorithm [Martello, 2007] which solves the BPP in

an offline way, assuming that all items are available beforehand. This algorithm uses

heuristic approaches on initially sorted items by non-increasing volume. The algorithm

also assumes that unlimited identical bins are given, and bins have fixed orientation. If

one bin is full then it is closed, a new bin is set as open to receive items. The algorithm

was written in C, then was compiled into an executable file, which is then called by the

simulation framework. We choose this algorithm because, although it is not the latest

method, it is one of the few available 3D bin packing algorithms whose source code is

accessible and a detailed algorithm description is available. Because the purpose of this

section is to provide a proof of concept, we feel the decision of choosing this algorithm

is justified.

In addition, we develop a new online algorithm to illustrate how the framework can be

used to test the dynamic BPP in Section 5.3.3.1.

96

Table 5.2: Example of the problem instances generated by the framework

Data set
No.

Category Bin size (W*H*L) Total
number of

items

Item (wj*hj*lj)

I 20 Easy 30*30*30 20 Uniformly random in
[1, 10]

I 40 Easy 30*30*30 40 Uniformly random in
[1, 10]

I 60 Easy 30*30*30 60 Uniformly random in
[1, 10]

I 80 Hard 30*30*30 80 Uniformly random in
[1, 10]

I 1000 Hard 30*30*30 1000 Uniformly random in
[1, 10]

II 20 Easy 100*100*100 20 Uniformly random in
[1, 35]

II 40 Medium 100*100*100 40 Uniformly random in
[1, 35]

II 60 Medium 100*100*100 60 Uniformly random in
[1, 35]

II 80 Hard 100*100*100 80 Uniformly random in
[1, 35]

II 1000 Hard 100*100*100 1000 Uniformly random in
[1, 35]

III 20 Medium 100*100*100 20 Uniformly random in
[1, 100]

III 40 Medium 100*100*100 40 Uniformly random in
[1, 100]

III 60 Hard 100*100*100 60 Uniformly random in
[1, 100]

III 80 Hard 100*100*100 80 Uniformly random in
[1, 100]

III 1000 Hard 100*100*100 1000 Uniformly random in
[1, 100]

IV 40 Hard 100*100*100 40 Type 1 with probability
70%, Type 2, 3, 4 with
probability 10% each

IV 1000 Hard 100*100*100 1000 Type 1 with probability
70%, Type 2, 3, 4 with
probability 10% each

97

5.3.3.1 Developing a new online algorithm for 3D BPPs

For the purpose of benchmarking dynamic 3D BPPs, we develop a new online algo-

rithm (Algorithm 11). How the framework can be used to test dynamic algorithms is

also illustrated. It should be noted that the dynamic BPP is very new to the academic

community, and while there have been a few research studies that have proposed solv-

ing algorithms [Burcea et al., 2013, Epstein and Levy, 2010, Wong and Yung, 2010],

these research studies have not provided any experimental details to prove that these

algorithms work. Because of that, here we just provide a simple algorithm as a proof of

concept. The algorithm is written in Java, and it works by packing upcoming items layer

by layer under the same assumption as the static algorithm. In addition, the algorithm

assumes that there is no information of upcoming items and hence the problem needs

to be solved online. At the time an item comes, the information of the item, the current

bin and a packing location are passed to the algorithm as parameters and the algorithm

goes on packing the new item into the currently available bins. Items are packed in a

bin in “layers” (see Figure 5.4 and Figure 5.5).

The size of each layer is the maximum size of the packed items. The algorithm will

check whether the current vertical layer in a bin has enough space for this item. If there

is enough space on the current layer, the item is packed to the location and returns the

updated packing location. If there is not enough space on this layer, it will check the

next layer till this bin is full and then open a new one.

Figure 5.4: Example of item, bin, and layer in 3D

98

Figure 5.5: Example of packing in a layer in 2D using Algorithm 11.

Four items are packed in the first column. For the newly arrived item 1, the space left
in the first column is not enough, so it is placed to the second column. Because the

volume of item 2 is smaller than the free space, it is placed on the top of those items in
the first column. Item 3 has the same volume as item 2 but with different orientation.
It is placed to the second column since our algorithm is under the assumption of fixed

orientation.

Algorithm 11 OnlineBinPacking(ai, b, p)

While jth bin exists do

If ai,x > bj,x||ai,y > bj,y||ai,z > bj,z //if any of the dimensions of the item is larger

than the bin //this item can not be packed Return

If px + ai,x > bj,x //if the space through x coordinate is not enough //move

the packing location to the origin of next bin, close the current bin update p and j

to next bin

Else if py +ai,y > bj,y //if the space through y coordinate is not enough //-

move the packing location to the next layer update p to next layer through x coor-

dinate

Else if pz + ai,z > bj,z //if the space through z coordinate is not enough //-

move the packing location to the next column update p to next layer through y

coordinate

Else do pz + ai,z > bj,z //space is enough, pack the item //pack the item

and update p, i and j update p to next layer through y coordinate Return

Return

where px,py,pz are the packing location, ai,x, ai,y, ai,zare the width, height and length of

the ith item in the list of items, bj,x, bj,y, bj,zare the width, height and length of the jth

bin in the list of bins.

99

5.3.4 Experiment

The optimal solution that a dynamic BPP algorithm could find in the online dynamic

case would always be worse than or, at best, equal to the optimal solution found in the

static case. Due to that, to evaluate the efficiency of a dynamic BPP algorithm, we can

compare its solution with that of an established static BPP algorithm.

To demonstrate this type of comparison, in this experiment we are going to compare

our online algorithm (Algorithm 11 in Section 5.3.3.1) with the static algorithm from

Martello [2007] to evaluate the effectiveness/efficiency of Algorithm 11. The test set

in Table 5.2 is applied to both algorithms. Different numbers of items are set for each

group of instances. In each group, we run the algorithm for ten replications.

Performance measures

As mentioned in Chapter 2, performance measures are necessary to be introduced due to

the lack of common measures. To evaluate the effectiveness of the algorithms compared

to other algorithms, we use the following measures: average utilisation and number of

bins. The average utilisation shows how much the bin capacity is used on average. It

provides a reference to see how close the items are packed in each bin. The average

utilisation of the bins is the total volume of packed items divided by the total volume

of used bins. Moreover, the number of bins is used as another performance measure

regarding the effectiveness of algorithms. It represents how an algorithm performs with

an objective of input minimisation such as number of bins minimisation or cost of bins

minimisation.

Performance measures regarding the efficiency of algorithms generally means the pro-

cess time of an algorithm, for example, how fast or slow the algorithm identified the

optimum solution. The criterion that we will use in this experiment at the moment the

framework supports is the running time, which is the total process time of an algorithm

in our framework. This criterion can be easily collected and it is valuable in comparing

performances of different algorithms on computers of the same standard. Other criteria

like CPU usage could be implemented in the future. Therefore, in this experiment we

use the number of bins used, the average utilisation and the running time (see Section

5.3.4).

100

Table 5.3: Bin packing results.

Data set
No.

Total
No.
of
items

Online Static
No.
of

bins

Average
utilisation

Running
time (s)

No.
of

bins

Average
utilisation

Running
time (s)

I 20 20 1 11.994% 0.001 1 11.994% 0.129
I 40 40 1.1 24.054% 0.001 1 25.752% 0.136
I 60 60 2 19.037% 0.001 1 38.077% 0.116
I 80 80 5 37.43% 0.001 N/A N/A N/A

I 1000 1000 22.3 29.16% 0.001 N/A N/A N/A

II 20 20 1 11.619% 0.001 1 11.619% 0.226
II 40 40 1.4 17.442% 0.001 1 22.273% 0.146
II 60 60 2 16.92% 0.001 1 33.83% 0.19
II 80 80 3.2 13.71% 0.001 N/A N/A N/A
II 1000 1000 26 22.46% 0.002 N/A N/A N/A

III 20 20 8.8 29.77% 0.001 4.5 58.43% 2.001
III 40 40 15.7 29.633% 0.001 6.6 70.107% 14.214
III 60 60 24.3 32.13% 0.001 N/A N/A N/A
III 80 80 37 33.11% 0.001 N/A N/A N/A
III 1000 1000 382 32.77% 0.001 N/A N/A N/A

IV 40 40 2 25.54% 0.001 N/A N/A N/A
IV 1000 1000 81 42.44% 0.001 N/A N/A N/A

N/A represents that an algorithm has not finished the job in 10 hours.

The simulation runs on an Intel Core 2, 3.06 GHz computer with 4.0 GB RAM.

Table 5.3 shows the average results of ten replications. The average numbers of bins

determined by the online and static algorithms do not have a significant difference when

the number of items are low or the sizes of items are small in proportion to bin sizes, i.e.

I 20 and II 20. However, for I 40, I 60, II 40, II 60, III 20 and III 40 the static solution

provides a smaller number of bins with a larger average utilisation rate. This reflects

the fact that in most cases the solution found online would be worse than the solution

found offline in a static way.

In terms of the running time, the online algorithm shows significantly shorter process

times in comparison with the static algorithm. According to the results, the static

algorithm takes much longer to achieve a packing plan for a hard level of test cases.

The online algorithm, on the contrary, is much faster and can solve all the problems,

including the hard, large-scale instances. For example, in the results of I 1000, II 1000,

III 1000 and IV 1000 shown in Table 5.3, for the online algorithm it takes only 0.002

seconds at most. This solving time includes both computational time of the proposed

101

online algorithm and the simulation time to visually display the loading process. It

means the simulation is also fast and our framework is capable of handling problems

with a large number of items which is common in the real-world BPPs. Figure 5.6 shows

an example of how the process of packing bins online is displayed in 3D in our proposed

framework.

Figure 5.6: A 3D view of the online bin packing process, as displayed by our frame-
work.

5.4 A case study of Berth allocation problems

5.4.1 Developing a simulation model of BAP

Another case study of a BAP is conducted in this section for the purpose of examining

the performance of the optimisation algorithm LF-BAP proposed in Chapter 3 with 3D

visualisation. We firstly explain the structure of JaamSim and then introduce the new

modules developed for BAP models. The experiments with the format of the input data

are described in Section 5.4.2.

The basic architecture of JaamSim has been displayed as a UML diagram in Fig. 5.7.

JaamSim separates two objects Entity and Process. An active Entity could have multiple

Processes going on. Processes are managed by the EventManager which controls the

events. The EventManager contains an eventStack and a conditionalList in order to

maintain the discrete-event logic. Both conditional events and future events of each

entity are stored in event lists. Events with the same event time are sorted in order

of their priorities. If certain conditions of a conditional event are satisfied, the event is

executed. In order to build the model of the BAP, several new modules are developed.

102

Figure 5.7: A UML diagram of the existing JaamSim structure with the newly defined
objects

In order to integrate LF-BAP in the simulation and test on different scenarios, firstly a

simulation model needs to be built by developing new modules. By following the struc-

ture of the proposed framework in Section 5.2, several characteristics of the proposed

framework are shown including the simplicity of use, the 3D visualisation and potentially

further comparison with other algorithms. As the prototype of the vessel object to be

generated, VesselEntity inherits from DisplayEntity in order to support 3D graphics.

By inheriting from LinkedService, VesselScheduler creates sequence of DisplayEntities

at random intervals, which are placed in a target Queue. The key modules are fur-

ther explained as below and a flowchart of the BAP simulation using the framework is

displayed in Fig. 5.8.

Entity module

A new object VesselEntity is designed to simulate and monitor vessel behaviours in the

process of scheduling. Necessary information is stored as attributes, such as vessel type,

cost of waiting, handling time, etc (Fig. 5.9). Different figures are defined for each type

of vessel. Another key object in this simulation model is the built-in Server in JaamSim.

Server is used as berth in BAP simulation.

103

Figure 5.8: A flowchart of the BAP simulation using the framework.

Figure 5.9: Relevent information of vessels in simulation.

In the progress of the simulation, all the relevant information of each vessel can be seen
in an output view.

104

Control module

VesselScheduler is newly proposed to import input data and execute the BAP algorithm.

Once the data is imported, information of vessels is passed to vessel entities. According

to the process in Fig. 5.1, after calling a BAP algorithm from VesselScheduler, the

results (the berth allocated to each vessel) are sent to vessel entities.

Evaluation module

The evaluation module is used to monitor the statistics of the model. Statistics and

Graph are used to show the collected statistical information.

5.4.2 Experiment

We conduct an experiment to show the actual schedule generated by LF-BAP as a

demonstration. The format of input for simulation of BAPs with tidal windows is as

below.

n m TF

1 t proc1 t arr1 w1 L1 H1

2 t proc2 t arr2 w2 L2 H2

...

...

...

n t procn t arrn wn Ln Hn where n is the total number of vessels, m is the

total number of berths, TF is the tide changing frequency, t proc, t arr and w

indicate the processing time, the arrival time and the unit cost of waiting time,

L and H are the indicators of the availability of berths at low tides and high

tides.

With the simulation, we can see the process of assigning each vessel as well as the

customised statistics (Fig. 5.10). The simulation is able to automatically capture the

critical information while running the model. We test 10 instances with 5 berths and

15 vessels. Experimental results are displayed in Table 5.4 including the total weighted

cost (Eq. 3.1), average waiting time of vessels and utilisation rate of each berth.

The instances are the same as those used in Chapters 3 and 4. The variance of the results

is due to different distributions used for generating data. According to the problem

105

Figure 5.10: A screenshot of the statistics and the simulation.
According to the objective, the measurements are defined and collected in the simulation. The

selected criteria can be displayed in real time.

Table 5.4: Berth allocation results.

Test
case

Total
cost

Avg waiting
time of
vessels

Utilisation
rate of
berth 1

Utilisation
rate of
berth 2

Utilisation
rate of
berth 3

Utilisation
rate of
berth 4

Utilisation
rate of
berth 5

1 919.1 3.8h 19.1% 23% 44% 51.7% 82.3%

2 836 2.4h 0 56.1% 58.2% 60.1% 97.7%

3 2088 14.2h 17.6% 16.1% 23.4% 10.2% 95.1%

4 891 4.4h 6.6% 0 41.8% 69.7% 51.1%

5 1395.5 10.9h 0 4.8% 51.1% 27.9% 69.7%

6 785.2 4.2h 0 0 11.3% 50.1% 87.6%

7 856 7.6h 23% 0 41.9% 29.5% 50.1%

8 899.5 7.1h 0 34.8% 51.1% 27.9% 69.7%

9 761.8 5.9h 12.1% 8.1% 17.2% 46.6% 66.3%

10 1003 10.3h 0 11.3% 19.9% 44.8% 90.6%

Because the problem scale is small in this test, some berths are not utilised in optimal solutions.

setting in Chapter 3, berth 5 here represents the berth with highest water level. Some

vessels can only be moored at berths with a high water level. Therefore, the utilisation

rates of berth 4 and 5 are usually high in the experimental results.

106

5.5 Conclusion

This chapter for the first time proposes a new discrete-event simulation framework which

can be used to simulate and optimise different variants of optimisation problems. The

contributions can be summarised as follows:

1. A case study of BPPs was conducted.

• An online bin packing algorithm was developed and integrated to the simu-

lation model.

• A set of test cases were generated using the framework to evaluate the online

algorithm.

• The results of the online algorithm on these test cases were then compared

with those of a static algorithm from the literature.

2. A case study of BAP was conducted.

• A BAP model was built in the simulation and the input data were read

externally.

• The meta-heuristic LF-BAP proposed in Chapter 3 was integrated to the

simulation model. With the results, the complex simulation model was able

to assign vessels to the corresponding berths in order.

3. The results were visualised in 3D graphics and statistics in both case studies.

4. This framework is developed based on an open-source simulation software named

JaamSim. In order to build the simulation models, various new objects were

developed.

Chapter 6

Conclusion and future work

This chapter discusses whether the identified gaps have been at least partially filled

by revisiting the questions raised in Section 1.4. The research started from answering

questions about if there are any missing links between academic logistics optimisation

research in port operations and real-world applications. After identifying some impor-

tant but not-well studied issues, the rest of the thesis has focused on closing these gaps.

As results of this research, some problems have been found rarely considered in aca-

demic optimisation. Solutions have been provided by using optimisation methods and

simulation approach.

6.1 Summary of contributions

This research aims to develop realistic solutions to enhance the efficiency of port oper-

ations. Major contributions have been summarised below.

1. Identify the gaps between academic and real-world scenarios in BAPs and optimisation-

simulation for ports, including the important characteristics that have not been

covered in academic research, the problems that have not been well-investigated,

and the information that we can use to solve and evaluate logistics optimisation

problems in reality.

107

108

2. Develop novel approaches to solve discrete dynamic BAPs. The proposed approach

takes into account practically important constraints which have not been consid-

ered in evolutionary computation. In order to solve the problem effectively, the

new approaches are proposed based on the study of the problem characteristics,

the strength and weaknesses of existing techniques, the performance assessment of

each algorithmic component.

3. Define and develop a new framework. For the first time discrete-event simulation is

used as a general platform to compare and visualise logistic optimisation problems

at ports that closely reflect various characteristics of real-world situations. The

framework also provides a useful tool for researchers in the field to integrate their

optimisation algorithms in the developed framework to evaluate/compare their

robust/dynamic optimisation algorithms.

6.2 Future work

With our proposed approaches many new research avenues relating to optimisation and

simulation open up. The literature review in Section 2 also shows many open research

areas. Some possible future research directions to better link academic optimisation

problems to real-world applications are summarised.

Solve hybrid BAPs with current meta-heuristics: In Chapter 3, the reason for solving

the BAP as a discrete problem has been clarified. A future work that can be carried out

is to consider the length of the quay in BAPs to make the problem suitable for more

real-world scenarios. To the best of our knowledge, there is no existing work dealing

with hybrid BAPs with tidal constraints. With current meta-heuristics, the information

of berth availability needs to be updated and the conflicts of berth occupancy need

to be taken into account in the decoding process. In Chapters 3 and 4, the proposed

meta-heuristics have shown promising results. In order to solve the extended problem

efficiently, other strategies like the restart scheme can be potentially applied.

Consider time windows and investigate other meta-heuristics: In practical applications,

time windows may be subjected to ports and vessels. In some situations, a port does

not provide services all the times because it normally serves a number of shipping com-

panies and there are cultural and social factors. Due to contractual agreements between

109

shipping companies and the port, a vessel usually has to depart within a certain period

after arrival. In order to achieve a feasible schedule, the time window is an important

condition we need to take into account in the future. Since more constraints are tak-

ing into the problem, we also need to investigate other meta-heuristics. A variety of

approximate methods have been proved the efficiency in the literature. Studying other

meta-heuristics is meaningful for BAPs with multiple constraints.

Robust BAPs with uncertainty: According to the case study from our industrial partner,

the arrival time of each vessel is estimated. However, such information can be affected by

many factors. The same issue is also applied to handling time, etc. It has been taken into

account in Golias et al. [2014], Golias [2011], Han et al. [2010], Sheikholeslami and Ilati

[2017] in terms of uncertain arrival time and handling time. Furthermore, BAPs with QC

assignment was also mentioned frequently in academic research, such as Giallombardo

et al. [2010], Han et al. [2010], Zeng et al. [2011]. It sometimes affects the loading and

unloading time of each vessel as well. Therefore, dealing with uncertainty and resource

assignment can be meaningful as an extension of BAPs with tidal constraints.

Simulation with optimisation for ports: Various simulation models with integrated opti-

misation were studied in Chapter 2. A lack of flexible simulation framework is identified

in Chapter 2. In Chapter 5, a user-friendly framework was proposed. Two models were

built as demonstration to integrate optimisation approaches and simulate BAPs and

BPPs. However, in order to develop the framework as a powerful tool for simulation

and optimisation, further improvements are essential. Firstly, it has to be capable of

comparing different optimisation algorithms and making decisions. Secondly, it should

be able to assess the robustness of optimisation algorithms by modelling the uncer-

tainty in the simulation. Moreover, it should allow combining BAPs with other logistic

problems at ports such as vehicle routing and stowage planning.

Bibliography

S. Abdullah and M. Abdolrazzagh-Nezhad. Fuzzy job-shop scheduling problems: A

review. Information Sciences, 278:380–407, 2014.

Akanksha Gupta. The world’s 10 biggest ports, 2013. URL http://www.

ship-technology.com/features/feature-the-worlds-10-biggest-ports/.

A. F. Ali. A hybrid gravitational search with levy flight for global numerical optimiza-

tion. Information Sciences Letters Inf. Sci. Lett, 4:71–83, 2015.

R. Alvarez-Valdes. Lower bounds for three-dimensional multiple-bin-size bin packing

problems. OR Spectrum, 2013.

R. Alvarez-Valdés, F. Parreño, and J. M. Tamarit. A grasp/path relinking algorithm

for two-and three-dimensional multiple bin-size bin packing problems. Computers &

Operations Research, 40(12):3081–3090, 2013.

Andrew Mwaniki. Busiest Cargo Ports In South America, 2018. URL https://www.

worldatlas.com/articles/busiest-cargo-ports-in-south-america.html.

P. Angeloudis and M. G. Bell. A review of container terminal simulation models. Mar-

itime Policy & Management, 38(5):523–540, 2011.

C. Arango, P. Cortés, J. Muñuzuri, and L. Onieva. Berth allocation planning in seville

inland port by simulation and optimisation. Advanced Engineering Informatics, 25

(3):452–461, 2011.

M. M. Baldi. The three-dimensional knapsack problem with balancing constraints. Ap-

plied Mathematics and Computation, 2012a.

M. M. Baldi. The generalized bin packing problem. Transportation Research Part E,

2012b.

110

http://www.ship-technology.com/features/feature-the-worlds-10-biggest-ports/
http://www.ship-technology.com/features/feature-the-worlds-10-biggest-ports/
https://www.worldatlas.com/articles/busiest-cargo-ports-in-south-america.html
https://www.worldatlas.com/articles/busiest-cargo-ports-in-south-america.html

Bibliography 111

V. H. Barros, T. S. Costa, A. C. Oliveira, and L. A. Lorena. Model and heuristic

for berth allocation in tidal bulk ports with stock level constraints. Computers &

Industrial Engineering, 60(4):606–613, 2011.

J. A. Bennell, L. S. Lee, and C. N. Potts. A genetic algorithm for two-dimensional

bin packing with due dates. International Journal of Production Economics, 145(2):

547–560, 2013.

H. Beyer. Robust optimization - a comprehensive survey. Computer Methods in Applied

Mechanics and Engineering, Elsevier, 2007.

C. Bierwirth and F. Meisel. A survey of berth allocation and quay crane scheduling

problems in container terminals. European Journal of Operational Research, 202(3):

615–627, 2010.

C. Bierwirth and F. Meisel. A follow-up survey of berth allocation and quay crane

scheduling problems in container terminals. European Journal of Operational Re-

search, 244(3):675–689, 2015.

A. Borshchev and A. Filippov. From system dynamics and discrete event to practical

agent based modeling: reasons, techniques, tools. In Proceedings of the 22nd interna-

tional conference of the system dynamics society, volume 22. Citeseer, 2004.

W. Bortfeldt. Constraints in container loading - a state-of-the-art review. European

Journal of Operational Research, 2012.

I. Boussaid. A survey on optimization metaheuristics. Information Sciences, elsevier,

2013.

C. Briano, E. Briano, A. G. Bruzzone, and R. Revetria. Models for support maritime

logistics: a case study for improving terminal planning. In Proceedings of the 19th

European Conference on Modeling and Simulation (ECMS), pages 199–203, 2005.

K. Buhrkal, S. Zuglian, S. Ropke, J. Larsen, and R. Lusby. Models for the discrete berth

allocation problem: A computational comparison. Transportation Research Part E:

Logistics and Transportation Review, 47(4):461–473, 2011.

M. Burcea, P. W. H. Wong, and F. C. C. Yung. Online multi-dimensional dynamic bin

packing of unit-fraction items. In Algorithms and Complexity, pages 85–96. Springer,

2013.

Bibliography 112

H. J. Carlo, I. F. Vis, and K. J. Roodbergen. Transport operations in container terminals:

Literature overview, trends, research directions and classification scheme. European

Journal of Operational Research, 236(1):1–13, 2014.

S. Ceschia and A. Schaerf. Local search for a multi-drop multi-container loading problem.

Journal of Heuristics, 19(2):275–294, 2013.

D. Chang, Z. Jiang, W. Yan, and J. He. Integrating berth allocation and quay crane

assignments. Transportation Research Part E: Logistics and Transportation Review,

46(6):975–990, 2010.

C. H. Che. The multiple container loading cost minimization problem. European Journal

of Operational Research, 2011.

C. Y. Cheong, C. Lim, K. C. Tan, and D. Liu. A multi-objective evolutionary algorithm

for berth allocation in a container port. In Evolutionary Computation, 2007. CEC

2007. IEEE Congress on, pages 927–934. IEEE, 2007.

C. Y. Cheong, K. C. Tan, D. Liu, and C. Lin. Multi-objective and prioritized berth

allocation in container ports. Annals of Operations Research, 180(1):63–103, 2010.

China ports. Total number of ships entering and leaving port in China, 2014. URL http:

//www.chinaports.com/portlspnews/003DC76DC7B54CD19C8C673BA2B80D6C/view.

C. G. Christensen and C. T. Holst. Berth allocation in container terminals. Master’s

thesis, Technical University of Denmark, 2008.

M. Christiansen, K. Fagerholt, B. Nygreen, and D. Ronen. Maritime transportation.

Handbooks in operations research and management science, 14:189–284, 2007.

R. Cimpeanu, M. T. Devine, D. Tocher, and L. Clune. Development and analysis

of a port terminal loader model at rusal aughinish. Simulation Modelling Practice

and Theory, 51:14 – 30, 2015. ISSN 1569-190X. doi: https://doi.org/10.1016/j.

simpat.2014.11.001. URL http://www.sciencedirect.com/science/article/pii/

S1569190X14001634.

U. Clausen and J. Kaffka. Development of priority rules for handlings in inland port

container terminals with simulation. Journal of Simulation, 10(2):95–102, 2016.

http://www.chinaports.com/portlspnews/003DC76DC7B54CD19C8C673BA2B80D6C/view
http://www.chinaports.com/portlspnews/003DC76DC7B54CD19C8C673BA2B80D6C/view
http://www.sciencedirect.com/science/article/pii/S1569190X14001634
http://www.sciencedirect.com/science/article/pii/S1569190X14001634

Bibliography 113

J.-F. Cordeau, G. Laporte, P. Legato, and L. Moccia. Models and tabu search heuristics

for the berth-allocation problem. Transportation science, 39(4):526–538, 2005.

J.-F. Cordeau, P. Legato, R. M. Mazza, and R. Trunfio. Simulation-based optimization

for housekeeping in a container transshipment terminal. Computers & Operations

Research, 53:81–95, 2015.

M. d. G. Costa and M. E. Captivo. Weight distribution in container loading: a case

study. International Transactions in Operational Research, 23(1-2):239–263, 2016.

Crainic. Efficient lower bounds and heuristics for the variable cost and size bin. Com-

puters & Operations Research, 2011.

T. G. Crainic. Bin packing problems with uncertainty on item characteristics: an ap-

plication to capacity planning in logistics. Social and Behavioral Sciences, 2014.

T. G. Crainic, G. Perboli, and R. Tadei. Ts 2 pack: A two-level tabu search for the

three-dimensional bin packing problem. European Journal of Operational Research,

195(3):744–760, 2009.

A. Dadashi, M. A. Dulebenets, M. M. Golias, and A. Sheikholeslami. A novel continuous

berth scheduling model at multiple marine container terminals with tidal considera-

tions. Maritime Business Review, 2(2):142–157, 2017.

G. Dagkakis and C. Heavey. A review of open source discrete event simulation software

for operations research. Journal of Simulation, 2015.

T. Davidovic, N. Kovac, and Z. Stanimirovic. Vns-based approach to minimum cost hy-

brid berth allocation problem. In Proc. XLII International Symposium on Operations

Research, SYMOPIS, pages 237–240, 2015.

A. de Almeida. A particular approach for the three-dimensional packing problem with

additional constraints. Computer and Opertion Research, 2010.

P. de Langen, M. Nidjam, and M. van der Horst. New indicators to measure port

performance. Journal of Maritime Research, 4(1):23–36, 2007.

A. D. De León, E. Lalla-Ruiz, B. Melián-Batista, and J. M. Moreno-Vega. A machine

learning-based system for berth scheduling at bulk terminals. Expert Systems with

Applications, 87:170–182, 2017.

Bibliography 114

R. M. de Oliveira, G. R. Mauri, and L. A. N. Lorena. Clustering search for the berth

allocation problem. Expert Systems with Applications, 39(5):5499–5505, 2012.

B. Dragović, E. Tzannatos, and N. K. Park. Simulation modelling in ports and container

terminals: literature overview and analysis by research field, application area and tool.

Flexible Services and Manufacturing Journal, 29(1):4–34, 2017.

J. Egeblad and D. Pisinger. Heuristic approaches for the two-and three-dimensional

knapsack packing problem. Computers & Operations Research, 36(4):1026–1049, 2009.

M. Eley. A bottleneck assignment approach to the multiple container loading problem.

OR Spectrum, 2003.

L. Epstein and M. Levy. Dynamic multi-dimensional bin packing. Journal of Discrete

Algorithms, 8(4):356–372, 2010.

L. Epstein, L. M. Favrholdt, and J. S. Kohrt. Comparing online algorithms for bin

packing problems. Journal of Scheduling, 15(1):13–21, 2012.

X. Feng. Hybrid genetic algorithms for the three-dimensional multiple container packing

problem. Flexible Services and Manufacturing - Springer, 2013.

ForConstructionPros. Turning Sea Into Land, 2016. URL https://www.

forconstructionpros.com/concrete/equipment-products/article/12278666/

turning-sea-into-land.

G. Giallombardo, L. Moccia, M. Salani, and I. Vacca. Modeling and solving the tactical

berth allocation problem. Transportation Research Part B: Methodological, 44(2):

232–245, 2010.

J. Göbel, P. Joschko, A. Koors, and B. Page. The discrete event simulation framework

desmo-j: Review, comparison to other frameworks and latest development. In ECMS,

2013.

M. Golias, M. Boile, and S. Theofanis. The berth allocation problem: A formulation

reflecting service delay penalties and early premiums. Technical report, 2007.

M. Golias, I. Portal, D. Konur, E. Kaisar, and G. Kolomvos. Robust berth scheduling

at marine container terminals via hierarchical optimization. Computers & Operations

Research, 41:412–422, 2014.

https://www.forconstructionpros.com/concrete/equipment-products/article/12278666/turning-sea-into-land
https://www.forconstructionpros.com/concrete/equipment-products/article/12278666/turning-sea-into-land
https://www.forconstructionpros.com/concrete/equipment-products/article/12278666/turning-sea-into-land

Bibliography 115

M. M. Golias. A bi-objective berth allocation formulation to account for vessel handling

time uncertainty. Maritime Economics & Logistics, 13(4):419–441, 2011.

M. M. Golias and H. E. Haralambides. Berth scheduling with variable cost functions.

Maritime Economics & Logistics, 13(2):174–189, 2011.

M. M. Golias, M. Boile, and S. Theofanis. Berth scheduling by customer service differ-

entiation: A multi-objective approach. Transportation Research Part E: Logistics and

Transportation Review, 45(6):878–892, 2009a.

M. M. Golias, G. K. Saharidis, M. Boile, S. Theofanis, and M. G. Ierapetritou. The

berth allocation problem: Optimizing vessel arrival time. Maritime Economics &

Logistics, 11(4):358–377, Dec 2009b. ISSN 1479-294X. doi: 10.1057/mel.2009.12.

URL https://doi.org/10.1057/mel.2009.12.

M. M. Golias, M. Boile, and S. Theofanis. A lamda-optimal based heuristic for the berth

scheduling problem. Transportation Research Part C: Emerging Technologies, 18(5):

794–806, 2010.

Y. Guan and R. K. Cheung. The berth allocation problem: models and solution methods.

OR spectrum, 26(1):75–92, 2004.

Y. Guan, W.-Q. Xiao, R. K. Cheung, and C.-L. Li. A multiprocessor task scheduling

model for berth allocation: heuristic and worst-case analysis. Operations Research

Letters, 30(5):343–350, 2002.

M. Gutowski. Levy flights as an underlying mechanism for global optimization algo-

rithms. ArXiv Mathematical Physics e-prints, June 2001.

X. Han, Z. Lu, and L. Xi. A proactive approach for simultaneous berth and quay

crane scheduling problem with stochastic arrival and handling time. European Jour-

nal of Operational Research, 207(3):1327 – 1340, 2010. ISSN 0377-2217. doi:

https://doi.org/10.1016/j.ejor.2010.07.018. URL http://www.sciencedirect.com/

science/article/pii/S037722171000528X.

P. Hansen and C. Oguz. A note on formulations of the static and dynamic berth allocation

problems. Citeseer, 2003.

P. Hansen, C. Oğuz, and N. Mladenović. Variable neighborhood search for minimum cost

berth allocation. European Journal of Operational Research, 191(3):636–649, 2008.

https://doi.org/10.1057/mel.2009.12
http://www.sciencedirect.com/science/article/pii/S037722171000528X
http://www.sciencedirect.com/science/article/pii/S037722171000528X

Bibliography 116

J. He, W. Zhang, Y. Huang, and W. Yan. A simulation optimization method for internal

trucks sharing assignment among multiple container terminals. Advanced Engineering

Informatics, 27(4):598–614, 2013.

J. He, Y. Huang, and D. Chang. Simulation-based heuristic method for container supply

chain network optimization. Advanced Engineering Informatics, 29(3):339–354, 2015a.

J. He, Y. Huang, and W. Yan. Yard crane scheduling in a container terminal for the

trade-off between efficiency and energy consumption. Advanced Engineering Infor-

matics, 29(1):59–75, 2015b.

J. He, Y. Huang, W. Yan, and S. Wang. Integrated internal truck, yard crane and quay

crane scheduling in a container terminal considering energy consumption. Expert

Systems with Applications, 42(5):2464–2487, 2015c.

V. Hemmelmayr. Variable neighbourhood search for the variable sized bin packing

problem. Computers & Operations Research, 2012.

M. Hendriks, M. Laumanns, E. Lefeber, and J. T. Udding. Robust periodic berth plan-

ning of container vessels. In Proc. of the Third German Korean Workshop on Con-

tainer Terminal Management: IT-based Planning and Control of Seaport Container

Terminals and Transportation Systems, pages 1–13, 2008.

Z.-H. Hu. Multi-objective genetic algorithm for berth allocation problem considering

daytime preference. Computers & Industrial Engineering, 89:2–14, 2015.

G. Ilati, A. Sheikholeslami, and E. Hassannayebi. A simulation-based opti-

mization approach for integrated port resource allocation problem. PROMET-

Traffic&Transportation, 26(3):243–255, 2014.

T. V. L. N. Ilkyeong Moon. Container packing problem with balance constraints. OR

Spectrum, 2013.

A. Imai, K. Nagaiwa, and C. W. Tat. Efficient planning of berth allocation for container

terminals in asia. Journal of advanced transportation, 31(1):75–94, 1997.

A. Imai, E. Nishimura, and S. Papadimitriou. The dynamic berth allocation problem

for a container port. Transportation Research Part B: Methodological, 35(4):401–417,

2001.

Bibliography 117

A. Imai, E. Nishimura, and S. Papadimitriou. Berth allocation with service priority.

Transportation Research Part B: Methodological, 37(5):437–457, 2003.

A. Imai, X. Sun, E. Nishimura, and S. Papadimitriou. Berth allocation in a container

port: using a continuous location space approach. Transportation Research Part B:

Methodological, 39(3):199–221, 2005.

A. Imai, E. Nishimura, M. Hattori, and S. Papadimitriou. Berth allocation at indented

berths for mega-containerships. European Journal of Operational Research, 179(2):

579–593, 2007.

A. Imai, E. Nishimura, and S. Papadimitriou. Marine container terminal configura-

tions for efficient handling of mega-containerships. Transportation Research Part E:

Logistics and Transportation Review, 49(1):141–158, 2013.

A. Imai, Y. Yamakawa, and K. Huang. The strategic berth template problem. Trans-

portation Research Part E: Logistics and Transportation Review, 72:77–100, 2014.

K. Jansen and K.-M. Klein. A robust afptas for online bin packing with polynomial

migration. In F. V. Fomin, R. Freivalds, M. Kwiatkowska, and D. Peleg, editors,

Automata, Languages, and Programming, pages 589–600, Berlin, Heidelberg, 2013.

Springer Berlin Heidelberg. ISBN 978-3-642-39206-1.

B. Ji, X. Yuan, and Y. Yuan. Modified nsga-ii for solving continuous berth allocation

problem: Using multiobjective constraint-handling strategy. IEEE transactions on

cybernetics, 47(9):2885–2895, 2017.

J. Jiang and L. Cao. A hybrid simulated annealing algorithm for three-dimensional

multi-bin packing problems. In Systems and Informatics (ICSAI), 2012 International

Conference on, pages 1078–1082. IEEE, 2012.

Y. Jin and B. Sendhoff. Constructing dynamic optimization test problems using the

multi-objective optimization concept. In Applications of Evolutionary Computing,

pages 525–536. Springer, 2004.

L. Junqueira. Three-dimensional container loading models with cargo stability and load

bearing constraints. Computers & Operations Research, 2012.

L. Junqueira. Heuristic algorithms for a three-dimensional loading capacitated vehicle

routing problem in a carrier. Computers & Industrial Engineering, 2015.

Bibliography 118

S. Kavakeb, T. T. Nguyen, Z. Yang, and I. Jenkinson. Evolutionary fleet sizing in static

and uncertain environments with shuttle transportation tasks - the case studies of

container terminals. IEEE Computational Intelligence Magazine, in press, 2016.

K. H. Kim and K. C. Moon. Berth scheduling by simulated annealing. Transportation

Research Part B: Methodological, 37(6):541–560, 2003.

D. King. The fastest simulation software, 2014. URL https://jaamsim.blogspot.

com/2014/11/the-fastest-simulation-software.html.

D. King and H. S. Harrison. Jaamsim open-source simulation software. In Proceedings of

the 2013 Grand Challenges on Modeling and Simulation Conference, page 1. Society

for Modeling & Simulation International, 2013.

C. Kontovas and H. N. Psaraftis. Reduction of emissions along the maritime intermodal

container chain: operational models and policies. Maritime Policy & Management,

38(4):451–469, 2011.

N. Kovač. Metaheuristic approaches for the berth allocation problem. Yugoslav Journal

of Operations Research, 27(3):265–289, 2017.

E. Lalla-Ruiz and S. Voß. Popmusic as a matheuristic for the berth allocation problem.

Annals of Mathematics and Artificial Intelligence, 76(1-2):173–189, 2016.

E. Lalla-Ruiz, B. Melián-Batista, and J. M. Moreno-Vega. Artificial intelligence hybrid

heuristic based on tabu search for the dynamic berth allocation problem. Engineering

Applications of Artificial Intelligence, 25(6):1132–1141, 2012.

E. Lalla-Ruiz, J. L. González-Velarde, B. Melián-Batista, and J. M. Moreno-Vega. Biased

random key genetic algorithm for the tactical berth allocation problem. Applied Soft

Computing, 22:60–76, 2014.

E. Lalla-Ruiz, S. Voß, C. Expósito-Izquierdo, B. Melián-Batista, and J. M. Moreno-Vega.

A popmusic-based approach for the berth allocation problem under time-dependent

limitations. Annals of Operations Research, pages 1–27, 2015.

E. Lalla-Ruiz, C. Expósito-Izquierdo, B. Melián-Batista, and J. M. Moreno-Vega. A

set-partitioning-based model for the berth allocation problem under time-dependent

limitations. European Journal of Operational Research, 250(3):1001–1012, 2016.

https://jaamsim.blogspot.com/2014/11/the-fastest-simulation-software.html
https://jaamsim.blogspot.com/2014/11/the-fastest-simulation-software.html

Bibliography 119

D.-H. Lee and J. G. Jin. Feeder vessel management at container transshipment terminals.

Transportation Research Part E: Logistics and Transportation Review, 49(1):201–216,

2013.

D.-H. Lee and H. Q. Wang. Integrated discrete berth allocation and quay crane schedul-

ing in port container terminals. Engineering Optimization, 42(8):747–761, 2010.

D.-H. Lee, J. H. Chen, and J. X. Cao. The continuous berth allocation problem: A greedy

randomized adaptive search solution. Transportation Research Part E: Logistics and

Transportation Review, 46(6):1017–1029, 2010.

D.-H. Lee, J. G. Jin, and J. H. Chen. Terminal and yard allocation problem for a

container transshipment hub with multiple terminals. Transportation Research Part

E: Logistics and Transportation Review, 48(2):516–528, 2012.

P. Legato, D. Gull̀ı, and R. Trunfio. The quay crane deployment problem at a maritime

container terminal. In Submitted to the 22th European Conference on Modelling and

Simulation, 2008.

P. Legato, R. M. Mazza, and R. Trunfio. Simulation-based optimization for dis-

charge/loading operations at a maritime container terminal. OR spectrum, 32(3):

543–567, 2010.

P. Legato, R. M. Mazza, and D. Gull̀ı. Integrating tactical and operational berth alloca-

tion decisions via simulation–optimization. Computers & Industrial Engineering, 78:

84–94, 2014.

H. Li and D. Wang. Parallel simulation-based optimization on block planning and

dynamic truck configuration of container terminals. International Journal of Infor-

mation, 4(2):1–8, 2009.

Y. Li. A compromised large-scale neighborhood search heuristic for capacitated air cargo

loading planning. European Journal of Operational Research, 2009.

A. Lim. The berth planning problem. Operations research letters, 22(2):105–110, 1998.

A. Lim. The single container loading problem with axle weight constraints. International

Journal of Production Economics, 2013.

Bibliography 120

A. Lim and X. Zhang. The container loading problem. In Proceedings of the 2005 ACM

symposium on Applied computing, pages 913–917. ACM, 2005.

S.-W. Lin and C.-J. Ting. Solving the dynamic berth allocation problem by simulated

annealing. Engineering Optimization, 46(3):308–327, 2014.

J. Liu. A novel hybrid tabu search approach to container loading. Computers & Oper-

ations Research, 2011.

W. G. Liying Songa, Tom Cherrettb. Study on berth planning problem in a container

seaport: Using an integrated programming approach. Computer and Industrial Engi-

neering, 2012.

A. Lodi, S. Martello, and D. Vigo. Heuristic and metaheuristic approaches for a class

of two-dimensional bin packing problems. INFORMS Journal on Computing, 11(4):

345–357, 1999.

H. Ma, S. Chung, H. Chan, and L. Cui. An integrated model for berth and yard plan-

ning in container terminals with multi-continuous berth layout. Annals of Operations

Research, pages 1–23, 2017.

MarineLink. Collision closes houston ship channel, 2015. URL https://www.

marinelink.com/news/collision-houston-channel387314.

S. Martello. Algorithm 864: General and robot-packable variants of the three-

dimensional bin packing problem. ACM Transactions on Mathematical Software, 2007.

A. Martinez-Sykora, R. Alvarez-Valdes, J. Bennell, and J. M. Tamarit. Constructive

procedures to solve 2-dimensional bin packing problems with irregular pieces and

guillotine cuts. Omega, 52:15–32, 2015.

G. R. Mauri, G. M. Ribeiro, L. A. N. Lorena, and G. Laporte. An adaptive large neigh-

borhood search for the discrete and continuous berth allocation problem. Computers

& Operations Research, 70:140–154, 2016.

P. Meersmans and R. Dekker. Operations research supports container handling (econo-

metric institute report 234). Erasmus University Rotterdam, 2001.

Z. Meng, H. Shen, and T. Zhao. Hybrid artificial bee colony algorithm based on cuckoo

search strategy. In Semantics, Knowledge and Grids (SKG), 2016 12th International

Conference on, pages 136–140. IEEE, 2016.

https://www.marinelink.com/news/collision-houston-channel387314
https://www.marinelink.com/news/collision-houston-channel387314

Bibliography 121

Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained parameter

optimization problems. Evolutionary computation, 4(1):1–32, 1996.

N. Mladenović and P. Hansen. Variable neighborhood search. Computers & operations

research, 24(11):1097–1100, 1997.

M. F. Monaco and M. Sammarra. The berth allocation problem: a strong formulation

solved by a lagrangean approach. Transportation Science, 41(2):265–280, 2007.

R. Moorthy and C.-P. Teo. Berth management in container terminal: the template

design problem. In Container Terminals and Cargo Systems, pages 63–86. Springer,

2007.

J. Neyman. Outline of a theory of statistical estimation based on the classical theory

of probability. Philosophical Transactions of the Royal Society of London. Series A,

Mathematical and Physical Sciences, 236(767):333–380, 1937. ISSN 00804614. URL

http://www.jstor.org/stable/91337.

T. T. Nguyen. Continuous dynamic optimisation using evolutionary algorithms. PhD

thesis, University of Birmingham, 2011.

T. T. Nguyen and X. Yao. Benchmarking and solving dynamic constrained problems. In

Evolutionary Computation, 2009. CEC’09. IEEE Congress on, pages 690–697. IEEE,

2009a.

T. T. Nguyen and X. Yao. Dynamic time-linkage problems revisited. In Applications of

Evolutionary Computing, pages 735–744. Springer, 2009b.

T. T. Nguyen and X. Yao. Continuous dynamic constrained optimization - the challenges.

IEEE Transactions on Evolutionary Computation, 16(6):769–786, 2012.

T. T. Nguyen and X. Yao. Dynamic time-linkage evolutionary optimization: Definitions

and potential solutions. In Metaheuristics for Dynamic Optimization, pages 371–395.

Springer, 2013.

T. T. Nguyen, S. Yang, and J. Branke. Evolutionary dynamic optimization: A survey

of the state of the art. Swarm and Evolutionary Computation, 6:1–24, 2012.

T. Nishi, T. Okura, E. Lalla-Ruiz, and S. Voß. A dynamic programming-based

matheuristic for the dynamic berth allocation problem. Annals of Operations Re-

search, pages 1–20, 2017.

http://www.jstor.org/stable/91337

Bibliography 122

E. Nishimura, A. Imai, and S. Papadimitriou. Berth allocation planning in the public

berth system by genetic algorithms. European Journal of Operational Research, 131

(2):282–292, 2001.

NWEUROPE. Opportunities for Territorial Change, 2008. URL http://www.

espace-project.org/publications/IIIBPublicationonBestIIIBprojects.pdf.

A. Ouaarab, B. Ahiod, and X.-S. Yang. Discrete cuckoo search algorithm for the travel-

ling salesman problem. Neural Computing and Applications, 24(7-8):1659–1669, 2014.

C. Ozguven, L. Ozbakir, and Y. Yavuz. Mathematical models for job-shop scheduling

problems with routing and process plan flexibility. Applied Mathematical Modelling,

34(6):1539–1548, 2010.

C. Paquay. Three dimensional bin packing problem applied to air cargo. Colloque SIL

2011, 2011.

C. Paquay. A mixed integer programming formulation for the three-dimensional bin

packing problem deriving from an air cargo application. Intl. Trans. in Op. Res,

2014.

K. Park and K. H. Kim. Berth scheduling for container terminals by using a sub-gradient

optimization technique. Journal of the operational research society, 53(9):1054–1062,

2002.

Y.-M. Park and K. H. Kim. A scheduling method for berth and quay cranes. In Container

Terminals and Automated Transport Systems, pages 159–181. Springer, 2005.

Peel Ports Group. Mersey Ports Master Plan, 2016. URL https://www.peelports.

com/about/master-plan.

J. Peng and B. Zhang. Bin packing problem with uncertain volumes and capacities,

2012.

G. Perboli, R. Tadei, and M. M. Baldi. The stochastic generalized bin packing problem.

Discrete Applied Mathematics, 160(7):1291–1297, 2012.

D. Pisinger and M. Sigurd. The two-dimensional bin packing problem with variable bin

sizes and costs. Discrete Optimization, 2(2):154–167, 2005.

http://www.espace-project.org/publications/IIIBPublicationonBestIIIBprojects.pdf
http://www.espace-project.org/publications/IIIBPublicationonBestIIIBprojects.pdf
https://www.peelports.com/about/master-plan
https://www.peelports.com/about/master-plan

Bibliography 123

Port of Antwerp. The Port of Antwerp The supermarket of Europe

, 2014. URL http://www.portofantwerp.com/sites/portofantwerp/files/

POA-1370_Publiekskaart_EN-06102014_0.pdf.

T. Qin, Y. Du, and M. Sha. Evaluating the solution performance of ip and cp for berth

allocation with time-varying water depth. Transportation Research Part E: Logistics

and Transportation Review, 87:167–185, 2016.

D. P. K. Reuven Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley

& Sons, Inc, 2008.

H. Richter. Memory design for constrained dynamic optimization problems. In Appli-

cations of Evolutionary Computation, pages 552–561. Springer, 2010.

M. Rodriguez-Molins, L. Ingolotti, F. Barber, M. A. Salido, M. R. Sierra, and J. Puente.

A genetic algorithm for robust berth allocation and quay crane assignment. Progress

in Artificial Intelligence, 2(4):177–192, 2014.

G. Saharidis, M. Golias, M. Boile, S. Theofanis, and M. Ierapetritou. The berth schedul-

ing problem with customer differentiation: a new methodological approach based

on hierarchical optimization. The International Journal of Advanced Manufacturing

Technology, 46(1-4):377–393, 2010.

M. A. Salido, M. Rodriguez-Molins, and F. Barber. Integrated intelligent techniques for

remarshaling and berthing in maritime terminals. Advanced Engineering Informatics,

25(3):435–451, 2011.

M. A. Salido, M. Rodriguez-Molins, and F. Barber. A decision support system for

managing combinatorial problems in container terminals. Knowledge-Based Systems,

29:63–74, 2012.

A. Sheikholeslami and R. Ilati. A sample average approximation approach to the berth

allocation problem with uncertain tides. Engineering Optimization, pages 1–17, 2017.

A. Sheikholeslami, G. Ilati, and M. Kobari. The continuous dynamic berth allocation

problem at a marine container terminal with tidal constraints in the access channel.

International Journal of Civil Engineering, 12(3):344–353, 2014.

http://www.portofantwerp.com/sites/portofantwerp/files/POA-1370_Publiekskaart_EN-06102014_0.pdf
http://www.portofantwerp.com/sites/portofantwerp/files/POA-1370_Publiekskaart_EN-06102014_0.pdf

Bibliography 124

X.-N. Shen and X. Yao. Mathematical modeling and multi-objective evolutionary al-

gorithms applied to dynamic flexible job shop scheduling problems. Information Sci-

ences, 298:198–224, 2015.

S. Sivanandam and S. Deepa. Introduction to genetic algorithms. Springer Science &

Business Media, 2007.

R. Stahlbock and S. Voß. Operations research at container terminals: a literature update.

OR spectrum, 30(1):1–52, 2008.

D. Steenken, S. Voß, and R. Stahlbock. Container terminal operation and operations

research-a classification and literature review. OR spectrum, 26(1):3–49, 2004.

D. K. Sutantyo, S. Kernbach, P. Levi, and V. A. Nepomnyashchikh. Multi-robot search-

ing algorithm using lévy flight and artificial potential field. In Safety Security and

Rescue Robotics (SSRR), 2010 IEEE International Workshop on, pages 1–6. IEEE,

2010.

J. Swain. Simulation software survey. INFORMS OR/MS Today, pages 42–51, 2013.

Ta Kung Pao. Capesize Freight Route High, 2011. URL http://www.hh-ship.com/

hh/en/newsshow.asp?id=35.

É. D. Taillard and S. Voß. Popmusic partial optimization metaheuristic under special

intensification conditions. In Essays and surveys in metaheuristics, pages 613–629.

Springer, 2002.

G. Terdik and T. Gyires. Lévy flights and fractal modeling of internet traffic. IEEE/ACM

Transactions on Networking, 17(1):120–129, 2009.

S. Theofanis, M. Boile, and M. Golias. An optimization based genetic algorithm heuristic

for the berth allocation problem. In Evolutionary Computation, 2007. CEC 2007.

IEEE Congress on, pages 4439–4445. IEEE, 2007.

T. Tian, W. Zhu, A. Lim, and L. Wei. The multiple container loading problem with

preference. European Journal of Operational Research, 2015.

timeanddate.com. The Moon’s Effect on Ocean Tides, 2018. URL https://www.

timeanddate.com/astronomy/moon/tides.html.

http://www.hh-ship.com/hh/en/newsshow.asp?id=35
http://www.hh-ship.com/hh/en/newsshow.asp?id=35
https://www.timeanddate.com/astronomy/moon/tides.html
https://www.timeanddate.com/astronomy/moon/tides.html

Bibliography 125

C.-J. Ting, K.-C. Wu, and H. Chou. Particle swarm optimization algorithm for the

berth allocation problem. Expert Systems with Applications, 41(4):1543–1550, 2014.

T. Tran, T. T. Nguyen, and H. L. Nguyen. Global optimization using lévy flights. In

Proceedings of ICT.rda’04, Hanoi, Sept. 2004.

N. Umang, M. Bierlaire, and I. Vacca. The berth allocation problem in bulk ports. In

11th Swiss Transport Research Conference, number EPFL-CONF-167446, 2011.

N. Umang, M. Bierlaire, and I. Vacca. Exact and heuristic methods to solve the berth

allocation problem in bulk ports. Transportation Research Part E: Logistics and Trans-

portation Review, 54:14–31, 2013.

I. Vacca, M. Bierlaire, and M. Salani. Optimization at container terminals: status,

trends and perspectives. In Swiss Transport Research Conference, number TRANSP-

OR-CONF-2006-013, 2007.

Vesseltracker. Vesseltracker.com, 2018. URL http://www.vesseltracker.com/en/

Home.html.

I. F. Vis and R. De Koster. Transshipment of containers at a container terminal: An

overview. European journal of operational research, 147(1):1–16, 2003.

G. Viswanathan, E. Raposo, and M. Da Luz. Lévy flights and superdiffusion in the

context of biological encounters and random searches. Physics of Life Reviews, 5(3):

133–150, 2008.

F. Wang and A. Lim. A stochastic beam search for the berth allocation problem.

Decision Support Systems, 42(4):2186–2196, 2007.

G. Wascher, H. Haussner, and H. Schumann. An improved typology of cutting and

packing problems. European Journal of Operational Research, 183(3):1109–1130, 2007.

K. Weicker and N. Weicker. Dynamic rotation and partial visibility. In Proceedings of

the 2000 Congress on Evolutionary Computation, pages 1125–1131, 2000.

Wikipedia. List of busiest container ports, 2017. URL https://en.wikipedia.org/

wiki/List_of_busiest_container_ports.

http://www.vesseltracker.com/en/Home.html
http://www.vesseltracker.com/en/Home.html
https://en.wikipedia.org/wiki/List_of_busiest_container_ports
https://en.wikipedia.org/wiki/List_of_busiest_container_ports

Bibliography 126

P. W. H. Wong and F. C. C. Yung. Competitive multi-dimensional dynamic bin packing

via l-shape bin packing. In Approximation and Online Algorithms, pages 242–254.

Springer, 2010.

World Shipping Council. TOP 50 WORLD CONTAINER PORTS, 2015.

URL http://www.worldshipping.org/about-the-industry/global-trade/

top-50-world-container-ports.

X. Xiang, C. Liu, and L. Miao. A bi-objective robust model for berth allocation schedul-

ing under uncertainty. Transportation Research Part E: Logistics and Transportation

Review, 106:294–319, 2017.

D. Xu, C.-L. Li, and J. Y.-T. Leung. Berth allocation with time-dependent physical

limitations on vessels. European Journal of Operational Research, 2012a.

Y. Xu, Q. Chen, and X. Quan. Robust berth scheduling with uncertain vessel delay and

handling time. Annals of Operations Research, 192(1):123–140, 2012b.

J. B. Y Jin. Evolutionary optimization in uncertain environments-a survey. Evolutionary

Computation, IEEE, 2005.

C. Yang, X. Wang, and Z. Li. An optimization approach for coupling problem of berth

allocation and quay crane assignment in container terminal. Computers & Industrial

Engineering, 63(1):243–253, 2012.

X.-S. Yang and S. Deb. Cuckoo search via lévy flights. In Nature & Biologically Inspired

Computing, 2009. NaBIC 2009. World Congress on, pages 210–214. IEEE, 2009.

T. Yu, Z. Qiang, and Z. Benfei. A genetic algorithm based on spatiotemporal con-

flict between continuous berth-allocation and time-varying specific crane assignment.

Engineering Optimization, pages 1–22, 2018.

W. Yuping, X. Zhe, H. Youfang, H. Yangyang, and G. Tianyi. Study of continuous berth

allocation algorithm based on fairness maximization. Journal of Engineering Science

& Technology Review, 10(5), 2017.

E. Zehendner, G. Rodriguez-Verjan, N. Absi, S. Dauzère-Pérès, and D. Feillet. Opti-

mized allocation of straddle carriers to reduce overall delays at multimodal container

terminals. Flexible Services and Manufacturing Journal, 27(2-3):300–330, 2015.

http://www.worldshipping.org/about-the-industry/global-trade/top-50-world-container-ports
http://www.worldshipping.org/about-the-industry/global-trade/top-50-world-container-ports

Bibliography 127

Q. Zeng, Z. Yang, and X. Hu. Disruption recovery model for berth and quay crane

scheduling in container terminals. Engineering Optimization, 43(9):967–983, 2011.

Q. Zeng, A. Diabat, and Q. Zhang. A simulation optimization approach for solving the

dual-cycling problem in container terminals. Maritime Policy & Management, 42(8):

806–826, 2015.

Q. Zeng, Y. Feng, and Z. Chen. Optimizing berth allocation and storage space in direct

transshipment operations at container terminals. Maritime Economics & Logistics,

19(3):474–503, 2017.

X. Zhao. A comparative review of 3d container loading algorithms. International Trans-

actions in Operational Research, 2014.

L. Zhen. Tactical berth allocation under uncertainty. European Journal of Operational

Research, 247(3):928–944, 2015.

L. Zhen, L. H. Lee, and E. P. Chew. A decision model for berth allocation under

uncertainty. European Journal of Operational Research, 212(1):54–68, 2011.

P.-f. Zhou and H.-g. Kang. Study on berth and quay-crane allocation under stochastic

environments in container terminal. Systems Engineering-Theory & Practice, 28(1):

161–169, 2008.

W. Zhu and A. Lim. A new iterative-doubling greedy–lookahead algorithm for the

single container loading problem. European Journal of Operational Research, 222(3):

408–417, 2012.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Port operations and optimisation problems
	1.2 A case study of optimisation problems in port operations
	1.3 Scope of the thesis
	1.4 General research questions
	1.5 Outline of the thesis
	1.6 Articles resulting from this thesis

	2 Literature review
	2.1 BAPs
	2.1.1 Categories and attributes
	2.1.2 Optimisation approaches for BAPs
	2.1.2.1 Exact methods
	2.1.2.2 Heuristics
	2.1.2.3 Meta-heuristics

	2.1.3 Discussions on optimisation approaches of BAPs

	2.2 Simulation at ports
	2.2.1 Introduction of simulation
	2.2.2 Applications of simulation in port operations
	2.2.3 Discussion on simulation integrated with optimisation

	2.3 Summary

	3 Solving berth allocation problems with multi-tidal windows using Levy flight
	3.1 Introduction
	3.2 Problem description
	3.2.1 Assumptions
	3.2.2 Notations
	3.2.3 Mathematical model
	3.2.4 The sensitivity of tidal constraints to BAPs
	3.2.5 Potential extensions for practical uses
	3.2.5.1 Time window
	3.2.5.2 Stochastic processing time

	3.3 Levy flight for BAPs with multi-tidal windows
	3.3.1 First phase
	3.3.1.1 Encoding
	3.3.1.2 Adapting Levy flight walks to the BAP
	3.3.1.3 Decoding

	3.3.2 Second phase
	3.3.3 Computational experiments
	3.3.3.1 Comparing with an exact method and a heuristic
	3.3.3.2 Sensitivity analysis of LF-BAP
	3.3.3.3 Computational results

	3.4 Conclusion

	4 Solving berth allocation problems with multi-tidal windows using Genetic algorithm
	4.1 Introduction
	4.2 Genetic algorithm for BAPs
	4.2.1 Chromosome representation
	4.2.2 Description of the GA procedure
	4.2.2.1 Initialisation
	4.2.2.2 Elitism strategy
	4.2.2.3 Mutation
	4.2.2.4 Crossover and Tournament selection
	4.2.2.5 Decoding and intensification

	4.2.3 Computational experiments
	4.2.3.1 An analysis of GA with multiple operators
	4.2.3.2 Comparison with existing work

	4.3 Study of meta-heuristics on BAPs
	4.4 Conclusion

	5 A framework of discrete event simulation
	5.1 Introduction
	5.2 The framework description
	5.2.1 Simulator in the framework
	5.2.2 Instructions of the framework

	5.3 A case study of Bin packing problems
	5.3.1 Simulation process
	5.3.2 Generating test problems
	5.3.3 Algorithms integration
	5.3.3.1 Developing a new online algorithm for 3D BPPs

	5.3.4 Experiment

	5.4 A case study of Berth allocation problems
	5.4.1 Developing a simulation model of BAP
	5.4.2 Experiment

	5.5 Conclusion

	6 Conclusion and future work
	6.1 Summary of contributions
	6.2 Future work

	Bibliography

