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A B S T R A C T 

Due to importantly beneficial effects on physical and mental health and strong association with 

many rehabilitation programs, Physical Activity Recognition and Monitoring (PARM) have been 

considered as a key paradigm for smart healthcare. Traditional methods for PARM focus on 

controlled environments with the aim of increasing the types of identifiable activity subjects 

complete and improving recognition accuracy and system robustness by means of novel body-worn 

sensors or advanced learning algorithms. The emergence of the Internet of Things (IoT) enabling 

technology is transferring PARM studies to open and connected uncontrolled environments by 

connecting heterogeneous cost-effective wearable devices and mobile apps. Little is currently 

known about whether traditional PARM technologies can tackle the new challenges of IoT 

environments and how to effectively harness and improve these technologies. In an effort to 

understand the use of IoT technologies in PARM studies, this paper will give a systematic review, 

critically examining PARM studies from a typical IoT layer-based perspective. It will firstly 

summarize the state-of-the-art in traditional PARM methodologies as used in the healthcare domain, 

including sensory, feature extraction and recognition techniques. The paper goes  on to  identify 

some new research trends and challenges of PARM studies in the IoT environments, and discusses 

some key enabling techniques for tackling them. Finally, this paper consider some of the successful 

case studies in the area and look at the possible future industrial applications of PARM in smart 

healthcare. 

© 2018 xxxxxxxx. Hosting by Elsevier B.V. All rights reserved.    

1. Introduction 

A World Health Organization (WHO), survey of has 

identified physical inactivity as the fourth leading risk factor 

for global mortality causing an estimated 3.2 million deaths. 

Low levels of physical activity (PA)  are detrimental to the 

health and functioning of older people [1], and may cause 

many chronic diseases [2], [3] such as diabetes, obesity, 

cancers, etc. Effective long-term observation of PA has 

significance on promoting diagnosis and treatment of these 

chronic diseases, monitoring PA we can also promote a 

healthier lifestyle for elderly people and potentially provide a 

substantial reduction  

 

in healthcare costs. Due to these potentially beneficial effects, 

and rendering assistant services such as falls detection for 

older people and functional loss prevention in many 

rehabilitation programs. By promoting, recognizing and 

numerous studies over recognition and monitoring (PARM) 

solutions for the last few decades have focused on research 

aiming to deliver accurate and robust physical activity clinical 

use. Recently, advances in Internet of Things have enabled 

PARM as a key paradigm in many fields including Smart 

Health, Smart Rehabilitation and Ambient Assisted Living 

(AAL). 

 

 



 
 

 

  

Fig. 1 Number of Journal and Conference articles related to IoT and PARM from 2008 to 2018 (IoT-Internet of Things, SH-Smart Home, PA-Physical Activity, 

AR-Activity Recognition, PAR-Physical Activity Recognition, PAM-Physical Activity Monitoring) 

Table 1. Activity categories and examples 

Category Subcategories Examples 

Simple 

physical 

activities 

Aerobic exercises 

Walking, jogging, climbing, descending, 

running, swimming 

Transportation Driving, cycling, taking a bus 

Sedentary postures Sitting, lying, standing, tilting 

Transitional 

activities 

Sit-to-stand, stand-to-walk, walk-to-run, 

run-to-walk 

Complex 

physical 

activities 

ADL 

Cooking, brushing teeth, cleaning, 

eating, dressing, having a party 

Ball sports  Playing football, playing tennis  

 

Traditionally, PARM studies focus on the discovery of PA patterns 

or subject’s, accurate recognition of PA itself and robustness of 

monitoring PA in a controlled environment, such as clinics or labs. These 

are based on either designing standalone novel wearable sensors to 

achieve highly accurate recognition of human movements, or 

investigating advanced machine learning algorithms for training features 

from observed wearable sensory data from human body positions into 

specific several activity types. Also, some researchers have investigated 

how to attach wearable sensors for optimal accuracy or have utilized 

body area networks for energy-efficient PA monitoring. While these 

conventional state-of-the-art PARM technologies enable achieving 

PARM for recognition of 10-20 activity types with accuracy ranging up  

 

to 100%, one major challenge limiting their usefulness and efficiency in 

practice is that the emergence of Internet of Things (IoT) enabling 

technology is transferring PARM studies from traditional hubs of 

healthcare to personalized, open and connected uncontrolled healthcare 

environments [4]. This trend leads to a number of key obstacles on the 

adoption and utilization of existing PARM studies for delivering holistic, 

mobile, energy-efficient PARM solutions that provide accurate state 

detection and monitoring with moderate to complex implementation in 

an IoT environment [4]–[6]. For instance, how to address the sheer 

volume of information and the heterogeneous-devices used to capture 

long-term PA information; how do we estimate and measure 

uncertainties of PA with varied human behaviour patterns; how do we 

maintain the recognition accuracy of PA with the use of moderate low-

cost wearable devices; etc. In this respect, little is known about whether 

traditional PARM solutions can address these issues, and in particular 

how to harness and improve their utilization in IoT environments. 

In an effort to better understand the advance of IoT technologies in 

PARM studies, this paper aims to provide a systematic review of current 

researches of PARM from an IoT layer-based perspective. As shown in 

Fig.1. We undertook an extensive literature review by examining 

relevant articles from major academic databases (IEEE Xplore, ACM, 

Springer digital library and Science-Direct). Search terms include the 

key words ‘Internet of Things’, ‘Activity Recognition’, ‘Activity  
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Fig. 2. Examining PARM from an IoT layer based perspective

Table 2. IoT-based layers and descriptions for PARM 

Layers Description 

Sensing layer The layer detects and collects signals from a variety 

of sensors on human body or in environment. 

Network layer The layer is responsible for transferring signal data 

from sensing layer to analysis layer over wired, 

wireless sensor or actuator networks, 

Processing layer The layer processes and analyses raw signals, and 

classifies/clusters into different PA types.  

Application layer The layer provides applications that interacts with 

users.  

 

Monitor’ and ‘Physical Activities’. In addition, we reviewed research 

projects related to IoT, e- health, smart healthcare, etc, by searching from 

EU, TSB and EPSRC funded projects. As a result, we found a large 

number of journal articles and conference papers related to PARM 

studies and IoT enabled healthcare respectively, and identified a number  

of opportunities for future researchers. A main contribution of this 

review paper is that it is a first attempt to categorise classic PAMA  

 

technologies into an IoT architecture systematically and it reviews the 

current research on IoT, key enabling technologies, major PARM 

applications in healthcare, and identifies research trends and current 

challenges.  

The rest of this paper is structured as follows. Section 2 presents the 

description of the IoT-based PARM architecture. Section 3 and 4 

demonstrates a variety of sensors and devices used in the sensing layer 

and technologies in network layer respectively. Section 5 gives a PARM 

implementation procedure ranging from data processing up to PARM 

algorithms in the analysis layer. Section 6 reports some applied cases in 

application layer. Section 7 examines future trends in PARM area, and 

section 8 is the conclusion.   

 

2. IoT-based PARM system architecture 

The concept of Internet of Things (IoT) encompasses a set of 

technologies that enable a wide range of devices and objects to connect, 

communicate and interact using networking technologies. Initially, 

Radio Frequency Identification (RFID) technology was considered a    



 
 

 

fundamental solution to implement IoT based systems. In the last few 

years, advances in sensing technologies have promoted more cost-

effective wearable devices connecting in an IoT environment. The 

concept of IoT based personalized healthcare systems was established 

and become increasing popular. These systems uses a set of 

interconnected devices to create an IoT network devoted to healthcare 

assessment, patients. 

Four IoT-based layers are involved in the PARM system structure, as 

shown in Figure 2 and Table 2. The general system collects personalized 

health information from different wearable sensing devices through a 

middleware that provides the interoperability and security needed in the 

context of IoT for healthcare. These wearable devices are capable of 

recording multiple types of health data, including lung function [7], [8], 

sleep duration [7], [9], heart rate [10], blood pressure [11] and user-

context information [12]. Rapid development in microelectromechanical 

(MEMS) accelerometer technology and global positioning system (GPS) 

has increased the accuracy of observing PA. Utilizing IoT to monitor low 

level PA has become popular, and easily accessible to normal users.  

Wired or wireless networks (e.g., Bluetooth, Wi-Fi or ZigBee) are 

normally adopted in the network layer. As the raw data usually contains 

redundant information that needs to be filtered, it is processed in the 

analysis layer and sub-categorized into four phases form pre-processing 

up to activity type classification/clustering. Data pre-processing is used 

to clean the data and reduce dimensions, which are subsequently divided 

into equal or non-equal time windows for the specific recognition. Key 

signal features using time-domain, frequency-domain or other 

techniques are collected in the feature extraction phase in order to 

provide more useful and robust representation. The activity 

classification/clustering step eventually categorizes these features into 

different basic PA types.  Combination with user context information 

(e.g., user’s location, object’s state) can be used to infer high-level daily 

activities such as eating, cooking or dressing listed in the table 1. The 

application layer provides user interface to interact with patients or 

caregivers to present PARM results and treatments.  

 

3. Sensing layer 

The sensing layer is used for the identification of objects and 

gathering information from sensors, tags, etc. The development of low-

cost and small-in-size wearable sensor such as inertial sensors (e.g., 

accelerator, gyroscope or barometric pressure sensors) and physiological 

sensors (e.g., spirometer, skin temperature sensor or blood pressure 

cuff), as well as wearable devices (e.g., fitness band or mobile phone) 

has facilitated the process of measuring attributes related to individuals 

and their soundings in recent years. Fig.3 presents some typical wearable 

devices. GPS localization, Bluetooth and so on are also incorporated into 

the devices. As physical inactivity is often a major risk factor for chronic 

diseases, daily PARM with wearable sensors is being investigated by a 

number of researchers. Table 3 shows a variety of wearable sensor 

categories. 

3.1 On-body sensors  

3.1.1 Inertial sensors 

An accelerometer is a small-scale MEMS device that is the current 

leader for PARM, they are widely used for monitoring dynamic 

activities. When distinguishing static postures (e.g., laying, standing, 

sitting), it needs to be placed on a specific part of the body [13] and a 

threshold or value has to be set to discriminate them [14]. Gyroscopes 

are generally used as an additional method for measuring rotational 

movements. Detecting behaviours like falling [15] by measuring 

patient’s angular velocity of movement such as bending knees, 

descending stairs [16], ascending stairs [12] or turning [20]. Likewise, a 

Barometric pressure sensor, along with an accelerometer is also useful 

in monitoring stairs behaviours [21] and fall detection [22] owing to the 

relationship between sensory readings and altitude. Magnetic field 

sensors can be placed close to the measurement location and thus achieve 

higher spatial resolution to detect a subject’s direction. When 

recognizing “watching TV”, for instance, a magnetometer can tell that 

the subject is facing the direction of the television whilst combining 

accelerometers and indoor localization information [23]. It is not 

essential to use magnetic field sensors to detect activities measuring 

altitudes or angles such as fall [8], [9].   

3.1.2 Physiological sensors 

Physiological these can be used for monitoring patients in and out-

of-hospital conditions. They are ordinarily used in combination to 

observe other types of medical health data. Among these sensors, are 

heart rate monitors such as Electrocardiogram (ECG) which has been 

used for PARM for healthy subjects [27] as well as for patients [28] in 

daily lives. It is believed that there is a distinct relationship between heart 

rate and PA. For example, when a subject starts performing intensive 

activities such as running or swimming, their heart rate will increase. 

Nevertheless, it is difficult for such sensors to precisely determine 

activity transitions for a very short period as when a subject stops 

running, his/her heart rate will remain the same level for a while [29]. To 

overcome this issue, special feature extraction methods have been 

applied in some studies. This will be discussed in section 5. 

3.1.3 Wearable/mobile devices 

Recently, many commercial wearable products and mobile 

applications have been developed for the long term recording and 

collection of personal lifelogging physical activity. The most famous 

mobile apps, such as Moves [31], which is based on smartphone 3D 

accelerometer data and GPS information allow tracking of user 

movement activities including location, distance and speed. The 

wearable products are often wristband devices that record step counts, 



 
 

 

distance, and calories burnt. These wearable devices communicate with 

a mobile phone via Bluetooth employing relevant mobile applications. 

Also, smart watch and mobile phones, are now replacements for 

conventional wearable sensors. 

3.1.4 Discussion 

Accelerometers, gyroscopes, barometric pressure sensors and 

magnetic field sensors, due to issues with their integration, are normally 

used with accelerometers. Inertial sensors can be attached over an 

individual’s body [34]–[39]. Despite this many studies conclude that 

multiple sensor fusion can achieve highly accurate PA recognition 

results [28], [35],  while such methods are obtrusive, uncomfortable, 

impractical and expensive. Therefore, many studies have used 

applications with only one wearable sensor attached on a specific part of 

the body [37]–[44], such as the hip [16], [17], back [40], wrist [43], chest 

[43], waist or thigh [14]. Some work has investigated the best 

performance placement with various algorithms and activities. For 

example, Purwar  et al [48] found that placement on the chest is better 

than the wrist in fall detection. Others has no requirement for specific 

placement. Khan et al [49] allowed subjects to put an accelerometer in 

any pocket on their body and achieved 94% accuracy in ambulation and 

static posture recognition.  

Although inertial sensors have made great progress in the last decade, 

they have limited use for long-term activity monitoring in a free living 

environment, as even only a small single sensor attached on a specific 

part of the body is still uncomfortable for permanent monitoring. On the 

other hand, physiological datasets are rarely used in PARM as a 

consequence of the time-delay and obscure signal features, they do not 

play a vital role but simply act as supplements for inertial sensors in static 

and ambulatory activity detection, and almost none appeared as a single 

sensor for discriminations of PA. Wearable and mobile devices have 

proven popular among general users owing to their portability and 

relatively low cost. However, because of diversity of life pattern and 

environmental impacts, personal PA data from individual wearable 

device exhibits remarkable uncertainty in the natural environment such 

as battery, capacity issues and placed positions. The results are widely 

divergent when the mobile phone is put in the pants pocket from 

handbags. Particularly that inertial sensors are sensitive to any changes 

in position and orientation. Despite some studies tried training data from 

different orientations [50] or positions [51], the issue is not fully and 

largely resolved. Therefore, validating of these PA data in longitudinal 

healthcare cases is very challenging.  

3.2 On-object sensors  

Subject’s interaction with objects need to be assessed for composite 

activity recognition like watching TV, preparing a meal or washing 

clothes. For these purposes, low-cost, easy-to-install on-object sensors 

(e.g., environment sensors, binary sensors or RFID) are able to provide 

this data in an unobtrusive and private way. Environmental sensors are 

used for measuring indoor environmental conditions such as humidity, 

temperature and energy [52], [53]. Binary sensors can sense an object’s 

state with a digit of 0 or 1, representing on/off, open/close [53] . Indoor 

localization sensors including Bluetooth, Radio-Frequency 

Identification (RFID) [57], [58] and outdoor localization such as GPS 

[59], [60] can be used in information acquisition, they are effective for 

complex activity recognition without using a large number of on-object 

sensors. RFID tags and readers to detect human object interactions in the 

matter of motion and touch [61]. It uses wireless electromagnetic fields 

to transfer data and can be, exploited as on-object sensors for 

automatically identifying and tracking tags attached to specific objects 

[62], [63].  

3.3 Discussion 

In order to accurately capture complex PA in context-aware 

environment, a majority of sensors are required to be installed in each 

object even on the cups and cans. The study in [53] presents hundreds of 

on-object sensors installed in the laboratory. As such, maintenance costs 

for such a large amount of sensors are fairly high. Furthermore, large 

number of sensors also suffer from potential issues during data 

acquisition including transmission errors, low battery and asynchrony. 

4. Network layer 

The networking layer for PARM is responsible for connecting all the 

devices in the sensory layer together and allowing personalized health 

data to be collected, stored, transmitted, shared and aggregated under IoT 

infrastructures. Typically, this layer contains a wide range of concepts 

and techniques, such as communication and location technologies, 

topologies, architecture, security and privacy, etc.  

Body Area Networks (BANs) are ad hoc sensor networks and tags 

attached to an individual’s body, constituting inertial sensors, biological 

sensors, RFID tags, etc.  

IoT networks cover a range of PARM use cases that scale from a 

single constraint sensor to dozens of cross-platform real-time 

technologies. There are numerous communication protocols from 

legacy, contemporary to emerging that govern the sensors and server 

communication. This section is mainly with the network stack, the 

communication / transport layer. 

4.1 Bluetooth 

Bluetooth is a wireless technology standard for exchanging data 

among devices within a short distance. It has been widely used in PARM 

studies. Chen et al. [64] created a framework, MoGATU which abstracts 

all devices in the environment as a collection of information managers, 

information providers, and information consumers with several 

communication interfaces for supporting ad-hoc IEEE 802.11 and 

Bluetooth like networks.



 
 

 

Table 3. Sensor categories, examples and descriptions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Network protocols used in PARM 

 Traditional PARM IoT Suit 

Application Layer HTTP/FTP etc. CoAP 

Transport Layer TCP/UPD UDP 

Network Layer IPv4/IPv6 6LoWPAN 

Link Layer IEEE 802.3 Ethernet / 

802.11 Wireless 

IEEE 802.15.4e 

 

4.2 Zigbee  

The ZigBee protocol uses the 802.15.4 standard and is capable of data 

rates of 250 kbps and operates in the 2.4 GHz frequency range. Zigbee 

allows encryption with 128-bit AES and works with node up to 200 

meters in range. Zigbee sensor networks applied to PARM can be 

referred in [65].  

 

4.3 Near field communication (NFC) 

NFC is based on the ISO/IEC 18092:2004 standard, using inductive  

 

 

coupled devices at frequency centre of 13.56 MHz, allows short range to 

communicate with a data rate of up to 424 kbps. NFC allows automatic  

storing and launching smartphone apps though tapping the NFC tag on 

various objects [66], [67].  

 

4.4 Wireless local area networking (Wi-Fi) 

Wi-Fi is an IEEE 802.11 standard network. Wi-Fi is able to provide 

indoor localizations for PARM using Received Signal Strength Indicator 

(RSSI) [68] as well as wireless transmission of PA signals among   

sensors, mobile devices and servers [69]. 

 

4.5 Cellular 

Mainly used for mobile phones GPRS/2G/3G/4G cellular is currently 

in use. Mobile phones are often used by research projects as monitoring 

devices, the multiple sensor nature of mobile phones and their direct 

internet connection makes these devices especially useful in PARM 

solutions. Examples can be seen in [70] and [71]. 

 

Sensor category 

Sensor 

subcategories Sensor examples Description 

On-body sensors Inertial sensors Accelerometer Measures linear acceleration of movement 

  Gyroscopes Measures the angular rotational velocity 

  Pressure sensors Measures object’s altitude 

  Magnetic field sensors Measures location for higher spatial resolution 

 Location sensors GPS Tracks outdoor locations 

 

Physiological sensors 

Blood pressure cuff Measures human systolic and diastolic blood pressure 

 Electrocardiogram (ECG) Test and records the rhythm and electrical activity of the heart. 

  Spirometer Measures respiration, flow rate and lung volume 

  Electrooculography (EOG) Measures eye movement. 

  Skin temperature sensor Measure subject temperature on surface of the skin 

On-object sensors Environment sensors Thermometer Measures indoor/outdoor temperature 

  Hygrometer Measures indoor/outdoor humidity 

  Energy sensors Measures object’s energy usage 

 Binary sensors Window contact Detects window open/close state 

  Door contact Detects door open/close state 

  Light switch Detects light on/off state 

  Remote control switch Detects remote control on/off state 

 Location detectors Infra-red Detects human indoor localization 

  Active RFID Detects human indoor localization 

 

Tags 

 RFID tags Detects objects individual interaction with 

  NFC tags Detects objects individual interaction with 



 
 

 

  

Fig.3 wireless sensor network in physical activity recognition and monitoring 

Table 5. Comparison of popular wireless radio communication 

technologies in PARM 

Standar

d 

Zigbee

/802.15

.4 

Bluetoo

th  

Wifi NFC Cellul

ar 

(4G) 

RFID 

Frequency 868/915 

MHz, 

2.4 GHz 

2.4 – 2.5 

GHz 

2.4, 5 

GHz 

13.56 

MHz 

450 

MHz - 

2.6 

GHz 

125 

kHz- 

2.45 

GHz 

Data Rate 250 

Kbps 

723 Kbps 11 - 

1730 

Mbps 

424 

Kbps 

1 Gbps 40 

kbps- 

640 

kbps 

Range 10 – 

300m 

50m 10 – 

100m 

20m 70km 30cm-

100m 

Power Very 

Low 

Low High Low 

(activ

e) 

High Low 

Battery 

Life 

Months 

to years 

Days to 

weeks 

Hour

s 

Days 

to 

week

s 

Days Months 

to years 

 

 

5. Processing layer 

The processing layer stores and analyzes the signal information 

received from the network layer. Data pre-processing, feature extraction 

and classification/clustering are the three main steps for PARM.  

5.1  Data pre-processing 

5.1.1 Time-series segmentation 

Temporal segmentation methods are typically used for PARM. In 

order to match PA patterns, sensor data sets need to be segmented to 

accommodate consecutively activated sensors either on a subject’s body 

or in an environmental context. Such data sets are broken down in a 

temporal series using time windows. Generally, time-series 

segmentation methods applied in PARM are categorised into two types. 

These are the sliding window method, and sliding-window and bottom-

up algorithm (SWAB) method [72]. The sliding window, has 

outstanding online performance in time point clustering and sub-series 

clustering. It is simple, intuitive and has thus become the most broadly 

used method for feature extractions and classifications [73]–[80]. As 

presented in Fig.4, the static sliding windows uses fixed temporal length 

with overlapping [73], [74] and non-overlapping instances [81], [82] and 

has been extensively adopted in most studies. Inappropriate lengths of 

non-overlapping time window will split an activity instance with 

continuous sensor signals and potentially cause incorrect recognition 
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Personlised data 
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Non-medical applications
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outputs, while a high percentage (e.g., 50% [74], 70%, 90% [83]) of 

overlapping time windows would lead to excessive time and resource 

consumption. Dynamic sliding window, as a non-fixed length 

segmentation, enables extraction features when the specific events are 

detected via sensors [76], [77]. This tends to be more energy-efficient for 

the long-term activity monitoring. Heuristics, probability approaches 

[75] or user-specific thresholds [77], are commonly exploited for 

dynamic length partition. The SWAB segmentation method is able to 

produce better results but is more complicated since it combines the 

sliding window and bottom up approaches, allowing the algorithm to be 

used online while keeping a global view of the data. It has been 

successfully applied in gesture identification with a continuous signal 

stream from accelerometers, gyroscopes or ECG [84]–[88]. 

 

 

(a)                                                 (b) 

 

(c)                                                  (d) 

Fig.4. Time window segmentation (a) fix-sized non-overlapping; (b) 

dynamic-sized non-overlapping; (c) fix-sized overlapping; (d) 

dynamic-sized overlapping 

5.1.2 Discussion 

 The key challenge of temporal segmentation is, how to determine a 

suitable window length at the runtime? Various defined sizes in the 

literature are based on different signal’s attributes or the application 

environments. Short window size (e.g., 6.7s [74], 1s [43], 0.25s [73]) 

may improve the efficiency of classification algorithms but dissipates too 

much energy for current sensing devices. A long window size (e.g., 30s 

[89]), on the contrary, could conserve energy but tends to bring more 

redundant information; there also might be more than one activity 

leading to spurious features. However, almost all the existing work 

focuses on the online precise time series segments with high 

classification accuracy, for life-logging PARM limited battery and 

capacity cannot support frequent seconds/minutes-based activation of 

such PARM algorithms. 

5.2 Feature extraction  

Feature extraction is a crucial procedure for PARM since any 

classification method can be appropriately selected if the features are 

robust. There are four major groups: time-domain, frequency domain, 

biometrical domain and other methods, as shown in Table 6. 

Table 6. Feature extraction category and extracted features/techniques 

Category Extracted  features/ techniques 

Time domain 

Mean, standard deviation(SD), magnitude, covariance, variance, 

min, max, Range, correlation,  integration, cross-correlation, root 

mean square (RMS), signal magnitude area (SMA), signal 

magnitude vector (SMV) 

Frequency 

domain 

Coefficients sum, DC component, dominant frequency,  spectral 

energy, entropy, spectrum centroid 

Bio-metric 

features Magnitude of change, trend of vital signs, cepstral feature 

Feature 

selection 

Linear Discriminant Analysis (LDA), Principal Component 

Analysis (PCA) 

 

5.2.1 Time domain features 

Time domain features are mathematical and statistical metrics that 

present randomly continuous signal changes with time, and hence are 

suitable for discriminating signals of inertial sensors. The traditional  

features extracted from sensor signals are mean [74], variance [90] ,  

standard deviation (SD) [46], root mean square (RMS) [33], covariance 

[75]  and energy [74]. The mean, a basic statistical metric that measures 

different kinds of sensor types, is used to smooth signals. SD used to 

provide stable signals. Variance describes the distance to the expected 

output, and has been used to extract features from signals of static 

postures, walking and running [90]. RMS is a quadratic mean and is 

commonly known as wavelet classification and is sued to  analyse both 

static and dynamic activity features [93].  

5.2.2 Frequency domain features 

These features are mostly extracted by using Fourier Transform (FT) 

such as Fast Fourier Transform (FFT) and Discrete Fourier Transform 

(DFT). DC component [74], spectral energy [57], entropy [31], [74], 

[84]are the popular features. The DC component is the average 

acceleration value of the input signal series during the time window. The 

energy is defined as the sum of the squared discrete component 

magnitudes of the signal. Entropy is the normalized information entropy 

of the FT components to distinguish different activities with similar 

energy values [74]. These features are normally related to specific 

activities such as walking or running [43], [74] and gestures [95]. On the 

other hand, FT supplements frequency domain information does not 

cover time information realting to where these frequency components 

occurred [96]. Wavelet transformation (WT), consisting of low-

frequency components known as approximation and high-frequency 

components called the detail,  takes advantage of both facets in time and 

frequency domain to analyse low frequency physiological sensors 

signals like ECG [97], and deal with high frequency accelerometer 

signals. Walking [98], descending, ascending stairs [32], [86], static 

postures [100] can all be detected using WT. 
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5.2.3 Biometrical features 

 Previous work suggests physiological sensors are problematic in 

PARM since traditional time and frequency domains have their 

limitations in the bio-feature discrimination, especially in recognizing 

transitional activities as was discussed in Section 3. Some work, 

however, disputes these conclusions and takes advantage of biometrical 

features or self-defined thresholds to overcome this issue. For example, 

Perriot et al. [40] proposed two new features called magnitude of change 

and trend of vital signs to extract effective information from ECG, skin 

temperature, respiration rate and heart rate sensor signals. The function 

of the proposed features are defined time series states and the extent of 

changes of ECG signals [97]. In order to strengthen the PARM model 

and improve accuracy, Liu et al. [34] used a biometric called cepstral 

features in conjunction with time-domain features from accelerometers. 

The cepstral features simplify the processing of ECG signals by pre-

processing and time segmentation. Formula (1) defines the cepstral 

feature extraction method, where 𝜃𝑖(𝑡) represents the cardiac activity 

mean (CAM) which denotes the normal heartbeat signal, 𝑥𝑖,𝑗(𝑡) is the 

additive motion artefact noise (MAN) of 𝑖th activity, and 𝛿𝑖,𝑗(𝑡) is the 

ECG signal noise.  

𝑟𝑖,𝑗(𝑡) = 𝜃𝑖(𝑡) + 𝑥𝑖,𝑗(𝑡) + 𝛿𝑖,𝑗(𝑡)   (1) 

5.2.4 Others 

Linear Discriminant Analysis (LDA) is a linear classifier that enables 

us to reduce the data dimensions through projecting a dataset onto a 

lower-dimensional space with good class separability [101]. Formula (2) 

defines the optimal discrimination projection matrix where 𝐷𝑜𝑝𝑡 comes 

from the maximum value of the ratio of within-class scatter matrix 𝑆𝐵 

and 𝑆𝑊, which can be used to discriminate transitional activities [42], 

static postures, running, walking, ascending and descending stairs [33]. 

Principal Component Analysis (PCA), similar to LDA, is also a 

dimensionality reduction approach that allows various signal data to be 

identified in the principal directions through computing the eigenvector 

of variance and covariance  [32]. Mantyjarvi et al. [32] investigated the 

PCA, ICA and WT methods for different human ambulation activities, 

and concluded that the classification results of PCA and ICA 

outperformed WT, and PCA and achieved the highest recognition rate. 

PCA has an undesirable restriction that categorizes all data into one 

cluster. To overcome this restriction, Common Principal Component 

analysis (CPCA) has been proposed by Dolédec et al. [102] and adopted 

by Yang et al. [93] for determining a set of simple PA and complex PA.  

𝐷𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐷𝑇𝑆𝐵𝐷

𝐷𝑇𝑆𝑊𝐷
=[𝑑1,𝑑2,⋯,𝑑𝑡]

𝑇
   (2) 

5.2.5 Discussion 

 Although the general performance of frequency domain features like 

FFT exceeds time domain features [103], they require more algorithmic 

complexity and have consumption limits for long-term monitoring due 

to the battery and capacity issues [33]. This drawback also leads to the 

weakness of their employment in transitional activities (e.g., lie-to-sit, 

stand-to-walk). In contrast, traditional time domain features outweigh 

spectral methods in these circumstances [104]. Other straightforward 

metrics that directly process acceleration signals are also levered in 

transitional PARM. For example, Signal Magnitude Area (SMA) [42], 

[43], defined in formula (3) represents accelerometer signals from three 

axis x(𝑖), 𝑦(𝑖), 𝑧(𝑖)  respectively. Likewise, Signal Magnitude Vector 

(SMV) shown in formula (4) provides a measurement of the degree of 

activity intensity, where𝑥𝑖, 𝑦𝑖 and 𝑧𝑖  are similar to (1). Apart from this, 

static postures, ambulation and falling can also can be detected by using 

SMA [42] and SMV metrics [43]. Furthermore, SMA enables the 

possibility of changing positions and orientations for mobile devices 

[105]. Using simple time domain features (e.g., mean, SD) is reported to 

achieve better outcomes than frequency domain features in static 

postures [106]. But this situation is  restricted to multiple wearable 

sensors, when it comes to a single sensor, the frequency domain features 

play a greater role in such complicated scenarios [91].  

SMA = ∑ (|𝑥(𝑖)| + |𝑦(𝑖)| + |𝑧(𝑖)|)𝑁
𝑖=1    (3) 

SMV = √𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2    (4) 

5.3 Classification and clustering 

Classification and clustering are the two key techniques in machine 

learning, corresponding to supervised and unsupervised algorithms, 

respectively. Semi-supervised learning is a class of supervised learning 

but makes use of unlabeled data for training. Meanwhile, rule-based 

PARM approaches also appear frequently in some studies. Table 5 lists 

some typical methods and approaches.  

5.3.1 Supervised learning methods 

a) Artificial neural networks (ANNs) consist of interconnected 

artificial neurons structured into three parts: input layer, hidden layer and 

output layer. The lines between the nodes indicate the flow of 

information from one node to the next. From a PARM perspective, the 

input layer normally comes from vectors of feature extraction, 

sequentially duplicated and sent to all of the hidden nodes. One key issue 

for ANNs is how to decide on the size of hidden layers for the 

classification. A common approach is to try various sizes and then to 

choose the model with the best cross-validated estimate of performance, 

i.e., 5-fold  cross validation [39] or 12-fold cross validation [38]. 

Compared with a higher number of neurons, fewer neurons are 

preferable as long as  they can achieve a satisfactory results [39]. 

Generally, PARM performance tends to be more accurate with higher 

numbers of hidden nodes [107]. The other issue is the noise of activity 

signals which often influence convergence of the model, leading it to the 

partial minimal value. By choosing a high learning rate or integrating 



 
 

 

algorithms of global optimum, i.e., genetic algorithms, it is possible to 

avoid this issue. A drawback of ANNs is that of continuously selecting 

nodes which is fairly time-consuming, and they require a majority a large 

training data set. 

 

b) Hidden Markov Models (HMMs) are tools for representing 

probability distribution over a sequence of observations [108]. They are 

utilised to represent and learn the sequential and temporal characteristics 

of activity sequences using the Baum-Welch algorithm where activities 

can be seen as the hidden states and the observable output; this is sensor 

data, and using the Viterbi algorithm in the recognizing the stage to 

calculate the maximum likelihood for each input vector. Using such 

characteristics, HMMs are suitable for sequence activities like eating 

[109]. Extensions of HMM include such approaches as the Hierarchical 

Hidden Markov model (HHMM) [110] and the Switching Hidden semi-

Markov model (S-HSMM) [111], [112] and are carried out for the 

purpose of increasing accuracy as well as measuring some more complex 

PA (e.g., working or cooking). The structure of the extensions is 

normally divided into two layers: the top layer is the Markov chain of 

switching variables to detect simple physical activities or gestures, while 

parameters in the bottom layer combine the sub-activities from the top 

layer to infer more complex activities [110]–[112]. In addition to the 

requirement for prior knowledge of various facets of the model, the most 

overt limitation of HMMs is that they suffer from the sequence 

consistence of each activity; however, activities in real life would not 

always be constantly in the same order because of a variety of 

uncertainties.  

c) Decision trees (DT) are multistage decision making algorithms 

used to classify data through a set of rules based on object’s attributes 

[113]. A DT is built by using many leaf nodes and branches, which 

represent outcomes of the binary decision and classification rules, 

respectively. The rules can be set making use of domain knowledge and 

features of the signals [114]. Some studies compared different classifiers 

in Weka [115], a machine learning tool, showed that DT classifiers 

achieved the best performance in more than 20 activities including 

reading, using a computer, eating [53], [74], walking, sitting, stretching, 

vacuuming [74], static postures, transportation [114], descending, 

running [33] etc. Although DT has a highly effective learning method 

compared to ANN or Bayesian models, a large tree with a large number 

of branches, would be complex and time-consuming to process. 

d) Support Vector Machine (SVM) is a statistical algorithm for both 

linear and non-linear classification by building a model to assign new 

data into one category or another [116]. For non-linear classification, it 

discriminates patterns and classes through constructing separating 

boundaries in a high-dimensional feature space with kernel functions. 

SVM is able to address the issue of either multiple wearable sensors data 

fusion for precise observing of ambulation and complex activities [31], 

or to process signals from a single inertial sensor for detecting 

ambulation and static postures [91]. Extensions of SVM are also 

applicable to other situations. For instance, Anguita et al. [117] exploited 

Hardware-Friendly SVM to address hardware-limited devices and Naik 

et al. [118] presented twin SVM  as suitable for handling EMG signals 

to classify hand gestures.  

e) Dynamic Time Warping (DTW) is an algorithm that measures the 

similarity of two time sequences. It aims at aligning two sequences of 

feature vectors by warping the time axis iteratively until an optimal 

match between the two sequences is found [119]. The distance is denoted 

as formula (5) and (6), where 𝑤𝑘 represents the warp path of time series 

of 𝑖 and 𝑗; 𝐷(𝑖, 𝑗) is the shortest warp path. DTW has been applied in a 

few recognizing daily activities for elderly and disabled people [119], 

hand gestures [120], ascending and descending stairs [121]. 

𝑤𝑘 = (𝑖, 𝑗), 𝑤𝑘+1 = (𝑖′, 𝑗′)(𝑖 ≤ 𝑖′ ≤ 𝑖 + 1,   𝑗 ≤ 𝑗′ ≤ 𝑗 + 1) (5) 

𝐷(𝑖, 𝑗) = 𝐷𝑖𝑠𝑡(𝑖, 𝑗) + 𝑚𝑖𝑛[𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖, 𝑗 − 1), 𝐷(𝑖 − 1, 𝑗 − 1)](6) 

5.3.2 Unsupervised and Semi-supervised learning methods 

Undoubtedly, supervised learning methods are able to achieve high 

accuracy for PARA, but in practice, labelling every sample is expensive 

and requires lots of effort. Also, some datasets provided by unknown 

third parties may not have user annotations; in such circumstances, some 

workers have explored semi-supervised classification and unsupervised 

clustering for detection of PARM with only a few or without any 

annotations.  

a) Unsupervised methods:  a few PARM studies investigated 

unsupervised clustering methods such as K-means cluster [46] and the 

Gaussian Mixture Model (GMM) [46], [122]. For example, Maekawa et 

al. [123] proposed a probabilistic model employing GMM to calculate 

the similarity of physical characteristics between a new user and source 

users and hence find the closest activity pattern. Alshurafa et al. [46] 

have pointed out that GMM is the better algorithm compared to K-means 

clustering when different levels of activity intensity are present which 

would benefit intersubject variability. In addition to these, minority 

unsupervised learning methods aid the analysis of Intermediary abundant 

data resources available from the web rather than directly labelling raw 

signals collected by the researchers.  For example, the “bag-of-words” 

model [124] is a text processing technique, which  Huỳnh et al. [125] 

employed in activity observation where a series of sensor data were 

converted into documentation for the inference of different types of 

activity. As such, sensor-based activity data is regarded as a stream of 

natural language terms to match objects for mining models from the web 

[126], [127].  



 
 

 

b) Semi-supervised methods: are used to train a small amount of 

labelled data and a large number of unlabeled data in order to improve 

practical feasibility or to reduce cost. Co-training is a classic semi-

supervised setting that takes advantage of two classifiers independently 

to train and update data from using unlabeled samples with a high degree 

of confidence [128]. Stikic et al. [129] made use of an accelerometer and 

an infra-red sensor, compare different semi-supervised techniques, and 

found that co-training and self-training methods are the most appropriate 

methods for activity models. En-Co-training is an improved version 

proposed by  Guan et al. [130] which is more flexible for PA data 

classification, as compared to Co-training with only two separately 

strong classifiers, En-Co-training trains data as a whole without the 

requirement for the confidence of the labelling of each classifier. The 

study showed that with 40 wearable sensors on an individual’s legs, the 

results of static postures and ambulation obtained were better than 

performance with supervised methods when 90% of samples are 

unlabeled.  

Apart from the well-known semi-supervised techniques, the 

combination of supervision or semi-supervision with a fully supervised 

algorithm is another common approach for reducing labelled samples. 

For example, Huỳnh et al. [131] proposed a scheme of a mixture of 

unsupervised multiple eigenspaces with fully supervised SVMs, 

revealing that the recognition outcomes of static postures, stair activities, 

shaking hands and keyboard activities overweighs supervised naïve 

Bayes and an unsupervised eigenspaces method with 6 sensors on 

different parts of a subject’s body. Similarly, Mathie et al. [132] 

presented the semi-supervised Virtual Evidence Boosting (sVEB) 

algorithm associated with unlabelled conditional entropy for training 

supervised  Conditional Random Fields (CRFs) frame. In addition, 

multi-instance learning and SVMs have been integrated by Stikic et al. 

[133] to deal with different coarse-grained labels without the 

researcher’s supervision. The approach has been verified with activities 

used by Bao et al. [74] and ultimately acquired high recognition rates.  

5.3.3 Rule-based classification methods 

Knowledge model construction and rule-based inference are two 

main stages for carrying out rule-based methods. The structure of models 

is built by a decision tree or ontology in a way that allows systems to 

automatically process reasoning, whilst the inference is made of a set of 

IF-THEN rules from training data or ontological instances. It is used for 

recognizing complex activities like activity in daily lives (ADLs) in 

context-aware environment.  

The knowledge model is expressed in a knowledge representation 

language or data structure that enables the computer to execute the 

semantic rules. Knowledge-based approaches consist of syntax-based, 

logic-based and ontology-based approaches. Syntax-based approach 

make use of grammar that expresses the structure based on language 

modelling. It follows a hierarchical structure containing two layers 

which are HMMs (Hidden Markov Models) and BNs (Bayes Networks) 

on the bottom and CFGs (Context Free Grammars) on the top. Logic-

based methods such as Description Logic (DL) describes entities and 

then make logical rules for high-level reasoning. Among knowledge-

based approaches, ontology is the most flexible and widely used 

approach in IoT PARM due to its reusability, computational 

completeness, decidability and it is practical reasoning algorithms. The 

model is implemented in [81], [134]–[136] for context-aware activity 

recognition with the definition of concepts, properties, and relationships, 

as well as the support of instance-based reasoning.  

W3C Web Ontology Language (OWL) is normally adopted for rule-

based inference as it provides an expressive formalism for knowledge 

modelling and representation that supports computational completeness, 

decidability and practical reasoning algorithms.  Each object in a 

context-aware environment can be regarded as a fact, and the 

relationships are represented between activities or objects for rule-based 

reasoning in the inference engine. A situation related to the environment 

is inferred through these relationships. Take “cooking” for example, the 

activity includes environmental information, i.e., location is the kitchen, 

objects are knife and pan, time period is an hour, and occupant’s simple 

PA postures. The description logic (DL) is defined as: 

𝐶𝑂𝑂𝐾𝐼𝑁𝐺 ⊆ ∀𝐻𝐴𝑆𝐴𝐶𝑇𝑂𝑅. (𝑃𝐸𝑅𝑆𝑂𝑁1 ∧ 𝑃𝐸𝑅𝑆𝑂𝑁2 … ) ∧

∃𝐻𝐴𝑆𝐿𝑂𝐶𝐴𝑇𝐼𝑂𝑁(𝐾𝐼𝑇𝐶𝐻𝐸𝑁) ∧ ∀𝐻𝐴𝑆𝑇𝐼𝑀𝐸𝑃𝐸𝑅𝐼𝑂𝐷𝐸(1𝐻𝑂𝑈𝑅) ∧

∀𝐻𝐴𝑆𝑈𝑇𝐸𝑁𝑆𝐼𝐿𝑆(𝑃𝐴𝑁) ∧ ∀𝐻𝐴𝑆𝑃𝑂𝑆𝑇𝑈𝑅𝐸(𝑆𝑇𝐴𝑁𝐷𝐼𝑁𝐺) (8) 

Where the left of the arrow is termed conditions, and the right is 

called conclusions. ⊆ refers to concept inclusion; ∧ refers to intersection 

or conjunction of concepts; and ∀ is universal restriction. Formula (8) 

equals to DL-based rule defined as: 

𝑃𝑒𝑟𝑠𝑜𝑛(? 𝑝1 … ? 𝑝2), ℎ𝑎𝑠𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(? 𝑘𝑖𝑡𝑐ℎ𝑒𝑛), 

ℎ𝑎𝑠𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑖𝑜𝑑𝑒(? 1ℎ𝑜𝑢𝑟), ℎ𝑎𝑠𝑈𝑡𝑒𝑛𝑠𝑖𝑙𝑠(? 𝑝𝑎𝑛), 

ℎ𝑎𝑠𝑃𝑜𝑠𝑡𝑢𝑟𝑒(? 𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔) →

ℎ𝑎𝑠𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(? 𝑝1 … ? 𝑝2, ? 𝑐𝑜𝑜𝑘𝑖𝑛𝑔)  (9) 

Where the classes are defined as “Person”, “Location”, 

“TimePeriode”, “Utensils”, “Posture” and “KitchenActivity”, the 

relationships between an individual and environment are defined as 

“hasLocation”, “hasTimePeriode”, “hasUtensils”, “hasPostures” and 

“hasKitchenActivity”. Instances defined inside brackets (e.g., 

(?p1…?p2) or (?kitchen), etc.) are for the purpose of conducting this 

reasoning.  



 
 

 

5.4 Discussion 

Supervised learning methods have mature and deep theoretical 

foundations, providing reliable and stable results for PAMR, and thus 

have been explored by a majority of studies. While the greatest weakness 

is to require a large number of samples and set appropriate categories 

ahead of time, statistical models like HMM must be trained on 

sufficiently massive samples. Also, each sample in supervised learning 

needs to be precisely labelled, which is a tedious and time-consuming 

procedure (it may take months depending on the size of the samples). In 

comparison across a diverse range of experiments and scenarios of 

supervised learning, PARM investigations in unsupervised and semi-

supervised learning are relatively limited. Only a few studies are devoted 

to long-term PARM performance in naturalistic or semi-naturalistic 

environments by using multiple sensors [125], [133] or mobile phones 

[137]. Almost no studies on complex PA use context-aware applications. 

This is because of their intrinsic limitations where a big theoretical gap 

still exists. Firstly, it is difficult to know the correct classification 

boundaries when separating features into different PA groups. Secondly, 

most studies assume that the numbers of clusters is known, from 

extending PA types. Setting unknown numbers of clusters often leads to 

unstable consequences, so it is difficult to control the complexity of the 

algorithm when trying different initial selections. Nonetheless, semi-

supervised and unsupervised approaches are more useful in practice 

when there are many uncertainties. Resolving the complexity and 

accuracy of the algorithms, or adding more complex PA types is a 

challenging topic that should be further investigated. On the other hand, 

rule-based inference has no requirement of any training samples. Using 

Knowledge representation is unambiguous, sharable and reusable. The 

significant drawback is that simple PA must be recognized in advance 

for further rule-based reasoning, yet rule-based methods can hardly be 

carried out if one lacks part of the conditions in a rule. Likewise, it is 

impossible to draw conclusions from rules in which there is missing data 

from the sensing layer. If the acquired sensor data is empty or inaccurate, 

the rules would fail to be executed or produce faulty results. Errors often 

occur due to sensor asynchronies or network transmission in practice. 

Thus, we suggest that rule-based systems still need to be further 

investigated.  

6. Application layer 

PARM has been applied in many healthcare relevant fields from 

activity tracking products (e.g., mobile app and wearable fitness bands) 

to medical interventions (e.g., monitoring daily living activities for the 

elderly and measuring chronic diseases). Some existing PARM 

applications are introduced in this section from aspects of fitness 

tracking and monitoring, remote AAL, remote health monitoring, 

diagnosis and rehabilitation, emergency alerts and smart biomedical 

sensing.  

6.1 Mobile fitness tracking 

PARM in fitness is a relatively mature and widely commercialized 

technique that is designed for various groups of people from elderly 

citizens, patients with chronic diseases to healthy sedentary and 

physically active adults. There are many popular mobile apps (i.e., 

Moves, Nike+ or Google fit) to fitness wearable devices (i.e., Fitbit or 

smart watches from some technology manufacturers); Automatic 

tracking with simple PA such as walking, running, cycling, sleeping, etc. 

have been integrated into the public’s daily lives. On the other hand, 

there are some trade-offs between PA types, the position of devices and 

the recognition accuracy. Existing customer devices/apps are of limited 

use due to a number of uncertainties such as placement of the mobile 

devices on different parts of the body, battery consumption, capacity or 

manufacturer’s intrinsic settings, whilst PA types are quite narrow; 

accuracy and precision are also challenged. Work has been continually 

carried out to improve all of these aspects.  

WISDM (Wireless Sensor Data Mining) [70] is a typical platform that 

detects PA based on Android phone sensors placed in one’s pocket. Data 

is taken from the accelerometer, some repetitive PA (e.g., walking, 

jogging, etc.) are investigated using supervised training algorithms like 

J48, logical regression, multilayer perceptron and straw man. The result 

exhibits that ascending and descending stairs are the most difficultly 

recognized PA. M. Shoaib et al. [138] offers a comprehensive review of 

the possibilities in mobile phone PARM. The experiment tests PA 

performance (e.g., walking, running, etc.) in position-aware, position-

unaware and personlised evaluation scenarios with accelerometers, 

gyroscopes embedded in a smart phone. The comparison of results using 

some typical classifiers from signals from the upper arm, wrist, belt and 

right pocket through four groups of features extracted from the time and 

frequency domain in the three scenarios. Results suggest that each sensor 

takes a key role in different activities, and the positions only have a 

limited influence on classification results.  

 

6.2 Ambient assisted living  

AAL is applied in a person’s daily living and working environment 

to enable them to stay active longer, remain socially connected and live 

independently into old age. It covers a range of research areas, 

particularly in ADL recognition with an individual’s context and 

situation. AAL uses numerous ambient sensors and one or several 

wearable sensors to understand an individual’s behaviours in a context-

aware environment. For instance, E. M. Tapia et al. [139] installed 77 

simple and low-cost environmental sensor in occupants’ real homes for 

ADL detection (i.e., cooking or eating). Naïve Bayesian networks as a 

PA classifier is implemented for ADL recognition. One noteworthy point 

in the work is that the Experience Sampling Method (ESM) is used for 



 
 

 

labelling binary sensor data especially in an uncontrolled living 

environment, where self-reported diary entries in personal digital 

assistant (PDA) can be triggered when a user performs PA in successive 

time windows. However, the study also reports that the user’s attitude 

towards ESM is that in daily life they are not very positive responding to 

the computer all the time and the monitoring does impact on their 

behaviours. Chernbumroong et al. [140] propose an ADL recognition 

method with feature combinations using small and low-cost wearable 

sensors on the wrist. The data is collected from a free living environment 

of elderly adults and points out that recognition accuracy can be 

improved by combining data from temperature sensors or altimeter 

sensors with accelerometer in the SVM model. On the other hand, 

dressing is not well detected with this model. IDSense [61] is a simple 

move and touch indoor human-object interaction applications with only 

RFID passive tags, developed by Li Hanchuan et al . The recognizing 

procedure is in accordance to the changes in the physical layer signals of 

the communication channel between the RFID reader and the passive 

tags. With over 90% precision and recall, the work indicates RFID sensor 

is a promising PA recognition tool. 

6.3 Remote health monitoring 

Special interest in home-based remote PARM is often of significance 

to seniors or people with chronic diseases as well as caregivers and 

physicians. PA patterns can reflect physical states of the patients and thus 

recording such PA data will provide physicians and caregivers with a 

useful method for accurate intervention and diagnosis. This work [43] 

presents an early online remote monitoring system for patients using 

wireless 3D accelerometers by recognizing simple PA, static PA, 

ambulation and abnormal PA, etc. The data processing and classification 

procedures are carried out on a small waist-worn unit where the battery 

and capacity would be constrained. Moreover, the classification method 

is implemented through the threshold of a straightforward SMA 

calculation. Hence the online system is low consumption cost, fast and 

more useful in a free living environment. Hynes et al. [141] implement 

a smartphone-based long-term remote monitoring system for both 

patients and caregiver that is capable to displaying PA states (walking or 

resting), levels (high, medium, low and inactive) and durations. The PA 

intensity is calculated from the Average Magnitude Difference Function 

(AMDF) and evaluated on the placement of jacket, belt and trousers. 

Resource consumptions are also considered in the work. 

6.4 Diagnosis and rehabilitation 

ICT technologies can be used to facilitate patients with chronic 

diseases through PA measurements in home or hospital environments. 

Compared with conventional questionnaires or manual exercise tests 

(i.e., 6 minute walk test), objective PA assessments by using smart 

monitoring and sensor technologies in diagnosis and rehabilitation 

systems will deliver particular information for physicians and carers and 

thus potentially assist self-management wellbeing, reduce healthcare 

cost, and avoid undesirable consequences, in a personalised manner for 

different patients in accordance with a period of behaviour analysis. Li 

et al. [45] combine ECG and accelerometer data to categorise PA for the 

purpose of health assessment, rehabilitation and intervention. A special 

feature extraction approach proposed in the integration of time domain 

and cepstral domain from two sensor signals respectively; this illustrates 

how to harness ECG in PARM. COPDTrainer [142] is a smartphone-

based system of detection and monitoring of rehabilitation training 

exercises (e.g., arm extension, elbow circle, etc.) for COPD patients. 

With a holster carrying the phone on the wrist and ankle, the system 

provides real-time feedback regarding exercise performance and quality 

to users through comparison of a “teaching model” and “training model”. 

Classification of exercises is determined by features, speed and range of 

motion. This work demonstrates that recognition of training exercises 

can be a possible way of using a single mobile phone. mHealthDroid 

(Mobile Health Android) [143] is an open source framework  designed 

to facilitate the rapid and easy development of biomedical android 

applications. The platform is able to collect data from connecting 

heterogeneous commercial devices for both ambulation and biomedical 

signals. Healthcare interventions such as alerts and guidelines are also 

available. The most important aspect is its extensibility, which supports 

diverse modes and ways to facilitate new system implementation for 

time and cost savings. For instance, mDurance [144], a mobile healthcare 

support system for assessment of trunk endurance, is implemented in 

terms of the core functionalities of mHealthDroid. 

6.5 Emergency system 

Monitoring abnormal activities is a major issue in healthcare for 

elders particularly for those who are living independently. Falls are the 

greatest cause of emergency hospital admissions for older people, and 

delaying treatment and care would significantly influence long-term 

outcomes. Other abnormal activities such as going to the toilet too many 

times at night can predict some diseases like bladder inflammation or 

diabetes.  Therefore, immediate emergency systems are essential to 

monitor and detect such abnormal PA and thus avoid adverse 

consequences. 

Duong et al. [145] propose an effective scheme to detect ADL and 

abnormality through the use of two layers of switching hidden semi-

Markov model (S-HSMM) where an ADL is divided into a series of 

atomic PA combinations, whilst abnormality detection is determined by 

the likelihood of a parameter of the normal model and abnormal model. 

The study is a typical time sequence application addressing complex PA 

recognition and abnormality detection. Another fall monitoring and 

rescue system is presented in [65] that employs a smartphone’s built-in 



 
 

 

sensors in an elder’s pocket and then information from GPS sent to a 

rescue centre via 3G communication networks in real-time once falling 

occurs. The mechanism of fall detection is through verifying a series of 

features in a sequential states and classifying them with SVM. Also the 

smartphone as the processing platform, well manages the consumption 

issues and recognition rate.   

6.6 Smart biomedical sensing 

Biomedical sensing and monitoring technologies play significantly 

supplementary roles in healthcare-related PARM. These vital signs may 

reflect human healthy states and thus are gradually provided by an 

alternative approach with mobile device built-in personalized self-

management systems/apps. A variety of individuals’ conditions can be 

handled with the smart monitoring and sensing technologies such as 

spirometry sensing [7], sleep apnea detection [9] and breathing and heart 

rate signs [10], etc. that may increase efficiency of recognitions and 

physical states in terms of the PA intensities from respirations and 

heartbeats. Vital-Radio [10] presents is a wireless and multi-user 

breathing and heartbeats monitor that can detect different type of PA in 

smart environments. Similar research is also investigated in the 

WiBreathe [8] that is competent to contactless measure respirations 

during sleeping, reading, tying, watching TV and lying down. SpiroSmart 

[7] shows a home-based spirometry by using low-cost mobile phone app 

with built-in microphone that user can exhale toward to the screen while 

the microphone records data and send it to be evaluated. The app may 

also useful and commonplace for PA monitoring.   

7. Future research trends 

PARM using sensing technologies has huge potential benefits in the 

healthcare field, yet it is still broadly agreed that IoT technologies are in 

their infancy and face many challenges in successfully applying them 

into PARM due to further requires of free living environment, 

lifelogging monitoring, scalability and extensibility, device cost and 

various PA types, etc. Future work is required to address these challenges 

and to examine the suitability of existing PARM technologies to ensure 

a good fit in the IoT environment.  

7.1 Free living environment 

It is reported in some work that the accuracy of PA recognizers drops 

dramatically from lab settings to free living environments where there 

are uncontrolled elements, such as short-battery life or poor capacity of 

devices and the requirement to run time-consuming machine learning 

algorithms. Another key issue is intersubject variability, which means 

different people perform the same behaviours differently. One reason is 

due to various physical characteristics like age or weight. More 

importantly, uncertainties normally occur from PA types especially in 

complex PA (i.e., ADL or playing balls).  As a standalone mathematical 

model it is not highly effective when recognizing the changing time-

sequence-based atomic simple PA due to inflexible patterns and 

templates. Optimizing existing algorithms/frameworks/platforms may 

improve the stability in free living environment.  

7.2 Lifelogging PA data from customer devices/apps 

The effective collection of measures of PA in the long term is 

beneficial to interdisciplinary healthcare research and collaboration from 

clinicians, researchers and patients. However, owning to heterogeneity 

of connected devices and rapid change of diverse life patterns, 

lifelogging PA information captured by third party devices/apps 

normally contains much uncertainty thereby limiting their adoption for 

healthcare studies. Many issues have been well addressed in customer 

devices/apps like storage, battery life and cost, especially mobile apps 

are cheap and even free. Nevertheless, PA recognition results offered by 

mobile devices are widely divergent so that making its information turn 

to be scattered, erroneous and limited for healthcare uses. Thus, handling 

with uncertainties and more effectively harnessing these data would be 

greatly beneficial for PARM in a long term.  

7.3 Low-cost device 

Most previous work on implementing PARM 

algorithms/frameworks with relatively precise and stable signals have 

used expensive devices/sensors for high recognition accuracy. Cheap 

mobile devices have also been obtained much attention both in the 

research and industrial fields in recent years. Due to their low-cost and 

portability, tracking everyone’s daily PA becomes possible. One of the 

inevitable issues is resource consumption (i.e., memory and battery), 

especially in online PARM systems where the user may acquire 

immediate feedback. Most studies showed the accuracy under offline 

settings where data is processed remotely and feedback provided after. 

Few mobile online systems have reported their computational demands. 

Thus there might be a trade-off between recognition accuracy and 

processing requirements to be further investigated. 

 

7.4 Physical activity types 

PARM has been studied over several decades, yet a range of PA types 

that have not or have only been explored by a few studies exist. For 

example, weight training exercises are essential PAs that may bring 

considerable healthcare benefits for various groups of people. However, 

research work on such PARMs are very limited and immature. Also, 

some other fitness PA (i.e. playing basketball or playing tennis) are 

rarely involved. Compared with repetitive movements (i.e., waking, 

running) or sedentary actions (i.e., standing, sitting), the activities are 

relatively complex and thus require more effective techniques to 

implement. Moreover, in the AAL field, there is increasingly active 

researches on concurrent and interleaved activity recognition although it 



 
 

 

is still in its infancy and faces many challenges. For instance, a person 

may be cutting food while boiling water in an ADL cooking. 

Furthermore, multi-user and multi-activity recognition and monitoring 

also are in difficulty at the moment. While along the development of 

sensing technologies and the abilities, recognizing more complex PA 

types suggests promising opportunities. HMM and conditional random 

fields (CRF) [109] and knowledge-driven approaches [146] could be 

useful techniques in addressing such issues. 

7.5 High volume of data 

The heterogeneous devices connected in IoT environments and life-

logging collection of physical activity data will be driving major 

expansion in big data of PA. These data contain not only a sheer volume 

of long-term PA information, but also complex, diverse and rich context 

of other health information. The uncertainty of these data will be much 

higher than physical activity data training by classic machine learning 

methods of PARM techniques. Effectively and efficiently improving 

validity of these PA data and exploring useful knowledge becomes a 

difficult task. Therefore, research work on how to explore these big PA 

data under IoT environments for bringing intelligence for more solid 

clinical decision-making and policy formulation will be significance.  

8. Conclusion 

Given the importance of Physical Activity Recognition and 

Monitoring (PARM) for healthcare support of a variety of chronic 

diseases, musculoskeletal rehabilitation, independent living of the 

elderly, as well as fitness goals for active life styles, a number of studies 

have been devoted to the crucial issues of PARM during the last two 

decades. The contribution of this work is from the perspective of Internet 

of Things (IoT) that sequentially covers the sensing layer, network layer, 

processing layer and application layer, distinctively and systematically 

summarizing existing primary PARM devices, methods, and 

environments. Wearable and portable sensors/devices, inertial signal 

data processing and classification/clustering approaches are described 

and compared in the light of physical activity types, subjects, accuracy, 

flexibility and energy. Typical research and project applications 

regarding PARM are also introduced. In the end, challenges and 

potential future trends have been analysed and those associated with IoT 

highlighted.



 

 

 

Appendix 

Table 7. Studies of activity recognition and monitoring based on Internet of Things (IoT) structure (ACC-accelerometer; gyro-gyroscope; ECG-electrocardiography) 

 Sensing layer Network layer Processing layer Application layer 

Works  Device/s Placed position  Network Segmentation 

/Features 

Classifier/ 

Cluster 

Subjects Detected activities Accuracy 

[39]  1 ACC Waist Not mention Time-domain 

and frequency-

domain features 

SVM, ANN, 

DT  

 

 

20  young healthy 

people  

Postures, transitions, 

walk, run, cycle, football  

In lab: 82%-

99% 

Out of  lab: 

24%-83% 

Compared PAR models in and out of the 

lab and proposed potential solutions  

 

[37] ACOR+ 

kinematic 

system (1 3D 

ACC, 1 

microcontrol

ler 

day: belt; night: 

chest  

Bluetooth  Not mention DT 15 (9 COPD 

patients, 6 healthy 

people) 

Postures, walk, read, 

exercises 

77%-94% Simple device and real-time PARM 

applied on COPD (chronic obstructive 

pulmonary disease) patients home 

monitoring. 

[36]  1 3D ACC, 1 

wearable 

camera 

ACC on the  

belly; 

Camera hung 

over neck 

ZigBee, Wi-Fi, 

Bluetooth  

FFT (mean, 

energy, 

correlation) 

SVM  Not mention Run, go downstairs, go 

upstairs, take an 

elevator, walk forward, 

walk backward, stand, 

sit, turn  

90%-99% Apply in the context-aware environment 

for lifelogging health monitoring. 

[31] 2 3D ACC, 1 

ventilation 

sensor 

Accelerometers : 

hip, wrist; 

ventilation 

sensor: abdomen 

Not mention  Time-domain 

(mean value, SD, 

median, 

percentiles); 

frequency-

domain (energy, 

entropy) 

SVM 50 healthy people Postures, vacuum, cycle, 

play balls, work 

89.3% on 

average 

Effectively and accurately assess PA 

energy expenditures using multi-sensor 

fusion technique. 

 

[16] 1 gyro on 

shoe 

Feet, knee Not mention Not mention Knowledge-

based 

algorithm 

10 able 

body people, 6 

people with 

impaired gait 

Walk on level ground, 

walk up and down a 

steep cobblestone road, 

walk on grass, ascend 

and descend, stand up 

and down, bend knees, 

rotate  

>96% A system of controlling the gait cycle of a 

neuroprosthesis for walking in real time.  

 



 

 

 

[147] 1 3D ACC, 1 

3D gyro, 1 

3D magnetic 

sensor. 

Upper and lower 

limb 

Bluetooth Kalman-filtering Kinematic 

modelling 

8 healthy male 

people (24–40 years 

old) 

circular, rectangular 

motion, 

reach, hand to mouth, 

flexion-extension, 

elevation 

95%-98% A low-cost human motion capture system 

used in the domain of home-based stroke 

rehabilitation for measure of different 

motion circumstances 

 

[104] A 3D 

seismic 

ACC，3 

gyros 

Belt on waist Not mention Statistics for each 

axis  

 15 older patients of 

a geriatric 

rehabilitation clinic 

(median age 81 

years) , 10 young 

healthy people 

(median age 

37 years) 

lying-to-sit-to-stand-to-

walk (LSSW) test 

90%-100% Detect falls at bedsides for elderly and 

patients in independent living 

environment with cost-effective method. 

[148] 1 watch with 

1 ACC, 1 

gyro, 1 

iPhone 4 

Belt on waist, 

thigh, shank;  

Not mention self-defined 

features based on 

each interpeak 

segmented period 

Bayes 49 people Gestures, drinks, 

swallows, chews, bites 

79%-95% Detect energy intake for the study of 

obesity by the means of continuously and 

automatically detecting the periods of 

eating throughout the day. 

[74] 5 biaxial 

ACCs 

right hip, 

dominant wrist, 

non-dominant 

upper arm, 

dominant ankle, 

and non-

dominant thigh 

Not mention Time-domain 

(sum, energy, 

mean, ); FFT (DC 

component, 

entropy) 

nearest 

neighbor 

algorithms; 

leave-one-

subject-out 

training 

20 people (age from 

17 to 48) 

ambulation, 

posture, stretch, laundry, 

brush teeth, ride lift eat, 

drink, bike, read, 

vacuum  

43%-97% First work of wireless accelerometers 

measuring PA in an uncontrolled 

environment for the purpose of assessing 

PA accuracy. 

 

[84] Inertial 

sensors 

Arm  Not mention SWAB segment; 

Euclidean 

distance 

HMM 

 

 object interaction 

gestures, dietary intake 

gestures 

97.4%-98.4% Facilitate PA recognition and context 

applications in real life.  

[43] 3D ACC unit Wrist, arm ZigBee SMA, SVM Calculate 

angle between 

the z-axis 

vector and the 

gravitational 

vector 

6 people Transitions, fall, walk, 

static postures, circuit 

83.3%-95.6% Assist remote supervision for healthcare 

monitoring in terms of promoting the 

longevity of battery life and thus 

enhancing the system’s usability in real 

life. 

 

 

 

[149] 9 ACCs Chest, waist, 

right thigh, left 

ankle 

Not mention Multiple HMM 

regression 

segmentation 

Multiple 

HMM 

6 healthy subjects 

with age 25–30 

Stairs down, stand, sit 

down sit, from sitting to 

sitting on the ground, sit 

82.3%-98.5% Automatic recognition of PA without 

human efforts in a healthcare monitoring 

environment. 



 

 

 

regression 

(MHMMR) 

years old, weight 

55–70 kg. 

on the ground, lie down, 

lie, from lying to sitting 

on the ground, stand up, 

walking, stairs up  

[45] 1 ECG, 

1 ACC 

Left hip Bluetooth Time domain and 

Cepstral features 

SVM, GMM  5  young healthy 

people (ages 13-20 

2 M, 3 F) 

Postures, play games, 

brisk walk, slow walk, 

run  

79.3%-97.3% Healthcare assessment and rehabilitation 

intervention 

[27] 5 ACCs, 1 

ECG 

necklace 

Chest, ankle, 

thigh, wrist, right 

hip  

Wireless network   Activity-

specific energy 

expenditure 

methods 

15 young healthy 

people (11 M, 5 F) 

Sedentary, lifestyle, 

sports, run 

70%-98% Compared sensor numbers and 

positioning to accurately measure PA 

types and  energy expenditures for 

healthcare and wellbeing purpose 

[150] Gyros, 

ACCs 

 

Shoulder, elbow Not mention Not mention Kalman 

filtering 

8 healthy people Elbow and shoulder 

flexion/extension, 

forearm 

supination/pronation,  

shoulder abduction 

/adduction 

95%-99% Diagnosis of neurological movement 

disorders, rehabilitation from injury, and 

enhancement of athletic performance. 

[151] A watch with 

1 ACC and 1 

gyro 

Wrist Not mention Not mention HMM 23 subjects Wave arms, watch 

check, drink, pick up 

phones from a table, 

shake hands, natural arm 

actions when walking 

97.1% on 

average 

Help people to achieve performance goals 

and reduce bad habits through arm motion 

recognition.  

[46] 1 3D ACC, 

metabolic 

cart 

Left hip Not mention Time-domain 

(mean, SD, 

variance) 

K-means 

cluster, GMM 

12 young healthy 

people 

Walk, run  90.8%-94.3% Measure PA intensity with intersubject 

variability. 
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