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Abstract- The rising demand for health and social care, and around the clock monitoring 

services, is increasing and are unsustainable under current care provisions and legislation. 

Consequently, a safe and independent living environment is hard to achieve; yet the detection 

of sudden or worsening changes in a patient’s condition is vital for early intervention. The 

use of smart technologies in primary care delivery is increasing significantly. However, 

substantial research gaps remain in non-invasive and cost effective monitoring technologies. 

Where such technologies are used, they are considered too intrusive and often incapable of 

being personalised to the individual needs of patients. The inability to learn the unique 

characteristics of patients and their conditions seriously limits the effectiveness of most 

current solutions. The smart metering infrastructure provides new possibilities for a variety of 

emerging applications that are unachievable using the traditional energy grid. Between now 

and 2020, UK energy suppliers will install and configure of 50 million smart meters therefore 

providing access to a highly accurate sensing network. Each smart meter records accurately 

the electrical load for a given property at 30 minute intervals, 24 hours a day. This granular 

data captures detailed habits and routines through the occupant’s interactions with electrical 



devices, enabling the detection and identification of alterations in behaviour. The research 

presented in this paper explores how this data could be used to achieve a safe living 

environment for people living with progressive neurodegenerative disorders, such as 

Dementia.  

Keywords- Health Monitoring, Advanced Metering Infrastructure, Smart Meters, 

Profiling, Assistive Technologies, Early Intervention Practice, Machine Learning. 

 

1. Introduction 

For many countries, the emergence of an ageing population is fast becoming an increasing 

public health concern. Although an international issue, the UK in particular faces 

considerable challenges due to historical birth trends (G.Lanzieri et al.,). The origins of this 

ageing demographic can be partially attributed to the baby boom. During the mid-1950s up 

until the early 1970s the UK birth rate was above 850,000 per year1. In 2012, the number of 

people aged 65 and over surpassed 10 million for the first time. In addition to a maturing 

population, a vastly improved life expectancy is set to increase pressures further. Longer life 

expectancy is widely regarded to be one of the greatest challenges of the next century 

(K.Kaare et al.,). The success of modern medicine has completely transformed our health and 

care requirements as a result of an ever increasing ageing population. Ultimately, health and 

social care has failed to adequately adapt to this dramatic demographic shift (M.Green et al.,). 

The challenge is to explore alternative, sustainable, ways of supporting independent living 

within ageing populations. However, the development of an effective and reliable monitoring 

solution presents numerous challenges, which need to be addressed. In recent years, there has 

                                                           
1   Office for National Statistics, Overview of the UK Population, 
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/artic
les/overviewoftheukpopulation/february2016 
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been rapid development in monitoring technologies for independent living, early intervention 

services and outpatient condition management. However, research in non-invasive and cost 

effective monitoring technology lag far behind (P.Rashidi et al.,). Affordability and 

associated costs with existing technologies mean they cannot be implemented on a large 

scale. Additionally, Assistive Technologies (AT) often neglect both socio-economic and 

ethical considerations therefore affecting their widespread implementation and adoption (M. 

Bächle et al.,). The need to detect sudden or worsening changes in a patient’s condition is 

vital for early intervention. Community mental health groups, home resolution teams and 

assistive outreach teams, all play a key role in preventing costly inpatient admissions. If any 

changes in a patient’s condition are not dealt with ‘early’ the prognosis is often worse and, as 

a result, costs for treatment will undoubtedly be higher (S.P.Singh et al.,). An early 

intervention approach has been shown to reduce the severity of symptoms, improve relapse 

rates and significantly decrease the use of inpatient care (L.N.Gitlin et al.,). 

The Advanced Metering Infrastructure (AMI) brings many benefits over the traditional 

energy grid. In order to maximise its true potential, different applications need to be 

considered beyond the traditional uses of electricity and gas generation, distribution and 

consumption. As the research in this paper demonstrates, analysing a patient’s  electricity 

usage through the use of smart meters can provide accurate around the clock monitoring of 

patients; not only for safety but also for enabling immediate, mid and long term prognosis. 

The challenge is how to interpret and make use of the data collected by smart meters, to 

develop applications for remote patient monitoring. Smart meters provide a highly accurate 

and low cost sensing mechanism for monitoring people within their homes. 

As such, the investigation outlined in this paper covers the use of smart meters for monitoring 

the wellbeing of individuals with dementia. Dementia was chosen for two reasons; firstly due 

to the complexity of behaviours and secondly, being able to detect specific behaviours of 



interest, which include sleep disturbances and Sundowning Syndrome. The research presents 

various initial energy usage profiles, taken from a dataset containing over 78,000 individual 

households. A technique for establishing a patient’s daily routines and habits is detailed. The 

data highlights the behaviour of a patient and how this information can be leveraged for both 

early intervention practices and detecting alteration in routine. In particular, the research aims 

to demonstrate how normal and abnormal behaviour can be detected through the patient’s use 

of electrical devices. The remainder of this paper is as follows. Section 2 presents a 

background on smart grids, smart meters and the Advanced Metering Infrastructure, which 

includes the data types and its supporting technologies. In section 3, we discuss existing 

assistive technologies while highlighting challenges around their feasibility and 

implementation. In addition, examples of dementia characteristics and associated behaviours 

of individual patients and how they can be detected through electricity monitoring is 

introduced. In section 4 a case study, which focuses on electricity usage, behaviours and 

changes in habits, is documented. Initial results are also presented, highlighting the detection 

of behavioural routines and concerning behaviours such as sleep disturbances. In section 5, 

the proposal of a novel proprietary system design is outlined. Here the system describes the 

process for analysing smart meter data and how the acquired intelligence can be presented to 

the patients care team. The paper is concluded in section 6 where the future direction of the 

work is discussed. 

2. Background 

The motivation behind the smart grid concept is attributed to different factors. Arguably the 

main objective for the smart grid is to balance grid load effectively (JA.Momoh et al.,). 

According to the latest projections from the International Energy Agency (IEA), smart grid 

technologies are an essential grid component in order to meet future energy requirements. 

Smart grids fundamentally change the way in which we generate, distribute and monitor our 



electricity and gas. It dramatically improves the efficiency, flexibility and reliability of the 

existing utility infrastructure (V.C.Gungor et al.,). One of the key differences over the 

existing grid is the introduction of the Advanced Metering Infrastructure. The AMI is not a 

single piece of technology, but a complex infrastructure which integrates with a variety of 

different technologies (R.R.Mohassel et al.,). This framework contains many new 

components, such as the smart meter and the communication gateways that provide energy 

usage information to all of the grids stakeholders in real time. 

2.1 Advanced Metering Infrastructure 

As part of the larger smart grid, the AMI can be broken down into three specific areas, each 

with their own unique roles and functions; these include the Home Area Network (HAN), 

Wide Area Network (WAN) and the Data and Communication (DCC) Service users. The 

HAN is housed inside consumer premises and is made up of a collection of different devices. 

Firstly, the In-Home Display Unit (IHD) is the most visible and accessible part of the AMI. 

Essentially, it provides the consumer with information in real time on electricity and gas 

usage, as well as the units of energy that are being consumed. This information is obtained 

directly from the smart meter using a wireless communication technology called ZigBee 

(J.Zheng et al.,). The WAN handles the communication between the HAN and the utility 

companies. The WAN is responsible for sending all polled meter data to the utility companies 

and other grid stakeholders, using a robust backhaul network, such as Carrier Ethernet, GSM, 

CDMA or 3G. Figure 1 highlights the UK AMI layout. 



 
Figure 1. Advanced Metering Infrastructure 

The Home Area Network (HAN) is located inside the consumer premises and is made up of 

different devices. Firstly, the in home display unit (IHD), which is the most visible and 

accessible part of the AMI. It provides the consumer with real-time electricity usage data. 

Secondly, the smart meter provides real-time energy usage to both the consumer and the 

energy provider. Smart meters are able to store 13 months of data, keeping a record of total 

energy consumption. 

The Wide Area Network (WAN) communicates between the HAN and the utility companies. 

The WAN is responsible for sending smart meter data to the utility companies and other grid 

stakeholders using a robust backhaul network, such as Carrier Ethernet, GSM, CDMA or 3G. 

The geographical location of the smart meter may dictate they type of WAN technologies 

implemented, due to the constraints of certain communication technologies. 

The utility companies and service users are a group of organisations that have access to the 

data for analysis and management purposes. Energy suppliers communicate remotely with the 

smart metering equipment in order to perform a number of tasks, such as taking meter 

readings, updating price information on the in-home display and identifying readings on a 



change of tenancy. Consumers can permit other organisations to have access to the data from 

their smart meter. For example, energy switching sites could use accurate information to 

advise on the best tariff based on personalised energy requirements. 

2.2 Smart Meters 

Fundamentally, smart meters are a new generation of gas and electricity meter. They deliver 

vast amounts of additional information that cannot be obtained from a conventional analogue 

energy meter (S.Shekara et al.,). The main aim of the smart meter is to facilitate real time 

energy usage readings at granular intervals, to both the consumer and smart grid stakeholders 

(L.Wang et al.,). In order to achieve this aim, load information is obtained from consumer 

electrical devices while measuring the total aggregated energy consumption for the given 

property. Smart meters in the UK collect and transmit energy usage data at 30 minute 

intervals using their default setting (P.Siano et al.,). However, smart meters are able to report 

energy usage as low as 10 second intervals through the use of a Consumer Access Device 

(CAD); even though this is not currently deployed due to the vast amount of data it would 

generate (A.Vojdani et al.,). 

As Figure 2 highlights, the data sampling rate is relevant when identifying individual devices 

and their duration of use. The additional information obtained from increasing the frequency 

of reading has a significant impact on the accuracy of individual devices identification. 
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Figure 2. Information obtained by increasing interval reading of the smart meter. 

Table 1 shows a data sample taken from a smart meter during a single period. This sample 

shows the granularity of the data collected compared to traditional meters where the readings 

are submitted collectively over a much larger period. It displays the data parameters obtained 

at each 30-minute interval collected in a 24-hour period (5 readings are shown as a sample). 

The Customer Key is the unique identifier for each individual smart meter device within the 

AMI. In other words, it acts as the unique identifier for the owner of the smart meter. Time of 

Reading indicates the time and date of the reading collection; while General Supply 

highlights the amount of on peak electricity being used in (Kilowatt Hour) KWH. 

Table 1. Single Smart Meter data Sample showing the total aggregated load for each thirty-minute interval. 

CUSTOMER_KEY Time of Reading General Supply KWH 
8150103 05:59:59 0.042 
8150103 06:29:59 0.088 
8150103 06:59:59 0.107 
8150103 07:29:59 0.040 
8150103 07:59:59 0.042 

2.3 Challenges 

The research put forward in this paper proposes using smart meter data to examine the 

behaviours of dementia patients. The aim is to enable patients to live independently, while 

safe in the knowledge they are being monitored both actively and remotely. This, however, 

presents many technical, ethical and privacy challenges. Firstly, the scale and size of data 

collected from smart meters and the AMI introduces real and complex challenges in terms of 

storing, structuring and analysing the acquired data (P.D.Diamantoulakis et al.,). New 

methods for analysing and modelling data should focus on using cloud platforms and data 

centres for processing. Cloud platforms, such as Microsoft Azure, have the ability to analyse 

large datasets and assign significant resources to process the data in a timely manner. 

Secondly, due to the scale of the smart grid infrastructure, ensuring standards, interoperability 



and continuity throughout the system is a challenge. This is largely due to the integration of 

interchangeable components from a variety of different providers (V.C.Güngör et al.,). 

Thirdly, there are many ethical and privacy concerns associated with the smart meter role out, 

which could potentially leave consumers vulnerable to exploitation (S.Zhou et al.,). For 

example, criminals could process data that is generated by the AMI to identify when 

households are unoccupied, helping to facilitate burglary or some other crime. Additionally, 

being able to identify appliances, would aid burglars to target households with the most 

expensive electronic devices. 

3. Assisted Independent Living and Behavioural Considerations  

Current assistive living technologies involve the deployment of various sensors around the 

home (J.Doyle et al.,). These include motion sensors, cameras, fall detectors and 

communication hubs. However, installing, maintaining and monitoring these devices is costly 

and technically challenging (A.Grguric et al.,). In addition, diverse wearable technology is 

also available. These include Personal Emergency Response Systems (PERS), wearable body 

networks, electrocardiogram (ECG), pulse oximeter, blood pressure monitors and 

accelerometers. The main objective of these sensors is to obtain essential data to assist in the 

overall assessment of a patient’s wellbeing. 

3.1 Ambient Assisted Living 

The vast majority of telehealth systems fall into an area referred to as Ambient Assisted 

Living (AAL). Essentially, one of the main objectives for any AAL solution is to monitor the 

changing needs and risks of the patient. The system should provide alerts and facilitate 

improved responses to any of the identified needs or risks. Remote patient monitoring 

solutions provide alternative ways of monitoring and support. In order to achieve this 

outcome a variety of different sensors are available which can be used singularly or in 

combination to achieve the desired objective. Indoor localisation, activity recognition and 



tracking are key components of AAL research and a consideration for any system. As such, it 

has become the focus of research studies. Machine learning and computational techniques 

have been applied to many solutions in human behaviour technology and activity recognition 

(P.Barsocchi et al.,), (G.Appelboom et al.,). Specifically, the vast majority of AAL solutions 

depend on supervised learning algorithms, which utilise labelled data for training. There are 

many limitations and challenges with existing solutions. Multiple barriers exist, which 

impede and restrict the wide implementation and adoption of many solutions. In many 

instances, AAL systems often fail to meet the complexity of environments, patients and 

objectives required to facilitate independent living (A.Bygholm et al.,). These limitations and 

challenges are summarised as follows (A.Bygholm et al.,): 

• Complexity and feasibility of technologies: Systems are often dependant on 

complicated distributed hardware and software, which are required to seamlessly and 

reliably interact with each other. 

• Complicated installation, configuration and ongoing maintenance: Multiple 

sensors and associated equipment can be challenging to install. 

• The requirement for user training and education: As various solutions require 

some form of interaction from the patient and often a response from a carer there is 

often an element of training required to ensure that the system is utilised correctly. 

• Lack of communication standards and interconnectivity between different 

solutions: Technology standards provide the basis to facilitate interoperability, 

integration, and scalability. 

• High costs to both the care provider and the patient: Typically, existing solutions 

require the purchase of expensive equipment and usually some form of ongoing 

subscription or licencing cost (A.Dasion et al.,). 



• Low acceptance due to usability and intrusiveness: The acceptance of many 

solutions relies heavily on both the benefits of the system but also its level of 

intrusiveness (F. Carinaux et al.,). They are often considered to be too intrusive and 

raise privacy and ethical concerns, especially for vulnerable patient groups. 

The analysis of smart meter data enables active, in-home, monitoring of patients living with a 

range of conditions. By analysing past personalised behaviours, the detection of abnormal 

behaviours is made possible. This facilitates early intervention and a bespoke outcome for the 

patient by ensuring their medical and care needs are sufficient.  

3.2 Active monitoring for behavioural changes with dementia 

A comprehensive understanding, of both the condition and their associated behavioural 

characteristics, is essential for remote patient monitoring (V.Osmani et al.,). This is 

imperative in determining the diagnosis and enabling an accurate evaluation of any changes. 

The performance and undertaking of basic Activities of Daily Living (ADLs) is a significant 

challenge for patients living with progressive neurodegenerative disorders, such as dementia . 

Studies have shown that measuring the ability to undertake ADLs can be used to gage the 

decline of the patient cognitive abilities (M.Giebel et al.,)  Table 2 highlights the behaviours, 

which are useful for assessing the overall wellbeing of the patient. More specifically, it 

demonstrates the types of behaviours that can be detected through a patient’s interactions 

with their electrical devices. 

 Table 2: Important  Activities of Daily Living and Considerations 

Behaviour Description 

Eating patterns For the purposes of detecting abnormal or altering changes in 

eating habits. These types of behavioural changes provide key 

indicators regarding the general health of the patient, while 

providing insights into condition progression. Eating abilities and 



patterns are a key measurement in estimating the patients ability 

to undertake ADLs (T.Lima-Silva et al.,).  

Sleep patterns Changes in sleep patterns provide insights into a patient’s mental 

and physical wellbeing. Sleep disturbances are often key 

indicators for various mental health problems while negatively 

impacting on the person’s ability to undertake ADLs 

(C.Nascimento et al.,). 

Behavioural 

changes 

Provide important indicators for the detection of new conditions, 

while providing information about the progression of existing 

medical problems (K.Hu et al.,). 

Routine alteration Is vital for detecting changes in a patient’s behaviour The 

identification of a routine change especially in more serious 

conditions, such as dementia, can indicate the need for immediate 

intervention. 

Loss of mobility People with dementia gradually lose their ability to perform 

everyday tasks. They usually perform tasks at a much slower rate 

and are more likely to fall due to a reduction in mobility. Falls and 

resulting loss in mobility are frequent in dementia patients, 

especially in the advanced stages (A.Laboni et al.,). 

 

Being able to detect changes in a patient’s habits, routines and features as highlighted above, 

ensures the active monitoring of their wellbeing. The vast majority of these behaviours can be 

accurately mapped using smart meter data therefore providing a nonintrusive and cost 

effective method for remote patient monitoring.  

4. Case Study 

In this section, a case study is presented, which highlights an individual’s habits and routines 

using smart meter data. The data used in this case study was provided by the Australian 

Department of Industry as part of a recent trial. The research outlines how the use of granular 



smart meter readings can be used to establish individual’s routines and identify any sudden 

changes in behaviour. To demonstrate this, a sample of the data profiling is presented in 

Figures 3 to 5. Each displays a morning period, between 05:00 and 12:00, the data is recorded 

at 30 minute intervals. Initially, an overview, highlighting three individual mornings, is 

presented. The energy usage, in KWH, is shown in the y-axis while the reading time is shown 

in the x-axis. 

 

Figure 3. Morning 1 between the hours of 05:00 and 12:00. 

 
Figure 4. Morning 2 between the hour of 05:00 and 12:00. 



 
Figure 5. Morning 3 between the hours of 05:00 and 12:00 

The individual used for the case study was selected at random from the data set, where the 

individual constrained to the criteria of there is a single occupant in the premises, living in a 

standard dwelling that does not have gas cooking or heating. These criteria were chosen to 

demonstrate the process for monitoring independent living. Gas cooking and heating are not 

included in the dataset, yet could be incorporated into future work. Knowledge of the type of 

heating and cooking equipment being activated facilitates an understanding of the devices 

responsible for the energy peaks. If no gas cooker is present, then the electricity readings at 

certain periods of the day would relate to eating preparation using an electric cooker. 

It is also vital to establish what devices reside in premise, as different devices affect the 

amount of electricity being used. As Figures 3 and 4 highlight, the behaviours exhibited on 

morning 1 and 2 are comparable. The graphs show that the individual commences their daily 

activities at roughly the same time on both mornings, with the electricity consumption having 

comparable total-usage values. This type of behaviour can be attributed to normal behaviour, 

such as getting breakfast and having a shower for example. However, Figure 5 shows a clear 

change in routine and behaviour during the same period on morning 3. This type of behaviour 

might indicate that the consumer has merely stayed in bed, or it could be an indicator of a 

more serious problem. Due to the vulnerability of the patients being monitored, in our case 

this type of behaviour would require further immediate investigation to ensure patient safety.  



Recognising changes and patterns in behaviour, such as in the example above, insures a 

personalised healthcare package is constructed. Individuals who suffer mental illness exhibit 

certain behavioural changes during periods of heightened severity. One of these more usual 

changes are alterations in sleep patterns as  a patient  typically awakens much earlier than 

normal (J. Murphy et al.,) Figure 6 shows the total energy consumption between the hours of 

1:30am and 4:00am for the same individual over a duration of 10 months. Each of the larger 

peaks displays an increase in electricity during the early hours of the morning, meaning the 

occupant is awake during the night. This type of result highlights any changes in the person’s 

sleep patterns, which provides an indication to a healthcare professional where intervention is 

required. 

 
Figure 6. Energy usage over a one-year period between the hours of 1:30 and 4:00 

Figure 7 demonstrates this process to a more granular level. Day 1(a) and Day 2(b) display 

electricity usage below 0.80 KWh; whereas Day 3(c) shows an increase in activity, with a 

significant electricity utilisation that peaks at over 2.00 KWh. The inactivity shown in Day 1 

and 2 would require intervention if the occupant was a known to be living with progressive 

neurodegenerative disorders  or any of the conditions previously discussed. 



(a) (b) (c) 

Figure 7. Daily comparison of activity (a total of three days shown).  

5. Approach 

In this section, a novel data analysis approach for the autonomous identification of abnormal 

behavioural patterns, which are the result of deteriorating health conditions, is presented. In 

this case study there is a specific focus on detecting the behavioural changes that are 

associated with both dementia and severe depression; where sleep disturbances are key 

indicators of a decline in a patient’s health. 

5.1 System Design 

The system proposed in this paper identifies different patterns of behaviour based on 

historical energy profiles and where periods of abnormal activities are identifiable through 

known abnormal behaviour trends (relapse indicators). Additionally, the system can detect 

abnormal usage patterns based on customisable parameters. The system has a modular design 

in order to cater for different circumstances of healthcare monitoring. Smart meter data is 

collected in an unstructured way, which is unsuitable for the needs of the system so the data 

first needs to be adapted in order to ascertain the necessary features from it. For that reason, 

the proposed system is retrofitted to the data set. Figure 8 presents the system design, 

highlighting the main flow of data and the collection of data from three different sources: 

• Half-hour consumption and generation, which contains the half-hourly usage readings. 

• Device utilisation identification, along with its behaviour. 



• The household demographics providing information relating to the occupancy of the 

household.  

The module containing the health data is used to select the relevant features based on the 

patents condition or stage. As previously discussed, regular medical review would be 

required to assess the condition were appropriate. This could alter the required features, 

depending on the outcome of the review, which in turn highlights the expected behaviour and 

features. Should an abnormal usage be detected, an automatic message is sent to a healthcare 

professional, relative or carer for further investigation. 
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Figure 8. Proposed System Framework 

In order to collect the energy usage readings from the smart meter, a Consumer Access 

Device (CAD) is required. Smart meters utilise ZigBee smart energy. The UK Department of 

Energy & Climate Change (DECC) has announced Smart Metering Equipment Technical 

Specifications (SMETS) 2, which cites the use of ZigBee Smart Energy 1.x. The processes, 

by which the CAD operates is shown in figure 9. The data collected from the CAD includes 



the date and time of the reading, the aggregated energy load in watts and the node id. The 

acquired data is parsed and transmitted to the network inference of the proposed system. 
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Figure 9. CAD Pairing Process 

For the purpose of this case study, we focus on the data processing component of the 

proposed system. Figure 10 shows the methodology for the data processing component of the 

system, as shown in the information clearing component. 
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Figure 10. Data Processing Methodology 

5.2 Data Collection 

For the following analysis, one year’s worth of energy usage readings for eight different 

smart meter users was selected. The eight consumers were selected as a sub group of the 



population as this approach is more practical for the initial data analysis. The consumers 

provided their consent for data access during the initial smart meter trail. Each of consumer’s 

energy readings were taken every half hour equating to 48 readings per 24-hour period, 

totalling 17520 individual readings per consumer per year. Out of the eight consumers 

selected, four have normal readings and four have abnormal readings. The subjects with 

normal readings were classified as having no energy usage readings greater than 2 Kwh 

between the hours of 1:30 and 4:00 for the entire year period (signifying the absence of sleep 

disturbances). Abnormal subjects were classified where they exceeded 2 Kwh between the 

hours of 1:30 and 4:00 on 3 or more occasions in a one-year period (signifying the presence 

sleep disturbances). As discussed the detection of sleep disturbances within both dementia 

and mental health can be important relapse indicators to both cares and clinicians. All 

households in the experiment have one occupant to ensure accurate results. Initially seven 

features per consumer were derived for each 24-hour period totalling 8760 results for each of 

the following features: General supply min; general supply max; general supply median; 

general supply standard deviation; general supply mean; off peak max and off peak mean.  

Figure 11 shows the data processing component for the proposed system starting with the 

data retrieval stage and ending with the generation of the feature vectors for both normal and 

abnormal patient behaviours. The process flow highlights the processes undertaken for the 

application of classifying sleep disturbances. 
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Figure 11. Data processing methodology sleep disturbance 

5.3 Data Classification Process 

The specific classifiers used in this analysis include the linear discriminant classifier (LDC), 

quadratic discriminant classifier (QDC), uncorrelated normal density based classifier (UDC), 

polynomial classifier (POLYC), logistic classifier (LOGLC), k-nearest neighbour (KNNC) 

and parzen classifier (PARZENC). Each of these classifiers is chosen because they have the 

ability to learn how to recognise abnormal values in a dataset. They also employ a supervised 

learning approach, which is a key part of the system design.  

The linear discriminant classifier functions by sorting or dividing the data into groups based 

on a set of characteristics in order to perform the classification (A.J.Izenman et al.,). A 

discriminant function is obtained by monotonic transformation of posterior probabilities. In 

other words, it performs an ordered transformation of unknown quantities, which are 

separated by a linear vector. Again the quadratic discriminant classifier operates by dividing 



the data into separate groups based on a set of given characteristics. The data is divided up 

using a quadratic surface instead of a one dimensional data set. QDC makes no assumptions 

that covariance are alike instead it assumes that the changing of two random variables are not 

be the same. The polynomial classifier is a linear based classifier and essentially sorts the 

data by evaluating the weighting, using a linear combination of features and considering the 

variables of the objects (P. Fergus et al.,). The logistic classifiers are linear-based classifiers, 

which predict class labels based on weighted, linear combination of features or the variables 

of the objects. K-Nearest Neighbour includes the training data when building up the 

classifier, it predicts values based on the ‘k-closest’ values from the training set. In other 

words, data is classified by a majority decision by identifying ‘k-objects’, which are nearest 

to its neighbours (P. Fergus et al.,). The parzen classifier functions by including aspects of 

the training data when the classifier is built up. It is a non-linear classifier and it has the 

benefit that its parameters can be user supplied or optimised (P. Fergus et al.,). 

5.4 Results and Discussion 

Each of the classifiers performance was calculated using a confusion matrix to assess the 

success of the classification or Area Under the Curve (AUC), sensitivity, specificity and error 

(Ahmed J. Aljaaf et al.,). This can be expressed mathematically as shown below:  

Sensitivity = A / (A+C) 

(1) 

Specificity = B / (B+D) 

(2) 

Accuracy = (A+B) / (A+ B +C + D) 

(3) 

Where A is the True Positive values, B is the True Negative Values, C is the False Negative 

values and D is the False Positive values. The KNNC and PARZENC classifiers were the 

most accurate with both classifying over 93% of the data accurately. The KNNC classifier 



was able to categorise the data with an accuracy of 94.81% with an error of 0.0519. For the 

KNNC 4074 out of 4379 normal behaviours were correctly classified whereas 4230 out of 

4379 abnormal behaviours were accurate. All of the results from the classification are shown 

in Table 3.  

 

Table 3. Classification Results Comparison 

Classifiers  AUC (%) Sensitivity Specificity Error 

LDC 78.64 0.932 0.640 0.2136 

UDC 74.29 0.884 0.600 0.2571 

QDC 74.59 0.874 0.617 0.2531 

POLYC 79.16 0.932 0.650 0.2084 

KNNC 94.81 0.930 0.965 0.0519 

LOGLC 85.40 0.893 0.816 0.146 

PARZENC 93.92 0.923 0.955 0.060 

It is clear from the results that the classifiers where able to identify the different behaviours 

with a high degree of accuracy. Figure 12(a) shows a scatter of the most accurate performing 

classifier while Figure 12(b) shows the least effective performing classifier. Normal 

behaviour is represented by blue crosses, while abnormal is displayed as red dots. The 

contour line generated highlights the division between the individual datasets which in figure 

10 shows the enhanced classification results. These results demonstrate that by analysing the 

data generated from smart meters it is possible to detect changes in an individual’s behaviour 

and routine. 



(a)  (b) 

Figure 12. (a) KNNC Electricity (b) UDC Electricity - both over 1 Year Period 

6. Conclusion and Future Work 

With the implementation of the AMI, it is possible to monitor actively a consumer’s 

wellbeing while providing  insight into an individual’s daily  habits and routines. Analysing 

the vast data that is collected by smart meters enables detailed energy usage profiles to be 

created and reoccurring patterns and trends in behaviour can be identified. Being able to 

detect any deviations in behaviour is vital to enable safe independent living, early 

intervention and predicting changes in dementia. This paper discusses how these applications 

can be used to reduce costs and ensure a better outcome for the patient. 

The case study put forward in this paper details how different deviations in routines can be 

identified using our novel system design and health-monitoring concept. This type of 

monitoring may provide healthcare professionals with a more detailed insight into their 

patient’s behaviour permitting the patient’s support network to intervene should any 

problems arise. 

 Dementia patients can often become confused and  potentially provide incorrect information 

about their wellbeing to healthcare professionals. This type of monitoring helps to provide 

accurate information to determine if there are any changes that the patient might not be aware 

of, ensuring that the current treatment and situation is suitable for the patient. Monitoring an 

individual in this manner also promotes independent living for the patient. While this 



research has both social and monetary benefits, it also presents obvious privacy concerns. As 

such, the system would operate as an ‘opt-in’ approach for monitoring patents and strict data 

protection mechanisms. Additionally, using smart meter data in a medical context is likely to 

involve taking it out of the regulated smart meter infrastructure to share it with third parties. 

Given the sensitive use of the acquired data and the associated intelligence that can be 

derived from it, various privacy concerns have been highlighted by a number of researchers 

and governing bodies. Ensuring good data security and privacy after data has left the 

currently regulated system is likely to be a key concern of both the regulators and health care 

providers. 

Our future work will involve expanding the above case study to include a larger number of 

patients. Additional research will be undertaken to understand the correlation between energy 

usage and the progression of dementia. It important to ascertain the degree in which energy 

usage can alter as patient’s progress with their condition while potently uncovering new 

behavioural anomalies. In order to improve the classification results the use of a larger data 

set will enable the collection of additional features. Refinements in the feature extraction 

process can improve the outcomes of the classification; this can be achieved by ensuring only 

the optimum features are used. In order to achieve this outcome Horns parallel analysis can 

be used to select the most appropriate features and offers improvements over the more 

traditional K1 Kaiser’s method. Additionally, using a larger data set would ensure enhanced 

classifier training which helps to ensure a more accurate classification. This is significant, as 

different features and data classification techniques will be needed to realise the applications 

outlined in this paper. 
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