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Abstract 

An investigation into two non-toxic natural coagulants abundantly growing in different countries, cactus (Opuntia 

spp.) and okra was performed on monthly river water samples (one-year period). The studied case was the Euphrates 

river/Al-Mashroo canal/Iraq. Six statistical models were interpreted and tested describing the residual turbidity after 

Coagulation-Flocculation for the three studied cases (Optimum-Coagulant-Dose, Optimum-Flocculator-Velocity-

Gradient and Optimum-Flocculation-Time). According to the environmental parameters recorded during the study and 

the statistical analyses, two facts were concluded. The first fact was that controlling the Optimum-Flocculator-

Velocity-Gradient of the Coagulation-Flocculation process gave the highest contribution ratio of the models. The 

second fact was that the most significant environmental parameter (statistically) in the Coagulation-Flocculation 

process was the initial turbidity. This was proved for the two natural coagulants under study. Also, from the results of 

the study, it was concluded that the two natural coagulants were of similar coagulation-flocculation properties, and 

they were competent for turbidity removal.   

Key words: Natural coagulants; Coagulation-Flocculation; Turbidity removal; Statistical Modelling. 

 

 

mailto:k.s.hashim@ljmu.ac.uk
mailto:inm.nbl@atu.edu.iq
mailto:k.s.hashim@ljmu.ac.uk
mailto:k.s.hashim@ljmu.ac.uk
mailto:znh_saa90@yahoo.com
mailto:P.Kot@ljmu.ac.uk
mailto:M.M.Sadique@ljmu.ac.uk
mailto:I.Carnacina@ljmu.ac.uk


2 

 

  Introduction 

The coagulation process, which is a process of destabilising colloids by reducing the zeta potential to agglomerate the 

colloids together forming small flocs, is a central part of chemical treatment of water and wastewater [1-5]. The 

addition of chemical coagulants into the aqueous media could be done either chemically (directly addition of solid 

chemicals) or electrically (electrochemical methods) [6, 7]. The direct addition method requires larger amount, of 

coagulants, than the electrochemical methods [6]. In addition, the direct addition method produces large volumes of 

sludge [5, 6].  Then, the generated flocs will be removed from the solution using one of a number of different methods 

[8-10]. Although a large number of chemicals have been used as coagulants, aluminium sulphate (alum) is the 

commonly used coagulant in many countries [6, 11, 12]. Recently there have been many rumours about a possible link 

between high levels of residual aluminium and several health issues, such as the development of Alzheimer’s disease 

[13]. In addition, the traditional chemical coagulants generate a huge amount of sludge, which in turn increases the 

operating cost of treatment plants, because the solid wastes require expensive and complex handling and management 

systems [5, 14, 15]. Therefore, these negative effects of synthetic chemical coagulants have initiated global interest in 

the search for safe and economic natural coagulants [16, 17]. For instance, Torres and Carpinteyro-Urban [16]  applied 

Opuntia mucilage and Prosopis galactomannan to treat the elevated chemical oxygen demand (COD) of municipal 

wastewaters. The Opuntia dillenii solution shows very good performance in terms of clarification of very turbid water 

(186-418 NTU) [18]. Additionally, the cactus leaf extracts showed a good flocculating activity [19].  Taa, Benyahya 

and Chaouch [20] successfully extracted and applied a bio-flocculent, from the racket of Opuntia ficus indica, in the 

treatment of synthetic industrial wastewater. Vishali and Karthikeyan [21]  utilised cactus Opuntia ficus-indica as a 

coagulant for the treatment of a paint effluent wastewater. Furthermore, a number of researchers have investigated the 

ability of the natural coagulants to remove dangerous pollutants from water. For example, Young [22]  successfully 

applied cactus Opuntia ficus-indica for the removal of arsenic from a synthetic water sample. The literature shows 

that, besides the cactus, okra powder is an effective natural coagulant, where it shows very good efficiency in terms of 

turbidity and removal of heavy metals [23-25]. For example, Al-Samawi and Hama [23] used okra to remove turbidity 

from municipal wastewater and leachate of a solid waste sanitary landfill. The outcomes of this study proved the 

efficiency of okra as a natural coagulant. It is noteworthy to highlight that the literature shows that okra could achieve 
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the maximum turbidity removal at a pH of 8 for medium turbidity level (≤ 150 NTU), and at a pH of 7 for higher levels 

of turbidity [23, 26, 27].  

The current work therefore has been mainly devoted to model the performance of both cactus and okra in terms of 

turbidity removal from river water taking into consideration the influence of key operating parameters. The specific 

objectives of the current project are: 

1- To prove the competence of cactus and okra for turbidity removal. 

2- To study the coagulation-flocculation properties for the two coagulants through a jar tester. 

3- To model the residual turbidity at the optimum coagulant dose, optimum velocity gradient and optimum 

flocculation time, using multiple regression analysis.  

It is noteworthy to highlight that the studied water samples were collected from the Euphrates River, at Al-

Musayab city, Iraq (this part of the river is known as the Al-Mashroo Canal). The sampling station was located 

in front of the Al-Musayab water treatment plant, Figure 1. The samples were collected during the period 

29/8/2014 until 23/7/2015.   

Figure 1: Sampling station   

 Materials and methods 

2.1.  Standard Solutions  

Cactus and okra solutions were prepared according to the standard methods recommended by; Shokralla [28]; [29] and 

[30]. Standard (0.1%) solutions were prepared for both coagulants daily. The dose was calculated as 1 ml of solution 

to be equivalent to 1 mg of cactus or okra solution. 

2.2. Coagulation-Flocculation in Water Treatment 

Coagulation-flocculation properties studied here in this investigation consist of: 

1- Optimum-Coagulant-Dose (DO). 
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2- Optimum-Flocculator-Velocity-Gradient (GO). 

3- Optimum-Flocculation-Period (TO). 

Here, DO refers to the Coagulant Dose which produces maximum turbidity removal for a constant Velocity Gradient 

(G1 = 25 1/s) and constant Flocculation Period (T1 = 20 min.). GO refers to the Flocculator Velocity Gradient which 

produces maximum turbidity removal for a coagulant dose = DO, G1 = 25 1/s and variable T1. TO refers to the 

Flocculation Period which produces maximum turbidity removal for a coagulant dose = DO, T1 = 20 min and variable 

G1. Coagulation and flocculation in water treatment have been well defined in the literature; the following references 

may be consulted for further knowledge about elementary principles: [31-33].  

2.3. Optimum dose  

For both alum and cactus solutions, the optimum dosage for the studied coagulants has been calculated according to  

the following procedures [28, 30]: 

1. Preparing six beakers (1000 ml each) with raw water from the inlet chamber of the sedimentation tank that delivers 

raw water from Al-Mashroo Canal. 

2. Measuring the initial turbidity, pH level, and temperature. 

3. Adding six different doses of the coagulant. 

4. Placing the six beakers in the floc-tester ET-750 (jar tester) and rapid mixing for G = 250 (1/s), T = 120 s, and 

according to Table 1, decide the speed of the mixers (n) according to the raw water temperature. 

5. Slow mixing for G = 25 (1/s), T = 20 min, and according to Table 1, decide the speed of mixers (n) according to 

the raw water temperature. 

6. Stopping the mixing and setting the beakers aside for settling for 15 min. 

7. Taking samples from the top 30 ml of the beakers and measuring the residual turbidity. This is the clear water 

turbidity. 

8. Drawing the curve between the coagulant dose and residual turbidity to decide the optimum dose that gives the 

minimum residual turbidity. 

For a detailed explanation of the experimental procedure and how to decide the DO, GO and TO, it is recommended 

to refer to [28, 30]. 
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Table 1: Mixer Speed (n) in terms of Velocity Gradient (G) for different Raw Water Temperatures for LOVIBOND FLOC 

TESTER ET-750. 

 

2.4. Experimental Work 

The appropriate device required for jar testing during the study was the LOVIBOND FLOC TESTER ET-750. 

Laboratory analysis was performed during the period 29/8/2014 until 23/7/2015. Every point represents results for pH, 

temperature (TMP), initial turbidity (𝑁1), residual turbidity ( 𝑁2) , DO, GO and TO during a month. 

Turbidity Removal Efficiency R (%) was calculated according to the following equation: 

𝑅(%) = (
𝑁1−𝑁2

𝑁1
) ∗ 100                                                                                                                                                (4) 

Where, 𝑁1and  𝑁2 represent the initial river water turbidity (NTU) and residual turbidity after coagulation-flocculation 

(NTU), respectively. 

2.5. Statistical Modelling 

To manipulate the results, statistical models were built using multiple regression analysis. All theoretical aspects of 

the above analysis may be found in different statistical textbooks, such as [34] . Within this article, SPSS 20 package 

was used to perform the stepwise multiple regression analysis. The general multiple regression equation adapted was: 

𝑌 =  𝑎0  +  𝑏1𝑋1 + 𝑏2𝑋2 +  𝑏3𝑋3 + 𝑏4𝑋4 + 𝑒                                                                                                          (5) 

Where 𝑌 = Dependent variable, 𝑎0  = Intercept, 𝑏1, 𝑏2, 𝑏3, 𝑏4 = Partial regression coefficients, 𝑋1𝑋2, 𝑋3, 𝑋4 =

 Independent variables, and 𝑒 = Error term (residuals). It is noteworthy to mention that 𝑒 must be normally and 

independently distributed (NID) with mean µ = 0 and standard deviation σ = 1, (it is written as NID (0, 1)). 

In this study, the dependent variable is the residual turbidity (𝑁2) which will be predicted for three cases: 

1- Optimum-Coagulant-Dose (DO). 

2- Optimum-Flocculator-Velocity-Gradient (GO). 

3- Optimum-Flocculation-Period (TO). 

n (rpm)∗  

G (1/S) 
Raw Water Temperature (°C) 

40 30 25 20 15 10 

47 51 53 55 57 60 25 

59 63 66 68 71 75 35 

70 75 78 81 84 88 45 

80 86 89 92 96 101 55 

90 96 99 103 108 113 65 

220 235 244 254 265 277 250 

*rpm= revolution per minute 
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As two coagulants will be investigated, then six models will be explored (3 models for cactus + 3 models for okra) 

concerning the above cases. For all the models, the dependent variable will be Y = 𝑁2, so that the analysis will be 

performed for the following cases: 

1- Modelling  𝑁2 for the DO 

Here the independent variables for both coagulants will be: 

𝑋1 = pH, 𝑋2 =𝑁1 , 𝑋3 = TMP and 𝑋4  = DO 

2- Modelling  𝑁2 for the GO 

Here the independent variables for both coagulants will be: 

𝑋1 = pH, 𝑋2 =𝑁1 , 𝑋3 = TMP and 𝑋4  = GO 

3- Modelling  𝑁2 for the TO 

Here the independent variables for both coagulants will be: 

𝑋1 = pH, 𝑋2 =𝑁1  , 𝑋3 = TMP and 𝑋4  = TO 

 Results and discussion 

Table 2 shows the variation of DO and turbidity removal efficiency 𝑅(%) for both coagulants for a constant 

Flocculator-Velocity-Gradient (G1), constant Flocculation-Period (T1) and variable Coagulant-Dose (D1). Table 3 

shows the variation of GO and residual turbidity for both coagulants at DO and T1 = 20 min., while Table 4 shows the 

variation of TO and residual turbidity for both coagulants at DO and G1 = 25l/s. 

Table 2: Variation of DO and R (%) for G1 = 25 1/s, T1 = 20 min and variable D1. 

 Okra Coagulation Cactus Coagulation River Water Properties Date 

R (%) N2 (NTU) DO (mg/l) R (%) N2 (NTU) DO (mg/l) TMP (°C) N1   (NTU) pH  
61.3 348 10.0 67.1 296 2.0 34 900 8.20 29/8/2014 

89.5 69 12.0 91.0 59 8.0 29 659 8.19 25/9/2014 

90.5 32.3 0.5 91.9 27.57 0.5 25 339 7.73 16/10/2014 

88.9 35.29 8.0 89.5 33.45 1 17 319 8.14 26/11/2014 

100 0.00 1.0 100 0.00 1 14 12.18 8.09 24/12/2014 

54.1 8.43 10.0 50.1 9.16 8.0 13 18.36 8.07 23/1/2015 

60.3 12.21 14.0 50.1 15.33 6.0 15 30.72 8.18 26/2/2015 

67.2 12.57 20.0 64.4 13.64 12.0 19 38.27 8.19 27/3/2015 

86.7 3.52 2.0 87.4 3.33 4.0 26 26.41 8.09 30/4/2015 

35.7 11.75 12.0 39.1 11.13 12.0 30 18.27 7.82 28/5/2015 

68.4 7.8 8.0 71.3 7.09 1.0 30 24.68 7.80 11/6/2015 

83.4 2.23 16.0 62.9 4.97 16.0 35 13.40 7.81 23/7/2015 

73.8

% 

 72.1

% 

 Average 
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Table 3: Variation of GO and N2 at DO (which resulted from Table 1) and T1= 20 min. 

 

 

 

 

 

 

 

 

Table 4: Variation of TO and N2 at DO (which resulted from Table 1) and G1= 25 1/s. 

 

 

 

 

 

 

 

 

3.1. Modelling residual turbidity (𝑁2) for Optimum-Coagulant-Dose (DO) 

Applying the data which resulted from Table 2 in the multiple regression model represented by equation 5, and 

analysing using SPSS version 20, the appropriate stepwise multiple regression model for cactus was: 

𝑁2 (Cactus) = -6.765 + 0.234 ( 𝑁1 ) + 𝑒                                                                                                                         (6) 

This means that the independent variables of pH, TMP and DO were insignificant statistically. The above regression 

gave F-ratio = 26.543 compared to the theoretical F (0.01, 1, 10) = 10.04 (which resulted from the tables); this means 

that regression (6) was highly significant. The obtained  𝑅2 value, 0.726, indicates that the regression contribution ratio 

was very acceptable [35]. Additionally, the One-Sample Kolmogorov-Smirnov test gave the calculated statistic | 𝐷𝑚𝑎𝑥  

|= 0.286 which was insignificant compared to 𝐷12
0.05 = 0.375 (from tables at α=0.05), indicating that 𝑒 was normally 

Okra Coagulation Cactus Coagulation River Water Properties 
Date 

N2 (NTU) GO (l/s) N2 (NTU) GO (l/s) TMP (°C) N1    (NTU) pH 

170 45 158 45 34 900 8.20 29/8/2014 

69 25 59 25 29 659 8.19 25/9/2014 

32.3 25 27.57 25 25 339 7.73 16/10/2014 

24.8 25 36.73 25 17 319 8.14 26/11/2014 

0 55 0 25 14 12.18 8.09 24/12/2014 

8.43 25 9.16 25 13 18.36 8.07 23/1/2015  

12.21 25 15.33 25 15 30.72 8.18 26/2/2015 

12.57 25 13.64 25 19 38.27 8.19 27/3/2015 

1.84 25 2.29 25 26 26.41 8.09 30/4/2015 

6.72 35 7.2 35 30 18.27 7.82 28/5/2015 

3.32 35 4.98 55 30 24.68 7.80 11/6/2015 

2.23 35 3.02 35 35 13.40 7.81 23/7/2015 

Okra Coagulation Cactus Coagulation River Water Properties       Date 

 N2 (NTU) TO (min.) N2 (NTU) TO (min.)   TMP (°C) N1   (NTU)   pH     

257 23 253 23 34 900 8.203 29/8/2014 

69 23 59 20 29 659 8.198 25/9/2014 

32.3 20 25 20 25 339 7.734 16/10/2014 

29.18 30 28.18 30 17 319 8.145 26/11/2014 

0 20 0 20 14 12.18 8.090 24/12/2014 

8.43 20 9.16 20 13 18.36 8.075 23/1/2015 

12.21 20 13.68 26 15 30.72 8.183 26/2/2015 

12.57 20 13.64 20 19 38.27 8.192 27/3/2015 

3.33 26 3.33 20 26 26.41 8.091 30/4/2015 

10.61 30 8.94 30 30 18.27 7.82 28/5/2015 

4.11 30 4.26 30 30 24.68 7.80 11/6/2015 

2.23 20 3.87 26 35 13.40 7.816 23/7/2015 
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distributed. The Durbin-Watson ratio was d = 1.784, indicating that 𝑒 was serially uncorrelated (independently 

distributed). This proved that error term was NID (0, 1). The appropriate regression model for okra was: 

𝑁2 (Okra) = -10.271 + 0.278( 𝑁1  ) + 𝑒                                                                                                                        (7) 

This means that the independent variables of pH, TMP and DO were insignificant statistically. 

The above regression gave F-ratio = 27.048 compared to the theoretical F (0.01, 1, 10) = 10.04 (which resulted from 

the tables); this means that regression (7) was highly significant. The regression contribution ratio was 𝑅2 = 0.73. 

Also, the One-Sample Kolmogorov-Smirnov test gave the calculated statistic | 𝐷𝑚𝑎𝑥  |= 0.301 which was insignificant 

compared to 𝐷12
0.05 = 0.375 (from tables at α=0.05), indicating that 𝑒 was normally distributed. The Durbin-Watson 

ratio was d = 1.796, indicating that the 𝑒 was serially uncorrelated (independently distributed). This proved that 

residuals were NID (0,1). 

3.2. Modelling residual turbidity ( 𝑁2) for Optimum-Flocculator-Velocity-Gradient GO 

Applying the data which resulted from Table 3 in the multiple regression model represented by equation 5, and 

analysing using SPSS version 20, the appropriate stepwise multiple regression model for cactus was: 

𝑁2 (Cactus) = -0.155 + 0.137( 𝑁1  ) + 𝑒                                                                                                                        (8) 

The above regression gave F-ratio = 59.805 compared to the theoretical F (0.01, 1, 10) = 10.04 (which resulted from 

the tables); this means that regression (8) was highly significant. The regression contribution ratio was 𝑅2 = 0.857. In 

addition, the One-Sample Kolmogorov-Smirnov test gave the calculated statistic | 𝐷𝑚𝑎𝑥 |= 0.214 which was 

insignificant compared to 𝐷12
0.05 = 0.375 (from tables at α=0.05), indicating that 𝑒 was normally distributed. The 

Durbin-Watson ratio was d = 1.609, indicating that 𝑒 was serially uncorrelated (independently distributed). This proved 

that residuals were NID (0, 1). The appropriate regression model for okra was: 

𝑁2 (Okra) = -1.792 + 0.152( 𝑁1  ) + 𝑒                                                                                                                          (9) 

The above regression gave F-ratio = 72.989 compared to the theoretical F (0.01, 1, 10) = 10.04 (which resulted from 

the tables); this means that regression (8) was highly significant. The regression contribution ratio was 𝑅2 = 0.880. In 

addition, the One-Sample Kolmogorov-Smirnov test gave the calculated statistic | 𝐷𝑚𝑎𝑥 |= 0.241 which was 

insignificant compared to 𝐷12
0.05 = 0.375 (from tables at α=0.05), indicating that 𝑒 was normally distributed. The 

Durbin-Watson ratio was d = 1.593, indicating that 𝑒 was serially uncorrelated (independently distributed). This proved 

that residuals were NID (0,1).  
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3.3. Modelling residual turbidity (𝑁2) for Optimum-Flocculation-Period (TO) 

Applying the data which resulted from Table 4 in the multiple regression model represented by equation 5, and 

analysing using SPSS version 20, the appropriate stepwise multiple regression model for cactus was: 

𝑁2 (Cactus) = -5.625 + 0.204( 𝑁1  ) + 𝑒                                                                                                                     (10) 

The above regression gave F-ratio = 30.189 compared to the theoretical F (0.01, 1, 10) = 10.04 (which resulted from 

the tables); this means that regression (10) was highly significant. The regression contribution ratio was 𝑅2 = 0.751. 

In addition, the One-Sample Kolmogorov-Smirnov test gave the calculated statistic | 𝐷𝑚𝑎𝑥 |= 0.286 which was 

insignificant compared to 𝐷12
0.05 = 0.375 (from tables at α=0.05), indicating that 𝑒 was normally distributed. The 

Durbin-Watson ratio was d = 1.722, indicating that the residuals were serially uncorrelated (independently distributed). 

This proved that residuals were NID (0, 1). The appropriate regression model for okra was: 

𝑁2 (Okra) = -5.896 + 0.213( 𝑁1  ) + 𝑒                                                                                                                        (11) 

The above regression gave F-ratio = 36.839 compared to the theoretical F (0.01, 1, 10) = 10.04 (which resulted from 

tables); this means that regression (11) was highly significant. The regression contribution ratio was 𝑅2 = 0.880. In 

addition, the One-Sample Kolmogorov-Smirnov test gave the calculated statistic | 𝐷𝑚𝑎𝑥 |= 0.289 which was 

insignificant compared to 𝐷12
0.05 = 0.375 (from tables at α=0.05), indicating that 𝑒 was normally distributed. The 

Durbin-Watson ratio was d = 1.742, indicating that the residuals were serially uncorrelated (independently distributed). 

This proved that residuals were NID (0, 1). 

A close analysis of the results of statistical models given by equations (6), (7), (8), (9), (10) and (11), together with the 

results of tables 1, 2 and 3 revealed the following: 

1- That in terms of the Optimum-Coagulant-Dose, Optimum-Flocculator-Velocity-Gradient and Optimum-

Flocculation-Period, when modelling the residual turbidity it was found that initial turbidity was the only 

significant variable for both cactus and okra. 

2- That model (8) for cactus (in terms of Optimum-Flocculator-Velocity-Gradient) gave the highest coefficient 

of determination(𝑅2 = 0.857). 

3- That model (9) for okra (in terms of Optimum-Flocculator-Velocity-Gradient) gave the highest coefficient of 

determination(𝑅2 = 0.880). 
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4- That DO ranged between 0.5 and 12 mg/l for cactus and between 0.5 and 14 mg/l for okra, according to Table 

2. 

5- That GO ranged between 25 and 55 1/s for cactus and okra, according to Table 3.  

6- That TO ranged between 20 and 30 min. for cactus and okra, according to Table 4.  

7- That models (8) and (9) were the most reliable models that can predict residual turbidity of the Euphrates 

river/Al-Mashroo canal/Al-Mussaib/Iraq, given the initial turbidity. 

 Conclusion 

From the results of the study, it was concluded that cactus (Opuntia spp.) and okra were of similar coagulation-

flocculation properties, and they were both competent for turbidity removal, which in turn indicates the possibility of 

using these coagulants in large-scale field applications.  Additionally, according to the environmental parameters 

recorded during the period of study and the statistical analysis, two facts were concluded. The first fact was that 

controlling the Optimum Velocity Gradient of the Coagulation-Flocculation process gave the highest contribution ratio 

of the models, as reported by equations (8) and (9). The second fact was that the most significant parameter 

(statistically) in the flocculation process was the initial turbidity, as shown by equations (6), (7), (8), (9), (10) and (11).    
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