LJMU Research Online Szott, I, Pretorius, Y and Koyama, NF Behavioural changes in African elephants in response to wildlife tourism http://researchonline.ljmu.ac.uk/id/eprint/10117/ #### **Article** **Citation** (please note it is advisable to refer to the publisher's version if you intend to cite from this work) Szott, I, Pretorius, Y and Koyama, NF (2019) Behavioural changes in African elephants in response to wildlife tourism. Journal of Zoology. ISSN 0952-8369 LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain. The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription. For more information please contact researchonline@ljmu.ac.uk | 1 | Behavioural changes in African elephants in response to wildlife tourism | |----|---| | 2 | | | 3 | Isabelle D. Szott ¹ , Yolanda Pretorius ² , Nicola F. Koyama ¹ | | 4 | | | 5 | ¹ School of Natural Sciences and Psychology, Liverpool John Moores University, U.K. | | 6 | ² Centre for Wildlife Management, University of Pretoria, South Africa. | | 7 | | | 8 | Author for correspondence: | | 9 | Isabelle Szott (<u>I.Szott@2011.ljmu.ac.uk</u>) | | 10 | | | 11 | Short title: Behavioural responses to tourism in elephants | | 12 | | | | | ## Abstract 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Eco-tourism and human-wildlife interaction can lead to increases in stress, vigilance and aggression in many species, however, studies investigating wildlife viewing are scarce. We present the first study investigating the impact of wildlife tourism on African elephant, Loxodonta africana, behaviour. Over 15 months, we studied the effect of monthly tourist pressure (tourist numbers) on the occurrence of stress-related, vigilance and conspecific-directed aggressive behaviour in 27 individually identified elephants and the effect of up to 3 vehicles on the direction of travel of non-identified herds using five-minute continuous focal observations. We analysed the effect of tourist pressure and vehicle presence using generalised linear mixed models, including habitat type, herd type and size, and season, as well as sex and age for behaviour models, as additional factors. We found no effect of factors on stress-related behaviour, but elephants were more likely to perform vigilance behaviours at waterholes compared to other habitat types. As tourist pressure increased, conspecific-directed aggression in elephants increased and male elephants were more likely to perform conspecificdirected aggression compared to female elephants. Further, we found that elephant herds became increasingly likely to move away with increasing numbers of vehicles present. Results suggest that reserves should monitor elephant behaviour to identify when tourist pressure has potential effects on elephant welfare and train guides to monitor behaviour and adjust minimum distances flexibly to ensure high welfare standards and tourist safety. This study further contributes to a small but growing body of literature on non-consumptive wildlife tourism impacts on wild animals. 20 21 Keywords: eco-tourism, conservation, stress, animal welfare, game drive, wildlife-viewing #### 1. Introduction 1 2 Observing wildlife as a non-consumptive tourist attraction for recreational purposes has become 3 increasingly popular (Orams, 2002) and plays a key role in global wildlife conservation (Burger & 4 Gochfeld, 1993; Newsome, Dowling & Moore, 2005). Wildlife viewing, where carried out sustainably, 5 facilitates protection of wildlife habitats, biodiversity and natural ecological processes worldwide 6 (Reynolds & Braithwaite, 2001; Maciejewski & Kerley, 2014). In terms of the management of such 7 protected wildlife habitats, tourist satisfaction is usually the driving goal (Novellie, 1991). Negative 8 impacts on animal welfare caused by wildlife tourism have been reported (Moorhouse et al., 2015). 9 Where negative impacts elicit chronic stress, they can potentially lead to decreased reproduction, 10 increased risk of predation, starvation, susceptibility to diseases, dispersing away from release site 11 (Reynolds & Braithwaite, 2001; Teixeira et al., 2007; Bhattacharjee et al., 2015) and lasting effects on 12 behavioural patterns (McEwen & Wingfield, 2003). Impacts of wildlife tourism on animals are not 13 well understood (Wardle et al., 2018) and the few studies that have assessed viewing impact on 14 animals found increases in fear, alert, aggressive, vigilance and stress behaviour (Elephas maximus 15 (Ranaweerage, Ranjeewa & Sugimoto, 2015), Rhinoceros unicornis (Lott & McCoy, 1995), Phoca 16 groenlandica (Kovacs & Innes, 1990), Ursus maritimus males (Dyck & Baydack, 2004), Sula spp. 17 (Burger & Gochfeld, 1993)), reduced reproductive fitness (Pygoscelis adeliae (Giese, 1996), 18 Haliaeetus leucocephalus (Grubb & King, 1991)), increased probability of retreat (Bison bison, Odocoileus hemionus, Antilocapra americana (Taylor & Knight, 2003), Oreamnos americanus (Lott, 19 20 1992)) and increased physiological stress responses (Loxodonta africana (Szott et al., sub.), 21 Spheniscus magellanicus (Fowler, 1999)). 22 Mega-fauna, such as African elephants, Loxodonta africana, are among the most popular species for 23 wildlife viewing, particularly for international tourists (Lindsey et al., 2007), yet research assessing 24 the impact of tourist pressure, in form of monthly numbers of tourists, or tourist presence, in form of 25 vehicle presence, on elephant behaviour is scarce. Elephants in unfenced areas have been reported 26 to avoid human roads and settlements by altering their behaviour and movement (Hoare & Du Toit, - 1 1999; Douglas-Hamilton, Krink & Vollrath, 2005; Jackson et al., 2008; Graham et al., 2009; Roever, - 2 van Aarde & Leggett, 2013) suggesting active avoidance of human contact by some herds. Only one - 3 study has investigated viewing-induced disturbance in elephants (Asian elephants, Elephas maximus - 4 (Ranaweerage et al., 2015)) in a relatively large population of over 1000 individuals in a fenced - 5 national park. Tourist behaviour and vehicle presence increased the likelihood of elephants switching - 6 their behaviour from feeding to fear, alert, stress-related or aggressive behaviour. Additionally, - 7 increasing tourist pressure has been shown to be related to increased physiological stress levels of - 8 individuals in our study population of African elephants (Szott et al., sub.). - 9 The most widely used sustainable method to conserve elephant habitat is to allow wildlife tourism to - take place in the form of viewing animals from vehicles, either self-driven or guided (World Tourism - Organization, 2014). Tourist demand to view elephants is high (Chase et al., 2016; Arbieu et al., - 12 2017). Human population growth in Africa is rapidly increasing and, by 2050, the population in Africa - is predicted to double, with South Africa predicted to increase from an estimated population of 57.7 - million people in 2018, to 81.8 million in 2050 (Population Reference Bureau, 2018). Such increases - in human populations no only cause habitat loss but also increase possibilities of interactions - between elephants and humans (Armbruster & Lande, 1993; Pozo et al., 2017) Given the increasing - 17 populations of both humans and elephants in South Africa, it is important to investigate the impact - 18 of tourist pressure on elephant welfare. To our knowledge no published research has assessed the - impact of tourist pressure or vehicle presence on the behaviour of African elephants. - 20 In elephants physiological stress levels have previously been shown to be affected by season, where - 21 low availability of water and key nutrients during the dry season increased elephant stress levels - 22 (Foley, Papageorge & Wasser, 2001; Viljoenet al., 2008). In a fenced area, elephants are forced to - revisit foraging patches more frequently (Loarie, van Aarde & Pimm, 2009) and overcrowding and the - increased frequency of interactions with unrelated individuals are thought to present a consistent - social stressor for elephants (Munshi-South et al., 2008). Elephants compete over access to - 26 resources, where agonistic interactions have been reported to occur at point resources such as - 1 fruiting trees, waterholes (Archie et al., 2006), or mineral rich soil (pers. obs.). Further, bulls regularly - 2 come into musth, a reproductive state during which testosterone levels are heightened (Hollister- - 3 Smith et al., 2007). Even when not in musth, males have been shown to be the more aggressive sex - 4 (Ganswindt et al., 2005; Hollister-Smith et al., 2007), often engaging in dominance interactions with - 5 each other (Goldenberg et al., 2014) or bullying younger males (Buss & Smith, 1966). Stress-related, - 6 vigilance or aggressive behaviour in elephants may therefore be caused by a variety of factors other - 7 than tourism. - 8 Our aim was to investigate the effect of wildlife tourism on elephants displaying aggressive, stress- - 9 related and vigilance behaviours as well as direction of herd movement in relation to tourists viewing - 10 them. Madikwe Game Reserve (Madikwe) in South Africa provided a suitable population to study the - effects of tourist pressure on
elephant behaviour. The founding population was introduced from - various backgrounds, such as culling and poaching, and as the effects of such events can be long- - lasting (Bradshaw et al., 2005; Gobush, Kerr, & Wasser, 2009; Jachowski, Slotow, & Millspaugh, 2013) - these elephants may be particularly sensitive to the presence of vehicles. Additionally, such - traumatic experiences are not an exception for elephant populations across Africa (Chase et al., - 16 2016). Given that previous research found effects of wildlife tourism on stress-related, vigilance and - 17 aggressive behaviour in viewed animals, we predicted that tourists would be a stressor for elephants - 18 and that increasing tourist pressure would increase vigilance to avoid the stressor and, if avoidance - 19 was not possible, increased stress-related and aggressive behaviour. Because point resources, season - and sex are known to influence stress and aggression in elephants, we included these factors in our - 21 analysis as control factors, alongside age and herd type. Lastly, we predicted that elephant herds - 22 would be more likely to retreat from tourists observing them from vehicles with increasing numbers - 23 of vehicles present. 25 ### 2. Materials and Methods Study site and driving regulations - 1 Madikwe Game Reserve (Madikwe) is a reserve managed by a state/private/communal partnership - 2 (Fig. 1). The reserve, approximately 680km² in size, was fenced and held an estimated 1348±128 - 3 elephants (July 2017, P. Nel, pers. comm.) that is, 1.9 elephants per km², representing one of the - 4 highest population densities of elephants in South Africa. Elephants were first introduced to - 5 Madikwe in 1992 when 25 orphaned juvenile elephants from Kruger National Park culls (operations - 6 where herds of adult individuals were lethally wounded, and youngsters translocated to other - 7 reserves as a measure of population control) were introduced. In 1994, entire herds (194 individuals) - 8 from Zimbabwe were introduced from a background of severe drought, two bush wars and heavy - 9 poaching. In 1998 and 1999, six and two adult bulls (measured by a minimum 3.2 m shoulder height) - were introduced from Kruger National Park, respectively. - 11 **Figure 1 here** - 12 Private vehicles are restricted to a few roads to travel between lodges and gates in Madikwe. Hence, - 13 elephant viewing occurs almost exclusively from game drive vehicles (GDs) where they encounter - elephants on roads. A GD is a large, open vehicle, driven by a qualified field guide, that seats up to - ten people as well as a 'spotter' at the front of the vehicle. No more than three GDs were allowed at - an elephant sighting. The researchers' vehicle was not included in this number. All vehicles were - 17 obliged to park leaving an unobstructed exit before switching the engine off but were not limited in - 18 how close they could approach. Vehicles were not permitted to position themselves between - individuals of a herd and had to remain on roads. All guests were briefed on appropriate behaviour. - 20 Standing up, loud noise or use of camera flash was not permitted. Eating, drinking and smoking were - 21 strictly forbidden during game drives. All these regulations are part of Madikwe's Code of Conduct - and no regulations were amended for the purpose of this study. - Data collection - 24 Data were collected from the 18th of April 2016 until the 28th of June 2017. The mean (±SD) number - of observation days per month was 14 ±5. The area was sampled by driving random routes as well as - 1 communicating with field guides about elephant presence. Thirty-one lodges were spread across the - 2 reserve and conducted game drives in the morning from sunrise until approximately 11am, and in - 3 the afternoon between approximately 3.30pm until 8pm. - 4 The primary investigator collected all data in the field. For the behaviour analysis, we identified 27 - 5 individuals (14 males, 13 females) based on distinguishing features. Herds included in travel direction - 6 analyses were not individually identified herds, but those encountered throughout data collection. - 7 Upon spotting an elephant, the researcher aimed to keep 30 m distance from the nearest elephant. If - 8 the animal was spotted at <30 m distance, the vehicle was slowly reversed to 30 m before the engine - 9 was switched off. When animal/s moved parallel to the road without displaying signs of distress - 10 (such as vigilance, body posture changes such as 'ears out' threats or moving away whilst repeatedly - 11 looking back at the vehicle), the researcher followed at a distance before switching the engine off - again. A bull group was defined as such when several bulls were within a 500m radius of each other, - whilst a mixed group was defined as such when an adult bull was within 200m of a cow-calf group. - 14 We collected data on a Lenovo TAB 2 A8-50F tablet using the Prim8 app (McDonald & Johnson, - 15 2014). We classed elephants as juvenile or adult based on size (elephantvoices.org, 2018). Adult - 16 females had mammary glands and an angled forehead, whilst adult males had a rounded forehead, - 17 wider skulls and could be twice the size of adult females. Juveniles were smaller than adult females, - 18 moving and foraging independently of their mothers and had tusks of approximately ten centimetres - in length. Once a sighting was made from the road, we randomly selected a focal elephant to observe - 20 using continuous sampling (Altmann, 1974) for five minutes and noted identity if known, along with - 21 additional factors (Table 1). - 22 **Table 1 here** - 23 We noted the direction of travel of the whole herd by visually comparing herd location at the start - and end of the focal observation and inferring direction of travel. If the centre of the herd increased - 25 its' distance from the observer or, if present, the closest GD ≥10 m (without simultaneously - approaching another GD), we classed it as 'retreat', otherwise we classed it as 'stay'. We only - 2 recorded one herd movement observation per encounter, during the first five-minutes after a herd - 3 was encountered or after a GD(s) arrived, as a measure of immediate reaction of herd movement to - 4 the potential stressor. - 5 Following previously published ethograms (Langbauer, 2000; McComb et al., 2014; - 6 elephantvoices.org, 2018), behaviours were categorised (see supplementary material for full - 7 ethogram) as stress-related, vigilance or aggressive. Because several aggressive behaviours could be - 8 directed at either humans or conspecifics, we made note of the direction of the recipient of the - 9 threat, and we included all aggression not explicitly directed at a human in the analysis of - 10 conspecific-directed aggression. - 11 Season was defined as wet or dry based on average monthly rainfall measured at four stations within - 12 Madikwe by the South African Weather Service. Average total rainfall during the study period was - 13 189.69 mm. Wet season was defined as the period in which 95% of precipitation for the study year - fell (Loarie, van Aarde & Pimm, 2009a) and therefore wet season lasted from October 2016-February - 15 2017 and dry season lasted from April 2016-September 2016 and March 2017-June 2017. North West - 16 Parks Board provided the total number of tourists visiting Madikwe each month and this number was - defined as tourist pressure per month. - 18 Data analysis - Only focal observations where the animal was visible for >4 mins 30 s were retained for analysis. For - 20 the analysis of monthly tourist pressure, we selected observations with only the research vehicle - 21 present. This was to avoid the possibly confounding effect of game drive vehicle presence on - behaviour. We included individuals that had a minimum of n=2 observations. For herd movement - 23 direction analysis, we included observations with game drive vehicles present. Where GDs arrived or - 24 left within the five-minute observation but were present for less than 60 s, the observation was - 25 excluded from analysis. If GDs were present for more than 60 s, the herd movement was considered - to be in response to the number of GDs present for that time. This means that, if one GD was present - 2 from the beginning, but a second GD arrived and stayed for over 60 s, herd movement was in - 3 response to two GDs present. If a second GD arrived but left in under 60 s, the whole observation - 4 was considered in response to one GD. - 5 We analysed data using R v. 3.4.1 (R Core Team, 2000). We scored each behaviour as occurring or - 6 not, and elephant herd travel as retreat or stay, forming binary response variables. First, we assessed - 7 factors to rule out collinearity using variance of inflation factor analysis (Fox & Monette, 1992), using - 8 a cut-off value of 2. We specified three General Linear Mixed Effects Models (package *lme4*, (Bates *et* - 9 al., 2014)) to analyse the effect of tourist pressure on stress-related, vigilance and conspecific- - 10 directed aggression: - 11 glmer (formula = Behavioural category ~ Tourist pressure + Herd type + Sex + Habitat type + Season + - 12 Herd size + Age + (1|ID), family = binomial, data = Data) - 13 We scaled and centred the tourist pressure and herd size variables and included animal ID as a - random effect to control for repeated observations from known elephants. We analysed significance - 15 of fixed effects with a type II ANOVA (Langsrud, 2003). Where categorical fixed effects were - significant, we assessed differences between the levels using a Tukey post-hoc test in the *multcomp* - 17 package (Hothorn, Bretz & Westfall, 2008), checking that 95% confidence intervals did not cross zero. - 18 For the direction of travel dataset, we excluded the open grassland habitat type from analysis as only - 19 n=5 observations had one GD present, resulting in poor model fit. The following Generalised Linear - 20 Model was
used: - 21 glm (formula = Travel ~ Herd type * GD number + Habitat type * GD number + Season * GD number + - Herd size, family = binomial, data = Data - 23 We scaled GD number and herd size. We included an interaction with GD number and herd type as - we predicted that different age and sex classes may have been affected differently by GD presence. - 1 Further, we included an interaction between habitat type and GD number, as well as season and GD - 2 number, as we predicted that differences in thickness of vegetation and varying constraints during - 3 the seasons may have affected individual's reaction to GD presence. To account for non- - 4 independence in the data due to potential pseudoreplication, we performed 1000 iterations of - 5 bootstrapping, using the package boot (Canty & Ripley, 2018) to obtain bootstrapped 95% - 6 confidence intervals. We considered fixed effects significant if confidence intervals did not cross zero. - We plotted all graphs using the *effects* (Fox, 2003) and *ggplot2* (Wickham, 2016) packages. #### 3. Results - 9 A total of 156 observations of known individuals were collected (mean \pm SD = 6 \pm 6 per individual). - 10 These observations were from 10 adult males (18 observations as lone males, 8 in bull groups, 3 in - mixed groups), 10 adult females (56 observations in cow-calf groups, 37 in mixed groups), 3 juvenile - females (8 observations in cow-calf groups, 2 in mixed groups) and 4 juvenile males (16 observations - in cow-calf groups, 8 in mixed groups). Removal of individuals with a small sample size did not - change the effect of tourist pressure below. We collected travel direction of herds during 479 - observations (81 bull groups, 141 cow-calf groups, 100 mixed groups and 157 lone males). - 16 Stress-related behaviour - 17 We found no effects of any variables on stress-related behaviour (Table 2). - 18 **Table 2 here** - 19 Vigilance behaviour - 20 Vigilance behaviour was significantly more likely to occur at waterholes, compared to all other - 21 habitat types (Table 3). - 22 **Table 3 here** - 23 Conspecific-directed aggression - 1 Increasing tourist pressure was significantly related to increased conspecific-directed aggression - 2 (Table 4, Fig.2). Male elephants were significantly more likely to perform conspecific-directed - 3 aggression compared to female elephants (Table 4). Although conspecific directed aggression - 4 appeared to be affected by habitat type (Table 4), Tukey post-hoc tests between habitat types - 5 revealed that the confidence intervals crossed zero. - 6 **Table 4 here** - 7 **Figure 2 here** - 8 Herd movement - 9 Increasing numbers of GDs present was related to increased likelihood of elephant herds moving - away (Table 5, Fig. 3). None of the other variables affected herd movement (Table 5). - 11 **Table 5 here** - **Figure 3 here** #### 13 **4. Discussion** - Our study found that wildlife tourism pressure and game drive vehicle presence influenced the - 15 behaviour of African elephants in Madikwe Game Reserve and adds to a small but growing body of - literature monitoring the effects of tourist viewing on wildlife (e.g. Dyck & Baydack, 2004). Elephants - 17 were more likely to move away from tourists with increasing numbers of GDs present. High tourist - 18 pressure was related to increased conspecific-directed aggression. Our results showed effects of - 19 habitat type on vigilance behaviour, and sex on conspecific-directed aggressive behaviour. We - further present the first report of any behavioural measure of the Madikwe elephant population. - 21 We found a significant interaction between number of GDs and herd type on travel direction. More - 22 GDs were related to an increased likelihood of herds moving away from tourists (Fig. 3); this effect - 23 was most marked in bull groups compared to mixed groups. This supports the idea that elephants 1 may remove themselves from a tourist stressor as a coping mechanism and is in line with other 2 studies that found flight responses were affected by tourist presence (Lott & McCoy, 1995; Taylor & 3 Knight, 2003). It is interesting that this effect was most pronounced in adult males (bull groups and 4 lone males) compared to largely adult females (cow-calf groups and mixed groups). It is possible that 5 this reflects a difference in willingness to, or the ability to quickly, move away from a resource 6 (Stokke & du Toit, 2002; Woolley et al., 2009). Cow-calf group and mixed groups contain neonates 7 and young calves, smaller individuals that have reduced mobility and higher rates of water turnover. 8 This may constrain the movements of lactating cows, growing juveniles and calves, and may present 9 a trade-off between the perceived risk and the value of a resource from which groups containing 10 adult females and dependent young move away. Unfortunately, we do not have data on proximity to 11 water sources or nutrient content of forage during GD events to investigate this possibility. 12 We found mixed effects of tourist pressure on individuals' behaviour. Conspecific-directed aggression was more likely during high tourist pressure, supporting a similar effect in sea lions (Neophoca 13 14 cinerea) and Asian elephants (Lovasz, Croft & Banks, 2008; Ranaweerage et al., 2015). Contrary to 15 our expectation, high tourist pressure did not increase vigilance or stress-related behaviour. As vigilance behaviour is known to be affected by spatial position in the herd (Burger & Gochfeld, 1993; 16 17 Hunter & Skinner, 1998; Beauchamp, 2007), it is possible that this influenced our findings. 18 Unfortunately, we did not have data on spatial position to control for this possibility. The lack of an 19 effect on stress-related behaviour was surprising as we previously found increased physiological 20 stress levels were likely when tourist pressure was high in our study population (Szott et al., sub.). 21 However, in a study of Barbary macaques, faecal glucocorticoid levels were not related to measures 22 of tourist pressure (number, duration, proximity) but were related to aggressive interactions with 23 tourists, whilst a behavioural indicator of anxiety (scratching) was positively related to the maximum number of tourists present (Marechal et al., 2011). Thus, whilst these measures have been found to 24 25 be useful indicators of physiological stress in many species (Fowler, 1999; Rehnus, Wehrle, & Palme, - 1 2014) it is possible that behavioural expression and physiological response are triggered by different - 2 aspects of the stressor (Higham et al., 2009; Mandalaywala et al., 2014; Young et al., 2014). - 3 As predicted, habitat type had an impact on vigilance behaviour and sex impacted on conspecific- - 4 directed aggression. Waterholes are a point resource (Archie et al., 2006) where vigilance behaviour - 5 was significantly more likely to occur, and male elephants have repeatedly been shown to be the - 6 more aggressive sex (Ganswindt et al., 2005). - 7 Prior research has demonstrated the effect of consumptive tourism, such as elephant trophy - 8 hunting, on stress levels of non-targeted herds in the population, leading to changes in behaviour - 9 that could potentially be fatal for humans (Burke et al., 2008). From our findings, it appears that - 10 regulated non-consumptive tourism has the potential to be carried out in a more ethical manner - than trophy hunting, with fewer welfare implications (no effect on vigilance or stress-related - behaviour) for elephant populations. Although consumptive use generates larger amounts of money - within a short amount of time, issues persist such as false hunting quota, corruption, and inequity of - distribution of money (Lindsey, Roulet, & Romañach, 2007), in addition to welfare concerns for the - 15 wider population. - Practical implications - 17 Studies highlight the contribution that behavioural indicators of welfare can make to the - management and success of wild populations (Goldenberg et al., 2017). Our results show that even - 19 with regulations in place, where wildlife viewing is carried out exclusively from GDs driven by - 20 qualified guides and overall numbers of tourists viewing elephants at any time are restricted, tourism - led to changes in behaviour of the viewed elephants. However, the changes in behaviour were - 22 relatively limited, possibly because elephants were able to move away from the stressor, and suggest - that, with careful management, wildlife tourism can be conducted in a welfare focused manner and - 24 hold a promising future for wildlife tourism as a conservation measure. - 1 The Code of Conduct in Madikwe did not stipulate a minimum distance to be kept from elephants. - 2 Due to individuals performing more aggressive behaviours during high tourist pressure, and because - 3 waterholes are a point resource over which elephants compete, we recommend consideration of the - 4 increased chance of conflict with nearby GDs during times of high tourist pressure and at waterholes. - 5 Elephants at waterholes could experience frustration and stress, as well as being the target of - 6 aggressive behaviour from conspecifics, increasing the possibility that they will display redirected - 7 aggressive behaviours (Rajaram, 2006) towards bystanders such as vehicles. At Madikwe, field guides - 8 were aware of elephant behaviours signalling aggression (I. Szott, pers. obs.), highlighting the value - 9 of the ability to interpret behaviour when approaching wild animals. We suggest that a consistent - 10 minimum distance from the nearest individual, especially upon first approach, should be introduced - to guidelines for wildlife viewing to alleviate the potential for conflict between tourist vehicles and - 12 wildlife. This will ensure not only the safety of guests but would also alleviate potential stress caused - 13 by increased agonistic interactions which could otherwise lead to elevated physiological or even - chronic stress (McEwen
& Wingfield, 2003; Pinter-Wollman, Isbell & Hart, 2009; Jachowski et al., - 15 2013). It would further give elephant herds, or indeed other wildlife, more space and may reduce the - 16 likelihood of animals moving off, giving tourists longer, more natural viewing experiences. - 17 Due to strict regulations in Madikwe, tourist pressure is based on maximum availability of lodges - 18 hosting tourists and GDs are restricted to small numbers in sightings. However, most wildlife viewing, - 19 not only of elephants but a broad range of species, is carried out in areas where fewer/ no - restrictions apply and is under growing demand worldwide (World Tourism Organization, 2014). - 21 Research into non-consumptive wildlife tourism, where no direct interactions between human and - 22 non-human animals take place, is scarce but has consistently reported aggressive, stress-related or - 23 vigilance-related responses by wildlife (Dyck & Baydack, 2004; Lovasz et al., 2008; Ranaweerage et - 24 al., 2015). Consideration of personality traits (Goldenberg et al., 2017) would further inform our - 25 understanding of the differential effects of wildlife tourism on wild animals. It is important that - future research investigates whether animals in other areas react in a similar manner, showing - 1 changes in behaviour. This will allow management decisions to be guided by up-to-date, quantitative - 2 and qualitative findings and allow reserves to advertise high animal welfare standards. #### 3 Ethical Statement - 4 All data collected were non-invasive and received ethical clearance from Liverpool John Moores - 5 University (NK_IS/2016-6) as well as permission from the North West Parks Board. This research - 6 adhered to the Association for the Study of Animal Behaviour guidelines for ethical treatment of - 7 animals. ### 8 Data Accessibility - 9 Prim8 Software can be accessed and downloaded here: http://www.prim8software.com/ - 10 R Statistical Software can be accessed and downloaded here: https://www.R-project.org/ - 11 Data and code can be accessed here: Link to data on figshare will be made available here upon MS - 12 acceptance #### 13 Author's Contributions - 14 I.S. carried out data collection, statistical analysis, conceptualized the project and wrote the paper. - 15 N.K. supervised and conceptualized the project and edited several drafts of the paper. - 16 Y.P. co-supervised and conceptualized the project and edited the final draft. ## 17 Conflict of Interest 18 We have no conflict of interest. ## 19 Funding Statement - 20 This research was funded by the AESOP (A European and South African Partnership on Heritage and - 21 Past) Erasmus Mundus Programme Mobility Scholarship and the Liverpool John Moores University - 22 Matched Funding Scholarship. #### Acknowledgements 23 24 The authors would like to thank the North West Parks Board and Madikwe Game Reserve for - allowing this study to take place. Further thank you to all field guides, lodge managers and staff in - 2 Madikwe for their support of this study throughout. We thank the Madikwe Concessionaires Fund for - 3 donations towards fuel of the research vehicle and the South African Weather Service for the - 4 provision of rainfall data. We are grateful for constructive feedback on this manuscript from two - 5 anonymous reviewers. #### References - 7 Altmann, J. (1974). Observational study of behavior: sampling methods. Behaviour 49, 227–266. - 8 Arbieu, U., Grünewald, C., Martín-López, B., Schleuning, M., Böhning-Gaese, K. (2017). Mismatches between - 9 supply and demand in wildlife tourism: Insights for assessing cultural ecosystem services. Ecol. Indic. 78, - 10 282–291. - Archie, E.A., Morrison, T.A., Foley, C.A.H., Moss, C.J., Alberts, S.C. (2006). Dominance rank relationships among - 12 wild female African elephants, Loxodonta africana. Anim. Behav. 71, 117–127. - Armbruster, P. & Lande, R. (1993). A population analysis for African elephant (Loxodonta africana): How big - should reserves be?. Cons. Biol. 7, 602-610. - 15 Bates, D., Maechler, M., Bolker, B., Walker, S. (2014). lme4: Linear mixed-effects models using Eigen and S4. R - 16 *Packag. version* **1**, 1–23. - 17 Beauchamp, G. (2007). Vigilance in a selfish herd. *Anim. Behav.* **73(3)**, 445–451. - 18 Bhattacharjee, S., Kumar, V., Chandrasekhar, M., Malviya, M., Ganswindt, A., Ramesh, K., Sankar, K. & - 19 Umapathy, G. (2015). Glucocorticoid stress responses of reintroduced tigers in relation to anthropogenic - disturbance in Sariska Tiger Reserve in India. *PLoS One* **10(6)**, 1–13. - 21 Bradshaw, G.A., Schore, A.N., Brown, J.L., Poole, J.H. & Moss, C.J. (2005). Elephant breakdown. *Nature* 433, - 22 807. - 23 Burger, J. & Gochfeld, M. (1993). Tourism and short-term behavioral responses of nesting masked, red-footed, - and blue-fooed, boobies in the Galapagos. *Environ. Conserv.* **20**, 255–259. - Burke, T., Page, B., Van Dyk, G., Millspaugh, J. & Slotow, R. (2008). Risk and ethical concerns of hunting male - elephant: behavioural and physiological assays of the remaining elephants. *PLoS One* **3(6),** 1-10. - 27 Buss, I.O. & Smith, N.S. (1966). Observations on reproduction and breeding behavior of the African elephant. J. - 28 Wildl. Manage. **30**, 375–388. - 1 Canty, A. & Ripley, B. (2018). boot: Bootstrap R (S-Plus) functions. *R Packag. version 1.3-20*. - 2 Chase, M.J., Schlossberg, S., Griffin, C.R., Bouché, P.J.C., Djene, S.W., Elkan, P.W., Ferreira, S., Grossman, F., - 3 Kohi, E.M., Landen, K., Omondi, P., Peltier, A., Selier, S.A.J., Sutcliffe, R. (2016). Continent-wide survey - 4 reveals massive decline in African savannah elephants. *PeerJ* **4**, e2354. - 5 Douglas-Hamilton, I., Krink, T. & Vollrath, F. (2005). Movements and corridors of African elephants in relation to - 6 protected areas. *Naturwissenschaften* **92**, 158–163. - 7 Dyck, M.G. & Baydack, R.K. (2004). Vigilance behaviour of polar bears (Ursus maritimus) in the context of - 8 wildlife-viewing activities at Churchill, Manitoba, Canada. *Biol. Conserv.* **116**, 343–350. - 9 elephantvoices.org. (2018). Multimedia Resources [WWW Document]. URL - 10 https://elephantvoices.org/multimedia-resources.html - 11 Foley, C.A.H., Papageorge, S. & Wasser, S.K. (2001). Noninvasive stress and reproductive measures of social and - ecological pressures in free-ranging African elephants. *Conserv. Biol.* **15(4)**, 1134–1142. - 13 Fowler, G.S. (1999). Behavioral and hormonal responses of Magellanic penguins (Spheniscus magellanicus) to - tourism and nest site visitation. *Biol. Conserv.* **90(2)**, 143–149. - 15 Fox, J. (2003). Effect displays in R for generalised linear models. J. Stat. Softw. 8, 1–27. - Fox, J. & Monette, G. (1992). Generalized collinearity diagnostics. J. Am. Stat. Assoc. 87(417), 178–183. - 17 Ganswindt, A., Rasmussen, H.B., Heistermann, M., Hodges, J.K. (2005). The sexually active states of free- - 18 ranging male African elephants (Loxodonta africana): Defining musth and non-musth using - endocrinology, physical signals, and behavior. *Horm. Behav.* **47(1)**, 83–91. - 20 Giese, M. (1996). Effects of human activity on Adelie penguin Pygoscelis adeliae breeding success. Biol. - 21 *Conserv.* **75**, 157–164. - 22 Gobush, K., Kerr, B. & Wasser, S. (2009). Genetic relatedness and disrupted social structure in a poached - population of African elephants. *Mol. Ecol.* **18(4)**, 722–734. - Goldenberg, S.Z., de Silva, S., Rasmussen, H.B., Douglas-Hamilton, I., Wittemyer, G. (2014). Controlling for - behavioural state reveals social dynamics among male African elephants, *Loxodonta africana*. *Anim.* - 26 *Behav.* **95**, 111–119. - 27 Goldenberg, S.Z., Douglas-Hamilton, I., Daballen, D., Wittemyer, G. (2017). Challenges of using behavior to - monitor anthropogenic impacts on wildlife: a case study on illegal killing of African elephants. *Anim.* - 29 *Conserv.* **20**, 215–224. - 1 Graham, M.D., Douglas-Hamilton, I., Adams, W.M., Lee, P.C. (2009). The movement of African elephants in a - 2 human-dominated land-use mosaic. Anim. Conserv. 12, 445–455. - 3 Grubb, T.G., King, R.M. (1991). Assessing Human Disturbance of Breeding Bald Eagles with Classification Tree - 4 Models. J. Wildl. Manage. **55**, 500–511. - Higham, J.P., MacLarnon, A.M., Heistermann, M., Ross, C. & Semple, S. (2009). Rates of self-directed behaviour - 6 and faecal glucocorticoid levels are not correlated in female wild olive baboons (Papio hamadryas - 7 anubis). Stress **12(6)**, 526–532. - 8 Hoare, R.E. & Du Toit, J.T. (1999). Coexistence between people and elephants in African savannas. *Conserv.* - 9 *Biol.* **13**, 633–639. - 10 Hollister-Smith, J.A., Poole, J.H., Archie, E.A., Vance, E.A., Georgiadis, N.J., Moss, C.J., Alberts, S.C. (2007). Age, - 11 musth and paternity success in wild male African elephants, Loxodonta africana. Anim. Behav. 74, 287– - 12 296. - Hothorn, T., Bretz, F. & Westfall, P. (2008). Simultaneous inference in general parametric models. *Biometrical J.* - **50(3)**, 346–363. - Hunter, L.T.B. & Skinner, J.D. (1998). Vigilance behavior in African ungulates: the role of predation pressure. - 16 Behaviour. *Behaviour* **135(2)**, 195–211. - Jachowski, D.S., Slotow, R. & Millspaugh, J.J. (2013). Delayed physiological acclimatization by African elephants - following reintroduction. *Anim. Conserv.* **16(5)**, 575–583. - 19 Jackson, T.P., Mosojane, S., Ferreira, S.M., van Aarde, R.J. (2008). Solutions for elephant Loxodonta africana - 20 crop raiding in northern Botswana: moving away from symptomatic approaches. Oryx 42, 83–91. - 21 Kovacs, K.M. & Innes, S. (1990). The impact of torism on Harp seals (*Phoca groenlandica*) in the gulf of St. - 22 Lawrence. *Appl. Anim. Behav. Sci.* **26**, 15–26. - 23 Langbauer, W.R. (2000). Elephant communication. *Zoo Biol.* **19**, 425–445. - 24 Langsrud, Ø. (2003). ANOVA for unbalanced data: Use Type II instead of Type
III sums of squares. Stat. Comput. - **13(2)**, 163–167. - Lindsey, P.A., Alexander, R., Mills, M.G.L., Romañach, S., Woodroffe, R. (2007). Wildlife Viewing Preferences of - 27 Visitors to Protected Areas in South Africa: Implications for the Role of Ecotourism in Conservation. J. - 28 Ecotourism **6(1)**, 19–33. - 29 Lindsey, P.A., Roulet, P.A. & Romañach, S.S. (2007). Economic and conservation significance of the trophy - 1 hunting industry in sub-Saharan Africa. *Biol. Cons.* **134**, 455-469. - 2 Loarie, S.R., van Aarde, R.J. & Pimm, S.L. (2009a). Elephant seasonal vegetation preferences across dry and wet - 3 savannas. Biol. Conserv. **142(12)**, 3099–3107. - 4 Loarie, S.R., Aarde, R.J. Van & Pimm, S.L. (2009b). Fences and artificial water affect African savannah elephant - 5 movement patterns. *Biol. Conserv.* **142**, 3086–3098. - 6 Lott, D.F. (1992). Lens length predicts mountain goat disturbance. Anthrozoos 5, 254–255. - 7 Lott, D.F. & McCoy, M. (1995). Asian rhinos Rhinoceros unicornis on the run? Impact of tourist visits on one - 8 population. *Biol. Conserv.* **73**, 23–26. - 9 Lovasz, T., Croft, D.B. & Banks, P. (2008). Establishing tourism guidelines for viewing Australian Sea Lions - 10 Neophoca cinerea at Seal Bay Conservation Park, South Australia. Aust. Zool. 34, 225–232. - 11 Maciejewski, K. & Kerley, G.I.H. (2014). Understanding tourists' preference for mammal species in private - 12 protected areas: Is there a case for extralimital species for ecotourism? *PLoS One* **9(2)**, 1-8. - 13 Mandalaywala, T.M., Higham, J.P., Heistermann, M., Parker, K.J. & Maestripieri, D. (2014). Physiological and - behavioural responses to weaning conflict in free-ranging primate infants. *Anim. Behav.* **97**, 241–247. - Marechal, L., Semple, S., Majolo, B., Qarro, M., Heistermann, M. & MacLarnon, A. (2011). Impacts of tourism on - anxiety and physiological stress levels in wild male Barbary macaques. *Biol. Conserv.* **144(9)**, 2188–2193. - 17 McComb, K., Shannon, G., Sayialel, K.N., Moss, C. (2014). Elephants can determine ethnicity, gender, and age - from acoustic cues in human voices. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 5433–8. - 19 McDonald, M. & Johnson, S. (2014). 'There's an app for that': a new program for the collection of behavioural - 20 field data. *Anim. Behav.* **95**, 81–87. - 21 McEwen, B.S. & Wingfield, J.C. (2003). The concept of allostasis in biology and biomedicine. *Horm. Behav.* - **43(1)**, 2–15. - Moorhouse, T.P., Dahlsjö, C.A.L., Baker, S.E., D'Cruze, N.C., Macdonald, D.W. (2015). The customer isn't always - 24 right Conservation and animal welfare implications of the increasing demand for wildlife tourism. PLoS - 25 *One* **10**, 1–16. - 26 Munshi-South, J., Tchignoumba, L., Brown, J., Abbondanza, N., Maldonado, J.E., Henderson, A., Alonso, A. - 27 (2008). Physiological indicators of stress in African forest elephants (Loxodonta africana cyclotis) in - relation to petroleum operations in Gabon, Central Africa. *Divers. Distrib.* **14**, 995–1003. - 29 Newsome, D., Dowling, R.K. & Moore, S.A. (2005). Wildlife tourism. Clevedon, Buffalo, Toronto: Channel View - 1 Publications. - 2 Novellie, P. (1991). National parks board and valley bushveld. In *Proceedings of the first valley bushveld* - 3 symposium. Special publication of the grassland society of southern Africa. Pietermaritzberg: 11–13. - 4 Zacharias, P.J. & Stuart-Hill, G.C. (Ed.). Grassland Society of South Africa, Horwick. - 5 Orams, M.B. (2002). Feeding wildlife as a tourism attraction: a review of issues and impacts. *Tour. Manag.* - 6 **23(3)**, 281–293. - 7 Pinter-Wollman, N., Isbell, L.A. & Hart, L.A. (2009). Assessing translocation outcome: Comparing behavioral and - 8 physiological aspects of translocated and resident African elephants (Loxodonta africana). Biol. Conserv. - 9 **142**, 1116–1124. - 10 Population Reference Bureau (2018). Multimedia Resources [WWW Document]. URL - http://www.worldpopdata.org/map - 12 Pozo, R.A., Coulson, T., McCulloch, G., Stronza, A.L. & Songhurst, A.C. (2017). Determining baselines for human- - elephant conflict: A matter of time. *PLoS One* **12(6)**, 1-17. - 14 R Core Team. (2000). R: A language and environment for statistical computing [WWW Document]. *R Found*. - 15 Stat. Comput. Vienna, Austria. - Rajaram, A. (2006). Musth in elephants. *Resonance* **11**, 18–27. - 17 Ranaweerage, E., Ranjeewa, A.D.G. & Sugimoto, K. (2015). Tourism-induced disturbance of wildlife in protected - areas: A case study of free ranging elephants in Sri Lanka. *Glob. Ecol. Conserv.* **4**, 625–631. - 19 Rehnus, M., Wehrle, M. & Palme, R. (2014). Mountain hares Lepus timidus and tourism: Stress events and - 20 reactions. J. Appl. Ecol. **51(1)**, 6–12. - 21 Reynolds, P.C. & Braithwaite, D. (2001). Towards a conceptual framework for wildlife tourism. *Tour. Manag.* - **22 22(1)**, 31–42. - Roever, C.L., van Aarde, R.J. & Leggett, K. (2013). Functional connectivity within conservation networks: - Delineating corridors for African elephants. *Biol. Conserv.* **157**, 128–135. - 25 Stokke, S. & du Toit, J.T. (2002). Sexual segregation in habitat use by elephants in Chobe National Park, - 26 Botswana. Afr.J.Ecol. 40, 360–371. - 27 Szott, I.D., Pretorius, Y., Ganswindt, A., & Koyama, N.F. (submitted). Physiological stress response of free- - ranging African elephants to wildlife tourism. J Zool. - 29 Taylor, A.R. & Knight, R.L. (2003). Wildlife responses to recreation and assciated vistor perceptions. Ecol. Appl. | 1 | 13 , 951–963. | |----|---| | 2 | Teixeira, C.P., De Azevedo, C.S., Mendl, M., Cipreste, C.F., Young, R.J. (2007). Revisiting translocation and | | 3 | reintroduction programmes: the importance of considering stress. Anim. Behav. 73(1) , 1–13. | | 4 | Viljoen, J.J., Ganswindt, A., Palme, R., Reynecke, H.C., du Toit, J.T., Langbauer Jr, W.R. (2008). Measurement of | | 5 | concentrations of faecal Glucocorticoid Metabolites in free - ranging African elephants within the Kruger | | 6 | National ParK. <i>Koedoe</i> 50(1) , 18–21. | | 7 | Wardle, C., Buckley, R., Shakeela, A. & Castley, J.G. (2018). Ecotourism's contributions to conservation: | | 8 | analysing patterns in published studies. J. Ecotourism, 1–31. | | 9 | Wickham, H. (2016). ggplot2: elegant graphics for data analysis. New York: Springer. | | 10 | Woolley, LA., Millspaugh, J.J., Woods, R.J., van Rensburg, S.J., Page, B.R. & Slotow, R. (2009). Intraspecific | | 11 | Strategic Responses of African Elephants to Temporal Variation in Forage Quality. J. Wildl. Manage. 73(6), | | 12 | 827–835. | | 13 | World Tourism Organization. (2014). Towards measuring the economic value of wildlife watching tourism in | | 14 | Africa - Briefing Paper. Madrid. | | 15 | Young, C., Majolo, B., Heistermann, M., Schülke, O. & Ostner, J. (2014). Responses to social and environmental | | 16 | stress are attenuated by strong male bonds in wild macaques. Proc. Natl. Acad. Sci. 111(51), 18195— | | 17 | 18200. | | 18 | | 2 **Figure 1.** - 3 Map of Madikwe Game Reserve, South Africa, in 2014. Dark grey areas are private - 4 concessions, grey areas are private concessions used with lodge permission, and light grey - 5 areas are open plains where off-roading was prohibited. Lines are roads, triangles are - 6 locations of lodges, and all waterholes (containing water either year-round or during the wet - 7 season) are indicated as circles. Map courtesy of P. Hattingh (2014). - 1 **Table 1.** Factors recorded for five-minute continuous behavioural observations of African elephants, - 2 Loxodonta africana, carried out in Madikwe Game Reserve, South Africa. | Factor | Levels | Description | |--------------|-----------------------------------|--| | Sex | Female, male | Sex of focal individual | | Age | Adult, juvenile | Age of focal individual | | Herd type | Lone male, bull group, cow- | Type of herd in which focal individual was observed | | | calf group, mixed group | | | Herd size | 1-100 | Number of animals in the herd | | Habitat type | Shrub, dense shrub, open | Type of habitat the focal individual was observed in | | | grassland, waterhole ^a | | | Season | Dry, wet | Season in which observation took place. | | Vehicle | 0-3 | Number of GD vehicles present during the focal | | | | observation | | Travel | Retreat, stay | The direction of movement of the core of an elephant | | direction | | herd in relation to present GD vehicles. If a herd | | | | moved parallel to, or towards vehicles, it was classes | | | | as stay, if the distance of the core of the herd | | | | increased by ≥10 m from vehicles, it was classed as | | | | retreat | - 3 aShrub= various bushes and trees in observed area but not obscuring observation noticeably; dense - 4 shrub= shrub and trees in observed area, growing so densely that observation only possible at close - 5 distance and dense enough to cover view of large areas of the body of the focal animal; open - 6 grassland= observation area vastly open with only occasional bushes or trees; waterhole= water - 7 accumulated either naturally or pumped artificially with enough water for one or more elephants to - 8 drink - 1 Table 2: Results of a type II ANOVA on a GLMM for the occurrence of stress-related behaviour in - 2 known African elephants, *Loxodonta africana*, in Madikwe Game Reserve, South Africa. Fixed effects' - 3 estimates and standard errors (SE) are from the model summary and X^2 values, degrees of freedom - 4 (df) and p-values are from a type II ANOVA. | Fixed effect | Levels | Estimate (± SE) | X ² | df | <i>p</i> -value | |------------------------|----------------|-----------------|----------------|----|-----------------| | Intercept | | -0.581(±1.41) | | | | | Tourist | | -0.138(±0.23) | 0.378 | 1 | 0.539 | | Herd type (Bull group) |
Cow-calf group | -0.871(±1.29) | 1.74 | 3 | 0.628 | | | Lone male | -1.418(±1.09) | | | | | | Mixed group | -0.938(±1.3) | | | | | Sex (Female) | Male | -0.235(±0.83) | 0.081 | 1 | 0.777 | | Habitat (Dense shrub) | Open grassland | 0.067(±1.12) | 1.372 | 3 | 0.712 | | | Shrub | -0.168(±0.66) | | | | | | Waterhole | 0.425(±0.69) | | | | | Season (Dry) | Wet | -0.106(±0.5) | 0.045 | 1 | 0.833 | | Herd size | | -0.19(±0.3) | 0.406 | 1 | 0.524 | | Age (Adult) | Juvenile | 0.199(±0.77) | 0.068 | 1 | 0.795 | - 1 Table 3: Results of a type II ANOVA on a GLMM for the occurrence of vigilance behaviour in known - 2 African elephants, Loxodonta africana, in Madikwe Game Reserve, South Africa. Fixed effects' - 3 estimates and standard errors (SE) are from the model summary and X^2 values, degrees of freedom - 4 (df) and p-values are from a type II ANOVA. Significant effects in bold, where significance was - 5 assigned at p<0.05. | Fixed effect | Levels | Estimate (± SE) | χ² | df | <i>p</i> -value | |------------------------|----------------|-----------------|--------|----|-----------------| | Intercept | | -0.238(±1.38) | | | | | Tourist | | -0.091(±0.21) | 0.199 | 1 | 0.656 | | Herd type (Bull group) | Cow-calf group | -0.880(±1.31) | 1.858 | 3 | 0.602 | | | Lone male | -0.002(±1.01) | | | | | | Mixed group | -1.318(±1.31) | | | | | Sex (Female) | Male | -0.258(±0.80) | 0.103 | 1 | 0.749 | | Habitat (Dense shrub) | Open grassland | 0.654(±0.89) | 26.758 | 3 | <0.001 | | | Shrub | 0.187(±0.54) | | | | | | Waterhole | 2.924(±0.69) | | | | | Season (Dry) | Wet | 0.420(±0.44) | 0.899 | 1 | 0.343 | | Herd size | | 0.118(±0.28) | 0.184 | 1 | 0.668 | | Age (Adult) | Juvenile | 0.627(±0.77) | 0.667 | 1 | 0.414 | - 1 Table 4: Results of a type II ANOVA on a GLMM for the occurrence of conspecific-directed aggressive - behaviour in known African elephants, *Loxodonta africana*, in Madikwe Game Reserve, South Africa. - 3 Fixed effects' estimates and standard errors (SE) are from the model summary and X^2 values, degrees - 4 of freedom (df) and p-values are from a type II ANOVA. Significant effects in bold, where significance - 5 was assigned at p≤0.05. | Fixed effect | Levels | Estimate (± SE) | X ² | df | <i>p</i> -value | |------------------------|----------------|-----------------|----------------|----|-----------------| | Intercept | | -6.506(±2.19) | | | | | Tourist | | 0.704(±0.30) | 5.439 | 1 | 0.02 | | Herd type (Bull group) | Cow-calf group | 2.496(±1.83) | 2.980 | 3 | 0.395 | | | Lone male | -0.494(±1.61) | | | | | | Mixed group | 1.984(±1.76) | | | | | Sex (Female) | Male | 2.843(±1.22) | 5.409 | 1 | 0.02 | | Habitat (Dense shrub) | Open grassland | 1.359(±1.72) | 7.915 | 3 | 0.048 | | | Shrub | 1.176(±1.21) | | | | | | Waterhole | 2.729(±1.23) | | | | | Season (Dry) | Wet | 0.049(±0.61) | 0.006 | 1 | 0.936 | | Herd size | | 0.567(±0.33) | 3.050 | 1 | 0.081 | | Age (Adult) | Juvenile | -1.046(±1.14) | 0.836 | 1 | 0.361 | 2 **Figure 2.** - 3 Predicted mean probability of a Generalized Linear Mixed Model analysing the effect of tourist - 4 pressure on the probability of known African elephants, *Loxodonta africana*, in Madikwe Game - 5 Reserve displaying conspecific-directed aggressive behaviour. Grey areas represent 95% confidence - 6 intervals. - 1 **Table 5:** Results of a nonparametric bootstrap (1000 iterations) of a GLM for the impact of several - 2 fixed effects on the probability of African elephant herds, *Loxodonta africana*, in Madikwe Game - 3 Reserve, South Africa, moving away from observers. Fixed effects' estimates and standard errors are - 4 from the model summary, and level comparisons and 95% Confidence Intervals are from - 5 bootstrapped confidence intervals. Significant effects are shown in bold. | Fixed effect | Levels | Estimate | Levels (reference level vs. | 95% Confidence | |------------------|-------------|---------------|-----------------------------|-----------------| | | | (± SE) | comparison level) | Intervals | | Intercept | | -0.500(±0.39) | | | | Herd type (Bull | Cow-calf | 0.394(±0.35) | Bull group: Cow-calf group | -0.068 to 0.233 | | group) | group | | | | | | Lone male | 0.215(±0.32) | Bull group: Lone male | -0.095 to 0.169 | | | Mixed group | 0.457(±0.40) | Bull group: Mixed group | -0.069 to 0.269 | | | | | Cow-calf group: Lone male | -0.187 to 0.093 | | | | | Cow-calf group: Mixed group | -0.112 to 0.159 | | | | | Lone male: Mixed group | -0.118 to 0.225 | | Vehicle | | 0.540(±0.66) | | -0.230 to 0.481 | | Habitat (Dense | Shrub | -0.318(±0.27) | Dense shrub: Shrub | -0.221 to 0.060 | | shrub) | | | | | | | Waterhole | -0.340(±0.33) | Dense shrub: Waterhole | -0.241 to 0.086 | | | | | Shrub: Waterhole | -0.117 to 0.101 | | Season (Wet) | Dry | -0.128(±0.21) | Dry: Wet | -0.130 to 0.063 | | Herd size | | 0.005(±0.13) | | -0.055 to 0.065 | | Herd type *GD | Cow-calf | -0.485(±0.47) | Bull group*GD: Cow-calf | -0.360 to 0.038 | | (Bull group *GD) | group *GD | | group*GD | | | | Lone male | -0.283(±0.44) | Bull group*GD: Lone | -0.304 to 0.079 | | | *GD | | male*GD | | | | | | | | | | Mixed group | -0.515(±0.41) | Bull group*GD: Mixed | -0.340 to -0.001 | |--------------|-------------|---------------|--------------------------|------------------| | | *GD | | group*GD | | | | | | Cow-calf group*GD: Lone | -0.111 to 0.236 | | | | | male*GD | | | | | | Cow-calf group*GD: Mixed | -0.147 to 0.197 | | | | | group*GD | | | | | | Lone male*GD: Mixed | -0.174 to 0.063 | | | | | group*GD | | | Habitat type | Shrub *GD | 0.034(±0.50) | Dense shrub*GD: Shrub*GD | -0.268 to 0.308 | | *GD (Dense | | | | | | shrub *GD) | | | | | | | Waterhole | 0.103(±0.52) | Dense shrub*GD: | -0.271 to 0.349 | | | *GD | | Waterhole*GD | | | | | | Shrub*GD: Waterhole*GD | -0.092 to 0.138 | | Season *GD | Wet *GD | -0.044(±0.22) | Dry*GD: Wet*GD | -0.108 to 0.118 | | (Dry *GD) | | | | | Figure 3. - 3 Predicted mean probability of a Generalized Linear Model analysing the effect of game drive - 4 vehicle presence on the probability of African elephant herds, Loxodonta africana, in - 5 Madikwe Game Reserve moving away from observation points in different herd types. BG: - 6 bull group; CG: cow-calf group; LM: lone male; MG: mixed group. Grey areas represent 95% - 7 confidence intervals. - 1 **Table S1.** Full ethogram of all behaviours included in this study of African elephants, *Loxodonta* - 2 africana, in Madikwe Game Reserve. Each behaviour was assigned to a specific category for statistical # 3 analysis. | Behaviour Description of behaviour | | | | | |------------------------------------|----------------|--|--|--| | category | included | | | | | Stress- | Run | Animal is moving fast without feeding and often with the whole herd | | | | related | | moving away from a specific stimulus such as a predator | | | | behaviour | Trunk to body | Animal is touching own body with trunk. Different from scratching. | | | | | | Can happen during locomotion | | | | | Trunk to face | Animals' trunk is touching its face for very short duration. Can | | | | | | happen during locomotion | | | | | Trunk twirl | Animal is curling its trunk in a swift motion. Can happen during | | | | | | locomotion | | | | Vigilance | Smell | Animal extends the trunk down or up, with the tip of the trunk curled | | | | behaviour | | horizontally. Often the trunk is rotated in several directions to pick | | | | | | up scent. Can happen during locomotion | | | | | Trunk to | Animal puts the tip of its trunk into its own mouth without ingesting | | | | | mouth | any food or water possibly processing chemicals using its | | | | | | vomeronasal organ. Can happen during locomotion | | | | | Vigilance | Animals' head is held high and ears are spread out. Often the head is | | | | | | moved from one side to another such as to listen to the surrounding | | | | Conspecifi | Charge | Fast walk, often with ears out and head held high, towards a | | | | c-directed | | conspecific. Can be accompanied by a trumpet | | | | aggressive | Displace given | Focal animal is approaching a conspecific which leaves the currently | | | | behaviour | | occupied spot | | | | | Ears flapping | Animal is moving ears in and out resulting in a loud noise when the | | | | | | ears hit the body. Can happen during locomotion | | | | | Ears out | Animal is spreading its ears outwards, away from the body, making it | | | | | | appear larger. Can happen during locomotion | | | | | Head shake | Animal rapidly moves the head in a flowing motion tilting it from the | | | | | | right to the left, resulting in the ears flapping against the body and | | | | | | making a loud sound. Often, this is done whilst turning towards the | | | | | | stimulus at which the head shake is directed | | | | | Pushing object | Animal is pushing an object such as a tree with its body | | | | | Redirected | Animal often will have received aggression by a dominant individual | | | | | aggression | or was the loser of a play or aggressive sparring interaction. Often | | | | | | redirected aggression can be throwing around leaves or sticks or | | | | | | turning rapidly from the dominant individual and push a tree over or | | | | | | uproot a bush | | | | | Slap | Animal is using its trunk or head to strike a conspecific | | | | | Sparring | Animal is pushing with conspecific head to head often with their | | | | | aggressive | trunks entwined and tusks clashing against each other | | | | | Standing tall | Animal is standing with its head held high up and glancing forwards | | | | | 5 | over the trunk | | | | | Trunk swing | Animal is swinging trunk backwards and forwards between the front | | | | | | legs, often whilst exhaling or stepping forward. Can happen during | | | | | | locomotion | | | | | Tusk | Animal is pushing its tusks into conspecifics body. Can happen during | | | | | | locomotion | | | | - | | | | |