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Abstract 

This paper first assesses the operational uncertainties of a particular piece of equipment in a 

marine and offshore system based on an oil analysis technique. Trend analysis, family 

analysis, environmental analysis, human reliability analysis and design analysis for each 

criterion are aggregated using evidential reasoning (ER) and analytical hierarchy process 

(AHP) algorithms. Data is collected from available statistics and supplemented by expert 

judgement from the related industry. The results provided in this study will be beneficial to the 

marine and offshore industries as indicators for monitoring and diagnosis of faults in machinery 

and thus assist practitioners in making better decisions in their maintenance management 

process. Furthermore, by changing the conditions that affect the operation of machinery, and 

through calculating a value for this operation, a benchmark for condition monitoring is 

constructed. The operational condition of machinery depends on many variables and their 

dependencies; thus, alteration of a criterion value will ultimately alter the operational conditions 

of the machinery. For any deviation to be corrected in a timely manner, the operational 

condition of the machinery has to be monitored properly and frequently. 

 

Keywords: Condition Monitoring, analytical hierarchy process, evidential reasoning, 

maintenance analysis, design analysis 

 

1 Introduction 

Machine condition monitoring is the practice of assessing a machine’s condition by periodically 

gathering data on key machine-health indicators to determine when to schedule maintenance 
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(Zhao, 2008). The existence of debris and particles from wearing parts, erosion and 

contamination provides insights about the issues affecting performance and reliability. The 

growing failure of marine and offshore machinery, such as main engines, cranes, pumps, etc., 

coupled with operator concern over their reliability, has motivated this research and the 

development of an efficient condition monitoring methodology and reliability procedures. 

Furthermore, with the increasing complexity and cost of equipment, accurate diagnosis is 

important. The fundamental element of machinery condition monitoring on-board ship is 

watch-keeping (Lloyd’s Register, 2010). Watch-keeping involves the ability to recognize 

changes in performance, as indicated by alarms, alerts, gauges and readings, as well as 

responding aptly to these changes. However, as the industry becomes more dynamic, there 

is a need to introduce concepts of flexibility and agility (Bastos et al., 2012), to enable 

companies to deliver customized condition monitoring (CM) which can react swiftly to 

machinery operating in highly uncertain environments like sea. 

In their normal day-to-day schedules, deck and engineering officers do carry out many 

condition monitoring activities, such as monitoring the condition of individual components in a 

piece of equipment. For example, some of the routine condition monitoring activities carried 

out in marine vessels include the use of electronic equipment for main and auxiliary engine 

performance measurement, the installation of temperature sensors in cylinder liners to monitor 

piston rings blow-by, and visual inspection of piston rings and liners through scavenge space 

(Lloyd’s Register, 2010). However, the inability of the deck and engineering officers to evaluate 

a large number of discrete variables, such as trend analysis, family analysis, environment 

analysis, human reliability analysis, and design analysis, has prompted questioning of the 

effectiveness of these routine condition monitoring activities.  

This research will demonstrate the framework of monitoring and diagnosing machinery faults 

in marine and offshore industries will be demonstrated. Evidential reasoning (ER) and 

analytical hierarchy process (AHP) algorithms will be employed to synthesise the data 

gathered from all the components, in what is called a data mining process (DMP). This will 

identify the behaviour patterns of each component, thus allowing early and accurate detection 

of faults in the equipment. 

The structure of this paper will be as follows. The second section presents a literature review 

on monitoring the condition of marine and offshore machinery. The process of building a 

generic model of a hierarchical structure for monitoring the condition of the machinery is 

presented in the third section, in which trend, family, environment, human reliability, and 

design analysis information are processed. The methodology is then explained and applied to 

the monitoring of the operational conditions of machinery in the fourth section. This proposed 
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methodology, along with a previously accepted condition monitoring methodology, is then 

tested by a case study, followed by a discussion and conclusion. 

2 Literature Review 

Monitoring the condition of marine and offshore machinery has become a point of interest, 

since the environment imposes a high demand for reliability on the installed machinery. 

Condition monitoring has a unique benefit, in the sense that conditions that would shorten 

normal lifespan of a piece of machinery can be addressed before they develop into a major 

failure. Many researchers, such as Courrech et al. (2014), Galloway (2014), have conducted 

research in this area. Given that the input data for determining the condition of the machinery 

is normally expressed in both quantitative and qualitative terms, decision makers may often 

carry out judgements based on both quantitative data and experiential subjective assessments 

of the machinery. Consequently, a proposed methodology for monitoring the condition of 

marine and offshore machinery should be capable of processing both quantitative and 

qualitative data.  

Condition monitoring (CM) can be defined as the process of monitoring a parameter of 

condition in machinery (oil, vibration, temperature, etc.), in order to identify a significant 

change that is indicative of a developing fault. In the case of oil, condition monitoring is the 

assessment of oil failure modes through the monitoring of reliable condition indicators (Toms 

1998). Moreover, the operational condition of a machine can be defined as its reliability value 

if a condition is known to occur. Machinery operational condition depends upon many variables 

and their dependencies. The most important elements that affect safety and efficiency in 

machinery performance will be discussed in detail in the methodology section of this paper. 

2.1 Analytic Hierarchy Process (AHP) 

Analytic hierarchy process is a structured technique commonly used in analysing complex 

decisions. It is based on mathematics and psychology and was developed by Thomas L. Saaty 

in the 1970s. Since then, it has been extensively studied and refined by many researchers. 

AHP provides a comprehensive and rational framework for structuring a decision problem, for 

representing and quantifying its elements, for relating those elements to overall goals, and for 

evaluating alternative solutions. Instead of stipulating a "correct" decision, AHP helps decision 

makers find solution that best suits their goal and their understanding of the problem. It is used 

around the world in a wide variety of decision making situations (Saaty, 1983, 2008).  

The main aim of AHP is to assist decision makers in organising their thoughts and judgements 

to make decisions that are more valuable. AHP also provides the objective mathematics to 

process the inevitable subjective and personal preferences of an individual or group in making 
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decisions. AHP works by developing priorities for alternatives and the criteria are used to judge 

these alternatives. Firstly, priorities are derived for the criteria in terms of their importance to 

achieving the goal. Secondly, priorities are derived for the performance of the alternatives on 

each criterion. These priorities are derived based on pair-wise assessments using 

judgements, or ratios of measurements from a scale, if one exists. Finally, a weighting and 

adding process is used to obtain overall priorities for the alternatives regarding how they 

contribute to the goal (Saaty and Vargas, 2001). 

Using the AHP to calculate the relative importance of each attribute requires a careful review 

of its principles and background (Saaty, 1990).  When considering a group of attributes for 

evaluation, the main objectives of this technique is to provide judgement on the relative 

importance of these attributes and to ensure that they are quantified to an extent that permits 

quantitative interpretation of the judgement among these attributes (Pillay et al., 2003). The 

quantified judgements on pairs of attributes 𝐴𝑖 and 𝐴𝑗 are represented by an n-by-n matrix E. 

The entries 𝑎𝑖𝑗 are defined by the following entry rules. 

Rule 1: If 𝑎𝑖𝑗  = α, then 𝑎𝑗𝑖 = 1 𝛼⁄  , α ≠ 0 

Rule 2: If 𝐴𝑖 is judged to be of equal relative importance as 𝐴𝑗, then 𝑎𝑖𝑗 = 𝑎𝑗𝑖 = 1. 

According to above rules, the matrix E has the form as follows: 

E = 

[
 
 
 
 
 

1  𝑎12      ⋯ 𝑎1𝑛
1

𝑎12
     1     ⋯ 𝑎2𝑛

⋮     ⋮       ⋮ ⋮                 
1

𝑎1𝑛
        

1

𝑎2𝑛
     ⋯     1    ]

 
 
 
 
 

 

 

where, 𝑖, 𝑗=1, 2, 3..., n and each 𝑎𝑖𝑗 is the relative importance of attribute 𝐴𝑖 to attribute 𝐴𝑗. 

Having recorded the quantified judgements of comparisons on pair (𝐴𝑖 , 𝐴𝑗) as the numerical 

entry 𝑎𝑖𝑗 in the matrix E, what is left is to assign to the n contingencies 𝐴1, 𝐴2, …, 𝐴𝑛 a set of 

numerical weights 𝑤1, 𝑤2, …, 𝑤𝑛 that should reflect the recorded judgements.  

In general, the weights 𝑤1, 𝑤2..., 𝑤𝑛 can be calculated (Pillay et al., 2003) using the following 

equation: 

𝑤𝑘 = 
1

𝑛
∑

𝑎𝑘𝑗

∑ 𝑎𝑖𝑗
𝑛
𝑖=1

𝑛
𝑗=1  (𝑘 = 1, 2, 3, . . . , 𝑛)               (1) 

where, 𝑎𝑖𝑗 represents the entry of row 𝑖 and column 𝑗 in a comparison matrix of order 𝑛. 

The weight vector of the comparison matrix provides the priority ordering. However, it cannot 

ensure the consistency of the pairwise judgements. Hence AHP provides a measure of the 

consistency for the pairwise comparisons by computing a consistency ratio (CR). The CR 

informs the decision makers how consistent they have been when making the pair-wise 

comparisons (Kunz, 2010). It is designed in such a way that a CR value greater than 0.10 
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indicates an inconsistency in the pair-wise judgements and according to Andersen et al. 

(2008), the decision maker should review the pair-wise judgements before proceeding.  

Consequently, if the CR is 0.10 or less, the consistency of the pair-wise comparisons is 

considered reasonable, and the AHP approach can continue with the computations of the 

weight vectors. A higher number means the decision maker has been less consistent, whereas 

a lower number means the decision maker has been more consistent (Kunz, 2010). If the CR 

is > 0.10, the decision maker should seriously consider re-evaluating the pair-wise 

comparisons. The source(s) of inconsistency must be identified and resolved and the analysis 

re-done. The CR value is computed according to the equations (Andersen et al., 2008). 

CR = 
𝐶𝐼

𝑅𝐼
                   (2) 

CI = 
𝜆𝑚𝑎𝑥 −  𝑛

𝑛−1
                     (3) 

 

𝜆𝑚𝑎𝑥  =   
∑ [(∑ 𝑤𝑘𝑎𝑗𝑘)/𝑤𝑗

𝑛
𝑘=1 ]𝑛

𝑗=1

𝑛
                  (4) 

where, CI is the consistency index, RI is the average random index, 𝑛 is the matrix order as 

shown in Table 1 (Saaty, 1990) and 𝜆𝑚𝑎𝑥 is the maximum weight value of the 𝑛-𝑏𝑦-𝑛 

comparison matrix E. 

Insert Table 1 here 

Insert Table 2 here 

Saaty (2004) recommended equivalent scores from 1 to 9, as shown in Table 2. A preference 

of 1 indicates equality between two attributes, while a preference of 9 indicates that one 

attribute is nine times larger or more important than the attribute with which it is being 

compared.    

2.2 Evidential Reasoning (ER) 

The evidential reasoning approach provides a means for dealing with the aggregation 

problem. The ER approach was developed particularly for multiple criteria decision making 

(MCDM) problems with both qualitative and quantitative criteria under uncertainty and utilises 

individuals' knowledge, expertise, and experience in the forms of belief functions (Riahi, 2010).  

There are a number of studies where ER is used. For example, Riahi (2010) used a fuzzy 

evidential reasoning (FER) to evaluate a seafarer’s reliability; Wang and Elhang (2007) used 

fuzzy group decision making for bridge risk assessment; Zeng et al. (2006) applied an 

aggregative risk assessment model for information technology project development; Yang et 

al. (2005) carried out risk analysis of container supply chains using discrete fuzzy sets and an 
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ER approach using fuzzy set theories (FST) and ER specifically on risk assessment and 

decision making; and Liu et al. (2003) used the fuzzy rule-based ER approach to analyse the 

safety of an engineering system with various types of uncertainties.  

While MCDM is described using a decision matrix, the ER approach applies an extended 

decision matrix, in which each attribute of an alternative is described by a distributed 

assessment using a belief structure (Xu et al., 2001). Each criterion is assigned with belief 

degrees on several linguistic evaluation grades to assess the subjective uncertainties and 

ambiguities associated with both quantitative and qualitative criteria. Incompleteness (or 

ignorance) and vagueness (or fuzziness) are among the most common uncertainties in 

decision analysis. Subjective judgments may be used to differentiate one alternative from 

another on qualitative attributes. To evaluate the quality of the operation of equipment, for 

example, typical judgments may be that “the condition of that equipment is poor, good, or very 

good to certain degrees.” In such judgments, poor, good, and very good represent distinctive 

evaluation grades. In equipment evaluation problems, such as ones in a ship propulsion 

engine, a set of evaluation grades is defined by: 

E = {𝑝𝑜𝑜𝑟 (𝛽1) 𝑣𝑒𝑟𝑦 𝑝𝑜𝑜𝑟 (𝛽2) 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝛽3) 𝑔𝑜𝑜𝑑 (𝛽4) 𝑣𝑒𝑟𝑦 𝑔𝑜𝑜𝑑 (𝛽5)} 

where, 𝛽1, 𝛽2, 𝛽3, 𝛽4, and 𝛽5 stand for belief degrees. 

The operational condition of the engine is a broad technical approach that is not easy to assess 

directly. The detailed components of the engine, such as piston, connecting rod, and 

crankshaft, etc. need to be considered separately to simplify the assessment. If a detailed 

component is still too abstract to assess directly, it may be further broken down to more 

detailed sub-components. For instance, the piston component (y) may be measured by 

examining the condition of rings (B1), pin (B2), and skirt (B3), which can be directly assessed 

and therefore referred to as basic attributes. Assessment attributes often constitute a 

multilevel hierarchy (Yang and Xu, 2002). 

In hierarchical assessment, a high level attribute is assessed through associated lower level 

attributes. For example, if the ring, pin, and skirt of the engine piston are all assessed to be 

exactly good, then its piston should also be good. According to Yang and Xu (2002), when 

evaluating qualitative attributes, uncertain judgments can be used. For example, in 

assessment of the engine piston, assessors may be: 

1. 30% sure that its ring is at average condition and 60% sure that it is good. 

2. Absolutely sure that its pin is good. 

3. 50% sure that its skirt is good and 50% sure that it is very good. 

In the above assessments, 30%, 50%, 60%, and 100% (absolutely sure) are referred to as 

degrees of belief and can be used in decimal format as 0.3, 0.5, 0.6, and 1, respectively.  
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 Assessment (1) is incomplete as the total degree of belief is 0.9 (0.3 + 0.6).  

 Assessments (2) and (3) are complete.  

 The missing 0.1 in assessment (1) represents the degree of ignorance or uncertainty.  

Difficulty can be encountered as to how an overall assessment about the engine piston is 

generated by aggregating the above three judgments in a rational manner. The ER approach 

provides a means for dealing with such an aggregation problem. The basic ER applications 

and algorithm are discussed in the next two subsections. 

2.2.1 ER algorithm 

ER is one of the many multiple criteria decision analysis (MCDA) methods. ER is applied to 

deal with MCDA problems for aggregating multiple criteria based on belief degree matrix 

(BDM) and D-S theory.  

A belief degree represents the strength to which an answer is believed to be true. It must be 

equal to or less than 100% or it can be described as the degree of expectation that, given an 

alternative, it will yield an anticipated outcome on a particular criterion. The use of individual 

belief degrees depends on the decision makers’ expertise, knowledge of the subject matter 

and level of experience regarding the operations of the system. The justification for the use of 

belief degrees is as a result that human decision making involves ambiguity, uncertainty, 

imprecision, and where individuals make judgements in probabilistic terms aided by their 

knowledge. 

For instance, let S represent a set of five condition monitoring expressions that are 

synthesized by two subsets, 𝑆1 and 𝑆2 from two different assessors. Then, 𝑆, 𝑆1 and 𝑆2 can be 

expressed independently as follows: 

𝑆 =  {𝛽1 "Very low", β2"Low",  β3"𝑀𝑒𝑑𝑖𝑢𝑚",   𝛽4 "High",   𝛽5 "𝑉𝑒𝑟𝑦 ℎ𝑖𝑔ℎ"} 

𝑆1 = {𝛽1
1 "Very low", 𝛽1

2"Low", 𝛽1
3"𝑀𝑒𝑑𝑖𝑢𝑚",   𝛽1

4 "High",   𝛽1
5 "𝑉𝑒𝑟𝑦 ℎ𝑖𝑔ℎ"} 

𝑆2 = {𝛽2
1 "Very low", 𝛽2

2"Low", 𝛽2
3"𝑀𝑒𝑑𝑖𝑢𝑚",   𝛽2

4 "High",   𝛽2
5 "𝑉𝑒𝑟𝑦 ℎ𝑖𝑔ℎ"} 

where “Very low”, “Low”, “Medium”, “High”, and “Very high” (the condition monitoring 

expression) are assessed with their respective degrees of belief. 

If the normalised relative weights of the two assessors in the evaluation of the condition 

monitoring process are given by 𝑤1 and 𝑤2 (𝑤1 + 𝑤2 = 1), then 𝑤1 and 𝑤2 can be estimated 

by using established methods such as a simple rating method or based on pair-wise 

comparisons (Yang et al., 2001). 
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Suppose 𝑀1
𝑚 and 𝑀2

𝑚 (m = 1, 2, 3, 4 or 5) are individual degrees to which the subsets 𝑆1 

and 𝑆2 support the hypothesis that the condition monitoring evaluation is confirmed to the five 

evaluation grades. Then, 𝑀1
𝑚 and 𝑀2

𝑚 can be derived as follows: 

𝑀1
𝑚=𝑤1𝛽1

𝑚 ; 𝑀2
𝑚= 𝑤2𝛽2

𝑚                                                                            (5)  

where m = 1, 2, 3, 4, and 5 respectively. 

𝑀1
1=𝑤1𝛽1

1, 𝑀2
1=𝑤2𝛽1

1 ; 𝑀1
2=𝑤1𝛽1

2 , 𝑀2
2=𝑤2𝛽1

2 ; 𝑀1
3=𝑤1𝛽1

3 , 𝑀2
3=𝑤2𝛽1

3 ; 

𝑀1
4=𝑤1𝛽1

4 , 𝑀2
4=𝑤2𝛽1

4 ; 𝑀1
5=𝑤1𝛽1

5 , 𝑀2
5=𝑤2𝛽1

5 

Suppose 𝐻1 and 𝐻2 are the individual remaining belief values unassigned, then 𝐻1 and 𝐻2 can 

be obtained as follows (Yang and Xu, 2002): 

H1 = 𝐻̅1 + 𝐻̃1 , H2 = 𝐻̅2 + 𝐻̃2                           (6) 

where 𝐻̅𝑛(𝑛 = 1 𝑜𝑟 2) represents the degree to which the other assessor can play a significant 

role in the assessment. 

𝐻̃𝑛(𝑛 = 1 𝑜𝑟 2), causes the likely incompleteness in subsets 𝑆1 and 𝑆2. 𝐻𝑛 (𝑛 =

1 𝑜𝑟 2) 𝑎𝑛𝑑 𝐻̃𝑛(𝑛 = 1 𝑜𝑟 2) can be described as follows: 

𝐻̅1 = 1-𝑤1 = 𝑤2 , 𝐻̅2 = 1-𝑤2 = 𝑤1 

𝐻̃1 = 𝑤1(1 − ∑ 𝛽1
𝑚5

𝑚=1 ) =  𝑤1[1 − (𝛽1
1 + 𝛽1

2 + 𝛽1
3 + 𝛽1

4 + 𝛽1
5)]                         (7) 

𝐻̃2 = 𝑤2(1 − ∑ 𝛽2
𝑚5

𝑚=1 ) = 𝑤1[1 − (𝛽2
1 + 𝛽2

2 + 𝛽3
2 + 𝛽4

2 + 𝛽2
5)]                             (8) 

Suppose 𝛽𝑚′
 (𝑚 = 1, 2, 3, 4 𝑜𝑟 5) represents the non-normalised degree to which the five 

condition monitoring expressions are confirmed as a result of the synthesis of the judgements 

obtained by assessors 1 and 2 respectively. Suppose 𝐻𝑈′ represents the non-normalised 

remaining belief unassigned after the commitment of belief to the five condition monitoring 

expressions because of the synthesis of the judgements obtained from assessors 1 and 2. 

The ER algorithm can be derived as follows (Yang and Xu, 2002): 

𝛽𝑚′
= 𝐾(𝑀1

𝑚𝑀2
𝑚 + 𝑀1

𝑚𝐻2 + 𝐻1𝑀2
𝑚)                     (9) 

𝐻𝑈′ = 𝐾(𝐻1𝐻2)                                 (10) 
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𝐻̃𝑈′ = 𝐾(𝐻̃1𝐻̃2 + 𝐻̃1𝐻̅2 + 𝐻̅1𝐻̃2)                                                 (11)   

𝐾 = [1 − ∑ ∑ 𝑀1
𝑇5

𝑅=1
𝑅≠1

5
𝑇=1 𝑀2

𝑅]
−1

                             (12) 

After the above aggregation, the combined degree of belief 𝛽𝑚 is generated by assigning 𝐻𝑈′ 

back to the five condition monitoring expressions in the normalisation process below (Yang 

and Xu, 2002): 

𝛽𝑚 =
𝛽𝑚′

1−𝐻̅
𝑈′

, (𝑚 = 1, 2, 3, 4, 5)                        (13) 

𝐻𝑈 = 
𝐻̃

𝑈′

1−𝐻̅
𝑈′

                            (14) 

where, 𝐻𝑈 is the unassigned degree of belief representing the level of incompleteness in the 

assessment. The process above highlights the sequence of combining two given sets. The 

algorithm can also be followed when encountering three or more sets in a hierarchical 

structure. If three subsets are required to be combined, the result obtained from the 

combination of any of the two subsets can be further synthesized with the third subset using 

the above algorithm. Similarly, the judgement of multiple assessors or the evaluations of the 

condition of the lower-level criteria in the chain systems (components or sub-components) can 

also be combined. 

2.2.2 Application of ER 

Over the years, ER has progressively been applied to diverse multi-attribute problems (Yang, 

2001), (Yang and Sen, 1997), (Wang et al., 1996), (Yang and Sen, 1996), (Wang et al., 1995), 

(Yang and Singh, 1994), and (Yang and Sen, 1994). The unique features of the ER approach 

have made it necessary for use in tailoring decisions that represent incomplete and subjective 

judgements for machinery condition monitoring. ER has been initiated for wider application in 

many real-world decision making issues (Zhou et al., 2010). Some areas in which it has been 

applies include: Strategic research and development projects’ assessments (Liu et al., 2008) 

and (Zhou et al., 2007); Experts systems (Beynon et al., 2001); Knowledge reduction (Wu et 

al., 2005); Oil reserve forecast (Zhang et al., 2005); Prequalifying construction contractors 

(Sonmez et al., 2002); Risk analysis (Srivastava and Liu, 2003), (Srivastava and Lu, 2002); 

Motor-cycle evaluation (Yang and Xu, 2002), (Yang, 2001), (Yang and Singh, 1994), (Yang 

and Sen, 1994); New product development (Chin et al., 2008); Marine system safety analysis 

and synthesis (Wang et al., 1996), (Wang et al., 1995); and General cargo ship design (Sen 

and Yang, 1998). 
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Riahi (2010) believes that in real-world decision making, ER applications have been found to 

have the following advantages:  

 Offers a rational and reproducible methodology to aggregate data in a hierarchical 

evaluation process. 

 Capability to provide users with greater flexibility by allowing them to express their 

judgement in a subjective and quantitative manner. 

 Capability to accept or represent the uncertainty and risk that is inherent in decision-

making. 

 Great effectiveness in processing and obtaining assessment outputs using mature 

computing software called Intelligent Decision System (IDS). 

 Capability to handle incomplete, uncertain, and vague data as well as complete and 

precise data. 

2.3 Degree of Membership 

Items can belong to a fuzzy set to different degrees known as degrees of membership. An 

item that is completely within a set has a membership degree of 1, while those completely 

outside a set have a membership degree of 0. All degrees of membership must sum to 1. An 

item can be both A and not-A to different degrees e.g. A to a degree of 0.8, not-A 0.2. Degrees 

of membership are expressed with membership functions. The range of values a variable can 

take is called the universe of discourse (Watts, n.d.). 

2.3.1 Membership functions 

A membership function, normally referred to as ‘MF’, describes the degree of membership of 

a value in a fuzzy set. Membership function can be expressed as 𝜇(𝑥) where x is the value 

being fuzzified. Depending on the problem being considered, any one of the singleton, 

rectangular, triangular and Gaussian membership functions can be used to solve that 

particular problem. 

2.3.2 Triangular membership functions (TMF) 

In this research, only triangular membership functions will be considered in detail. Amongst 

the various shapes of fuzzy numbers, the membership function of the triangular fuzzy number 

(TFN) is the most popular and frequently used. A triangular fuzzy number is a fuzzy number 

represented with three points, as follows:  

𝐴 =  (𝑎, 𝑏, 𝑐) 

This representation is interpreted as membership functions. 
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𝜇𝐴(𝑥) = {
(𝑥 − 𝑎)/(𝑏 − 𝑎),      𝑎 ≤ 𝑥 ≤ 𝑏
(𝑐 − 𝑥)/(𝑐 − 𝑏),       𝑏 ≤ 𝑥 ≤ 𝑐

 

where, 𝑎 and 𝑏 stand for the lower and upper bounds of the TFN respectively, and 𝑐 for the 

modal value. 

Insert Figure 1 here 

2.3.3 Linguistic variables 

A linguistic variable is a variable whose values are words or sentences in a natural or artificial 

language. According to Zadeh (1975), it is very difficult for conventional quantification to 

express reasonably those situations that are clearly complex or hard to define. Therefore, the 

concept of a linguistic variable is necessary in such situations. Linguistic variables are 

currently being used extensively. The linguistic effect values of the best metal element 

alternatives found in this study are primarily used to assess the linguistic ratings given by the 

evaluators. Here each membership function (scale of fuzzy number) is defined by three 

parameters of the symmetric triangular fuzzy number: the left point, middle point, and right 

point of the range over which the function is defined. Moreover, linguistic variables are used 

as a way to measure the performance value of the best metal element alternative for each 

criterion as “very good,” “good,” “fair,” “poor” and “very poor” (Chen et al., 2009). TFN, as 

shown in Figure 1, is used to indicate the membership functions of the linguistic terms. The 

horizontal axis indicates the quantitative number and the vertical axis indicates the degree of 

belief (membership value). If any quantitative number (𝑒. 𝑔.  ℎ𝑖) is found in the range of ℎ𝑛+1,𝑖  

(with a grade 𝐻𝑛+1) and ℎ𝑛,𝑖 (with a grade 𝐻𝑛), its belief degrees can be evaluated as follows: 

If ℎ𝑛,𝑖 < ℎ𝑖 < ℎ𝑛+1,𝑖 𝑡ℎ𝑒𝑛 𝛽𝑛,𝑖 = 
ℎ𝑛+1,𝑖 − ℎ𝑖

ℎ𝑛+1,𝑖 − ℎ𝑛,𝑖
                 (15) 

𝛽𝑛+1,𝑖 = 1 − 𝛽𝑛,𝑖                    (16) 

where,  𝛽𝑛,𝑖 is the degree of belief of the concerned quantitative number with the grade  𝐻𝑛, 

and 𝛽𝑛 +  1,𝑖 is the degree of belief of the concerned quantitative number with the grade 𝐻𝑛 +  1. 

3. Methodology 

The risk of major failures in marine and offshore machinery is an area that is not thoroughly 

addressed in academic literature. It is clear that complexity of the machinery stems from the 

interaction of their dependencies and the high levels of uncertainty in their operations make it 

extremely difficult to identify the vulnerability of the machinery in order to assess their risks. A 

survey conducted by Lloyd’s Register (2011) indicates that several slew bearings failures have 

occurred in cranes in recent years, with catastrophic consequences. Moreover, based on an 
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incident report by Aldridge (2012) and a case study by Konecranes (2012), gearbox 

malfunction is very common in ship cranes, while the crane reliability survey (CRS) shows that 

gearbox failures can result in catastrophic crane failure. The main obstacle in maintenance 

methodology that can be utilised by the marine and offshore industry is the difficulty of 

accommodating the differing types of information and processes of trend analysis, family 

analysis, design analysis, environmental analysis, and human reliability analysis. 

The proposed methodology will provide a framework to optimise the maintenance and 

inspection activities of the machinery using qualitative and quantitative risk-based techniques 

to help make the right decisions on how to improve the condition of marine and offshore 

machinery operating in a highly uncertain environment. The condition of the equipment is 

evaluated using a combination of different decision making techniques, such as AHP, ER, 

data mining process, and expected utility. This methodology is chosen because the research 

work is based on assessing the operational condition of different components in a machine to 

ascertain which components are prone to failure.  

The proposed methodology in stepwise regression is presented in the following sections. The 

flow diagram for evaluating the condition of machine is shown in Figure 2. 

Insert Figure 2 here 

3.1 Identification of Risk Criteria (Step one) 

It is very important for the decision makers to fully understand and have a clear picture of the 

whole problem before attempting to find a solution, especially when there are many criteria 

that need to be considered, which may in turn consist of sub-criteria and sometimes even sub-

sub-criteria. In such situations, the problem can be displayed in the form of a hierarchical 

structure. Using hierarchical order, the goal of the problem is indicated at the first level, while 

in the second level, there are several criteria, each of which contribute to measuring and 

helping to achieve the overall goal, some of these criteria can further be broken down. This 

process can continue up to the point where the decision makers are able to make practical 

evaluation. When constructing a hierarchical structure, it is important to pay attention to only 

significant criteria, in order to avoid a superfluously large model. 

Based on the literature review of the condition monitoring of the marine and offshore 

machinery, a generic model with a hierarchical structure is constructed. The main criteria, sub-

criteria, and sub-sub-criteria that contribute to the condition monitoring of the machinery (goal) 

are presented in Figure 3. The goal (E) of the condition monitoring is stated in the first level. 

In the second level, the main criteria (C1, C2, C3 and C4) contributing to the condition monitoring 

of the goal (E) are stated. Then in the third level, the sub-criteria {(C11, C12, C13,), (C21, C22, 



13 
 

C23), (C31, C32, C33), (C41, C42, C43)} contributing to the condition monitoring of the main criteria 

and the goal are stated. Then finally in the fourth level, sub-sub-criteria showing different 

contributions to measuring and achieving the goal of the problem are stated. However, this 

can be further broken down into sub-criteria sub-sub-sub-criteria until a point where decision 

makers can make practical and informed decisions on the lower level criteria.  

Insert Figure 3 here 

3.2  Application of Analytic Hierarchy Process (Step two) 

AHP is used to determine the weights of each risk factor by conducting a pair-wise 

comparison. TFN are used to calculate the preference of one criterion over another because 

of their computational simplicity in promoting representation of information in an uncertain 

environment. The comparison is usually based on an estimation scheme which places 

intensity of importance using qualitative variables. Each of the variables has a corresponding 

TFN that is employed to transfer experts’ judgement into a corresponding matrix. 

3.2.1 Experts composition 

Table 3 indicates the position, service time and the qualifications of the experts used for the 

survey. 

Insert Table 3 here 

3.3  Evaluation of Trend Analysis (TA) (Step three) 

Trend analysis is an aspect of technical analysis that tries to predict the future performance of 

machinery based on past data recorded. It is centred on the idea that what has happened in 

the past gives an idea of what will happen in the future. Trend analysis allows the development 

of a pattern of behaviour for a particular unit. This pattern of behaviour may develop within a 

short or long term period. In trend analysis, graphs of a condition-related parameter versus 

time can be utilized to determine when the parameter is likely to exceed a given limit. This 

time could be dates or running hours.  

The goal of a successful condition monitoring program is to predict the time of an expected 

breakdown well in advance of its occurrence in order to shut down the machine in ample time 

and allow for the ordering of spare parts for repairs, thus minimizing the shutdown time. 

According to Courrech and Eshleman (2014), all condition monitoring criteria indicate that 

equal changes on a log scale correspond to equal changes in severity; therefore, data for a 

trend analysis should be plotted on a logarithmic scale in decibels. A linear trend on a 

logarithmic scale is found occasionally, but the actual trend may follow another path. For 
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example, when the fault feeds back on the rate of deterioration (e.g. gear wear), the trend, 

when plotted on a logarithmic scale, may then be exponential. In some cases, the fault 

changes suddenly in finite steps, making it very difficult to extrapolate the time of the 

shutdown. An example is a spall caused by gradual subsurface fatigue.  

The following precautions are very vital in ensuring that accurate trend analysis is being 

obtained (Courrech and Eshleman, 2014): 

1. Determining a trend based on measurements of a parameter directly related to a 

specific type of fault, not on measurements of overall levels. 

2. Diagnosing faults before attempting to interpret a trend curve in order to:  

a) Select the appropriate parameter for the type of fault that is being monitored. 

For example, the parameter may be the level of an individual component, or of 

a selected frequency range. 

b) Observe critically the results of the trend analysis so as to determine if the linear 

or exponential interpolation is adequate. 

3. Employing a trend of the most recent measurements to obtain the best estimate of the 

lead time.  

Several techniques can be applied in evaluating trend data, such as standard deviations, 

averages, linear regression, etc. All of these techniques are intended to identify a condition 

that is not normal in relation to the equipment’s past behaviour. In this research, trend analysis 

is evaluated by means of quantitative data transformation (QDT). Each quantitative criterion 

(i.e. grease/oil sample element test result) is transformed to a qualitative criterion (i.e. linguistic 

variables with the associated belief degrees). 

3.4  Evaluation of Family Analysis (Step four) 

Family Analysis compares the results (e.g. wear metal levels) of groups of similar or identical 

machinery to identify the usual or typical pattern. The extraction of such information provides 

the data necessary to characterize operating cycles, maintenance schedules, periodic 

breakdowns, and most importantly, to identify and address abnormal failure rates before 

critical problems arise. In many cases, systems are grouped together to form a family. A family 

may consist of identical equipment located in one or many vessels. Equipment can also be 

grouped together based on: load, size, lubrication type, and operating parameters, such as a 

group of pumps on-board a vessel. In this way, the wear metal data can then be evaluated as 

a whole. The data for each component can then be compared to the family to evaluate its wear 

rate (Clarke 2005). 

In family analysis, component patterns are classified to obtain component groups, and 

machine patterns are also classified to machine groups. The machine component matrix is 
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arranged by placing components within a component group adjacently and repeating the same 

for the machine. The resulting matrix can then be inspected for bottleneck machines and the 

number of exceptional cells can be minimized. Comparable to the similarity coefficient in 

similarity coefficient methods, a degree of similarity between the obtained pattern and the ideal 

pattern is used. The similarity is measured to ensure whether the obtained pattern is properly 

classified or not (Dagli et al., 1995). However, when determining the family analysis of two 

similar systems, the similarity is compared with a pre-specified threshold. A different threshold 

can be specified for the classification of components and machines. From there a different 

degree of clustering is obtained for each threshold (as in the similarity coefficient method). 

Further, if there exists a family of five crane bearings in a vessel, and the average Tin (Sn) 

reading is 8ppm with 90% of the bearings reading less than 10ppm, it would be safe to assume 

that it is “normal” for these bearings to have less than 10ppm Tin (Sn) in their oil. However, if 

one of the bearings has a reading of 35ppm of Tin (Sn), it would be safe to say that its wear 

rate is “abnormal”. Actions can then be instigated to determine the cause of the higher wear 

rate and the problem could be corrected. This problem can be detected, identified, and 

resolved before the damage occurs on the equipment, thus saving a premature bearing failure 

and replacement costs. 

Clarke (2005) opines that family analysis techniques can have a significant impact on both 

large and small companies’ condition monitoring programmes. A large company can use such 

a programme to monitor large fleets of similar equipment among their plants, as well as 

benchmark the performance of individual plants. Conversely, a company with less equipment 

can use family analysis techniques to compare their equipment wear rates with equipment in 

many other plants, or taking advantage of the vast laboratory database of equipment data for 

comparison. 

The family analysis is also evaluated using a quantitative data transformation method. Unlike 

the trend analysis, in which only one deck crane was considered, in family analysis, two deck 

cranes (Port & Starboard) are being evaluated by calculating the standard deviations of the 

test results from the laboratory for each of the criterion (element). Each quantitative criterion 

is then transformed to a qualitative criterion by using TFNs. To move from inaction to action 

required status, standard deviations are calculated to reveal whether the failure modes under 

review are very similar and the standard deviation is low and predictable, using the following 

formula: 

Standard Deviation = √
∑(𝑥− 𝑥̅)2

(𝑛−1)
                    (17) 
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where 𝑥 is the sample mean average and 𝑛 is the sample size. 

3.5  Evaluation of Environmental Analysis (Step five) 

The health and performance of machinery as a whole is vitally important. Rather than focusing 

on the performance of one part, analysts look at everything together in order to obtain a more 

complete view of what is achievable and what problems might arise along the way. When 

machinery operators have comprehensive views of their internal and external environments, 

they are often better able to plan an effective growth strategy. At the same time, early threat 

identification allows operators to take timely action in developing a survival plan and setting 

remediation plans in motion to get the machinery back to good condition.  

Environmental analysis evaluates the environmental conditions under which the machinery is 

currently operating. Environmental conditions will be based on vibration measurement, 

velocity, and acceleration. However, in the current situation, there is no system to collect the 

data regarding the environmental conditions of the components involved. Good environmental 

analysis depends on a constant stream of pertinent information (Camponovo, et al., n.d.). In 

view of this, the test case will be handled in different types of environment, as suggested. 

3.6  Evaluation of Human Reliability (Step six) 

Human reliability analysis (HRA) will assess the operator's performance during the machinery 

operations practice. According to MAIB (2010), human error is a factor in the majority of marine 

machinery failures. Psaraftis et al. (2000)’s analysis of maritime accident reports indicated that 

most of the accidents had a human factor as the prevalent cause.  

Researchers have done several studies to evaluate human reliability. Riahi et al. (2012) 

assessed the reliability of a seafarer incorporating subjective judgement; in their assessment, 

Riahi et al. (2012) present a dynamic model capable of coping with changing conditions that 

affect the performance of a seafarer. Adams (1982) analysed the issues affecting human 

reliability; Askren (1967) evaluated the reliability of human performance in work; Meister 

(1964) produced a method of predicting human reliability in man machine systems; and Swain 

(1963) produced a method for performing a human factors reliability analysis. Given that 

extensive research works on evaluation of human reliability have been conducted by many 

researchers and experts, the test case on HRA will rely extensively on the results obtained by 

Riahi et al. (2012) from their assessment and evaluation of a seafarer’s reliability. 

3.7  Evaluation of Design Analysis (Step seven) 

Machinery and equipment for shipboard use is designed to operate successfully under severe 

conditions. Ship machinery systems incorporate all the on-board machinery that is used for 
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propulsion, manoeuvring, cargo handling, fresh water production, space heating, etc. This set 

of equipment constitutes the ship's energy conversion systems, often referred to as the marine 

energy system (Kakalis et al., 2012). These marine energy systems are designed to convert 

the chemical energy of the fuel (lubricants) to the forms required to be used in shipboard, and 

they tend to be highly complex, having many functions, with variable mission profiles, as well 

as requirements for flexibility, redundancy, and safety. In addition, the systems have to be 

cost-effective, energy efficient, and environmental friendly. In order to manage such 

complexity, it is imperative to adopt a structured and effective approach during the design 

phase. 

Design Analysis will assess the physical behaviour of the machinery and its component as 

specified by the manufacturer (good or bad). It is based on the prediction of the physical 

behaviour of just about any part or assembly, under any loading condition. 

3.8 Aggregation Operations on Criteria Results Using ER (Step eight) 

The ER algorithm is used to synthesise the risks in a hierarchical structure. Complex decision 

making problems are represented hierarchically in a structured and systematic manner, as 

constructed in the generic model shown in Figure 4. In order to find how well an alternative 

performs across all criteria, the lowest level criteria evaluation is transformed to the upper level 

and ultimately to the top level criterion. This complex process requires a robust and systematic 

decision making tool and ER is a method that can be tailored towards such situations where 

there is high uncertainty and imprecision in information processing. With the help of ER, the 

results obtained from AHP and the criteria are aggregated. 

Insert Figure 4 here  

3.9  Obtaining a Crisp Number for the Goal (Step nine) 

To obtain a single crisp number for the top-level criterion (goal) of each alternative, a utility 

approach is used in order to rank them. If the utility of an evaluation grade 𝐻𝑛 is denoted by 

𝑢(𝐻𝑛) 𝑎𝑛𝑑 𝑢(𝐻𝑛+1)  > 𝑢(𝐻𝑛), where 𝐻𝑛+1 is preferred to 𝐻𝑛, 𝑢(𝐻𝑛) can be estimated using the 

decision maker’s preferences. However, in a situation where no preference information is 

available, it could be assumed that the utilities of evaluation grades are equidistantly 

distributed in a normalised utility space. The utilities of evaluation grades that are equidistantly 

distributed in a normalised utility space are calculated as follows:  

𝑢(𝐻𝑛) =  
𝑉𝑛− 𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥− 𝑉𝑚𝑖𝑛
                     (18) 
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where, 𝑉𝑛 is the ranking value of the linguistic term 𝐻𝑛 that has been considered, 𝑉𝑚𝑎𝑥 is the 

ranking value of the most-preferred linguistic term 𝐻𝑁, and 𝑉𝑚𝑖𝑛 is the ranking value of the 

least-preferred linguistic term 𝐻1.  

The utility of the top-level or general criterion 𝑆(𝐸) is denoted by 𝑢(𝑆(𝐸)). If 𝛽𝐻  ≠ 0 (i.e. the 

assessment is incomplete, 𝛽𝐻 = 1 − ∑ 𝛽𝑛)𝑁
𝑛=1  there is a belief interval [𝛽𝑛, (𝛽𝑛 + 𝛽𝐻)], which 

provides the likelihood that 𝑆(𝐸) is assessed to 𝐻𝑛. Without loss of generality, suppose that 

the least-preferred linguistic term having the lowest utility is denoted by 𝑢(𝐻1) and the most 

preferred linguistic term having the highest utility is denoted by 𝑢(𝐻𝑁). Then according to Yang 

(2001), the minimum, maximum, and average utilities of 𝑆(𝐸) are defined as:  

𝑢𝑚𝑖𝑛(𝑆(𝐸)) =  ∑ 𝛽𝑛 𝑢(𝐻𝑛) + (𝛽1 + 𝛽𝐻)𝑢(𝐻1)

𝑁

𝑛=2

 

 

𝑢𝑚𝑖𝑛(𝑆(𝐸)) =  ∑ 𝛽𝑛 𝑢(𝐻𝑛) + (𝛽𝑁 + 𝛽𝐻)𝑢(𝐻𝑁)

𝑁−1

𝑛=1

 

 

𝑢𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑆(𝐸)) =  
𝑢𝑚𝑖𝑛(𝑆(𝐸))+ 𝑢𝑚𝑎𝑥(𝑆(𝐸))

2
                 (19) 

 
If all the assessments are complete, then 𝛽𝐻 = 0 and the maximum, minimum, and average 

utilities of 𝑆(𝐸) will be the same. Therefore, 𝑢(𝑆(𝐸)) can be calculated as: 

 

𝑢(𝑆(𝐸)) =  ∑ 𝛽𝑛 𝑢(𝐻𝑛)                                                                                                                                (20)

𝑁

𝑛=1

 

 
According to Riahi et al. (2012), an assessment based on a single value is much easier and 

more instinctive as a practical tool for a professional decision maker to rank the alternative. 

Thus, to obtain a single crisp number for the goal, the utility value associated with each 

linguistic term has to be calculated from Equations (18) to (20). 

3.10 Perform Sensitivity Analysis (Final step) 

It is humanly impossible to define a condition monitoring strategy that has every potential 

failure covered and it is equally very challenging to have good statistical data which reveals 

that the failure modes under review are very similar and the standard deviation is low and 

predictable. As a result, owing to the lack of precise data and the novelty of this model, it has 

not been possible to find any proven benchmark results for its full validation. Given such 

difficulties and challenges, a possible method for fully validating the model can be achieved 
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only by using an incremental process and through conducting more industrial case studies. 

The model that will be developed can then be refined and applied in real-world industrial 

applications. 

In view of the above, sensitivity analysis will be used to help validate the model. Sensitivity 

analysis refers to analysing how sensitive the model outputs are to a minor change in the 

inputs. The change may be a variation in the parameters of the model or may be changes in 

the belief degrees assigned to the linguistic variables used to describe the parameters. 

Sensitivity analysis is very useful when attempting to determine the impact the actual outcome 

of a particular variable will have if it differs from what was previously assumed. By forming a 

given set of scenarios, how changes in one variable will impact the target variable can be 

determined. If the methodology is sound and its conclusion reasoning is logical, then the 

sensitivity analysis must follow the following three axioms (Riahi et al., 2012): 

Axiom 1: A slight increment or decrement in the degree of belief associated with any linguistic 

variables of the lowest-level criteria will certainly result in a relative increment or decrement in 

the degree of belief of the linguistic variable and the preference degrees of the model output. 

Axiom 2: If the degree of belief associated with the highest-preference linguistic term of the 

lowest-level criterion is decreased by 𝑚 and 𝑛, simultaneously the degree of belief associated 

with its lowest-preference linguistic term is increased by 𝑚 and 𝑛 (1 > 𝑛 > 𝑚), and the utility 

values of the model output are evaluated as 𝑈𝑚 and 𝑈𝑛 respectively, then 𝑈𝑚 should be 

greater than 𝑈𝑛. 

Axiom 3: If 𝑆 and 𝑅 (𝑅 < 𝑆) criteria from all the lowest-level criteria are selected and the degree 

of belief associated with the highest-preference linguistic term of each of such 𝑆 and 𝑅 criteria 

is decreased by the same amount (i.e. simultaneously the degree of belief associated with the 

lowest-preference linguistic term of each of such 𝑆 and 𝑅 criteria is increased by the same 

amount) and the utility values of the model output are evaluated as 𝑈𝑅 and 𝑈𝑆 respectively, 

then 𝑈𝑅 should be greater than 𝑈𝑆. 

The implementation of the axioms will help to test the certainty of the delivery of the analysis 

result. The degrees of belief associated with the highest preference linguistic terms of each 

sub-criterion are decreased by 𝑘 and simultaneously, the degrees of belief associated with the 

lowest preference linguistic terms of the corresponding sub-criterion are increased by 𝑘. Thus, 

the corresponding results are obtained. It is worth noting that when the belief degree of the 

highest preference linguistic term 𝛽𝛼 of a criterion is decreased by 𝑘, simultaneously, the belief 

degree of its lowest preference linguistic term has to be increased by 𝑘. However, if 𝛽𝛼 is less 

than 𝑘, then the remaining belief degree (i.e. 𝑘 − 𝛽𝛼) can be taken from the belief degree of 
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the next linguistic term. This process continues until 𝑘 is consumed (Riahi et al., 2012). The 

comparative ship crane reliability (SCR) results obtained from this methodology are used to 

determine which crane’s components are susceptible to failure. The component with a low 

SCR value is identified as the one more prone to failure. 

4  Test Case 

In order to investigate the possibility of failure throughout the lifespan of a ship crane and 

during its operations, it is essential to monitor the conditions of its components (given in Figure 

4 as main criteria) in terms of their reliability during frequently changing sea and weather 

conditions, by evaluating the laboratory oil sample test results for these components (i.e. 

bearing, clutch, gearbox and hydraulic pump) based on the given absolute limits for oil. The 

operating condition of both port and starboard cranes in an FPSO operating within European 

nautical environments is evaluated based on the information given below. Furthermore, the 

disparity in their conditions during frequently changing sea and weather conditions is 

calculated. The characteristics of the cranes, the intended use, type, and size of the vessel, 

and the environment are listed as follows: 

1. Crane type: DONG Nam hydraulic crane on main deck – 10 Ton. 

2. Offshore crane used in floating production storage and offloading (FPSO). 

3. Crane arrangement: Port and Starboard. 

4. Degree of rotation: 3500. 

5. Environmental operating conditions: extremes temperature -200C to +450C. 

6. Personnel allowed to be lifted with the crane. 

7. The crane has an operator’s cabin. 

8. Lift Height/Depth: 1200m depth double fall. 

9. Overload alarm: set to 100% of Safe Working Load (SWL). 

10. The crane has the following main components: double-row ball bearing slewing rings, 

clutches, gearboxes, and hydraulic pumps. Regular oil/grease sample analysis is 

carried out for these components, and their laboratory test results are recorded. 

11. Using a crane for tasks outside its design intent can significantly increases safety risks, 

crane failures, and downtime. Consequently, taking into account indication of the 

design loads, life, and estimated average running time, the overall design of the crane 

was evaluated as being Good. 

Four experts were carefully selected to participate in the analysis. The experts’ backgrounds 

in the industry and their assigned weights are as shown in Table 4. 

Insert Table 4 here  
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4.1 Identification of Risk Criteria (Step one) 

Considering the generic model for monitoring the condition of the machinery (Figure 3) and 

the above information, a specific model (Figure 4) for monitoring the condition of a ship’s crane 

can be constructed. Analysis grades are assigned to all the criteria in the hierarchical structure 

and the qualitative and quantitative criteria are grouped. Four main criteria (bearing, clutch, 

gearbox, and hydraulic pump) and five sub-criteria (trend analysis, family analysis, 

environmental analysis, human reliability analysis, and design analysis) are identified for the 

ship crane.  

4.2 Application of Analytic Hierarchy Process Results (Step two) 

Questionnaires were sent to four experts (listed in Table 4) in the industry. The ratings for 

expert 1’s judgements are used as an example to show how the weights (priority vector) are 

determined. Following which, the ratings for the four experts’ judgement will be aggregated 

using the AHP software and the results will be shown. There will be one pair-wise comparison 

matrix for each criterion, within each matrix, the pair-wise comparisons will rate each sub-

criterion relative to every other sub-criterion. 

4.2.1 Development of the ratings for each decision alternative for each criterion 

Based on the five sub-criteria identified, five separate matrices have been developed 

accordingly: one matrix each for trend analysis (TA), family analysis (FA), environmental 

analysis (EA), human reliability analysis (HRA), and the design analysis (DA). Within each of 

the aforementioned five matrices, there will be pair-wise comparisons for each component 

against every other component relative to that criterion. Since there are five sub-criteria under 

evaluation, each matrix will be of size 5 x 5. Table 5 shows the pair-wise comparison matrix 

for the five criteria from Expert 1. From Table 5, using the comparison scale given in Table 2, 

Expert 1 determines that for the crane bearing: 

1. TA is strongly important over FA (5). 

2. TA is strongly to very strongly important over EA (6). 

3. TA is very strongly important over HRA (7). 

4. TA is strongly to very strongly important over DA (6). 

5. FA is equally to weakly important over EA (2). 

6. FA is strongly important over HRA (5). 

7. FA is equally important over DA (1). 

8. EA is weakly important over HRA (3). 

9. DA is strongly important over EA (5). 

10. DA is strongly important over HRA (5). 
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With the aforementioned pair-wise comparison values, a pair-wise comparison matrix can be 

constructed. Then the weights for trend analysis, family analysis, environmental analysis, 

human reliability analysis, and design analysis are computed. The 5 x 5 matrix in Table 5 

contains all of the pair-wise comparisons for the criteria. The "equally important" values shown 

along the upper left to lower right diagonal are comparing each criterion to itself and therefore, 

by definition, must be equal to one. The remaining values shown in the matrix represent the 

reciprocal pair-wise comparison of relationships previously mentioned. 

Insert Table 5 here  

From Table 5, the values in each row are multiplied together and the fifth root of the sub-

criteria is calculated and recorded as shown in Table 6. The fifth root of the sub-criteria values 

(and total) from the previous steps is normalized to obtain the appropriate weights (priority 

vector) for each criterion. The priority vector (PV) values are the criteria weights. The weights 

for each criterion must sum to one (i.e. the total priority vector), as shown in Table 6. 

Insert Table 6 here  

The pair-wise comparison values in each column are added together (as the “sum” values) 

and each sum is then multiplied by the respective weight (from the priority vector column) for 

those criteria to obtain values for SUM x PV. The aforementioned values (shown in the row 

labelled “Sum x PV”) are added together to yield a total of 5.459 and this value is called λ-

max. Note that unlike the weights for the criteria, which must sum to one, λ-max will not 

necessarily be equal to one. 

Using Equation (3), the consistency index (CI) is calculated as: 

CI = (λ-max – n) / (n-1); where n = 5 

CI = (5.459 – 5) / (5-1) = 0.459 / 4 = 0.115 

The CR is calculated by dividing the consistency index (CI) by a random index (RI), which is 

determined from a lookup table in Table 1. The RI is a direct function of the number of criteria 

or components being considered. Using Equation (2), CR is calculated as: 

CR = CI / RI 

The number of sub-criteria being considered in this test case is 5, thus, from Table 1, RI for 5 

is given as 1.12. 

CR = 0.115 / 1.12 = 0.10 
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If the CR ≤ 0.10, the decision maker's pair-wise comparisons are relatively consistent. In this 

case, the CR is 0.10, which indicates that the pair-wise comparisons are consistent and no 

correction action is necessary. 

Using the same method described above, pair-wise comparison values for Experts 2, 3 and 4 

are obtained and their pair-wise comparisons matrices constructed. Their corresponding CR 

are found to be less than or equal to 0.10, thus depicting that their pair-wise comparisons are 

also consistent.  

Similarly, the ratings and the pair-wise comparisons of the individual four experts for the 

remaining three components (clutch, gearbox, and hydraulic pump) and their corresponding 

CR are found to be consistent. 

4.2.2 Combining the four experts’ judgement to determine the pair-wise comparison 

matrix for each decision alternative for each criterion 

Based on the ratings from the four experts for the crane bearing, by applying Equation (1) and 

similar techniques used in Section 4.2.1, their value ratings can be combined to determine 

their pair-wise comparison values for the crane bearing, as shown in Table 7.  

Insert Table 7 here  

Similarly, the four experts’ combined pair-wise comparison values for the crane clutch, 

gearbox, and hydraulic pump are obtained as shown in Tables 8, 9, and 10 respectively. 

Insert Tables 8, 9 and 10 here  

4.2.3 Weight assignment 

Considering the four experts’ pair-wise comparison matrix of the five attributes (sub-criteria) 

for the main criteria, as shown in Tables 7 to 10, and based on Equations (1) to (4), the CR is 

calculated as 0.1 As a result, the weights of the five attributes can be accepted for use as 

shown in Table 11. 

Insert Tables 11 here  

4.3  Evaluation of Trend Analysis (Step three) 

Evaluation of trend analysis for the four main criteria (bearing, clutch, gearbox and hydraulic 

pump) is carried out by transforming the grease sample element test results from the crane 

bearing and the oil sample element test results from the clutch, gearbox, and hydraulic pump 

to a linguistic variable with the associated belief degree using TFNs illustrated in subsequent 

sections. Individual test elements are described utilizing five linguistic terms: Very Low, Low, 
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Average, High and Very High. The explanation of the linguistic terms describing individual 

scenario is given in Table 12. 

Insert Table 12 here  

4.3.1 Evaluation of trend analysis for the crane bearing 

Table 12 shows the laboratory test results obtained for grease samples taken from the port 

crane slewing bearing of a FPSO tanker mentioned in previous Section, while Table 13 shows 

the absolute limits for a crane bearing used grease sample obtained from a reputable oil 

company. In order to evaluate the trend analysis for this port crane bearing, each of the grease 

element test results listed in Table 12, with their corresponding limits in Table 13, is 

transformed to the linguistic variables with associated belief degrees. 

Insert Tables 13 and 14 here  

Iron (Fe) element in bearing grease samples: 

Based on experts’ opinions, the upper limit is found and the rules are written for iron (Fe) 

element with equal distributions, demonstrated as follows: 

1. If a crane bearing grease sample laboratory test has a result of 100ppm iron (Fe) or 

lower, then it can be categorised as 100% Very Low.  

2. If a crane bearing grease sample laboratory test has a result of 200ppm iron (Fe), then 

it can be categorised as 100% Low. 

3. If a crane bearing grease sample laboratory test has a result of 300ppm iron (Fe), then 

it can be categorised as 100% Average. 

4. If a crane bearing grease sample laboratory test has a result of 400ppm iron (Fe), then 

it can be categorised as 100% High. 

5. If a crane bearing grease sample laboratory test has a result of 500ppm iron (Fe) and 

above, then it can be categorised as 100% Very High. 

Based on the above rules, the membership functions of the iron (Fe) can be constructed as 

shown in Figure 5. 

Based on the stated rules and by viewing the iron (Fe) contents for the crane bearing grease 

test results as an independent criterion, the iron (Fe) contents of 20ppm to 43ppm indicate 

that the crane bearing is still in good condition. Thus, 20ppm to 43ppm iron (Fe) contents in a 

grease crane bearing can be categorised as 100% Very Low.  

Based on the information in Table 13, the laboratory test result for grease sample 1 indicates 

iron (Fe) contents of 27ppm. Based on Figure 6 and Equation (15), the belief degrees are 

calculated as follows: 
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𝐻𝑛+1 is the Very Low grade;  ℎ𝑛+1,𝑖 = 100 

ℎ𝑖 = 27,      27 < 100  

Thus, based on rule 1, the iron (Fe) contents in grease sample 1 test result set are assessed 

as: 

𝑭𝒆𝟏̃ = {(1, Very Low), (0, Low), (0, Average), (0, High), (0, Very High)} 

In the similar way, the iron (Fe) contents in grease samples 2 and 3 test result sets are 

assessed as: 

𝑭𝒆𝟐̃ = {(1, Very Low), (0, Low), (0, Average), (0, High), (0, Very High)} 

𝑭𝒆𝟑̃ = {(1, Very Low), (0, Low), (0, Average), (0, High), (0, Very High)} 

Using a similar technique, based on expert opinions, the upper limit is found and the rules for 

other elements are demonstrated (Asuquo, 2018). Based on the given rules, membership 

functions for the elements are constructed as shown in Figures 6 to 15. Based on the 

information in Table 13, the laboratory test results set for samples 1, 2, and 3 are assessed 

and their corresponding belief degrees are calculated and recorded as shown in Table 15. 

Thus, with the help of the ER algorithm, the trend analysis for the estimates of crane bearing 

grease samples 1, 2 and 3 can be aggregated as shown in Table 15. 

Insert Figures 5 to 15 here  

Insert Table 15 here  

4.3.2 Evaluation of trend analysis for the crane clutch 

Table 16 shows the laboratory test results obtained for the three oil samples taken from the 

port crane clutch at different intervals, while Table 17 shows the absolute limits for the crane 

clutch used oil sample. In order to evaluate the trend analysis for this port crane clutch, each 

of the oil element test results listed in Table 16 with their corresponding limits in Table 17 is 

transformed to linguistic variables with associated belief degrees (Asuquo, 2018). 

Insert Tables 16 and 17 here  

In a similar way, the metal elements were modelled based on the information given in Tables 

16 and 17. The trend analysis for the crane clutch oil samples 1, 2 and 3 is conducted and the 

results are shown in Table 18 (Asuquo, 2018).  

Insert Table 18 here  
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4.3.3    Evaluation of trend analysis for the crane gearbox 

Table 19 shows the laboratory test results obtained for the three oil samples taken from the 

port crane gearbox at different intervals, while Table 20 shows the absolute limits for the crane 

used gearbox oil sample. In order to evaluate the trend analysis for this port crane gearbox, 

each of the oil element test results listed in Table 19 with their corresponding limits in Table 

20 is transformed to linguistic variables with associated belief degrees (Asuquo, 2018). 

Insert Tables 19 and 20 here  

In a similar way, the trend analysis for the crane gearbox oil samples 1, 2 and 3 is conducted 

and the results are shown in Table 20 (Asuquo, 2018).  

Insert Table 21 here  

4.3.4 Evaluation of trend analysis for the crane hydraulic pump 

Table 22 shows the laboratory test results obtained for the three oil samples taken from the 

port crane hydraulic pump at different intervals, while Table 23 shows the absolute limits for 

the crane used hydraulic pump oil sample. In order to evaluate the trend analysis for this port 

crane hydraulic pump, each of the oil element test results listed in Table 22 with their 

corresponding limits in Table 23 is transformed to linguistic variables with associated belief 

degrees (Asuquo, 2018). 

Insert Tables 22 and 23 here  

In a similar way, the trend analysis for the crane hydraulic pump oil samples 1, 2 and 3 is 

conducted and the results are shown in Table 24 (Asuquo, 2018).  

Insert Table 24 here  

4.4  Evaluation of Family Analysis (Step four) 

Evaluation of family analysis for the four main criteria (bearing, clutch, gearbox and hydraulic 

pump) is carried out first by determining the standard deviations of the laboratory test results 

for each of the elements in the grease/oil samples from both port and starboard cranes, and 

then, by transforming the grease sample element test results from the two cranes’ bearings 

and the oil sample element test results from the two cranes’ clutches, gearboxes and hydraulic 

pumps to a linguistic variables with the associated belief degrees using TFNs, as illustrated in 

subsequent sections. 
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4.4.1 Evaluation of family analysis for crane bearing 

Table 25 shows the standard deviation of both the port and starboard ship deck crane obtained 

from their bearing grease samples laboratory test results taken for each element. To evaluate 

family analysis for each of the crane’s bearing, each standard deviation of the element in the 

crane’s bearing grease is transformed into linguistic variables with their associated belief 

degrees. 

Based on expert opinions and by equal distribution of standard deviation, the following rules 

are demonstrated for all the test elements in Table 25:  

1. If both cranes bearing grease sample laboratory test results have a standard deviation 

of 5 or lower, then it can be categorised as 100% Very Good.  

2. If both cranes bearing grease sample laboratory test results have a standard deviation 

of 10 to 15, then it can be categorised as 100% Good. 

3. If both cranes bearing grease sample laboratory test results have a standard deviation 

of 20 to 25, then it can be categorised as 100% Average. 

4. If both cranes bearing grease sample laboratory test results has a standard deviation 

of 30 to 35, then it can be categorised as 100% Bad. 

5. If both cranes bearing grease sample laboratory test results has a standard deviation 

of 40 and above, then it can be categorised as 100% Very Bad. 

Insert Table 25 here  

Iron (Fe) element in bearing grease samples: 

Based on the stated rules, the membership functions of iron (Fe) element in crane bearing 

grease samples can be constructed as shown in Figure 16. Then, by viewing the standard 

deviation in iron (Fe) element as an independent criterion, the 19.07 deviations in the grease 

samples laboratory test results for the two cranes bearings indicate medium iron (Fe) contents 

in the grease samples. Thus, 19.07 deviation in iron (Fe) contents can be categorised as 

partially Average and partially Good. 

Based on Figure 16 and Equation (15), the belief degrees are calculated as follows: 

𝐻𝑛+1 is the Average grade;  ℎ𝑛+1,𝑖 = 20 

𝐻𝑛 is the Good grade;  ℎ𝑛,𝑖 = 15 

ℎ𝑖 = 19,    15 < 19 < 20 

𝛽𝑛,𝑖 = 
20−19

20−15
= 

1

5
=  0.2 = 20% with the Good grade. 
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𝛽𝑛+1,𝑖 = 1 − 0.2 = 0.8 =  80% with the Average grade. 

Therefore, the standard deviation in iron (Fe) for the bearing grease samples set are assessed 

as:  

𝑭𝒆̃ = {(0, Very Good), (0.2, Good), (0.8, Average), (0, Bad), (0, Very Bad)} 

Similarly, the membership functions for other elements in Table 25 for the crane bearing 

grease samples are constructed as shown in Figures 17 to 26. The standard deviations for 

the oil samples set are assessed and their corresponding belief degrees are calculated and 

recorded in Table 26. With the help of the ER algorithm, the family analysis results for the 

crane bearing grease samples are recorded in Table 26. 

Insert Figures 16 to 26 here  

Insert Table 26 here  

4.4.2  Evaluation of family analysis for crane clutch 

Table 27 shows the standard deviation of both the port and starboard ship deck crane obtained 

from the clutch oil samples laboratory test results taken for each element. By applying the 

same techniques described in Section 4.4.1, and based on the information in Table 27, the 

family analysis results for the crane clutch oil samples are obtained and shown in Table 28 

(Asuquo, 2018). 

Insert Tables 27 and 28 here 

4.4.3  Evaluation of family analysis for crane gearbox 

Table 29 shows the standard deviation of both the port and starboard ship deck crane obtained 

from their gearbox oil samples laboratory test results taken for each element. Applying the 

same techniques described Section 4.4.1, and based on the information in Tables 29, the 

family analysis results for the crane gearbox oil samples are obtained and shown in Table 30 

(Asuquo, 2018). 

Insert Tables 29 and 30 here 

4.4.4  Evaluation of family analysis for crane hydraulic pump 

Table 31 shows the standard deviation of both the port and starboard ship deck crane obtained 

from their hydraulic oil samples laboratory test results taken for each element. Applying the 

same techniques described in Section 4.4.1, and based on the information in Table 31, the 
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family analysis results for the crane hydraulic pump oil samples are obtained and shown in 

Table 32 (Asuquo, 2018). 

Insert Tables 31 and 32 here 

4.5  Evaluation of Environmental Analysis (Step five) 

The ship crane operating environmental information is not readily available, making it difficult 

to know the exact environmental conditions during crane operations. With this lack of 

environmental data, the environmental conditions for the crane are assessed in different 

conditions of operation, with weights distributed evenly, when the environment is 100% very 

good, 100% good, 100% average, 100% bad, and 100% very bad, respectively. 

A ship crane operating in a 100% very good environment is assessed as: 

𝐸1̃ = {(0, Very Bad), (0, Bad), (0, Average), (0, Good), (1, Very Good)} 

A ship crane operating in a 100% good environment is assessed as: 

𝐸2̃ = {(0, Very Bad), (0, Bad), (0, Average), (1, Good), (0, Very Good)} 

A ship crane operating in a 100% average environment is assessed as: 

𝐸3̃ = {(0, Very Bad), (0, Bad), (1, Average), (0, Good), (0, Very Good)} 

A ship crane operating in a 100% bad environment is assessed as: 

𝐸4̃ = {(0, Very Bad), (1, Bad), (0, Average), (0, Good), (0, Very Good)} 

A ship crane operating in a 100% very bad environment is assessed as: 

𝐸5̃ = {(1, Very Bad), (0, Bad), (0, Average), (0, Good), (0, Very Good)} 

4.6  Evaluation of Human Reliability Analysis (Step six) 

Based on the research carried out by Riahi et al. (2012), the human reliability belief degrees 

for the crane bearing, clutch, gearbox and the hydraulic pump are assessed as: 

𝑯𝑹𝑨̃ = {(0.1649, High), (0.1958, Fairly High), (0.4355, Medium), (0.2038, Fairly Low), (0, Low)} 

4.7  Evaluation of Design Analysis (Step seven) 

Considering the four machine components (main criteria) of the crane, according to the crane 

manufacturer, these components are said to be in good condition. Thus, based on the 

manufacturer’s recommendation, the design analysis belief degrees for each crane bearing, 

clutch, gearbox, and the hydraulic pump, can be assessed as: 
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𝐷𝐴̃ = {(0, Very Bad), (0, Bad), (0, Average), (1, Good), (0, Very Good)} 

4.8  Aggregation Operations on Criteria Results using ER (Step eight) 

Aggregation operations on the sub-criteria and the main criteria are carried out using the ER 

algorithm (Equations (5) to (14)), and the weights (Table 10) obtained with the help of AHP, 

as follows. 

4.8.1  Aggregation of sub-criteria  

The sub-criteria (TA, FA, EA, HRA and DA) for crane bearing, clutch, gearbox, and hydraulic 

pump of sample 1 are aggregated and recorded as shown in Tables 33 to 36. Similarly, the 

sub-criteria for crane bearing, clutch, gearbox, and hydraulic pump of samples 2 and 3 are 

aggregated and results recorded in Tables 37 and 38. 

Insert Tables 33 to 38 here 

4.8.2 Aggregation of the main criteria 

Based on the expert judgements, the main criteria are equally important. Therefore, the 

weights for the main criteria are evenly distributed among them. Samples 1, 2 and 3 estimates 

– (B1, C1, G1, H1), (B2, C2, G2, H2) and (B3, C3, G3, H3) respectively – are aggregated with the 

help of the ER algorithm and the results are presented in Tables 39, 40 and 41. 

Insert Tables 39, 40 and 41 here 

4.9  Obtaining a Crisp Number for the Goal (Step Nine) 

Based on Tables 39, 40, and 41, the estimates for the crane’s condition (i.e. Goal) of samples 

1, 2, and 3 are obtained as S1, S2 and S3 respectively. 

To obtain a single crisp value for each of the three samples, the utility value associated with 

each linguistic term is calculated using Equations (18) to (20) as shown in Table 42. 

Considering the fact that the estimate for the crane (Goal) is characterised by five linguistic 

terms, the highest preference is given to the Very Good linguistic term, while the lowest 

preference is given to the Very Bad linguistic term. Therefore, the ranking value is apportioned 

from five (i.e. highest preference) to one (i.e. lowest preference).  

Insert Table 42 here 

The crane’s assessments, as shown in Table 42, are complete. The utility values of the crane 

based on sample 1 (S1), sample 2 (S2), and sample 3 (S3), as shown in Table 42, are 

calculated to be:  
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S1 = 0.8548,                        S2 = 0.9500,                          S3 = 0.9123 

From the utility values obtained, it can be noted that sample 2 (S2) scores the highest utility 

value of 0.950. From these results it can be deduced that the crane’s condition was not very 

good when oil sample 1 was being taken from the components and sent for testing, then the 

condition was improved when oil sample 2 was taken, but started deteriorating when oil 

sample 3 was taken. However, it may be argued that either the oil topping or sampling intervals 

can influence the results. 

Similarly, to assess the condition of the main criteria, the utility values for each main criterion 

in samples 1, 2, and 3 are calculated and the results shown in Tables 39, 40, and 41 

respectively. 

4.10 Sensitivity Analysis (Final step) 

To test the certainty of the delivery of the analysis results, the three axioms mentioned in 

Section 3.10 are used in the sample 2 input data (details in Tables 5-3E to 8-3E of Appendix 

3E (Asuquo, 2018)). The degrees of belief associated with the highest preference linguistic 

values of all the combined sub-criteria are decreased by 0.2, while simultaneously increasing 

the degrees of belief associated with the lowest preference linguistic values of each of the 

combined sub-criteria (see details in Tables 1-3F to 4-3F of Appendix 3F (Asuquo, 2018)). 

The aggregation results obtained are shown in Table 43. All the results obtained remain in 

harmony with axioms 1 and 2. Also, by using a similar technique to that described in Section 

4.9, the crane’s utility value from a 0.2 decrement of sample 2 input data is evaluated to be 

0.7774, as shown in Table 43. 

To examine the alignment of the model with axiom 3, each original estimate for sample 2 in 

Table 37 is varied with the 0.2 decrement in Table 43 (see details in Tables 1-3G to 4-3G of 

Appendix 3G (Asuquo, 2018)). The results obtained are shown in Table 44. The comparative 

utility values (ship crane reliability) for the crane bearing (B2), clutch (C2), gearbox (G2), and 

hydraulic pump (H2) obtained are also listed in Table 44 and shown in Figure 27. The lowest 

utility value of the ship crane is evaluated as 0.909. In view of the fact that 0.7774 (value of 

aggregation result in Table 43) is smaller than 0.909, this means that the result is aligned with 

Axiom 3. 

Insert Tables 43 and 44 here 

Insert Figure 27 here 

From Figure 27, it can be seen that the differences between the ship crane components 

(bearing, clutch, gearbox and hydraulic pump) are relatively marginal. However, with both the 
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crane bearing (B2) and the gearbox (G2) having the lowest values (0.909 and 0.912 

respectively), it is obvious that the ship crane is more sensitive to the bearing (B2) and gearbox 

(G2) than to the other two components. Therefore, the ranking orders in Figure 27 are 

consistent with those given by Lloyd’s Register (2011), Aldridge (2012) and Konecranes 

(2012). 

5  Discussions 

This paper outlines a novel methodology for evaluating a ship’s crane performance by means 

of its conditional reliability. The methodology for evaluating a ship’s crane reliability and the 

procedure for applying it in a real life scenario has been illustrated in the case study in Section 

4. This model is one of the first to concede that a ship’s crane reliability value is not fixed and 

it may change due to factors, such as the trend analysis (i.e. pattern of behaviour developed 

over a period of time), family analysis (i.e. typical identical pattern of behaviour), environmental 

analysis (i.e. changes in the sea state), human reliability analysis (i.e. operator’s well-being), 

and design analysis (i.e. crane’s physical behaviour as stated by the manufacturer).  

For example, if the grade a ship’s crane bearing in design analysis is very bad, and the grade 

of the environment (sea and weather conditions) is very rough, then owing to the roughness 

of the sea, hostile weather condition and instability of the ship, the engineer on-board would 

only be able to carry out limited scheduled maintenance work such as oiling, greasing, etc. on 

the crane’s bearing. Thus, the crane grade will decrease from a good grade to an average 

grade. As a result, the reliability of the crane will alter. Therefore, during the conceptual stage 

of the ship’s crane bearing design, the manufacturer should take into consideration uncertain 

environmental conditions throughout the life cycle of the crane bearing. Based on the analysis 

results, it can be deduced that if the grade in a ship’s crane bearing is very high (0.874 in 

Table 40), then the crane’s reliability value is about 39% more than that of the same crane 

with low bearing grade (0.6268 in Table 39). 

The gearbox is another component that can significantly influence a ship’s crane reliability. 

Based on the analysis, it can be deduced that if the grade in a ship’s crane gearbox is very 

high (0.9095 in Table 40), then the crane’s reliability value is about 20% more than that of the 

same crane with a very low gearbox grade (0.7590 in Table 39). Furthermore, according to 

Figure 27, the analyses give emphasis to the importance of design, inspections, and condition 

monitoring in a ship’s crane components. 

The evaluation of a ship crane’s condition monitoring results can be used to develop a 

preventive measure against incidents. This can be achieved by correctly measuring the 

crane’s condition and regularly taking oil samples from the crane’s components and analysing 
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it as scheduled. The grade of a ship crane’s condition monitoring result is significant in 

identifying and taking preventive measures against incidents at sea, as well as in ports, and 

for ensuring the appropriate condition of operations on-board.  

A ship’s crane design is highly dependent on the crane’s manufacturer and the ship owner’s 

requirements, whereas, the ship’s crane trend analysis, family analysis, and human reliability 

analysis are highly dependent on the ship owner’s strategies. Unfortunately, not much can be 

done with regards to the environmental analysis, as this is a natural phenomenon that is not 

dependent on either the ship owner or the ship crane manufacturer. However, with proper ship 

crane design and the implementation of correct condition monitoring strategies, the 

environmental impacts can be significantly reduced and well managed, therefore leading to a 

reduction in the frequency of ship crane incidents. Furthermore, a well-structured maintenance 

regime, in accordance with the recommendations from original equipment manufacturers 

(OEMs), Port State Control, classification societies and certifications, can reduce the chances 

of unexpected defects occurring and can ultimately improve the reliability and operational life 

of the crane. 

3.6  Conclusion 

This research proposes a novel approach to monitor the ship’s crane risk of failure in a 

systematic fashion. The usefulness of the approach is demonstrated for condition-based 

decision-making. The approach outlines how a subjective condition-based decision making 

process can be achieved during situations of high uncertainties in ship’s crane operations. 

The subjective condition monitoring of the investigated system parameters was first carried 

out using an AHP approach, then assessment grades were mapped into a common utility 

space before synthesizing for robust decision-making. This generic approach has highlighted 

a unique feature associated with the performance and unification of input and output data.  

The ER approach employed provides a procedure for aggregation which can preserve the 

original features of multiple attributes under high and imprecise situations. The inclusion of 

trend analysis, family analysis, environmental analysis, human reliability, and design analysis 

to the ship's crane condition monitoring approach will help to ensure that findings are 

incorporated within the maintenance management process for future reference. If each of the 

analyses is applied to each wear metal for each crane component tested in a programme, the 

data evaluation process will become too clumsy. Therefore, realistically, the ideal analysis 

programme would be a combination of the five analysis techniques discussed in this research 

work. 
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It can therefore be reasonably expected that the application of this approach will facilitate that 

the machinery system is maintained to cope with the uncertain environment it is operating in. 

As revealed in the final result, the developed approach does provide a level of confidence in 

monitoring the condition of a ship’s crane components. Component manufacturers often 

define limits for single parameters that have a direct impact on the component’s lifetime or 

performance, for example, a roller bearing manufacturer can state that a bearing can reach 

the calculated fatigue lifetime only if the contamination level is within a certain range. Although 

this information is valuable, it is often too general and limited to certain aspects of an oil 

sample. Therefore, component limits are a good reference point if OEM limits are not provided. 
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Figure 27: Sensitivity of the Model Output to the Variation of the Alteration with Original 

          in each Main Criterion 

 
 
  

 

 

0.904

0.906

0.908

0.91

0.912

0.914

0.916

0.918

B2 C2 G2 H2

Condition Value

Very Bad Bad Average Good Very Good 

5 15 25 35 45 

1 

0 SD 

Silicon  
( Si ) 

Figure 25: Membership Function of the Silicon (Si) Element  

10 20 30 40 
24 

Very BadBadAverageGood
Very Good

5 15 25 35 45

1

0
SD

Aluminium 
(Al)

Figure 26: Membership Function of the Aluminium (Al) Element

10 20 30 40



Table 1: Value of RI versus Matrix Order 

n 1 2 3 4 5 6 7 8 9 10 

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 

Source: Hypothetical data [Saaty, (1990)] 

Table 2: Comparison Scale 

Relative Importance of 
Attribute (Scale) 

 
Definition 

1 Equal importance (EQI) 

3 Moderate importance of one over another (MI) 

5 Essential or strong importance (SI) 

7 Very strong importance (VSI) 

9 Extreme importance (EI) 

 
2, 4, 6, 8 

Intermediate values between the two adjacent judgements (Int2, Int4, 
Int6, Int8) 

Source: Hypothetical data [Saaty, (1990)] 

Table 3: Composition of Experts 

Composition Classification 

Industry Position Production Manager, Cargo Officer, Maintenance Engineer, 

and Captain 

Service Time >  30 years 

Academic Qualification  Master degree 

 Bachelor degree 

 HND 

 Class 1 Certificate of Competency 

 

Table 4: Weighting of Expert Judgments 

Number of 
Decision Makers 

 
Industrial Position 

 
Service Period 

Academic 
Qualification 

 
Experts’ Weights 

DM1 Production Manager > 30 years MSc 0.25 

DM2 Senior Cargo Officer > 30 years HND 0.25 

DM3 Senior Maintenance 
Engineer 

> 30 years 1st Degree 0.25 

 
DM4 

 
Ship Captain 

 
> 30 years 

Class 1 Certificate of 
Competency 

 
0.25 

 Total = 1 

 

Table 5: Expert 1 Pair-wise Comparison Matrix for the Five Criteria 

Crane Bearing TA FA EA HRA DA 

TA 1 5 6 7 6 

FA 0.2 1 2 5 1 

EA 0.167 0.5 1 3 0.2 

HRA 0.143 0.2 0.333 1 0.2 

DA 0.167 1 5 5 1 

 



Table 6: Developing Expert 1 Rating for each Decision Alternative for the Crane Bearing 

 
Crane Bearing 

 
TA 

 
FA 

 
EA 

 
HRA 

 
DA 

5th Root of 
Component 

 
PV 

TA 1 5 6 7 6 4.169 0.557 

FA 0.2 1 2 5 1 1.149 0.154 

EA 0.167 0.5 1 3 0.2 0.549 0.073 

HRA 0.143 0.2 0.333 1 0.2 0.286 0.038 

DA 0.167 1 5 5 1 1.331 0.178 

SUM 1.677 7.7 14.333 21 8.4 7.484 1.000 

SUM * PV 0.934 1.186 1.046 0.798 1.495 5.459  

Lambda-max = 5.459 

CI = 0.115 

CR = 0.103 

 

 

Table 7: Combined Pair-Wise Comparison Matrix for Crane Bearing 

Crane Bearing TA FA EA HRA DA 5th Root  PV 

TA 1 4.4 3.31 4.527 2.783 2.836 0.484 

FA 0.226 1 0.574 3.663 1.186 0.562 0.096 

EA 0.302 1.732 1 2.711 0.603 0.969 0.165 

HRA 0.220 0.272 0.368 1 0.254 0.354 0.060 

DA 0.359 0.841 1.655 3.936 1 1.144 0.195 

SUM 2.107 8.245 6.907 15.837 5.826 5.865 1.000 

SUM * PV 1.019 0.791 1.139 0.950 1.136 5.035  

Lambda-max = 5.035 

CI = 0.087 

CR = 0.077 

 

Table 8: Combined Pair-Wise Comparison Matrix for Crane Clutch 

Crane Clutch TA FA EA HRA DA 5th Root PV 

TA 1 3.344 4.606 5.144 4.949 3.301 0.503 

FA 0.299 1 1.778 3.499 0.841 1.094 0.167 

EA 0.217 0.562 1 1.861 0.379 0.612 0.093 
HRA 0.193 0.286 0.537 1 0.293 0.387 0.059 

DA 0.203 1.189 2.632 3.409 1 1.167 0.178 

SUM 1.912 6.381 10.553 14.913 7.462 6.561 1.000 

SUM * PV 0.962 1.066 0.981 0.879 1.328 5.216  

Lambda-max = 5.216 

CI = 0.054 

CR = 0.05 

 

Table 9: Combined Pair-Wise Comparison Matrix for Crane Gearbox 

Crane Gearbox TA FA EA HRA DA 5th Root PV 

TA 1 4.729 4.729 6.117 4.162 3.557 0.524 

FA 0.212 1 1.861 4.401 1 1.117 0.165 

EA 0.212 0.537 1 2.059 0.595 0.674 0.099 

HRA 0.163 0.228 0.485 1 0.255 0.341 0.050 

DA 0.239 1 1.682 3.936 1 1.096 0.162 

SUM 1.826 7.494 9.757 17.513 7.012 6.785 1.000 

SUM * PV 0.957 1.237 0.966 0.876 1.136 5.172  

Lambda-max = 5.172 
CI = 0.043 

CR = 0.04 

 

 

Table 10: Combined Pair-Wise Comparison Matrix for Crane Hydraulic Pump 



Crane Hydraulic 
Pump 

 
TA 

 
FA 

 
EA 

 
HRA 

 
DA 

 
5th Root 

 
PV 

TA 1 4.472 4.229 3.873 3.761 3.076 0.485 

FA 0.224 1 1.732 4.162 1.189 1.139 0.181 
EA 0.236 0.577 1 2.449 0.904 0.787 0.124 

HRA 0.258 0.239 0.408 1 0.302 0.377 0.059 

DA 0.265 0.841 1.107 3.309 1 0.960 0.151 

SUM 1.983 7.129 8.476 14.793 7.156 6.339 1.000 

SUM * PV 0.962 1.290 1.051 0.873 1.081 5.257  

Lambda-max  = 5.257 

CI = 0.064 

CR = 0.057 

 

Table 11. Weights of the Sub-Criteria 

 
Sub-Criteria 

Crane 
Bearing 

Crane 
Clutch 

Crane 
Gearbox 

Crane 
Hydraulic Pump 

Trend Analysis 0.484 0.503 0.524 0.485 

Family Analysis 0.096 0.167 0.165 0.181 

Environmental Analysis 0.165 0.093 0.099 0.124 

Human Reliability Analysis 0.060 0.059 0.050 0.059 

Design Analysis 0.195 0.178 0.162 0.151 

 
Table 12: Description for Test Elements and General Interpretation 

Linguistic Term for Test 
Elements 

 
General Interpretation 

Very Low Wear particles present in small quantities. Acceptable amount of normal wear particles. 

Low Wear particles present in small quantities. Acceptable amount of normal wear particles. 

Average Wear particles present in medium quantities. Acceptable amount of normal wear particles. 
High Wear particles present in high quantities. Unacceptable amount of normal wear particles. 

 
Very High 

The wear metals content is higher than normal. The crane should be stopped for 
investigation. 

 
Table 13: Grease Sample Report for Ship Port Crane Bearing 

Elements Sample 3 Sample 2 Sample 1 

Iron (Fe) mg/kg 43 20 27 

Chromium (Cr) mg 0 0 5 

Molybdenum (Mo) 0 0 0 

Tin (Sn) mg/kg 15 0 0 

Lead (pb) mg/kg 45 5 14 

Copper (Cu) mg/k 122 0 14 

Sodium (Na) mg/k 84 59 0 

Magnesium (Mn) m 0 24 0 

Nickel (Ni) mg/k 5 1 72 

Aluminium (Al) m 13 22 174 

Silicon (Si) mg/k 8 51 30 

Data source: From a reputable lubricants manufacturer 

Table 14: Absolute Limits for Crane Bearing Used Grease Sample 

Test Upper Attention Upper Action 

Iron (Fe) 500 750 

Chromium (Cr) 8 11 

Molybdenum (Mo) 40 50 

Tin (Sn) 40 60 

Lead (Pb) 15 20 

Copper (Cu) 15 20 

Sodium (Na) 150 200 

Magnesium (Mg) 90 100 

Nickel (Ni) 5 8 

Aluminium (Al) 90 150 

Silicon (Si) 150 250 

Data source: A reputable lubricants manufacturer 

Table 15: Estimates for Crane Bearing Grease Samples – Trend Analysis 



Test 
Elements 

 
Estimates for Sample 1 

 
Estimates for Sample 2 

 
Estimates for Sample 3 

Iron (Fe) {(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Chromium 
(Cr) 

{(0, Very Low), (0, Low), (0.875, 
Average), (0.125, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Tin (Sn) {(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(0.125, Very Low), (0.875, Low), 
(0, Average), (0, High), (0, Very 
High)} 

Molybdenum 
(Mo) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)},  

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)},  

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)},  

Lead (Pb) {(0, Very Low), (0, Low), (0, 
Average), (0.33, High), (0.67, Very 
High)} 

{(0.33, Very Low), (0.67, Low), 
(0, Average), (0, High), (0, Very 
High)} 

{(0, Very Low), (0, Low), (0, 
Average), (0, High), (1, Very 
High)} 

Copper (Cu) {(0, Very Low), (0, Low), (0, 
Average), (0.33, High), (0.67, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(0, Very Low), (0, Low), (0, 
Average), (0, High), (1, Very 
High)} 

Sodium (Na) {(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(0.03, Very Low), (0.97, Low), 
(0, Average), (0, High), (0, Very 
High)} 

{(0, Very Low), (0.2, Low), (0.8, 
Average), (0, High), (0, Very 
High)} 

Magnesium 
(Mg) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(0.66, Very Low), (0.34, Low), 
(0, Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Nickel (Ni) {(0, Very Low), (0, Low), (0, 
Average), (0, High), (1, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(0, Very Low), (0, Low), (0, 
Average), (0, High), (1, Very 
High)} 

Aluminium 
(Al) 

{(0, Very Low), (0, Low), (0, 
Average), (0, High), (1, Very High)} 

{(0.77, Very Low), (0.23, Low), 
(0, Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Silicon (Si) {(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(0.3, Very Low), (0.7, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

 
Aggregation 
Result 

{(0.5858, Very Low), (0, Low), 
(0.0664, Average), (0.0611, High), 
(0.2867, Very High)} 

{(0.7828, Very Low), (0.2172, 
Low), (0, Average), (0, High), 
(0, Very High)} 

{(0.6041, Very Low), (0.0831, 
Low), (0.0609, Average), (0, 
High), (0.2519, Very High)} 

Source: Test case data 

 

Table 16: Grease Sample Report for Ship Port Crane Clutch 

Elements Sample 3 Sample 2 Sample 1 

Iron (Fe) mg/kg 6 8 8 

Chromium (Cr) mg 0 0 0 

Molybdenum (Mo) 0 0 0 

Tin (Sn) mg/kg 1 0 1 

Lead (Pb) mg/kg 1 1 2 

Copper (Cu) mg/k 5 6 5 

Aluminium (Al) m 1 0 0 

Silicon (Si) mg/k 4 5 4 

Vanadium (V) mg/k 9 10 8 

Data source: From a reputable lubricants manufacturer 

Table 17: Absolute Limits for Crane Clutch Oil Tests 

Test Upper Attention Upper Action 

Iron (Fe) 45 68 

Chromium (Cr) 5 8 

Molybdenum (Mo) 6 8 

Tin (Sn) 10 15 

Lead (Pb) 5 11 

Copper (Cu) 22 32 

Aluminium (Al) 10 15 

Silicon (Si) 35 55 

Vanadium (V) 40 53 

Data source: From a reputable lubricants manufacturer 



Table 18: Estimates for Crane Clutch Oil Samples – Trend Analysis 

Test 
Elements 

 
Estimates for Sample 1 

 
Estimates for Sample 2 

 
Estimates for Sample 3 

Iron (Fe) {(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Chromium 
(Cr) 

{(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Molybdenum 
(Mo) 

{(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Tin (Sn) {(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Lead (Pb) {(0, Very Low), (1, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Copper (Cu) {(0.86, Very Low), (0.14, Low), (0, 
Average), (0, High), (0, Very High)} 

{(0.64, Very Low), (0.36, Low), 
(0, Average), (0, High), (0, Very 
High)} 

{(0.86, Very Low), (0.14, Low), 
(0, Average), (0, High), (0, Very 
High)} 

Aluminium 
(Al) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Silicon (Si) {(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Vanadium 
(V) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(0.75, Very Low), (0.25, Low), 
(0, Average), (0, High), (0, Very 
High)} 

{(0.875, Very Low), (0.125, Low), 
(0, Average), (0, High), (0, Very 
High)} 

Aggregation 
Result 

{(0.9134, Very Low), (0.0866, 
Low), (0, Average), (0, High), (0, 
Very High)} 

{(0.9562, Very Low), (0.0438, 
Low), (0, Average), (0, High), 
(0, Very High)} 

{(0.9818, Very Low), (0.0182, 
Low), (0, Average), (0, High), 
(0, Very High)} 

Source: Test case data 

 

Table 19: Oil Sample Report for Ship Port Crane Gearbox 

Test Elements Sample 3 Sample 2 Sample 1 

Water Content %v 0.1 0 0 

Total Acid Number (TAN) 0.31 0.42 0.37 

Iron (Fe) mg/kg 13 11 15 

Chromium (Cr) mg 0 0 0 

Molybdenum (Mo) 187 259 513 

Tin (Sn) mg/kg 3 0 22 

Lead (Pb) mg/kg 0 0 0 

Copper (Cu) mg/k 31 29 36 

Sodium (Na) mg/k 0 3 0 

Aluminium (Al) m 4 3 6 

Silicon (Si) mg/ 4 4 9 

Vanadium (V) mg/ 0 0 0 

Data source: From a reputable lubricants manufacturer 

Table 20: Absolute Limits for Crane Gearbox Oil Tests 

Test Upper Attention Upper Action 

Water Content 0.1 0.21 

Total Acid No. (TAN) 1.5 2.5 

Iron (Fe) 60 98 

Chromium (Cr) 4 6 

Molybdenum (Mo) 6 9 

Tin (Sn) 7 9 

Lead (Pb) 28 47 

Copper (Cu) 36 60 

Aluminium (Al) 7 10 

Silicon (Si) 30 40 

Sodium (Na) 30 40 

Vanadium (V) 5 10 

Data source: From a reputable lubricants manufacturer 



Table 21: Estimates for Crane Gearbox Oil Samples – Trend Analysis 

Test 
Elements 

 
Estimates for Sample 1 

 
Estimates for Sample 2 

 
Estimates for Sample 3 

Water 
Content 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(0, Very Low), (0, Low), (0, 
Average), (0, High), (1, Very 
High)} 

TAN {(0.76, Very Low), (0.24, Low), (0, 
Average), (0, High), (0, Very High)} 

{(0.6, Very Low), (0.4, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(0.96, Very Low), (0.04, Low), 
(0, Average), (0, High), (0, Very 
High)} 

Iron (Fe) {(0.75, Very Low), (0.25, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(0.92, Very Low), (0.08, Low), 
(0, Average), (0, High), (0, Very 
High)} 

Chromium 
(Cr) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Molybdenum 
(Mo) 

{(0, Very Low), (0, Low), (0, 
Average), (0, High), (1, Very High)} 

{(0, Very Low), (0, Low), (0, 
Average), (0, High), (1, Very 
High)} 

{(0, Very Low), (0, Low), (0, 
Average), (0, High), (1, Very 
High)} 

Tin (Sn) {(0, Very Low), (0, Low), (0, 
Average), (0, High), (1, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(0, Very Low), (0.85, Low), 
(0.15, Average), (0, High), (0, 
Very High)} 

Lead (Pb) {(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Copper (Cu) {(0, Very Low), (0, Low), (0, 
Average), (0, High), (1, Very High)} 

{(0, Very Low), (0, Low), (0, 
Average), (0.97, High), (0.03, 
Very High)} 

{(0, Very Low), (0, Low), (0, 
Average), (0.69, High), (0.31, 
Very High)} 

Aluminium 
(Al) 

{(0, Very Low), (0, Low), (0, 
Average), (0.71, High), (0.29, Very 
High)} 

{(0, Very Low), (0.85, Low), 
(0.15, Average), (0, High), (0, 
Very High)} 

{(0, Very Low), (0.14, Low), 
(0.86, Average), (0, High), (0, 
Very High)} 

Silicon (Si) {(0.5, Very Low), (0.5, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Sodium (Na) {(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Vanadium 
(V) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Aggregation 
Result 

{(0.6331, Very Low), (0.0694, 
Low), (0, Average), (0.0484, 
High), (0.2491, Very High)} 

{(0.7812, Very Low), (0.0816, 
Low), (0.0096, Average), 
(0.0618, High), (0.0658, Very 
High)} 

{(0.6298, Very Low), (0.079, 
Low), (0.0713, Average), 
(0.0482, High), (0.1717, Very 
High)} 

Source: Test case data 

 

Table 22: Oil Sample Report for Ship Port Crane Hydraulic Pump 

Test Elements Sample 3 Sample 2 Sample 1 

Water Content %v 0 0 0 

Iron (Fe) mg/kg 0 0 1 

Chromium (Cr) mg 0 0 0 

Molybdenum (Mo) 0 0 0 

Tin (Sn) mg/kg 0 0 0 

Lead (Pb) mg/kg 0 0 0 

Copper (Cu) mg/k 0 9 7 

Sodium (Na) mg/k 0 9 0 

Aluminium (Al) m 0 0 0 

Silicon (Si) mg/ 0 0 0 

Vanadium (V) mg/ 0 0 0 

Data source: From a reputable lubricants manufacturer 

 

 

 

 



Table 23: Absolute Limits for Crane Hydraulic Pump Oil Tests 

Test Upper Attention Upper Action 

Water Content 0.2 0.5 

Iron (Fe) 23 36 

Chromium (Cr) 6 10 

Molybdenum (Mo) 6 10 

Tin (Sn) 6 10 

Lead (Pb) 8 13 

Copper (Cu) 36 55 

Sodium (Na) 30 40 

Aluminium (Al) 6 10 

Silicon (Si) 30 35 

Vanadium (V) 5 10 

Data source: From a reputable lubricants manufacturer 

 

Table 24: Estimates for Crane Hydraulic Pump Oil Samples – Trend Analysis 

Test 
Elements 

 
Estimates for Sample 1 

 
Estimates for Sample 2 

 
Estimates for Sample 3 

Water 
Content 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Iron (Fe) {(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Chromium 
(Cr) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Molybdenum 
(Mo) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Tin (Sn) {(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Lead (Pb) {(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Copper (Cu) {(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(0.75, Very Low), (0.25, Low), 
(0, Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Aluminium 
(Al) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Silicon (Si) {(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Sodium (Na) {(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(0.5, Very Low), (0.5, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Vanadium 
(V) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Aggregation 
Result 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(0.9561, Very Low), (0.0439, 
Low), (0, Average), (0, High), 
(0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Source: Test case data 

 

 

 

 

 



 

Table 25: Standard Deviation for Port and Starboard Cranes Bearing Grease Test Results 

                                                       PORT CRANE STARBOARD CRANE 

Test Elements 
Sample 

3 
Sample 

2 
Sample 

1 
Sample 

3 
Sample 

2 
Sample 

1 
Average 
Value 

Standard 
Deviation 

Iron (Fe) mg/kg 43 20 27 69 46 20 37.5 19.07 

Chromium (Cr) mg 0 0 5 0 0 5 1.667 2.582 

Molybdenum (Mo) 0 0 0 0 0 0 0 0 

Tin (Sn) mg/kg 15 0 0 7 10 1 5.5 6.221 

Lead (Pb) mg/kg 45 5 14 39 14 23 23.33 15.65 

Copper (Cu) mg/k 122 0 14 181 0 20 56.17 76.57 

Sodium (Na) mg/k 84 59 0 108 56 0 51.17 43.88 

Magnesium (Mg) m 0 24 0 0 32 0 9.333 14.68 

Nickel (Ni) mg/k 5 1 72 8 3 3 15.33 27.86 

Aluminium (Al) m 13 22 174 20 26 15 45 63.37 

Silicon (Si) mg 8 51 30 4 66 30 31.5 24.01 

Data source: From a reputable lubricants manufacturer 

Table 26: Estimates for Crane Bearing Oil Samples – Family Analysis 

Test Elements                                             Estimates 

Iron (Fe) {(0, Very Good), (0.2, Good), (0.8, Average), (0, Bad), (0, Very Bad)} 

Chromium (Cr) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Molybdenum (Mo) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Tin (Sn) {(0.76, Very Good), (0.24, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Lead (Pb) {(0, Very Good), (0.86, Good), (0.14, Average), (0, Bad), (0, Very Bad)} 

Copper (Cu) {(0, Very Good), (0, Good), (0, Average), (0, Bad), (1, Very Bad)} 

Sodium (Na) {(0, Very Good), (0, Good), (0, Average), (0, Bad), (1, Very Bad)} 

Magnesium (Mg) {(0, Very Good), (1, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Nickel (Ni) {(0, Very Good), (0, good), (0.4, Average), (0.6, Bad), (0, Very Bad)} 

Aluminium (Al) {(0, Very Good), (0, Good), (0, Average), (0, Bad), (1, Very Bad)} 

Silicon (Si) {(0, Very Good), (0, Good), (1, Average), (0, Bad), (0, Very Bad)} 

𝑭𝑨 ̃ for Crane Bearings {(0.253, Very Good), (0.2076, Good), (0.2118, Average), (0.0503, Bad), (0.2773, Very Bad)} 

Source: Test case data 

 

Table 27: Standard Deviation for Port and Starboard Cranes Clutch Oil Test Results 

                                                   PORT CRANE STARBOARD CRANE 

Test Elements 
Sample 

3 
Sample 

2 
Sample 

1 
Sample 

3 
Sample 

2 
Sample 

1 
Average 

Value 
Standard 
Deviation 

Iron (Fe) 6 8 8 11 11 10 9 2 

Chromium (Cr) 0 0 0 0 0 0 0 0 

Molybdenum (Mo) 0 0 0 0 0 0 0 0 

Tin (Sn) 1 0 1 4 4 3 2.167 1.722 

Lead (Pb) 1 1 2 1 1 0 1 0.632 

Copper (Cu) 5 6 5 10 10 9 7.5 2.429 

Magnesium (Mg) 13 13 10 19 20 17 15.33 3.933 

Aluminium (Al) 1 0 0 2 2 0 0.833 0.983 

Silicon (Si) 4 5 4 5 5 6 4.833 0.753 

Vanadium (V) 9 10 8 15 17 14 12.17 3.656 

Source: Test case data 

 

Table 28: Estimates for Crane Clutch Oil Samples – Family Analysis 

Test Elements                                          Estimates 

Iron (Fe) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Chromium (Cr) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Molybdenum (Mo) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Tin (Sn) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Lead (Pb) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Copper (Cu) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 



Magnesium (Mg) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Aluminium (Al) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Silicon (Si) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Vanadium (V) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

𝑭𝑨 ̃  for Crane Clutches {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Source: Test case data 

 

Table 29: Standard Deviation for Port and Starboard Cranes Gearbox Oil Test Results 

                                                        PORT CRANE STARBOARD CRANE 

Test Elements 
Sample 

3 
Sample 

2 
Sample 

1 
Sample 

3 
Sample 

2 
Sample 

1 
Average 

Value 
Standard 
Deviation 

Water Content %v 0.1 0 0 0 0 0 0.017 0.041 

Total Acid No. (TAN) 0.31 0.42 0.37 0.36 0.43 0.67 0.427 0.127 

Iron (Fe) mg/kg 13 11 15 13 16 20 14.67 3.141 

Chromium (Cr) mg 0 0 0 0 0 0 0 0 

Molybdenum (Mo) 187 259 513 253 488 598 383 170.2 

Tin (Sn) mg/kg 3 0 22 1 0 0 4.333 8.733 

Lead (Pb) mg/kg 0 0 0 0 0 4 0.667 1.633 

Copper (Cu) mg/k 31 29 36 24 32 38 31.67 5.007 

Sodium (Na) mg/k 0 3 0 0 3 4 1.667 1.862 

Magnesium (Mg) m 1 0 1 1 0 1 0.667 0.516 

Boron (B) mg/kg 3 0 0 0 0 0 0.5 1.225 

Aluminium (Al) m 4 3 6 6 7 12 6.333 3.141 

Silicon (Si) mg/ 4 4 9 9 11 15 8.667 4.227 

Vanadium (V) mg/ 0 0 0 0 0 0 0 0 

Source: Test case data 

 

Table 30: Estimates for Crane Gearbox Oil Samples – Family Analysis 

Test Elements Estimates 

Water Contents %v {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Total Acid Number (TAN) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Iron (Fe) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Chromium (Cr) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Molybdenum (Mo) {(0, Very Good), (0, Good), (0, Average), (0, Bad), (1, Very Bad)} 

Tin (Sn) {(0.26, Very Good), (0.74, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Lead (Pb) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Copper (Cu) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Sodium (Na) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Magnesium (Mg) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Boron (B) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Aluminium (Al) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Silicon (Si) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Vanadium (V) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

𝑭𝑨 ̃ for Crane Gearboxes {(0.9172, Very Good), (0.0352, Good), (0, Average), (0, Bad), (0.0476, Very Bad)} 

Source: Test case data 

 

Table 31: Standard Deviation for Port & Starboard Cranes Hydraulic Pump Test Results 

                                                      PORT CRANE STARBOARD CRANE 

Test Elements 
Sample 

3 
Sample 

2 
Sample 

1 
Sample 

3 
Sample 

2 
Sample 

1 
Average 

Value 
Standard 
Deviation 

Water Content %v 0 0 0 0 0 0 0 0 

Total Acid No. (TAN) 0.55 0.5 0.5 0.48 0.34 0.42 0.465 0.074 

Iron (Fe) 0 0 1 0 0 0 0.167 0.408 

Chromium (Cr) 0 0 0 0 0 0 0 0 

Molybdenum (Mo) 0 0 0 0 0 0 0 0 

Tin (Sn) 0 0 0 0 0 0 0 0 

Lead (Pb) 0 0 0 0 0 0 0 0 

Copper (Cu) 0 9 7 0 6 3 4.167 3.764 

Sodium (Na) 0 9 0 0 6 0 2.5 3.987 

Magnesium (Mg)  0 0 0 0 0 0 0 0 



Boron (B) 0 1 0 0 1 0 0.333 0.516 

Aluminium (Al) 0 0 0 0 0 0 0 0 

Silicon (Si) 0 0 0 0 0 0 0 0 

Vanadium (V) 0 0 0 0 0 0 0 0 

Source: Test case data 

 

Table 32: Estimates for Crane Hydraulic Pump Oil Samples – Family Analysis 

Test Elements Estimates 

Water Contents %v {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Total Acid Number (TAN) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Iron (Fe) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Chromium (Cr) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Molybdenum (Mo) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Tin (Sn) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Lead (Pb) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Copper (Cu) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Sodium (Na) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Magnesium (Mg) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Boron (B) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Aluminium (Al) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Silicon (Si) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Vanadium (V) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

𝑭𝑨 ̃ for Crane Hydraulic Pump {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Source: Test case data 

 

Table 33: Aggregation of Sub-Criteria for Crane Bearing Sample 1 

Sub-Criteria Estimates 

E1 , TA1, FAB, HR, DA {(0.1914, Very Bad), (0.0449, Bad), (0.0761, Average), (0.1693, Good), (0.5183, 
Very Good)} 

E2 , TA1, FAB, HR, DA {(0.1977, Very Bad), (0.0463, Bad), (0.0787, Average), (0.3266, Good), (0.3507, 
Very Good)} 

E3 , TA1, FAB, HR, DA {(0.2014, Very Bad), (0.0472, Bad), (0.2162, Average), (0.1781, Good), (0.3572, 
Very Good)} 

E4 , TA1, FAB, HR, DA {(0.2026, Very Bad), (0.1782, Bad), (0.0806, Average), (0.1792, Good), (0.3594, 
Very Good)} 

E5 , TA1, FAB, HR, DA {(0.3522, Very Bad), (0.0461, Bad), (0.0783, Average), (0.1742, Good), (0.3492, 
Very Good)} 

Aggregation result (main criteria) 
B1 

{(0.2251, Very Bad), (0.0658, Bad), (0.0978, Average), (0.1996, Good), (0.4117, 
Very Good)} 

Source: Test case data 

 

Table 34: Aggregation of Sub-Criteria for Crane Clutch Sample 1 

Sub-Criteria Estimates 

E1 , TA1, FAC, HR, DA {(0.0053, Very Bad), (0.0063, Bad), (0.0140, Average), (0.1685, Good), (0.8060, 
Very Good)} 

E2 , TA1, FAC, HR, DA {(0.0056, Very Bad), (0.0066, Bad), (0.0147, Average), (0.2476, Good), (0.7255, 
Very Good)} 

E3 , TA1, FAC, HR, DA {(0.0057, Very Bad), (0.0067, Bad), (0.0697, Average), (0.1805, Good), (0.7373, 
Very Good)} 

E4 , TA1, FAC, HR, DA {(0.0057, Very Bad), (0.0607, Bad), (0.0150, Average), (0.1806, Good), (0.7379, 
Very Good)} 

E5 , TA1, FAC, HR, DA {(0.0596, Very Bad), (0.0067, Bad), (0.0150, Average), (0.1807, Good), (0.7380, 
Very Good)} 

Aggregation result (main criteria)  
C1 

{(0.0121, Very Bad), (0.0129, Bad), (0.0191, Average), (0.1552, Good), (0.8006, 
Very Good)} 

Source: Test case data 

 

 



Table 35: Aggregation of Sub-Criteria for Crane Gearbox Sample 1 

Sub-Criteria Estimates 

E1 , TA1, FAG, HR, DA {(0.1569, Very Bad), (0.0338, Bad), (0.0118, Average), (0.1582, Good), (0.6392, 
Very Good)} 

E2 , TA1, FAG, HR, DA {(0.1636, Very Bad), (0.0352, Bad), (0.0123, Average), (0.2430, Good), (0.5458, 
Very Good)} 

E3 , TA1, FAG, HR, DA {(0.1664, Very Bad), (0.0359, Bad), (0.0748, Average), (0.1677, Good), (0.5552, 
Very Good)} 

E4 , TA1, FAG, HR, DA {(0.1660, Very Bad), (0.1005, Bad), (0.0125, Average), (0.1673, Good), (0.5538, 
Very Good)} 

E5 , TA1, FAG, HR, DA {(0.2416, Very Bad), (0.0353, Bad), (0.0123, Average), (0.1649, Good), (0.5459, 
Very Good)} 

Aggregation result (main criteria) 
G1 

{(0.1602, Very Bad), (0.0403, Bad), (0.0205, Average), (0.1615, Good), (0.6175, 
Very Good)} 

Source: Test case data 

 

Table 36: Aggregation of Sub-Criteria for Crane Hydraulic Pump Sample 1 

Sub-Criteria Estimates 

E1 , TA1, FAH, HR, DA {(0.0047, Very Bad), (0.0055, Bad), (0.0123, Average), (0.0058, Good), (0.9718, 
Very Good)} 

E2 , TA1, FAH, HR, DA {(0.0052, Very Bad), (0.0062, Bad), (0.0138, Average), (0.0750, Good), (0.8998, 
Very Good)} 

E3 , TA1, FAH, HR, DA {(0.0052, Very Bad), (0.0062, Bad), (0.0833, Average), (0.0064, Good), (0.8989, 
Very Good)} 

E4 , TA1, FAH, HR, DA {(0.0052, Very Bad), (0.0747, Bad), (0.0138, Average), (0.0065, Good), (0.8998, 
Very Good)} 

E5 , TA1, FAH, HR, DA {(0.0736, Very Bad), (0.0062, Bad), (0.0138, Average), (0.0065, Good), (0.8999, 
Very Good)} 

Aggregation result (main criteria) 
H1 

{(0.0124, Very Bad), (0.0130, Bad), (0.0182, Average), (0.0132, Good), (0.9432, 
Very Good)} 

Source: Test case data 

 

Table 37: Aggregation Results of Sub-Criteria for Sample 2 

Bearing (B2) {(0.0460, Very Bad), (0.0275, Bad), (0.0490, Average), (0.1395, Good), (0.7380, Very Good)} 

Clutch (C2) {(0.0094, Very Bad), (0.0100, Bad), (0.0148, Average), (0.0254, Good), (0.9404, Very Good)} 

Gearbox (G2) {(0.0412, Very Bad), (0.0366, Bad), (0.0198, Average), (0.0478, Good), (0.8545, Very Good)} 

Hydraulic Pump (H2) {(0.0127, Very Bad), (0.0134, Bad), (0.0186, Average), (0.0283, Good), (0.9269, Very Good)} 

Source: Test case data 

 

Table 38: Aggregation Results of Sub-Criteria for Sample 3 

Bearing (B3) {(0.1754, Very Bad), (0.0296, Bad), (0.0820, Average), (0.0835, Good), (0.6294, Very Good)} 

Clutch (C3) {(0.0092, Very Bad), (0.0098, Bad), (0.0146, Average), (0.0162, Good), (0.9501, Very Good)} 

Gearbox (G3) {(0.0962, Very Bad), (0.0341, Bad), (0.0502, Average), (0.0515, Good), (0.7680, Very Good)} 

Hydraulic Pump (H3) {(0.0124, Very Bad), (0.0130, Bad), (0.0182, Average), (0.0132, Good), (0.9432, Very Good)} 

Source: Test case data 

Table 39: Aggregation of Main Criteria from Sample 1 

 
Main Criteria 

 
Estimates 

Utility 
Value 

 
Bearing (B1) 

{(0.2251, Very Bad), (0.0658, Bad), (0.0978, Average), (0.1996, Good), (0.4117, 
Very Good)} 

 
0.6268 

 
Clutch (C1) 

{(0.0121, Very Bad), (0.0129, Bad), (0.0191, Average), (0.1552, Good), (0.8006, 
Very Good)} 

 
0.9299 

 
Gearbox (G1) 

{(0.1602, Very Bad), (0.0403, Bad), (0.0205, Average), (0.1615, Good), (0.6175, 
Very Good)} 

 
0.7590 

 
Hyd. Pump (H1) 

{(0.0124, Very Bad), (0.0130, Bad), (0.0182, Average), (0.0132, Good), (0.9432, 
Very Good)} 

 
0.9655 

 
Aggregation result  (S1) 

{(0.0829, Very Bad), (0.0261, Bad), (0.0308, Average), (0.1095, Good), (0.7507, 
Very Good)} 

 
0.8548 

Source: Test case data 



Table 40: Aggregation of Main Criteria from Sample 2 

 
Main Criteria 

 
Estimates 

Utility 
Value 

 
Bearing (B2) 

{(0.0460, Very Bad), (0.0275, Bad), (0.0490, Average), (0.1395, Good), (0.7380, 
Very Good)} 

 
0.8740 

 
Clutch (C2) 

{(0.0094, Very Bad), (0.0100, Bad), (0.0148, Average), (0.0254, Good), (0.9404, 
Very Good)} 

 
0.9694 

 
Gearbox (G2) 

{(0.0412, Very Bad), (0.0366, Bad), (0.0198, Average), (0.0478, Good), (0.8545, 
Very Good)} 

 
0.9095 

 
Hyd. Pump (H2) 

{(0.0127, Very Bad), (0.0134, Bad), (0.0186, Average), (0.0283, Good), (0.9269, 
Very Good)} 

 
0.9609 

 
Aggregation result  (S2) 

{(0.0190, Very Bad), (0.0152, Bad), (0.0178, Average), (0.0425, Good), (0.9054, 
Very Good)} 

 
0.9500 

Source: Test case data 

 

Table 41: Aggregation of Main Criteria from Sample 3 

 
Main Criteria 

 
Estimates 

Utility 
Value 

 
Bearing (B3) 

{(0.1754, Very Bad), (0.0296, Bad), (0.0820, Average), (0.0835, Good), (0.6294, 
Very Good)} 

 
0.7405 

 
Clutch (C3) 

{(0.0092, Very Bad), (0.0098, Bad), (0.0146, Average), (0.0162, Good), (0.9501, 
Very Good)} 

 
0.9721 

 
Gearbox (G3) 

{(0.0962, Very Bad), (0.0341, Bad), (0.0502, Average), (0.0515, Good), (0.7680, 
Very Good)} 

 
0.8403 

 
Hyd. Pump (H3) 

{(0.0124, Very Bad), (0.0130, Bad), (0.0182, Average), (0.0132, Good), (0.9432, 
Very Good)} 

 
0.9655 

 
Aggregation result  (S3) 

{(0.0536, Very Bad), (0.0156, Bad), (0.0299, Average), (0.0298, Good), (0.8711, 
Very Good)} 

 
0.9123 

Source: Test case data 

 

Table 42: Utility Value 

Source: Test case data 

𝐻𝑛 Very Good Good Average Bad Very Bad 

𝑉𝑛 5 4 3 2 1 

𝑈(𝐻𝑛) 5 − 1

5 − 1
= 1 

4 − 1

5 − 1
= 0.75 

3 − 1

5 − 1
= 0.5 

2 − 1

5 − 1
= 0.25 

1 − 1

5 − 1
= 0 

 

𝛽𝑛(𝑆1) 0.7507 0.1095 0.0308 0.0261 0.0829 

∑ 𝛽𝑛

5

𝑛=1

 
 
0.7507 + 0.1095 + 0.0308 + 0.0261 + 0.0829 = 1 (complete) 

𝛽𝑛𝑈(𝐻𝑛) 0.7507 0.082125 0.0154 0.006525 0 

S1 Condition value of the crane = 

∑ 𝛽𝑛

5

𝑛=1

𝑈(𝐻𝑛) = 0.85475  ≈   0.8548 

𝛽𝑛(𝑆2) 0.9054 0.0425 0.0178 0.0152 0.0190 

∑ 𝛽𝑛

5

𝑛=1

 
 
0.9054 + 0.0425 + 0.0178 + 0.0152 + 0.0190 = 1 (complete) 

𝛽𝑛𝑈(𝐻𝑛) 0.9054 0.031875 0.0089 0.0038 0 

S2 Condition value of the crane = 

∑ 𝛽𝑛

5

𝑛=1

𝑈(𝐻𝑛) = 0.949975  ≈   0.9500 

𝛽𝑛(𝑆3) 0.8711 0.0298 0.0299 0.0156 0.0536 

∑ 𝛽𝑛

5

𝑛=1

 
 
0.8711 + 0.0298 + 0.0299 + 0.0156 + 0.0536 = 1 (complete) 

𝛽𝑛𝑈(𝐻𝑛) 0.8711 0.02235 0.01495 0.0039 0 

S3 Condition value of the crane = 

∑ 𝛽𝑛

5

𝑛=1

𝑈(𝐻𝑛) = 0.9123  



 

Table 43: Aggregation Results for Sample 2 due to Decrement by 0.2 

Main Criteria Estimate UV 

Bearing (B2) {(0.2483, Very Bad), (0.0301, Bad), (0.0536, Average), (0.1525, Good), (0.5155, Very Good)} 0.6642 

Clutch (C2) {(0.1797, Very Bad), (0.0115, Bad), (0.0170, Average), (0.0291, Good), (0.7627, Very Good)} 0.7959 

Gearbox (G2) {(0.2330, Very Bad), (0.0410, Bad), (0.0221, Average), (0.0535, Good), (0.6503, Very Good)} 0.7118 

Hydraulic Pump 
(H2) 

 
{(0.1863, Very Bad), (0.0153, Bad), (0.0213, Average), (0.0324, Good), (0.7447, Very Good)} 

 
0.7835 

Aggregation 
Result  

{(0.1835, Very Bad), (0.0193, Bad), (0.0225, Average), (0.0536, Good), (0.7211, Very 
Good)} 

 
0.7774 

Source: Test case data 

 

Table 44: Aggregation Results for the Variation of each 0.2 Decrement Values with the  

        Original Estimates in the Main Criteria 

 
Main Criteria 

 
Sample 2 Estimates 

Aggregation 
Results 

 
Bearing (B2) 

{(0.0572, Very Bad), (0.0164, Bad), (0.0195, Average), (0.0470, Good), (0.8599, Very 
Good)} 

 
0.909 

 
Clutch (C2) 

{(0.0510, Very Bad), (0.0160, Bad), (0.0188, Average), (0.0446, Good), (0.8695, Very 
Good)} 

 
0.916 

 
Gearbox (G2) 

{(0.0550, Very Bad), (0.0166, Bad), (0.0190, Average), (0.0453, Good), (0.8641, Very 
Good)} 

 
0.912 

Hydraulic 
Pump (H2) 

{(0.0517, Very Bad), (0.0161, Bad), (0.0189, Average), (0.0448, Good), (0.8686, Very 
Good)} 

 
0.916 

Source: Test case data 

 

 


