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ARTICLE

Light sheet microscopy with acoustic sample
confinement
Zhengyi Yang1,9, Katy L.H. Cole2, Yongqiang Qiu 3,10, Ildikó M.L. Somorjai 4,5, Philip Wijesinghe 1,6,7,

Jonathan Nylk 1, Sandy Cochran3, Gabriel C. Spalding 8, David A. Lyons 2 & Kishan Dholakia1

Contactless sample confinement would enable a whole host of new studies in developmental

biology and neuroscience, in particular, when combined with long-term, wide-field optical

imaging. To achieve this goal, we demonstrate a contactless acoustic gradient force trap

for sample confinement in light sheet microscopy. Our approach allows the integration of

real-time environmentally controlled experiments with wide-field low photo-toxic imaging,

which we demonstrate on a variety of marine animal embryos and larvae. To illustrate the

key advantages of our approach, we provide quantitative data for the dynamic response

of the heartbeat of zebrafish larvae to verapamil and norepinephrine, which are known to

affect cardiovascular function. Optical flow analysis allows us to explore the cardiac cycle

of the zebrafish and determine the changes in contractile volume within the heart. Over-

coming the restrictions of sample immobilisation and mounting can open up a broad range

of studies, with real-time drug-based assays and biomechanical analyses.
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The field of biomedicine is seeing an increased use of model
organisms that can inform us about the onset and pro-
gression of the disease. In particular, the use of zebrafish

embryos has gained prominence in many areas or research,
including studies of cardiovascular disease and in neuroscience.
In parallel, there is an urgent need for the development of fast
drug-based assays for biomedical analysis. A major advance for
realising such studies would be contactless sample suspension
combined with rapid and minimally photo-toxic wide-field
imaging. This would inherently maintain the integrity of the
natural physiological development of the specimen, which may be
adversely affected when using agarose or other gels for specimen
embedding1–3.

For rapid wide-field imaging, light sheet fluorescence micro-
scopy4 (LSFM) is becoming established for the advantages it
brings to such longitudinal imaging studies. The orthogonal
geometry of the illumination and detection axes ensures high-
contrast images, even when the detection numerical aperture
(NA) is low. This imaging approach has the ability to minimise
sample photo-bleaching and photo-damage4. As a result, LSFM
has seen exceptional uptake for studies with large samples, such
as whole zebrafish and intact cleared mouse brain, in the fields of
developmental biology and neuroscience5–8. However, the stan-
dard procedure for LSFM is to completely surround the sample
with agarose gel9,10, often extending out to the walls of the sample
chamber. This approach offers facile translation and rotation of
the sample within the imaging system. However, the use of
agarose or similar gels have drawbacks for longitudinal imaging
since they dramatically reduce the diffusion rate of liquid inter-
acting with the sample, restricting both the introduction of fresh
media as well as the discharge of accumulated waste11

(see Supplementary Note 1). Additionally, there are a number of
organisms that exhibit abnormal development and behaviour
when mechanically confined by embedding in the gel. For
example, Aptasia is a sea anemone model organism where agar-
ose gel embedding disrupts the dynamic host–symbiont rela-
tionship1. This key bottleneck can restrict detailed studies of
dynamic processes, therefore, precluding real-time analyses. A
major advance would be a method by which samples could be
immobilised in their native environment in the absence of agar-
ose or similar methods of restriction, thereby ensuring more
realistic and informative biomedical studies. This would enable
rapid access of experimental agents in the media to the sample
and open new routes for real-time drug assays. Furthermore, a
broad host of biomechanical analyses, unimpeded and unchanged
by physical confinement, would become tractable12.

A powerful route would be to realise a truly non-contact
approach devoid of any mechanical obstacles in proximity to the
sample. In principle, optical traps can be used for this purpose13.
However, optical forces are notoriously weak, typically on the
order of a few picoNewtons, such that trapping and translating
samples larger than a few tens of microns in diameter becomes
intractable13–16. A more powerful route to address this challenge
is acoustic trapping, which has been demonstrated as an effective
alternative to confine biological samples safely17–21. Specifically,
the use of ultrasonic transducers for acoustic trapping offers
four key advantages over its optical counterpart. Firstly, the
wavelength of ultrasound in the fluid is orders of magnitude
longer than that of light. This gives ultrasound an advantage in
exerting strong forces on targets of the size from tens of microns
up to several millimetres22,23. Secondly, ultrasound is able to
carry much higher energy at a much lower wave speed and,
hence, is easily able to impart forces on the order of micro-
Newtons, leading to more stable trapping24,25. Thirdly, as the
power is distributed over a larger region, the potential for damage
caused by an acoustic trap is greatly reduced, compared to

optical trapping20,21. Finally, ultrasonic transducers are easily
miniaturised and inexpensive, hence, are significantly easier to
integrate into existing wide-field imaging setups26,27.

Here, we demonstrate the integration of an acoustic trap into a
compact LSFM, to provide contactless sample confinement of
zebrafish, amphioxus embryos, and ascidian embryos and larvae.
To demonstrate the versatility of our approach, we perform a
drug study on the application of verapamil and norepinephrine to
2-days-post-fertilisation (dpf) zebrafish larvae, and monitor the
heartbeat response with light sheet imaging. We use optical flow
analysis to track the dynamics of the zebrafish heart and quantify
contractility. Such studies open up the prospect of original ave-
nues in cardiovascular research, long-term imaging and the
assessment of dynamic biological processes.

Results
Acoustic trapping. Figure 1a (see Methods) illustrates our sample
chamber design, which integrates two counter-propagating,
concave, spherical bowl-shaped ultrasonic transducers into a
Perspex chamber. Ultrasound waves emitted from the transducers
form a standing wave in the volume of the chamber, and it is the
resulting gradients in the acoustic field which act to trap the
specimen. The counter-propagating geometry minimises the
acoustic streaming effect on the axis of the beams28,29. With the
sample thus immobilized, volumetric image stacks could be
obtained via a customized LSFM setup featuring a synchronized
scanning mirror in the illumination pathway and an electrically
tunable lens (ETL) in the detection pathway (see Methods).

For an initial characterization, we examined the system’s ability
to trap test samples, including 100 and 500 μm diameter
polystyrene and glass spheres. Trapping of the 500 μm glass
spheres demonstrated a lateral acoustic force of at least 5 μN,
which was determined from the balance of the acoustic force with
gravitational and buoyancy forces also acting upon the sphere in
water. Notably, this is many orders of magnitude higher than an
optical trap can provide; for example, even in a counter-
propagating beam geometry, which has been the most favourable
for optical trapping of ‘large’ objects, forces of only 135 pN were
reported by Thalhammer et al. with a considerable laser power of
500 mW and an associated sample heating of 10 °C14.

Fast scanning and detection. The optical and acoustic design
merits consideration. Conventional three-dimensional (3D)
image stack construction involves translating the trapped sample
along the detection axis. At the largest displacements, the
microscope objective may impinge on the acoustic field. To
eliminate this possibility, our design exploits an inertia-free
scanning system to enable the acquisition of volumetric image
stacks without moving either the microscope objective or the
specimen. A synchronised scanning mirror and an ETL are used
to scan both the light-sheet and the focal plane of the detection
lens30,31 through the body of the sample. As well as maintaining a
stationary lens, specimen and stable acoustic field, this approach
also allows 3D image stacks to be acquired at rates of tens of Hz,
which is particularly advantageous for imaging active, dynamic
samples.

Furthermore, we found that by setting the exposure time on the
camera to match the period of one axial scan cycle, we could
achieve acquisition of an integrated axial projection of the 3D
image stack, i.e. integrating volume stacks into one single image.
Images thus obtained are equivalent to an average intensity
projection of the 3D image stack. By acquiring the image in this
(optional) projection mode, the amount of data generated is
dramatically reduced. So long as depth information of individual
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features is not required, this can be particularly useful for
longitudinal imaging studies.

Imaging of marine animal embryos and larvae. Here,
amphioxus (Branchiostoma lanceolatum) and ascidian (Ciona
intestinalis) embryos, which are close marine invertebrate rela-
tives of vertebrates, were acoustically trapped and studied long-
itudinally via LSFM. In contrast to what is commonly seen with
the use of agarose gel, the original three-dimensional morphology
of the samples, in particular, the chorion (fertilization envelope),
was kept intact under acoustic positioning (Fig. 2a and Supple-
mentary Movie 1). In addition, we were able to observe the

movement of the chorion with time-lapse LSFM imaging in mid-
gastrula stage embryos (see Supplementary Movie 2). Normally
the embryo begins to rotate within the chorion due to the
development of ectodermal cilia32. In our system, the opposite
was observed; the embryos maintained a fixed orientation whilst
the chorion was seen to rotate. We attribute this to the acoustic
gradient trap which holds the embryo in a fixed, energetically
favourable, orientation whilst the ciliary motion causes the rota-
tion of the chorion around the embryo. We also observed that the
rotation speed increased with the age of the embryos, particularly
just prior to hatching (mid-neurula stage) (see Supplementary
Movie 3). When multiple embryos were trapped in the same
acoustic gradient potential energy well, the chorions spun in
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Fig. 2 Light sheet fluorescent images of marine animal embryos and larvae. a Amphioxus early gastrula stage embryo with the chorion. b Ascidian embryo
showing the nuclei, including at the tip of outer follicular cells (OFCs) and the monolayer test cells (TCs). c Ascidian embryo showing the cell membrane of
inner follicular cells (IFCs). d Ascidian larva head with part of the tail (anterior to the left). Samples in figure (a, c, d) were stained with Alexa Fluor 555
conjugated WGA, and the images were obtained directly with long exposure time to achieve the projection effect. The sample in figure (b) was stained
with SYTO 81, and the image was obtained by applying a maximum intensity projection to the image stack which contains individual sections. The image
stack of (b) can be viewed in Supplementary Movie 7. Image intensities are normalized, colour bar is shown. Scale bar 50 μm applies to all panels
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Fig. 1 Light sheet fluorescence microscopy setup with an acoustic trapping chamber. a Schematic of the setup. The light sheet is scanned along the
detection axis by the scanning mirror (SM) whilst the detection plane is synchronized with the light sheet by an electrically tunable lens (ETL). The acoustic
sample chamber (SC) with acoustic transducers (TD) holds the sample while the images are taken. FC fibre collimator, BE beam expander, AS adjustable
slit, CL cylindrical lens, RL relay lenses, O1 & O2 objectives, TL tube lens, CAM camera. b Schematic showing the acoustic transducers, trapped sample, the
light sheet and the objective lenses. c Picture showing an acoustically trapped 5-days-post-fertilization (dpf) zebrafish larva. Scale bar denotes 5mm
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different directions (see Supplementary Movie 4). Numerous
puncta can also be seen moving in the extracellular space between
the embryos and the fertilization envelope. To the best of our
knowledge, these have not been characterized before in
amphioxus, and we believe may represent extracellular vesicles or
exosomes33.

In our images of ascidian embryos, as in Fig. 2b, we were able
to monitor sub-cellular structures such as the nuclei located at the
tip of outer follicular cells (OFCs), as well as the large vacuole
structure in the follicular extension. The monolayer test cells
(TCs) which form the epithelial layer were clearly resolved. Using
time-sequence imaging, we tracked the disappearance of TCs at
around 4 h post-fertilization, possibly representing apoptosis of
these TCs34. Figure 2c shows the outline of inner follicular cells
(IFCs), which were stained with a membrane-staining agent
Alexa Fluor 555 conjugated Wheat Germ Agglutinin (WGA).
Figure 2d shows an ascidian larva. Although the larva twitched its
body, utilizing developed muscles to try to move beyond the trap,
it was nevertheless confined in the trap throughout our LSFM
experiment. Capturing such rapid movements demands high-
speed imaging. We were able to capture 3D image stacks in 100
ms or less, enabling us to visualise such movements due to our
inertia-free scanning design.

Dynamic response to drug treatment. Whilst acoustic trapping
provides suitable force for the confinement of micro-organisms,
we demonstrate that it can also suspend aquarium fish such as
zebrafish larvae, with the presence of low-dose anaesthetics.
Currently, suspension of the specimen in LSFM is commonly
achieved through the use of agarose gel. The compound diffusion
speed in agarose gel is dramatically reduced by the quasi-rigid

fibre structure of the agarose (see Supplementary Note 1), hence
limiting the efficacy of drug treatment studies. With acoustic
trapping, the sample is held directly in the optimal medium,
hence, drug delivery is straightforward. To demonstrate our
system’s suitability for real-time drug assays, we trapped 2-dpf
zebrafish larvae and monitored their heart rate via LSFM, using
the projection imaging mode as described above.

Responses of the heart rate were recorded before, during and
after treatment with verapamil which is a calcium channel blocker
used to treat high blood pressure and to decrease heart
contraction. During the whole process, 80 mL L−1 tricaine was
used in order to prevent attempts to swim away and stress.

The dynamics of the zebrafish heart were quantified using
optical flow analysis (see Methods). Optical flow analysis was
used to map the local 2D displacement field in the heart between
each consecutive frame (i.e. velocity) based on the change in the
spatial and temporal image intensity gradients35. Figure 3 shows
select 2D vector plots of velocities in the heart across the cardiac
cycle. The contraction of the ventricle can be seen from the
convergence of the velocity vectors towards its centre. Similarly,
the relaxation of the ventricle and the contraction of the atrium
can be seen from the respective divergence and convergence of
the velocity vectors, concentrated around certain regions of the
heart. The full time-lapse of deformation can be accessed in
Supplementary Movie 5. To quantitatively profile, the mechanical
deformation of the heart, the local volumetric strain rate was
calculated from the estimated velocities (Methods). Figure 4a
shows the strain rate mapped from the velocities in Fig. 3a,
representing the spatially resolved relative change in volume
between image frames. The full time-lapse is provided in
Supplementary Movie 6. The strain rate can be integrated across
the entire set of images, producing the total volumetric strain, i.e.

a

0 ms

b

150 ms

c

250 ms

Fig. 3 Velocity vector plot of the zebrafish heart estimated using optical flow analysis illustrating stages of the cardiac cycle: (a) contraction of the
ventricle; (b) relaxation of the ventricle; (c) contraction of the atrium. Time elapsed relative to the first frame is noted on the figures. Scale bar is 50 μm
(see also Supplementary Movie 5)
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Fig. 4 Contractility mapping of the zebrafish heart. a Volumetric strain rate (change in volume between frames) corresponding to Fig. 3a. Scale bar is
50 μm. b Selected traces of the total volumetric strain of the ventricle (i) before the drug is added (20min), (ii) after the drug is added (50min), and
(iii) after the drug is washed away (150min). The scale bar denotes 1 s (see also Supplementary Movie 6)
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the total change in the volume of the heart (strength of
contraction). Figure 4b shows selected plots of the strain in the
ventricle throughout the experiment. Prior to the addition of
verapamil, the peak-to-peak strain amplitude of close to 100%
suggests that the ventricle expands and contracts by a volume
equivalent to its resting size, while after the addition of verapamil,
the volume of contraction is significantly lower (20–30% of its
resting size). Normal ventricular contraction is significantly
recovered after the removal of the drug. Verapamil also induced
a slower heartbeat, as evidenced by the longer period in Fig. 4b
(ii), which returned to normal after removal of verapamil.

The three stages of this experiment are indicated by vertical
lines in Fig. 5. During the first stage, a baseline heart rate was
determined, prior to the introduction of verapamil. In stage two,
40 mg L−1 verapamil was introduced, and our data reveals that
the heart rate of the zebrafish dropped as much as 48%. We have
independently verified that it took ~2min for the drug to be
delivered to the location of the fish (see Supplementary Note 1),
yet our data reveals that, it took ~5 min for the heart rate to start
decreasing. Clearly, in addition to the time required for drug
delivery within the medium, time is also required for diffusion
into the sample. At stage three, the active compound was washed
away with fresh medium, and the heart rate partially recovered,
although only one sample returned to its original rate. Six out of
eight tested samples are shown in Fig. 5. Of the two rejected
samples, one lost rhythmic beating after drug application, whilst
the heart rate change of the other was less than 10%. A control
experiment was performed under identical conditions, but

without the addition of any drug; in that case, heart rates stayed
within 100 ± 2.77% Δf/f over a 2-h period of LSFM monitoring.

Figure 5 shows the peak-to-peak amplitude of the volumetric
strain and the heart rate across the entire experiment and all
samples. The heart rate and amplitude were recovered through
Fourier analysis (Methods). The data was averaged across central
portions of the atrium and the ventricle.

The beat amplitude follows a similar trend. The amplitude is
normalised to the resting volume of the heart; however, there is
significant variability between each animal. Upon the addition of
verapamil, the amplitude of contraction decreases with an
exponential decay, dropping from around 50% to 30% of volume
contraction. With the removal of the drug, the amplitude partially
recovered, still exhibiting significant inter-sample variability.

Additionally, the experiments were repeated with 1 mM
norepinephrine (NE) to illustrate increases in heart rate. Figure 5b
shows the normalised heart rate from five 2-dpf zebrafish. Upon
addition of NE, there is a gradual and consistent increase in heart
rate to around 7%, and a similar drop to resting heart rate after
drug wash-out. When repeated on two 3-dpf zebrafish, the heart
rate increase was 17% (Supplementary Note 2), consistent with
the previous studies36. Interestingly, the sensitivity of zebrafish to
adrenergic agonists greatly increases in the early stages of
development. For instance, the expression of adrenergic receptor
genes in 3–4-dpf zebrafish can be 2-fold larger than in 2-dpf
zebrafish37.

Similar heart rate tests were carried out on 5-dpf zebrafish
larvae, which were treated with 10mg L−1 verapamil, and on 4-
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Fig. 5 Zebrafish heart rate and beat amplitude with the addition of drugs. Zebrafish heart rate change due to (a) verapamil and (b) norepinephrine,
normalised to the resting rate. Contractile beat amplitude in the ventricle (c) and atrium (d), upon addition of verapamil, presented as the total peak-to-
peak amplitude of the volumetric strain. Each plot is presented as a mean value (solid lines) with error bounds of one standard deviation (dashed lines)
across all results (dotted lines). No drug was added in period (i) for 30min. The drug is added at beginning of period (ii), then washed away in period (iii).
Sample size: 6 (a, c, d) and 5 (b)
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dpf larvae, which were treated with a high-dose of tricaine (see
Supplementary Note 2). Interestingly, following the expected
decrease in heart rate from verapamil, in both experiments, after
drug removal, the heart rate returned to the original levels
observed prior to treatment. This may be due to the lower
verapamil concentration or increased drug resistance in these
more mature samples compared to that of younger larvae. In the
reported data, we also see that tricaine became effective quickly,
whilst obvious changes in heart rate did not occur until 30 min
after verapamil was applied. Such differences are likely due to a
combination of variability in drug diffusion rates into the sample
and differences in the pharmacological mechanisms for each
drug.

Viability checks were performed by acoustically trapping
pacified 4-dpf larvae continuously for 16 h: no difference between
the heart rate before and after trapping was detected. In addition,
a 2-dpf larva was trapped continuously for 56 h. At the end of the
trapping experiment, the animal showed no aberrant behaviour
except a slightly reduced heart rate which may be attributed to
long-term exposure to tricaine. Taken together, these control
experiments demonstrate that acoustic trapping in and of itself
has little to no detrimental effect on the biological samples
studied here, even after prolonged exposure.

Discussion
Agarose is currently in widespread use as a method for embed-
ding samples during imaging studies, in particular, those utilising
LSFM; however, the means of physical trapping constrains
potentially alters the development and physiology of the organ-
ism1–3. Here, by integrating ultrasonic transducers into the
sample chamber, we demonstrated contact-free suspension of the
sample in optimum fluid. Compared to the use of optical forces,
acoustic trapping is particularly advantageous for large samples,
as stable confinement is achieved when the wavelength of the
ultrasound is commensurate with the dimensions of the sample.
We have demonstrated trapping of samples ranging from hun-
dreds of microns to several millimetres in diameter, utilizing
MHz frequency transducers. If needed, lower frequency trans-
ducers could be utilized for even larger specimens. Our design for
a sample chamber with integrated acoustic trapping capability is
independent of the optical setup, meaning that such an
arrangement can easily be retrofitted into other LSFM setups.

The intensity of ultrasound required for trapping has been
proven through a number of studies to cause little harm to bio-
logical samples. Some of those tests were performed on organisms
over relatively short exposure times17–20, whilst others were
performed on mammalian cells with MPa ultrasound pressure
over longer periods of time up to days38–40. Here, we have per-
formed a long-term viability study with zebrafish larvae, as a step
towards improving our understanding of the effects of long-term
acoustic trapping upon a range of marine organisms. The max-
imum input voltage of 7.50 V was used, corresponding to acoustic
pressure amplitude of 0.82 MPa and peak acoustic intensity of
22.58W cm−2. This is in line with other long-term cell viability
studies in the literature39,40, and the intensity is much less than
that used for focused ultrasound therapy41. Our findings are that,
even for prolonged acoustic exposures, no adverse effects have
been observed.

Although often small in size and transparent with good optical
qualities, many marine embryos and larvae represent particular
challenges for live imaging. Premature removal of the chorion,
prior to normal hatching, can affect the organisation of ecto-
dermal cells or the expression of genes involved in left–right
symmetry generation in ascidians42,43. Moreover, many embryos
are covered by cilia (e.g. frogs, amphioxus, ascidians, sea urchins,

sea anemones), which may not only be required during hatching
but also to propel them through the fluid medium prior to overt
muscle development. Methods to immobilise these specimens for
imaging require physical constraint, for example between glass
coverslips, or by the application of compounds that may disrupt
ciliary function—both of which can perturb normal development.
Our results underscore the potential of acoustic trapping as a
method with promise for longitudinal imaging of marine and
other small aquatic embryos, particularly if combined with the
use of fluorescent reporters and transgenic lines, or with the
application of compounds, demonstrated here for zebrafish.

There is ample evidence that mechanical cues, such as physical
confinement, can alter biological processes1–3,12. Rapid estima-
tion of displacements from high-throughput dynamic images
coupled with the high spatio-temporal resolution of LSFM can
reveal a broad range of these mechanical processes12. Optical
elastography, the imaging of tissue mechanics using optics, is an
emerging technique44. The combination of sub-micrometre
resolution and rapid imaging, to date, has been challenging to
achieve, which may see LSFM emerge as an advantageous tool in
this field.

We have demonstrated a straightforward design for fast ima-
ging of samples through acoustic suspension and LSFM imaging.
In our initial design, the ETL was placed directly after the
detection objective, enabling us to keep the size of the setup
minimal whilst still achieving sub-micron resolution (Supple-
mentary Note 3). An alternative position for the ETL, as well as
dual-side light-sheet illumination, is included in a second design
(see Supplementary Note 4). This dual-sided design may be more
suitable for larger specimens.

Here, we have reported the response of zebrafish larvae to
verapamil, norepinephrine and high-dose tricaine, monitored via
analysis of LSFM time-series data. This allows heat rate frequency
and amplitude analysis. This experimental method enabled us to
place clearer constraints upon the dynamic response of the spe-
cimen to the compounds applied. Without the methods shown
here, drug delivery is typically achieved by pumping the medium
containing the drug compound into the sample chamber, which is
filled with agarose or similar gel. Due to the resulting limitations
on perfusion speed, the time required for the compound to reach
the location of the sample is hard to quantify11 (see Supple-
mentary Note 1). In the absence of an embedding gel, fluid flow
through the sample chamber and acoustic streaming effects may
potentially aid standard diffusion, shortening required drug
exposure times. The methods presented here should allow for the
incorporation of further enhancements to drug delivery, offering
still more precise timing measurements to be performed.

Methods
Optical setup. Elements of the optical portion of our light sheet setup were
adapted from the previous work45. Except for the lasers used, the optical setup was
contained within the area of a 300 × 400 mm2 breadboard (see Supplementary
Note 5). The laser beams (Laser Quantum, finesse, 5W, 532 nm, and M Squared
frequency-doubled SolsTiS, 700 mW, 488 nm) were coupled into a single-mode
fibre and sent onto the collimator on the breadboard. The beam was expanded and
passed through an adjustable slit and a cylindrical lens to form a light sheet. This
sheet was projected, by a pair of relay lenses, onto the back aperture of the illu-
mination objective (O1, Olympus 10×/0.3, water dipping). The fluorescence signal
was collected using a sCMOS camera (CAM, Hamamatsu Orca Flash 4) via an
orthogonally mounted detection objective (O2, Olympus 20X×/0.5, water dipping).
To eliminate any effects that the imaging objective might have upon the acoustic
field when translating the sample, the sample was kept stationary; instead, the light
sheet and detection plane were scanned, in synchronized fashion30,31. Displace-
ment of the light sheet was achieved via a scanning mirror (SM, PI S-334.2SL1)
located before the relay lens pair, and synchronized refocusing of the detection
optics was achieved via an ETL (Optotune EL-10-30-C) (see Supplementary
Note 6). MATLAB software was used to control the camera, function generator and
ETL. Image stacks were constructed with open-source software FIJI46. The heart-
beat analysis was performed with MATLAB.
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Acoustic setup. For sample positioning, we created a counter-propagating dual-
beam acoustic trap via two spherically-focused bowl-shaped transducers. The active
material within the transducers was chosen to be PZ26 from Meggitt A/S. This
commonly used piezoelectrically-hard piezoelectric material has a high Q value and
is able to provide large power and force. The outer diameter of the bowl-shaped
active element was 20 mm with a focusing radius of 16 mm. This resulted in a f-
number (f#) of 0.8, providing a good compromise between the transducer physical
size and the ultrasound focal region. The 16-mm focusing radius led to 32 mm axial
length for the resonator, allowing space for dipping in the imaging objectives. The
thickness of the active element was chosen to give a resonant frequency of ~1.5
MHz, resulting in 1 mm wavelength (λ) of ultrasound in water and 1.12 mm beam
diameter, similar to the size of trapping targets. The use of small f# and high
frequency also ensured a tight focus and high acoustic pressure at the focal point,
leading to large pressure gradients and trapping forces near the trapping spot in the
confocal system. The confocal system formed a quasi-standing wave field, where
the dense objects were acoustically moved away from energy density maxima
(pressure anti-node) and trapped at the energy density minima (pressure node).
The likelihood of cavitation is largely suppressed by our selection of a MHz-range
operating frequency20, hence avoiding damage of the biological samples. Detailed
transducer design and characterization can be found in Supplementary Notes 7 and
8. The active piezoelectric material was mounted into a stainless steel tube with 20-
mm inner diameter, then conductive silver epoxy was applied between the front
surface of the active element and the metal tube for electrical grounding. The
transducers were air-backed to maximize the output power. Previous studies of
acoustic traps with similar configuration have demonstrated stable trapping of
targets ranging from 2.1 μm glass particles47 to frog egg clusters (~1 mm)28. Our
sample chamber is made of 10 mm-thick Perspex sheet with inner dimensions of
32 × 30 × 30 mm3 (L ×W ×H). This large chamber also minimises acoustic
streaming at the target trapping site. Two holes were made in the side of the
chamber, for the transducers, with O-rings around the transducers added to pro-
vide a water-tight seal. A function generator (LXI3390, Keithley) generated the
alternating voltage used to drive the transducers at the resonant frequency of the
system. A customized RF current amplifier is employed to ensure sufficient power
for the transducers.

Amphioxus embryo preparation. Ripe B. lanceolatum adults were maintained at
the Gatty Marine Laboratory (Scottish Oceans Institute) in a semi-closed recir-
culating seawater system at 16–17 °C prior to heat shock-induced spawning as
per ref. 48. Eggs and sperm were individually collected and mixed for controlled
fertilization, and left to develop at 19 °C until the experiment. The embryos were
incubated in 10 μg mL−1 concentration of Alexa Fluor 555 conjugates (WGA,
Invitrogen) at 20 °C for 1 h, followed by two washes with 0.22 μm-filtered seawater
before being transferred to the acoustic trapping chamber for LSFM imaging.

Ascidian embryo preparation. C. intestinalis adults were collected from the west
coast of Scotland, then maintained in the circulating seawater aquarium system at
the Gatty Marine Laboratory (Scottish Oceans Institute) at ambient seawater
temperature. Gametes were individually harvested from multiple ascidian adults;
eggs were mixed with sperm for fertilization. Fertilized eggs were poured into a 40
μm cell strainer to remove excess sperm, then left to develop in filtered seawater at
approximately 20 °C. Before imaging, the embryos were incubated in 5 μM SYTO
81 (Invitrogen) solution for staining for 30 min, followed with two washes to
remove residual dye. The embryos were then transferred to the acoustic-trapping
sample chamber for imaging.

Zebrafish embryo preparation and drug treatment. The zebrafish (Danio rerio)
transgenic line (mbp:GFP)49, which has cmlc2:GFP reporter expression in the heart
was used to image heartbeat. Adult zebrafish, up to 2 years of age, were used for
breeding purposes. All experimental analyses in the manuscript were carried out on
animals up to 5 days post-fertilisation. All breeding and maintenance was carried
out with approval from the UK Home Office and according to its regulations,
under project licenses 70/8436. The relevant breeding and maintenance protocols
were approved by the University of Edinburgh Institutional Animal Care and Use
Committee.

Zebrafish embryos/larvae were maintained at 28 °C. The trapping chamber was
filled with E3 medium at room temperature maintained at 22 °C. 80 mg L−1 of
tricaine was used as a baseline for the reported experiments, to help pacify the
larvae. Zebrafish larva was transferred into the imaging chamber with a plastic
pipette and acoustically trapped in the centre of the chamber.

For drug treatment, a peristaltic pump (minipulse 3, Gilson) was used to
circulate fluid between the sample chamber and a beaker though polyvinyl chloride
(PVC) tubing. For stage one, E3 medium with baseline tricaine was circulated
between the sample chamber and the beaker in a closed loop. Starting at stage two,
a high concentration of drug was added into the beaker, whilst the fluid was
circulated in a closed loop, resulting in desired final concentration. For stage three,
fresh medium with baseline tricaine was pumped into the sample chamber whilst
the outlet was discharged to waste, so that the concentration of the drug decreased
gradually. The pumping speed was 20 mLmin−1, and fluid volume in the sample
chamber was 57.5 mL.

For heartbeat frequency analysis, image sequences were taken for 15 s every
minute at a frame rate of 20 Hz. The peristaltic pump was stopped while image
stacks were taken, to minimise the disturbance caused.

Zebrafish sample size. The number of zebrafish required per group (heart rate
decrease, heart rate increase, control) was determined from the ‘resource equation’
method50. Based on 3 groups, 5/6 fish per group was sufficient.

Fish were randomly allocated to each group from the same population. Blinding
was not relevant to this study as all imaging and image analysis was automated.

Zebrafish heartbeat rate extraction. Optical flow analysis was performed in
MATLAB on consecutive LSFM intensity images. Optical flow was performed
using the Horn–Schunck (HS) method35, which estimates the image displacements
by minimising an objective function comprising the local spatial and temporal
image gradients (such as seen from LSFM image edges and features). It is further
regularised to a global smoothness, i.e. a continuity of the displacement field
gradients, to ensure a unique solution. The HS method is particularly suited to
mechanical deformation problems, as a continuity in the displacement field
gradients is likely. The major advantage of the optical flow method over the
image correlation techniques, which are commonly used in tracking mechanical
deformation, is its computational speed. The analysis performed in this study took
50 ms per frame, compared to digital image correlation, which took 2–5 min per
frame. This speed enabled high-throughput analysis.

The deformation of the heart, i.e. the strain tensor field, is given as:
ε ¼ 1

2 ∇uþ ð∇uÞT
� �

, where u is the displacement vector field. Volumetric strain
(the change in volume over the initial volume of an object) is the trace of the strain
tensor: ΔV/V0= tr(ε)= ε11+ ε22+ ε33, or simply the divergence of displacement:
ΔV/V0=∇ · u. Volumetric strain between each frame was calculated and smoothed
using a Gaussian kernel with an 11-μm standard deviation, weighted by the
strength of the image gradients (related to the quality of optical flow estimation).
Since the analysis was performed between each frame, the estimated values were
velocities and strain rates (1/frame). Thus, the total volumetric strain was
calculated by integrating across frames.

For each image sequence, the heartbeat rate and the volumetric strain amplitude
were extracted for regions in the atrium and ventricle using Fourier analysis. The
power spectral density (PSD) was calculated for temporal measurements in each
location. The frequency peak of the PSD is the beat rate, whilst the amplitude of the
PSD at the peak, and its harmonics, were related to the amplitude of contraction51.
Such analysis discards the contributions of other noise sources not related to the
beat.

Code availability. The code used for the analysis of data in this study is available
in GitHub with the identifier: https://github.com/philipwijesinghe/Acoustic-
trap-LSFM.

Data availability
All data supporting the findings of this study are available in the University of St
Andrews Research Portal with the identifier https://doi.org/10.17630/cc36c86a-
5ed5-4198-8c93-52310dcf979c.
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